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Researchers have hypothesized that if we could estimate the probability that 
a fault in a code component will a cause a failure, we could use this estimate to 

improve the fault-detection effectiveness of code-coverage-based testing. If this 

hypothesis could be supported, it would motivate further research in this area 
and could lead to techniques that would help testers distribute testing resources 

more effectively and improve the quality of testing. In this research, we devel-

oped a new test adequacy criterion, which incorporates fault exposure potential 

estimates into statement-coverage requirements. We conducted empirical stud-
ies to investigate the fault-detection effectiveness of this new criterion. The 
results of our studies show that the incorporation of fault exposure potential 

information into the statement-coverage test adequacy criterion can indeed im-

prove its fault-detection effectiveness. However, the effects of incorporating the 

estimates vary with the program under test, the nature of faults contained in 
the program, and the level of confidence required of the testing. The overall 
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improvements in fault-detection effectiveness that we observed under our initial 

approach were not as large as we might wish, but by improving the method for 

estimating fault exposure potential we can obtain better results. The results of 

this research provide impetus for future studies in this area. 
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EMPIRICAL STUDIES OF THE EFFECTS OF 
INCORPORATING FAULT EXPOSURE POTENTIAL 

ESTIMATES INTO A TEST DATA ADEQUACY CRITERION 

Chapter 1 

INTRODUCTION 

The goal of software testing is to show the presence of possible faults in the 

software. Since computer technology is now playing a key role in everyday life, 

a software failure can cause great damage, or even the loss of human life. As a 

method for improving the quality of software, software testing's importance is 
increasing dramatically. 

It is generally accepted that software testers need some test data adequacy 

criterion with which to evaluate whether a set cf test data is sufficient and 

to guide the generation of test cases. Code-coverage-based test data adequacy 

criteria measure adequacy in terms of coverage of source code components, 

such as statements, decisions, or definition-use interactions, requiring that each 

component be exercised by at least one test case. These criteria have been the 

subject of a great deal of research and experimentation (e.g. [2, 12, 17]) and 
are often used in the software industry. 

Code-coverage-based test data adequacy criteria typically treat all code com-

ponents as equal: they assume that one test case exercising each component is 
sufficient. In practice this assumption is unrealistic. The probability that a 
test case can expose a fault in a code component varies with several factors, 
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including whether the test case executes the component, whether it causes the 

fault to create a change in program state, and whether it causes that change in 

state to propagate to output [6, 7, 14, 18, 21, 22]. 

Several researchers have therefore conjectured that if we could estimate the 

probability that a fault in a code component will cause a failure, we could use 

this estimate to improve the fault-detection effectiveness of code-coverage-based 

testing [6, 7, 8, 20, 22]. For example, an estimate of the probability that a fault 

in a component will cause a failure could be coupled with an overall "confidence" 

requirement to estimate the number of executions of the component that are 

necessary to achieve a certain probability of that component's correctness [7, 8, 

22]. 

This suggestion is intriguing; however, in our search of the research litera-

ture, we could discover no empirical studies that have directly assessed it. Voas 

[22] reports results of a study assessing the correlation between PIE (propa-

gation, infection, and execution) analysis sensitivity estimates and failures ob-

served in random testing. Goradia [6] reports results of a study in which an 

estimate of fault propagation probability is assessed for correlation with actual 

fault exposure data. Neither of these studies, however, examined the effects of 

directly incorporating such estimates into test data adequacy criteria. 

If the conjecture that fault exposure probability estimates can improve the 

fault-detection effectiveness of code-coverage-based testing could be supported, 

this would motivate further research on cost-effective techniques for obtaining 

such estimates, and on techniques for incorporating such estimates into testing. 

If successful, such research could help testers distribute testing resources more 

effectively and improve the quality of testing. Therefore, in this work we con-

ducted a controlled experiment to investigate the effects of incorporating fault 



3 

exposure potential estimates into a test adequacy criterion. Our results indi-

cate that the incorporation of such an estimate into that criterion can improve 

the fault-detection effectiveness of test suites that meet the criterion; however, 

the effects of incorporating the estimate vary with the program under test, the 

nature of the faults contained in the program, and the level of confidence re-

quired of the testing. Our results also highlight several interesting cost-benefits 

tradeoffs with respect to the incorporation of the estimate. 

Further analysis of the results of this experiment indicates that there may 

be several ways to improve this approach. We conducted another experiment 

to investigate one of these potential improvements, and the results are positive. 

The structure of this thesis is as follows. In the next chapter we discuss test-

ing methods, code-coverage-based test criteria, fault exposure, and related work. 

Chapter 3 introduces our method for estimating fault exposure potential, and 

a test adequacy criterion that incorporates such estimates. Chapter 4 describes 

our primary empirical study. Our experiment on improving the effectiveness of 

this approach is presented in Chapter 5. Chapter 6 presents conclusions and 

discusses possible future work. 



4 

Chapter 2 

BACKGROUND 

2.1 Software Testing 

2.1.1 Basics of Software Testing 

During a testing process the tested software (or part of it) is executed with some 

input data, and the output is compared with the hypothetical correct result 

based on the specifications for the corresponding input data. This procedure is 

repeated until the testers have enough confidence in the quality of this software. 

More formally, this process can be described as follows: Let P be a test subject, 

let D be the input domain of P, and let F be the hypothetical correct version 
of P (F is called an oracle and may be obtained from the specifications). A test 
case t is an element of D. A test suite T is a finite subset of D. If for a test 
case t, P(t) F(t), we say that a failure is demonstrated by t. 

In common testing terminology, a failure generally indicates the presence of 

one or more faults in the software under test. A fault is a mistake that exists 

in the source code. 

Theoretically, an ideal test suite T exists that can detect all the faults that 
exist in any program. However, in general we can not determine whether a 

test suite is sufficent to reveal all the faults in a program, or construct such a 
sufficient suite [10]. 



5 

Since determining correctness by testing is not feasible in general, testers 

have focused on building confidence through the use of test adequacy criteria. 

A test adequacy criterion specifies a condition (or more than one condition) that 

must be satisfied by a test suite [5]. The purpose of a test adequacy criterion is 

to guide the construction of a test suite so that it can be sufficient to achieve a 

certain level of quality in software. Testers may choose and apply one or more 

test criterion in a real software testing task depending on factors such as budget, 

human efforts, time, features of the software, and quality requirements. 

2.1.2 Software Testing Methods 

Normally, software testing methods can be classified as black box or white box 

approaches. Beside these two classic approaches, there is also a third approach 

called fault-based testing (the material presented in this section is drawn from 

[24] and [14]). 

2.1.2.1 Black Box Testing 

Black box testing methods design test cases without any knowledge of the soft-

ware's internal structure. The test cases can be derived from specifications, or 

even be generated randomly. Black box testing is also sometimes called func-

tional testing. 

2.1.2.2 White Box Testing 

In contrast to black box testing, white box testing designs test cases based on 

knowledge of the software's internal structure, so it is also called structural test-

ing. Several sophisticated white box testing techniques have been developed. 

Among them, techniques based on code coverage criteria are the most popular 



and successful. These techniques require each valid code component in a pro-

gram to be executed at least once. The code components can be statements, 

branches, paths, data dependencies or some similar identifiable entity. 

Both black box testing and white box testing have advantages and disad-

vantages: black box testing is relatively easy to implement, but not as capable 

of detecting certain classes of faults in the source code as white box testing. 

White box testing can be very sophisticated, but may not be able to detect 
errors such as the absence of some required feature or some code component. 

Thus, in practice, these two approaches are often used together. 

2.1.2.8 Fault-based Testing 

Unlike black box testing or white box testing, the major objective of fault-based 

testing is to evaluate the sufficiency of a test suite relative to a specific set of 
faults 1141. The primary example of this approach is mutation testing [1]. 

An important assumption for mutation testing is the coupling assumption, 

which states that a test suite that detects small faults in a program is also likely 

to detect complex, real faults that may occur in that program. In mutation 
testing, for a program P, a set of small changes in individual statements of P 
is made and the set of alternative programs obtained are called mutants. For a 
mutant, if any test case in a test suite T can cause it to produce different output 
from the original program P, we say this mutant has been killed, otherwise we 

say it survives. Mutation analysis uses this set of mutants as the set of small 

faults of P. So, if the test suite T kills most of the mutants of P, then based on 

the coupling assumption, T should he able to detect most of the faults that may 

occur in P; if this test suite lets many mutants survive, then it is insufficient 

and new test cases may need to be added to it. 
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The assumptions made by mutation testing are controversial, and the process 

is difficult to manipulate. Because of this, Howden [11] developed a variation 

of mutation testing called weak mutation testing (therefore, testing based on 

mutation analysis is sometimes called strong mutation testing). The major dif-

ference between this approach and mutation testing is that in mutation testing, 

whether a test suite can kill a mutant is judged by whether this test suite can 

cause the mutated program to produce a different output than the original pro-

gram, whereas in weak mutation testing a mutant is judged killed if the test 

suite can cause this mutant to produce a different data state after executing 

the statement in which the change is located. Weak mutation testing is less 

expensive than strong mutation testing, but its fault detection capability is not 

as good as that of strong mutation testing. This is because a test suite that can 

cause a mutant to produce a different data state may not be able to also cause 

the mutated program to produce a different final output. Thus, weak mutation 

can kill mutants more easily than strong mutation and results in weaker test 

sets. 

