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a cost-effective parallel machine is often realized using a network of workstations.

Therefore, we examine the possibility and the effectiveness of using multithreading in a

networked computing environment. Also, we propose the Multithreaded Virtual Proc-

essor model as a means of integrating multithreaded programming paradigm and modern

superscalar processor with support for fast context switching and thread scheduling. In

order to validate our idea, a simulator was developed using a POSIX compliant Pthreads

package and a generic superscalar simulator called Simple Scalar glued together with

support for multithreading. The simulator is a powerful workbench that enables us to

study how future superscalar design and thread management should be modified to bet-

ter support multithreading. Our studies with MVP show that, in general, the perform-

ance improvement comes not only from tolerating memory latency, but also due to the

data sharing among threads.
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A PERFORMANCE STUDY OF MULTITHREADING 

1. Introduction 

In an effort to overcome the limitations of circuit technology, computer architects 

have resorted to exploiting instruction-level parallelism (ILP) for improving processor 

utilization. In addition, techniques such as on-chip caches, superpipelining, long in­

struction words, branch prediction and speculative execution are also employed. The 

superscalar architecture, which almost all of the current microprocessors are based on, 

has been very successful in exploiting ILP. However, recent studies have shown that 

the single-threaded paradigm used by conventional programming languages and run­

time systems do not fully utilize the processor's capabilities. This is due to the fact that 

the advances in VLSI technology have led to faster clocks and processor designs that 

can issue multiple instructions per cycle; yet the performance of memory system has not 

increased proportionally. The speed of commercial microprocessors has increased by a 

factor of twelve over the past ten years while the speed of memories has only doubled 

[24]. 

The widening of processor-memory gap reduces the processor utilization since 

the processor has to spend more cycles for memory accesses. Also, stalls due to cache 

misses severely degrade the overall performance by disrupting the pipeline. The result 

is the decrease in the number of potential instructions that can be issued in each cycle for 

superscalar, thus effectively reducing the ILP. Consequently, no matter what microar­

chitectural techniques are used, the performance of a processor will soon be limited by 

the memory characteristics. Therefore, this thesis examines an alternative technique, 

called multithreading, as a solution to the memory latency and the limited ILP problems. 

Multithreading has emerged as one of the most promising and exciting tech­

niques to tolerate the memory latency. While a single threaded model of computation 
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does not provide mechanisms to tolerate the memory latency, multithreading provides 

the processor with a pool of threads and context switching occurs between the threads 

not only to hide memory latency, but also other long latency operations such as I/O and 

synchronization operations. The processor may also interleave instructions on a cycle­

by-cycle basis from multiple threads to minimize pipeline breaks due to dependencies 

among instructions within a thread. This allows the threads to dynamically share the 

processor's resources and increases the processor utilization. 

To provide better understanding of multithreading, Chapter 2 introduces analyti­

cal models of multithreading that characterize the performance of multithreading as well 

as its limitations. Also, a comprehensive survey of multithreaded systems is provided 

that includes programming languages, compiling techniques and various architectures 

along with the latest multithreading techniques. 

As an alternative to expensive Massively Parallel Processors (MPP) or Symmet­

ric Multiprocessor (SMP) systems, it is possible to build a low-cost parallel machine by 

utilizing a network of workstations (NOWs). A software infrastructure system facili­

tates a construction of a virtual parallel machine using a collection of workstations. A 

shared-memory abstraction can also be provided on top of physically distributed mem­

ory system. However, the performance of a parallel machine based on NOWs may suf­

fer from long and unpredictable memory latency due to the distributed nature of the un­

derlying physical memory system. Therefore, Chapter 3 studies the viability and effec­

tiveness of multithreading in a network-based multiprocessor system. In particular, we 

examine a matrix multiplication problem on a network of workstations to see how effec­

tive multithreading is in a distributed shared-memory (DSM) environment. 

Finally, Chapter 4 investigates how future processors can adopt the multi-

threaded architecture such that the departure from current microarchitecture is minimal, 

yet provides better performance. We propose the Multithreaded Virtual Processor 
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(MVP) system that exploits the synergy between the multithreaded programming para­

digm and the well-designed contemporary microprocessors. 
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2. Multithreading 

In the last decade, researches on multithreading techniques have led to substan­

tial improvements over traditional single threaded abstractions. This chapter provides a 

summary of these efforts in designing multithreaded systems that includes new pro­

gramming languages, new compiling techniques, and architectures. The organization of 

the chapter is as follows: Section 2.1 presents analytical models of multithreading. Sec­

tion 2.2 discusses the multithreading in terms of programming models. Section 2.3 

provides an overview of various multithreaded architectures along with their key fea­

tures. Finally, Section 2.4 presents current research efforts in multithreading. 

2.1 Performance Models 

A multithreaded system contains multiple loci of control (or threads) within a 

single program, and the processor switches among threads to hide long latencies. 

Therefore, multithreading allows the exploitation of thread-level parallelism and im­

proves the processor utilization. However, there is a limitation to the improvement that 

can be achieved. The most important limitation is due to the fact that applications run­

ning on a multithreaded system may not exhibit sufficiently large degrees of parallelism 

to permit the identification and scheduling of multiple threads to the processor. Even if 

sufficient parallelism exists, the cost of multithreading should be traded off against any 

loss in performance due to active threads sharing the cache and processor cycles wasted 

during context-switch. 

The performance of a multithreaded processor depends on several architectural 

and program parametersthe memory latency, the remote reference rate, the number of 

threads, the thread length, the context switching cost, etc. A simple analytical model of 
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multithreaded processor behavior provides a better understanding of (1) how these pa­

rameters are interrelated, (2) how the number of threads affects the processor utilization, 

(3) how much context switching costs contribute to the overall performance, and (4) 

how the program should be partitioned into threads. 

2.1.1 Basic Model 

Saavedra et al. proposed a simple multithreaded processor model based on a set 

of parameters that reflects the architectural and software characteristics [76]. Assume 

the processor switches between threads only on long latency operations, such as remote 

memory accesses. Let L denote a fixed latency for such operations. Let R be the aver­

age amount of time that each thread executes before encountering a long latency opera­

tion. Let C be the fixed overhead in switching between threads. The processor utiliza­

tion of a single thread model can be described by 

R 
= (2.1)

R + L 

Equation 2.1 shows that the utilization is limited by the frequency of long latency opera­

tions (i.e., 1 / R), and the average time required to service the long latency operation L. 

Therefore, the large memory latency has an adverse effect on the utilization in a proces­

sor with a single thread. 

If L is much larger than the time to context-switch between threads, C, then use­

ful work can be performed during long latency operations. In addition, if the number of 

threads is sufficiently large, the latency can be completely hidden as shown in Figure 

2.1. In such a case, the processor utilization can be described as 
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= (2.2)
R+C 

where the number of threads required to totally mask L is assumed kn. This saturation 

number of threads satisfies the following requirement: 

R+L
Ns, R+C 

Note that increasing the number of threads beyond N,,,, will not increase the processor 

utilization. 

N-1 threads 

R C R ci 

L 

Figure 2.1: Memory latency L is completely hidden in saturation. 

If there are insufficient number of threads to totally mask the latency L, the proc­

essor utilization can be described by 

NR
 

R+ L'
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where N is the number of threads. This equation shows that the utilization increases 

linearly with the number of available contexts until the number reaches the saturation 

point Ns. Note that Us, is the upper limit on the utilization achievable through multi­

threading in this performance model. Using the above equations, the speedup that can 

be achieved is given by 

N if N < Nsm.
 

SN = 
N 

= R + L
 
otherwiseU 

' R + C 

As shown above, the minimum number of threads needed to achieve maximum utiliza­

tion, N s,(R + L)I (R + C), depends on time between context-switches (R), the time to 

service long latency operation (L), and the context switching overhead (C). For exam­

ple, assuming a fine grained multithreaded system with R=1 and the context switching 

overhead is negligible (e.g., using multiple hardware contexts), the optimum utilization 

requires at least (1+L) threads. When C is not negligible, R should be much larger (i.e., 

coarser-grain multithreading) to achieve useful performance gains. Also, the improved 

processor utilization comes at an increased cost of supporting multiple threads, such as 

additional hardware for multiple contexts and the processor cycles wasted for context 

switching. 

The above model ignored the performance impact due to higher cache miss rates 

in a multithreaded system and higher demands on the network placed by higher proces­

sor utilization. In addition, the above model assumed fixed latencies, and fixed fre­

quency of long latency operations in threads. Assuming a context-switch occurs on 

every cache miss, we can equate cache miss rate m with the frequency of long latency 

operations, p = 1/R. Then, the speedup of a multithreaded system can be rewritten as 
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N if N < Nrs,
 
SN =UN = 1+ mL
 

U1 1+ mC otherwise
 

The cache miss penalty is the primary contributor to L. Note that we assume constant 

cache miss rate and miss penalty in the above equation. The effect of context switching 

on other long latency operations such as synchronization delays can also be added to 

above equation. 

2.1.2 Cache and Network Model 

In the previous section, it is assumed that cache miss rate and miss penalties are 

not affected by multithreading. The analytical performance model, proposed by Agar­

wal [6], considers multithreading with cache interference, network contention, and con­

text switching overhead. In multithreaded processors with caches, multiple threads are 

simultaneously active and they interfere with each other, creating a higher cache miss 

rate and a higher network contention. The cache miss rate is negatively affected by in­

creasing the degree of multithreading. Likewise, the miss penalty increases with the 

number of threads due to higher network utilizationleading to longer delays in ac­

cessing remote memory modules. Therefore, a mathematical model of multithreaded 

processors must reflect these characteristics. In conducting this analysis, the following 

assumptions are made: 

All threads resident in a processor have the same cache miss rate and working set 

size. 

The processes execute useful instructions between cache misses. 

Context-switch occurs only on a cache miss and the processor cycles spent for 

context switching are considered wasted. 
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Network requests occur only on cache misses and cache invalidation. 

Data sharing and compulsory cache misses (i.e., misses that occur when the part 

of resident working set or new blocks are brought in the cache) are ignored. 

The parameters used to develop the model are as follows: 

p the number of threads resident in a processor. 

C context switching overhead. 

Suppose that a process executes useful instructions for R cycles, and then a 

cache miss occurs. Assuming the cache miss requires L cycles before the process can 

resume, Equations 2.1 and 2.2 can be rewritten such that the processor utilization is ex­

pressed in terms of cache miss rates m(p). Since cache the miss rate is simply the in­

verse of R, the utilization is then, 

P 1 + Lm(p) 

1+ Lm(p) 1+ Cm(p)
U(p)= 

1+ Lm(p)1 
for p ._. 

1+ Cm(p) 1+ Cm( p) 

First, consider the network effect. The cache miss service time, L, depends on 

the network latency and memory access time. In particular, for a packet-switched k -ary 

n -cube interconnection network with cut-through routing, the network parameters and 

assumptions can be defined as follows: 

Parameters 

M memory access time. 

B message size. 

k network radix. 

n network dimension. 
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p network channel utilization. 

kd -average distance a message travels. 

h network switch delay (i.e., the number of hops a message make). 

Assumptions 

Uniform traffic rate for all nodes. 

Uniform distribution of message target nodes. 

Infinite buffering at each intermediate node. 

Then, the average L for buffered k -ary n -cube direct network is given in [2] as 

1\­pB-1(1-­
T(p) = 

kd k h+M+B-1. (2.3)
(1 p) 

This cache miss service time is calculated as the sum of memory access time, M, the 

pipeline latency of the message size, B-1, and network switch delay h (i.e., h/2 for re­

quest and h/2 for response). Assuming separate communication channels for both di­

rections, the expected number of hops, kd, between two randomly chosen node in a 1­

dimensional array can be estimated by the ratio of the sum of distances for all source-

destination pairs to the total number of such pairs [2]. 

k2 1 k
k, = (2.4)

3k 3 
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The probability of a network request on any cycle is 2p /[R + L] (the factor two 

accounts for both memory requests and responses), and the channel utilization factor p 

is given in [6] as 

2p Bnkd p 
P Bkd (2.5)

R+ L 2n R+ L 

Substituting Equation 2.4 and 2.5 into 2.4, and setting R = 1/m(p), we arrive at 

( N 2 
To Bpk 1 1 Bpk 1 

+ 8pB2nk (1 3'
2 6 2m(p) 2 A, 3 m(P)) 3 k 

where To =h+M+B-1. Note that L increases almost linearly with p, the number of 

threads. 

Now consider the cache effect. The cache model must characterize the increase 

in the miss rate as the number of threads resident in a processor increases. The assump­

tions in this model include: 

direct-mapped cache and uniform address mapping 

working-set cache model (i.e., only small portion of program is required in the 

cache at a time for the execution of a program) 

In order to study the impact of multiple threads on cache miss rates, the cache misses are 

classified into four categories [3]: nonstationary, intrinsic interference, multiprogram­

ming, and coherence-related misses. The nonstationary misses, mns, occur when a miss 

brings a new block into the cache for the first time. The intrinsic interference, mrntr, re­

sults when the blocks interfere with each other in the cache during block replacements. 

The multiprogramming misses, m(p), account for the cases when one process (or 
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thread) displaces the cache blocks of another thread. Coherency related invalida­

tion, mine, occurs in multiprocessor systems where the changes made in one processor 

may require invalidation of other processor cache entries. The cache model is based on 

the following additional parameters. 

S cache size. 

u working set size in blocks. 

2 period between measurement of working set. 

c collision rate used for interference misses. 

v size of the carry-over set. 

infixed fixed miss rate assumed in this model, i.e., rn = inns + 

The computation of intrinsic interference and multiprogramming miss rate re­

quires the estimation of the carry-over set size. The size of carry-over set, v, is the 

number of blocks a thread leaves behind in the working set when it switches out. As­

suming every block maps into the cache with the same probability 1 / S, the v is then 

given by 

v = S[1 (1-1/S)ni, (2.6) 

where the term [1 (1 1 / indicates the probability that at least one block maps into 

a cache set. When S >> 1, Equation 2.6 simplifies to 

v = S (1 e 
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Let v' ( p) denote the steady state carry-over set size under the condition that p 

processors share the cache for short duration of context switching. In a multithreaded 

cache, a thread effectively sees a smaller cache, resulting in an increase in both the in­

trinsic interference and multiprogramming miss rates [6]. Also, the additional context 

switching component of miss rate, m' ( p) , is introduced due to restoring of thread's 

displaced blocks when a new thread is scheduled on a processor. The m' ( p) can be 

obtained as a function of v' ( p) as 

v v' ( p) u 
= (2.7) 

v 

If we consider the probability that a block of intervening ( p 1) threads maps to the top 

of a block, an alternative expression form ( p) is also obtained: 

vi ( p) 
c , = P 1) (2.8) 

By equating (2.7) and (2.8), the v' ( p) is expressed as 

vi ( p) = (2.9)
( p 1)

1 + v 
S 

Equation 2.9 signifies two occasions: (1) when the cache is very large (S >> v), the ap­

proximation v' ( p) = v = u holds, indicating the cache can hold the entire working set of 

all the threads, and (2) when S = v, the effective size of cached working set of each 

thread becomes v/ p. 
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The intrinsic interference miss rate in a direct-mapped cache given in [1] is 

C u S bin(u,-1-,d =1) =c uu ( 1 -1-P-1)minty = 

C 
(2.10) 

d,
where bin(u,11 S,d)=(:)(-1s-) . The binomial distribution above indicates the 

probability that d blocks from the working set of size u map into one of the S cache 

sets. In general, the size of the carry-over set of a thread in a multithreaded cache is 

smaller than the size in a multiprogrammed cache (i.e., v (p) v(p)). The number of 

colliding blocks in a multithreaded caches also increases. The colliding blocks are the 

blocks that map into the same cache set. Assuming random placement of blocks in the 

cache, the estimated number of non-colliding blocks in multithreaded cache is given by 

( Nu1 
v' (p)u 1-- (2.11) 

S 

From (2.10) and (2.11), the intrinsic interference miss rate of the multithreaded cache 

becomes 

v (p)1uue smtr= v(p) 

Thus, the net increase in the miss rate of multithreaded cache, m' (p), is 

(P) = m' ,(P)±ml infr(P)± miffir(P) 

http:1--(2.11
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1) u c (p)
v' (P) (P + ue 1 

S z z v(p)]. 

