AN ABSTRACT OF THE THESIS OF

Brett M. Sherer for the degree of <u>Master of Science</u> in <u>Agricultural Engineering</u> presented on <u>August 10, 1990</u>.

Title: <u>Bacteria Die-off in Stream Sediments.</u>

Abstract approved: James A. Moore

The purpose of this study was to evaluate the impact sediment has on the survival of bacteria in a typical rangeland stream. This information is an important component in determining a time integrated prediction of bacterial numbers in the stream sediment and overlying water. Bacterial survival in stream is a crucial factor in the complex relationship between stream quality and range management. Once this relationship has been defined, it will lead to a scientifically-based, rational process for rangeland management decisions.

Bear Creek flows through a semi-arid rangeland in Central Oregon. Two sediment samples (clay loam and sandy loam) were collected from Bear Creek. Sediment samples were combined by weight with fresh bovine feces at 250:1, 20:1, and 6.67:1 ratios (sediment:feces). The inoculated sediment samples and a contaminated water sample were stored a 8°C and monitored to determine the change in concentrations of fecal coliform (FC) and fecal streptococci (FS) with time.

Stream sediments were found to increase the survival of fecal coliform and fecal streptococci in an aquatic environment. FC was found to exhibit a significantly lower

die-off rate than FS in sediments inoculated with bovine feces. No significant difference was observed in the die-off rate of FS between sediment types or inoculation levels with a half-life ranging from 9 to 12 days. Die-off rates for FC were found (half-life ranging from 13 days to 31.5 days) to be significantly different between inoculation levels and sediment types. No relationships were observed between FC and FS die-off rates to particle size or inoculation level.

This study concluded that stream sediment allows enteric bacteria to survive, possibly for several months, in an aquatic environment. Resuspension of these bacteria may account for the erratic FC and FS levels often encountered in water monitoring programs since grab samples of water give only an immediate measure of bacterial levels. If enteric pathogens behave similarly, significant public health hazards could arise. Existing state bacteriological standards and monitoring procedures fail to address these problems. Therefore, a more meaningful and accurate indication of water-quality conditions would be obtained by also monitoring indicator bacteria levels in surface sediments.

BACTERIA DIE-OFF IN STREAM SEDIMENTS

by

Brett Michael Sherer

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirement for the degree of

Master of Science

Completed August 10, 1990 Commencement June 1991 APPROVED:

Redacted for Privacy Dr. J. A. Moore, Professor of Bioresource Engineering in charge of major Redacted for Privacy Dr. A. G. Hashimoto, Head of Department of Bioresource Engineering Redacted for Privacy Dean of Graduate School

Date thesis is presented August 10, 1990

Typed by Brett Sherer for ____ Brett M. Sherer ____

ACKNOWLEDGEMENTS

I wish to extend my sincere appreciation and thanks to the many people who contributed in one way or another to the development of this thesis. Without these contributions this document would never have come into existence.

First of all my thanks to the United States Department of Agriculture Research Services Grant No. 85-CSRS-2-2718 for providing financial assistance for this project.

Special recognition is unquestionably due to Dr J. Ronald Miner for his help, cooperation, continued encouragement and last minute heroics during the completion of this thesis. My thanks to my major professor Dr. James A. Moore for his guidance, support, and words of encouragement during my graduate student career which I will always remember and appreciate. I would like to thank my minor professor Dr. Richard H. Cuenca for providing guidance and support throughout the writing of this thesis, and for the time spent proof-reading. Thanks are also due to Drs. Milton Larson and Boone Kauffman for substituting in as my Graduate Faculty Representative and Committee Member, respectively, on short notice. Also, I would like to express my appreciation to all graduate students, faculty, and staff members of the Bioresource Engineering Department at Oregon State University.

Much gratitude is express to my family for their encouragement and support during the many years I have been a student. Without their support I could have never completed my college education.

Finally, my sincere thanks go to my wife Kristi for her love, companionship we have shared and support she has given me throughout the development and completion of this thesis.

Table of Contents

1 INTRODUCTION	1
 2 LITERATURE REVIEW 2.1 Die-off in Natural Environments 2.2 Die-off in Water 2.3 Relationships in Sediment and Overlying Water 2.4 Survival in Sediments 	
3 EXPERIMENTAL METHODS 3.1 Experiment 1 3.2 Experiment 2 3.3 Experiment 3 3.4 Experiment 4	12 14 15 16 16
4 RESULTS 4.1 Sediment Descriptions 4.2 Bacteria Survival 4.2.1 Experiment 1 4.2.2 Experiment 2 4.2.3 Experiment 3 4.2.4 Experiment 4	17 17 18 22 26 30 34
5 DISCUSSION	38
6 CONCLUSIONS	44
7 BIBLIOGRAPHY	47
APPENDIX A: PRELIMINARY STUDY	52
APPENDIX B: SUMMARY OF BACTERIA DIE-OFF IN AQUATIC ENVIRONMENTS	53
APPENDIX C: REGRESSION RESULTS FOR INDIVIDUAL AND POOLED TREATMENTS	57
APPENDIX D: RAW DATA	79

List of Figures

Figure 4.2.1 Fecal coliform die-off from replicated samples	21
Figure 4.2.2 Fecal strep. die-off from replicated samples	21
Figure 4.2.1.1 FC die-off in clay loam sediment (Exp. 1)	22
Figure 4.2.1.2 FC die-off in sandy loam sediment (Exp. 1)	23
Figure 4.2.1.3 FS die-off in clay loam sediment (Exp. 1)	24
Figure 4.2.1.4 FS die-off in sandy loam sediment (Exp. 1)	24
Figure 4.2.2.1 FC die-off in Supernatant (Exp. 2)	27
Figure 4.2.2.2 FS die-off in Supernatant (Exp. 2)	28
Figure 4.2.3.1 FC die-off in clay loam sediment (Exp. 3)	31
Figure 4.2.3.2 FC die-off in sandy loam sediment (Exp. 3)	31
Figure 4.2.3.3 FS die-off in clay loam sediment (Exp. 3)	32
Figure 4.2.3.4 FS die-off in sandy loam sediment (Exp. 3)	32
Figure 4.2.4.1 FC die-off in sediments (Exp. 4)	35
Figure 4.2.4.2 FS die-off in sediments (Exp. 4)	36

List of Tables

TABLE 2.1 Factors affecting bacteria survival	3
TABLE 3.1 Treatment descriptions	15
TABLE 4.1.1.1 Physical characteristics of sediments	17
TABLE 4.1.1.2 Physical characteristics of treatments	18
Table 4.2.1 Hypothesis tested to compare die-off rates	20
TABLE 4.2.1.1 Die-off statistics for Exp. 1	25
TABLE 4.2.2.1 Die-off statistics for Exp. 2	28
TABLE 4.2.3.1 Die-off statistics for Exp. 3	33
TABLE 4.2.4.1 Die-off statistics for Exp. 4	36

List of Appendix Tables

Table A.1	Data from preliminary study	52
Table B.1	Summary of bacteria die-off in water	53
Table C.1	Regression statistics	57
Table D.1	Summary of data for day 0	79
Table D.2	Summary of data for day 5	85
Table D.3	Summary of data for day 10	89
Table D.4	Summary of data for day 15	93
Table D.5	Summary of data for day 20	97
Table D.6	Summary of data for day 25	100
Table D.7	Summary of data for day 30	103

BACTERIA DIE-OFF IN STREAM SEDIMENTS

1 INTRODUCTION

Streams throughout the United States have been studied to determine how recreational uses, resort homes, domestic and big game animals cause bacterial contamination to streams. Enteric organisms from these sources reach the stream in run-off or by direct deposition. Upon reaching the stream they are carried down stream, die-off, or settle to the stream bottom. Their survival in the aquatic environment may be prolonged if they settle to the stream sediment.

The importance of aquatic sediments as a reservoir and source of microorganism water quality contamination depends on two factors; (1) the possibility of extended survival or growth of bacteria populations and (2) the potential for resuspension of the sediment and associated bacteria into the overlying water. Once enteric organisms settle out of the overlying water into the stream sediment, their survival is controlled by many factors. Some of these factors are the physical and chemical nature of the sediment as well as interactions with other benthic organisms.

The objective of this study is to evaluate the impact sediment has on the survival of bacteria in a rangeland stream. This information is an important component in determining a time integrated prediction of bacterial numbers in the stream sediment and overlying water. Bacterial survival in stream sediment is a crucial factor in the complex relationship between stream quality and range management. Once this relationship has been defined, it will lead to a scientifically-based rational, process for rangeland management decisions.

2 LITERATURE REVIEW

2.1 Die-off in Natural Environments

Enteric organisms are native to the intestinal tract, both of humans and warm blooded animals, and are generally present in the intestinal tract in large numbers. When excreted into a hostile environment, the bacteria eventually die.

The die-off of enteric organisms in the environment is dependent upon many factors. Crane and Moore (1986) reviewed the effects that chemical and physical characteristics of the environment have on bacterial die-off in storage, soil, and fresh/sea water environments. Table 2.1 reviews many of the factors which influence bacterial die-off. Of these, temperature, pH, moisture, nutrient supply and solar radiation seem to have the greatest effect on enteric bacterial survival.

Extensive literature reviews on bacterial disappearance in the environment have been prepared by Crane and Moore, 1986; Geldreich, 1981; Rudolfs et al., 1950, Ellis and McCalla, 1978; Mitchell and Starzyk, 1975; and Geldreich, 1980. To summarize the literature as to the effects these factors have on the die-off rate of enteric organisms is not only beyond the scope of this review, but also would duplicate the efforts of others. Therefore, this literature review will focus on bacterial die-off in water and sediments.

Table 2.1 Factors affecting bacteria survival.

- I. The organism and its physiological state
- II. The physical and chemical nature of aquatic or soil system
 - a. pH
 - b. porosity
 - c. organic matter content
 - d. texture and particle size distribution
 - e. elemental composition
 - f. temperature
 - g. moisture content
 - h. adsorption and filtration properties
 - i. availability of nutrients

III. Atmospheric conditions

- a. sunlight
- b. moisture (humidity and precipitation)
- c. temperature

IV. Biological interaction of organisms

- a. competition from indigenous microflora
- b. antibiotics
- c. toxic substances
- V. Application method
 - a. technique (surface or incorporated)
 - b. frequency of application or discharge
 - c. organism density in waste material

Source: S. R. Crane and J. A. Moore, 1986.

2.2 Die-off in Water

An understanding of the survival of enteric bacteria in water is important to the meaningful interpretation of sanitary water quality data. Coliform, fecal streptococci, or fecal coliform are typically used to signify the potential presence of intestinal pathogens (APHA, 1985; McFeters et. al., 1974,). While these indicator bacteria are relatively harmless themselves, they are almost always present in water containing enteric pathogens. Due to the fact that they are relatively easy to isolate and normally survive

longer than the disease-producing organisms, indicator bacteria are useful as a measure of the likely presence of enteric pathogenic bacteria and viruses. Once these bacteria are deposited into water they are in an environment that is unfavorable to their viability.

Many studies have been conducted to determine the survival of enteric bacteria in water (McFeters et. al., 1974; Mitchell and Starzyk, 1975; Hood and Ness, 1982; Fujioka et. al., 1981). Reviews by Carlucci and Pramer, 1959 and Mitchell, 1968 have concluded that die-off of coliforms in marine waters is fairly rapid and controlled by a variety of factors including toxicity due to high salt concentrations, predation, competition by native microflora, heavy metals, and limited nutrient supply. Typical die-off curves for Escherichia coli (E. coli) in seawater show an initial lag phase followed by a mortality of up to 90% in 3 to 5 days.

Mitchell and Starzyk (1975) investigated the survival for enteric bacteria and fecal streptococci at various temperatures using filter-sterilized water from a northern Illinois river. Samples were stored at 0, 5, 10, and 20 degrees centigrade. They concluded that the survival of Salmonella typhimurium was essentially the same as E. coli, both revealing a 90 percent reduction in 12 days at 0° C and 8 days at 20° C, while the 90 percent reduction in fecal streptococci took almost twice as long.

According to Fujioda et al., 1981 the presence of sunlight is a major factor controlling the survival of indicator bacteria in seawater. In the presence of sunlight the bacteria revealed a 90% reduction between 30 and 180 minutes, whereas the bacteria without sunlight survived for days. The same bacteria were relatively resistant to the bactericidal effect of sunlight when diluted in fresh mountain stream waters.

A stable well water supply was studied by McFeters et al., 1974 to compare the survival of various fecal indicator bacteria and enteric pathogens. Fecal coliform (FC)

die-off rate (half-life = 18.4 h) was found to be more rapid than that of the fecal streptococci (FS) (half-life = 22.2 h). In addition the fecal coliform population was consistently four to five times greater than the fecal streptococci present.

Sinclair and Alexander, 1984 investigated the role of resistance to starvation in bacterial survival in sewage and lake water. They suggested that starvation-susceptible bacteria will not persist in environments that are nutrient poor or in which they fail to compete for organic nutrients and starvation resistance is a necessary but not sufficient condition for persistence in environments that are nutrient poor or support intense competition.

2.3 Relationships in Sediment and Overlying Water

Various studies have been conducted to determine the effect of livestock on the quality of surface water and have shown that the quality decreases during grazing of cattle and/or sheep (Gary and Adams, 1985; Sherer et al., 1988; Stephenson and Street, 1978). When cattle are present in the area they may deposit fecal matter directly into the stream (Larsen et al., 1988). Once fecal matter enters the stream the majority of the enteric bacteria settle rapidly into the stream bottom and can be resuspended in the future (Biskie et al., 1988). Many times enteric organisms may be isolated from sediments even when they are not detectable in the overlying water (Gerba et al., 1977; Bitton et al. 1982; Gerba and McLeod, 1976; Loutit and Lewis, 1985). Bacteria in the sediment may create a potential for elevated bacterial concentrations in the overlying water for an extended period of time (Jawson et al., 1982)

Benthic sediments have been found to harbor significantly higher concentrations of enteric bacteria than the overlying water (Tunnicliff and Brickler, 1984; Van Donsel and Geldreich, 1971; Sherer et al., 1988; Rychert and Stephenson, 1981; Hendricks, 1971; Lewis et al., 1986; Goyal et al., 1977). Several investigators have found that coliforms, fecal coliforms, and salmonellae tend to concentrate in the upper layers (top 5 cm) of sediment (Allen et al., 1953; Van Donsel and Geldreich, 1971).

The distribution of fecal coliform bacteria in the Colorado River corridor of the Grand Canyon (Arizona) was reported by Tunnicliff and Brickler, 1984 to be generally uniform along the entire river segment. The river and tributary bottom sediments harbored fecal coliform densities 10 to 100 times larger than the densities in the overlying water. The fecal coliform densities in the sediment were not found to be a reliable indicator of the quality of the overlying water when storm and non-storm flows were compared.

LaBelle et al., 1980 found viruses in estuarine sediments had a positive correlation to the number of fecal coliforms in sediments; however, no correlation was found between bacterial indicators and virus in overlying waters. This study suggests that evaluation for the presence of bacteria and viruses in the sediment may provide additional insight into long-term water quality conditions.

The release of adsorbed bacteria from bottom sediments may be an important factor as a source of enteric bacterial densities in streams. Varness et al. (1978) suggests that such releases may be increased by human and animal disturbances of bottom sediments. Grimes (1975 and 1980) reported that dredging in the Mississippi River caused release of fecal coliforms adsorbed to the bottom sediments to be resuspended into the overlying water. He also reported that dredging may heavily contaminate the water with enteric

pathogens and produce a temporary health hazard in recreational areas in contact with downstream water.

Many studies have been conducted to gain an insight to the relationship between the concentration of enteric bacteria in streams and hydrological events (Matson et al., 1978; McDonald and Kay, 1981; Jawson et al., 1982; Stephenson and Street, 1978). Benthic bacteria in the Shetucket River, Connecticut were reported by Matson et al. (1978) to vary with local hydrographic events. They found that during stable flow conditions sediment and bacterial populations achieve a relative "steady-state" level. Then during rapid runoff, when river discharge increases, sediment organisms appeared to be scoured from the bottom surfaces of the stream. Populations of bacteria in the water increased from runoff in the basin, abrasion of the bottom sediments, and increased transport velocity. Both of the events appeared to reach a maximum just before the slope of the river hydrograph reached zero. During the peak flow the bacteria numbers decreased through dilution due to the end of resuspension and runoff activities. Later, things went back to their original "steady state" conditions, increasing sediment concentrations and reducing the concentrations in the overlying water.

Van Donsel and Geldreich (1971) performed a study to compare the relationship of indicator organisms in sediment to those in water and to determine whether sediment sampling in a freshwater environment would provide insight to previous bacterial contamination. Of the total organisms recovered, they found 100-1000 times more fecal coliforms in the sediment than in the overlying water. Total coliforms and fecal streptococci found in the sediment were extremely variable when compared to the overlying water and exhibited no clear relationship to previous contamination. They suggested the survival rate of salmonellae closely resembled that of fecal coliform in

sediment with both showing a 90% die-away in seven days. However, total coliform and fecal streptococci were found to die at a slower rate than either fecal coliform and salmonellae.

In the Nash Fork watershed in southern Wyoming, Gary and Adams (1985) determined numerical densities of fecal coliform and fecal streptococci indicator bacteria in stream water while monitoring the principle land uses. They disrupted the stream bottom several times throughout the summer and fall. The mean concentration of fecal coliforms increased by 1.7 times the initial concentration after the steam bottom was disrupted and fecal streptococci increased by 2.7 times. They believed the main sources of fecal coliform to be large herds of sheep and cattle which were present throughout the summer, and stream sediment played a minute roll. The concentrations of fecal streptococci remained high throughout the entire study period. They suggested a potential for high stream flows to flush, suspend, and cause subsequent downstream movement of the fecal streptococci. However, there was not evidence of long term storage or cumulative adsorption and/or multiplication of fecal coliforms in the sediments. Their concentrations were high only during the summer months when livestock were present.

While grazing some animals directly deposit fecal matter into the stream. The survival of these bacteria in the sediment suggests that some of this fecal matter may remain in the benthic environment for extended periods of time. In the Bear Creek watershed in Central Oregon, Sherer et al. (1988) found that by disrupting the stream bottom with a rake 1.8 to 760 million FC per m² and from 0.8 to 5,610 million FS per m² bacteria could be resuspended. Cattle locations were monitored during the study and their presence was believed to increase organism concentration in the underlying sediments.

Stephenson and Street (1978) found elevated numbers of enteric bacteria in the stream shortly after cattle were moved from the vicinity. The elevated concentrations persisted for up to three months after the cattle were removed.

2.4 Survival in Sediments

Survival of bacteria in an aquatic environment is affected by numerous interacting factors including protozoa, antibiosis, organic matter, algal toxins, dissolved nutrients, heavy metals, temperature, and the physiochemical nature of the aquatic environment (Faust et al., 1975). LaBelle et al., (1980) measured 12 environmental variables in a marine environment, none of which could be correlated to numbers of indicator bacteria densities in the sediments. Gerba and McLeod, 1976 attributed the longer survival of E. Coli, in estuarine sediments to an increased amount of organic matter present in the sediment than that in seawater.

In many studies the existence of fine soil particles and high organic matter have been shown to increase E. Coli survival (Saylor et al., 1975; Tate, 1978). Tate (1978) suggested that E. Coli can catabolize organic soil constituents and that fine particles and high organic matter substrates may support populations three times larger than sand. Tate found that initial bacterial die-off was dramatically increased when the inoculum size was on the order of 107 organisms per gram of soil as compared to one of 102 or 103 per gram of soil. Grimes, 1980 suggested that as a result of surface area or particle charge differences, higher fecal coliform densities occur in silty clay sediments rather than in sandy sediments . However, results failed to show that particle size effects bacterial die-off rates. Burton et al., 1987 found a greater survival of E. coli and Streptococci

newport (S. newport) in sediments of higher clay content. This was believed to be due to higher concentrations of organic matter and nutrients in the silty clay sediment.

Stream and lake sediments and algal blooms are known to bind organic nutrients and prolong the survival of enteric bacteria (Hendricks and Morrison, 1967; Hendricks, 1971; McFeters et al., 1978). Through chemical analysis Chan et al. (1979) found that fine-grained, silty-clay sediments contained the highest amounts of organic nutrients compared to larger particle sizes, as in silt and sand. The release of these nutrients to enterobacter aerogenes cells from the sediment by wave action and human activities was suggested as one factor that may explain, in part, the high counts of total coliforms in some coastal waters.

The sediments in Lynnhaven estuary were reported by Erkenbrecker (1980) to serve as a reservoir for indicator bacteria in densities sufficient to pose potential health hazards. Based on calculated fecal coliform to fecal streptococci ratios in overlying water, primary sources of bacteria pollution in this estuary appeared to be typical of urban and agricultural runoff, although failure of septic tank systems was suspected as a problem in the western branch. As a consequence, sediments containing higher concentrations of organic nutrients than the overlying seawater prolonged survival of Enterobacter aerogenes and even enabled growth.

Studies by Malaney et al., 1962 and Boyd and Boyd, 1962 indicated that sediments enhance the growth of bacterial species natural to freshwater lakes and streams. Work by Hendricks and Morrison, 1967 has shown that stream sediments have the capacity to bind basal nutrients loosely and that aqueous extracts of sediments will increase the growth rate of various enteric species in high-quality water at 15°C and less. It was assumed by these investigators that this loosely bound material was probably available for microbial use within the natural environment. Hendricks (1971) investigated the nutrient binding capabilities of river bottom sediments and what conditions must be present for their removal and use by enteric bacteria. He found that nutrients bound to the sediment were very tightly adsorbed and that they may not be readily available for metabolism by aquatic microorganisms. He suggested that once the adsorptive capacity of the sediments had been reached, as perhaps exists around sewage plant effluents, stream nutrients then could be removed from the system and much growth of aquatic organisms could result.

Bacterial adsorption to suspended particles may result in increased settling velocities. Sedimentation of attached bacteria may be an important disappearance mechanism in the natural purification of polluted surface waters (Gannon et al., 1980). Many instances of high sediment bacteria concentrations have been reported, and these bacteria in the sediment may experience a more favorable chemical and biological micro-environment.

Bacteria in bottom sediments have been shown to be protected from the destructive action of sunlight (Bitton et al., 1972). Coliform bacteria associated with particles greater than 8 μ m were shown to be more resistant to ultraviolet disinfection than the more numerous single cells in experiments with secondary wastewater effluents by Qualls et al., 1983.

Roper and Marshall, 1978 determined that interactions of bacteria and particle may result in decreased predation by other microorganisms. In an earlier investigation Roper and Marshall, 1974 concluded that saline sediments appear to provide some protection for E. coli against bacteriophages. All of these factors contribute to the formation of a highly concentrated layer of bacteria at the interface of the sediment and overlying water.