2.2	 Code-Coverage-Based Test Adequacy Criteria and Fault Expo-
sure 

An implied assumption of code-coverage-based test adequacy criteria is that all 

components are equal, so that one execution of each component is enough to 

guarantee a certain level of the software's quality. However, this assumption is 

not realistic. It is clear from the research literature that some faults are more 

easily exposed than others and that some source code components are more 

easily tested than others [8, 22]. Thus, several researchers (see e.g. [6, 7, 8, 14, 

18, 21, 22]) have proposed or investigated models of various aspects of fault-



detection phenomena. These models in general express the probability that a 

test case can expose a fault in a code component, if that component contains a 

fault, as a combination of three factors: (1) whether the test case executes the 

component, (2) whether it causes the fault to create a change in program state, 

and (3) whether it causes that change in state to propagate to output.' 
So, if we know a code component is relatively more difficult to test than 

other components, we may need to design more than one test case to exercise 

this component. This means that, if we want to gain a certain level of confidence 

in the correctness of different code components within the software, we may need 

to exercise those components different numbers of times. This idea suggests a 

new type of code-coverage-based test adequacy criteria. This is the main topic 

of this work. 

2.3 Related Work 

Voas [22] provides a method called PIE (propagation, infection, and execution) 

analysis, which assesses the probability that, under a given input distribution, 
if a fault exists in code component x, it will result in a failure. This probability, 

termed the sensitivity of x, is estimated by combining independent estimates of 
three probabilities: (1) the probability that x is executed (execution pro babil-

ity), (2) the probability that a change in x can cause a change in program state 

(infection probability), and (3) the probability that a change in state propa-
gates to output (propagation probability). PIE analysis uses various methods to 

1 A related issue involves the probability that a component contains a fault (e.g. [13]). We
do not address that issue. 



obtain these estimates: (1) simple code instrumentation to estimate execution 

probability; (2) a variant of weak mutation [11] in which syntactic changes are 

applied to x and then the state after x executes is examined to estimate infec-

tion probability; and (3) state perturbation, in which the data state following 

x is altered and then program output is examined for differences to estimate 

propagation probability. 

Voas presents a systematic method for calculating the execution probability 

(FE), infection probability (P1), and propagation probability (PP) of a state-

ment s. Once PE, PT, and PP have been estimated, 0, the sensitivity of s, is 

calculated according to the following formula: 

0=PE.a(PI, PP) 

where a (a, b) = a (1 b) if a (1 b) > 0; otherwise, a (a, b) = 0. 

Voas uses an empirical study to show that there can be a significant corre-

lation coefficient between the estimate of the probability of failure measured by 

random software testing and the probability of failure predicted by the estimates 

of propagation analysis and execution analysis. 

Voas also suggests (following an earlier suggestion by Hamlet [8]) that sen-

sitivity estimates could be used to calculate the number of executions of a 

component that are required to obtain a certain confidence in that component's 

correctness. However, neither Voas nor Hamlet further investigate this sugges-

tion. 
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Chapter 3 

PRELIMINARIES 

3.1 Fault Exposing Potential Estimation 

Voas' PIE analysis has provided a method that could be used to estimate the 
probability that a fault in a code component will cause a failure. However, for 

incorporating such information into code-coverage-based test adequacy criteria, 
this method has two disadvantages. 

First, by factoring in execution probabilities, sensitivity measures the prob-
ability that a fault will cause a failure relative to an input distribution. In 

code-coverage-based testing, however, we are interested in the probability that, 
if a test case executes a code component x containing a fault, that fault will 

propagate to output. It is possible for x to have very high [low] infection and 

propagation probabilities with respect to the inputs that execute it, even though 
it has a very low [high] execution probability relative to an input distribution. 
The incorporation of execution probabilities into sensitivity estimates thus dis-
torts the measure of the likelihood that a given test case that reaches x will 
expose a fault in x. For code-coverage-based testing, a more appropriate mea-

sure would consider only infection and propagation. 

A second drawback of sensitivity in this context involves its treatment of 

propagation and infection estimates. Sensitivity analysis separately calculates 

these estimates and uses a conservative approach to combine them. This ap-
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proach can overpredict the probability that an arbitrary input will expose a 
fault and result in low estimates of that probability. 

Consider the following example. Suppose for a code component y we obtain 

5 estimates of its infection probability (P1) and 5 estimates of its propogation 

probability (PP), as shown in Table 3.1. 

el e2 e3 e4 e5 

P1 1 1 0.5 1 1 

PP 1 1 1 1 0.5 

TABLE 3.1: PT and PP estimates for code component y. 

Using Voas' method, the combined estimate for P1 and PP should be: 

a(PI, PP) = a(0.5, 0.5) = 0.5 (1 0.5) 0.0 

Obviously, this estimate is conservative. 

Thus, in this work, we adopt a different estimate of the probability that a 

fault in code component x will cause a failure. For a code component x, we 

use mutation analysis [4, 9] to create m mutations of x. We then execute the 

program on a universe of test inputs, and determine, for each test case t that 

executes x, the number n of mutants exposed by that test case. Suppose that 
there are k test cases that execute x, and together, the sum of then, (1 < i < k) 

for the k test cases equals In this case the mutation analysis process hasn8. 

caused x to be executed k x in times. We use this value (k x m) to divide n9,  

obtaining an average value that indicates, for each test case t that executes x, 
the probability that will kill a mutant of x. We call the resulting value thet1  
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ml m2 m3 m4 m5  

ti 1 1 0 1 0  

t2 1 1 1 0 0  

t3 X X X X X  

t4 1 0 1 0 0  

t5 1 0 0 0 0  

t6 1 1 0 0 0  

TABLE 3.2: Example of FEP estimation for a code component. 

Fault-Exposing-Potential (FEP) estimate for x, described more formally by the 

following equation: 

k  

FEPX mx k (31)  

The following example illustrates. Suppose for a code component x we create 

5 mutants, and there are 6 test cases in tile test universe. Suppose the result 

of running these 6 test cases against the 5 mutants is as shown in Table 3.2. In 

this table, an entry of "1" indicates that the corresponding mutant can be killed 

by the corresponding test case, an entry of "0" means that the corresponding 
mutant survives under the corresponding test case, and an entry of "X" means 

the corresponding test case does not execute the code component containing the 
mutant. Since test case t3 does not execute the component, there are a total 
of 5 x 5 25 valid entries. Among these 25 entries, 11 are "1", so the FEP 
estimate for the code component is 11/25 0.44. 

An issue in implementing the foregoing process involves the handling of 

equivalent mutants: mutants that cannot be exposed by any input to the pro-

gram. In principal, we should eliminate such mutants from consideration, be-

cause they do not represent exposable faults; however, there is no such an algo-
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rithm to distinguish these mutants in general, also it is not practical to perform 

this task manually. Thus, a second approach is to treat all mutants as faults 

that could potentially be exposed. FEP estimates gathered by this approach are 

underestimates of the FEP estimates that would be calculated given knowledge 

of mutant equivalence. In our experimentation we take this second approach. 

We used this FEP estimation method in the empirical study reported in 

the next chapter. But be aware that our FEP estimation technique is just one 

approach, and other approaches may be applicable. In chapter 5 we consider 

one such alternative approach. 

3.2 FEPC-Adequacy Test Criterion 

3.2.1 Hit Number Calculation  

In a code-coverage-based testing task for a program, if we know the FEP es-

timate for each code component, we can transform this information into the 

number of test cases that are needed to exercise each code component. For 

example, if a code component has a very low FEP estimate, this indicates that 

if a fault exists in this code component, it may he very difficult to detect. In 
this case we may need to exercise this code component by more test cases than 

those code components with higher FEP estimates. Also, this interpretation is 

related to the confidence requirement for the correctness of that program: the 

higher the confidence requirement, the larger the number of times that a code 

component should be exercised. 

More precisely, following suggestions by Hamlet [8] and Voas [22], we can 

use an FEP estimate to determine the number of test cases that are needed to 
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obtain a certain level of confidence in the correctness of a code component, as 

follows. Let x be a code component, let be the estimated probabilityFEPX  

that a fault in x will cause a failure, and let c be the confidence that the failure 

probablity of x is less than In this case, the number of test cases hnFEPX. 

that must be executed through x to obtain confidence level c is given by the 
equation: 

ln(1 c)  
hn (3.2)  

ln(1 FEPX)  

For practical purposes two special cases involving equation (3.2) should be 

considered. First, may be estimated as 0 or 1, in which case the valueFEPX  

of hn is undefined. In this case, a prudent choice for hn (since is anFEPX  

estimate) is 1. Second, for values of between 0 and 1, hn may haveFEPX  

a fractional value. In this case hn may be a non-integer and, to retain the 

required level of confidence, must be rounled up. We call this final number the 

hit number requirement for x. 