Finally, the overall cache miss rate is computed by considering three components of 

fixed miss rate infived, the single thread interference miss rate mini and the multithread­

ing components m',,,, yielding 

M(P) = Mpled + Mintr(P) (13) 

(p 1)(1+11 c)
Mft .xed Mintr (p) 1+ 

1+(p-1)1±
S 

C U 2 

where mintr(p)----­
S 

Increasing the degree of multithreading will effect both the intrinsic-interference 

and the multiprogramming component of the cache misses. When more threads occupy 

the cache, we can assume that each thread is allocated a smaller working set, and this in 

turn leads to higher intrinsic conflicts. Likewise, as the number of threads increases, the 

multiprogramming-related component also increases since there is a higher probability 

that cache blocks of active threads displace those of inactive threads. It is interesting to 

note that with sufficiently large cache memories, the multiprogramming related compo­

nent of the cache miss rate is not affected by the number of threads. This is because the 

cache memory is large enough to hold the working sets of all resident threads. Set asso­

ciativity is another issue that significantly affects the performance of cache memories for 

multithreaded systems. The higher associativity of cache can compensate for the in­

creased intrinsic interference in a multithreaded system. 
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2.2 Programming Models 

A thread can be viewed as a unit of execution that can be active within a process 

sharing certain resources such as files, address space with other threads in the process 

space. The notion of threads or lightweight processes permits the programming of ap­

plications using virtual processes such that a process can continue execution even when 

one or more of its threads are blocked. This concurrency can be supported in many dif­

ferent ways. For example, thread library, such as C-threads [23] and Pthreads [15], 

provide the programmers with API (Application Programming Interface) for creating, 

invoking, and scheduling threads. 

The library implementation of threads usually supports the coarse-grain block 

multithreading. The block multithreading often requires synchronisation among threads 

using semaphores, mutexes, and conditional variables. Also, thread scheduling mecha­

nism is usually implemented using join, suspend, detach, and terminate calls. On the 

other hand, functional programming languages such as Multilisp [36] and Id [65] have 

proposed a different approach on multithreading, often supporting fine-grain threads. In 

such languages, traditionally blocking or synchronous function calls are made non-

blocking or asynchronous. For example, when a function is invoked in conventional 

languages, the control transfers to the called function (blocking the execution of the 

caller) and the control is returned to the caller upon its completion. However, Multilisp 

function calls, e.g., futures, are non-blocking so that several futures can be invoked 

without waiting for their completion. In the following subsections, two programming 

models that support multithreading, namely Cilk and Cid, are introduced. The descrip­

tion of Pthreads is deferred until Chapter 4. 
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2.2.1 Cilk 

Cilk language is an extension of C which provides an abstraction of threads in 

explicit continuation passing style [12]. The Cilk runtime supports work stealing for 

scheduling threads and achieves load balancing across a distribute processing environ­

ment. A Cilk program consists of a collection of procedures, each in turn consists of 

threads. These threads of a Cilk program can be viewed as the nodes of a directed 

acyclic graph as shown in Figure 2.2. Each horizontal edge represents a creation of a 

successor thread, and a downward edge represents the creation of child threads while 

data dependencies are represented by the dashed lines. 

Successor 
Relationships 

Child
 
Relationships
 

'	 Data 
Dependencies 

Figure 2.2: An example of Cilk program. 

Like TAM threads, Cilk threads are non-blocking. This requires the creation of 

successor threads that expect the results from the child threads. The successor thread is 

blocked until the necessary synchronization events (or release conditions) are satisfied. 
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Cilk threads can spawn child threads to execute a new procedure. The child threads 

normally return values or synchronize with the successor threads created by their parent 

thread. 

The runtime system keeps track of the active threads and threads awaiting for 

initiation. The data structure used for thread management is called a closure. A closure 

consists of a pointer to the code of the thread, a slot for each of the input parameters, 

and a join counter indicating the number of missing values (or synchronization events). 

The closure (hence the thread) becomes ready to executed when the join counter be­

comes zero; otherwise the closure is known as waiting. The missing values are pro­

vided by other threads using continuation passing, which identifies the thread closure 

and the argument position within the thread. 

The following shows a Cilk program segment for computing the nth Fibonacci 

number. 

thread fib (cont int k, int n) 

if (n<2) 
send_argument (k, n) 

else{ 
cont int x, y; 
spawn_next sum (k, ?x, ?y); 
spawn fib (x, n-1); 
spawn fib (y, n-2); 

} 
} 

thread sum (cont int k, int x, int y) 

send_argument (k, x+y);
 
}
 

The program consists of two threads, fib and its successor sum (which waits for the re­

cursive fib calls to complete and provide the necessary values to sum). The fib threads 

test the input argument n, and if it is greater than 2, it spawns the successor thread sum 
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by passing the continuation k. Since sum requires two inputs x and y before becoming 

enabled, it spawns two child threads with n-1 and n-2 as their arguments as well as the 

slots where they should send their results (specified by the cont parameter). The state­

ment send_argument sends the results to the appropriate continuation. The closure 

structure for the above Fibonacci program is shown in Figure 2.3. 

Cilk run-time system uses an innovative approach to load distribution known as 

work stealing [11]. In this scheme, an idle worker (processor) randomly selects a heav­

ily loaded processor and steals a portion of its work, thus achieving load balancing. 

However, only the ready threads are stolen in order to avoid the complications of relo­

cating the continuation slots of the stolen threads. 

Join Counter 

fib 
0 

cont 
n-1 

fib 
0 

cont 
n-2 

sum 

2 

cont 
x 

C 

O 
d 

e 

Figure 2.3: An example of Fibonacci in Cilk. 
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2.2.2 Cid 

Cid is a parallel extension of C that provides a MIMD threads plus shared objects 

programming model even though it runs on distributed memory machines, such as 

workstation farms (Note that there is no explicit message-passing in Cid) [64]. Cid 

provides all threads with a shared memory space of objects. A Cid thread is an asyn­

chronous C function call. Any C variable or data structure can be registered as a Cid 

global object, and each global object is associated with a pointer which is unique to 

across all processors. Given its global pointer, any thread on any PE can access any 

object, and the Cid run-time system manages all the necessary coherency of the objects. 

Also, Cid run-time scheduler can automatically achieve load-balancing based on a work-

stealing mechanism. However, a thread does not further migrate between PEs once ini­

tiated. 

Unlike TAM and Cilk, Cid threads can block, waiting for synchronization. Each 

Cid thread can be viewed as a C function with appropriate mechanism to specify syn­

chronization. The simplest type synchronization is based on Join and the associated 

variables. Consider the following Cid implementation of the Fibonacci function. 

int fib(int n) 

int fibN1, fibN2;
 
cid_initialized jvar(oinvariable);
 
if (N<2) return n
 
else
 

cid_fork(joinvariable;) 
fibN1 = fib(n-1); fibN2=fib(n-2); 
cid jwait(&joinvariable); 
return fibNl +fibN2; 

} 
} 
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When the value of N is greater than 2, two new threads are forked using cid_fork to 

compute fib(n-1) and fib(n-2). The cid_fork also indicates that these computations syn­

chronize using join on the joinvariable specified. The parent thread will wait for the 

completion of the child threads and then returns the sum of fib(n-1) and fib(n-2) and sig­

nals appropriate joinvariable. Note that the Cid system is responsible for initializing the 

joinvariable as indicated by cid_initialized_jvar. 

2.3 Examples of Multithreaded Systems 

This section provides an overview of various multithreaded architectures and 

discusses some of the software and hardware features that represent the past and the cur­

rent research efforts in the multithreading community. The architectures included in the 

discussion are TAM, Tera, MIT's Alewife, M-Machine, Electrotechnical Lab's EM-X, 

DEC/MIT's StarT-Next Generation, Stanford's FLASH, and Simultaneous Multi­

threading. 

2.3.1 Threaded Abstract Machine 

David E. Culler and his colleagues at U. C. Berkeley proposed the Threaded 

Abstract Machine (TAM) as an efficient execution model which maps the dataflow exe­

cution model onto a self-scheduled control flow execution model [27]. The novel aspect 

of TAM is how it allows the compiler to integrate the interactions among the scheduling 

of parallel threads, the asynchronous message events, and the utilization of the storage 

hierarchy. TAM exposes the scheduling of threads so that the compiler can optimize the 

storage resources (e.g., registers, local memory, etc.) by scheduling the related instruc­

tions together within a thread or even across threads. This improves the register utiliza­
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tion and the cache behavior by enhancing the locality of references, which is not present 

in the traditional dataflow architecture. 

Thread partitioning in TAM involves several steps: Id90 to dataflow graphs, 

program graphs to TAM threads, and finally TAM to native machine code. The threaded 

machine language, TLO, was designed to permit programming using the TAM model. 

TAM recognizes three major storage resourcescode-blocks, frames, and struc­

turesand the existence of critical processor resources, such as registers. A program is 

represented by a collection of re-entrant code-blocks, corresponding roughly to individ­

ual functions or loop bodies in the high-level program text. A code-block comprises a 

collection of threads and inlets. Invoking a code-block involves allocating a 

framemuch like a conventional call framedepositing argument values into locations 

within the frame, and enabling threads within the code-block for execution. The com­

piler statically determines the frame size for each code-block and is also responsible for 

correctly using slots and registers under all possible dynamic thread orderings. The 

compiler also reserves a portion of the frame as a continuation vector, used at run-time, 

to hold pointers to enabled threads. The global scheduling pool is a set of frames that 

contain enabled threads. 

Executing code-block may invoke several code-blocks concurrently because the 

caller is not suspended as opposed to conventional languages. Therefore, the set of 

frames in existence at any time forms a tree (the activation tree) rather than a stack, re­

flecting the dynamic call structure shown in Figure 2.4. An activation is enabled if its 

frame contains any enabled threads, and multiple subset of enabled activations may be 

resident in the processor at any time. 

Threads can be categorized as synchronizing or non-synchronizing. A synchro­

nizing thread specifies a frame slot containing the entry count for the thread. The com­

piler is responsible for initialization of the correct entry counts for synchronizing 

threads. Each fork to a synchronizing thread causes the entry count to be decreased by 
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one, and the thread may execute only when the count reaches zero. Synchronization 

occurs only at the start of a thread, and the thread executes to completion when the syn­

chronization requirement is met. A thread ends with stop instruction, causing another 

thread to be scheduled. 

Conditional flow of execution is supported by a switch instruction, which forks 

one of two threads based on a boolean input value. Also, fork operations may occur 

anywhere within a thread and cause additional threads to be enabled for execution. 

Long latency operations, such as I-Fetch or Send, implicitly fork a thread that resumes 

when the request completes. This allows the processor to continue with useful work 

while the remote access is outstanding. 

Activation Tree Activation Frame Code-Block 

Ready 
Queue Function Foo 

Inlet 1Local 
Variables 

si. Thread 2 

Synchronization 
Counters Thread 5 

Ready frame link 
Thread N 

Continuation 
Vector 

Figure 2.4: TAM activation tree. 
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2.3.2 Tera MTA 

Tera MTA (MultiThreaded Architecture) computer is a multistream MIMD sys­

tem developed by Tera Computer Company in the late 1980's [8], and it is the only 

commercially available multithreaded architecture. The designers of the system tried to 

achieve the following three goals: (1) high-speed, highly-scalable architecture, (2) be 

applicable to a wide variety of problems, including numeric and non-numeric languages, 

and (3) ease the implementation of compiler. 

The interconnection network of Tera system is composed of pipelined packet 

switching nodes in a three-dimensional mesh with a wrap-around. On every clock cy­

cle, each link can simultaneously transmit a packet containing source/destination ad­

dresses, an operation, and 64-bit data in both directions. For example, a 256 processor 

system consists of 4096 switching nodes arranged in 16x16x16 toroidal mesh, among 

which 1280 nodes are attached to 256 processors, 512 data memory units, 256 I/O 

cache units, and 256 I/O processors as shown in Figure 2.5. In general, the number of 

3 

network nodes grows as a function of p2, where p is the number of processors in the 

system. 

In Tera, each processor can simultaneously execute multiple instruction streams 

from one to as many as 128 active program counters. On every clock cycle, the proces­

sor logic selects an instruction stream that is ready to execute, and a new instruction 

from a different stream may be issued in each cycle without interfering with the previous 

instruction. Each instruction stream maintains the following three states: one 64-bit 

Stream Status Word (SSW), 32 64-bit General Registers (R0 -R31), and eight 64-bit 

Target Registers (T0 -T7). Each processor also has a large number of registers (128 

SSWs, 4096 General Registers, and 1024 Target Registers) in order to support context 
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switching on every cycle. Program addresses are 32 bits long, and the program counter 

is located in the lower half of the its SSW. The upper half is used to specify the various 

modes (e.g., floating-point rounding), trap mask, and four recently generated condition 

status. Target Registers are used for branch targets, and the computation of a branch 

address and the prediction of a branch are separated, allowing the prefetching of target 

instructions. A Tera instruction typically consists of three operations: a memory refer­

ence operation, an arithmetic operation, and a control operation. The control operation 

can also be of another arithmetic operation, i.e., if the third operation specifies a float­

ing-point operation, it will perform two floating-point operations per cycle. 

256 Processors 2561/0 Processors 

3-D Toroidal Mesh (16x16x16) 

512 Memories 256 1/0 Caches 

Figure 2.5: The organization of Tera MTA. 

Each processor needs to execute on the average about 70 instructions to achieve 

peak performance by hiding remote latencies (i.e., the average latency for remote access 

is about 70 cycles). Therefore, if each instruction stream can execute some of its in­

structions in parallel, less than 70 streams are required to achieve the peak performance. 

To reduce the required numbers of streams, Tera introduced a new technique called ex­
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plicit-dependence lookahead to utilize instruction-level parallelism. The idea is that each 

instruction contains a three-bit lookahead field that explicitly specifies how many in­

structions from this stream will be issued before encountering an instruction that de­

pends on the current instruction. Since seven is the maximum possible lookahead value 

with three bits, at most eight instructions can be executed concurrently from each 

stream. Therefore, only nine streams are needed to hide 72 clock cycles of latency in the 

best case, compared to 70 different streams required for the worst case. 

A full-size Tera system contains 512 128-Mbyte data memory units. Memory is 

64-bit wide and byte-addressable. Associated with each word are four additional access 

state bits consisting of two data trap bits, a forward bit, and a full/empty bit. The trap 

bit allows application-specific use of data breakpoints, demand-driven evaluation, run­

time exception handling, implementation of active memory objects, stack limit checking, 

etc. The forward bit implements invisible indirect addressing, where the value found in 

the location is to be interpreted as a pointer to the target of the memory reference rather 

than the target itself. The full/empty bit is used for lightweight synchronization. 

Load and store operations use the full/empty bit to define three different syn­

chronization modes along with the access control bits defined in the memory word. The 

values for access control for each operation is shown in Table 2.1. For example, if the 

value of the access control field is 2, the store operation waits for the memory location to 

be written before writing to the location, and sets the full/empty bit to full. When a 

memory access fails, it is placed in a retry queue and memory unit retries the operation 

several times before the stream that issued the memory operation results in a trap. Retry 

requests are interleaved with new memory requests to avoid the saturation of the com­

munication links. 
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Table 2.1: The access control values. 