3 EXPERIMENTAL METHODS

Four experiments were performed on two sediment types in an attempt to evaluate the impact that sediment has on the survival of bacteria in a typical rangeland stream. This information is an important component in determining a time integrated prediction of bacterial numbers in the stream sediment and overlying water. Bacteria survival in stream sediment is a crucial factor in the complex relationship between stream quality and range management. Once this relationship has been defined, it will lead to a scientifically-based, rational process for rangeland management decisions. The experiments were constructed to allow for variations in the inoculation level of enteric organisms into natural sediments.

Sediment samples were collected from the Bear Creek watershed located in Central Oregon, approximately 21 km southeast of the Prineville Reservoir. The watershed comprises an area of approximately 540 square km. The stream has an extensive drainage pattern which drains the southwest portion of the Maury Mountains to Antelope Reservoir and Soldier Creek on the east. The southern boundary comprises the northern edge of Rodman Rim. Nearly all of the watershed is used for rangeland, both public and private, except for 67 km² which is forested with Ponderosa Pine and some cultivated bottom lands. During the spring and summer the cultivated bottom land is irrigated with water diverted directly from the creek. The watershed ranges in elevations from 1,536 meters at the headwaters to 988 meters at the outlet.

Two samples of sediment, collected within 10 meters of each other, were taken from high and low velocity sections in the stream. This provided for two extreme sediment samples with physically different characteristics within the stream section.

They were placed on ice for approximately four hours until bacterial analysis could be performed in the laboratory.

Upon return to the laboratory (Agricultural Engineering Department, Oregon State University) a preliminary analysis was performed to determine initial fecal coliform concentrations. The preliminary results revealed bacterial concentrations of less than 200 FC per gram wet weight of sediment. These bacterial concentrations were not high enough to allow an adequate bacterial die-off analysis. Therefore, inoculation of the study samples was necessary in order to provide bacterial counts large enough for an adequate die-off analysis. Inoculation of the sediment was added in the form of fresh bovine feces collected from the Oregon State University dairy farm.

Bacterial analysis was performed every five days for each treatment during a twenty-five day study period to determine fecal coliform (FC) and fecal streptococcus (FS) concentration. Treatments were stored in a refrigerator and maintained at a constant 8°C. Determination of FC and FS were made using the membrane filter technique outlined in <u>APHA</u> (1985). The samples were removed from the refrigerator and shaken vigorously for approximately one minute and serially diluted with a phosphate buffer solution to appropriate concentrations for analysis. The dilutions were filtered in triplicate through a 0.45 μ m filter. The membrane filters were placed onto pads saturated with M-FC broth (Difco) for FC and KF agar (Difco) for FS enumeration. FC were incubated in a water bath at 44.5 ± 0.5 °C for 24 hours and FS in a water bath at 35 ± 0.5 °C for 48 hours. After the incubation period the plates were removed from the incubators and the appropriate colored colonies were counted under a low power (10-20X) stereoscope.

Total solids were determined in duplicate on all samples by gravimetric analysis techniques and pH by combination electrode as outlined in <u>APHA</u> (1985). Sediment particle size analysis was performed on each sediment by the hydrometer technique outlined in <u>Methods of Soil Analysis: Part 1 - Physical and Mineralogical Methods</u> (1986). This analysis was performed by the Oregon State University Soil Physics Laboratory. Total organic content was determined for each sediment using the Walkley-Black Method outlined in <u>Methods of Soil Analysis used in the Soil Testing</u> Laboratory at Oregon State University (in press). The analysis was performed by the Oregon State University Soil Testing Laboratory.

3.1 Experiment 1

Five hundred grams of sediment, 25 grams of bovine feces, and 100 grams of distilled water were placed in a 4 liter plastic jar. Three separate jars were prepared for each sediment type (see Table 3.1) for a total of 6 individual jars. The samples were stored at 8°C to approximate typical spring time conditions in the Bear Creek Basin. Glass beads were added to each of the jars to achieve a homogeneous bacterial suspension by shaking the container at the time of sampling. Samples from each jar were taken every five days throughout the 25 day study period for analysis. Three sub-samples were taken from two treatments (C and F) and independent bacterial analysis was performed for each sub-sample to determine sample variability and accuracy of sampling and analysis techniques. Bacterial analysis was performed in triplicate for each treatment as outlined in the preceding section.

Treatment	Experiment	Treatment description			
A,B,C	1	500 g fine sediment + 25 g bovine feces + 100 g distilled water			
D,E,F	1	500 g coarse sediment + 25 g bovine feces + 100 g distilled water			
G,H,I	2	Supernatant of 500 g fine sediment + 25 g bovine feces + 100 g distilled water			
J,K,L	3	500 g fine sediment + 75 g bovine feces + 100 g distilled water			
M,N,O	3	500 g coarse sediment + 75 g bovine feces + 100 g distilled water			
Р	4	500 g fine sediment + 2 g bovine feces + 100 g distilled water			
Q	4	500 g coarse sediment + 2 g bovine feces + 100 g distilled water			

TABLE 3.1 Treatment descriptions.

3.2 Experiment 2

Five hundred grams of the fine sediment, 25 grams of bovine feces, 100 grams of distilled water, and glass beads were placed into a 4 liter plastic jar. The jar was shaken vigorously for 3 minutes. Portions of the mixture were placed into a centrifuge on low for 1 minute. Twenty-five milliliters of the supernatant were placed into 3 separate 50 milliliter jars (see Table 3.1). The treatments were stored at 8°C. Three sub-samples were taken from one treatment (I) and independent bacterial analysis was performed. Bacterial analysis was performed in triplicate for each treatment every 5 days throughout

a 25 day study period. Upon completion of experiments 1 and 2 it was decided to extend the period for 5 days (for treatments A, B, C, G, H, and I) to allow for a stronger comparison.

3.3 Experiment 3

Five hundred grams of sediment, 75 grams of bovine feces, 100 grams of distilled water, and glass beads were placed into a 4 liter plastic jar. Three separate jars were prepared for each sediment type (see Table 3.1) for a total of six separate jars. The samples were stored at 8°C. Samples from each jar were taken every five days during the 25 day study period for analysis. Three sub-samples were taken from these samples on two treatments (L and O) and independent bacterial analysis was performed.

<u>3.4 Experiment 4</u>

Five hundred grams of sediment, 2 grams of bovine feces, 100 grams of distilled water, and glass beads were placed into a 4 liter plastic jar. One jar was prepared and analyzed for each sediment type (see Table 3.1). Samples were stored at 8°C. Samples from each jar were taken every five days for analysis during the remainder of study period (20 days).

4 RESULTS

4.1 Sediment Descriptions

Two samples of sediment were selected from high and low velocity sections of Bear Creek within 10 meters of each other in anticipation that their physical characteristics would be somewhat different. Sediment particle size analysis was performed on each sediment by the hydrometer technique in the Oregon State University Soil Physics Laboratory. The coarse sediment was found to belong to the textural class sandy loam (73% sand, 12% silt, and 14% clay) while the fine sediment was determined to be a clay loam (32% sand, 34% silt, and 34% clay). The textural characteristics of the sediments are summarized in Table 4.1.1.

TABLE 4.1.1.1 Physical characteristics of sediments.

Sediment	%Sand	%Silt	%Clay	Textural Class
Fine Coarse	31.7% 73.3%	34.4% 12.4%	33.9% 14.3%	Clay Loam Sandy Loam

The percent of total solids (%TS) for the various treatments are shown in Table 4.1.1.2. Little change was observed in the contents of solids over time in any of the treatments. For this reason, the average values during the experimental period were used. The total solids content per gram wet weight from the sandy loam treatments were higher than those from the clay loam treatments in all four of the experiments.

Organic matter content is reported for each of the treatments in terms of percent total carbon. The organic matter content was determined by the Oregon State University Soil Testing Laboratory using the Walkley-Black Method. The percent total carbon in the clay loam sediment (4.77) was twice that in the sandy loam sediment (2.17) without any inoculation. The organic matter in the bovine feces was determined to be 84.8 percent total carbon.

Treatment	%TS	Organic matter %Total Carbon
A,B,C	31.1%	7.21%
D,E,F	51.7%	5.13%
G,H,I	0.173%	7.21%
J,K,L	31.4%	13.0%
M,N,O	40.8%	11.0%
P	32.8%	4.24%
Q	59.0%	2.08%

TABLE 4.1.1.2 Physical characteristics of treatments.

4.2 Bacteria Survival

The term die-off rate will be used to describe the disappearance of bacterial densities with time. It was assumed that a first order equation of the Chick (1908) type described die-off. This equation can be expressed as:

$$\frac{N_t}{N_o} = 10^{-kt} \tag{1}$$

where N_t = number of bacteria at some time t, N_o = initial number of bacteria, t = time in days, and k = die-off rate for some period of time (t). The major assumption of the logarithmic model (equation 1) is that bacterial die-off is caused by a combination of physical, chemical and biological factors that remain constant, or at least their combined influence remains constant, with time of incubation.

The value k was used to identify the die-off rate of a given bacteria concentration in a particular environment. Die-off rates were determined by applying simple linear regression of the dependent variable, log-bacteria concentration and the independent variable, time, in days. The coefficient of determination was used to suggest the percentage of the variation in log-bacteria concentration that could be attributed to the variation in time. The P value was used to suggest if the slope was significantly different from zero.

The time required until one-half of the original bacteria concentration remained was determined for each of the treatments. This value was referred to as the half-life. Once the die-off rate k was determined the half-life was determined from equation (1). By assuming the initial bacteria concentration is twice the concentration at some time, expressed as

$$\log_{10}\left(\frac{N_{t}}{N_{o}}\right) = \log_{10}\left(\frac{1}{2}\right) = -k(t_{1/2})$$
(2)

where $t_{1/2}$ = the half-life. The half-life was computed with the following equation:

$$\frac{\log_{10}(2)}{(-k)} = t_{1/2} \tag{3}$$

Analysis of variance on the die-off rates for combinations of data sets was used to determine if the die-off rate of one treatment was significantly different from the die-off rate of the other treatment or between log FC and log FS. Appropriate forms of the t-test were used to test various null hypothesis (Table 4.2.1).

Figures 4.2.1 and 4.2.2 present the results obtained for FC and FS analysis from repeated sampling of treatments C, F, I, L, and O. The purpose of the replicated sampling was to estimate the accuracy of the sampling and analysis techniques used. Observing the close correlation between curves associated with each treatment, these results indicate that little of the variation in the results of fecal bacterial analysis was

Table 4.2.1 Hypothesis tested to compare treatments.

······································	_ _ _	
Null Hypothesis	Alternative Hypothesis	
$H_{o}:\beta_{1}=\beta_{2}$	$H_a:\beta_1 \neq \beta_2$	
$H_o: \beta_1 \leq \beta_2$	$H_a:\beta_1 > \beta_2$	
$H_o: \mu_1 = \mu_2$	$H_a:\mu_1 \neq \mu_2$	
$H_{o}:\mu_{1}\leq\mu_{2}$	$H_a:\mu_1 > \mu_2$	

 β equals the die-off rate of a population with time. μ represents the average population of a given data set.

caused by the sampling and dilution techniques involved in these experiments.

An equality test of 3 regression lines was performed on the three samples taken from the same storage vessel. It was concluded that the samples were not significantly different. Therefore, to obtain a representative sample for the treatment, the concentrations of similar treatments were pooled together and average of these pooled treatments (ABC, DEF, GHI, JKL, and MNO) was used when making comparisons to other treatments.

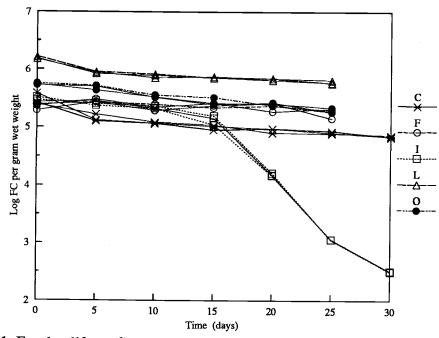


Figure 4.2.1 Fecal coliform die-off from replicated samples.

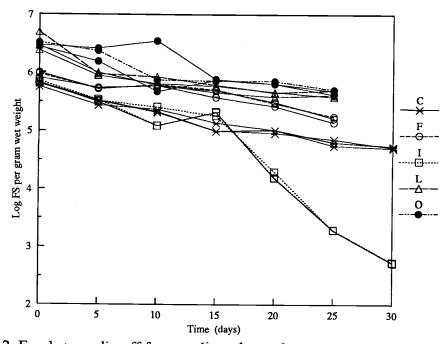


Figure 4.2.2 Fecal strep. die-off from replicated samples.

4.2.1 Experiment 1

The results of the fecal coliform analysis for each sampling period are displayed graphically in Figures 4.2.1.1 and 4.2.1.2, expressed as log bacteria count per gram wet weight and plotted against time in days. These figures reveal that the fecal coliform in the clay loam treatments (A, B, and C) reduced linearly with time. The FC in the sandy loam treatments (D, E, and F) remained relatively constant with time. The initial concentration of FC and FS in the sandy loam treatments were higher than in the clay loam.

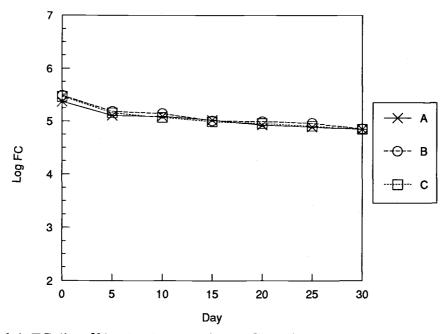


Figure 4.2.1.1 FC die-off in clay loam sediment (Exp. 1).

The results of the fecal streptococci analysis for each sampling period are shown in Figures 4.2.1.3 and 4.2.1.4. The FS analysis revealed a higher die-off rate than the FC

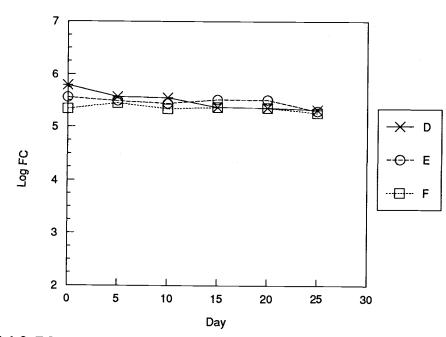


Figure 4.2.1.2 FC die-off in sandy loam sediment (Exp. 1).

for all treatments, with the clay loam treatments (A, B, & C) experiencing a higher die-off than the sandy loam treatments (D, E, & F). The initial concentration for the FS bacteria was larger than that for FC for all treatments.

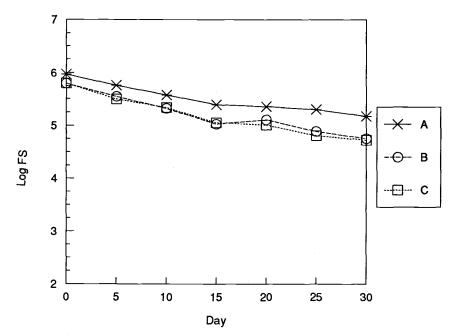


Figure 4.2.1.3 FS die-off in clay loam sediment (Exp. 1).

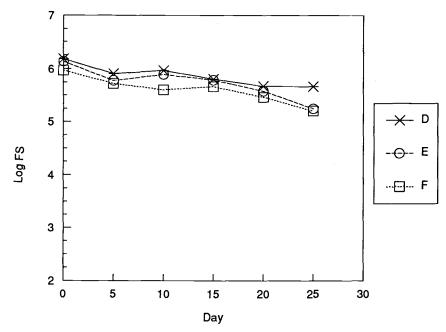


Figure 4.2.1.4 FS die-off in sandy loam sediment (Exp. 1).

The data sets were analyzed statistically to determine if a significant difference in the data existed. Table 4.2.1.1 summarizes the results of linear regression for each of the treatments in experiment 1 and for the pooled data for similar treatments. All bacteria data sets showed the slope was significant (P<0.05), except for FC in two of the sandy loam treatments (E and F) (P>0.05). The FC in these two sandy loam sediments (E and F) showed that the slope was not significant and the mean would reveal a better estimate of the log-bacteria concentration throughout time. However, when the data for all three similar subsets of the sandy loam sediment (D, E, and F) were analyzed together, averaged, the slope was found to be significant (P<0.05).

Treatment	intercept	slope	r^2	P
Fecal Coliform				
Α	5.23	-0.016	89.2	< 0.05
В	5.35	-0.018	86.9	< 0.05
С	5.32	-0.018	84.6	< 0.05
ABC	5.32	-0.017	85.1	< 0.05
D	5.72	-0.018	89.0	< 0.05
E	5.55	-0.007	47.5	> 0.05
F	5.40	-0.004	34.2	> 0.05
DEF	5.56	-0.010	41.3	< 0.05
Fecal Streptoco	ccus			
A	5.88	-0.025	93.9	< 0.05
В	5.71	-0.033	94.0	< 0.05
С	5.70	-0.035	96.5	< 0.05
ABC	5.76	-0.031	77.0	< 0.05
D	6.11	-0.020	88.2	< 0.05
E	6.10	-0.030	83.5	< 0.05
F	5.93	-0.026	89.3	< 0.05
DEF	6.05	-0.025	69.5	< 0.05

TABLE 4.2.1.1 Die-off statistics for Exp. 1.

Analysis of variance of the die-off rates for combinations of data sets was used to determine if the die-off rate of one treatment was significantly different from the die-off

rate of the other treatment or between log FC and log FS. Results showed that the FC die-off rate of -0.010 days⁻¹ in the sandy loam treatment (DEF) was significantly less (P<0.05) than the die-off rate of -0.017 days⁻¹ in the clay loam treatment (ABC). Comparison of the FS die-off rates showed the sandy loam treatment (DEF) experienced a die-off rate of -0.031 days⁻¹ which was not significantly different (P>0.05) from the die-off rate of -0.025 days⁻¹ in the clay loam treatment (ABC). This implies that the FC bacteria in the clay loam treatments (ABC) experienced a significantly higher die-off rate than the sandy loam treatments (DEF).

A comparison between the die-off rate of FC and FS in the clay loam treatments (ABC) and sandy loam treatments revealed that FC experienced a significantly higher (P<0.05) die-off rate than FS throughout time.

The time required for the bacteria concentration to be reduced to one-half (half-life) the original concentration for the clay loam treatments (ABC) was 17.7 days for FC and 9.7 days for FS. The half-life for the sandy loam treatments (DEF) was 31.5 days for FC and 12.1 days for FS.

4.2.2 Experiment 2

The concentration of the FC and FS in the supernatant of treatments G, H, and I (500 g clay loam sediment and 25 g bovine feces) are displayed in Figures 4.2.2.1 and 4.2.2.2, expressed as log bacteria count per gram wet weight and plotted against time in days. Both FC and FS showed a 90 percent die-off during the 30 day study period. The initial concentrations of FS were higher than those for FC.

ţ

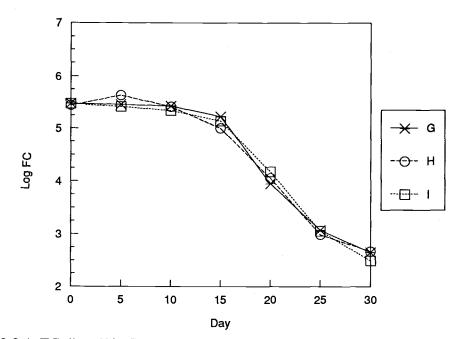


Figure 4.2.2.1 FC die-off in Supernatant (Exp. 2).

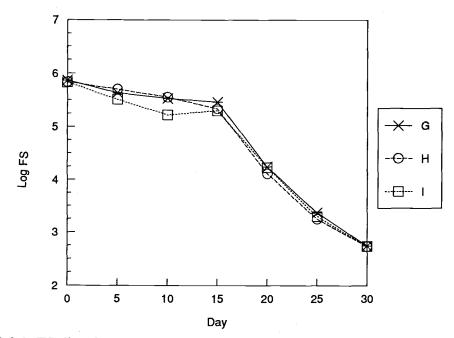


Figure 4.2.2.2 FS die-off in Supernatant (Exp. 2).

The bacteria die-off rates, assuming simple linear die-off, are summarized in Table 4.2.2.1. Both FC and FS showed that the slope was significantly (P<0.05) greater than zero and the model accounted for an average of 88% of the variation in the concentrations of the log-bacteria with time. No significant difference (P>0.05) was found between the die-off rates of FC and FS in the supernatant (GHI).

Treatment	intercept	slope	r ²	P
Fecal Coliform				
G	6.03	-0.105	86.1	< 0.05
Н	6.05	-0.106	88.1	< 0.05
Ι	6.03	-0.106	86.3	< 0.05
GHI	6.04	-0.106	87.0	< 0.05
Fecal Streptoco	ccus			
G	6.33	-0.108	88.4	< 0.05
H	6.33	· -0.112	89.9	< 0.05
I	6.17	-0.105	90.5	< 0.05
GHI	6.27	-0.109	89.4	< 0.05

TABLE 4.2.2.1 Die-off statistics for Exp. 2.

The time required for the bacteria concentration to be reduced to one-half (half-life) the original concentration in the supernatant treatments (GHI) was 2.8 days for FC and 2.8 days for FS, assuming a simple first-order die-off. The bacteria die-off rate for the supernatant of the clay loam treatment (GHI) showed a significantly higher (P<0.05) die-off rate for FC and FS than in the clay loam treatment (ABC) for the 30 day study period.

By observing Figures 4.2.2.1 and 4.2.2.2, it appears the bacteria die-off in the supernatant occurred in two stages, a mild slope for the first 15 days and steeper slope during the following 15 days. Multiple regression was performed to determine if there was significantly different stages of die-off for FC and FS concentrations during the 30

day study period divided into time less than or equal to 15 days and time greater than 15 days. Multiple regression revealed that the difference between the die-off rate for FC and FS data sets was significant (P<0.05) for time greater than 15 days. This suggests that the slope of the last 15 days were significantly less than the slope for the entire 30 days. The resulting coefficient of variation in all treatments, FC and FS, for the two stage die-off was greater than 0.96 indicating that 96% of the variation in the concentration can be explained by the two-stage die-off model.

Analysis of variance for the die-off rates was used to estimate whether there was a significant difference between the die-off rates/slopes for the first 15 days, last 15 days, and the entire 30 days in treatments G, H, and I relative to the entire 30 day clay loam treatment (ABC) for each bacteria type, FC and FS. The results indicate that die-off rates of 0.023 days⁻¹ for FC (P>0.05) and 0.032 days⁻¹ for FS (P>0.05) for the first 15 days were not significantly different from the die-off of 0.017 days⁻¹ for FC and 0.031 days⁻¹ for FS in the clay loam treatment (ABC). The last 15 days of the study showed a significant difference between the die-off rates for the two treatments (P<0.05). The die-off rates of 0.17 days⁻¹ for FC and 0.18 days⁻¹ for FS in treatment GHI is significantly higher (P>0.05) than treatment ABC during the last 15 days.

4.2.3 Experiment 3

The die-off of fecal coliform and fecal streptococci analysis for each sampling period are displayed graphically in Figures 4.2.3.1 through 4.2.3.4 expressed as log bacteria count per gram wet weight and plotted against time in days. These figures suggest the fecal coliform in the clay loam treatments (J, K, and L) and the sandy loam treatments (M, N, and O) decreased linear with time, with the bacteria in the sandy loam treatments experiencing a slightly higher die-off. The initial concentrations of FC in the clay loam treatments (J, K, and L) were larger than those in the sandy loam treatments (M, N, and O).