To provide a sense of the coverage requirements imposed by such a test 
adequacy criterion, Figure 3.1 depicts the relationship among FEP estimates, 

confidence levels, and hit numbers. The figure shows, for four FEP estimates 

(0.1, 0.2, 0.4, 0.8), the hit numbers required to achieve various confidence levels. 

The figure indicates that for a given FEP estimate, as confidence level increases, 

hit number increases, and that the rate of increase accelerates. In other words, 

at high levels of confidence, obtaining an increase in confidence level requires a 

much larger boost in hit numbers than is required to obtain the same increase 

in confidence level at low levels of confidence. The figure also shows that when 

an FEP estimate is low, the hit number required to achieve high confidence is 

much larger than when an FEP estimate is high. 
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FIGURE 3.1: Hit number versus confidence level for four fault exposure probabilities. 

3.2.2 FEPC-Adequacy Test Criteria 

Since hit numbers specify the number of executions of each component that 

are necessary to achieve the required confidence in the correctness of that com-

ponent, a code-coverage-based test adequacy criterion incorporating estimates 

of the probability that a fault in a code component will cause a failure can 
be realized by requiring that each component be exercised by a number of 
test cases equal to or exceeding its hit number. We call this criterion FEPC-

adequacy (Fault-Exposing-Potential-Coverage-adequacy). In theory, such a cri-

terion could be defined in terms of various types of code components, including 

statements, decisions, or data dependencies, provided that (1) coverage of that 

type of component can be measured, (2) the notion of what it means for such a 



component to contain a fault can be defined, and (3) appropriate estimates 

of the probability that a fault in that component will cause a failure can be 
obtained. 

In this work, we focus on the use of individual program statements as corn-

ponents, due to the relative simplicity of that approach and the availability of 

tools and estimates that operate at that level. 
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Chapter 4 

EMPIRICAL STUDY 

4.1 Research Questions and Experiment Design Considerations 

The research questions we wished to investigate in this study can be informally 

stated as follows: 

RQ1: Can the incorporation of FEP estimates into statement-coverage test 

adequacy criterion improve the fault-detection effectiveness of test suites? 

RQ2: How does the fault-detection effectiveness of FEPC-adequate test suites 

change as confidence changes? 

RQ3: How does the size of FEPC-adequate test suites change as confidence 

level changes? 

RQ4: Is program a factor that affect the fault-detection effectiveness of FEPC-

adequate test suites? 

RQ5: Do differences in the exposure potential of faults affect the fault-detection 

effectiveness of FEPC-adequate test suites? 

To address our research questions we need to be able to compare the fault-

detection effectiveness of FEPC-adequate test suites with that of some control 

group of test suites that do not incorporate FEP estimates. However, we must 

be careful in choosing a candidate for such a comparison, because there are 
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many factors that can affect a test suite's effectiveness. To assess the effects 

of incorporating an estimate of fault exposure probability into the statement-

coverage adequacy criterion, we must strictly control for those factors. 

One major factor that affects the fault-detection effectiveness of a test suite is 

the size of the test suite. In order to make comparisons of test suites independent 

of this factor, we must be able to control the size of the test suites compared. 

Another factor that we can not ignore involves the effects of statement-

coverage adequacy. In the FEPC adequacy test criterion, the hit number re-

quirement for each executable statement is at least one. Therefore, each FEPC-
adequate test suite is statement-coverage-adequate. So, the fault-detection ef-

fectiveness of these suites may be due to two kinds of causes: their statement-

coverage adequacy or their incorporation of FEP estimates. In this study we 

are interested only in the latter cause, and statement-coverage adequacy is a 

factor that should be under strict, control. 

Obviously we can not directly compare FEPC-adequate test suites with 
statement-coverage-adequate test suites, because by doing so we control the 
factor of statement-coverage adequacy, but the factor of size is out of control. 
To control for the size factor we considered using random test suites. A ran-
dom test suite is composed of randomly selected test cases, and we can easily 
control its size. However, if we compare FEPC-adequate test suites with equiv-

alently sized random test suites, the factor of statement-coverage adequacy is 

out of control, simply because we can not guarantee that a random test suite 
is statement-coverage adequate. So, in this study we used a type of test suite 

that combines statement-coverage adequacy and randomly selection, so that 
both factors are under control. Details about the test suites' generation are 
presented in Section 4.3.5. 
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The use of confidence levels is a factor unique to FEPC-adequate test suites. 

We can see from the hit number calculation formula that for an executable 

statement, under different confidence levels, the hit number requirements may 

differ. This may result in different FEPC-adequacy test suites under different 

confidence levels. So we believe that confidence level will have a great impact 

on FEPC-adequate test suites' fault-detection effectiveness and size. Thus, in 

this study we performed experiments under several different confidence levels, 

so that we could investigate the effect of confidence. 

4.2 Measures 

To address our research questions we require measures of the fault-detection 

effectiveness of a test suite and of test suite size. To measure test suite size, we 

focus simply on the number of test cases in the test suite. 

Measuring fault-detection effectiveness is not quite as simple. Given a pro-

gram and a fault set for that program, we define the fault-detection effectiveness 

of a test suite for that program as the percentage of faults in the fault set that 

can be detected by that test suite. We refer to this measure of a test suite's 
effectiveness as the test suite's efficacy. More formally, given program P and 
fault set F for P, where F contains !F faults, and given test suite T, if the 
execution of T on P reveals of the faults in F, the efficacy of T for P andFT  

F is given by x 100%. 
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Mutant Test Pool Fault 
Program LOCs Pool Size Size Pool Size 

print_tokens 712 4057 4130 7 

print_tokens2 687 4145 4115 10 

replace 563 9622 5542 32 

schedule 412 2153 2650 9 

schedule2 387 2947 2710 10 

tcas 173 2876 1608 41 

tot_info 406 5898 1052 23 

space 9126 132163 13585 38 

TABLE 4.1: Experiment subjects. 

4.3 Experiment Instrumentation 

.3.1 Programs 

We used eight C programs as subjects (see Table 4.1). The first seven programs 

were collected initially by researchers at Siemens corporation for use in experi-

ments with dataflow and control-flow based test adequacy criteria [12]; we call 

them the Siemens programs. The Siemens programs perform a variety of tasks: 
tcas is an aircraft collision avoidance system, schedule and schedule2 are pri-
ority schedulers, tot_info computes statistics given input data, print_tokens 
arid print_tokens2 are lexical analyzers, and replace performs pattern match-
ing and substitution. The eighth program, space, is an interpreter for an array 

definition language (ADL) used within a large aerospace application. 

4.3.2 Test Pool and Test History 

For each of the seven Siemens programs the Siemens researchers created a test 
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pooi of black-box test cases using the category partition method and the Siemens 

Test Specification Language tool [16]. They then augmented this set with man-

ually created white-box test cases to ensure that each exercisable statement, 

edge, and definition-use pair in the base program or its control flow graph was 

exercised by at least 30 test cases. This process produced test poois of the sizes 

shown in Table 4.1. 

Space has a test pooi of 13,585 test cases. The first 10,000 test cases were 

randomly generated by Vokolos and Frankl [23], the remaining test cases were 

added by authors of [20], so that most executable branches in the program' 

were exercised by at least 30 test cases. 

For our experiment, we considered each program P with test pool U, and 
recorded, for each test case in U and each statement in P, whether or not 
that statement was exercised by that test case. We call this information the 
test history of U on P and it was used to create individual test suites for the 

programs, as described in Section 4.3.5. 

4.3.3 Mutant Pool and FEP Matrix 

We used the Proteum mutation system [3] to obtain mutant versions of our 

subject programs; this process produced between several and several dozen mu-

tations of each executable statement in each subject program. We treat the set 
of mutants for each program as the mutant pooi for that program; Figure 4.1 

lists the sizes of these mutant pools. For each program, we used its mutant pooi 

and test pool to evaluate the fault exposure potential of each statement in the 

1 We allowed 17 edges reachable only on malloc failures to remain unexercised. 
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program, as described in Section 2. We thereby generated an FEP matrix for 

each program, which records the FEP estimates for each executable statement 
in that program. 

.3.4 Confidence Levels 

To address our research questions, we required FEPC-adequate test suites at 
several confidence levels. Since confidence level is a continuous variable, for our 

experiment we must sample confidence level. Given the relationship depicted 

in Figure 3.1 in Section 3.2, we judged it sufficient to sample infrequently for 

low confidence levels, but more frequently for higher confidence levels; this led 

us to select confidence levels 0.1, 0.4, 0.6, 0.8, 0.9, 0.95, and 0.995. 