Value LOAD STORE 

0 read regardless of the state of the 
full/empty bit 

write regardless and set the full/empty 
bit to full 

1 not used not used 
2 wait for full state and read wait for full state and write 

3 
read only when full and set the bit 
empty 

write only when empty and set the bit 
full 

2.3.3 StarT-NG 

StarT-NG (Next Generation) is a joint project between MIT and Motorola, 

which attempts to develop a general-purpose parallel system using commodity compo­

nents [20], such as PowerPC 620a 64-bit 4-way superscalar processor with a dedi­

cated 128-bit wide L2 cache interface/128-bit wide L3 path to memory. StarT-NG is a 

symmetric multiprocessors (SMP) system that examines how the multithreaded codes 

can run on a stock processor and emphasizes the importance of cache-coherent global 

shared-memory supported by efficient message-passing. Influenced by the predecessor 

StarT [66], multithreading in StarT-NG relies heavily on software support. The in­

struction fork creates a thread by pushing a continuation specified in registers onto a 

continuation stack. The compiler is required to generate switch (jump) instructions in 

the instruction stream for thread switching. Also, the compiler needs to generate the 

necessary save/restore instructions to swap the relevant register values from the con­

tinuation stack, resulting in a large context switching cost. 

StarT-NG has 4-processor card slots, where one to four slots are filled with 

Network-Endpoint-Subsystem (NES) cards. Each NES contains a single PowerPC 620 
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processor with 4 MBytes of L2 cache and a Network Interface Unit (NIU) as depicted in 

Figure 2.6. Each site has an Address Capture Device (ACD) on the NES board, which 

manages bus transactions. When an access to global shared-memory is necessary, a 

processor is used as a Service Processor (SP) for servicing the bus transactions. Oth­

erwise, a processor is used as an Application Processor (AP) for running applications. 

To Other Sites 

NIU NIU NIU NIU 

Cache Cache Cache Cache 

PowerPC FJwerPC Pov,,,2rPC PowerPC 
620 620 620 620 

Cache Coherent Interconnect 

Bridge ACD 

Main PCI
Memory 

I/O I/O I/O 

Figure 2.6: A site structure of *T-NG. 

StarT-NG is built on a fat-tree network using MIT's Arctic routers connected to 

NIU [131. The NIU' s packet buffers are memory-mapped into an application's address 

space enabling users to send and receive messages without kernel intervention. The ar­

rival of a message is signaled either by polling or interrupt. Generally, PowerPC 620 
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will poll the NIU by reading a specified location of the packet buffer with minimum 

overhead. On the other hand, when the frequency of the message arrival is estimated to 

be low, an interrupt mechanism can be used either for a kernel message or a user mes­

sage in order to minimize the overhead of polling. 

Cache coherent distributed shared-memory in a prototype StarT-NG is imple­

mented in software to experiment with the directory-based protocol by programming the 

Shared Memory Unit (SMU) consisting of ACD and SP. When a cache miss occurs, 

the local SMU determines whether the operation is local or global by examining the ap­

propriate bits of the addressa higher order bit of the physical address distinguishes the 

global and local address space. If it is local, the directory information is updated and the 

cache line is read from the local memory. If it is global requiring remote access, cache-

coherence action message is sent out to either invalidate remote caches or flush a dirty 

cache-line. 

2.3.4 EM-X 

The EM-X parallel computer, which is a successor to EM-4 architecture [78], is 

being built at Electrotechnical Laboratory in Japan [77]. Based on dataflow model, EM­

X integrates the communication pipeline into the execution pipeline by using small and 

simple packets. Sending and receiving of packets do not interfere with the thread exe­

cution. Threads are invoked by the arrival of the packets from the network or by 

matching two packets. When a thread suspends, a packet on the input queue initiates the 

next thread. EM-X also supports direct matching for synchronization of threads, and 

the matching is performed prior to the buffering of the matching packets. Therefore, 

one clock cycle is needed for pre-matching of two packets, but the overhead is hidden 

by simultaneously executing other threads. 
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Figure 2.7: The structure of EMC-Y. 

The EM-X consists of EMC-Y nodes connected in a circular Omega Network 

with virtual cut-through routing scheme. The EMC-Y processor is capable of 20 MIPS 

and 40 MFLOPS (e.g., the instruction fma, FP multiply and add, performs two single-

precision floating-operations simultaneously) with clock rate of 20 MHz, and Figure 2.7 

shows its internal the structure. The Switching Unit is a 3-by-3 crossbar connecting 

input and output of network and the processor. Packets arriving at the processor are 

received in the Input Buffer Unit (IBU). The IBU has an on-chip packet buffer which 

holds up to 8 packets. When the on-chip buffer overflows, packets are stored in the 

data memory and automatically restored back when the buffer space becomes available. 

EM-X implements a flexible packet scheduling by maintaining two separate pri­

ority buffers. The packets in the high priority buffer are first transferred to the Matching 

Unit (MU), and low priority packets are transferred only when the high priority buffer is 

empty. The MU prepares the invocation of a thread by using the direct matching scheme 
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[55]. This is done by first extracting the base address of the operand segment from the 

incoming packet. The operand segment is an activation frame shared among threads in a 

function and holds the matching memory and local variables. Next, the partner data is 

loaded from the matching memory specified in the packet address, and the correspond­

ing presence flag is cleared. Then, a template (i.e., a code frame) is fetched from the top 

of the operand segment, and the first instruction of the enabled thread resident in the 

template is executed on the execution unit (EXU). 

The EXU, a RISC-based thread execution unit with 32 registers, provides four 

SEND instructions for invoking a thread, remote memory access, returning the result 

from the thread execution, and implementation of variable size operand segments or a 

block access of remote memory [77]. EM-X performs a remote memory access by in­

voking packet handlers at the destination processor, and the packets are entirely serviced 

by hardware which does not disrupt the thread execution in the execution pipeline. The 

round trip distances of the Omega Network in EM-X are 0, 5, 10, and 15 hops for re-

quest/reply sequences with the average of 10.13 hops requiring less than 1 it sec on a 

unloaded network. On a loaded network, the latency is 2.5 u sec on the average with 

random communication of 100 Mpackets/sec. 

2.3.5 Alewife 

MIT Alewife machine improves scalability and programmability of modern par­

allel systems by providing software-extended coherent cache, global memory space, in­

tegrated message-passing, and support for fine-grain computation. Underneath the 

Alewife's abstraction of globally shared memory, each PE has a physically distributed 

memory managed by a Communication and Memory Management Unit (CMMU). This 

CMMU maintains the locality by caching both private and shared data on each node, and 

a scalable software-extended scheme, called LimitLESS, manages the cache coherence 
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[5]. The LimitLESS scheme implements a full-map directory protocol that supports up 

to five read requests per memory line directly in hardware and more by trapping into 

software. 

Each Alewife node, shown in Figure 2.8, consists of a Sparc le processor, 64 

Kbytes of direct-mapped cache, 4 Mbytes of data and 2 Mbytes of directory, 2 Mbytes 

of private unshared memory, a floating-point unit, and mesh routing chip. The nodes 

communicate via two-dimensional mesh network using wormhole routing technique. 

Sparc le is a modified SPARC processor that facilitates block multithreading, fine-grain 

synchronization, and rapid messaging. In Sparc le, the register windows of SPARC are 

modified to represent four independent contexts: one for trap handlers and other three 

for user threads. A context-switch is initiated when the CMMU detects a remote mem­

ory access and causes a synchronous memory fault to Sparc le. The context switching is 

implemented by a short trap handler that saves the old program counter and status regis­

ter and switches to a new thread by restoring a new program counter and status regis­

ters. Currently, the context switching takes 14 clock cycles, but it is expected to be re­

duced to four clock cycles. 

Sparc le provides new instructions that manipulate the full/empty bits in memory 

for data-level synchronization [2]. For example, Idt (read location if full, else trap) and 

stt (write location if empty, else trap) instructions can be used to synchronize on an ele­

ment-by-element basis. Fast message handling is also implemented via special instruc­

tions and memory-mapped interface to the interconnection network. To send messages, 

Sparc le first writes a message to the interconnection network queue using stio instruc­

tion, and then ipillaunch instruction is used to launch the message into the network. A 

message usually contains the message opcode, the destination node address, and data 

values (e.g., content of a register or address/length pair which invokes DMA on blocks 

from memory). The arrival of a message invokes a trap handler that loads the incoming 
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message into registers using ldio instruction, or initiates a DMA sequence to store the 

message into memory. 
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Figure 2.8: The organization of an Alewife node. 

2.3.6 The M-Machine 

The M-machine is an experimental multicomputer being developed by MIT. The 

M-Machine achieves better utilization by devoting more chip area to the processor, and it 

is claimed that a 32-node M-Machine system with 256 MBytes of memory has 128 times 

the peak performance of uniprocessor with the same memory capacity at 1.5 time the 

area, yielding 85 times improvement in peak performance/area [30]. The M-Machine 

consists of a collection of computing nodes interconnected by a bidirectional 3-D mesh 

network. Each node consists of a multi-ALU (MAP) and 8 MBytes of synchronous 

DRAM. A MAP contains four execution clusters, four cache banks, a network inter­

face, and a router. Each of the four MAP cluster is a 64-bit, three-way issue, pipelined 

processor consisting of a memory unit, an integer unit, and a floating-point unit as 
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shown in Figure 2.9. The memory unit is used for interfacing memory system and 

cluster switch. The cache is organized as four word-interleaved 32 -KByte banks to 

permit four consecutive accesses. Each word has a synchronization bit which is ma­

nipulated by special load and store operations for atomic read-modify-write operations. 
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Figure 2.9: The MAP architecture and its four clusters. A cluster consists of 3 
execution units, 2 register files, an instruction cache, and interface to the memory 
and cluster switches. 

The M-Machine supports a single global virtual address space through a global 

translation lookaside buffer (GTLB). GTLB is used to translate the virtual address into 

physical node identifiers in the message. Also, messages are composed in the general 

registers of a cluster and launched atomically using a user-level SEND instruction. Ar­

riving messages are queued in a register-mapped FIFO, and a system-level message 

handler performs the requested operations specified in the message. 
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Each MAP instruction contains one to three operations and may complete out-of­

order. The M-Machine exploits instruction-level parallelism by running up to 12 parallel 

instruction sequences (called H-Thread) concurrently. Also, the MAP interleaves the 

12-wide instruction streams (called V-Thread) from different threads of computation to 

exploit thread-level parallelism and to mask various latencies that occurs in the pipeline 

(i.e., during memory accesses and during communication). Six V-Threads are resident 

in a cluster, and each V-Thread consists of four H-Threads. A V-Thread consists of a 

sequence of 3-wide instructions containing integer, memory, and floating-point opera­

tion. Within an H-Thread, instructions are issued in order, but may complete out of or­

der. Synchronization and communication among H-Threads in the same V-Thread is 

done using a scoreboard bit associated with each register. However, H-Threads in dif­

ferent V-Threads may only communicate and synchronize through massages and mem­

ory. The M-Machine provides a fast user-level message passing substrate through 

hardware support. Also, register-to-register communication is provided to reduce the 

memory accesses. 

2.3.7 Simultaneous Multithreading 

Simultaneous multithreading (SMT) is a technique that allows multiple inde­

pendent threads from different programs to issue multiple instructions to a superscalar 

processor's functional units. Therefore, SMT combines the multiple instruction-issue 

features of modern superscalar processors with the latency-hiding ability of multi-

threaded architectures, alleviating the problems of long latencies and limited per-thread 

parallelism. This means that the SMT model can be realized without extensive changes 

to a conventional superscalar processor architecture. 

Figure 2.10 shows the processor organization of an 8-thread simultaneous mul­

tithreading machine proposed by Tullsen D. M. et al. at University of Washington [571. 
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The processor execution stage is composed of three Floating-Point Units and six Integer 

Units. Therefore, the peak instruction bandwidth is nine. However, throughput of the 

machine is bounded to eight instructions per cycle due to the bandwidth of Fetch and 

Decode Units. Each Integer and Floating-Point Instruction Queue (IQ) holds 32 entries, 

and the caches are multi-ported and interleaved. Also, there are 256 physical registers 

(i.e., assumed 32-register instruction set architecture per each of 8 threads) and 100 ad­

ditional registers for renaming. 
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Figure 2.10: An overview of SMT hardware architecture. 

When running on a single thread, the throughput of the basic SMT system is 2% 

less than a superscalar with similar hardware resources due to the need to accommodate 

longer pipeline for a large register file; on the other hand, its estimated peak throughput 

is 84% higher than that of a superscalar processor when running on multiple threads. 

However, it is shown that the actual throughput peaks at IPC of 4 even with eight 

threads. This saturation is caused by the three factors: (1) small IQ size. (2) limited 
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fetch throughput (only 4.2 useful instruction fetch per cycle). (3) lack of instruction-

level parallelism. 

The fetch throughput can be improved by using techniques such as partitioning 

of fetch unit among threads, selective fetching, or eliminating conditions that block the 

fetch. It has been shown that the best performance is obtained when the Fetch Unit is 

partitioned in such a way that eight instructions are fetched from two threads, and the 

priority is given to the threads with the fewest instructions in the decode stage. Also, 

fetch misses can be reduced by examining the I-cache tag lookups a cycle early and se­

lecting only threads that do not cause misses. However, this scheme requires extra 

ports in the I-cache tags and increases misfetch penalties due to one more pipeline stage 

needed for early lookup. The resulting performance shows that a 2.5 throughput gain 

over a conventional superscalar architecture when running at 8 threads, yielding an IPC 

of 5.4. The conclusions drawn from the experiments are as follows: 

Techniques such as dynamic scheduling and speculative execution in a super-

scalar processor are not sufficient to take full advantage of a wide-issue proces­

sor without simultaneous multithreading. 

Instruction scheduling in SMT is no more complex than that of a dynamically 

scheduled superscalar processor. 

Register file data paths in SMT are no more complex than those in a superscalar, 

and the performance implication on the register file and its longer pipeline is 

minimal. 

The required instruction fetch throughput is attainable without increasing the 

fetch bandwidth by partitioning Fetch Unit and employing selective fetching. 
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2.4 New Generation of Multithreading 

The current multithreaded systems can execute several threads concurrently by 

providing multiple hardware contexts and hardware scheduler mechanisms to support 

fast context switching and thread management within the processor. The concurrent 

execution of multiple threads requires the programs to be expressed as multiple interact­

ing threads. In order to obtain such threads, traditionally two approaches have been 

taken: (1) The programmers write programs using thread packages, where threads are 

explicitly expressed in APIs provided by the thread packages. (2) Multiple programs are 

used, where each program represents a thread. However, some of the programs do not 

lend themselves to parallel programming, making it difficult to express the program us­

ing threads. 

On the other hand, new emerging multithreaded systems use various software 

and hardware speculation techniques to obtain multiple threads from a sequential pro­

gram, eliminating the need to program using threads. These next generation multi-

threaded systems use compiler techniques and hardware mechanisms to identify threads 

in a speculative fashion and provide the support for resolving inter-thread register de­

pendencies and memory disambiguation. This section introduces such multithreaded 

architectures, namely Multiscalar, I-ACOMA and DeSM. 

2.4.1 Multiscalar 

Traditional processors execute sequential programs following a single flow of 

control and build a large window of instructions in order to achieve high performance. 