Figure 4.2.3.1 FC die-off in clay loam sediment (Exp. 3).

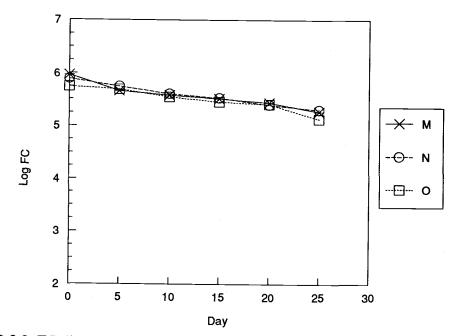


Figure 4.2.3.2 FC die-off in sandy loam sediment (Exp. 3).

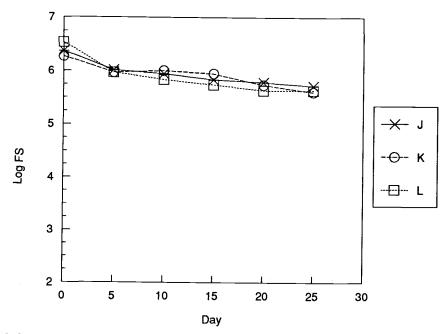


Figure 4.2.3.3 FS die-off in clay loam sediment (Exp. 3).

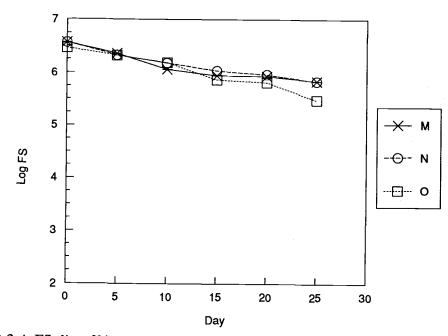


Figure 4.2.3.4 FS die-off in sandy loam sediment (Exp. 3).

The summary of the regression analysis are contained in Table 4.2.3.1. The FC model for one of the clay loam treatments (K) produced a low coefficient of determination ($R^2 = 45.3$) which suggests that the percentage of the variation in the dependent variable (log FC) cannot be attributed to the variation of the independent variable (time) and that the mean would be a better estimate of the concentration throughout time (P>0.05). However, when all three treatments (JKL) were analyzed together, the model was found to be a good prediction of the bacteria concentration with time (P<0.05). The FC and FS for the sandy loam (M, N, and O) treatments and FS in the clay loam treatments (J, K, and L) yielded a coefficient of determination greater than 0.8 (P<0.05), suggesting the die-off rate (slope) was significantly greater than zero.

Treatment	intercept	slope	r ²	P
Fecal Coliform				
J	6.15	-0.015	63.5	< 0.05
K	6.08	-0.010	45.3	> 0.05
L	6.10	-0.014	78.4	< 0.05
JKL	6.11	-0.013	60.4	< 0.05
Μ	5.87	-0.024	92.1	< 0.05
N	5.87	-0.023	99.2	< 0.05
0	5.78	-0.023	93.4	< 0.05
MNO	5.84	-0.023	91.6	< 0.05
Fecal Streptoco	ccus			
J	6.23	-0.023	85.5	< 0.05
K	6.21	-0.023	89.8	< 0.05
L	6.29	-0.031	78.0	< 0.05
JKL	6.24	-0.026	80.0	< 0.05
М	6.47	-0.029	89.2	< 0.05
N	6.50	-0.028	96.9	< 0.05
0	6.50	-0.039	96.9	< 0.05
MNO	6.49	-0.032	89.3	< 0.05

TABLE 4.2.3.1 Die-off statistics for Exp. 3.

The time required for the bacteria concentration to be reduced to one-half (half-life) their original concentration for the clay loam treatments (JKL) was 23.2 days for FC and 11.6 days for FS. The half-life for the sandy loam treatments (MNO) was 13.1 days for FC and 9.4 days for FS.

Analysis of variance for the die-off rates suggests that the FS in the sandy loam treatment (MNO) experienced a die-off rate of 0.032 days⁻¹, while the FC was found to have a significantly lower (P<0.05) die-off rate of 0.023 days⁻¹. The FC in the clay loam treatments (MNO) experienced a die-off rate of 0.013 days⁻¹ and 0.026 days⁻¹ for FS. The FC in the clay loam treatments (JKL) showed a significantly lower (P<0.05) die-off rate than the sandy loam treatments (MNO). The die-off rates of FS in the clay loam treatments (JKL) and sandy loam treatments (MNO) were not significantly different

(P>0.05).

The FC and FS in the clay loam sediment were not found to die-off at a significantly different (P>0.05) rate if inoculated with 75 grams of fresh bovine feces (JKL) compared to the same sediment inoculated with 25 grams (ABC). The FC in the sandy loam sediment inoculated with 75 grams of fresh bovine feces (MNO) died-off at a significantly lower rate (P<0.05) than the same sandy loam sediment inoculated with 25 grams of fresh bovine feces (DEF). While the die-off of FC in the sandy loam sediment was not significantly different (P>0.05) when inoculated with 25 grams (DEF) or 75 grams (MNO).

4.2.4 Experiment 4

The results of the fecal coliform and fecal streptococci analysis for clay loam (P) and sandy loam (Q) treatments are displayed graphically in Figures 4.2.4.1 and 4.2.4.2. These figures show that both treatments experienced some die-off, appearing nonlinear during the study period. The bacteria concentrations were consistently higher in the sandy loam sediment (Q).

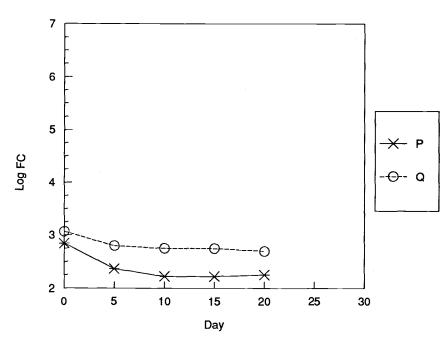


Figure 4.2.4.1 FC die-off in sediments (Exp. 4).

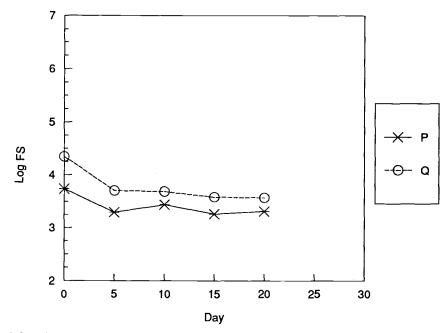


Figure 4.2.4.2 FS die-off in sediments (Exp. 4).

Due to the large amount of trash and sediment collected on the filter, at times it was very difficult to determine the bacteria concentration during enumeration of the agar plates. The bacteria colonies sometimes were smeared making it nearly impossible to differentiate between colonies. The results from this experiment should be used with caution due to the low confidence in the counts.

The regression analysis was performed on each of the treatments, summarized in Table 4.2.4.1. The coefficient of determination suggest that approximately 50 percent of the variation in the bacteria concentrations can be explained by the variation in time (P>0.05). These results suggest that the mean is a better estimate of the future population than the simple linear regression model analyzed.

Treatment	intercept	slope	r ²	P
Fecal Coliform P Q	2.65 2.97	-0.0269 -0.0157	63.4 72.6	> 0.05 > 0.05
Fecal Streptococo P Q	Cus 3.60 4.11	-0.0176 -0.0331	50.3 67.0	> 0.05 > 0.05

TABLE 4.2.4.1 Die-off statistics for Exp. 4.

Analysis of variance on the average concentration of bacteria throughout time for combinations of data sets was used to determine if the mean of one treatment was significantly different than the mean of the other treatment or between FC and FS. Results suggested the average concentration of FC in the clay loam treatment (P) was significantly less (P<0.05) than the concentration of FC in the sandy loam treatment (Q). While the FS were suggested to have similar means at the 5 percent level (P>0.05) in

both treatments. In the clay loam treatment (P) and the sandy loam treatment (Q), the average concentration of FC was significantly less than the average concentration of FS (P<0.05).

5 DISCUSSION

A major objective of this study was to evaluate the impact that sediment has on the survival of bacteria. These studies have shown that indicator bacteria in sediment samples stored at 8°C may exhibit a simple first order die-off rate ranging from 0.023 days⁻¹ to 0.010 days⁻¹ for FC and 0.033 days⁻¹ to 0.018 days⁻¹ for FS. At initial concentrations of 10⁸ viable cells per milliliter, such as are found in feces, these bacteria and related pathogens could survive in sediments for months in contrast to a faster die-off in water.

Many studies have been performed to determine enteric bacteria die-off in aquatic environments (Geldreich et al., 1968; McFeters et al., 1974). To compare the results of these experiments with past research in water, the logarithmic model was applied to data from other investigations and the computed die-off coefficients are shown in Appendix B. The die-off rate of the bacteria in the stream sediments seem to be approximately ten times lower than those calculated from previous research. This research found that bacteria in a contaminated water sample died-off at a significantly higher rate than sediment bound indicator bacteria. This suggests that stream sediment prolongs the existence of indicator bacteria in the stream system.

Grazing animals directly deposit fecal mater into the stream and the survival of these bacteria in the sediment suggests that enteric pathogens of fecal origin may remain in the bethic environment for extended periods of time. This would agree with what various researchers (Sherer et al., 1988; Stephenson and Street, 1978) have found. Elevated bacteria counts can be seen in a stream for up to three months after actual grazing ceases, particularly if grazing has been intense.

38

Analysis of variance of the die-off rates between combinations of treatments was performed to determine if the die-off of one treatment was different than the die-off of another. The results are summarized as:

- A significantly lower die-off rate was observed for FC than for FS in a clay loam sediment inoculated with 25 grams of bovine feces (7.21 percent total carbon), a sandy loam sediment inoculated with 25 grams of bovine feces (5.14 percent total carbon), a clay loam sediment inoculated with 75 grams bovine feces (13.0 percent total carbon), and a sandy loam sediment inoculated with 75 grams bovine feces (11.0 percent total carbon).
- 2. A significantly higher die-off rate for FC was observed in a clay loam sediment (half-life of 18 days) than in a sandy loam sediment (half-life of 32 days), when each sediment was combined by weight with bovine feces at a 20:1 ratio (sediment:feces).
- 3. No significance difference was observed in the die-off rate of FS in a clay loam (half-life of 10 days) and a sandy loam sediment (half-life of 12 days), when each sediment was combined by weight with bovine feces at a 20:1 ratio (sediment:feces).
- 4. A significantly lower die-off rate for FC was observed in a clay loam sediment (half-life of 10 days) than in a sandy loam sediment (half-life of 12 days), when each sediment was combined by weight with bovine feces at a 6.67:1 ratio (sediment:feces).
- 5. No significant difference was observed in the die-off rate of FS in a clay loam (half-life of 12 days) and sandy loam sediment (half-life of 9 days), when each sediment was combined by weight with bovine feces at a 6.67:1 ratio (sediment:feces).

- 6. No significant difference was observed in the die-off rate when the inoculation level was increased from 25 to 75 grams of bovine feces in 500 grams of clay loam sediment for FC and FS.
- No significant difference was observed in the die-off rate when the inoculation level was increased from 25 to 75 grams of bovine feces in 500 grams of sandy loam sediment for FS.
- 8. A significantly higher die-off rate was observed when the inoculation level was increased from 25 to 75 grams of bovine feces in 500 grams of sandy loam sediment for FC.

The ratio of FC to FS on the first day ranged from 0.2 to 0.7 for all treatments. According to APHA, 1985 the ratio of FC to FS may provide information on possible sources of pollution in water. A ratio of greater than 4.1 is considered an indication of pollution derived from domestic wastes composed of human fecal contamination whereas ratios less than 0.7 suggest that the pollution was due to nonhuman sources. Ratios between 0.7 and 4.4 usually indicate wastes of mixed human and animal sources. The estimated per capita contributions of FC and FS for animals indicate that the FC to FS ratio is 0.2 for cattle and 4.4 for humans.

Fecal streptococci were observed to experience a significantly higher die-off and a higher y-intercept (initial concentration at day zero) than fecal coliform in both sediment types and for the various inoculation levels analyzed. Since FS observed a higher die-off rate than FC for all treatments the ratio of FC to FS increased an average of 2.1 times the initial ratio during the 25 to 30 day study periods. The difference in the FC to FS ratio over time for the various treatments can be explained by the findings of Geldreich, 1976 that prolong storage or stream residence time of fecal pollution from cattle can cause this

ratio to increase from 0.2 to as high as 3.0. He stated that population of FS in domestic cattle feces is comprised of approximately 25 percent of Streptococcus bovis (half-life of 4.3 days) which died-off at a much higher rate than FS from human sources (half-life of 19.5 days).

Other researchers have suggested that FC die-off is significantly higher than for FS (Van Donsel and Geldreich, 1971; and Gary and Adams, 1985). Van Donsel and Geldreich (1971) found fecal coliform in sediment to have a 90% die-away in seven days at a 20 °C storage temperature. While, fecal streptococci and total coliform died at a much slower rate. This disagrees with the findings of this study due to the fact that the source of pollution in this thesis was of domestic cattle origin while the other researchers examined sources from local storm water run-off or domestic sewage from very small populations of humans.

Literature and the findings of this study suggest that while some of the FS may persist in the aquatic environment for long periods of time, some of the species analyzed may perish at a much higher rate. Some species specific to domestic animals (S. bovis and S. equinus) have been determined to experience a much higher die-off rate than other species such as S. faecalis, which has been shown to exists for extended periods of time in soil and water (Geldreich, 1976). This suggests that while some of the FS species die-off, others remain for extended periods of time. The die-off rate of FS reduced as the population of FS is transformed to a population with a lower die-off rate.

The FC and FS die-off for the supernatant (GHI) of the clay loam sediment appeared to occur in two stages. The first stage occurred during the first 15 days of the study at a rate of 0.026 days⁻¹ for FC and 0.032 days⁻¹ for FS while the second stage occurred during the final 15 days with a significantly higher die-off rates of 0.17 days⁻¹ 41

for FC and 0.18 days⁻¹ for FS. Statistical comparisons were made between the FC and FS of the supernatant with those of an identical treatment (ABC) that was not centrifuged and contained the sediment in its natural state. No significant difference was found between the die-off rates of the two treatments during the initial 15 days for FC and FS. During the final 15 days of the study the supernatant experienced a significantly higher die-off rate.

The comparison of the clay loam sediment (ABC) and the supernatant of the same treatment (GHI) suggest that by centrifuging the sample enough organic matter was released to support the population FC and FS for a period of time. After this initial die-off phase, the bacteria show a 90 percent reduction in 1 to 3 days. Typical die-off curves for coliforms in water show an initial lag phase followed by a 90% die-off in 3 to 5 days (Gerba and McLeod, 1976).

In many studies the existence of fine soil particles and high organic matter have been shown to increase E. Coli survival (Saylor et al., 1975; Tate, 1978). Tate (1978) suggested that E. Coli can catabolize organic soil constituents and that fine particles and high organic matter substrates may support populations three times greater than sand. This relationship was not observed in this study and little or no difference was observed between the die-off rates of the sandy loam and clay loam sediments inoculated with various levels of bovine feces. This disagreement of these two results might support the inference of Allen et al., 1953 who felt that the amount of organic matter in sediment was not a good index of its ability to support enteric indicator bacteria. However, the observed effects of organic matter and competing bacteria vary a great deal (Orlab, 1956), apparently depending on the aquatic system being studied. The source of variation in the results obtained from bacterial analysis in sediments were investigated. Repeated samples from the same storage container undergoing identical treatment produced die-off curves that were statistically equivalent. This implied that the sampling and analysis techniques employed accurately determined the bacterial densities present in the sediment treatments.

6 CONCLUSIONS

With the results obtained from these experiments several conclusions can be expressed with regard to bacterial die-off and the bacterial analysis techniques employed. Observation of the data (Figures 4.1.1 and 4.1.2) reveals that minimal variability existed in the number of bacteria determined from samples taken from the same storage vessel. This indicates that the sampling techniques and analysis procedures accurately determined the bacterial densities present in the sediment treatments. The major treatments in all four experiments, replicated in triplicate, give an estimate of the variation that might be determined for an individual experiment that was not replicated. The variation in bacterial densities between replicated storage containers is greater than between sub-samples from the same container. The regression curves among the replicated storage containers proved to be statistically equivalent allowing for a pooled estimate of bacterial die-off on those treatments. Visual observations of the bacterial die-off curves for these treatments would lead to similar conclusions.

The lack of variation in survival between replicate tests permits the estimation of die-off rates for FC and FS. Although statistically significant differences did not exist among survival slopes in most cases, constant trends were observed, i.e. FC survived longer than FS. The inability to detect significant differences is most probably due to the robust nature of the analysis of covariance and inadequate number of data. Theoretical calculations of bacterial densities that involve the use of survival models show that significant differences will exist between the test bacteria with increasing time.

Much care should be used when using FC to FS ratios to indicate the source of fecal contamination. This study indicated that FC to FS ratios from domestic cattle feces would be expected to increase as a function of exposure time in an aquatic environment.

Past research has shown that the FC to FS ratio of many animals and humans may be sufficiently stable in an aquatic environment to be useful tool in determining the source of fecal pollution, where as this is not the case for bacteria from cattle. In practise, where one is unable to determine the specific source of pollution that contaminated a body of water, the FC to FS ratio is of doubtful validity in identifying the source after the bacteria have been exposed to the aquatic environment for as short a period of time as 5 days.

This study concluded that stream sediment allows enteric bacteria to survive, possibly for several months, in an aquatic environment. Resuspension of these bacteria may account for the erratic FC and FS levels often encountered in water monitoring programs since grab samples of water give only an immediate measure of bacterial levels. If enteric pathogens behave similarly, significant public health hazards could arise. Existing state bacteriological standards and monitoring procedures fail to address these problems. Therefore, a more meaningful and accurate indication of water-quality conditions would be obtained by also monitoring indicator bacteria and virus levels in surface sediments.

A recommended procedure to monitor indicator bacteria levels in surface streams would be to disrupt a section of the stream bottom with a rake and collect water samples immediately downstream, as outlined in Sherer et al., 1988. This method would allow an indication of the potential bacteria pose for resuspension and an indication of previous fecal pollution. This method would allow for enumeration of indicator bacteria in water rather than sediment. This would be an advantage since results from enumeration of bacteria in sediments using the membrane filtration technique may be difficult when counts per gram of sediment are less than 1000. This is due to the interference of particles with bacteria colony growth during incubation which results in smearing of colonies, as occurred in this study (experiment 4). There are other methods of enumerating bacteria in sediments such as the most-probable-number (MPN) method which can be cumbersome and require 48-96 hours to obtain results.

7 BIBLIOGRAPHY

- Allen, L.A., J. Grindley and E. Brooks. 1953. Some Chemical and Bacterial Characteristics of Bottom Deposits from Lakes and Estuaries. J. Hyg., Camb. 51:185-194.
- APHA. 1985. Standard Methods for the Analysis of Water and Wastewater. 16th (ed.). American Public Health Assoc., Washington, D. C.
- Biskie, H.A., B.M. Sherer, J.A. Moore, J.R. Miner, and J.M. Buckhouse. 1988. Fate of Organisms from Manure Point Loading into a Rangeland Stream. ASAE Paper No. 88-2081. American Society of Agricultural Engineers, St. Joseph Michigan.
- Bitton, G., Y.J. Chow, and S.R. Farrah. 1982. Techniques for Virus Detection in Aquatic Sediments. J. Virologic. Meth. 4:1-8.
- Boyd, W.L., and W. Boyd. 1962. Bacteria in Estuarine (Bras d'Or Lake) Sediment. Can. J. Microbiol. 16:373-389.
- Burton, G.A., D. Gunnison, and G.R. Lanza. 1987. Survival of Pathogenic Bacteria in Various Freshwater Sediments. Appl. Environ. Microbiol. 53:633-638.
- Carlucci, A.F., and D. Pramer. 1959. Factors Affecting Survival of Bacteria in Seawater. Appl. Environ. Microbiol. 7:388-392.
- Chan, K.Y., et al. 1979. Effects of Bottom Sediments on the Survival of Enterobacter aerogenes in Seawater. Marine Poll. Bull. 10:205.
- Crane S.R., and J.A. Moore. 1986. Modeling Enteric Bacterial Die-off: A Review. Water, Air, and Soil Pol. 27:411-439.
- Chick, H. 1908. Investigation of the Laws of Disinfection. J. Hyg. 8, 655.
- Dutka, B.J., and K.K. Kwan. 1980. Bacterial Die-off and Stream Transport Studies. Water Res. 14:909-915.
- Ellis, J.R., and T.M. McColla. 1978. Fate of Pathogens in Soils Receiving Animal Wastes -- A Review. Trans. of A.S.A.E. 21(2):307-313.
- Erkenbrecher, C.W. 1980. Sediment Bacteria as a Water Quality Indicator in the Lynnhaven Estuary. Sel. Water Res. Abs. 13, W80-00662.
- Faust, M.A., A.E. Aotaky, and M.T. Hargadon. 1975. Effect of Physical Parameter on the in situ Survival of Escherichia coli MC-6 in an Estuarine Environment. Appl. Environ. Microbiol. 30:800-806.

- Fujioka, R.S., H.H. Hashimoto, E.B. Siwak, and R.H.F. Young. 1981. Effect of Sunlight on Survival of Indicator Bacteria in Seawater. Appl. Environ. Microbiol. 41:690-696.
- Gannon, J.J., M.K. Busse, and J.E. Schillinger. 1983. Fecal Coliform Disappearance in a River Impoundment. Water Res. 17:1595-1601.
- Gary, H.L., and J.C. Adams. 1985. Indicator Bacteria in Water and Stream Sediments Near the Snowy Range in Southern Wyoming. Water, Air, and Soil Pollut. 25:133-144.
- Geldreich, E.E. 1981. Microbiology of Water-Literature Review. J. Wat. Pollut. Control Fed. 53:1083-1098.
- Geldreich, E.E., H.D. Nash, D.G. Spino, and D.J. Reasoner. 1980. J. Am. Water Works Assn. 72:31.
- Geldreich, E.E. 1980. Microbiology of Water-Literature Review. J. Wat. Pollut. Control Fed. 52:1774-1800.
- Geldreich, E.E., L.L. Best, B.A. Kenner, and D.J. Van Donsel. 1968. The Bacteriological Aspects of Stormwater Pollution. J. Water Pollut. Control Fed. 40:1861-1872.
- Geldreich, E.E., and B.A. Kenner. 1969. Concepts of Fecal Streptococci in Stream Pollution. J. Water Pollut. Contr. Fed. 41:R335-R352.
- Gerba, C.P., E.M. Smith, and J.L. Melnick. 1977. Development of a Quantitative Method for Detecting Enteroviruses in Estuarine Sediments. Appl. Environ. Microbiol. 34:158-163
- Gerba, C.P., and J.S. Mcleod. 1976. Effect of Sediments on the Survival of Escherichia Coli in Marine Waters. Appl. Environ. Microbiol. 32:114-120.
- Goyal, S.M., C.P. Gerba, and J.L. Melnick. 1977. Occurrence and Distribution of Bacterial Indicators and Pathogens. Appl. Environ. Microbiol. 34:139-149.
- Grimes, D.J. 1975. Release of Sediment-Bound Fecal Coliforms By Dredging. Appl. Microbiol. 29:109-111.
- Grimes, D.J. 1980. Bacteriological Water Quality Effects of Hydraulically Dredging Contaminated Upper Mississippi River Bottom Sediment. Appl. Environ. Microbiol. 39:782-789.
- Hanes, N.G., and R. Fragola. 1967. Effect of Sea Water Concentration on the Survival of Indicator Bacteria. J. Water Pollut. Contr. Fed. 39(1):97-104.
- Hendricks, C.W., and S.M. Morrison. 1967. Multiplication and Growth of Selected Enteric Bacteria in Clear Mountain Stream Water. Water Res. 1:567:576.