.3.5 Test Suites 

For this study, we constructed each FEPC-adequate test suite by first con-

structing a statement-coverage-adequate test suite Tstmt, and then using a mm-

imization tool to minimize it to Tminstmt. Next, we greedily selected test cases 

from the test pooi, adding them to the suites if they covered additional hit 

number requirements, until the hit number requirements of every executable 

statement (for the confidence level of interest) were satisfied. This produced an 

FEPC-adequate test suite. Finally, for each such test suite we constructed an 

equivalently sized Augmented- Statement- Coverage (ASC) test suite, by begin-

ning with Tminstmt, and randomly adding test cases to Tminstmt until it attains 

the same size as the FEPC-adequate suite. 

The method we used to generate our initial statement-coverage-adequate test 

suites is as follows. We began with a new empty suite, randomly selecting a 
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test case from the test pooi, and if this test case added some statement coverage 

to the current suite, we added it to the suite. We did this repeatedly until 

statement coverage had been achieved for the whole program. Obviously, the 

statement coverage test suite generated by this method may contain redundant 

test cases, that is, some statements may be exercised more than once by this 
test suite. Thus, it is possible that the statement-coverage-adequate test suite 
we generated may be an "over-qualified" test suite, and this may act as an 
uncontroled factor and cloud our results. We thus minimiz this test suite, 
using the algorithm of [19], to achieve a minimal statement-coverage-adequate 

test suite. 

This approach creates FEPC-adequate test suites, and a control group of 
ASC test suites that are statement-coverage-adequate, yet of the same sizes as 

their corresponding FEPC-adequate test suites. The approach thus controls 
for both the effects of test suite size, and statement coverage adequacy. Using 

these ASC test suites as a control group in our experiments, together with 
appropriate statistical comparison techniques, we can be much more certain 
that differences in efficacy, if found, are attributable to the use of fault exposure 

probability estimates. In our experiments we refer to an FEPC-adequate test 
suite TFEPC and its corresponding ASC suite TASC (the suite created from the 

same statement-adequate base as Tminstmt) as a test suite pair. The test suite 
generation procedures are given in detail in Figure 4.1. 

For each program and each confidence level, we generated 1000 (FEPC-
adequate, ASC) test suite pairs. Given our eight programs and seven confidence 

levels, this entailed the generation of 8 x 7 x 1000 = 56, 000 test suite pairs. 
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1. Algorithm: TestSuitePairGeneration 
2. Input: confidence level C, test history H, test pool U, FEP matrix M 
3. Output: Test suite pair (TFEPC, TASC 
4. begin 
5. Generate a statement-coverage-adequate test suite Tstrnt 
6. Minimize T5tmt to be Tmi,,st,nt 
7. TFEPC = GenFEPCSuite(Tm,,m, C, H, U, M) 
8. TASC = GenASCSuite(Tm,nstm, TFEPC, H, U) 
9. end 

1. Procedure: GenFEPCSuite (Tminstt, C, H, U, Al) Output: TFEPC 
2. begin 
3. calculate hit number requirements for each valid statement 
4. Tp = Tmj,,st,,t 
5. while TFEPC can not satisfy all hit number requirements do 
6.	 randomly select a test case t from U 
7.	 if t had not been selected before and t can  

satisfy some hit number requirements not yet satisfied  
8. add t to TFEPC 
9.	 endif 
10.	 endwhile 
11. end 

1. Procedure: GenASCSuite TFEPC, C, H, U, M) Output: TASC 
2. begin 
3. Tsc = Tmi,st,, 
4. while TASC IYFEPCI do 
5.	 randomly select a test case t from test pool 
6.	 if t had not been selected before 
7. add t to TASC 
8.	 endif 
9. endwhile 
10. end 

FIGURE 4.1: Algorithm for test suite pair generation. 
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4.3.6 Fault Sets 

In this study we used three kinds of fault sets, as follows. 

Original fault sets. The Siemens researchers seeded the Siemens programs 

with faults; these faults were intended to be as "realistic" as possible, based 

on the researchers' experience with real programs. In contrast, space has 38 
faults, including 33 faults discovered during its development and 5 discovered 

subsequently by the authors of [20]. 

Mutation fault sets. Although the original fault sets contained a selection of 

both real and "realistic" faults, the sets of faults are somewhat small. To enlarge 

our focus, we considered a second fault set constructed from the mutations 

created by Proteum. We obtained this set by randomly selecting, for each 
program, 200 mutants from the mutant pooi for that program. We restricted 

our selection to mutants that were known to be non-equivalent: that is, mutants 

for which there existed at least one test case, in the test pool for the program, 
that exposed that mutant. 

Tough fault sets. Pilot studies suggested that FEPC-adequate test suites 
might attain greater efficacy when applied to faults that are difficult to detect. 
Thus, in our experiments, we utilized a third group of tough fault sets, consisting 

of relatively difficult to detect faults. We obtained this set by randomly selecting 

mutants, from the mutant pool, that had FEP estimates less than 0.2 (we define 

the FEP estimate for a mutant as the number of times the mutant is exposed by 

test cases in the test pool, divided by the number of test cases in the test pool 
that execute the statement containing the mutant), but greater than 0.0 (and 
thus are not equivalent mutants). We selected tough fault sets of size 200 for 

each program except schedule, for which there were only 90 qualified mutants. 
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4.4 Experiment Design 

.4.1 Variables 

The experiment manipulated three independent variables: 

1. The subject program (8 programs). 

2. The confidence level (7 different confidence levels). 

3. The fault set (3 different fault sets for each program). 

We measured 2 dependent variables: 

1. Fault-detection effectiveness (efficacy measure). 

2. Test suite size. 

4.4.2 Design  

The experiment used an 8 x 7 x 3 factorial design with 1000 paired efficacy 

measures per cell; the three categorical factors were program, confidence level, 

and fa'alt set. For each program P and confidence level c, we ran our 1000 test 

suite pairs on each fault set. This yielded 168,000 paired efficacy measures; 

these formed the data set for our analysis. 

4.5 Results and Analysis 

The three subsections that follow (4.5.1, 4.5.2, 4.5.3) analyze the data obtained 

using each of the different fault set types focusing on efficacy. Section 4.5.4 

then considers results relevant to test suite size. Following presentation of data 

we discuss threats to validity for our studies in Section 4.6. Section 4.7 then 

presents further discussion of these results and further observations. 
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4.5.1 Original Fault Sets 

Figure 4.2 depicts average efficacy values of the paired FEPC-adequate and ASC 

test suites measured against the Original Fault Sets over the seven confidence 

levels. Each graph depicts results for one subject program. Each plotted point 

represents the mean of the 1000 efficacy values collected at a given confidence 

level for the FEPC adequate test suites (filled diamond plot symbol) and ASC 

adequate test suites (hollow circle plot symbol). The graphs depict the dif-

ferences in fault-detection effectiveness between FEPC-adequate and ASC test 
suites. 

As the graphs show, the average efficacy of FEPC-adequate suites and 

ASC suites increases as confidence level increases. This increase occurs for 
all programs, although at different rates. For print_tokens, print_tokens2, 
schedule2, tcas, and tot_info, the average efficacy values of the FEPC-

adequate suites are noticeably larger than those of the ASC suites as confidence 

level ranges from 0.4 to 0.995. For schedule, the average efficacy values of 

the FEPC-adequate suites are somewhat larger than those of the ASC suites 

as confidence level ranges from 0.6 to 0.95. For the larger program space, the 

average efficacy values of FEPC-adequate suites are larger than those of the 
ASC suites at all confidence levels. For replace, the average efficacy values of 

FEPC-adequate suites appear to be either smaller than or equal to those of the 

ASC suites. 

Our hypothesis is that the fault-detection effectiveness of FEPC-adequate 

suites will be better than the fault-detection effectiveness of their correponding 

ASC suites. Consequently we expect to find positive mean differences (that is, 

the difference between the average efficacies of the FEPC-adequate suites and 

their corresponding ASC suites) from our data. To formally assess which mean 



print_tokens 
100-1 100 

print_tokens2 

90 90 
80 80 
70 70 
60 60 
50 H 50 
40 40 
30 30 
20H 
1 0 Il 1 

20 
1 0 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

100 
replace 

100 
schedule 

90 90 
80 80 
70 70 
60 60 
50 50 

,rTTT,  
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 0 .1 .2 .3.4 .5 .6 .7 .8 .9 1 

schedule2 tcas100 100 
90 90 
80 80 
70 70- -. 
60 -- 60 
50 50 H 

H 

20 20 
10 10 r'-r'r---r-'r-- r.ii.ri. 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

tot_info space1001 100 
90 90 
8 0 80 
70 70 
60 60 
50 50 
40 40 
30 30 
20 20 
10 

1 

j.,I!.,r! 10 IfI!r.r!l, r  

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

-C-- ASC 4 FEPC 

FIGURE 4.2: Average efficacy values of FEPC-adequate and ASC test suites, per 
program, run against the Original Fault Sets. Efficacy is shown along the vertical 
axis and confidence level along the horizontal axis. 
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differences are statistically significant, paired t-tests were run. Mean differences 

where the t-test p value is less than or equal to 0.05 are deemed statistically 

significant. 