On the other hand, the Multiscalar executes a single sequential program following multi­

ple flows of control by relying on hardware support for maintaining sequential seman­
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tics between those flows of control [41]. This allows the programmer to use a sequen­

tial programming style while efficiently executing the program in parallel. The Multis­

calar introduces new instructions to support two levels of control speculation: inter-task 

speculation and intra-task speculation. First, a program is converted into a task flow 

graph (TFG). A TFG is directed graph with nodes representing tasks and arcs repre­

senting control dependencies, in which each task is a conventional control flow graph 

(CFG). The Multisclar relies on the compiler for generation of tasks which encapsulate 

groups of instructions containing arbitrary control flows. The compiler identifies the 

tasks and inserts task start and task end instructions at the task boundaries. The task 

start instruction loads the special state register with a task header containing a bit mask 

that indicates which registers may be updated within the task along with the information 

about the tasks that may follow. The task end instruction is used to indicate an exit 

point of the task by setting special bits and transferring the control. These special bits 

are then used in the speculation of the next task. 

The global sequencer in Multiscalar, shown in Figure 2.11, traverses the pro-

gram's TFG and distributes the tasks to the processing units (PUs) in speculation of the 

program paths (inter-task speculation). The responsibility of global sequencer is to pre­

dict the starting address of the next tasks to be executed using information from the task 

header of the most recently predicted tasks and the dynamic prediction hardware. At any 

given time, only one unit can execute the non-speculative task and other units execute 

speculative tasks. For each task, the processing unit uses traditional control speculation 

to extract instruction level parallelism (intra-task speculation). The PU ring in Multisca­

lar operates as a circular queue with a head pointing to the non-speculative task and a tail 

pointing to the most recently started speculative task. When the task pointed by the head 

finishes, it informs the global sequencer of its actual non-speculative target address. If 

the predicted target address followed by the speculative tasks turns out to be incorrect, 

all tasks following the head task are squashed and execution is redirected to the correct 
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task. The task misprediction penalty can be large in terms of wasted work. However, 

this task speculation mechanism, supported by both hardware and software, enables the 

Multiscalar to effectively build a very large instruction window and increases the per­

formance. 
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Figure 2.11: The Multiscalar hardware. 

2.4.2 I-ACOMA 

Researchers at University of Illinois have proposed a software/hardware solution 

that allows speculative execution of threads using a sequential binary on a clustered 

SMT architecture, namely Illinois Aggressive Coma (I-ACOMA) [48]. They utilize the 
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loop iterations to identify threads and multiple threads from the successive iterations of 

the loop are speculatively spawned onto each SMT-based processor. In order to support 

this thread speculation, a binary annotator is developed to identify basic blocks in loops 

and generate threads. The annotation involves the following processes: (1) Identifica­

tion/annotation of entry and termination points of the loops. (2) Checking register-level 

dependencies and identifying looplive registers. The looplive registers define the inter-

thread dependencies that exist at the entry or exit points of the loop. Also, the registers 

that are modified within the loop are identified. (3) Finally, the registers holding loop-

carried variables, called induction variables, are identified and the instructions associated 

with the induction variables are moved close to the entry point of the loop in order to 

minimize the waiting cycles before the spawning of next iteration. 

Speculative execution of threads requires special hardware support for inter-

thread register synchronization and memory disambiguation. The inter-thread register 

synchronization is done by Synchronizing Scoreboard (SS). The SS associates three 

bits, namely Busy (B), Valid (V), and Sync (S), with each register to handle inter-thread 

dependencies. The B-bit is set when the register value is being created. The S-bit indi­

cates whether or not the register value is available to the succeeding thread. When a 

thread is initiated, the S-bits for all the looplive registers are set and later cleared when 

the release instruction for that register is executed. At this point, the register becomes 

safe to use by the succeeding thread. The V-bit indicates whether the thread has valid 

copy of the register. When a given thread need to access a register, the B-bit is checked 

first. If the B-bit is set, indicating the unavailability of the register, the thread execution 

is stalled. Otherwise, the thread gets the register value from the predecessor thread if the 

V-bit set. 

To preserve the sequential semantics of memory operation in speculative execu­

tion, the Memory Disambiguation Table (MDT) is used to maintain the address of the 

load/store operations along with Load (L) bit and Store (S) bit. In addition, each thread 
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has private write buffer to hold speculative store values. When a speculative thread per­

forms a load, it first checks the MDT for the matching address. If no match is found, a 

new entry is created for that address with L-bit set. On the other hand, if the matching 

address is present, the S-bit of that entry is checked to determine the possibility of up­

date by any predecessor threads. If the S-bit is not set, the load operation proceeds in 

normal fashion. However, if the S-bit is set, the load operation reads the values from 

the write buffer of the predecessor thread. The store operations performed by the 

speculative threads are held in the write buffer until they acquire non-speculative status. 

This prevents the corruption of memory state in case of incorrect speculation. 

2.4.3 Dependence Speculative Multithreaded Architecture 

The Dependence Speculative Multithreaded Architecture (DeSM), proposed by 

Marcuello et al., dynamically obtains multiple threads from a conventional sequential 

binary code without any user/compiler intervention [59]. It relies only on hardware 

mechanisms to speculate on multiple threads of control obtained from highly predictable 

branches. This architecture has several distinct advantages: (1) the dynamic behavior of 

program execution can be used to provide better speculation of the control-flow in the 

program. (2) Since no compiler support is needed, any existing program can benefit 

from the performance improvement of the multithreaded processor without any modifi­

cation. 

DeSM, shown in Figure 2.12, extends a SMT architecture with hardware sup­

port for speculation of control and data dependencies through register and memory. The 

goal of control speculation is to generate multiple threads from different iterations of the 

same loop at run-time. Note that a loop is identified by the target address of a backward 

branch and the branch itself. The hardware mechanisms, called Loop Table and Loop 

Stack, are used to keep the loop information, such as the iteration count of the last exe­
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cution of the loop, the difference between the number of iterations of the last two execu­

tion, the current iteration count, and the nesting level of the loop. Each time a new loop 

is executed, an entry is created in the loop table for the loop. When a new iteration of 

the loop is detected by a backward taken branch, the loop table is looked up. If the loop 

is in the table, the number of iterations left is predicted using the loop information pro­

vided in the table and threads are allocated to available contexts. 

Control 
SpeculationSingle PC 
Logic 

Single 
Fetch/Decode 

V 

Instruction Data 
Cache Cache 

Figure 2.12: The DeSM architecture 

The dependencies between threads are predicted based on the history of each 

loop. At run-time, the hardware-based Iteration Table maintains the information such as 

the number of last/current register writes and the address of last/current stores. The 

memory dependencies are predicted based on the last effective address of each store in­

struction and its stride. The register dependencies are resolved by Register Mapping 

Table (Rmap) and Register Write Table (Rwrite). Rmap table provides the mapping 

between logical register and physical registers among threads. Rwrite table is used for 

synchronization by keeping track of the number of writes on each register. Also, Multi­



44 

Value (MV) cache provides temporary memory space until the thread becomes non-

speculative. To implement the memory disambiguation mechanism, MV cache replicates 

every data words of each thread to every context. 
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3. Viability of Multithreading on Networks of Workstations
 

Over the past several years, distributed computing using networks of worksta­

tions (NOWs) has gained a wide acceptance for both scientific and general purpose ap­

plications. Distributed computing employs powerful workstations, or nodes, connected 

by high-speed local area networks (LANs). A software infrastructure system provides 

the capability to emulate virtual parallel machines with efficiency ranging from moderate 

to high. Moreover, a virtual global memory space, based on distributed shared memory 

(DSM) model, is provided to the programmer via software support. 

Although DSM provides ease of programming by eliminating the need to explic­

itly specify the synchronization and communication among nodes, it inevitably leads to 

performance degradation due to long and unpredictable memory latency. Memory la­

tency occurs when a miss in the local memory requires a request/reply to/from the re­

mote node. Multithreading allows the processor to context-switch and execute a new 

thread of computation rather than waiting for the reply to arrive, thereby effectively tol­

erating memory latency by overlapping communication and computation. However, in 

order for multithreading to be effective, a number of interrelated issues must be carefully 

considered. Issues such as the number of contexts, thread run-length, thread scheduling 

and granularity of threads have to be considered to provide the best performance for a 

given architecture. Therefore, this chapter examines the viability and effectiveness of 

multithreading in a networked computing environment. 

Organization of the chapter is as follows: Section 3.1 provides a brief discussion 

of multithreading. Section 3.2 discusses the basic communication operations involved 

in row-major distributed matrix multiplication algorithm and presents analytical models 

that characterize the performance of matrix multiplication using both message-passing 
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and multithreaded execution models. Section 3.3 provides simulation results of the two 

execution models. Finally, Section 3.4 provides a brief conclusion. 

3.1 Multithreading 

As discussed in the previous section, one of the major obstacles in achieving 

high efficiency in a large multicomputer system is memory latency due to remote load 

operations [2]. Remote memory latency is the time elapsed between when a remote 

memory read is requested and when the data is available. In a multithreaded execution, 

when a processor reaches a point where a remote memory access is necessary, the re­

quest is sent out on the network and a context-switch occurs to a new thread of compu­

tation. This effectively masks a long and unpredictable latency due to remote loads. 

In the multithreaded execution model, each processor maintains a number of 

ready threads, and a context-switch occurs when a remote memory reference occurs as 

shown in Figure 3.1. 

O Thread I 

O Thread 2 

Thread 3 

O Remote load req. 

Po Context Switch 

Figure 3.1: An example of multithreading. Numbers indicate the order of 
execution. It is assumed that the remote load operation at node 2 is com­
pleted before the context-switch occurs from node 9 to node 10. 
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A thread can be either blocking or non-blocking. A thread is said to be blocking 

if the thread execution is interrupted due to a remote load and continued later when re­

mote data is available. On the other hand, once initiated a non-blocking thread executes 

to completion without interruption, and does not require the context to be saved before 

initiating a new thread. Blocking threads tend to have coarser granularity than non-

blocking threads. However, the context switching cost for a blocking thread is more 

expensive than that of a non-blocking thread since the processor status and the contents 

of active register set (i.e., context) have to be saved for later execution of the thread. 

3.2 Analytical Models for Matrix Multiplication 

Matrix multiplication is a simple yet widely used algorithm in many scientific and 

engineering applications. Matrix multiplication algorithm is well structured in the sense 

that elements of the matrices can be evenly distributed to the nodes and communications 

among the nodes have a regular pattern. Therefore, exploiting data-parallelism based on 

message-passing is more suitable for solving the matrix multiplication problem. 

Matrix_Multiplication(A,B,C) 

for i=0 to n-1 
for j=0 to n-1 

C[i,j]=0; 
for k=0 to n-1 

C[i,j]=C[i,j]+A[i,k] x B[k,j];
end 

end 
end 

A sequential version of a n x n matrix multiplication algorithm consisting of 

three nested loops is shown above. As can be seen, the complexity of the algorithm is 

n3 . Thus, assuming each pair of multiplication/addition in the inner-loop takes the time 
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c, the total sequential execution time is given by T, = cn3 . Our motivation for studying 

the matrix multiplication algorithm is to see how the multithreaded version of the matrix 

multiplication algorithm compares to the message-passing counterpart in a highly parallel 

computing environment. Therefore, the following two subsections derive the analytical 

models for both message-passing and multithreaded versions of the matrix multiplication 

algorithm. 

3.2.1 Matrix Multiplication using Message-Passing 

For message-passing, nodes need to communicate data among different parts of 

the program. For a large parallel system, this exchange of data introduces large com­

munication delays during the execution of a program. Thus, proper implementation of 

communication operations is important to achieve an efficient execution based on mes­

sage-passing. There are a few basic communication patterns that frequently appear in 

various parallel algorithms, e.g., one-to-one, one-to-all broadcast, all-to-all broadcast, 

and shift with wrap-around. In this section, one-to-one communication used in row-

wise stripped matrix multiplication is discussed. 

To simplify the development of a communication model, we focus only on two 

major components of the communication cost between two neighboring nodes: startup 

cost, tc, and transmission cost, C. Startup cost consists of the time to setup a network 

channel between the source and destination nodes, the time to allocate a buffer space, 

and the time to package the messages. Transmission cost is the time required for a mes­

sage of unit length to travel from one node to the other (i.e., t Based 

on this, one-to-one communication between two processors takes ty + Cm, where m is 

the message length. 
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Data distribution for matrix multiplication can be divided into three classes: ele­

ment-wise, row or column major, and block distribution. In this paper, we implement a 

simple row-major stripped distribution to study the performance of both the message-

passing and the multithreaded execution models. We have experimented with other al­

gorithms such as Cannon's and Fox's algorithms [49], but found that their communica­

tion requirements do not map well to a LAN environment and thus resulted in inferior 

performance. 

Consider a row-major distribution of the matrices A and B partitioned into p 

P 
x n submatrices in Figure 3.2(a), where p is the number of processors. The proces­

sors are labeled from Po to Pp_i and the submatrices A and B, are initially assigned to P, 

for 0 i p-1. To compute C,, every processor requires all p submatrices Bk (for 

p-1), which requires excessive memory if all the submatrices are duplicated in 

each processor. To avoid this problem, each row of submatrices Bk is systematically 

shifted so that every processor gets a new Bk from its neighbors on each communication 

step. The basic communication steps involved in the simple row-wise matrix multipli­

cation is to rotate all Bk (for 0 k p-1) by one step up with a wrap-around in each 

communication step as depicted on four processors shown in Figure 3.2(b-d). 

The algorithm proceeds by having every processor perform multiplica­

tion/addition on its local submatrices before each communication step. Each processor 

also has to perform p-1 number of communication steps before completing the matrix 

multiplication, requiring a total of (p-1)(ts+t,i,p) time for communication. For the 

computation part, every processor performs multiplication on 11-2, x n submatrices, where 

multiplication/addition of each submatrix takes n--; time. Therefore, the total computa­

tion time for each processor is c r . The overall parallel run-time for the message-

passing version is then given by 
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PO AO x BO PO AO x B1 

P1 Al xBl P1 A 1 x B2 

P2 A2 x B2 P2 A2 x B3 

P3 P3 
VIA3 x B3 A3 x BO 

(a) Initial row-wise distribution (b) After the 1st communication step 

PO AO x B2 PO A0x B3 

P1 P1Al x B3 Al x BO 

P2 A2 x BO P2 A2xBI 

P3 P3A3x B1 V A3 xE2 V 

(c) After the 2nd communication step (d) After the final communication step 

Figure 3.2: Data distribution among four processors. Each processor 
has L' x n submatrices of A and B. Submatrices of B are shifted with a 
wrap-around in each communication step. 

3 ,\( n 2 

Tm-p + ts + t,, (3.1)=cn 

P Pi
 

3.2.2 Matrix Multiplication using Multithreading 

For the multithreaded version, we assume the initial distribution of matrices A 

and B is the same as in Figure 3.2(a). Each ;7' x n submatrices of A, and B are further 

partitioned into nth threads per processor, where each thread consists of nnhp x n subma­

trices. In our implementation, each thread performs four basic operations; namely, re­

quest send, request service, computation, and context-switch. First, each processor P, 



51 

sends out a request for Bjk (for 0 p-1, j#i and 0 < 1c nth 1) of size hvp x n to 

the remote processor P3, where j is the processor number and k represents the kth thread 

(i.e., request send). While this remote access is pending, each processor performs the 

following operations: (1) polls to see if a request from other processors has arrived and 

if there are any, services it (first request service); (2) performs multiplication/addition on 

a thread that resides on its local memory, which is non-blocking (computation); (3) once 

again, polls to see if a remote request has arrived during the computation portion and 

services it (second request service); (4) polls to determine if its own requested data has 

arrived (remote receive). Otherwise processor idles until the data arrives; finally, con­

text-switches to the next thread as shown in Figure 3.3. 