- Hendricks, C.W. 1971. Increased Recovery Rate of Salmonella from Stream Bottom Sediments Versus Surface Water. Appl. Microbiol. 21: 379-380.
- Hendricks, C.W. 1971. Enteric Bacterial Metabolism of Stream Sediment Eluates. Can. J. of Microbiol. 17: 551-556
- Hood, M.A., and G.E. Ness. 1982. Survival of Vibrio cholerea and Escherichia coli in Estuarine Waters and Sediments. Appl. Environ. Microbiol. 43: 578-584.
- Horneck, D.A., J.M. Hart, K. Topper, and B. Koepsell. In Press. Methods of Soil Analysis Used in the Soil Testing Laboratory at Oregon State University. OSU Experiment Station. p 15.
- Jawson, M.D., L.F. Elliott, K.E. Saxton, and D.H. Fortier. 1982. The Effect of Cattle Grazing on Indicator Bacteria in Runoff from a Pacific Northwest Watershed. J. Environ. Qual. 11(4):621-627.
- Klute, A. 1986. Methods of Soil Analysis: Part 1 Physical Mineralogical Methods. McGraw Hill Book Company, Inc. pp 480-512.
- LaBelle, R.L., C.P. Gerba, S.M. Goyal, J.L. Melnick, I. Cech, and G.F. Bogdan. 1980. Relationships between Environmental Factors, Bacterial Indicators, and the Occurrence of Enteric Viruses in Estuarine Sediments. Appl. Environ. Microbiol. 39:588-596.
- LaLiberte P., and D.J. Grimes. 1982. Survival of Escherichia coli in Lake Bottom Sediment. Appl. Environ. Microbiol. 43: 623-628.
- Larson, R.E., J.C. Buckhouse, J.A. Moore, and J.R. Miner. 1988. Rangeland Cattle and Manure Placement: A Link to Water Quality. Proc. of Oregon Academy of Science. Portland, Oregon.
- Lewis, G.D., F.J. Austin, and M.W. Loutit. 1986. Enteroviruses of Human Origin and Faecal Coliforms in River Water and Sediments Down Stream from a Sewage Outfall in the Taieri River, Otago. New Zealand J. Marine Freshwater Res. 20:101-105.
- Loutit, M.W., and G.D. Lewis. 1985. Feacal Bacteria from Sewage Effluents in Sediments Around and Ocean Outfall. New Zealand J. Marine Freshwater Res. 19:179-185.
- Matson, E.A., S.G. Horner, and J.D. Buck. 1978. Pollution Indicators and Other Micro-organisms in River Sediment. J. Wat. Pollut. Control Fed. 50:13-19
- Malaney, G.W., H.H. Weiser, R.O. Turner, and M. Van Horn. 1962. Coliforms, Enterococci, Thermodurics and Psychrophiles in Untreated Farm Pond Waters. Appl. Microbiol. 10:44-51.

- McDonald, A., and D. Kay. 1981. Enteric Bacterial Concentrations in Reservoir Feeder Streams: Baseflow Characteristics and Response to Hydrograph Events. Water Res. 15:961-968.
- McFeters, G.A., G.K. Bissonnette, J.J. Jezeski, C.A. Thomson, and D.G. Stuart. 1974. Comparative Survival of Indicator Bacteria and Enteric Pathogens in Well Water. Appl. Microbiol. 27(5): 823-829.
- McFeters, G.A., and D.G. Stuart. 1972. Survival of Coliform Bacteria in Natural Waters: Field and Laboratory Studies with Membrane Filter Chamber. Appl. Microbiol. 24:805-811.
- Mitchell, R. 1968. Factors Affecting the Decline of Non-Marine Microorganisms in Seawater. Water Res. 2:535-543.
- Mitchell, D.O., and M.J. Starzyk. 1975. Survival of Salmonella and Other Indicator Micro-organisms. Can. Jour. Microbiol. 21:1420.
- Nusbaum, I., and R.M. Garver. 1955. Survival of Coliform Organisms in Pacific Ocean Costal Water. Sewage Ind. Waters. 27: 1383-1390.
- Orlob, G.T. 1956. Viability of Sewage Bacteria in Seawater. Sewage Ind. Wast. 29(9):1147-1167.
- Qualls, R.G., et al. 1983. The Role of Suspended Particles in Ultraviolet Disinfection. J. Water Pollut. Control Fed. 55:1280.
- Reddy, K.R., R. Khaleel, and M.R. Overcash. 1981. Behavior and Transport of Microbial Pathogens and Indicator Organisms in Soils Treated with Organic Wastes. J. Environ. Qual. 10 (3):255-266.
- Roper, M.M., and K.C. Marshall. 1978. Effects of a Clay Mineral on Microbial Parasitism and Predation of Escherichia Coli. Microb. Ecol. 4:279.
- Roper, M.M., and K.C. Marshall. 1974. Modification of the Interaction Between Escherichia coli and Bacteriophage in Saline Sediment. Microb. Ecol. 1:1.
- Rudolfs, W., L.L. Falk, and R.A. Ragotzki. 1950. Literature Review on the Occurrence and Survival of Enteric, Pathogenic, and Related Organisms in Soil, Water, Sewage, and Sludges and on Vegetation. I. Bacterial and virus diseases. Sewage Ind. Wastes 22:1251-1281.
- Rychert, R.C., and G.R. Stephenson. 1981. Atypical E. coli in Streams. Appl. Environ. Microbiol. 41:1276-1278.
- Sayler, G.S., J.D. Nelson, Jr., A. Justice, and R.R. Colwell. 1975. Distribution and Significance of Fecal Indicator Organisms in the Upper Chesapeake Bay. Appl. Microbio. 30:625-638.

- Servais, P., G. Billen, and R.V. Rego. 1985. Rate of Bacterial Mortality in Aquatic Environments. Appl. Environ. Microbiol. 49(6):1448-1454.
- Sherer, B.M., J.R. Miner, J.A. Moore, J.C. Buckhouse. 1988. Resuspending Organisms from a Rangeland Stream Bottom. Trans. of A.S.A.E. 31(4):1217-1222.
- Sinclair, J.L., and M. Alexander. 1984. Role of Resistance to Starvation in Bacterial Survival in Sewage and Lake Water. Appl. Environ. Microbiol. 48(2):410-415.
- Slanetz, L.W., and C.H. Bartley. 1965. Survival of Fecal Streptococci in Sea Water. Health Lab. Sci. 2:142-148.
- Stephenson, D.G., and L.V. Street. 1978. Bacterial Variations in Streams from a Southwest Idaho Rangeland Watershed. J. Environ. Qual. 7(1): 150-157.
- Tate, R.L., III. 1978. Cultural and Environment Factors Affecting the Longevity of Escherichia Coli in Histosols. Appl. Environ. Microbiol. 35: 925-929.
- Thelin, R.E., and G.F. Gifford. 1983. Fecal Coliform Release Pattern from Fecal Material of Cattle. J. Environ. Qual. 12(1):57-63.
- Tunnicliff, B., and S.K. Brickler. 1984. Recreational Water Quality Analyses of the Colorado River Corridor in Grand Canyon. Appl. and Environ. Microbiol. 48(5):909-917.
- Van Donsel, D.J., and E.E. Geldreich. 1971. Relationships of Salmonella to Fecal Coliforms in Bottom Sediments. Water Res. 5: 1079-1087.
- Varness K.J., R.E. Pacha and R.F. Lapen. 1978. Effects of Dispersed Recreational Activities on the Microbiological Quality of Forest Surface Water. Appl. Environ. Microbiol. 36: 95-104.
- Vasconcelos, G.J., and R.G. Swartz. 1976. Survival of Bacteria in Sea Water Using a Diffusion Chamber Apparatus in situ. Appl. Environ. Microbiol. 31:913.

APPENDICES

APPENDIX A: PRELIMINARY STUDY

Objective: How time effects the duration of subsample removal.

Procedure: Stream sediment was collected from a local stream. A 500 g sample of sediment, 100g distilled water, 40 g fresh bovine feces (collected from the Oregon State University dairy barn), and glass beads were placed into an empty sterile 1,000 mL jar. The sample was then shaken for 1 minute and then subsamples were removed 10 seconds, 30 seconds, 1 minute, 1.5 minutes, and 5 minutes after the initial suspension. The subsamples were then serially diluted to various concentrations and plated in triplicate for fecal coliform enumeration.

Subsample removal	dilution	1	2	3	Mean
10 sec.	.00001	4	7	5	
	.0001	60	65	63	63
	.001	trash	trash	trash	
30 sec.	.00001	6	7	10	
	.0001	32	65	44	47
	.001	trash	trash	trash	
1 minute	.00001	4	7	8	
	.0001	61	60	59	60
	.001	trash	trash	trash	
1.5 minutes	.00001	4	7	6	
	.0001	64	59	54	59
- .	.001	trash	trash	trash	
5 minutes	.00001	11	5	8	
	.0001	55	48	56	53
	.001	trash	trash	trash	

Table A.1 Data from prelimanary study.

APPENDIX B: SUMMARY OF BACTERIA DIE-OFF IN AQUATIC ENVIRONMENTS

Aquatic system Description	Organism Type	рН	Season or temp. °C	Length of Study	Die-off rate, k (days-1)
Well water inoculated with pure cultures (field, membrane filter) (McFeters et al., 1974)	Coliforms Enterococci Coliforms Strep. Strep. equinus Strep. bovis Shig. dysenteriae Strep. sonnei Strep. flexneri Sal. paratyphi A Strep. paratyphi D Strep. typhimurium Strep. typhi Vibrio cholerai Strep. paratyphi B	7.48	'10-12	4 days	$\begin{array}{c} 0.285\\ 0.221\\ 0.227\\ 0.249\\ 0.485\\ 0.128\\ 0.217\\ 0.198\\ 0.181\\ 0.303\\ 0.253\\ 0.303\\ 0.253\\ 0.303\\ 0.809\\ 0.673\\ 2.022\\ \end{array}$
Stream water field study (membrane filter) (Mcfeters and lab study Stuart, 1972)	E. coli E. coli	8.37 8.1 8.1 2.5 4 5 5.5 7.3 10 12	4-6 5 10 15 20 25 10	5 days	$\begin{array}{c} 1.970\\ 3.140\\ 0.151\\ 0.231\\ 0.495\\ 0.990\\ 1.386\\ 6.930\\ 0.630\\ 0.433\\ 0.330\\ 0.347\\ 0.770\\ 6.930\\ \end{array}$

Table B.1 Summary of bacteria die-off in water.

Table B.1 continued.

Aquatic system Description	Organism Type	рН	Season or temp. °C	Length of Study	Die-off rate, k (days-1)
Inoculate river water (lab study in flasks) (Mitchell and Starzyk, 1975)	E. coli	NG	0 5 10	20 days	0.192 0.144 0.256
	E. aerogenes	NG	20		0.288 0.256 0.288 0.383
	Sal. typphimurium	NG	20 0 5		0.461 0.177 0.144
	Strep. faecalis	NG	10 20 0 5 10		0.288 0.329 <0.115 0.192 0.192
	Strep. faecium	NG	10 20 0 5 10		0.192 0.177 <0.115 0.121 <0.115
	S. bovis	NG	10 20 0 5 10 20		<0.113 <0.115 2.310 1.150 2.310 2.310
Storm water runoff (lab study) Geldreich et al., 1968)	Fecal coliform A. aerogenes S. faecalis S. typhimurium Fecal coliform A. aerogenes S. faecalis S. typhimurium	NG NG	Su (20) W (10)	•	1.450 0.649 1.690 <0.164 0.246 0.397 0.307 <0.164

Table B.1 continued.

Aquatic system Description	Organism Type	рН	Season or temp. °C	Length of Study	Die-off rate, k (days-1)
Storm water runoff (lab study) (Geldreich and Kenner, 1969)	S. faecalis S. faecalis var S. bovis A. aerogenes	NG	Su (20)	14 days	<0.164 <0.164 4.605 0.404
	Fecal coliform S. typhimurium S. faecalis S. faecalis var S. bovis A. aerogenes Fecal coliform	NG	W (10)		0.227 0.324 <0.164 0.354 2.303 0.649 1.354
BOD dilution 0% seawater water (lab flask study) Hanes and Fragola,	S. typhimurium Total coliforms E. coli	6.8	20	10 days	1.588 0.219 0.217
1987) 33 % seawater	Enterococci Total coliforms E. coli Enterococci	7			0.339 0.431 0.274
67% seawater	Total coliforms E. coli Enterococci	7.2			0.366 0.543 0.774
100% seawater	Total coliforms E. coli Enterococci	7.6			0.426 1.102 1.332 0.526
Seawater mortality studies from many	S. typhosa	NG	10	12 days 28 days	2.000 1.670
sources (Orlob, 1956)	E. coli	NG	Su (25) W Sp Su 14	35 days NG	0.320 0.960 0.520 0.850 1.000
field study lab study	Total Coliform	NG	14 14 20 5 21 30	NG	0.670 1.330 1.790 0.690 0.800 1.670

Table B.1 continued.

Aquatic syste	m Description	Organism Type	рН	Season or temp. °C	Length of Study	Die-off rate, k (days-1)
Water supply depth membrane filt surface with pure cult (Geldreich et surface	ter study ures 20 ft.	S. bern E. coli E. coli Fecal Strep.			24 days	0.768
Seawater in ac study with me chamber (Vas Swartz, 1976)	mbrane filter concelos and	E. coli Sal. enteriditis	NG	10.7 14.5 13 10.7 8.9 14.5	6 days	1.727 2.520 2.239 0.708 0.512 0.568
Fresh water (membrane chamber in field) (Dutka and Kwan, 198	bay Lake Ontario bay Lake Ontario 80) bay Lake Ontario	E. coli S. faecalis Sal. thompson	NG NG NG	18.5 18 18 18 18.5 17.8	28 days	1.100 1.417 1.317 0.847 1.256 0.834
Bay seawater bags (Slanetz and Bartley, 19	Sewage effluent pure cultures 965)	Total Coliform Fecal Coliform Fecal Strep. S. faecalis S. faecium	6.8-7.6	18	7 days	0.429 0.358 0.210 0.306-1. 97 0.357-1. 454
		S. bovis E. coli Salmonella sp.				434 0.291-0. 86 2.760 0.710 0.447

Su = summer; F = fall; Sp = spring; W = winter; NG = not given Source: S.R. Crane and J.A. Moore, 1986

APPENDIX C: REGRESSION RESULTS FOR INDIVIDUAL AND POOLED TREATMENTS

Table C.1 Regression statistics.

Regression Ar	alysis - Lin	ear model:	Y =	a+bX		
Dependent var	iable: FC Tr	eatment A	Inde	pendent variable	: time	
Parameter	Estimate		dard ror	T Value	Prob. Level	
Intercept Slope	5.26819 -0.0154777		5014 2E-3	121.104 -6.41423	.00000 .00137	
		Analysis	of Va	ariance		
Source Model Error		Squares .167691 .0203793	1	.167691	F-Ratio Prob 41.14235	. Level .00137
Stnd. Error o	alysis - Line	ear model:		+bX		
Dependent var	iable: FS TRE	EATMENT A		Inc	ependent variab	le: time
Parameter	Estimate		dard for	T Value	Prob. Level	
Intercept Slope	5.87942 -0.02502	0.051	225 5E-3	114.776 -8.80537		
		Analysis	of Va	riance		
Source Model Error		Squares .438202 0282585	1	Mean Square .438202 .0056517	F-Ratio Prob. 77.53449	. Level .00031
Fotal (Corr.)	-	4664603	6			
Correlation Co	pefficient =	-0.969236		R-squared	= 93 94 percent	-

Correlation Coefficient = -0.969236 Stnd. Error of Est. = 0.0751778

R-squared = 93.94 percent

Table C.1 continued.

Regression An	alysis - Linea	r model:	Y = a	+bX		
Dependent var	iable: FC TREA	TMENT B		Inde	ependent variable	: time
Parameter	Estimate		ard or	T Value	Prob. Level	
Intercept Slope	5.35672 -0.0178245	0.0558 3.09643	217 E-3	95.9612 -5.75646	.00000 .00222	
		Analysis	of Va	riance		
Source Model Error	Sum of S .0	quares 222398 335576	Df 1 5	Mean Square .222398 .0067115	F-Ratio Prob. 33.13685	Level .00222
Correlation C Stnd. Error o	.2 oefficient = - f Est. = 0.081 alysis - Linea	0.932144 9238		R-squared	= 86.89 percent	
Dependent var	iable: FS TREA	TMENT B		Ind	dependent variable	e: time
	Estimate	Stand			Prob. Level	
Intercept Slope	5.70567 -0.0333241	0.0675 3.74854	777 E-3	84.4312 -8.88991	.00000 .00030	
		Analysis	of Va	riance		
Source Model Error		quares 777349 491803	1	.777349	F-Ratio Prob. 79.03051	Level .00030
	.8 oefficient = - f Est. = 0.099		6		= 94.05 percent	

Regression Ana						
Dependent vari	able: FC TREA	ATMENT C		Indep	endent variable	: time
Parameter		Stand	lard or	T Value	Prob. Level	
Intercept Slope	5.3232 -0.017805	0.0613 3.40207	317 E-3	86.7937 -5.23356	.00000 .00337	
		Analysis		riance		
Source Model Error	Sum of :	Squares .221911 0405093	Df 1 5	Mean Square .221911 .0081019	F-Ratio Prob 27.39019	. Level .00337
Stnd. Error of Regression Ana	efficient = - Est. = 0.090	-0.919583 00103 ar model:		R-squared	= 84.56 percent	t
Dependent varia			~	In	dependent varia	ble: time
Parameter		Stand	ard		Prob.	
Intercept Slope	5.70478 -0.035272	0.0542 3.00818		105.195 -11.7254	.00000 .00008	
		Analysis				
Source Model Error		Squares .87088 0316721	Df 1 5	Mean Square	F-Ratio Prob 137.4839	. Level .00008
Total (Corr.) Correlation Coe Stnd. Error of	efficient = -	-0.982297	6		= 96.49 percent	

Regression A	nalysis - Linea	r model:	Y ≠ a	+bX	
Dependent va	riable: FC TREA	TMENT ABO	2	In	dependent variable: tim
Parameter	Estimate	Stand Er:	dard ror	T Value	Prob. Level
Intercept Slope	5.31604 -0.0170357	0.0522		101.722 -5.87662	
		Analysis	of Va	riance	
Source Model Error		quares 203151 294125	Df 1 5	Mean Square .203151 .0058825	F-Ratio Prob. Level 34.53471 .00203
Stnd. Error) .2 Coefficient = - of Est. = 0.076 nalysis - Linea	6975		·	= 87.35 percent
	riable: FS TREA			-	ependent variable: time
Parameter	Estimate		ror	T Value	Prob. Level
Intercept Slope	5.76329 -0.0312054	0.0550	0184 7E-3	104.752 -10.225	.00000 .00015
		Analysis			
Source Model Error		quares .68164 325987	1	Mean Square .68164 .0065197	F-Ratio Prob. Level 104.5508 .00015
Total (Corr. Correlation Stnd. Error		142424	6		= 95.44 percent

Dependent var	riable: FC TREA	TMENT D		Inde	pendent varia	ble: time
Parameter	Estimate	Standa Erro		T Value	Prob Leve	-
Intercept Slope	5.71848 -0.0179587	0.04792 3.1656E		119.33 -5.67308	.0000 .0047	-
		Analysis c	of Va	riance		
Source Model Error		quares 141101 175368	Df 1 4	Mean Square .141101 .0043842	F-Ratio Pr 32.18387	ob. Level .00476
Stnd. Error d	Coefficient = -			R-squared	= 88.95 perc	ent
	nalysis - Linea	r model: Y				
		r model: Y			dependent var	iable: tim
Dependent var	nalysis - Linea	r model: Y	 ard		Prob	•
Dependent var	nalysis – Linea riable: FS TREA	r model: Y TMENT D Standa Erro	ard or	In T Value	Prob Leve	1 0
Dependent var	nalysis - Linea ciable: FS TREA Estimate 6.11296 -0.0195612	r model: Y TMENT D Standa Erro	ard or 568 2-3	In T Value 112.875 ~5.46787	Prob Leve .0000	1 0
Dependent var Parameter	nalysis - Linea riable: FS TREA Estimate 6.11296 -0.0195612 Sum of S	r model: Y TMENT D Standa Errc 0.05415 3.57748E	ard or 568 2-3 of Va	In T Value 112.875 -5.46787 riance Mean Square	Prob Leve .0000 .0054	1 0 4

61

Table C.1 continued.