Table 4.2 displays the mean differences in efficacy values (as percentages) 

between FEPC-adequate and ASC test suites, and corresponding p values, by 

program, with an all programs total. The three classes of table entries are dis-

tinguished by different type styles. Bold-faced entries indicate statistically sig-

nificant results supporting our hypothesis (mean difference > 0, with p < 0.05). 

Entries in standard type indicate results that are contrary to the hypothesis 

(mean difference < 0, with p < 0.05). Italicized entries indicate results that are 

statistically not significant (p > 0.05) and hence inconclusive. 

The bottom-right entry of the table contains a statistically significant pos-

itive mean difference derived from analyzing all 56,000 efficacy measure pairs 

as one data set. The result supports our hypothesis; this suggests that overall, 

the fault detection effectiveness of FEPC-adequate suites was better than that 
of their corresponding ASC suites. 

The entries in the right-most column of the lower-half table (the column 

labelled total) contain the mean differences calculated from the 7000 efficacy 

measure pairs collected (across all seven confidence levels) on each program. 

The results indicate support for the hypothesis on seven of the eight programs. 

The results on replace, however, are contrary to the hypothesis. 

The bottom row (the row entitled "total") of the confidence level columns 

contains the mean differences calculated from the 8000 efficacy measure pairs 

collected (across all eight programs) at that level. Overall, each entry indicates 

supportive results: at each confidence level, FEPC-adequate suites outperform 

ASC suites. The mean difference values in this row, from left to right, form 
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cI=0.1 cl=0.4 cl=0.6 cl=0.8 
Program mean dif. p value mean dif. p value mean dif. p value mean dif. p value 
printtokens 0.70 <.0001 1.70 <.0001 3.70 <.0001 3.80 <.0001 
print..tokens2 0.03 .1798 2.30 <.0001 3.90 <.0001 4.60 <.0001 
replace -0.50 <.0001 -3.60 <.0001 -3.30 -2.50<.0001 <.0001 
schedule 0.00 0.00 0.20 <.0001 1.20 <.0001 
schedule2 0.10 .0104 5.40 <.0001 11.20 <.0001 9.10 <.0001 
tcas 0.30 .0003 2.60 <.0001 2.40 <.0001 3.00 <.0001 
tot.info 0.00 2.40 <.0001 3.00 <.0001 4.70 <.0001 
space 0.50 <.0001 1.80 <.0001 1.70 <.0001 1.40 <.0001 
total 0.10 <.0001 1.60 <.0001 2.80 <.0001 3.20 <.0001 

cl=0.9 clr=0.95 cL=0. 995 totaL 

Program mean dif. p value mean dif. p value mean dif. p value mean dif. p value 
print..tokens 6.80 <.0001 4.90 <.0001 4.10 <.0001 3.70 <.0001 
print..tokens2 4.40 <.0001 4.40 <.0001 3.40 <.0001 3.30 <.0001 
replace -2.50 <.0001 -2.40 <.0001 -1.60 <.0001 -2.30 <.0001 
schedule 0.60 <.0001 0.40 .0025 0.10 .2045 0.40 <.0001 
schedule2 9.10 <.0001 7.80 <.0001 6.20 <.0001 7.00 <.0001 
tca.s 2.60 <.0001 3.00 <.0001 0.80 <.0001 2.10 <.0001 
totinfo 4.30 <.0001 4.10 <.0001 2.70 <.0001 3.10 <.0001 
space 0.90 <.0001 0.70 <.0001 0.40 <.0001 1.00 <.0001 
total 3.30 <.0001 2.80 <.0001 2.00 <.0001 2.30 <.0001 

TABLE 4.2: Results of paired t-test on data against Original Fault Sets. 

http:clr=0.95
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a single-peak curve, increasing to confidence levels 0.8 and 0.9, and declining 

thereafter. 

The other (interior) entries in the table present the results from the 1,000 

paired efficacy measures collected for each program at each specified confidence 

level. Of these 56 results (a mean difference value and the corresponding p value 

are treated as one result, or say, one entry), 44 entries (79%) are supportive, 

10 entries are contrary, and 2 are not statistically significant. Replace exhibits 

contrary or insignificant results at every confidence level. Five of the eight 
programs exhibit contrary or insignificant results at confidence level 0.1. 

4.5.2 Mutation Fault Sets 

Figure 4.3 depicts average efficacy values of FEPC-adequate and ASC test suites 

measured against the Mutation Fault Sets. Comparing Figures 4.2 and 4.3 it ap-

pears that the same general trends in efficacy occur as confidence level changes. 

However, for all programs, the average efficacy values of FEPC-adequate and 

ASC test suites are larger for the Mutation Fault Sets than for the Original 
Fault Sets: particularly in the cases of print_tokens, replace, schedule, 
schedule2, and tcas. The difference suggests that faults in the Mutation Fault 

Sets are easier to detect than those in the Original Fault Sets. 

At the overall program level (right column of lower-half table), results sup-

port our hypothesis on seven of the eight programs, with results on replace 

showing no significant differences. On all of the programs, however, the mean 

differences are closer to 0. 

At the overall confidence level (bottom row), all entries continue to mdi-
cate supportive results. For all but one entry (el = 0.1), however, the mean 
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FIGURE 4.3: Average efficacy values of FEPC-adequate and ASC test suites, per 
program, run against the Mutation Fault Sets. Efficacy is shown along the vertical 
axis and confidence level along the horizontal axis. 
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cl=0.1 cl=0.. cl=0.6 cl=0.8 
Program mean dif. p value mean dif. p value mean dif. p value mean dif. p value 

prinLtokens 0.20 <.0001 0.10 <.0001 0.40 <.0001 0.40 <.0001 
prinutokens2 0.0( .2484 0.40 1.0001 0.60 <.0001 0.30 <.0001 
replace -0.70 <.0001 -0.90 <.0001 -.010 .1181 0.40 <.0001 
schedule 0.00 0.00 0.20 <.0001 0.70 <.0001 
schedule2 0.20 <.0001 0.80 <.0001 1.40 <.0001 1.20 <.0001 
tcas 0.30 <.0001 2.10 <.0001 0.40 <.0001 0.50 <.0001 
tot..info 0.00 0.60 <.0001 0.80 <.0001 1.10 <.0001 
space 3.10 <.0001 1.70 <.0001 1.10 <.0001 0.70 <.0001 
total 0.40 <.0001 0.60 <.0001 0.60 <.0001 0.70 <.0001 

cl=0.9 cl=0.95 cl=0.995 total 
Program mean dif. p value mean dif. p value mean dif. p value mean dif. p value 

prinLtokens 0.70 <.0001 0.60 <.0001 0.60 <.0001 0.40 <.0001 
printJokens2 0.30 <.0001 0.20 <.0001 0.04 .0440 0.30 <.0001 
replace 0.60 <.0001 0.50 <.0001 0.30 <.0001 0.09 .6010 
schedule 0.30 <.0001 0.10 <.0001 0.03 .0013 0.20 <.0001 
schedule2 1.10 <.0001 0.90 <.0001 0.80 <.0001 0.90 <.0001 
tcas -0.60 <.0001 -0.30 < 0001 -0.60 <.0001 0.20 <.0001 

totinfo 1.00 <.0001 0.90 <.0001 0.80 <.0001 0.70 <.0001 
space 0.50_- <.0001 0.40 <.0001 0.10 <.0001 1.10 <.0001 
total 0.50 <.0001 0.40 <.0001 0.30 <.0001 0.50 <.0001 

TABLE 4.3: Results of paired t-test on data against Mutation Fault Sets. 
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differences observed are lower than those observed with the Original Fault Set, 

suggesting less gain in fault-detection as a result of employing FEPC-adequacy 

with these fault sets. 

The individual table entries, for the most part, reflect the same movement 

toward 0.0 difference typically exhibited at the overall program and overall 

confidence levels. 

4.5.3 Tough Fault Sets 

Figure 4.4 depicts average efficacy values of FEPC-adequate and ASC test suites 

measured against the Tough Fault Sets. The graphs again exhibit efficacy trends 

across confidence levels similar to those observed on the other fault sets. In 

general, however, the mean differences in efficacy values are higher than those 

displayed in Figure 4.3, presumably reflecting the differences in fault difficulty 

between these fault sets. 