PO 

if request arrives from PO in time when reply from P1 arrives early 
it is serviced immediately no idle incurs 

P1 

when reply from P2 arrives lateif request arrives from P1 late 
idle incursserviced after computation 

,,,,,,,, .... . 
h..
P2 "WM,/computation /fe,/,/, h.',WM/
 

time 

request send 1st request service 

context-switch 2nd request service 

remote receive Il idle 

Figure 3.3: An example of multithreaded execution as a function of time. A 
thread execution is composed of request-send, request-service, computation, re­
mote receive, and context-switch. Note that when remote access takes longer than 
the computation idling occurs. 
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For simplicity, assume that tr is the time required to send out a request plus the 

time to check for a remote request, and t is the context switching cost. We also as­

sume the time to service a request is approximately equal to the startup time t since 

servicing a remote request involves allocating buffer space, packaging the data, and set­

ting up network interface. Note that the length of computation in a thread is ÷1, , re­

quiring computation time of c . Therefore, the run-length of a thread (i.e., granu­
nihp­

larity) is given as tr + is + c n hPP + tcs. Every processor will eventually execute nth (p 1) 

(since pth remote request and service are not necessary) before the multiplication com­

pletes. Based on this, the run-time of the multithreaded version can be expressed as 

(
Tdal( _1\ n3 n3 
A mt nth (P tr + nth C + tcs 

nthP- nthP 
3 n 

= C nth Ms nth(p-1)(tr + ts) (3.2) 

3 
mideal nt c+ nthp(tr+ ts +tcs) 

The approximation for Equation 3.2 is obtained assuming p>> 1. Note that Equation 

3.2 is valid only if the granularity is optimal so that the computation time is long enough 

to mask remote latenciesi.e., the network transfer time is completely hidden by the 

computation, and thus represents the best possible execution time for multithreaded ma­

trix multiplication. 

However, it is more likely that the round-trip time for the remote access takes 

longer than computation since the network speed is very slow compared to the processor 

speed and/or servicing of the remote request by the remote processor is delayed (i.e., the 

request is serviced after the local computation has been completed). This can be mod­
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eled by considering two different cases. In the first case, the request is serviced imme­

diately by the remote processor (i.e., the remote processor services the request before 

performing its local computation), the round-trip time for the remote access can be esti­

mated as tr + tw + is + where tr + tw is the time to send/detect a request to/from the 

remote processor, and ts+t, f is the time spent by the remote processor to service 

(including network delay) the request. For this case, the run-length of a thread is com­

posed of the time to send out a request, the round-trip time for the remote access, and 

the context switching cost, requiring a time of tr + t + ts+ t, nn2p tcs . Another case is 

when a remote request is serviced after the computation portion in the remote processor. 

If we add the computation time to the remote access time, it will require a time of 

tr + t,, + is + tn, 
rnP

+ c n,n 2 + . Assuming p>> 1 and considering the fact that the last 

pth step does not require any remote accesses, the total run-time is given as 

I 7
n2 n3 n3T,n, = nth(p-1) tr+t+ts+t +c + tcs C tcs+nth 

nth P nth P ) nth P 

3 ( 2 n n 
= C + nth(p-1) tr +tw +ts +tw (3.3)+tcs nthtcs

P nth P j 

Th, c n3 
+ nthp(tr+c+t,+1J+t,n2
 

P
 

Equation 3.3 shows that the overall execution time depends on the communication time 

rather than the computation time. This situation will occur when the number of threads 

is too large or the granularity is too small to effectively mask the remote latency. There­

fore, the granularity has to be properly determined such that the computation and com­

munication are well balanced to achieve optimum performance. 
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3.3 Experimental Results 

In the previous section, several key characteristics of message-passing and mul­

tithreaded versions of the matrix multiplication algorithm were identified using analytical 

models. This section presents experimental results of the two versions running on four 

100MHz Pentium-based LINUX workstations connected via Ethernet. To compare per­

formances, the simulation programs were developed using PVM. Since PVM does not 

support multithreading, a run-time system was implemented to provide a virtual global 

memory space and thread scheduling. 

Our simulation program for the multithreaded version allows granularity of 

threads to be varied by assigning an arbitrary number of threads to each node. The 

scheduling of threads is software-controlled to exploit the locality as much as possible 

rather than relying on the dynamic behavior of the run-time scheduler provided by PVM 

or TPVM [29]. The measured execution time of each simulation includes the time taken 

for PVM processes to initialize as well as the time to execute the matrix multiplication 

routine. In addition, the thread context switching cost is assumed to be 50 usec [29]. 

In the message-passing implementation, each processor proceeds first with the 

multiplication of submatrices and then communicates among all four nodes. For the 

multithreading implementation, we simulate the shared-memory abstraction by sending 

out a remote request for next submatrices before proceeding with the computation part. 

Also, each processor checks to see if there are any incoming requests before and after 

the computation step on local submatrices. If a request is detected before the computa­

tion, the processor immediately prepares the requested data and sends them out to the 

requesting nodes. Otherwise, incoming requests are serviced after the computation. 

After servicing the remote requests and performing computation, each processor checks 

if its own requested data has arrived. If the remote data has arrived, a context-switch 

occurs to the next thread. If not, the processor waits for the requested data. 
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Table 3.1 shows the speedup of the multithreaded version over the sequential 

version as a function of matrix dimension. These results indicate the speedup increases 

from 2.18 to 3.45 as the matrix dimension increases. A low speedup was obtained for 

n=200 because each node experiences a large portion of remote latencies due to its rela­

tively fine granularity. On the other hand, the speedup factor was higher for n=1000, 

indicating that its coarse granularity allows a larger portion of the remote access time to 

be tolerated. 

Table 3.1: Speedup of multithreaded version vs. sequential version. 

Dimension 200 400 600 800 1000 
Speedup 2.18 2.81 3.08 3.27 3.45 

Figure 3.4 shows the overall execution time of matrix multiplication for the ma­

trices of size 200x200 through 1000x1000. The results for MT were based on five 

threads per each processor, and the results for MT-opt were obtained when each proces­

sor has an optimum number of threads relative to matrix dimensions, i.e., nth=5 for n 

=200 and 400, nth=20 for n=600, nth=25 for n =800, and nth =50 for n =1000. It can 

be seen that message-passing version MP gives slightly better performance compared to 

MT. However, when nth is chosen properly, as in the case of MT-opt, performance is 

comparable to MP. For example, 50 to 75 threads per processor for 1000x1000 matrix 

multiplication resulted in very close or even better performance than MP. 

We have also experimented with the various distributions of submatrices among 

nodes for the purpose of investigating the sensitivity of MT or MT-opt to data distribu­

tion. The resulting graphs MT-rd and MT-rd-opt show that performance suffered less 
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than 5 percent compared to MT. This indicates that matrix multiplication algorithm us­

ing multithreading is somewhat insensitive to the initial data distribution. 

100 

o	 MP (message-passing) 

MT (multithreaded)
75 

MT-opt (optimum) 

MT-rd (random distribution) 

C)	 MT-rd-opt
50 

E
 

25 

0	 1
 
200 400 600 800 1000 

Matrix Dimension 

Figure 3.4: Execution times of message-passing and multithreaded 
versions of the row-wise stripped matrix algorithm. 

Figure 3.5 shows the execution time increases when the number of threads is 

either very small or large. These effects can be explained as follows: When nth is small, 

the processor has to idle because more data is needed per thread thus requiring more 

communication time (i.e., twn2 term in Equation 3.3 becomes dominant and the compu­

tation time cannot mask the remote access delay). As nth becomes large, the number of 

context-switches required increases thereby degrading the performance as indicated by 
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the term nth p(tr+c+ts+c) in Equation 3.3. The experimental results indicate that 

depending on the sizes of the matrices, approximately 5 to 25 threads per processor is 

enough to achieve the best possible performance. For example, we found the following 

numbers of threads per processor resulted in optimum performance: nth=5 for n=200 

and 400, nth=20 for n=600, and nth=25 for n=800. Therefore, a relatively small num­

ber of threads per processor is enough to maintain a high processor utilization [77]. 
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Figure 3.5: Execution time vs. number of threads per processor. 

Figure 3.6 (a) shows the percentages of time spent on each component of a 

thread as a function of n for nth =5. For illustration, a thread execution is subdivided 

into the following five components: Computation is the time spent on multiplica­

tion/addition; Req Send is the time taken to send a request to a remote processor; 1st 

Req Srvc is the time spent to service the remote request before the computation; 2nd 

Req Srvc is the time required to service the remote request after the computation (a 
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remote request will be serviced either in 1st Req Srvc portion or 2nd Req 

Srvc portion, but not both); and Remote Recv is the time taken to load the data into 

the local memory from the network buffer plus, if there are any, the idle time. 
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(a) as a function of dimension ( nth =5) (b) as a function of number of threads ( n=600) 

Figure 3.6: Percentages of various components of a thread execution. 

Figure 3.6 (a) shows Computation portion increases as n increases, thereby 

tolerating longer remote latencies (e.g., this can be seen by the decrease in Remote 

Recv as a function of n). Req Send takes almost constant amount of time regardless 

of matrix dimension because the is portion of the communication is much larger than tw. 

However, the total amount of time spent on sending out a remote request will increase if 

the number of threads becomes large. Our experiments also showed there is no definite 

pattern in terms of whether a remote request is more likely to fall in the 1st Req 

Srvc portion or in the 2nd Req Srvc portioni.e., the chances of an incoming re­
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mote request to be serviced before or after the computation is about the same. Figure 

3.6 (b) shows the changes in the various components of a thread execution as a function 

of nth for n=600. It shows that only the components related to remote operation in­

creases as nth increases. Therefore, each processor has to spend more time servicing 

remote requests, and the performance will degrade. 

3.4 Conclusion 

With the availability of powerful microprocessors, high-speed networks, and 

software systems, it is possible to build a distributed parallel computing environment on 

NOWs. Moreover, with the availability of software infrastructure system, such as 

PVM, existing parallel applications can be easily ported to run on NOWs. However, the 

complexity of programming using the message-passing model still remains to be a major 

hurdle. Although the DSM system alleviates this problem to some extend by providing 

a shared-memory abstraction, multithreading technique can further amortize the ineffi­

ciency of communication involved in shared-memory accesses. However, multithread­

ing carries the overhead of context switching cost. In addition, granularity and sched­

uling of threads become very important factors in achieving high performance. 

Our findings indicate that the message-passing execution outperforms its multi-

threaded counterpart when thread computation cannot effectively mask the remote la­

tency. Also, context switching and interruptions within a thread to service remote re­

quests adds to the overhead of implementing a multithreaded system. However, the re­

verse is true when the granularity of threads is properly chosen so that thread computa­

tion effectively masks the remote memory latency. We also found that for the matrix 

multiplication algorithm the multithreaded execution is relatively insensitive to initial data 

distribution. 
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4. Multithreaded Virtual Processor
 

Current trends in VLSI technology indicates that the performance gap between 

processors and main memory will continue to increase. However, modern superscalar 

processors do not provide any mechanism to tolerate memory latency. Consequently, 

the speed of memory system is likely to be a major limiting factor for improving the per­

formance of a future microprocessor. Multiprocessors and multicomputers also greatly 

exacerbate the memory latency problem. In SMPs, contention due to the shared bus lo­

cated between the processor's L2 cache and the shared main memory subsystem adds 

additional delay to the memory latency. The memory latency problem becomes even 

more severe for scalable distributed shared memory (DSM) systems because a miss on 

the local memory requires a request to be issued to the remote memory and a reply to be 

sent back to the requesting processor. This limits the performance and scalability since 

the proportion of the processor time actually spent on useful work keeps diminishing as 

parallel machines become larger. 

There are a number of techniques that effectively reduce the memory latency, 

such as prefetching, compiler optimizations, and multi-level caches, but they do not 

provide a complete solution. Therefore, the remaining latency must be tolerated. A 

multithreaded system contains multiple "loci of control" (or threads) within a single pro­

gram and provides the processor with an ability to switch between the threads in order to 

tolerate memory latency. Also, the processor's resources may be shared among multiple 

threads, yielding better processor utilization. There are two types of architectures that 

support the exploitation of thread-level parallelism (TLP): multiprocessor and multi-

threaded systems. Multiprocessors replicate a number of superscalar processors and 

provide inter-processor communication mechanism via shared-memory. Threads are 

statically partitioned and executed on a separate processor. Therefore, it is difficult for a 
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multiprocessor to dynamically exploit TLP among the processors. On the other hand, 

multithreaded systems provide support for multiple contexts and fast context switching 

within the processor pipeline. This allows multiple threads to share the processor's re­

sources by dynamically switching between threads. 

In light of the aforementioned discussion, this chapter proposes the Multi-

threaded Virtual Processor (MVP) that exploits the synergy between the multithreaded 

programming paradigm and the well-designed contemporary microprocessors. MVP is 

a proof of concept that, by providing an adequate hardware support to an existing super-

scalar core, we can take full advantage of the increasingly popular and powerful pro­

gramming tools that exploit thread-level parallelism (TLP). With its fast context 

switching and hardware scheduling mechanisms, MVP provides the capability to hide 

cache miss latencies. In order to validate the MVP concept, a simulator was developed 

that integrates a general purpose POSIX thread package [62] and a multithreaded super-

scalar processor simulator. 

4.1 MVP Architecture 

Multithreaded Virtual Processor is a coarse-grain multithreaded system that aug­

ments the modern superscalar core with hardware and software support for multi­

threading. The objective of the proposed MVP is to extend the software-controlled mul­

tithreading model with hardware support while providing a transparent view to the pro­

grammer. The MVP is based on the block-multithreading paradigm where each thread is 

constructed from a user-defined function. With its multiple hardware contexts and fast 

context switching mechanism, MVP can tolerate the long latency operations such as 

cache misses, synchronization points, and I/O operations. 

The MVP architecture is organized into two layers shown in Figure 4.1: soft­

ware layer and hardware layer. The software layer provides the facilities for coding 
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multithreaded applications using Pthreads [15]. Pthreads is a POSIX compliant thread 

extension that specifies a priority-driven thread model with preemptive scheduling poli­

cies. The hardware layer in MVP consists of a conventional superscalar processor core 

augmented with the Hardware Scheduler and Multiple Hardware Contexts. The respon­

sibility of the Hardware Scheduler is to basically coordinate the execution of threads 

scheduled onto MVP in attempt to hide the cache miss latency. 

Software-Controlled 
Thread Management 

Software Layer 

Hardware Layer 

Figure 4.1: An overview of MVP system. 

4.1.1 Software Layer of MVP 

The software layer of MVP consists of Pthreads, which is based on the POSIX 

1003.1c 1995 thread standard. This standard passed the International Standards Orga­

nization (ISO) Committee Document balloting in February 1995 and received the IEEE 

Standards Board approval in June 1995. This POSIX threads extension specifies a pri­
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ority-driven thread model with preemptive scheduling policies, signal handling, and 

primitives to provide mutual exclusion as well as synchronized waiting. 

A thread is an independent sequence of code execution (flow of control) within a 

regular UNIX process. Threads share the global data (global variables, files, etc.) but 

maintains their own stack, local variables, and program counter. Therefore, the context 

of thread is much smaller than the context of a process, and the context switching be­

tween threads is much cheaper than switching between processes. Thus, the use of 

threads increases the overall throughput and responsiveness by allowing an efficient 

overlapping of computation and I/O requests. However, thread programming usually 

requires more effort due to increased complexity of managing multiple threads. 

Although Pthreads' API (Application Programming Interface) is a standard, its 

implementation variesPthreads can be implemented using a combination of kernel and 

user library [62]. However, our discussion focuses on a library implementation of 

Pthreads based on Chris Provenzano's Pthreads'. There are numerous features avail­

able in Pthreads that give programmers the ability to write concurrent applications. For 

example, Pthreads provides functions for creating, terminating, and joining threads. It 

also has two thread synchronization primitives, the mutex and the conditional variable, 

which are used to control access to a shared resource. Table 4.1 lists some of the fea­

tures available in the POSIX threads standard. A more detailed discussion on the API 

can be found in [15]. 