Dependent var	iable: FS TREA	ATMENT E	Independent variable: time		
		Stand		T	Prob.
Parameter	Estimate	Err	or	Value	Level
Intercept Slope	5.55465 -6.89062E-3	0.055 3.64104	119 E-3	100.776 -1.89248	.00000 .13137
		Analysis	of Va	riance	
Source Model Error	Sum of :	Squares 0207728 0232001	Df 1 4	Mean Square .0207728 .0058000	F-Ratio Prob. Level 3.581499 .13137
Total (Corr.)		0439728	5		
Stnd. Error o	oefficient = · f Est. = 0.07			. oquarea	= 47.24 percent
	alysis - Linea	ar model:	Y = a	+bX	
					ent variable: time
Dependent var	alysis - Line; iable: FS TRE/ Estimate	ATMENT E Stand	 ard	Independ	ent variable: time Prob. Level
Dependent var Parameter Intercept	iable: FS TREA Estimate 6.10455	ATMENT E Stand Err 0.0986	ard or 458	Independ	Prob. Level
Dependent var Parameter Intercept	iable: FS TREA Estimate 6.10455	ATMENT E Stand Err 0.0986	ard or 458 E-3	Independ T Value 61.8835 -4.49943	Prob. Level .00000
Dependent var Parameter Intercept Slope Source Model	iable: FS TREA Estimate 6.10455 -0.0293198 Sum of S	ATMENT E Stand Err 0.0986 6.51633 Analysis Gquares .376096	ard or 458 E-3 of Va Df 1	Independ T Value 61.8835 -4.49943 riance	Prob. Level .00000
Dependent var Parameter Intercept	iable: FS TRE2 Estimate 6.10455 -0.0293198 Sum of S	ATMENT E Stand Err 0.0986 6.51633 Analysis Squares .376096 0743095	ard or 458 E-3 of Va Df 1 4	Independ T Value 61.8835 -4.49943 riance Mean Square .376096	Prob. Level .00000 .01083

Regression Analysis - Linear model: Y = a+bX______ Dependent variable: FC TREATMENT F Independent variable: time _____ Standard T Prob. Error Value Level Parameter Estimate Parameter Estimate Error Value Level Intercept 5.39938 0.0399623 135.112 .00000 Slope -3.80384E-3 2.63982E-3 -1.44095 .22304 Analysis of Variance
 Source
 Sum of Squares
 Df Mean Square
 F-Ratio
 Prob. Level

 Model
 .0063303
 1
 .0063303
 2.076326
 .22304

 Error
 .0121952
 4
 .0030488
 Error _____ Total (Corr.) .0185255 5 Correlation Coefficient = -0.584557 R-squared = 34.17 percent Stnd. Error of Est. = 0.0552159Regression Analysis - Linear model: Y = a+bXDependent variable: FS TREATMENT F Independent variable: time Standard T Prob. Standard T Value Prob. Parameter Estimate Level ------____
 Intercept
 5.92958
 0.0675986
 87.7175
 .00000

 Slope
 -0.0257778
 4.46542E-3
 -5.77276
 .00447
 Slope .00447 _____ Analysis of Variance ______
 Source
 Sum of Squares
 Df
 Mean Square
 F-Ratio
 Prob.
 Level

 Model
 .290716
 1
 .290716
 33.32470
 .00447

 Error
 .0348949
 4
 .0087237
 .00447
 _____ Total (Corr.) .3256105 5 Correlation Coefficient = -0.944898 R-squared = 89.28 percent Stnd. Error of Est. = 0.0934009

Regression A	nalysis - Line	ar model:	Y = a	Xd+		
Dependent va	riable: FC TRE	ATMENT DEF		Ind	ependent variabl	e: time
	Estimate	Stand		T Value	Prob. Level	**-*
Intercept Slope	5.5575 -9.55107E-3	0.0196 1.30021		282.351 -7.34578	.00000 .00183	
	_	Analysis		riance		
Source Model Error		.039910	1	Mean Square .039910 .0007396	F-Ratio Prob. 53.96047	Level .00183
Correlation	Coefficient = of Est. = 0.02	-0.964877			= 93.10 percent	· · · · · · · · · · · · · · · · · · ·
Regression A	nalysis - Line	ar model:	Y ≃ a	+bX		
Dependent va	riable: FS TRE	ATMENT DEF	,	Indepe	ndent variable:	time
Parameter	Estimate	Stand Err	ard or	T Value	Prob. Level	
Intercept Slope	6.04903 -0.0248862	0.0584 3.86201	641 E-3	103.466 -6.44386	.00000 .00298	
		Analysis	of Va	riance		
Source Model Error	Sum of	Squares .270955 0261014	Df 1 4	Mean Square .270955 .0065254	F-Ratio Prob. 41.52331	Level .00298
Correlation) Coefficient = of Est. = 0.08	-0.955057	5		= 91.21 percent	

Dependent var	riable: FC TREA	TMENT G		Ind	lependent v	ariabl	e: time
Parameter	Estimate	Stand Er:	dard ror	T Value	L	rob. evel	
Intercept Slope	6.03976 -0.104948	0.34	2305 9877	17.6444 -5.52717	.0.	0001 0266	
		Analysis					
Source Model Error	Sum of So 7. 1.2	quares 709865 618621	Df 1 5	Mean Square 7.709865 .2523724	F-Ratio 30.54956	Prob.	Level .00266
	Coefficient = -0 of Est. = 0.502			R-squared	= 85.94 p	ercent	
Regression Ar	nalysis - Linea:		Y = a	+bX			
	nalysis - Linea:	r model:			endent var	iable:	time
Dependent var		r model: IMENT G	 dard	Indep	 P:	iable: rob. evel	time
Dependent van Parameter	nalysis – Linea: riable: FS TREA	r model: IMENT G Stand Er:	dard ror	Indep T Value	P:	rob.	time
Dependent var	nalysis - Linea riable: FS TREA Estimate 6.32638 -0.108812	r model: IMENT G Stand Er:	dard ror 7229 5967	Indep T Value 19.9426 -6.18363	P:	rob. evel 0001	time
Dependent van Parameter	nalysis - Linea: riable: FS TREA Estimate 6.32638 -0.108812 Sum of Sc 8	r model: IMENT G Stand Er 0.31 0.017 Analysis quares 287983	dard ror 7229 5967 of Va Df	Indep T Value 19.9426 -6.18363 riance Mean Square	P: 	rob. evel 0001 0161 Prob.	

Regression Ana	lysis - Linear	model: Y =	a+bX			
Dependent vari	able: FC TREAT	MENT H		Ind	lependent variab	le: time
Parameter	Estimate	Standard Error		T Value	Prob. Level	
Intercept Slope	6.05463 -0.106633	0.31667 0.0175657		19.1197 -6.07052	.00001 .00175	
	A	nalysis of	Variar	ice		
Source Model Error			1	7.959415	F-Ratio Prob 36.85120	. Level .00175
Total (Corr.) Correlation Co Stnd. Error of Regression Ana	efficient = -0 Est. = 0.4647	.938365 45		R-squared	= 88.05 percen	t
Dependent vari	able: FS TREAT	MENT H		Indep	endent variable	: time
Parameter	Estimate	Standard Error		T Value	Prob. Level	
Intercept Slope	6.32757 -0.112052	0.3024 0.0167741		20.9245 -6.68007	.00000 .00114	
	A	nalysis of	Varian	ce		
Source Model Error	Sum of Sq 8.7 .98	88992	1	n Square 8.788992 .1969596	F-Ratio Prob 44.62333	. Level .00114
Total (Corr.) Correlation Co Stnd. Error of	efficient = -0	.948283	6	R-squared	= 89.92 percen	t .

Regression Analysis - Linear model: Y = a+bXDependent variable: FC TREATMENT I Independent variable: time ------Standard Т Prob. rameter Estimate Error Value Parameter Level _____
 Intercept
 6.02513
 0.339886
 17.7269
 .00001

 Slope
 -0.105617
 0.0188535
 -5.60199
 .00250
 -Analysis of Variance SourceSum of SquaresDf Mean SquareF-RatioProb. LevelModel7.80847517.80847531.38229.00250Error1.24408945.2488179 ------------Total (Corr.) 9.0525640 6 Correlation Coefficient = -0.928747R-squared = 86.26 percent Stnd. Error of Est. = 0.498816 Regression Analysis - Linear model: Y = a+bX-----Dependent variable: FS TREATMENT I Independent variable: time ------Standard T Prob. Error Value Level Parameter Estimate te Error Value Level -----
 Intercept
 6.16751
 0.274908
 22.4348
 .00000

 Slope
 -0.105197
 0.0152491
 -6.89858
 .00098
 Analysis of Variance -----.
 Source
 Sum of Squares
 Df
 Mean Square
 F-Ratio
 Prob.
 Level

 Model
 7.746550
 1
 7.746550
 47.59040
 .00098

 Error
 .8138774
 5
 .1627755
 ------_____ Total (Corr.) 8.5604270 6 Correlation Coefficient = -0.951276 R-squared = 90.49 percent Stnd. Error of Est. = 0.403454

Dependent var	riable: FC TREA	TMENT GHI	Inde	pendent variable: time
Parameter	Estimate	Standard Error	-	Prob. Level
Intercept Slope	6.03984 -0.105733	0.328419	18.3906 -5.80393	.00001
	1	Analysis of	Variance	
Source Model Error	7.8	quares D 325582 515606	f Mean Square 1 7.825582 5 .2323121	F-Ratio Prob. Level 33.68564 .00214
Correlation C Stnd. Error c	Coefficient = -(0)	.933142	R-squared	= 87.08 percent
	alysis - Linear	model: Y =	a+bX	
		model: Y =		lependent variable: time
Dependent var	alysis - Linear	model: Y =	Ind	Prob.
Dependent var	alysis - Linear iable: FS TREAT Estimate	model: Y = MENT GHI Standard Error	Inc	Level
Dependent var	ialysis - Linear Liable: FS TREAT Estimate 6.27382 -0.108687	model: Y = MENT GHI Standard Error	Inc T Value 21.2434 -6.63455	Prob. Level
Dependent var Parameter	alysis - Linear Table: FS TREAT Estimate 6.27382 -0.108687 A Sum of Sq 8.2	MENT GHI Standard Error 0.29533 0.016382 nalysis of V uares Di 69021	Inc T Value 21.2434 -6.63455 Variance Mean Square	Prob. Level

Dependent va	riable: FC TREA	TMENT J		Inde	pendent va	riable	: time
Parameter	Estimate	Stand Err		T Value		rob. evel	
Intercept Slope	6.15387 -0.0152147				.0	0000 5773	
		Analysis	of Va	riance			
Source Model Error	- 1	012753	1	Mean Square .1012753 .0145576	F-Ratio 6.956888	Prob.	Level .05773
	Coefficient = $-$ of Est. = 0.120			R-squared	= 63.49 p	ercent	
Regression A	malysis - Linea		Y = a	u+bX			
		r model:			ependent v	ariabl	e: time
Dependent va	nalysis - Linea riable: FS TREA	r model: TMENT J	 ard	Ind	p	ariabl rob. evel	e: time
Dependent va Parameter	nalysis - Linea riable: FS TREA	r model: TMENT J Standa Erro	ard or 808	Ind T Value 87 2331	P L	 rob.	e: time
Dependent va Parameter	nalysis - Linea riable: FS TREA Estimate 6.22677 -0.0228612	r model: TMENT J Standa Erro	ard or 808 E-3	Ind T Value 87.2331 -4.84835	P L	rob. evel 0000	e: time
Dependent va Parameter	nalysis - Linea riable: FS TREA Estimate 6.22677 -0.0228612 Sum of S	r model: TMENT J Standa Erro 0.0713 4.71526 Analysis quares	ard or 808 E-3 of Va Df 1	Ind T Value 87.2331 -4.84835 ariance Mean Square .228653	P L .0 .0 .0 .0	rob. evel 0000 0835 Prob.	

Regression Analysis - Linear model: Y = a+bXDependent variable: FC TREATMENT K Independent variable: time Standard T Value Prob. ameter Estimate Error Value Parameter Level
 Intercept
 6.07702
 0.0853176
 71.2282
 .00000

 Slope
 -0.0102539
 5.63589E-3
 -1.8194
 .14298
 -----Slope -0.0102539 5.63589E-3 Analysis of Variance _____
 Source
 Sum of Squares
 Df Mean Square
 F-Ratio
 Prob.
 Level

 Model
 .0460001
 1
 .0460001
 3.310208
 .14298

 Error
 .0555857
 4
 .0138964
 Total (Corr.) 5 .1015858 Correlation Coefficient = -0.672919R-squared = 45.28 percent Stnd. Error of Est. = 0.117883 Regression Analysis - Linear model: Y = a+bX_____ Dependent variable: FS TREATMENT K Independent variable: time _____ Standard T Value T Prob. Parameter Estimate Level -----------_____ Intercept6.209010.0592073104.869.00000Slope-0.02320963.91111E-3-5.93427.00404 ------______ Analysis of Variance
 Source
 Sum of Squares
 Df Mean Square
 F-Ratio
 Prob. Level

 Model
 .235674
 1
 .235674
 35.21559
 .00404

 Error
 .0267693
 4
 .0066923
 -------Total (Corr.) .2624436 5 Correlation Coefficient = -0.947628R-squared = 89.80 percent Stnd. Error of Est. = 0.0818067

Dependent va	ariable: FC TRE	ATMENT L	Inde	pendent variable: time
Parameter	Estimate	Standard Error	-	Prob. Level
Intercept Slope	6.09527 -0.0136582	0.0542874 3.5861E-3	112.278 -3.80864	.00000 .01896
		Analysis of	Variance	
Source Model Error		.001014	f Mean Square 1 .081614 4 .0056263	F-Ratio Prob. Level 14.50573 .01896
Correlation Stnd. Error	Coefficient = - of Est. = 0.075	-0.885353 50088	R-squared	= 78.39 percent
Regression A	nalysis - Linea		a+bX	
	nalysis - Linea riable: FS TREA	ar model: Y =		lependent variable: time
Dependent va		ar model: Y ≈ NTMENT L	Ind	Prob.
Pependent va Parameter Intercept	riable: FS TREA	ar model: Y ≈ MTMENT L Standard Error	Ind T Value	Level
Pependent va Parameter Intercept	riable: FS TREA Estimate 6.28617 -0.0318902	ar model: Y ≈ MTMENT L Standard Error	Inc T Value 49.1546 -3.77494	Prob. Level .00000
Dependent va Parameter	Estimate 6.28617 -0.0318902 Sum of S	TMENT L Standard Error 0.127886 8.44786E-3 Analysis of V quares Df 444930 1	Ind T Value 49.1546 -3.77494 Variance Mean Square	Prob. Level .00000

Dependent var	iable: FC TREA	ATMENT JKL		Inc	lependent v	variabl	e: time
Parameter	Estimate	Standa Errc		T Value	_	rob. Level	
Intercept Slope	6.10872 -0.0130423	0.07424 4.90457E	166 2-3	82.276 -2.65921	. ()0000)5644	
		Analysis c					
Source Model Error	Sum of S .C .O	Gquares 0744190 0420959	Df 1 4	Mean Square .0744190 .0105240	F-Ratio 7.071375	Prob.	Level .05644
Correlation C Stnd. Error c	oefficient = -			R-squared	= 63.87 p	bercent	
	of Est. = 0.102 malysis - Linea		{ = a	+bX			
Regression Ar		r model: Y			lependent v		
Regression Ar Dependent var	alysis - Linea	r model: Y	 ard		 E		
Regression Ar Dependent var Parameter Intercept	alysis - Linea Tiable: FS TREA Estimate 6.24065	TMENT JKL Standa 0.07562	ard or 225	Ind T	F I 	variabl Prob.	
Regression Ar Dependent var Parameter Intercept	alysis - Linea Fiable: FS TREA Estimate 6.24065 -0.025987	TMENT JKL Standa 0.07562	ard or 225 2-3	Inc T Value 82.5238 -5.20213	F I 	variabl Prob. Level	
Regression Ar Dependent var	alysis - Linea Fiable: FS TREA Estimate 6.24065 -0.025987 Sum of S	TMENT JKL Standa Erro 0.07562 4.99546E Analysis o oquares 295454	225 2-3 of Va Df 1	Inc T Value 82.5238 -5.20213	E I . C . C	variabl Prob. evel 00000 00651	e: time

Dependent va	riable: FC TREA	TMENT M		Inde	ependent v	ariable	: time
Parameter	Estimate		dard ror	-		Prob. Level	
Intercept Slope	5.8689 -0.0240928	0.0532	2882	110.135 -6.84436		00000 00238	
		Analysis	of Va	ariance			· ··
Source Model Error	Sum of S .0	quares 253953 216845	Df 1 4	Mean Square .253953 .0054211	F-Ratio 46.84520	Prob.	Level .00238
Correlation C	Coefficient = -	0 050050					
Regression An	of Est. = 0.073 malysis - Linea	6283 r model:	Y = a		= 92.13 r	percent	
Regression An	of Est. = 0.073	6283 r model:	Y = a	н+bХ	= 92.13 p pendent va		
Stnd. Error o Regression An Dependent var	of Est. = 0.073 alysis - Linea riable: FS TREA Estimate	ference for the second	Y = a ard or	i+bX Inde T Value	pendent va F	riable rob.	
Regression An Dependent var Parameter Intercept	of Est. = 0.073 alysis - Linea riable: FS TREA Estimate	6283 r model: TMENT M Stand Err 0.0755	Y = a ard or 873	Inde T Value	pendent va F I	riable rob.	
Regression An Dependent var Parameter Intercept	Df Est. = 0.073 halysis - Linea riable: FS TREA Estimate 6.47347 -0.0287015	6283 r model: TMENT M Stand Err 0.0755	Y = a ard or 873 E-3	Inde T Value 85.6422 -5.74819	pendent va F I	riable rob. evel	
Regression An Dependent var Parameter Intercept Slope Source Model	of Est. = 0.073 malysis - Linea riable: FS TREA Estimate 6.47347 -0.0287015 	6283 r model: TMENT M Stand Err 0.0755 4.99314 Analysis quares 360402	Y = a ard or 873 E-3 of Va 0f Va 1	Inde T Value 85.6422 -5.74819	pendent va F I .0 .0	riable Prob. evel 0000 0454	: time
Stnd. Error of Regression An Dependent var Parameter Intercept Slope Source Model Error	of Est. = 0.073 malysis - Linea riable: FS TREA Estimate 6.47347 -0.0287015 	6283 r model: TMENT M Stand Err 0.0755 4.99314 Analysis quares 360402 436299	Y = a ard or 873 E-3 of Va Df 1 4	Inde T Value 85.6422 -5.74819 riance Mean Square .360402 .0109075	pendent va F I .0 .0	riable Prob. evel 0000 0454	: time

Dependent var	iable: FC TREA	TMENT N	Inde	ependent variable: time
Parameter	Estimate	Standard Error	T Value	Prob. Level
Intercept Slope	5.86565 -0.0231239	0.0157403 1.03977E-3		
		Analysis of Va	ariance	
Source Model Error		.23394 1	Mean Square .23394 .0004730	F-Ratio Prob. Level 494.5905 .00002
Correlation (oefficient = -	0 995981	Permared	- 00 20 percept
Stnd. Error o	Coefficient = - of Est. = 0.021 Malysis - Linea	7484	-	= 99.20 percent
Stnd. Error o Regression Ar	of Est. = 0.021	7484 r model: Y = a	- +bX	= 99.20 percent
Stnd. Error c Regression Ar Dependent var	of Est. = 0.021 malysis - Linea	7484 r model: Y = a	- +bX	lependent variable: time Prob.
Stnd. Error c Regression Ar Dependent var Parameter Intercept	alysis - Linea riable: FS TREA Estimate 6.49506	7484 r model: Y = a TMENT N Standard Error	a+bX Ind Value 173.828	Prob. Level
Stnd. Error c Regression Ar Dependent var	of Est. = 0.021 halysis - Linea tiable: FS TREA Estimate 6.49506 -0.027781	7484 r model: Y = a TMENT N Standard Error 0.0373649	n+bX Ind Value 173.828 -11.2554	Prob. Level .00000
Stnd. Error c Regression Ar Dependent var Parameter Intercept	alysis - Linea nalysis - Linea tiable: FS TREA Estimate 6.49506 -0.027781 Sum of S	7484 r model: Y = a TMENT N Standard Error 0.0373649 2.46824E-3 Analysis of Va quares Df 133766 1	n+bX Ind Value 173.828 -11.2554 ariance	Prob. Level .00000

Dependent v	ariable: FC TREA	ATMENT O		Inc	dependent vari	able: time
Parameter	Estimate	Standar Error		T Value	Prob Leve	-
Intercept Slope	5.7778 -0.0228258	0.046039 3.04129E-	-3	125.495 -7.50529	.0000 .0016	
		Analysis of	E Va	riance		
Source Model Error				Mean Square .227945 .0040466	F-Ratio Pr 56.32940	ob. Level .00169
stna. Error	of Est. = 0.063	6132		R-squared =	*	
	Analysis - Linea	r model: Y	= a	+bX		
	Analysis - Linea Driable: FS TREA	r model: Y	≈ a		ependent varia	able: time
Dependent va		r model: Y TMENT O	 d		Prob. Level	
Pependent va Parameter	riable: FS TREA Estimate	r model: Y TMENT O Standar Error	d	Ind T	Prob. Level	
Dependent va Parameter	Estimate 6.50366 -0.0386169	r model: Y TMENT O Standar Error	d 3 3	Ind T Value 123.744 -11.1229 riance	Prob. Level .00000 .00037	
Pependent va Parameter Intercept	Estimate 6.50366 -0.0386169	r model: Y TMENT O Standar Error 0.052557 3.47182E Analysis of	d 3 3 Vai	Ind T Value 123.744 -11.1229 riance	Prob. Level .00000 .00037	· · · · · · · · · · · · · · · · · · ·

Dependent va	ariable: FC TREA	ATMENT MNO	Inc	dependent variable: time
Parameter	Estimate	Standard Error	T Value	Prob. Level
Intercept Slope	5.83745 -0.0233475	0.0247314 1.6337E-3	236.034 -14.2912	.00000 .00014
		Analysis of Va	ariance	
Source Model Error	Sum of s	Squares Df .23848 1 0046707 4	Mean Square .23848 .0011677	F-Ratio Prob. Level 204.2380 .00014
Stnd. Error	of Est. = 0.034	11713	K-squared	= 98.08 percent
Regression A	of Est. = 0.034 nalysis - Linea	11713 ar model: Y = a	1+bX	
Regression A	of Est. = 0.034	11713 ar model: Y = a	1+bX	= 98.08 percent Rependent variable: time
Regression A	of Est. = 0.034 nalysis - Linea	11713 ar model: Y = a	1+bX Ind	lependent variable: time Prob.
Regression A Dependent va Parameter Intercept	of Est. = 0.034 nalysis - Linea riable: FS TREA	ar model: Y = a TMENT MNO Standard	179.729	lependent variable: time Prob. Level
Regression A Dependent va Parameter Intercept	of Est. = 0.034 nalysis - Linea riable: FS TREA Estimate -0.0316998	ur model: Y = a NTMENT MNO Standard Error 0.0361139	1+bX Ind Value 179.729 -13.288	lependent variable: time Prob. Level
Regression A Dependent va Parameter Intercept Slope Slope Source Model	of Est. = 0.034 nalysis - Linea riable: FS TREA Estimate -0.0316998 	TMENT MNO Standard Error 0.0361139 2.3856E-3 Analysis of Va	Ind T Value 179.729 -13.288 riance Mean Square .43963	lependent variable: time Prob. Level
Regression A Dependent va Parameter Intercept Slope Source Model Error	of Est. = 0.034 nalysis - Linea riable: FS TREA Estimate -0.0316998 	A1713 AT model: Y = a TMENT MNO Standard Error 0.0361139 2.3856E-3 Analysis of Va Gquares Df .43963 1 099594 4	Ind T Value 179.729 -13.288 riance Mean Square .43963	Prob. Level .00000 .00019 F-Ratio Prob. Level