The mean differences obtained against the Tough Fault Sets are shown in 

Table 4.4. The mean difference values at the overall program level indicate that 

on seven programs, FEPC-adequate suites yielded better efficacies against the 

Tough Fault Sets than against the Mutation Fault Sets, while for tcas results 

were slightly worse. The results in the last row of Table 4.4 show that at the 

overall confidence level, for all levels, the mean differences in efficacies mea-

sured against the Tough Fault Sets were better than those measured against the 

Mutation Fault Sets. 
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cl=0.1 cl=0..l c1=0.6 cl=0.8 
Program mean dif. p value mean dif. p value mean dif. p value mean dif. p value 
print..tokens 1.70 <.0001 1.40 <.0001 2.00 <.0001 2.10 <.0001 
printJokens2 0.03 .0799 1.60 <.0001 2.20 <.0001 1.50 <.0001 
replace -0.90 <.0001 -0.50 <.0001 1.00 <.0001 2.40 <.0001 
schedule 0.00 0.00 0.0. .3299 0.30 <.0001 
schedule2 0.20 <.0001 4.00 <.0001 9.10 <.0001 8.20 <.0001 
tcas 0.40 <.0001 2.60 <.0001 0.30 .0629 0,30 .0752 
totinfo 0.00 3.70 <.0001 4.70 <.0001 6.30 <.0001 
space 2.40 <.0001 1.70 <.0001 1.20 <.0001 1.10 <.0001 
total 0.50 <.0001 1.80 <.0001 2.60 <.0001 2.80 <.0001 

cl=0.9 cir1rO.95 cl=0.995 total 
Program mean dif. p value mean dif. p value mean dif. p value mean dif. p value 
prinLtokens 4.00 <.0001 3.20 <.0001 3.80 <.0001 2.60 <.0001 
print..tokens2 1.60 <.0001 1.20 <.0001 0.60 <.0001 1.20 <.0001 
replace 2.30 <.0001 2.10 <.0001 1.50 <.0001 1.10 <.0001 
schedule 0.10 .0158 0.03 .616 0.01 .1613 0.10 <.0001 
schedule2 8.00 <.0001 7.00 <.0001 5.60 <.0001 6.00 <.0001 
tcas -0.13 <.0001 -0.40 .0008 -1.00 <.0001 0.10 <.0001 
toLinfo 5.80 <.0001 4.30 <.0001 3.20 <.0001 4.00 <.0001 
space 1.00 <.0001 1.00 <.0001 0.60 <.0001 1.30 <.0001 
total 2.70 <.0001 2.30 <.0001 1.80 <.0001 2.10 <.0001 

TABLE 4.4: Results of paired t-test on data against Tough Fault Sets. 

http:cir1rO.95
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4.5. Test Suite Sizes 

To address our third research question, regarding test suite sizes, Figure 4.5 

contains eight graphs; each depicts test suite sizes for a program at all seven 

confidence levels. The individual boxplots show the distribution of test suite 

sizes at each confidence level. 

As expected, our experiment showed that an increase in confidence level re-

sulted in an increase in the size of corresponding FEPC-adequate test suites. 

Moreover, the rate of increase became larger as confidence level increased. We 

performed regressions on the size data, and we found that quadratic polyno-

mial curves can closely fit the data. The corresponding regression results are 

presented in Table 4.5. The high correlation coefficient values (R2) provide 

firm evidence of polynormial growth trends in test suite size as confidence ieel 

increases. 

Program Regression Line R2 

print_tokens y = 50.56 652.72 x x + 2574.71 x 3738.58 x x3 + 1853.84 >< 0.967 

print_tokens2 y = 52.44 680.37 x x + 2655.87 x 3804.59 x x3 + 1864.46 x 0.967 
replace y = 198.92 2825.64 x x ± 11235.08 x 1622705 x -1- 7972.49 x x4 0.975 
schedule y = 12.66 120.23 x x + 467.06 x 680.02 x x + 337.35 x 0.944 

schedule2 y = 120.38 1730.75 x x + 6889.58 x 9928.10 x 4862.17 x 0.975 
tcas y = 97.31 - 1406.29 x x + 5618.71 x 8122.93 >c x3 + 3992.16 x 0.975 

tot_info y = 39.94 520.46 x x + 2008.35 < 2855.98 x 1389.44 x 0.945 

space y = 1489.63 21232.12 x x + 85514.95 x 123737.12 x x3 + 61136.91 >< x4 OJ 
TABLE 4.5: Correlation between confidence level and test suite size, using polyno-
mial regression. 

http:61136.91
http:123737.12
http:85514.95
http:21232.12
http:11235.08
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FIGURE 4.5: Boxplots of test suite sizes for eight programs. 
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4.6 Threats to Validity 

We now discuss some of the threats to validity that exist for this study. 

4.6.1 Threats to Internal Validity 

Threats to internal validity are factors that can affect the dependent variables 

and are out of strict control in the experiment. In this study, we have two major 

concerns. First, differences among program subjects and in the composition 

of the test poois may affect results beyond our understanding and ability to 

control. For example, our test poois are not operational distributions. Since in 

this study, the FEPC-adequate and ASC test suites are generated by randomly 

selecting some test cases from the test poois, their fault-detection effectiveness 

is affected by this characteristic of the test poois. Further studies on this topic 

employing additional subject programs and test poois are necessary. 

Second, our method for calculating FEP estimates provides one approach 

for approximating and using fault exposure probabilities, and these estimates 

may be inaccurate. However, one assumption underlying the FEPC adequacy 

test criterion is that we have correct FEP estimates so that we can transform 

them into correct hit number requirements. Inaccurate FEP estimates may 

result in inaccurate hit number requirements, and thus will affect the fault-

detection effectiveness of FEPC-adequate test suites. We believe that more 

accurate approaches may exist, and Chapter 5 investigates an alternative. 
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4.6.2 Threats to External Validity 

Threats to external validity limit our ability to generalize our results. There are 

two primary threats to external validity for this study. First, the subject pro-

grams are of small and medium size; complex industrial programs with different 

characteristics may be subject to different cost-benefit tradeoffs. Second, we 

used three varieties of fault sets in the experiment; each variety has drawbacks 

in terms of representativeness. Only the faults for space actually occurred in 

practice, and mutations represent only a relatively small set of the types of 

possible faults. Also, each fault was considered to be the only fault in the pro-

gram while test cases were running against it. In practice, programs have much 

more complex error patterns, including faults that interact. So, in future work, 

we should design some empirical studies to investigate the behavior of FEPC-

adequate test suites under more complex error patterns. For example, we can 

design some faulty versions of a program by injecting several faults into each 

version at the same time. 

4.6.3 Threats to Construct Validity 

Threats to construct validity arise when measurement instruments do not ad-

equately capture the concepts they are supposed to measure. There are four 

issues to consider. First, efficacy is not the only possible measure of test suite 

effectiveness. For example, our efficacy measure assigns no value to subsequent 

test cases that detect a fault already detected; such inputs may, however, help 

software engineers isolate the fault, and for that reason might be worth mea-

suring. Second, our efficacy measure does not account for the possibility that 

faults may have different costs. Third, this method of measuring fault-detection 
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effectiveness calculates effectiveness relative to a fixed set of faults, however in 

practice, during the testing procedure new faults may be introduced into the 

program when correcting those faults. Finally, our approach does not differen-

tiate between test suites that detect faults multiple times (i.e. more than one 

test case in the test suite detects the fault) and test suites that detect a fault a 

single time. 

4.7 Discussion 

Our results show that the incorporation of fault exposure probability estimates 

(in the form of FEP estimates) into statement-coverage-adequate test suites can 

indeed improve the fault detection effectiveness (measured as efficacy) of those 

test suites. However, these results bear further scrutiny. 

First, efficacy results varied widely among the different programs and fault 

sets; in some cases, results contradicted the hypothesis that FEPC-adequate 

test suites would be more effective than their corresponding ASC suites; in 

other cases, results showed no significant differences between the suites. On all 

programs other than replace, FEPC-adequate suites were more effective than 

ASC suites for all three fault sets. On replace, in contrast, FEPC-adequate 

suites were less effective overall than ASC suites for two of the three fault sets. 

Schedule is another interesting case: from the efficacy graphs and paired t-test 

results for schedule, we can see that schedule's FEPC-adequate test suites 

and ASC suites often failed to differ or differed little in efficacy, irrespective of 

confidence level and fault set. 

There are many factors that may account for these performance differences. 

One such factor is the range of FEP estimates for the program under test. For 
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example, the test suites for schedule, in contrast to those for other programs, 

are relatively small across confidence levels. Even at confidence level 0.995, the 

average test suite size for schedule is only 17. Checking the hit number re-

quirements for schedule under confidence level 0.995, we discovered that most 

of these were small: only nine of the 281 statements for which hit numbers are 

calculated possessed hit numbers over five. It seems likely that in such cases, 

most ASC suites can also satisfy, or nearly satisfy, most hit number require-

ments, and thus provide efficacy nearly equivalent to that of the corresponding 

FEPC-adequate suites. 

Confidence level also affects results. Under confidence levels 0.1 and 0.4, the 

efficacies of ASC and FEPC-adequate suites often do not significantly differ, 

or differ only slightly. However, at these confidence levels, most hit number 

requirements are small, and minimized statement-coverage-adequate test suites 

may themselves be nearly FEPC-adequate. As confidence levels increase, the 

hit number requirements for many statements increase dramatically, reducing 

the likelihood that random augmentation of test suites will possess the "extra 

intelligence" inherent in adding test cases that focus on statements where faults 

are more likely to hide. 