Pthreads also defines the scheduling policies along with mechanisms to control 

scheduling of threads. There are three scheduling policies: FIFO, round-robin (RR), 

and user-controlled priority. The thread scheduling in Pthreads is basically just moving 

'Provenzano's Pthreads package can be obtained from 
http://www.mitedu:8001/people/proven/pthreads.html. 

http://www.mitedu:8001/people/proven/pthreads.html
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threads among various event queues that Pthreads maintains. All 14 queues of Pthreads 

are listed in Table 4.2 along with their functions. 

Table 4.1: Some of the features provided by Pthreads. 

Thread Management 
pthread_create() 

pthread_exit() 

pthread join() 

pthread_getschedpara() 

pthread_setschedpara() 

Thread Synchronization 
pthread_mutexinit() 

pthread_mutex_lock() 

pthread_mutex_unlock() 

pthread_mutex_destroy() 

pthread_cond_init() 

pthread_cond_destroy() 

pthread_cond_signal() 

pthread_cond_broadcast() 

pthread_cond_wait() 

Creates a new thread 

Terminate the calling thread 

Synchronize with the termination of a thread 

Get the scheduling policy and parameters of the specified thread 

Set the scheduling policy and parameters of the specified thread. 

Initialize a mutex 

Acquire the indicated mutex 

Release the previously acquired mutex 

Destroy a mutex 

Initialize a condition variable 

Destroy a condition variable 

Unblock one thread currently blocked in the specified condition variable 

Unblock all threads currently blocked in the specified condition variable 

Block on the specified condition variable. 

Figure 4.2 shows the states of a thread as it moves around the queues. When a 

thread is created, it is initially pushed onto the pthread_current_prio_queue (PQ) and is 

said to be runnable. From this queue, the thread becomes active in the order of its pri­

ority (i.e., being executed). If the thread has to suspend its execution to wait for some 

event or signal, it is put on the queue for that type of event, i.e., blocked. When the 

signal or the event for which the thread has been waiting for occurs, the thread becomes 

runnable again and is moved back to the PQ. Eventually, the thread is destroyed when 

the execution of the thread is done or exits. 
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Table 4.2: Various queues and their associated functions. 

Queue State Description and Functions 
pthread_current_prio_queue PS_RUNNING running 
join_queue PS JOIN waiting for a thread to die 

pthread join() 
mutex.m_queue PS_MUTEX_WAIT waiting for a mutex 

pthread_mutex_lock() 
cond.c_queue PS_COND_WAIT waiting on a condition variable 

pthread_cond_wait() 
r_queue PS_FDLR_WAIT waiting on a fd read lock 

fd_lock() 
w_queue PS_FDLW_WAIT waiting on a fd write lock 

fd_lock0 
pthread_sleep PS_SLEEP_WAIT waiting on a sleep 

sleep() usleep() nanosleep() 
wait_queue PS_WAIT_WAIT waiting for a child to die 

wait() waitpid() [wait3() wait40] 
pthread_sigwait PS_SIGWAIT waiting on a set of signals 

sigwait() 
pthread_dead_queue PS_DEAD waiting for a thread to join with it or detach it 
pthread_alloc_queue PS_UNALLOCED available to use for a new thread 
fd_wait_read PS_FDR_WAIT waiting on a kernel fd to have data to read 

read() ready() recvQ 
fd_wait_write PS_FDW_WAIT waiting on a kernel fd to write data 

write() writev() 
fd_wait_select PS_SELECT_WAIT waiting for several fds in a select 

select() 

enabled 

Figure 4.2: A simplified view of the thread state. 
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Figure 4.3 shows that the PQ of Pthreads is composed of a linked-list of threads 

for each priority level. If a priority level is empty, it is linked to the tail of the level 

above. The Pthreads scheduler is responsible for managing the PQ and the context-

switches according to the scheduling policy. Threads in a higher priority list are sched­

uled before threads in a lower priority list. Within each list, where all threads have the 

same priority, the threads are scheduled according to the policy described next. 

PrioritY Queue 

High 
Head Tail 

V 

Low 

Figure 4.3: A structure of priority queue in Pthreads. 

SCHED_FIFO is a first-in first-out order. When a thread is preempted, it is put 

back at the head of the list and continues running unless there is a thread with a 

higher priority waiting. When a thread is blocked, it is put at the tail of the list. 

Also, if the thread's scheduling policy or priority changes, it is put at the tail of 

the new priority's list. 
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SCHED_RR is like SCHED FIFO, except that each thread has a timer set. 

When the timer expires, the thread will go to the tail of the list and another thread 

is scheduled for the duration of PTHREAD_ITIMER_INTERVAL. 

SCHED_OTHER implements a user-controlled priority scheme that is a combi­

nation of FIFO and RR. It will set the timer like RR only when there are no sig­

nals pending. Otherwise, it does not set the timer. 

Pthreads has a large number of the internal functions and their associated data 

structures in order to facilitate the process of creating threads, initiating the thread exe­

cution, and switching between threads. When a user program is invoked, it first exe­

cutes Pthreads initialization routines to set up the UNIX signal function. The prototype 

of the signal function, given in the system header file <signal.h>, is defined as void 

(*signal (int signo, void (*func (int))) (int). Signals are software interrupts, and Pthreads 

interacts with the operating system (OS) via signals. These interrupts initiate the context 

switching process in Pthreads. 

When the specified signal event (i.e., the signal matching signo) occurs during 

the execution of a program, Pthreads uses the signal function to transfer the control to 

the sig_handler() in Pthreads scheduler. There are four major components in Pthreads 

scheduler: sig_handler(), pthread_resched_resume(), pthread_sched_other_resume(), 

and context_switch(). The sig_handler() provides an external entry point to the sched­

uler via OS signals; pthread_resched_resume() and pthread_sched_other_resume() 

provide an internal path to the scheduler. In particular, pthread_resched_resume() is 

called whenever the current thread has to reschedule itself after being blocked, and 

pthread_sched_other_resume() is used to check if the thread to be resumed has a higher 

priority. If that is the case, it stops the current thread and starts a new thread. All three 

routines eventually invoke the context_switch() routine to actually perform the context-

switch. 
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(int) thread_type 

(pthread_attr) attr 

(machdep_pthread) machdep_data 

(sigset) sigmask 

(sigset) sigpending 

(int) sigcount 

(time_spec) wakeup_time 

(pthread__queue) join_queue 

(pthread) *pll (linked list) 

(pthread) *next (running thread list) 

(pthread_wait_data) data 

(pthread_queue) *queue 

(pthread_state) state 

(char) flag 

(char) pthread_priority 

(pthread) *sll (sleeping thread) 

(void) *ret 

(int) err 

(int) *err_p 

(const void) "specific_data 

(pthread_cleanup) *cleanup 

(enum) schedparam_policy
 
(int) prio
 
(int) flag
 
(void *) arg_attr
 
(void) (*cleanup_attr)()
 
(void *) stackaddr_attr
 
(size t) stacksize_attr
 

i(void *) (*startup_routine)() 
(void) *start_argument 
(void) machdep_stack 
(struct itimerval) machdep_timer 
(jmp_buf) machdep_state (PC, SP, RT) 

( 
(pthread) *q_next
 
(pthread) *q_last
 
(void) *q_data
 

PS_RUNNING
 
PS_*_WAIT
 
PS_JOIN
 
PS_DEAD
 
PS_UNALLOCATED
 

(pthread_cleanup) *next
 
(void) (*routine)()
 
(void) *routine_arg
 

Figure 4.4: The data structure of Pthreads. 

In order to understand how a context-switch is performed, let us first examine 

the thread structure shown in Figure 4.4. Basically this structure is used to hold all the 

necessary information to manage a thread: thread's attributes (e.g., priority and stack 

address), signal information (e.g., signal mask), timer value, machine-dependent pa­

rameters, etc. Among them, the machine dependent portion of the data structure pro­

vides the allocation of private stack space for each thread. This stack space is used as 

storage not only for function calls, but also for saving and restoring of the thread state. 

In particular, the jmp_buf is utilized by setjmp() and Iongjmp() functions to implement 
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the context switching mechanism. The setjmp() and longjmp() are the standard C library 

calls that implement non-local jumps (i.e., branching back outside the called frame). 

The following are the code segments of the setjmp() and longjmp() routines. As can be 

seen, setjmp() saves the contents of the registers (i.e., the context of the thread), and 

longjmp() restores the saved state (i.e., callee-saved registers, stack pointer, and pro­

gram counter) and starts the execution of the thread by jumping to the instruction pointed 

by the PC. 

setjmp()
 
/* Store the floating point callee-saved registers... */
 
asm volatile ("s.d $f20, %0" : : "m" (env[0]. fpregs[0]));
 
asm volatile ("s.d $f22, %0" : : "m" (env[0]. fpregs[1]));
 
asm volatile ("s.d $f24, %0" : : "m" (env[0]. fpregs[2]));
 
asm volatile ("s.d $f26, %0" : : "m" (env[0]._fpregs[3]));
 
asm volatile ("s.d $f28, %0" : : "m" (env[0]. fpregs[4]));
 
asm volatile ("s.d $f30, %0" : : "m" (env[0]._fpregs[5]));
 
/* .. and the PC; */
 
asm volatile ("sw $31, %0" : : "m" (env[0]._pc));
 
/* .. and the stack pointer; */
 
asm volatile ("sw cY01, %0" : : "m" (env[0]. sp), "r" (sp));
 
/* .. and the FP; it'll be in s8. */
 
asm volatile ("sw %1, %0" : : "m" (env[0]._fp), "r" (fp));
 
/* .. and the GP; */
 
asm volatile ("sw $gp, %0" : : "m" (env[0]. gp));
 
/* .. and the callee-saved registers; */
 
asm volatile ("sw $16, %0" : : "m" (env[0]._regs 0 ));
 
asm volatile ("sw $17, %0" : : "m" (env[0]._regs 1 ));
 
asm volatile ("sw $18, %0" : : "m" (env[0]._regs 2 ));
 
asm volatile ("sw $19, %0" : : "m" (env[0]._regs 3]));
 
asm volatile ("sw $20, %0" : : "m" (env 0]. regs 4 ));
 
asm volatile ("sw $21, %0" : : "m" (env 0]. regs 5 ));
 
asm volatile ("sw $22, %0" : : "m" (env[0]._regs 6 ));
 
asm volatile ("sw $23, %0" : : "m" (env[0]._regs 7 ));
 

longjmp()
 
/* Pull back the floating point callee-saved registers. */
 
asm volatile ("I.d $f20, %0" : : "m" (env[0]. fpregs[0]));
 
asm volatile ("Ld $f22, %0" : : "m" (env[0]. fpregs[1]));
 
asm volatile ("1.d $f24, %0" : : "m" (env[0]. fpregs[2]));
 
asm volatile ("I.d $f26, %0" : : "m" (env[0]._fpregs[3]));
 
asm volatile ("I.d $f28, %0" : : "m" (env[0]. fpregs[4]));
 
asm volatile ("Ld $f30, %0" : : "m" (env[0]._fpregs[5]));
 
/* Restore the stack pointer. */
 
asm volatile ("lw $29, %0" : : "m" (env[0]. sp));
 
/* Get and reconstruct the floating point csr. */
 
asm volatile ("lw $2, %0" : : "m" (env[0]. fpc_csr));

/* Get the callee-saved registers. */
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asm volatile Ow $16, %0" : : "m" (env[0]. regs[0])); 
asm volatile ("lw $17, %0" : : "m" (env 0 . regs[1])); 
asm volatile Ow $18, %0" : : "m" (env[0 . regs[2])); 
asm volatile Ow $19, %0" : : "m" (env[0 . regs[3])); 
asm volatile Ow $20, %0" : : "m" (env 0 . regs[4])); 
asm volatile Ow $21, %0" : : "m" (env[0 . regs[5])); 
asm volatile Ow $22, %0" : : "m" (env[0]. regs[6])); 
asm volatile Ow $23, %0" : : "m" (env[0]. regs[7])); 
/* Get the PC. */ 
asm volatile Ow $31, %0" : : "m" (env[0]. pc)); 
/* Give setjmp 1 if given a 0, or what they gave us if non-zero. */ 
if (val == 0) 
asm volatile ( "Ii $2, 1 "); 
else 
asm volatile ("move $2, %0" : : "r" (val)); 
asm volatile ("j $31"); 

In the process of a thread creation, PC in the jmp_buf is initialized to the starting 

point of the thread by setjmp(). Then the longjmp() sets the PC to the starting point of 

the thread when the thread is scheduled for the first time, and the execution of the thread 

begins. If the Pthreads scheduler has to perform a context-switch, the context_switch() 

is called in which setjmp() is executed and the state of the current thread along with the 

PC are saved in the jmp_buf. After saving the current thread, it first schedule another 

thread from PQ and restores the context of the thread by calling longjmp(), thereby com­

pleting the context-switch. 

Now consider how threads and a UNIX process interact during the execution of 

the threads. When a process runs, the OS sets up a location for the potential state of the 

process on the process stack. When an interrupt occurs, the state of the process is saved 

onto the stack, the stack pointer is incremented, and the processor runs the interrupt 

handling routine (i.e., signal()). When the routine finishes and returns from the inter­

rupt, the OS pops the process's state off the stack, decrements the stack pointer, and the 

process returns to execution. The following example explains the overall execution se­

quence of a Pthreads program. Pthreads programs are written in C with Pthreads API 

and then linked with the Pthreads library to produce the executables. In the example 

shown below, pthread_create() creates a new thread named f() with attributes 



71 

thread_id[i] and arguments pointed to by (void *) &args[i], and pthread_join() joins 

threads created by pthread_create(). The sequence of overall process is depicted in 

Figure 4.5. 

main() 

for (i=0;i<=n;i++) 
pthread_create(&thread_id[i],NULL,f,(void *)&args[i]); 

for (i=0;i<=n;i++)
 
pthread_join(thread_id[i], NULL);
 

}
 

void *f(void *param) 

do something 

} 

nein( ) 

pthread create() 
Priority Queue
 

create threads
 
TD I TDN -1 TDN 

4­

f0 f0 f0 

pthreadjointhread 
scheduling 

Figure 4.5: The execution of the given sample Pthreads program. 
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In the first loop, n number of threads are created and their thread identifiers 

(TIDs) are enqueued onto the PQ. Figure 4.6(b) shows the state of the stack just before 

the first thread starts its execution and just after the Nth thread have been saved onto the 

PQ. Once all the threads are created, pthreads__join() invokes the Pthreads scheduler, 

which schedules a thread by dequeuing its TID from PQ. It is most likely that Thread 1 

will be removed from the PQ first. Then, a longjmp() call is made by the con-

text_switch() inside Pthreads scheduler, moving the stack pointer from the end of 

Thread N's frame to the beginning of the Thread 1's frame as shown in Figure 4.6(c), 

and the Thread 1 starts its execution at f(). 

Stack Stack Stack 

SP SP 
Thread I Thread I Thread I 

Thread 2 Thread 2 Thread 2 State of the 
thread saved 

Thread N Thread N ThreadN 
SP 

(a) (b) (c) 

(a) Initial state of the stack before allocation. 
(b) State of the stack before executing first thread and 

after saving the state of the thread N . 
(c) State of the stack after a longjmp 0 to Thread 1 and 

after the state of Thread 1 has been restored. 

Figure 4.6: A diagram of stack states. 

As each thread is executed, Pthreads scheduler starts an OS timer (set by calling 

setittimer() system call). If the timer expires before the thread finishes its execution, an 

interrupt (i.e., sigvtalrm) is generated by the OS. Assuming RR scheduling policy, the 

following sequence of events occur when the timer interrupt occurs: 
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1.	 The OS recognizes the interrupt and saves the state of the process onto the frame on 

the stack given by the stack pointer. 