Regression Ar	alysis - Linea	r model:	Y = a	+bX		
Dependent var	iable: PQ.fcp			Indepe	endent variable:	PQ.timepq
Parameter	Estimate	Stand	lard	Т	Prob. Level	
Intercept Slope	2.64919 -0.0268403	0.144	242	18.3663	00035	
	1	Analysis	of Va	riance		
Source Model Error	Sum of Sc .18 .10	quares 301004 040288	Df 1 3	Mean Square .1801004 .0346763	F-Ratio Prob 5.193766	. Level .10704
Correlation C Stnd. Error o	.28 oefficient = -(f Est. = 0.1862 alysis - Linear	0.796158 216		R-squared	= 63.39 percen	t
Dependent var	iable: PQ.fsp			Indepe	ndent variable:	PQ.timepq
Parameter	Estimate	Stand Err		T Value	Prob.	*
Intercept Slope	3.58705 -0.0176135	0.123	797 108	28.9753 -1.74253	.00009 .17978	
	A	nalysis	of Va	riance	*_	
Source Model Error		uares 75586 66282	Df 1 3	Mean Square .0775586 .0255427	F-Ratio Prob 3.036425	Level .17978
Total (Corr.) Correlation C	 15	41869	 4			

Dependent va	riable: PQ.fcq			Indepe	endent vari	able:	PQ.timepo				
Parameter	Standard Estimate Error		T Value		rob. evel						
Intercept Slope	2.97169 -0.0156852	0.0681 5.56412		43.6076 -2.81898		0003					
Analysis of Variance											
Source Model Error	. (Squares 0615061 0232196	Ť	Mean Square .0615061 .0077399	F-Ratio 7.946673		Level .06679				
Stad Error	Coefficient = -	-0.852024		R-squared	= 72.59 p	ercent					
Regression A	of Est. = 0.087 nalysis - Linea		Y = a	+bX							
Regression A			Y ≈ a		ndent vari	able:	PQ.timepq				
Regression A Dependent va	nalysis - Linea	ar model: 	Y = a lard		P:	able: rob. evel	PQ.timepq				
Regression A Dependent va	nalysis - Linea riable: PQ.fsq	ar model: 	lard or 1368	Indepe T Value 25.0129	P: 	rob. evel	PQ.timepq				
Regression A Dependent va Parameter Intercept	nalysis - Linea riable: PQ.fsq Estimate 4.11133 -0.0330633	Stand 0.164	lard for 1368 1206	Indepe T Value 25.0129 -2.46362	P: 	rob. evel 0014	PQ.timepq				
Regression A Dependent va Parameter Intercept	nalysis - Linea riable: PQ.fsq Estimate 4.11133 -0.0330633 Sum of S	Stand Stand Err 0.164 0.0134	lard for 368 206 of Va	Indepe T Value 25.0129 -2.46362 riance Mean Square .2732953	P: 	rob. evel 0014 9058 	Level				

78

APPENDIX D: RAW DATA

PLATE #	Sediment type	Dilution factor	FC counted	FS counted	FC per gram sed.	FS per gram sed.
1	A	1.0E+02	tntc		0	8
	A	1.0E+02 1.0E+02	thtc	tntc		
3	A	1.0E+02 1.0E+02	thtc	tntc tntc		
2 3 4	A	1.0E+02 1.0E+03	thtc	thtc		
5	A	1.0E+03	thtc	thtc		
5 6	Â	1.0E+03	tntc	thtc		
7	Â	1.0E+04	19	95	2.3E+05	9.3E+05
8	Â	1.0E+04	24	89	2.51.405	9.5ET05
9	Â	1.0E+04	27	95		
10	B	1.0E+02	tntc	tntc		
11	B	1.0E+02	tntc	thte		
12	B	1.0E+02	tntc	tntc		
13	В	1.0E+03	tntc	thte		
14	В	1.0E+03	tntc	tntc		
15	В	1.0E+03	tntc	tntc		
16	В	1.0E+04	31	59	3.0E+05	6.2E+05
17	В	1.0E+04	29	65		0.221103
18	В	1.0E+04	31	63		
19	C1	1.0E+02	tntc	tntc		
20	C1	1.0E+02	tntc	tntc		
21	C1	1.0E+02	tntc	tntc		
22	C1	1.0E+03	tntc	tntc		
23	C1	1.0E+03	tntc	tntc		
24	C1	1.0E+03	tntc	tntc		
25	C 1	1.0E+04	30	69	2.6E+05	6.5E+05
26	C1	1.0E+04	25	64		01012.00
27	C1	1.0E+04	24	62		
28	C2	1.0E+02	tntc	tntc		
29	C2	1.0E+02	tntc	tntc		
30	C2	1.0E+02	tntc	tntc		
31	C2	1.0E+03	tntc	tntc		
32	C2	1.0E+03	tntc	tntc		
33	C2	1.0E+03	tntc	tntc		
34	C2	1.0E+04	31	76	3.8E+05	6.7E+05
35	C2	1.0E+04	46	67		0112100
36	C2	1.0E+04	36	58		
37	C3	1.0E+02	tntc	tntc		
38	C3	1.0E+02	tntc	tntc		
39	C3	1.0E+02	tntc	tntc		
40	C3	1.0E+03	tntc	tntc		
41	C3	1.0E+03	tntc	tntc		

Table D.1 Summary of data for day 0.

Table D.1 continued.

PLATE #	Sediment type	Dilution factor	FC counted	FS counted	FC per gram sed.	FS per gram sed.
42	C3	1.0E+03	tntc	tntc		
43	C3	1.0E+04	31	66	2.4E+05	5.8E+05
44	C3	1.0E+04	20	60	2.40105	J.01. 10.
45	C3	1.0E+04	20	47		
46	D	1.0E+02	tntc	tntc		
47	Ď	1.0E+02	tntc	thtc		
48	D	1.0E+02	tntc	tntc		
49	D	1.0E+03	thte	tntc		
50	D	1.0E+03	tntc	tntc		
51	Đ	1.0E+03	tntc	thte		
52	D	1.0E+04	60	164	6.1E+05	1.5E+06
53	D	1.0E+04	34	151	0.12105	1.52100
54	D	1.0E+04	90	140		
55	Ε	1.0E+02	tntc	tntc		
56	Ε	1.0E+02	tntc	thte		
57	Ε	1.0E+02	tntc	tntc		
58	Ē	1.0E+03	tntc	tntc		
59	Ē	1.0E+03	tntc	tntc		
60	Ē	1.0E+03	tntc	tntc		
61	Ē	1.0E+04	42	133	3.6E+05	1.4E+06
62	Ē	1.0E+04	29	139	5.02105	1.46100
63	Ē	1.0E+04	38	136		
64	F1	1.0E+02	tntc	tntc		
65	F1	1.0E+02	tntc	tntc		
66	F1	1.0E+02	tntc	tntc		
67	F1	1.0E+03	tntc	tntc		
68	F1	1.0E+03	tntc	tntc		
69	F1	1.0E+03	tntc	tntc		
70	F 1	1.0E+04	19	87	2.4E+05	9.5E+05
71	F1	1.0E+04	31	98	2.12105	2.51105
72	F 1	1.0E+04	22	101		
73	F2	1.0E+02	tntc	tntc		
74	F2	1.0E+02	tntc	tntc		
75	$\overline{F2}$	1.0E+02	tntc	tntc		
76	$\overline{F2}$	1.0E+03	tntc	tntc		
77	F 2	1.0E+03	tntc	tntc		
78	F2	1.0E+03	tntc	tntc		
79	F2	1.0E+04	22	106	2.3E+05	1.0E+06
80	F2	1.0E+04	24	97	2.02100	1.011100
81	F2	1.0E+04	23	97		
82	F3	1.0E+02	tntc	tntc		
83	F3	1.0E+02	tntc	tntc		
84	F3	1.0E+02	tntc	tntc		
85	F3	1.0E+03	thte	tntc		

Table D.1 continued.

PLATE #	Sediment type	Dilution factor	FC counted	FS counted	FC per gram sed.	FS per gram sed.
86					gram bea.	gruin sou.
80	F3	1.0E+03 1.0E+03	tntc	tntc		
88	F3	1.0E+03 1.0E+04	tntc 20	tntc	1.00-05	9 OF 105
89	F3	1.0E+04 1.0E+04	20 14	75 82	1.9E+05	8.2E+05
90	F3	1.0E+04 1.0E+04	23	82 89		
91	Ğ	1.0E+04	tntc	tntc		
92	Ğ	1.0E+02	thtc	thte		
93	Ğ	1.0E+02	tntc	thte		
94	Ğ	1.0E+03	tntc	tntc		
95	G	1.0E+03	tntc	tntc		
96	G	1.0E+03	tntc	tntc		
97	G	1.0E+04	21	76	3.0E+05	7.4E+05
98	G	1.0E+04	39	63		
99	G	1.0E+04	29	84		
100	Н	1.0E+02	tntc	tntc		
101	Н	1.0E+02	tntc	tntc		
102	Н	1.0E+02	tntc	tntc		
103	H	1.0E+03	tntc	tntc		
104	H	1.0E+03	tntc	tntc		
105	H	1.0E+03	tntc	tntc		
106	H	1.0E+04	27	67	2.7E+05	6.9E+05
107	H	1.0E+04	25	70		
108	H	1.0E+04	30	70		
109	I1	1.0E+02	tntc	tntc		
110	I1	1.0E+02	tntc	tntc		
111 112	I1	1.0E+02	tntc	tntc		
112	I1	1.0E+03	tntc	tntc		
115	I1 I1	1.0E+03	tntc	tntc		
114	II I1	1.0E+03	tntc	tntc	2.00.05	
115	II I1	1.0E+04 1.0E+04	35	68	3.2E+05	6.5E+05
110	II I1	1.0E+04 1.0E+04	34 27	63		
118	II I2	1.0E+04 1.0E+02		65		
110	12 I2	1.0E+02 1.0E+02	tntc	tntc		
120	12 I2	1.0E+02 1.0E+02	tntC tntC	tntc tntc		
121	I2	1.0E+02 1.0E+03	thte	tntc		
122	I2	1.0E+03	thte	tntc		
123	12	1.0E+03	thte	tntc		
124	Ĩ2	1.0E+04	39	70	2.7E+05	6.7E+05
125	12	1.0E+04	21	61	2.72.00	0.711105
126	12	1.0E+04	21	70		
127	I3	1.0E+02	tntc	tntc		
128 129	I3	1.0E+02	tntc	tntc		

PLATE #	Sediment	Dilution factor	FC	FS	FC per	FS per
	type		counted	counted	gram sed.	gram sed
130	13	1.0E+03	tntc	tntc		
131	I3	1.0E+03	tntc	tntc		
132	I3	1.0E+03	tntc	tntc		
133	I3 I2	1.0E+04	28	66	2.9E+05	7.0E+0
134	I3	1.0E+04	30	73		
135	13	1.0E+04	30	71		
136 137	J	1.0E+04	tntc	tntc		
137	J	1.0E+04	tntc	tntc		
138	J J	1.0E+04	tntc	tntc	0.017.07	0.077 0
139	J	1.0E+05 1.0E+05	23	21	2.0E+06	2.3E+0
140	J	1.0E+05 1.0E+05	16	25		
141	J	1.0E+05 1.0E+06	22	23		
143	J	1.0E+06	1 2	0 3		
144	J	1.0E+06	$\frac{2}{2}$	5 4		
145	ĸ	1.0E+00	tntc	tntc		
146	ĸ	1.0E+04	thtc	tntc		
147	ĸ	1.0E+04	thte	thte		
148	ĸ	1.0E+05	16	16	1.7E+06	1.8E+0
149	K	1.0E+05	18	16	1.72100	1.0210
150	Κ	1.0E+05	18	23		
151	Κ	1.0E+06	3	1		
152	Κ	1.0E+06	1	2		
153	K	1.0E+06	2	2		
154	L1	1.0E+04	tntc	tntc		
155	L1	1.0E+04	tntc	tntc		
156	L1	1.0E+04	tntc	tntc		
157	L1	1.0E+05	17	42	1.7E+06	4.9E+0
158	L1	1.0E+05	11	52		
159	L1	1.0E+05	22	53		
160	L1	1.0E+06	5	6		
161	L1	1.0E+06	2	6		
162	L1	1.0E+06	1	5		
163	L2	1.0E+04	181	tntc		
164	L2	1.0E+04	152	tntc		
165	L2	1.0E+04	165	tntc		
166	L2	1.0E+05	14	32	1.6E+06	2.3E+06
167	L2	1.0E+05	18	24		
168	L2	1.0E+05	15	14		
169	L2	1.0E+06	2 2 2	3		
170	L2	1.0E+06	2	2		
171	L2	1.0E+06		4		
172		1.0E+04	145	tntc		
173	L3	1.0E+04	136	tntc		

Table D.1 continued.

Table D 1	continued.
Table D.I	continuea.

PLATE #	Sediment type	Dilution factor	FC counted	FS counted	FC per gram sed.	FS per gram sed.
174	L3	1.0E+04	169	tntc		
175	L3	1.0E+05	18	21	1.5E+06	2.8E+06
176 177	L3	1.0E+05	7	37		
177	L3 L3	1.0E+05 1.0E+06	20	26		
178	L3	1.0E+06 1.0E+06	2	2		
180	L3	1.0E+06	0 3	4 5		
180	M	1.0E+00 1.0E+04	92			
182	M	1.0E+04 1.0E+04	92 95	tntc tntc		
183	M	1.0E+04 1.0E+04	87	thtc		
184	M	1.0E+04	6	29	7.7E+05	3.7E+06
185	M	1.0E+05	7	36	7.71.105	3.7L+00
186	M	1.0E+05	10	45		
187	Μ	1.0E+06	1	6		
188	Μ	1.0E+06	$\overline{2}$	1		
189	Μ	1.0E+06	0	1		
190	Ν	1.0E+04	72	tntc	7.7E+05	
191	Ν	1.0E+04	79	tntc		
192	Ν	1.0E+04	81	tntc		
193	Ν	1.0E+05	3	32		3.6E+06
194	Ν	1.0E+05	5	29		
195	Ν	1.0E+05	7	48		
196	N	1.0E+06	0	0		
197	N	1.0E+06	1	4		
198	N	1.0E+06	2	3		
199	01	1.0E+04	55	tntc	5.7E+05	
200	01	1.0E+04	56	tntc		
201	01	1.0E+04	60	tntc		
202	01	1.0E+05	4	24		3.1E+06
203	01	1.0E+05	7	31		
204 205	01	1.0E+05	4	39		
203	01 01	1.0E+06	0	5		
200	01	1.0E+06 1.0E+06	0 0	1		
207	O1 O2	1.0E+00 1.0E+04	51	2	5 412 105	
208	02 02	1.0E+04 1.0E+04	56	tntc	5.4E+05	
207	02	1.0E+04 1.0E+04	29*	tntc		
210	$ \begin{array}{c} 02\\ 02 \end{array} $	1.0E+04 1.0E+05		tntc		27E.06
211	02	1.0E+05 1.0E+05	5 6	35 21		2.7E+06
212	02	1.0E+05	11	21		
213	02	1.0E+05 1.0E+06	1			
215	02	1.0E+06	1	2		
216	Ŏ2	1.0E+06	Ô	5 2 3		
217	O 3	1.0E+04	54	tntc	5.4E+05	

Table D.1 continued.

PLATE #	Sediment type	Dilution factor	FC counted	FS counted	FC per gram sed.	FS per gram sed.
218	03	1.0E+04	60	tntc		
219	O3	1.0E+04	49	tntc		
220	O3	1.0E+05	6	29		2.9E+06
221	O3	1.0E+05	8	24		
222	O3	1.0E+05	7	34		
223	O3	1.0E+06	1	2		
224	O3	1.0E+06	0	3		
225	O3	1.0E+06	1	3		

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
1	A	1.0E+03	124	1.0E+04	51	1.3E+05	5.7E+05
2	Α	1.0E+03	128	1.0E+04	57		2112102
2 3 4	Α	1.0E+03	135	1.0E+04	63		
	Α	1.0E+04	17	1.0E+05	11		
5	Α	1.0E+04	10	1.0E+05	9		
6	Α	1.0E+04	12	1.0E+05	8		
7	В	1.0E+04	18	1.0E+04	34	1.5E+05	3.5E+05
8	B	1.0E+04	16	1.0E+04	41		
9	В	1.0E+04	12	1.0E+04	31		
10	B	1.0E+05	<10	1.0E+05	3		
11	В	1.0E+05	<10	1.0E+05	8		
12	В	1.0E+05	<10	1.0E+05	2		
13	C1	1.0E+04	12	1.0E+04	29	1.3E+05	3.3E+05
14	C1	1.0E+04	12	1.0E+04	38		
15	C1	1.0E+04	14	1.0E+04	32		
16	C1	1.0E+05	<10	1.0E+05	1		
17	C1	1.0E+05	<10	1.0E+05	4		
18	C1	1.0E+05	<10	1.0E+05	5		
19	C2	1.0E+04	13	1.0E+04	39	1.3E+05	3.4E+05
20	C2	1.0E+04	12	1.0E+04	34		
21	C2	1.0E+04	15	1.0E+04	28		
22	C2	1.0E+05	<10	1.0E+05	4		
23	C2	1.0E+05	<10	1.0E+05	4		
24	C2	1.0E+05	<10	1.0E+05	1		
25	C3	1.0E+04	18	1.0E+04	28	1.7E+05	2.8E+05
26	C3	1.0E+04	15	1.0E+04	25		
27	C3	1.0E+04	17	1.0E+04	30		
28	C3	1.0E+05	<10	1.0E+05	3		
29	C3	1.0E+05	<10	1.0E+05	1		
30	C3	1.0E+05	<10	1.0E+05	1		
31	D	1.0E+04	40	1.0E+04	74	3.7E+05	8.1E+05
32	D	1.0E+04	34	1.0E+04	79		
33	D	1.0E+04	38	1.0E+04	91		
34	D	1.0E+05	<10	1.0E+05	13		
35	D	1.0E+05	<10	1.0E+05	9		
36	D	1.0E+05	<10	1.0E+05	14	• • - • -	<pre></pre>
37	E	1.0E+04	34	1.0E+04	58	3.1E+05	6.0E+05
38	E	1.0E+04	30	1.0E+04	60		
39	E	1.0E+04	29	1.0E+04	63		
40	E	1.0E+05	<10	1.0E+05	3 2 4		
41	E	1.0E+05	<10	1.0E+05	2		
42	E	1.0E+05	<10	1.0E+05			
43	F1	1.0E+03	tntc	1.0E+04	48		5.2E+05

Table D.2 Summary of data for day 5.

Table D.2 continued.

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
44		1.0E+03	tntc	1.0E+04	65	<u> </u>	
45	F1	1.0E+03	tntc	1.0E+04	43		
46	F1	1.0E+04	27	1.0E+04	tntc	2.7E+05	
47	F1	1.0E+04	28	1.0E+05	tntc	2.7 12 . 05	
48	F1	1.0E+04	26	1.0E+05	tntc		
49	F2	1.0E+03	tntc	1.0E+04	47		5.4E+05
50	F2	1.0E+03	tntc	1.0E+04	56		
51	F2	1.0E+03	tntc	1.0E+04	58		
52	F2	1.0E+04	33	1.0E+05	tntc	3.0E+05	
53	F2	1.0E+04	36	1.0E+05	tntc		
54 55	F2	1.0E+04	22	1.0E+05	tntc		5 45 .05
56	F3 F3	1.0E+03 1.0E+03	tntc	1.0E+04	65		5.4E+05
57	F3	1.0E+03	tntc tntc	1.0E+04 1.0E+04	50 48		
58	F3	1.0E+03 1.0E+04	25	1.0E+04 1.0E+05	40 tntC	2.7E+05	
59	F3	1.0E+04	30	1.0E+05	tntc	2.76703	
60	F3	1.0E+04	25	1.0E+05	tntc		
61	Ğ	1.0E+03	tntc	1.0E+04	42		4.4E+05
62	G	1.0E+03	tntc	1.0E+04	54		
63	G	1.0E+03	tntc	1.0E+04	35		
64	G	1.0E+04	32	1.0E+05	tntc	2.9E+05	
65	G	1.0E+04	24	1.0E+05	tntc		
66	G	1.0E+04	30	1.0E+05	tntc		
67	H	1.0E+03	tntc	1.0E+04	52		5.0E+05
68 69	H	1.0E+03	tntc	1.0E+04	58		
70	H H	1.0E+03	tntc	1.0E+04	41	4 25 105	
70	H	1.0E+04 1.0E+04	48 44	1.0E+05 1.0E+05	tntc	4.2E+05	
72	H	1.0E+04 1.0E+04	35	1.0E+05 1.0E+05	tntc		
73	II II	1.0E+04	tntc	1.0E+03 1.0E+04	tntc 38		3.3E+05
74	ÎÌ	1.0E+03	tntc	1.0E+04	33		3.36+03
75	ĪĪ	1.0E+03	tntc	1.0E+04	28		
76	I1	1.0E+04	26	1.0E+05	tntc	2.3E+05	
77	I 1	1.0E+04	23	1.0E+05	tntc		
78	I1	1.0E+04	21	1.0E+05	tntc		
79	12	1.0E+03	tntc	1.0E+04	29		3.1E+05
80	I2	1.0E+03	tntc	1.0E+04	35		
81	I2	1.0E+03	tntc	1.0E+04	30	• •	
82	I2	1.0E+04	28	1.0E+05	tntc	2.8E+05	
83	I2 I2	1.0E+04	28	1.0E+05	tntc		
84 85	I2	1.0E+04	28	1.0E+05	tntc		0.475.05
85 86	I3 I3	1.0E+03	tntc	1.0E+04	35		3.4E+05
80 87	13 13	1.0E+03 1.0E+03	tntc	1.0E+04	36		
0/	15	1.05+03	tntc	1.0E+04	31		

Table D.2 continued.

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
88	 I3	1.0E+04	30	1.0E+05	tntc	2.6E+05	<u> </u>
89	I3	1.0E+04	27	1.0E+05	tntc		
90	I3	1.0E+04	21	1.0E+05	tntc		
91	J	1.0E+04	90	1.0E+04	103	9.0E+05	1.0E+06
92	J	1.0E+04	93	1.0E+04	98		
93	J	1.0E+04	87	1.0E+04	104		
94	J	1.0E+05	5	1.0E+05	?		
95	J	1.0E+05	6	1.0E+05	?		
96	J	1.0E+05	4	1.0E+05	?		
97	K	1.0E+04	77	1.0E+04	82	7.7E+05	9.3E+05
98	K	1.0E+04	74	1.0E+04	112		
99	K	1.0E+04	81	1.0E+04	85		
100	K	1.0E+05	3	1.0E+05	13		
101	K	1.0E+05	0	1.0E+05	20		
102	K	1.0E+05	10	1.0E+05	19	0.00.05	0.45.05
103	L1	1.0E+04	80	1.0E+04	80	9.2E+05	9.4E+05
104	L1	1.0E+04	87	1.0E+04	95		
105	L1	1.0E+04	109	1.0E+04	108		
106	L1	1.0E+05	12	1.0E+05	6		
107	L1	1.0E+05	5	1.0E+05	7		
108 109	L1 L2	1.0E+05	8	1.0E+05	10 76	8.5E+05	8.7E+05
109	L2 L2	1.0E+04 1.0E+04	90 82	1.0E+04 1.0E+04	86	0.JE+0J	0.7E+03
110		1.0E+04 1.0E+04	82	1.0E+04 1.0E+04	100		
111		1.0E+04 1.0E+05	12	1.0E+04 1.0E+05	9		
112		1.0E+05	13	1.0E+05	7		
114		1.0E+05	15	1.0E+05	10		
115	$\overline{L3}$	1.0E+04	81	1.0E+04	86	8.9E+05	9.7E+05
116	L3	1.0E+04	89	1.0E+04	88	0.72.00	2012000
117	L3	1.0E+04	96	1.0E+04	118		
118	L3	1.0E+05	10	1.0E+05	12		
119	L3	1.0E+05	9	1.0E+05	11		
120	L3	1.0E+05	7	1.0E+05	11		
121	Μ	1.0E+04	45	1.0E+04	tntc	4.5E+05	
122	Μ	1.0E+04	40	1.0E+04	tntc		
123	Μ	1.0E+04	51	1.0E+04	tntc		
124	Μ	1.0E+05	2	1.0E+05	23		2.3E+06
125	Μ	1.0E+05	6	1.0E+05	21		
126	Μ	1.0E+05	2	1.0E+05	24		
127	Ν	1.0E+04	51	1.0E+04	tntc	5.5E+05	
128	Ν	1.0E+04	57	1.0E+04	tntc		
129	Ν	1.0E+04	58	1.0E+04	tntc		
130	N	1.0E+05	6	1.0E+05	23		2.1E+06
131	Ν	1.0E+05	6	1.0E+05	17		

Table D.2 continued.