Results also vary with type of faults. On all programs except schedule and 

tcas, the efficacy benefits for FEPC-adequate suites are greater for harder-to-

detect faults than for easier-to-detect faults. This result supports the theory un-

derlying FEP C-adequacy: probabilistically, hard-to-detect faults are expected 

to be located in statements that have low FEP estimates and, consequently, 

high hit numbers; FEPC-adequate suites should be more effective than ASC 

suites at exercising these statements. Our observations suggest, then, that our 

estimate of fault exposing potential has been somewhat successful at capturing 
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the underlying probabilities. 

We expect that factors such as program, confidence level, and fault type 

interact in complex fashions. For practical purposes, we would like to better 

understand these factors and their interaction, so that we could predict whether 

and when the incorporation of estimates of fault exposing potential would be 

useful. Future study in this area is necessary. 

Perhaps the most interesting observation emerging from our results, however, 

concerns cost-benefits tradeoffs involving FEPC-adequate test suites. Consider 

the graph of efficacy results for schedule2 in Figure 4.4. In this case, at con-

fidence level 0.6, the mean efficacy of the ASC suites is 52.5% and the mean 

efficacy of the FEP C-adequate suites is 61%. However, it is clear from the graph 

that ASC suites for (approximately) confidence level 0.8 achieve the same ef-

ficacy as FEPC-adequate suites at level 0.6. This example illustrates a more 

general observation: for any FEPC-adequate test suite T, there exists some 

ASC suite (some statement-coverage-adequate test suite to which ii test cases 

have been randomly added), that achieves the same average efficacy as T. 

Since the cost of obtaining FEPC-adequate test suites may be high, the 

fact that test suites of equivalent efficacy can be generated by random addition 

of a sufficient number of test cases is significant. In this case, the relative 

cost-benefits of the two types of test suites depend on both (1) the cost of 

the analysis necessary to obtain the FEPC-adequate test suites, and (2) the 

costs of running test cases. If test case execution is sufficiently inexpensive, 

randomly augmented ASC suites would be more cost-effective; however, if test 

case execution is sufficiently expensive, incurring the analysis costs necessary to 

obtain smaller, FEPC-adequate test suites would be more cost-effective. 

This observation should be further qualified. Our examinations of test suite 
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size show that as confidence level increases, the size of FEPC-adequate test 

suites increases dramatically. At higher confidence levels, the number of test 

cases that must be randomly added to an ASC suite to achieve the efficacy 

of some FEPC-adequate suite is much higher than at lower levels. Therefore, 

when higher confidence is required, there is greater potential for FEPC-adequate 

suites to be more cost-effective (depending on the relative costs of test execution 

and FEP estimation analysis) than ASC suites. 

Finally, whether the efficacy gains that may be achieved by FEPC-adequate 

test suites are worthwhile is also a matter of cost-benefits tradeoffs involving 

several factors, including (1) the relative costs of analysis and test execution, 

(2) the costs of failing to detect faults, and (3) the relative gains that could 

be achieved by employing resources on other validation activities. Consider the 

results for the most realistic program utilized in our studies, space, against the 

set of real faults for that program. In this case, FEPC-adequate suites detected 

only 1.1% more faults than their corresponding ASC suites. A 1.1% increase 

in fault-detection for a word processing system whose test cases are relatively 

inexpensive to execute, obtained through expensive analysis, would most likely 

not be cost-effective. A 1.1% increase in fault-detection in software that will 

operate in a satellite, whose test cases may be relatively expensive to execute, 

may be cost-effective despite expensive analysis. 
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Chapter 5 

IMPROVEMENT 

5.1 Improvement on FEP Estimation 

Our experiments showed that the incorporation of FEP estimates into the 

statement-coverage adequacy criterion could improve the fault-detection effec-

tiveness of test suites. So, we wondered whether changes in our FEP estimation 

procedure can improve the fault-detection effectiveness of FEPC-adequate test 

suites. 

In the method for calculating FEP estimates that we used in the previous 

empirical study, we treated all mutants as equal. However, through further 

study of the mutants we found that two types of mutants may need to be 

treated differently from other mutants; we call these type-O mutants and type-i 

mutants: 

Type-O mutants: Mutants that can not be killed by any test case in the test 

pool. 

Type-i mutants: Mutants that can be killed by every test case in the test 

pool that executes the corresponding statement. 

As mentioned in Chapter 3, we can not easily determine whether a type-O 

mutant is an equivalent mutant or not, so we did not simply eliminate them 

from our FEP estimate calculation. However, we can regard type-O mutants as 
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representatives of a category of faults that are "extremely hard to detect". If a 

statement contains such a fault, no matter how many test cases we run though 

this statement, we can not guarantee that this fault will be detected. 

In contrast to type-U mutants, type-i mutants can be detected by any test 

case in the test pool. So, no matter how many such faults exist in a statement, 

one test case that covers this statement is sufficient to detect all of them. 

Therefore, we theorized that these two types of mutants are much less im-

portant than other types of mutants to the FEP estimate calculation procedure. 

We decided to treat them as two "equivalence classes" of mutants, such that for 

a given statement S, no matter how many mutants of S are in these two classes, 

one mutant per class is sufficient to represent each class in the FEP estimate 

calculation. Thus, we applied two adjustment rules to the original method of 

FEP estimate calculation: 

adjustment 1: Let S be an executable statement in program P, such that S 

has m mutants, and n (n > 0)' of them are of type-U, then treat these n 

mutant as one type-U mutant in FEP estimate calculation. 

adjustment 2: Let S be an executable statement in program P, such that S 

has m mutants, and n (n > 0) of them are of type-i, then treat these n 

mutant as one type-i mutant in FEP estimate calculation. 

For example: assume that statement S has 9 mutants, and there are 6 test 

cases in the test pool. Assume that the result of running these test cases on 

the mutants is as shown in Table 5.1. In this table, an entry of "1" means 

that the corresponding mutant can be killed by the corresponding test case, 

an entry of "0" means that the corresponding mutant can not be killed by the 
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ml m2 m3 m4 m5 m6 m7 m8 m9  

ti 1 1 0 1 0 0 0 0 0  

t2 1 1 1 0 1 0 0 0 0  

t3 X X X X X X X X X  

t4 1 1 1 0 1 0 0 0 0  

t5 1 1 0 1 0 0 0 0 0  

tG  1 1 0 1 0 0 0 0 0  

TABLE 5.1: Results of test cases running over mutants of statement S. 

corresponding test, and an entry of "X" means that the test case can't execute 

statement S. 

From this table we can see that mutants ml and m2 are type-i mutants, so 

we count them oniy once. Mutants rn6 m9 are type-U mutants, so they are 

also counted only once. So the number of "1" entries is: 5 + 2 + 3 + 2 + 0 12, 

and the total number of entries is 5 + 3 x 5 + 5 25. The FEP estimate for 

statement S is 12/25 = 0.48. If we used the old method, the FEP estimate for 

S would have been: (5 x 2 + 2 + 3 + 2)/(5 x 9) 0.38. 

5.2 Experiments with a New FEP Estimation Method 

To determine whether this modified FEP estimation method can provide any im-

provement in the fault-detection effectiveness of FEPC-adequate test suites, we 

repeated the previous empirical study using this new FEP estimation method. 

The experiment results are presented in the following subsections. 
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5.2.1 Results on Original Fault Sets 

Figures 5.1 and 5.2 depict the average test suite sizes and averge efficacy values of 

the paired FEPC-adequate and ASC adequate test suites measured against the 

Original Fault Sets over the seven confidence levels. These two figures contain 

eight graphs; each graph depicts the results for one subject program. These 

graphs are similar to the graphs presented in the figures in Chpater 4, except 

that to facilitate the comparison between the results of this experiment and 

the corresponding results of the previous experiment, plots from the previous 

experiment are included along with new plots. 

From these graphs, we can see that under the new FEPC estimation method, 

print_tokens and schedule2 exhibit larger gaps between the average efficacy 

values of FEPC-adequate test suites and those of ASC test suites. Progranis 

print_tokens2, schedule, and space exhibit larger gaps too, although not as 

noticeably. On replace, in contrast to the results of the previous study, the 

new results show that the average efficacy values of FEPC-adequate test suites 

are greater than those of the ASC test suites. But tcas and tot_info exhibit 

smaller gaps in this experiment. 

The graphs also indicate significant differences in average test suite sizes in 

the two experiments. For programs print_tokens, schedule, and tot_info, 

the average test suite sizes in this experiment are larger than in the previous 

study, while for the other five programs, average test suite sizes are smaller. On 

all programs other than space, the increase or decrease in the test suite size 

is accompanied with an increase or decrease in the average efficacy values of 

FEPC-adequate test suites, respectively. In contrast, space shows some small 

increase in average efficacy under confidence level 0.995, although the average 
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FIGURE 5.2: Results on Original Fault Sets (cont.). 

test suite size is almost only half of the average test suite size in the previous 

study. 