2. The OS loads the interrupt handler, i.e., sig_handler() in Pthreads. 

3.	 sig_handler() eventually runs the context_switch() routine. 

4. The TID of the interrupted thread is enqueued onto the PQ and a new thread selected 

and removed from the PQ (Thread 2 is likely to be the one). 

5. To start the new thread running, the stack pointer is set to the end of the new 

thread's frame by Iongjmp() and Pthreads returns from sig_handler(). 

6. The OS then restores the state of the process (which moves SP to the beginning of 

the new thread's stack frame) and begins the execution of the new thread. 

When all the threads on the PQ have completed their execution, the control returns to the 

main O, and program exits. 

4.1.2 Hardware Layer of MVP 

The hardware support for MVP model consists of a conventional superscalar 

processor core augmented with the hardware scheduler and multiple hardware contexts 

as shown in Figure 4.7. A long latency operation (e.g., L2 cache misses) detected by 

the memory management unit (MMU) causes a thread to context-switch. The context 

switching is accomplished by the hardware scheduler where the blocked thread is placed 

in a hardware context and a new thread is scheduled from another hardware context. 

Once threads are scheduled onto the hardware from the PQ of Pthreads, threads remain 

in the processor until the execution of threads is done in order to avoid unnecessary 

overhead involved in software-controlled thread management. However, in the event of 

a synchronization, threads may swap between the hardware contexts and the thread 

queues managed by Pthreads. 
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In order to manage multiple contexts, each context inside the processor is repre­

sented by a tag TID, containing a thread ID, a PC, and a pointer to the thread stack. To 

understand how MVP executes threads, first consider how a context switching is per­

formed. When an L2 cache miss is detected, MVP initiates a hardware context-switch. 

Since a hardware context in MVP is represented as a register bank, the context switching 

is a simple process of deactivating one bank and activating another. After the context-

switch is done, new instructions are fetched from the memory location indicated by PC 

of the new hardware context. 

Hardware Context 

TID 
Register

PC 
File 

R
 

Hardware 
Scheduler 

Reorder BufferPC 

Decode & Execution UnitReservationFetch fpDispatch - Integer ALUStations 
- Integer Mu It/Div 
- FP Adder 
- FP Mult/Div 

Load/Store Unit 

Level I 
I-TLB

I-Cache Level 1 
D-TLBD-Cache 

Unified 
Level 2 Cache 

Main Memory 

Figure 4.7: An overview of the MVP hardware system. 
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The interaction among the user program, Pthreads function calls, Pthreads 

scheduler, and the Hardware Scheduler is shown in Figure 4.8. The functionality of 

each state is explained below: 

main ( ) User Progi-am 

Call Pthrcads Return from 
routine Pthreads routine 

Pthreads 
Library Calls User Library 

Return from
Call Pthrcads 

Pthrcads
scheduler 

scheduler 

Runtime System 
Schedule 

New Thread 

Context(s) & 
Schedule more threads 
threads onto availahle:Call 
hardware Pthreads 

duler 
Cache miss, time out, 
or thread exit 

Thread Context 
Running Switch 

No new threads or 
contexts are full and 
threads are ready 

No new threads 
Cache miss or contexts are full an 
satisfied no threads ready 

Wait 

Hardware Scheduler 

Figure 4.8: The MVP execution model. 

main() - MVP is executing the main user program. When a Pthreads routine is 

invoked, a state transition is made to Pthreads Library Calls. 
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Pthreads Library Calls Executes a Pthreads routine. After executing a Pthreads 

routine, it will either return to main() or call the Pthreads scheduler (Schedule 

New Thread state). 

Schedule New Thread Depending on which Pthreads routine called the 

Pthreads scheduler, it will perform either one of the following operations: 

Checks to see if a thread to be scheduled from the priority queue (PQ), 

which is maintained by the Pthreads scheduler, has a higher priority than the 

currently running thread. If so, the thread in the PQ is scheduled onto a 

hardware context and the V-bit is set; otherwise, returns from the Pthreads 

scheduler. 

Selects a thread from the PQ and schedules it to an available hardware con­

text, and the associated V-bit is set. 

Thread Running Runs a thread that is in a hardware context. A transition to the 

Context Switch state occurs when a cache miss (R-bit is reset) occurs or a thread 

exits (V-bit is reset). 

Context Switch Depending on the state of the machine, it will perform one of 

the following operations: 

Context-switch to one of the ready threads in MVP (i.e., Thread Running 

state). 

Call the Pthreads scheduler if a hardware context is available and threads are 

waiting to be scheduled in the PQ (i.e., Schedule New Thread state). 

Wait if hardware contexts are full but no threads are ready, and no threads 

are waiting to be schedule from the PQ. 
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Wait Wait for a thread to become runnable (waiting for a long latency memory 

operation). When a thread becomes runnable (i.e., its cache miss has been satis­

fied and R-bit is set), a transition is made to Thread Running state. 

The MVP maintains a total of 64 regular registers (32 integer and 32 FP) and 3 

special registers for each context, and Table 4.3 shows their definitions. All the instruc­

tions are 64-bit wide, and the ISA of MVP is derived from the MIPS-IV [431 with the 

following exceptions: (1) Load, store, and branch instructions do not execute the suc­

ceeding instruction, i.e., no delay slot (2) Two additional addressing modes are sup­

ported: Indexed Register plus Register and auto-increment/auto-decrement. (3) Single-

and double-precision FP square root instructions are introduced. The instructions of 

MVP can be classified into register, immediate, and jump instruction formats in Figure 

4.9. The register format is mainly used for computations instructions. The immediate 

format supports up to 16-bit values, and the jump format supports the specification of 

24-bit branch targets. 

Table 4.3: Description of registers in MVP. 

Hardware Name Description 
$0 Hardwired to zero 
$1 Reserved by assembler 
$2-$3 Function return result registers 
$4-$7 Function argument value registers 
$8-$15 Temp registers, caller saved 
$16-$23 Saved registers, callee saved 
$24-$25 Temp registers, caller saved 
$26-$27 Reserved by OS 
$28 Global pointer 
$29 Stack pointer 
$30 Saved registers, callee saved 
$31 Return address register 
$hi High result register 
$lo Low result register 
$f0-$f31 FP registers 
$fcc FP conditional register 
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16-annotation 16-opcode 8-rs 8-rd 8-rd 8-fu/shift 

Register format 
63 32 31 0 

16-annotation 16-opcode 8-rs 8-rd 16-immediate 

Immediate format 
63 32 31 0 

16-annotation 16-opcode 6-unused 24-target 

Jump format 63 32 31 0 

Figure 4.9: Register definition and Instruction format of MVP. 

4.2 MVPsim 

In order to verify the concept of MVP, we developed a functional simulator, 

called MVPsim, that integrates a POSIX compliant Pthreads software package and Sim­

pleScalar with support for multithreading [14]. The simulator used for MVPsim is sim­

outorder of Simple Scalar, which simulates an n-way issue superscalar processor based 

upon Sohi's Register Update Unit (RUU) [81]. The conventional Reservation Stations 

and ROB are combined and implemented as RUU. The default number of instructions 

fetched and decoded is four. Both the fetch and decode bandwidths and the number of 

entries in the RUU can be varied according to needs of the user. The Execution Unit 

consists of four integer ALUs, one integer multiply and divide, two load and store, four 

floating-point adders, and one floating-point multiply and divide, but again the Execu­

tion Unit requirements and its latencies can be easily modified. 

sim-outorder also has an array of options for setting up branch prediction, 

caches, and main memory. For branch prediction, a user can specify the number of en­

tries for BTB, where each entry uses 2-bit BPB, as well as a branch prediction penalty. 

For caches, both L 1 and L2 cache parameters can be defined according to the required 
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number of sets, block size, associativity, and replacement policy. Finally, a user can 

also specify LI, L2, and main memory latencies. The basic simulator has the following 

architectural parameters: 

The number of instructions fetched, decoded, and dispatched is 4. The number
 

of entries in the Reservation Stations and ROB were each assumed to be 32.
 

Functional unit latencies were based on Table 4.4.
 

Cache and main memory organizations and their latencies were based on Table
 

4.5. We assumed a two-level cache with writeback policy. The main memory 

latency used in the simulation is rather conservative compared to the current 

technology, e.g., Ultra Sparc IIi has a main memory latency of 72 cycles [67]. 

However, we expect the memory latency to grow in the future. Moreover, for 

multiprocessor systems, the shared-bus between processors' lower level cache 

and the main memory adds to the latency [17]. 

Context switching to a new thread is initiated when an L2 cache miss is detected. 

L I cache misses were not supported since the latency is assumed to 6 cycles and 

therefore not worth context switching to a new thread. However, a context-

switch can be initiated at any level of the memory hierarchy as long as sufficient 

latency exists. 

The process of switching from one hardware context to another involves (a) 

simply turning off one register bank and turning on another register bank, (b) 

flushing the ROB, and (c) fetching from the new context. Assuming this is sup­

ported entirely in hardware, this process is very similar to recovering from a 

miss-predicted branch and requires a penalty of 3 cycles. 

The branch prediction scheme used is a 2K-entry Branch Target Buffer (BTB) 

with 2-bit branch prediction bits. 
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Table 4.4: Simulated FUs and their latencies. 

Functional Unit latency Pipe lined 
Integer Unit yes1 

Integer Multiply 3 yes 
Integer Division 12 no 
Load/Store Unit 2 yes 
FP Add 2 yes 
FP Multiply 4 yes 
FP Division 12 no 

Table 4.5: Configuration of L 1 and L2 caches. 

Cache Memory Ll I-Cache/L1-D cache L2 Unified Cache
 
Size 16 KBytes 256/512 KBytes
 
Associativity Direct-mapped 4-way Set Assoc.
 
Line Size 32 Bytes 64/128 Bytes
 
Hit Latency 1 6
 
Miss Latency 6 100
 

4.3 Benchmark Programs 

Five benchmark programs were developed to study the performance of MVP. 

Matrix Multiplication (MMT) and Gaussian Elimination (GE) programs were manually 

written to be multithreaded using Pthreads library calls. Other benchmark programs, 

Fast Fourier Transformation (FFT), MP3D, and Radix Sort (RS) were ported from 

SPLASH-2 suit [93]. The SPLASH-2 benchmarks used were originally written for 

shared-memory machines and ANL macros were used to create and manage threads. To 

port the SPLASH-2 benchmarks to the simulator, the ANL macros were replaced with 

their Pthreads equivalents. Also, no optimizations were attempted when converting the 
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serial versions to the multithreaded versions in all the benchmarks. Each benchmark is 

briefly described below: 

MMT parses the matrix data into blocks and assigns them to threads. The data 

set for the threads is relatively disjoint, but the row by column operation does 

produce considerable overlapping of data among threads. Moreover, there is no 

thread intercommunication or synchronization. 

GE partitions an n-by-n matrix into threads by using the row-wise block-cyclic 

approach. Initially one thread performs the division step with its pivot value and 

then all other threads perform an elimination step. These two steps are coordi­

nated with barriers. GE threads tend to have very separate and distinct data sets 

with minimal data sharing besides the pivot value. GE is very similar to LU de­

composition in SPLASH-2, except only the upper triangular matrix is generated. 

FFT implements a complex 1-D version of the VT/ six-step FFT algorithm. The 

algorithm has also been optimized to minimize inter-thread communication. The 

data set consists of n complex data points and another n complex data points 

called the roots of unity. Every thread is then responsible for transposing a con­

tiguous submatrix AlTilpx111.1p with every other thread and one submatrix by 

itself. The data sets between threads are very localized even though the program 

is optimized against it, thus supports much data sharing between threads. 

MP3D is a simple simulator for rarefied gas flow over an object in a wind tun­

nel. The geometry of the object is created as a data structure in memory at ini­

tialization time, thus no initial file read operation is experienced. The algorithm 

is primary occupied within a loop consisting of three phases where a thread is 

given particles and proceeds to move them through a single time step. The 

thread continuously detects any possible collisions of its molecules with other 

molecules within a defined cell space. In essence, MP3D algorithm contains 

http:AlTilpx111.1p
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data that is very localized and shares much of that data among threads. Also, 

each phase has to be completed by all the threads before continuing to the next 

phase, thus the algorithm requires a large amount of synchronization. 

RS algorithm passes over its assigned key values, and based on those key val­

ues, generates a local histogram. Then, all the local histograms are combined to 

into a globally shared histogram. Finally, each thread iterates over its assigned 

array and, by using the global histogram, permutes its keys into a new sorted ar­

ray. Whenever the global histogram is accessed, the data set is very localized 

and shared; however, all other data accesses are very disjoint. 

4.4 Simulation Results 

Two sets of simulation runs were performed for each benchmark described in 

the previous section. The first set was obtained by running serial versions of the 

benchmark, and the second set was obtained by running multithreaded versions on MVP 

with multiple hardware contexts. Approximately 500 million to 1.2 billion instructions 

were simulated with the number of memory references ranging from 88 million to 300 

million. Simulated MVP had 2, 4, and 8 hardware contexts, and the number of threads 

created for each simulation run was the same as the number of hardware contexts. 

First, we examined how much stalls incurred in the serial versions due to mem­

ory latency. Figure 4.10 shows the percentage of the execution time that the processor 

idles due to L2 cache misses. MMT experienced the most stalls among the benchmarks, 

ranging from 20% to 55% of the total execution time. GE also showed fairly high per­

centage, about 32%, of stalls. Both GE and MMT programs operate on matrices, thus 

require a large number of memory accesses. FFT incurred a little over 22% of stalls 

when the problem sizes were larger than 216, and RS suffered less than 6% of stalls for 

all cases. Interestingly, MP3D showed a proportional increase in the stalls as the num­
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ber of molecules increased. Therefore, in general, about 20% to 35% of stalls were ex­

perienced by the serial versions. 
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Figure 4.10: Percentage of latency incurred due to L2 cache misses. 

Figure 4.11 shows the relative performance of MVP in terms of the execution 

cycles. The results were normalized relative to the performance of the serial versions. It 

can be seen that as the data sets become large, MVP begins to overcome its overhead 

and performs better than the serial cases. An example of this effect is well displayed by 

MP3D. 141- l' and GE also show a moderate performance improvement with increasing 

data size as their algorithms begin to take advantage of the latency tolerance of multi­

threading. As expected, MMT showed the best performance improvement due to the 

fact that a large amount of stalls were incurred for the serial execution and no inter-

thread synchronization was necessary among threads. On the other hand, RS showed 

the minimal performance improvements since the serial execution of RS experienced a 

small amount of memory latency. 
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Figure 4.11: Speedup of five benchmarks over serial execution. 

Another interesting effect is that the use of more hardware contexts does not nec­

essarily result in improved performance, as seen in both RS and MP3D. This effect is 

the result of the benchmarks' high synchronization requirements and small parallel por­

tion. Although the performance degrades as the number of contexts increases, the per­
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formance margin narrows as the problem size increases. Therefore, it is likely that 4 

and 8 hardware contexts would eventually outperform the 2-hardware contexts when the 

problem becomes large. 