PLATE #		Dilution	FC .	Dilution	FS .	FC per	FS per
	type	factor	_counted	factor	counted	gram sed.	gram sed.
132	Ν	1.0E+05	3	1.0E+05	23		
133	O 1	1.0E+04	47	1.0E+04	tntc	5.3E+05	
134	O 1	1.0E+04	53	1.0E+04	tntc		
135	O 1	1.0E+04	59	1.0E+04	tntc		
136	O 1	1.0E+05	5	1.0E+05	27		2.3E+06
137	O 1	1.0E+05	1	1.0E+05	24		
138	O 1	1.0E+05	2	1.0E+05	17		
139	O2	1.0E+04	51	1.0E+04	tntc	5.1E+05	
140	O2	1.0E+04	54	1.0E+04	tntc		
141	O2	1.0E+04	48	1.0E+04	223		
142	O2	1.0E+05	4	1.0E+05	13		1.5E+06
143	O2	1.0E+05	6	1.0E+05	15		
144	O2	1.0E+05	3	1.0E+05	17		
145	O3	1.0E+04	48	1.0E+04	tntc	4.3E+05	
146	O3	1.0E+04	43	1.0E+04	tntc		
147	O3	1.0E+04	39	1.0E+04	tntc		
148	O3	1.0E+05	6	1.0E+05	31		2.5E+06
149	O3	1.0E+05	4	1.0E+05	11		
150	O3	1.0E+05	5	1.0E+05	33		
151	Р	1.0E+02	6	1.0E+02	52*	7.0E+02	5.5E+03
152	Р	1.0E+02	8	1.0E+02	68*		
153	Р	1.0E+02	7	1.0E+02	76*		
154	Р	1.0E+03	6	1.0E+03	5		
155	Р	1.0E+03	4	1.0E+03	5		
156	Р	1.0E+03	0	1.0E+03	4		
157	Р	1.0E+04	0	1.0E+04	1		
158	Р	1.0E+04	0	1.0E+04	0		
159	Р	1.0E+04	1	1.0E+04	2		
160	Q	1.0E+02	11	1.0E+02	trash	1.2E+03	
161	Q	1.0E+02	12	1.0E+02	trash		
162	Q	1.0E+02	12	1.0E+02	trash		
163	Q	1.0E+03	0	1.0E+03	20		2.2E+04
164	000000000000000000000000000000000000000	1.0E+03	0	1.0E+03	22		
165	Q	1.0E+03	2	1.0E+03	24		
166	Q	1.0E+04	0	1.0E+04	3		
167	Q	1.0E+04	0	1.0E+04	1		
168	Q	1.0E+04	0	1.0E+04	3		

PLATE #	Sediment	Dilution	FC	Dilution	FS	FC per	FS per
	type	factor	counted	factor	counted	gram sed.	gram sed.
1	Α	1.0E+03	117	1.0E+03		1.2E+05	
2 3	A	1.0E+03	120	1.0E+03			
3	Α	1.0E+03	133	1.0E+03			
4	Α	1.0E+04	14	1.0E+04	40	1.4E+05	3.8E+05
5	A	1.0E+04	15	1.0E+04	40		
6	A	1.0E+04	14	1.0E+04	33		
7	B	1.0E+03	110	1.0E+03		1.2E+05	
8	B	1.0E+03	129	1.0E+03			
9	B	1.0E+03	121	1.0E+03			
10	B	1.0E+04	11	1.0E+04	22	1.4E+05	2.1E+05
11	B	1.0E+04	16	1.0E+04	24		
12	B	1.0E+04	15	1.0E+04	17		
13 14	C1	1.0E+03	122	1.0E+03		1.2E+05	
14	C1	1.0E+03	115	1.0E+03			
15	C1 C1	1.0E+03	109	1.0E+03	1.6	1 (27) 0 7	
10	C1	1.0E+04	17	1.0E+04	16	1.6E+05	2.1E+05
18	C1 C1	1.0E+04	16	1.0E+04	25		
18	C1 C2	1.0E+04	16	1.0E+04	21	1 00 .05	
20	C2 C2	1.0E+03 1.0E+03	131	1.0E+03		1.2E+05	
20	C2 C2	1.0E+03 1.0E+03	115	1.0E+03			
22	C^2	1.0E+03 1.0E+04	110 12	1.0E+03 1.0E+04	21	1.20.05	2 15 .05
23	C2 C2	1.0E+04 1.0E+04	12	1.0E+04 1.0E+04	21	1.3E+05	2.1E+05
24	C2	1.0E+04 1.0E+04	12	1.0E+04 1.0E+04	18 25		
25	C3	1.0E+04 1.0E+03	129	1.0E+04 1.0E+03	25	1.2E+05	
26	C3	1.0E+03	109	1.0E+03		1.2E+05	
27	C3	1.0E+03	105	1.0E+03			
28	C3	1.0E+04	14	1.0E+05	19	1.4E+05	2.3E+05
29	C3	1.0E+04	13	1.0E+04	17	1.412+03	2.56+05
30	C3	1.0E+04	14	1.0E+04	34		
31	D	1.0E+03	254	1.0E+03	54	2.5E+05	
32	D	1.0E+03	248	1.0E+03		2.511105	
33	D	1.0E+03	tntc	1.0E+03			
34	D	1.0E+04	23	1.0E+04	94	3.6E+05	9.3E+05
35	D	1.0E+04	43	1.0E+04	85	5.02.05	2.512105
36	D	1.0E+04	41	1.0E+04	99		
37	Ε	1.0E+03	213	1.0E+03		2.2E+05	
38	Ε	1.0E+03	tntc	1.0E+03			
39	E	1.0E+03	217	1.0E+03			
40	E	1.0E+04	31	1.0E+04	83	2.8E+05	7.9E+05
41	E	1.0E+04	28	1.0E+04	91	· 6 60 *	
42	E	1.0E+04	24	1.0E+04	62		
43	F1	1.0E+03	1 9 3	1.0E+03		1.9E+05	ERR

Table D.3 Summary of data for day 10.

Table D.3 continued

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per	FS per
						gram sed.	gram sed.
44 45	F1	1.0E+03	tntC	1.0E+03			
43 46	F1 F1	1.0E+03	193	1.0E+03	50	0.50.05	
40 47	F1 F1	1.0E+04 1.0E+04	29	1.0E+04	58	2.5E+05	6.2E+05
48	F1	1.0E+04 1.0E+04	29 16	1.0E+04	63 64		
49	F2	1.0E+04 1.0E+03	142	1.0E+04 1.0E+03	04	1.50.05	
50	F2	1.0E+03	142	1.0E+03		1.5E+05	
51	F2	1.0E+03	tntc	1.0E+03			
52	F2	1.0E+04	25	1.0E+04	60	2.2E+05	6.0E+05
53	F 2	1.0E+04	20	1.0E+04	58	2.26105	0.02+03
54	F2	1.0E+04	20	1.0E+04	63		
55	F3	1.0E+03	166	1.0E+03		1.6E+05	
56	F3	1.0E+03	149	1.0E+03			
57	F3	1.0E+03	tntC	1.0E+03			
58	F3	1.0E+04	19	1.0E+04	61	1.9E+05	5.9E+05
59	F3	1.0E+04	19	1.0E+04	59		
60	F3	1.0E+04	19	1.0E+04	58		
61	G	1.0E+03	247	1.0E+03		2.4E+05	
62	G	1.0E+03	231	1.0E+03			
63	G	1.0E+03	tntc	1.0E+03			
64 65	G	1.0E+04	26	1.0E+04	36	2.7E+05	3.4E+05
66	G	1.0E+04	28	1.0E+04	31		
67	G H	1.0E+04 1.0E+03	26	1.0E+04	35	0.10.00	
68	H H	1.0E+03 1.0E+03	216 205	1.0E+03 1.0E+03		2.1E+05	
69	H	1.0E+03	tntC	1.0E+03 1.0E+03			
70	H	1.0E+03	26	1.0E+03 1.0E+04	36	2.6E+05	3.6E+05
71	H	1.0E+04	26	1.0E+04	38	2.02.005	3.06703
72	Н	1.0E+04	25	1.0E+04	34		
73	I1	1.0E+03	tntc	1.0E+03	51	2.1E+05	
74	I1	1.0E+03	205	1.0E+03		2.12.05	
75	I1	1.0E+03	tntC	1.0E+03			
76	I1	1.0E+04	19	1.0E+04	26	2.1E+05	2.6E+05
77	I1	1.0E+04	24	1.0E+04	29		
78	I1	1.0E+04	20	1.0E+04	23		
79	I2	1.0E+03	tntC	1.0E+03	124	1.6E+05	1.1E+05
80	12	1.0E+03	169	1.0E+03	103		
81	12	1.0E+03	149	1.0E+03	117		
82 83	I2	1.0E+04	20	1.0E+04	14	2.1E+05	1.2E+05
83	I2	1.0E+04	20	1.0E+04	11		
84 85	I2	1.0E+04	23	1.0E+04	12	0 1 D 0 C	
85 86	I3 I3	1.0E+03 1.0E+03	212	1.0E+03	78	2.1E+05	1.0E+05
80 87	I3	1.0E+03 1.0E+03	tntC	1.0E+03	118		
07	13	1.06+03	201	1.0E+03	107		

Table D.3 continued

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
88	13	1.0E+04		1.0E+04		2.3E+05	1.2E+05
89	13	1.0E+04	30	1.0E+04	12		
90	13	1.0E+04	24	1.0E+04	7		
91	J	1.0E+03		1.0E+03			
92	J	1.0E+03		1.0E+03			
93	J	1.0E+03		1.0E+03			
94	J	1.0E+04	72	1.0E+04	88	7.7E+05	8.7E+05
95	J	1.0E+04	80	1.0E+04	103		
96	J	1.0E+04	78	1.0E+04	71		
97 98	K	1.0E+03		1.0E+03			
98 99	K	1.0E+03		1.0E+03			
100	K K	1.0E+03	02	1.0E+03	100	7 0 7 0 <i>6</i>	1.05.06
100	K	1.0E+04 1.0E+04	92 75	1.0E+04	100	7.9E+05	1.0E+06
101	K	1.0E+04 1.0E+04	75	1.0E+04	84		
102	L1	1.0E+04 1.0E+03	70	1.0E+04	116		
105	L1	1.0E+0.3 1.0E+0.3		1.0E+03 1.0E+03			
105	L1	1.0E+03		1.0E+03 1.0E+03			
105	L1	1.0E+03 1.0E+04	76	1.0E+03 1.0E+04	85	8.3E+05	8.3E+05
100	L1	1.0E+04 1.0E+04	94	1.0E+04 1.0E+04	83 79	0.3E+03	8.3E+03
108	L1	1.0E+04	80	1.0E+04 1.0E+04	84		
109	$\tilde{L}2$	1.0E+04	00	1.0E+04 1.0E+03	04		
110		1.0E+03		1.0E+03			
111	$\overline{L2}$	1.0E+03		1.0E+03			
112	L2	1.0E+04	89	1.0E+04	54	8.0E+05	6.3E+05
113	L2	1.0E+04	82	1.0E+04	63	0.01.02	0.51105
114	L2	1.0E+04	69	1.0E+04	71		
115	L3	1.0E+03		1.0E+03			
116	L3	1.0E+03		1.0E+03			
117	L3	1.0E+03		1.0E+03			
118	L3	1.0E+04	48	1.0E+04	68	7.3E+05	6.1E+05
119	L3	1.0E+04	84	1.0E+04	58		
120	L3	1.0E+04	86	1.0E+04	56		
121	Μ	1.0E+03		1.0E+04	115		1.2E+06
122	Μ	1.0E+03		1.0E+04	120		
123	Μ	1.0E+03		1.0E+04	110		
124	Μ	1.0E+04	42	1.0E+05	6	3.8E+05	5.0E+05
125	M	1.0E+04	39	1.0E+05	6		
126	M	1.0E+04	33	1.0E+05	3		
127	N	1.0E+03		1.0E+04	118		1.2E+06
128	N	1.0E+03		1.0E+04			
129	N	1.0E+03	~~	1.0E+04			
130	N	1.0E+04	32	1.0E+05	14	4.0E+05	1.5E+06
131	N	1.0E+04	38	1.0E+05	16		

Table D.3 continued

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
132						grain seu.	gram seu.
132	N 01	1.0E+04	50	1.0E+05	15		
133	01	1.0E+03		1.0E+04	66		7.3E+05
134	01	1.0E+03 1.0E+03		1.0E+04	78		
135	01	1.0E+03 1.0E+04	30	1.0E+04 1.0E+05	76	2 (7 0 7 0 <i>6</i>
130	01	1.0E+04 1.0E+04	50 42	1.0E+05 1.0E+05	8 7	3.6E+05	7.3E+05
138	01	1.0E+04 1.0E+04	37	1.0E+05 1.0E+05	7		
139	02	1.0E+04	57	1.0E+03 1.0E+04	82		8.6E+05
140	02 02	1.0E+03		1.0E+04 1.0E+04	82 77		0.0E+03
141	02	1.0E+03		1.0E+04 1.0E+04	98		
142	02 02	1.0E+04	27	1.0E+04 1.0E+05	5	3.3E+05	4.7E+05
143	Ö2	1.0E+04	32	1.0E+05	5	3.36703	4.76+05
144	02	1.0E+04	40	1.0E+05	4		
145	O 3	1.0E+03	10	1.0E+04			
146	O3	1.0E+03		1.0E+04			
147	O3	1.0E+03		1.0E+04			
148	O3	1.0E+04	35	1.0E+05	35	3.4E+05	3.4E+06
149	O3	1.0E+04	31	1.0E+05	31		0112000
150	O3	1.0E+04	36	1.0E+05	36		
151	Р	1.0E+02	4	1.0E+02	19	2.3E+02	2.0E+03
152	Р	1.0E+02	2	1.0E+02	21		
153	Р	1.0E+02	1	1.0E+02	19		
154	Р	1.0E+03	1	1.0E+03	3		4.0E+03
155	Р	1.0E+03	0	1.0E+03	6		
156	Р	1.0E+03	0	1.0E+03	3		
157	Q	1.0E+02	4	1.0E+02	48	6.3E+02	5.1E+03
158	Q Q Q Q Q Q	1.0E+02	7	1.0E+02	52		
159	Q	1.0E+02	8	1.0E+02	53		
160	Q	1.0E+03	1	1.0E+03	5		6.3E+03
161	Q	1.0E+03	0	1.0E+03	7		
162	Q	1.0E+03	0	1.0E+03	7		

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
1	A	1.0E+03	104	1.0E+03		1.0E+05	
	Â	1.0E+03	99	1.0E+03	-	1.02+05	
2 3 4 5	Ā	1.0E+03	111	1.0E+03			
4	Ā	1.0E+04		1.0E+03	23		2.5E+05
5	Ā	1.0E+04		1.0E+04	21		2.515105
6	Α	1.0E+04		1.0E+04	30		
7	В	1.0E+03	105	1.0E+03	101	1.0E+05	1.1E+05
8	В	1.0E+03	98	1.0E+03	110	1.02.00	1.12105
9	В	1.0E+03	102	1.0E+03	109		
10	В	1.0E+04		1.0E+04	11		9.3E+04
11	В	1.0E+04		1.0E+04	7		102101
12	В	1.0E+04		1.0E+04	10		
13	C1	1.0E+03	.84	1.0E+03	100	9.0E+04	1.0E+05
14	C1	1.0E+03	90	1.0E+03	92		
15	C1	1.0E+03	95	1.0E+03	109		
16	C1	1.0E+04		1.0E+04	10		8.7E+04
17	C1	1.0E+04		1.0E+04	8		
18	C1	1.0E+04		1.0E+04	8		
19	C2	1.0E+03	93	1.0E+03	85	1.0E+05	1.0E+05
20	C2	1.0E+03	106	1.0E+03	101		
21	C2	1.0E+03	106	1.0E+03	116		
22	C2	1.0E+04		1.0E+04	13		1.2E+05
23	C2	1.0E+04		1.0E+04	11		
24	C2	1.0E+04	101	1.0E+04	12		
25	C3	1.0E+03	101	1.0E+03	137	1.1E+05	1.4E+05
26	C3	1.0E+03	118	1.0E+03	138		
27	C3	1.0E+03	100	1.0E+03	141		
28	C3	1.0E+04		1.0E+04	6		9.3E+04
29	C3	1.0E+04		1.0E+04	9		
30	C3	1.0E+04		1.0E+04	13		
31	D	1.0E+03		1.0E+03		1.9E+05	ERR
32 33	D D	1.0E+03	100	1.0E+03			
33 34		1.0E+03	188	1.0E+03			
34	D	1.0E+04	38	1.0E+04	66	2.3E+05	6.4E+05
35 36	D	1.0E+04	14	1.0E+04	59		
30	D	1.0E+04	18	1.0E+04	68		
37	E E	1.0E+03	045	1.0E+03		2.5E+05	
38 39	E E	1.0E+03 1.0E+03	245	1.0E+03			
39 40	E E		20	1.0E+03		2 25 05	
40 41	E E	1.0E+04 1.0E+04	30	1.0E+04	.60	3.3E+05	6.1E+05
41	ь Е	1.0E+04 1.0E+04	32	1.0E+04	54		
42	F1	1.0E+04 1.0E+03	36	1.0E+04	70		
	1.1	1.06+03		1.0E+03			

Table D.4 Summary of data for day 15.

Table D.4 continued.

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
44		1.0E+03		1.0E+03		<u> </u>	<u> </u>
45	F1	1.0E+03		1.0E+03			
46	F1	1.0E+04	28	1.0E+04	60	2.1E+05	5.2E+05
47	F1	1.0E+04	17	1.0E+04	54	2.12.05	5.21,05
48	F1	1.0E+04	19	1.0E+04	41		
49	F2	1.0E+03		1.0E+03		1.6E+05	
50	F2	1.0E+03		1.0E+03			
51	F2	1.0E+03	163	1.0E+03			
52	F2	1.0E+04	21	1.0E+04	40	2.6E+05	3.8E+05
53	F2	1.0E+04	19	1.0E+04	36		
54	F2	1.0E+04	37	1.0E+04	39		
55	F3	1.0E+03		1.0E+03		1.5E+05	
56	F3	1.0E+03		1.0E+03			
57	F3	1.0E+03	149	1.0E+03			
58	F3	1.0E+04	19	1.0E+04	58	2.3E+05	4.9E+05
59	F3	1.0E+04	22	1.0E+04	42		
60	F3	1.0E+04	29	1.0E+04	47		
61	G	1.0E+03		1.0E+03		1.1E+05	
62	G	1.0E+03		1.0E+03			
63	G	1.0E+03	112	1.0E+03			
64	G	1.0E+04	15	1.0E+04	33	1.7E+05	2.9E+05
65	G	1.0E+04	17	1.0E+04	29		
66	G	1.0E+04	18	1.0E+04	26		
67	Н	1.0E+03	125	1.0E+03			
68	Н	1.0E+03	153	1.0E+03			
69	H	1.0E+03	120	1.0E+03			
70	Н	1.0E+04	11	1.0E+04	21	1.0E+05	2.2E+05
71	Н	1.0E+04	9	1.0E+04	20		
72	Н	1.0E+04	10	1.0E+04	25		
73	I1	1.0E+03	116	1.0E+03		1.2E+05	
74	I1	1.0E+03	121	1.0E+03			
75	I1	1.0E+03	125	1.0E+03			
76	I1	1.0E+04	10	1.0E+04	19	1.1E+05	1.8E+05
77	I1	1.0E+04	15	1.0E+04	15		
78	I 1	1.0E+04	8	1.0E+04	21		
79	I2	1.0E+03	108	1.0E+03		1.1E+05	2.6E+05
80	12	1.0E+03	107	1.0E+03			
81	I2	1.0E+03	125	1.0E+03	258		
82	I2	1.0E+04	18	1.0E+04	19	1.4E+05	2.1E+05
83	I2	1.0E+04	10	1.0E+04	21		
84	I2	1.0E+04	14	1.0E+04	22		
85	13	1.0E+03	101	1.0E+03		1.2E+05	
86	I3	1.0E+03	125	1.0E+03			
87	I3	1.0E+03	128	1.0E+03			

Table D.4 continued.