As in the previous study, we ran paired t-tests on the paired efficacy values 

of FEPC-adquate and ASC test suites. Table 5.2 displays the paired t-test 

results on the 7000 efficacy measure pairs collected (across all seven confidence 

levels) for each program. The bottom row holds the t-test result on all 56,000 

efficacy measure pairs. Also the corresponding data from the previous study is 

presented in this table, for purpose of comparison. 

Judging by the mean difference values presented in the table, we can see 

that for six of the programs there is some improvement by applying the new 

FEP estimation method; but tcas and totAnfo exhibit worse results. From 

the bottom row we can see that the new FEP estimation method has provided 

a 43% improvement in terms of mean difference in efficacy. 
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old method new method  

program mean dii. p value mean dii. p value 

print.tokens 3.70 <.0001 5.90 <.0001 
printJokens2 3.30 <.0001 3.70 <.0001 
replace -2.30 <.0001 0.60 <.0001 
schedule 0.40 <.0001 1.20 <.0001 
schedule2 7.00 <.0001 11.2 <.0001 
tcas 2.10 <.0001 0.90 <.0001 
totinfo 3.10 <.0001 1.70 <.0001 
space 1.00 <.0001 1.50_- <.0001 
total 2.30 <,0001 3.30 <.0001 

TABLE 5.2: Results of paired t-tests on data against Original Fault Sets, for the old 
method and the new method. 

5.2. Results on Mutation Fault Sets 

Figures 5.3 and 5.4 depict average test suite sizes and average efficacy values 

measured against the Mutation Fault. Sets. The corresponding data from the 

previous study are also presented in these two figures. We can see from the fig-

ures that print_tokens, replace, and schedule2 display visible improvements 

in the fault-detection effectiveness of FEPC-adequate test suites, tot_info dis-

plays worse results, and in the graphs for the other four programs the average 

efficacy values are so close to each other that we can hardly tell the difference 

among them. 
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old method flew method  

program mean dif. p value mean dif. p value 

print..tokens 0.40 <.0001 1.00 <.0001 
print..tokens2 0.30 <.0001 0.40 <.0001 
replace 0.09 .6010 0.40 <.0001 
schedule 0.20 <.0001 0.20 <.0001 
schedule2 0.90 <.0001 1.30 <.0001 
tcas 0.20 <.0001 0.40 <.0001 
toLinfo 0.70 <.0001 0.30 <.0001 
space 1.10 <.0001 1.10 <.0001 
total 0.50 <.0001 0.60 <.0001 

TABLE 5.3: Results of paired t-tests on data against Mutation Fault Sets, for the 
old method and the new method. 

The corresponding results of paired t-tests are presented in table 5.3. This 

table clearly shows that six of the programs display at least some improvement 

in fault-detection effectiveness of FEPC-adequate test suites under the new 
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FEP estimation method, while space exhibits identical results, and tot_info 

exhibits worse results. The bottom row indicates a total improvement of 20% 

mesured against the Mutation Fault Sets, which is much less significant than 

the improvement measured using the Original Fault Sets. 

5.2.3 Results on Tough Fault Sets 

The average test suite sizes and average efficacy values measuring against Tough 

Fault Sets are depicted in Figures 5.5 and 5.6, and the results of paired t-tests are 

presented in Table 5.4. The graphs in this figure are similar to the corresponding 

graphs for the results against the Original Fault Sets, but we can see differences 

in the results of the paired t-tests. This time, space supports the new FEP 
estimation method, and only tot_info exhibits negative results. The total 
improvement is about 33% in terms of mean difference in efficacy, less than 

the improvement seen with the Original Fault Sets, but better than that seen 

against Mutation Fault Sets. 

5.2.4 Analysis of Results 

Results of this experiment indicate that our modified FEP estimation method 

can yield some improvements in the fault-detection effectiveness of FEPC-

adequate test suites, compared to the original estimation method. However, 

the program proves to be a factor that has great impact on this improvement: 

print_tokens and schedule2 enjoy the greatest benefits from applying the new 

FEP estimation method, but totinfo suffers from the new method. Further 

study of this issue is needed. 

Fault set is another factor that affects the results of this experiment. The 
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FIGURE 5.6: Results on Tough Fault Sets (cont.). 

old method new method  

program mean dif. p value mean dif. p value 

printJokens 2.60 <.0001 5.20 <.0001 
printtokens2 1.20 <.0001 1.50 <.0001 
replace 1.10 <.0001 1.80 <.0001 
schedule 0.10 <.0001 0.10 .0276 
schedule2 6.00 <.0001 9.20 <.0001 
tcas 0.10 <.0001 0.60 <.0001 
totinfo 4.00 <.0001 2.70 <.0001 
space 1.30 <.0001 1.60 <.0001 
total 2.10 <.0001 2.80 <.0001 

TABLE 5.4: Results of paired t-tests on data against Tough Fault Sets, for the old 
method and the new method. 

improvements varied significantly on different fault sets. These results suggest 

that this new FEP estimation method, like the previous method, may be more 

useful for faults that are relatively hard to detect. 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK  

Although several researchers have hypothesized that the incorporation of 

fault exposure probability estimates into test data adequacy criteria could im-

prove the fault-detection effectiveness of test suites, this suggestion has not 

previously been empirically investigated. This paper has presented the first 

series of formal experiments directed at this hypothesis. 

The particular technique that we have used to estimate fault exposure prob-

abilities in this experiment is expensive due to its reliance on mutation analysis 

and would be impractical for most real applications. However the goal of our 

experiments was not to evaluate a technique, but rather, to answer the impor-

tant initial question of whether, if a cost-effective technique existed, it could be 

used to create cost-effective test suites. 

Our results suggest that benefits can indeed accrue from the incorporation 

of fault exposure potential estimates into test adequacy criteria, depending on 

the relative costs of estimation, test execution, and undetected faults. However, 

the potential benefits also vary with several other factors including program, 

required confidence level, and fault type. Further, the overall improvements in 

fault-detection effectiveness that we observed under our particular approach are 

not as large as we might wish. 

Our second study indicates that by altering our method for fault exposure 

probability estimation, we can obtain better fault-detection effectiveness. How-
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ever, the effects of using the new method also varied significantly with factors 

such as program and fault type. 

Our results provide some evidence supportive of FEP adequacy, however, 

before we can provide more definitive conclusions, further studies are necessary. 

Additional work can address following issues. 

. As mentioned in Section 4.6, in order to reduce the threats to the validity 

of our studies, we require additional experiments, using more programs 

different test pools, faulty versions with multiple faults, and so forth. 

As a feature of a code component, fault exposure potential has strong 

relationships with many other software features such as complexity, data 

dependencies, and control dependencies. How these factors affect the fault 

exposure potential of a code component needs to be carefully studied. 

In this work and other related work, the estimation of a code component's 

fault exposure potential is quantified as a single value. However, due to 

the diversity of the faults that may exist in a code component, we may 

explore the possibility of representing such potential by a range. 

We believe that there is room for improving our initial method of fault 

exposure potential estimation, because in that method we simply treat 

all mutants as equal and all test cases as equal. However, this treatment 

may not be realistic. By recognizing the differences among mutants and 

test cases we may be able to find ways to improve our estimation method. 

Our experiment reported in Chapter 5 provides an example of this. We 

hope that further studies can yield more significant improvements. 
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Since mutation analysis is very expensive, we would like to find some way 

to reduce the cost of this procedure. Using constrained mutation analysis 

[15], which relies on a reduced set of mutants, may provide one approach. 

We can also explore some other ways to estimate fault exposure potential, 

such as Voas' PIE analysis [22], and Goradia's dynamic impact analysis 

In the generation procedure for an FEPC-adequate test suite used in this 

work, a test case is added to a test suite if it can contribute some required 

hits to some statements. However, this test case may also contribute some 

unneeded hits to some other statements. So, inevitably, there will be some 

redundant test cases in a generated test suite: by executing this test suite 

many statements will have many more hits than they require. We would 

like to know whether reducing this redundancy in an FEPC-adequate test 

suite will affect its fault-detection effectiveness. There are two possible 

ways to reduce these redundant test cases in a test suite: to optimize the 

generation procedure or to minimize the already-existing FEPC-adequate 

test suites. 

A potential weakness of the FEPC-adequacy test criterion is that, al-

though it may assign a high hit number requirement to a statement with 

low fault exposure potential, it does not choose test cases with any "intel-

ligence". Such "blindness" in choosing test cases may hurt the effective-

ness of the generated test suites. Thus, if there is some other information 

available that is useful for guiding test case selection, we could use it. This 



suggests the possibility of combining FEPC adequacy test criteria with 

some other test adequacy criterion. 

In our experiments, the FEPC-adequate test criterion is investigated at 

the statement level. Since this test criterion is also applicable to other 

code components such as branches, paths, or data dependencies, we could 

investigate FEPC-adequacy test criteria based on these code components. 

We hope that by such further research in this area, we can provide some 

cost-effective techniques for incorporating fault exposing potential estimates 

into testing. This work provides impetus for that research. 
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