4.4.1 Locality in Caches 

To gain a good understanding of how the L1 and L2 caches are affected by mul­

tithreading, the cache miss rates for the serial versions and MVP were examined. Figure 

4.12 shows the miss rates for the Ll D-cache and the L2 cachethe cache miss rates for 

L1 I-cache were omitted since observed miss rates were below 0.5% for most bench­

marks. The results were rather interesting. The L2 miss rates for MVP are lower than 

the serial versions for most of the cases. This effect is seen in all the benchmarks except 

GE and RS. Lower L2 miss rates are due to the fact that the data sets used by these 

programs have high data locality. This locality is exploited when a cache miss caused 

by a thread brings in the data that other threads may need later. For example, consider 

the MMT in Figure 4.13 with the rows of both A and B matrices are distributed in 

blocks. Suppose a cache miss occurs for a column value of B while Thread 1 is per­

forming multiplication on a row of A matrix with a column of B matrix. This cache miss 

may fill the cache with the column values of B that will be used by Threads 2, 3, and 4 

for the computation of matrix C. This data sharing occurs due to the fact that a cache 

line is essentially part of a row in the matrix. When a thread generates a cache miss 

while looking for a column value, other values needed by different threads are also re­

trieved at the same time. Therefore, when another thread looks for its column value, the 

column may already be in the cache (i.e., prefetching effect). Also, note that matrix B 

itself is shared among threads by the nature of the MMT algorithm. 
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Figure 4.12: The miss rates for LI D-cache and L2 cache. 

Another benchmark that exhibits considerable data sharing is MP3D. In MP3D, 

the workload is partitioned by molecules, and a molecule is always moved by the thread 

it belongs to. Also, the partition of molecules changes significantly in each time step. 

Therefore, access pattern to the space array tends to exhibit low locality for both serial 

400 
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and MVP versions. However, in the MVP version, it is quite possible for different 

threads to access the given space at the same time, and this creates the data sharing effect 

during collision computations. The result is lower cache miss rates for the MVP ver­

sion. 

Matrx A Matrix B Computation of Matrix C 

A cache line of B matrix brought in by a cache miss 

Portion of the computation that need the above cache line 

Figure 4.13: An example of data sharing in MMT. 

The increased miss rates for both L I and L2 caches are seen by RS. This effect 

is caused by the sorting portion of the RS algorithm. When the threads sort their indi­

vidual keys of the array, the data set becomes very disjoint between threads, and the L2 

cache miss rate increases. Similarly, GE also has very distinct data sets with low local­

ity among threads. Therefore, a thread, upon generating a cache miss, would simply 

bring in more of the rows belonging to the same thread. The result is that the threads 

compete for space within the L2 and result in a higher L2 miss rate than the serial ver­

sion. 

Our simulation results thus far indicate the importance of the cache behavior, in 

particular the data sharing effects on the overall performance. However, the cache miss 

rates shown in Figure 4.12 alone do not accurately reflect the cache behavior since the 

total number of cache misses also depends on the number of accesses as well as the 
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cache miss rate. Therefore, we examined the cache behavior in more detail by observing 

the number of accesses to the cache. 

Figure 4.14 monitors the effect of multithreading on Ll and L2 caches in terms 

of the number of accesses made. The graph shows the relative number of accesses 

made by the MVP versions using 4 hardware contexts to that of serial versions with 1.0 

being the equal number of accesses for both versions (i.e., the number of accesses in the 

MVP execution divided by the number of accesses in the serial execution). The number 

of accesses to LI I-cache for MVP increased 3% to 13% for all benchmarks. The in­

crease in the number of accesses to the Ll I-cache was a result of the MVP versions 

having to execute more instructions for thread management and synchroniza­

tion software overhead involved in multithreading. Also, flushing of the instruction 

queue on context-switches increases the accesses to L1 I-cache. 

The LI D-cache also sees 1% to 32% increase in the number of accesses. This 

result signifies that the MVP versions tend to fetch more data than actually needed. 

There are two main reasons for this behavior. First, the speculative execution tends to 

fetch extra data which would not have been fetched if it were not for speculation. In 

other words, speculative execution has a more profound effect on the MVP versions 

since the multithreading effectively increases the overall amount of the speculative 

fetches by switching to a new thread and then to refetch the data later (i.e., thrashing). 

Second, the software overhead of thread management and synchronization inevitably 

increases the number of data accesses. 

FFT and RS show that the MVP versions have a relatively large number of ac­

cesses to the L2 cache when compared with the serial versions (50% to 78% for FFT 

and 32% to 51% for RS). The result suggests that the exploitation of locality in the LI 

D-cache is hindered. The conflict between threads causes more access to the L2 cache in 

order to retrieve the replaced lines in the L I cache. However, GE and MMT show 
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less number of accesses to the L2 cache despite the increase in the number of accesses in 

the L I caches. This indicates that some portions of the working sets are shared and this 

shared working sets contribute to the hits among threads, eliminating the need to access 

the L2 cache. 

On the other hand, Figure 4.15 shows the actual number of cache misses in the 

L1 and the L2 caches for both the serial and the MVP versions. In general, the graphs 

show that MVP causes more misses in all the caches (GE and MMT are the exceptions). 

Also, it is apparent that the MVP versions generate a considerable amount of L1 I-cache 

misses compared to the serial version. This reflects the fact that the dynamic execution 

that results from context-switching hinders the locality in the I-cache [2]. Also, addi­

tional instruction executions for thread scheduling, synchronization, and thread man­

agement further contribute to the instruction misses in MVP. For example, both FFT 

and MP3D have a large amount barrier synchronization, and it is likely that each thread 

will work on different parts of the program and this tendency will increase as the data 

size becomes large. This increases the chance of the instruction being replaced when the 

context-switching occurs. 

A counter example is MMT which caused the least amount of additional LI I-

cache misses (about 70% compared to the serial version). Since MMT requires no syn­

chronization, each thread is likely to execute the same instructions with different data 

sets. Therefore, the instructions tend to remain and are recycled in the L1 I-cache with­

out causing much conflict. Furthermore, MMT program mainly consists of multiplica­

tion/addition instructions that have to be repeated many times during the execution, and 

thus the instructions tend to exhibit strong locality. 
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4.4.2 An Analysis of Multithreaded Execution 

In order to provide better understanding of how cache behavior and other com­

ponents of multithreading contribute to the overall performance, we developed a simple 

analytical model that compares the serial and the multithreaded execution models. First, 

consider the serial case. Suppose the processor executes instructions on the average for 

R, cycles before a cache miss occurs. Let L denote the average cache miss penalty, 

which represents the main memory access time and the time to refill the cache line. As­

suming M, number of cache misses occurs during the program execution, the total exe­

cution time for serial model, TS, is given by 

Ts =(R,+ L)Ms. (4.1) 

The performance of multithreading depends on two major factors: available par­

allelism and processor resources. If an application does not exhibit sufficient amount of 

parallelism (i.e., thread parallelism) for multithreading, the processor utilization will not 

increase. Even if parallelism exists, the sharing of processor resources (e.g., caches, 

functional units, etc.) among threads, the context-switching costs, and the overhead of 

thread management and scheduling may limit the overall performance. For simplicity 

and convenience, assume that enough parallelism exists for multithreading throughout 

the program execution. Suppose a multithreaded processor performs a context-switch at 

an interval of R,,, cycles at a cost of C cycles. If the processor performs M, context 

switches during its execution, and the overhead of 0 cycles is spent on thread manage­

ment and scheduling, the execution time of the multithreaded model, T,, is given as 

T,=0+(1?+C)A1. (4.2) 
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Equation 4.2 reflects the ideal case when the cache miss latency is completely masked by 

the execution of other computational threads. If there are H numbers of hardware con­

texts, the processor can then execute H 1 threads to tolerate the memory latency (i.e., 

R(H L). Otherwise, the performance will suffer from the unmasked portion of 

cache miss latency. In this case, Equation 4.2 can be rewritten as 

T,, = 0 + ((1? + (1. R(H 1)))Alm, (4.3) 

The term (L R,, (H 1))A in the above equation represents the total amount of mem­

ory latency that could not be tolerated despite executing other threads. Therefore, the 

effective improvement of the multithreaded execution over the serial execution, Tell , can 

be estimated by 

Tell = T. Tm 

= L(Al A 1 )+ (R,M, RnM) 0 MC +(R,,(H 

(R,,(H 1))M + L(Al A 1 ) 0 M C (4.4) 

An approximation for Equation 4 can be obtained by assuming that the amount of com­

putation for a given algorithm is about the same for both serial and multithreaded execu­

tions (i.e., RsM ). The first term, (R,,,(H 1))M represents how much of 

the memory latency can be tolerated by the multithreading or the amount of overlapping 

that occurs between memory accesses and computation (Tolerance). This term reflects 

the fact that the tolerance to memory latency increases as the number of hardware context 

increases. However, if the program does not have sufficient parallelism to fully utilize 

the hardware contexts, the tolerance will be limited by the available parallelism in the 

program rather than the hardware contexts. 
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The term L(AlcMmi), on the other hand, can be used as a measure to reflect the 

sharing effects of multithreading (Sharing Eff). If the multithreaded execution causes 

less cache misses compared to the serial execution, this term becomes positive, signify­

ing that data locality exists and the threads share a certain portion of the data (i.e., 

working set) during the execution. Otherwise, the conflict among threads will increase 

the number of cache misses, thus becomes negative indicating less data locality. The 

last two terms 0 and MnC represent the overhead of multithreading, where 0 reflects 

the cycles spent for thread management and scheduling (Overhead) and M,C is the total 

amount of cycles required for hardware context-switches (Switching Cost). 

The effects of the four components in Equation 4.4 were studied for MVP with 4 

hardware contexts. Figure 4.16 shows the percentage of each component to the total 

execution time for each benchmark. Each component was computed using the parameter 

values obtained from the simulation results. The negative values indicate the amount of 

additional cycles incurred in MVP over serial execution, and positive values signify the 

amount of benefit obtained from multithreaded execution. Note that the cumulative ef­

fect of the four components reflects the performance improvement in MVP and is con­

sistent with the results shown in Figure 4.11. 

Figure 4.16 shows that the tolerance increases as the data size increases in all the 

benchmarks except MMT. Also, the hardware context switching costs of MVP seem to 

have a minimal effect on the overall execution time. MMT and MP3D have positive 

sharing effects indicating that the performance of multithreading can also benefit from 

data sharing if the algorithms can take advantage of the locality. A similar effect is ob­

served for the 320 case in GE. The observed speedup was greater than other cases be­

cause the performance benefited not only from its latency tolerance, but also from the 

positive sharing effect due to the lower L1 miss rates (compared to the serial versions). 

Also, the performance benefit for GE comes mostly from the tolerance rather than the 

data sharing. 
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As the data size increases, MP3D exhibits a large growth in both its tolerance 

and the positive sharing effect. Therefore, the speedup increases almost linearly as the 

data size increases. On the contrary, RS shows an exponential growth for both the tol­

erance and the negative sharing effect as the data size increases. The result is that the 

memory latency resulting from additional cache misses offsets the tolerance and thus 

reduces amount of the effective improvement from multithreading. The graph for FFT 

is very similar to RS, but the smaller negative sharing effect and the larger tolerance re­

sulted in better performance improvement. For both FFT and RS, the negative sharing 

effect was greater than the overhead or the switch cost. Therefore, the memory latency 

due to cache misses had a more significant influence on the performance of MVP for 

these two benchmarks, whereas the overhead costs had a greater influence on GE and 

MP3D. GE benchmark has barriers between the division and the elimination steps, and 

these operations had to be repeated many times before the computation is done, thus a 

large overhead was incurred for synchronization. MP3D also has a large amount of bar­

rier synchronization and thus resulted in a relatively large overhead. 

4.4.3 Pipeline Profile 

Frequent context switching in MVP can disrupt the instruction execution and 

may cause new bottlenecks in the pipeline. Therefore, the average Instructions executed 

Per Cycle (IPC) of each benchmark were studied as shown in Figure 4.17. IPCs were 

calculated by dividing the total number of instructions executed by the total number of 

cycles. The portions of IPC lost were also analyzed from each of Fetch stage, Dispatch 

stage, and Issue stage. The graphs display the IPC that was lost from the ideal IPC. In 

other words, the lost IPC that is shown is simply ideal IPC minus the actual IPC. The 

graphs are further broken down to show what percentage of the total lost IPC was in­

curred at each of the stages. The pipeline stage bottlenecks that were modeled are: IPC 



97 

U 

4 
MMT 

16 18 

Nmber of Elements (29 

St 

0 240 280 320 
Dimension 

360 400 

3 

U 2 II 

0 

4 

240 

RS 

1 
280 320 

Dimension 
360 400 8000 10000 12000 

Number of Molecules 

14000 

3 

U 2 

I 

Fetch_Lost 

RS_Lost 

Issue_Lost 

El FU_Lost 

Actual_IPC 

0 
16 18 20 

Number of Keys (2") 
22 

Figure 4.17: IPC for various benchmarks. Four graphs for each point represent, 
from left to right, serial, 2 HW contexts, 4 HW contexts, and 8 HW contexts. 



98 

lost due to fetch bandwidth (Fetch_Lost), reservation stations full (RS_Lost), execution 

units busy (FU_Lost), and issue bandwidth limitations (Issue_Lost). Decode and 

Commit stage bandwidths were also observed, but was dropped when it was apparent 

that bandwidths were never reached in any of the simulations executed. 

As can be seen from the graphs, multithreading seems to create a additional 

stress on the fetch bandwidth. This is due to the fact that program locality is reduced by 

context switching among threads. Therefore, the fetch bandwidth will have to be im­

proved in order to obtain better performance. Another effect that can be observed is a 

decrease in IPC lost in the issue stage. By switching threads on a cache miss, long la­

tency data dependencies are avoided and consequently, more instructions are available to 

be issued. Also seen by the graphs is almost no change by RS and only small amounts 

of difference experienced by 1-P1 and MP3D. The reason is the level of synchronization 

and therefore parallelism experienced by the data sets. RS has much synchronization 

while FFT and MP3D have some and MMT has none. GE exhibits a similar effect as 

MMT even though it also has high amounts of synchronization. This effect is due to the 

fact that GE has a very large parallel portion in comparison to the synchronized serial 

portions. 

4.5 Conclusion and Future Research Directions 

This paper discussed the simulation study of MVP on the cache performance. 

The MVP execution model showed 10% to 85% performance improvement over the se­

rial execution model. MVP showed its effectiveness in tolerating memory latency due to 

L2 cache misses. Also, the performance improvement came from not only tolerating 

memory latency, but also exploiting data locality. For some benchmarks, the data local­

ity was exploited in the form of sharing, further enhancing the overall performance im­

provement. On the other hand, when the sharing effect was minimal, it resulted in addi­
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tional conflict misses thereby offsetting the advantage of multithreading. Results also 

showed that the software synchronization requirements among threads could degrade the 

performance of some of the simulated benchmarks. 

Based on our study, there are two major ways MVP can be improved. First, the 

software synchronization overhead can be mitigated by providing the support in hard­

ware [25]. This improvement will not only reduce the software overhead, but may also 

reduce the number of conflict misses due to reduced number of context switches. Sec­

ond, the sharing effect is obviously important and therefore must be encouraged to fully 

benefit from multithreading. For example, Philbin et al. proposed a use of threads for 

improving the cache locality of serial programs by careful scheduling [34]. The address 

information associated with each thread is provided to the scheduler, and the threads are 

scheduled in the order that minimizes the cache misses. Therefore, future study may 

focus the thread scheduling as a means of improving data locality. 

We are also currently working on modifying the MVP to support SMT with dy­

namic thread creation and speculative execution, called Dynamic Simultaneous Multi­

threading (DSMT). The idea is to detect and create threads from a serial program with­

out compiler intervention. These dynamic threads will be executed concurrently on a 

SMT-like machine with special hardware support for register and memory dataflow and 

speculative execution. The benefits of DSMT are several-fold: (1) eliminates the need 

for programmers and compilers to generate multithreaded codes, (2) overcomes the 

technological limitations of arbitrarily increasing the instruction window size to achieve a 

wide-issue bandwidth, (3) speculative execution can be aggressively applied to across 

multiples threads, and (4) reduces the required fetch bandwidth by taking advantage of 

the fact that multiple threads share a common code. 
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