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per
							gram sed.
88	I3	1.0E+04	8	1.0E+04	19	1.6E+05	2.1E+05
89 90	I3 12	1.0E+04	20	1.0E+04	21		
90 91	I3	1.0E+04	20	1.0E+04	23		
91	J J	1.0E+03		1.0E+03			
92 93	J	1.0E+03 1.0E+03		1.0E+03			
94	J	1.0E+03 1.0E+04	94	1.0E+03 1.0E+04	62	9.3E+05	
95	j	1.0E+04 1.0E+04	94 99	1.0E+04 1.0E+04	76	9.5E+05	6.8E+05
96	Ĵ	1.0E+04	87	1.0E+04	67		
97	ĸ	1.0E+03	07	1.0E+04	07		
98	K	1.0E+03		1.0E+03			
99	K	1.0E+03		1.0E+03			
100	K	1.0E+04	83	1.0E+04	83	7.8E+05	8.8E+05
101	K	1.0E+04	73	1.0E+04	93		
102	K	1.0E+04	78	1.0E+04	88		
103	L1	1.0E+03		1.0E+03			
104	L1	1.0E+03		1.0E+03			
105	L1	1.0E+03		1.0E+03			
106	L1	1.0E+04	71	1.0E+04	57	7.2E+05	6.0E+05
107	L1	1.0E+04	77	1.0E+04	64		
108	L1	1.0E+04	69	1.0E+04	59		
109 110	L2	1.0E+03		1.0E+03			
110	L2 L2	1.0E+03 1.0E+03		1.0E+03			
111	L2 L2	1.0E+03 1.0E+04	72	1.0E+03	57	7 917 05	5 9T 105
112	L2 L2	1.0E+04 1.0E+04	72	1.0E+04 1.0E+04	57 66	7.8E+05	5.8E+05
113	L2 L2	1.0E+04 1.0E+04	84	1.0E+04 1.0E+04	50		
115	L2 L3	1.0E+04	04	1.0E+04	50		
116	L3	1.0E+03		1.0E+03			
117	L3	1.0E+03		1.0E+03			
118	L3	1.0E+04	79	1.0E+04	41	7.6E+05	4.5E+05
119	L3	1.0E+04	82	1.0E+04	38	1102.00	1102100
120	L3	1.0E+04	68	1.0E+04	55		
121	Μ	1.0E+03		1.0E+03			
122	Μ	1.0E+03		1.0E+03			
123	Μ	1.0E+03		1.0E+03			
124	M	1.0E+04	25	1.0E+04	94	3.2E+05	8.7E+05
125	M	1.0E+04	36	1.0E+04	80		
126	M	1.0E+04	36	1.0E+04	86		
127 128	N	1.0E+03		1.0E+03			
128	N N	1.0E+03		1.0E+03			
129	N N	1.0E+03 1.0E+04	29	1.0E+03	07	2 10.05	1 112 .04
130	N	1.0E+04 1.0E+04	29 36	1.0E+04	97 119	3.4E+05	1.1E+06
151	TN	1.012+04	50	1.0E+04	118		

Table D.4 continued.

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
132	N	1.0E+04	36	1.0E+04	109		
133	01	1.0E+03		1.0E+03			
134	O1	1.0E+03		1.0E+03			
135	O 1	1.0E+03		1.0E+03			
136	01	1.0E+04	32	1.0E+04	72	3.3E+05	7.0E+05
137	O1	1.0E+04	33	1.0E+04	69		
138	O 1	1.0E+04	34	1.0E+04	70		
139	O2	1.0E+03		1.0E+03			
140	O2	1.0E+03		1.0E+03			
141	O2	1.0E+03		1.0E+03			
142	O2	1.0E+04	35	1.0E+04	70	2.5E+05	7.3E+05
143	O2	1.0E+04	19	1.0E+04	75		
144	O2	1.0E+04	22	1.0E+04	74		
145	O3	1.0E+03		1.0E+03			
146	O3	1.0E+03		1.0E+03			
147	O3	1.0E+03		1.0E+03			
148	O3	1.0E+04	27	1.0E+04	71	2.6E+05	7.6E+05
149	O3	1.0E+04	31	1.0E+04	81		
150	O3	1.0E+04	21	1.0E+04			
151	Р	1.0E+02	0	1.0E+02	28	1.7E+02	2.8E+03
152	Р	1.0E+02	3	1.0E+02	29		
153	Р	1.0E+02	2	1.0E+02	26		
154	Q	1.0E+02	4	1.0E+02	40	5.7E+02	4.9E+03
155	Q	1.0E+02	7	1.0E+02	48		
156	Q	1.0E+02	6	1.0E+02	59		

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
1	A	1.0E+03	81	1.0E+03	220	8.4E+04	2.3E+05
2	Â	1.0E+03	80	1.0E+03	220	0.46704	2.56+05
2 3	A	1.0E+03	91	1.0E+03	230		
4	B	1.0E+03	87	1.0E+03	130	9.8E+04	1.3E+05
5	B	1.0E+03	110	1.0E+03	125	2.0E+04	1.52+05
6	B	1.0E+03	98	1.0E+03	125		
7	CĪ	1.0E+03	105	1.0E+03	99	9.4E+04	1.1E+05
8	Ċ1	1.0E+03	92	1.0E+03	105	2.46104	1.12+03
9	Č1	1.0E+03	86	1.0E+03	113		
10	C2	1.0E+03	100	1.0E+03	99	9.4E+04	9.4E+04
11	Č2	1.0E+03	88	1.0E+03	88	2.46104	7.42704
12	Č2	1.0E+03	94	1.0E+03	95		
13	C3	1.0E+03	73	1.0E+03	110	8.0E+04	1.1E+05
14	C3	1.0E+03	80	1.0E+03	104	0.01104	1.112+03
15	C3	1.0E+03	88	1.0E+03	101		
16	D	1.0E+03	201	1.0E+03	101	2.0E+05	ERR
17	D	1.0E+03	_01	1.0E+03		2.01.03	
18	D	1.0E+03		1.0E+03			
19	D	1.0E+04	25	1.0E+04	49	2.3E+05	4.7E+05
20	D	1.0E+04	13	1.0E+04	52	2.52105	4.711103
21	D	1.0E+04	31	1.0E+04	41		
22	Ē	1.0E+03	51	1.0E+03	11	ERR	
23	Ē	1.0E+03		1.0E+03			
24	Ē	1.0E+03		1.0E+03			
25	Ē	1.0E+04	33	1.0E+04	41	3.2E+05	3.8E+05
26	Ē	1.0E+04	32	1.0E+04	33	5.21105	5.01.05
27	Ē	1.0E+04	32	1.0E+04	41		
28	F1	1.0E+03	02	1.0E+03			
29	F1	1.0E+03		1.0E+03			
30	F1	1.0E+03		1.0E+03			
31	F1	1.0E+04	23	1.0E+04	25	2.3E+05	3.0E+05
32	F1	1.0E+04	24	1.0E+04	33	2.52105	5.01 05
33	F 1	1.0E+04	23	1.0E+04	33		
34	F2	1.0E+03		1.0E+03	55	ERR	
35	F2	1.0E+03		1.0E+03		Linin	
36	F2	1.0E+03		1.0E+03			
37	F2	1.0E+04	14	1.0E+03	33	1.9E+05	2.7E+05
38	F2	1.0E+04	22	1.0E+04	23	1.71.103	2.715103
39	F2	1.0E+04	$\frac{22}{20}$	1.0E+04	23		
40	F3	1.0E+03	20	1.0E+04	<i></i> 7	ERR	
41	F3	1.0E+03		1.0E+03			
42	F3	1.0E+03		1.0E+03			
43	F3	1.0E+03	30	1.0E+03	33	2.6E+05	3.1E+05
	10	1.01.01	50	1.01.04	55	2.011+03	2.1E+03

Table D.5 Summary of data for day 20.

Table D.5 continued

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS	FC per	FS per
		7 09 8 9			counted	gram sed.	gram sed.
44	F3	1.0E+04	25	1.0E+04	32		
45	F3	1.0E+04	23	1.0E+04	29		
46	G	1.0E+03	9	1.0E+03	21	9.0E+03	1.8 E+0 4
47	G	1.0E+03	9	1.0E+03	14		
48	G	1.0E+03	9	1.0E+03	18		
49	G	1.0E+04		1.0E+04		ERR	ERR
50	G	1.0E+04		1.0E+04			
51	G	1.0E+04	1.5	1.0E+04	10		
52	H	1.0E+03	15	1.0E+03	13	1.1E+04	1.3E+04
53 54	H	1.0E+03	10	1.0E+03	13		
55	H	1.0E+03	9	1.0E+03	13		
56	H H	1.0E+04		1.0E+04		ERR	ERR
50		1.0E+04		1.0E+04			
58	H I1	1.0E+04	10	1.0E+04	22	1 17 01	
58 59	II I1	1.0E+03	18	1.0E+03	22	1.4E+04	2.0E+04
60	II I1	1.0E+03	19	1.0E+03	17		
61	II I1	1.0E+03 1.0E+04	6	1.0E+03	21	CDD	
62	II I1	1.0E+04 1.0E+04		1.0E+04		ERR	ERR
63	II I1	1.0E+04 1.0E+04		1.0E+04 1.0E+04			
64	I1 I2	1.0E+04 1.0E+03	14		10	1.50.04	1.50.04
65	I2 I2	1.0E+03 1.0E+03	14	1.0E+03	12	1.5E+04	1.5E+04
66	I2 I2	1.0E+03 1.0E+03	15	1.0E+03	20		
67	I2 I2	1.0E+03 1.0E+04	15	1.0E+03 1.0E+04	14	EDD	EDD
68	I2 I2	1.0E+04 1.0E+04		1.0E+04 1.0E+04		ERR	ERR
69	I2 I2	1.0E+04		1.0E+04 1.0E+04			
70	I2 I3	1.0E+04	18	1.0E+04 1.0E+03	16	1.6E+04	1. 6E+0 4
71	13 13	1.0E+03	13	1.0E+03	10	1.06+04	1.06+04
72	13 13	1.0E+03	13	1.0E+03	16		
73	I3	1.0E+04	10	1.0E+05	10	ERR	ERR
74	I3	1.0E+04		1.0E+04		LKK	LAK
75	I3	1.0E+04		1.0E+04			
76	J	1.0E+04	68	1.0E+04	60	6.8E+05	6.1E+05
77	J	1.0E+04	70	1.0E+04	64	0.01105	0.11.703
78	J	1.0E+04	67	1.0E+04	59		
79	ĸ	1.0E+04	96	1.0E+04	50	8.0E+05	5.4E+05
80	ĸ	1.0E+04	65	1.0E+04	50	0.012 +05	J.4L3T0J
81	ĸ	1.0E+04	80	1.0E+04	63		
82	LĨ	1.0E+04	73	1.0E+04	43	7.1E+05	4.5E+05
83	L1	1.0E+04	67	1.0E+04	40	1.12.00	LOI LLOI
84	$\overline{L1}$	1.0E+04	74	1.0E+04	52		
85	L2	1.0E+04	65	1.0E+04	34	6.6E+05	4.5E+05
86	L2	1.0E+04	75	1.0E+04	61	51022100	110 201 00
87	L2	1.0E+04	59	1.0E+04	41		

Table D.5 continued

PLATE #	Sediment	Dilution factor	FC counted	Dilution	FS	FC per	FS per
	type			factor	counted	gram sed.	gram sed.
88	L3	1.0E+04	80	1.0E+04	38	7.0E+05	3.8E+05
89	L3	1.0E+04	62	1.0E+04	38		
90	L3	1.0E+04	68	1.0E+04	38		
91	Μ	1.0E+03		1.0E+03			
92	Μ	1.0E+03		1.0E+03			
93	M	1.0E+03		1.0E+03			
94	Μ	1.0E+04	30	1.0E+04	80	2.7E+05	8.5E+05
95	Μ	1.0E+04	26	1.0E+04	88		
96	M	1.0E+04	26	1.0E+04	88		
97	N	1.0E+03		1.0E+03			
98	N	1.0E+03		1.0E+03			
99	N	1.0E+03		1.0E+03			
100	N	1.0E+04	20	1.0E+04	96	2.5E+05	9.2E+05
101	N	1.0E+04	27	1.0E+04	88		
102	N	1.0E+04	28	1.0E+04	91		
103	01	1.0E+03		1.0E+03			
104	01	1.0E+03		1.0E+03			
105	01	1.0E+03		1.0E+03			
106	01	1.0E+04	25	1.0E+04	71	2.4E+05	7.1E+05
107	01	1.0E+04	28	1.0E+04	68		
108	01	1.0E+04	19	1.0E+04	73		
109	02	1.0E+03		1.0E+03			
110	O2	1.0E+03		1.0E+03			
111 112	O2	1.0E+03	•	1.0E+03			
	02	1.0E+04	28	1.0E+04	58	2.7E+05	6.3E+05
113 114	O2	1.0E+04	24	1.0E+04	66		
114	02	1.0E+04	29	1.0E+04	66		
115	03	1.0E+03		1.0E+03			
110	03	1.0E+03		1.0E+03			
117	03	1.0E+03	20	1.0E+03			
118	03	1.0E+04	30	1.0E+04	68	2.6E+05	6.3E+05
	03	1.0E+04	27	1.0E+04	61		
120 121	03	1.0E+04	20	1.0E+04	59		
121	P	1.0E+02	2	1.0E+02	19	1.7E+02	1.8E+03
122	P	1.0E+02	1	1.0E+02	22		
123	P	1.0E+02	2	1.0E+02	14		0.00
124	Q	1.0E+02	5	1.0E+02	34	5.7E+02	3.9E+03
125	Q	1.0E+02	4	1.0E+02	40		
120	Q	1.0E+02	8	1.0E+02	42		

PLATE #		Dilution	FC	Dilution	FS	FC per	FS per
	type	factor	counted	factor	counted	gram sed.	
1	A	1.0E+03	78	1.0E+03	198	7.8E+04	2.0E+05
2	Α	1.0E+03	85	1.0E+03	193		
3	Α	1.0E+03	70	1.0E+03	210		
4	В	1.0E+03	88	1.0E+03	72	9.1E+04	7.7E+04
5	В	1.0E+03	98	1.0E+03	75		
6	В	1.0E+03	88	1.0E+03	85		
7	C 1	1.0E+03	83	1.0E+03	58	8.5E+04	6.4E+04
8	C1	1.0E+03	78	1.0E+03	64		
9	C1	1.0E+03	93	1.0E+03	70		
10	C2	1.0E+03	82	1.0E+03	72	7.9E+04	7.3E+04
11	C2	1.0E+03	78	1.0E+03	77		
12	C2	1.0E+03	77	1.0E+03	69		
13	C3	1.0E+03	74	1.0E+03	56	7.8E+04	5.6E+04
14	C3	1.0E+03	70	1.0E+03	63		
15	C3	1.0E+03	90	1.0E+03	49		
16	D	1.0E+03		1.0E+03		ERR	ERR
17	D	1.0E+03		1.0E+03			
18	D	1.0E+03		1.0E+03			
19	D	1.0E+04	17	1.0E+04	45	2.1E+05	4.7E+05
20	D	1.0E+04	23	1.0E+04	47		
21	D	1.0E+04	23	1.0E+04	48		
22	E	1.0E+03		1.0E+03		ERR	ERR
23	E	1.0E+03		1.0E+03			
24	E	1.0E+03	0.5	1.0E+03			
25	E	1.0E+04	25	1.0E+04	32	2.0E+05	2.7E+05
26	E	1.0E+04	12	1.0E+04	24		
27	E	1.0E+04	24	1.0E+04	25		
28	F1	1.0E+03		1.0E+03			ERR
29	F1	1.0E+03		1.0E+03			
30	F1	1.0E+03	0.1	1.0E+03	10		
31	F1	1.0E+04	21	1.0E+04	18	2.0E+05	1.8E+05
32 33	F1	1.0E+04	18	1.0E+04	18		
33 34	F1 F2	1.0E+04	20	1.0E+04	17	TDD	
34		1.0E+03		1.0E+03		ERR	ERR
33 36	F2	1.0E+03		1.0E+03			
	F2	1.0E+03	10	1.0E+03	1.4	0.17.05	1 47 05
37 38	F2	1.0E+04	19	1.0E+04	14	2.1E+05	1.4E+05
39	F2 F2	1.0E+04	19	1.0E+04	12		
39 40	F2 F3	1.0E+04	24	1.0E+04	16	PDD	PDD
40 41	F3 F3	1.0E+03		1.0E+03		ERR	ERR
41 42	F3 F3	1.0E+03		1.0E+03			
42	F3 F3	1.0E+03 1.0E+04	15	1.0E+03	20	1 40.05	1 77 . 05
43	1.3	1.06704	15	1.0E+04	20	1.4E+05	1.7E+05

Table D.6 Summary of data for day 25.

Table D.6 continued.

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
44		1.0E+04	14	1.0E+04	16	8	<u> </u>
45	F3	1.0E+04	14	1.0E+04 1.0E+04	10		
46	Ğ	1.0E+00	15	1.0E+04 1.0E+01	14	ERR	ERR
47	Ğ	1.0E+00		1.0E+01		Lini	LIM
48	Ğ	1.0E+00		1.0E+01			
49	Ğ	1.0E+01	125	1.0E+02	21	1.2E+03	2.3E+03
50	G	1.0E+01	130	1.0E+02	23	1.22.00	2.52105
51	G	1.0E+01	98	1.0E+02	25		
52	Н	1.0E+00		1.0E+01		ERR	ERR
53	Н	1.0E+00		1.0E+01			
54	H	1.0E+00		1.0E+01			
55	H	1.0E+01	100	1.0E+02	19	9.7E+02	1.8E+03
56	H	1.0E+01	96	1.0E+02	18		
57	H	1.0E+01	95	1.0E+02	16		
58	I1	1.0E+00		1.0E+01		ERR	ERR
59	I1	1.0E+00		1.0E+01			
60	I1	1.0E+00		1.0E+01			
61	I1	1.0E+01	110	1.0E+02	20	1.1E+03	2.0E+03
62	I1	1.0E+01	114	1.0E+02	21		
63	I1	1.0E+01	118	1.0E+02	18		
64	I2	1.0E+00		1.0E+01		ERR	ERR
65	I2	1.0E+00		1.0E+01			
66 67	I2	1.0E+00		1.0E+01			
68	I2 I2	1.0E+01		1.0E+02		ERR	ERR
69	12 12	1.0E+01		1.0E+02			
70	I2 I3	1.0E+01 1.0E+00		1.0E+02		EDD	EDD
70	13 13	1.0E+00 1.0E+00		1.0E+01		ERR	ERR
71	13 I3	1.0E+00		1.0E+01 1.0E+01			
73	I3 I3	1.0E+00 1.0E+01		1.0E+01 1.0E+02		EDD	
74	13 I3	1.0E+01		1.0E+02 1.0E+02		ERR	ERR
75	I3 I3	1.0E+01		1.0E+02 1.0E+02			
76	J	1.0E+01	64	1.0E+02	55	6.8E+05	5.2E+05
77	J	1.0E+04	74	1.0E+04	52	0.01 +05	J.2L+0J
78	J	1.0E+04	65	1.0E+04	49		
79	ĸ	1.0E+04	70	1.0E+04	48	7.4E+05	4.0E+05
80	Κ	1.0E+04	70	1.0E+04	.0	//IL:05	1.02105
81	ĸ	1.0E+04	83	1.0E+04	32		
82	L1	1.0E+04	65	1.0E+04	42	5.9E+05	4.9E+05
83	L1	1.0E+04	60	1.0E+04	56	2	
84	L1	1.0E+04	51	1.0E+04	50		
85	L2	1.0E+04	57	1.0E+04	39	6.0E+05	3.8E+05
07	L2	1.0E+04	62	1.0E+04	35		
86 87	L2 L2	1.0E+04 1.0E+04	02	1.06+04	55		

Table D.6 continued.

PLATE #	Sediment	Dilution	FC	Dilution	FS	FC per	FS per
	type	factor	counted	factor	counted	gram sed.	gram sed.
88	L3	1.0E+04	69	1.0E+04	39	6.6E+05	4.1E+05
89	L3	1.0E+04	65	1.0E+04	39	0.01	
90	L3	1.0E+04	63	1.0E+04	44		
91	Μ	1.0E+03		1.0E+03			ERR
92	Μ	1.0E+03		1.0E+03			
93	Μ	1.0E+03		1.0E+03			
94	Μ	1.0E+04	17	1.0E+04	72	1.8E+05	6.9E+05
95	M	1.0E+04	19	1.0E+04	60		
96	M	1.0E+04	19	1.0E+04	75		
97	N	1.0E+03		1.0E+03			ERR
98	N	1.0E+03		1.0E+03			
99	N	1.0E+03		1.0E+03			
100 101	N	1.0E+04	17	1.0E+04	67	2.0E+05	6.8E+05
101	N N	1.0E+04	22	1.0E+04	68		
102	01	1.0E+04 1.0E+03	21	1.0E+04	69		
103	01	1.0E+03 1.0E+03		1.0E+03 1.0E+03			ERR
104	01	1.0E+03		1.0E+03 1.0E+03			
105	01	1.0E+03 1.0E+04	17	1.0E+03 1.0E+04	52	1.9E+05	5.0E+05
107	ŎĨ	1.0E+04	20	1.0E+04	51	1.72+05	3.0E+03
108	Ŏ1	1.0E+04	19	1.0E+04	46		
109	Ō2	1.0E+03		1.0E+03	10		ERR
110	O2	1.0E+03		1.0E+03			LINK
111	O2	1.0E+03		1.0E+03			
112	O2	1.0E+04	18	1.0E+04	54	1.9E+05	4.8E+05
113	O2	1.0E+04	18	1.0E+04	43		
114	O2	1.0E+04	20	1.0E+04	47		
115	O3	1.0E+03		1.0E+03			ERR
116	03	1.0E+03		1.0E+03			
117	03	1.0E+03		1.0E+03			
118	03	1.0E+04	24	1.0E+04	48	2.2E+05	4.2E+05
119	03	1.0E+04	19	1.0E+04	44		
120	03	1.0E+04	22	1.0E+04	34		
121 122	P	1.0E+01	19	1.0E+02	19	1.8E+02	2.1E+03
122	P	1.0E+01	16	1.0E+02	21		
123	P	1.0E+01 1.0E+02	18	1.0E+02	22	5 00 00	
124	N X	1.0E+02 1.0E+02	6	1.0E+02	33	5.0E+02	3.8E+03
125	Q Q Q	1.0E+02 1.0E+02	4 5	1.0E+02 1.0E+02	40 40		
120	Q	1.015702	5	1.06+02	40		

PLATE #	Sediment type	Dilution factor	FC counted	Dilution factor	FS counted	FC per gram sed.	FS per gram sed.
1	Α	1.0E+03		1.0E+03	150	7.1E+04	1.5E+05
2 3 4 5	Α	1.0E+03	69	1.0E+03			
3	A	1.0E+03	72	1.0E+03			
4	В	1.0E+03		1.0E+03	60	7.1E+04	5.6E+04
5	В	1.0E+03	74	1.0E+03	55		
6	В	1.0E+03	68	1.0E+03	54		
7	C1	1.0E+03		1.0E+03	58	6.8E+04	5.5E+04
8 9	C1	1.0E+03	72	1.0E+03	51		
9	C1	1.0E+03	63	1.0E+03	57		
10	C2	1.0E+03	73	1.0E+03	55	7.0E+04	5.2E+04
11	C2	1.0E+03		1.0E+03	52		
12	C2	1.0E+03	66	1.0E+03	50		
13	C3	1.0E+03		1.0E+03	56	7.2E+04	5.2E+04
14	C3	1.0E+03	72	1.0E+03	50		
15	C3	1.0E+03	72	1.0E+03	49		
16	G	1.0E+01	51	1.0E+01	56	4.5E+02	5.5E+02
17	G	1.0E+01	44	1.0E+01	54		
18	G	1.0E+01	41	1.0E+01	55		
19	Н	1.0E+01	43	1.0E+01	48	4.7E+02	5.3E+02
20	Н	1.0E+01	47	1.0E+01	58		
21	H	1.0E+01	51	1.0E+01	54		
22	Ι	1.0E+01	29	1.0E+01	55	3.1E+02	5.4E+02
23	Ι	1.0E+01	37	1.0E+01	49		
24	Ι	1.0E+01	28	1.0E+01	58		

Table D.7 Summary of data for day 30.