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ABSTRACT Weintroduce two simple methods for the statistical comparison of the temporal pattern
of life-cycle events between two populations. The methods are based on a translation of stage-
frequency data into individual ‘times in stage’. For example, if the stage-k individuals in a set of samples
consist of three individuals counted at time ¢, and two counted at time t,, the observed times in stage
k would be (1, t;, t;, t,, t,). Times in stage then can be compared between two populations by
performing stage-specific ¢-tests or by testing for equality of regression lines of time versus stage
between the two populations. Simulations show that our methods perform at close to the nominal level,
have good power against a range of alternatives, and have much better operating characteristics than
a widely-used phenology model from the literature.
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Quantitative models of phenology are useful for de-
scribing the timing of life-cycle events and for com-
paring patterns of development between different
populations, locations, and times. Insect phenology
has been an important component of studies of pest
management (Petitt et al. 1991, Candy 2003), inter-
actions between insect species and their host plants
(Volney and Cerezke 1992), spatial and temporal vari-
ation in development rate (Weber et al. 1999), and
effects of climate change (Hodgson et al. 2011).

Many approaches have been suggested for model-
ing and analyzing phenology data, including logistic
stochastic processes (Dennis et al. 1986), semi-
Markov processes (Munholland and Kalbfleisch
1991), generalized linear models (Manel and De-
bouzie 1997), continuation ratios (Candy 2003), cir-
cular statistics (Morellato et al. 2010), and generalized
additive models (Hodgson et al. 2011). Here we pres-
ent new methods for the statistical comparison of
phenology between populations, based on ¢-tests and
simple linear regression. We discuss implementations
of the methods that are appropriate for simple random
sampling and cluster sampling of insects. In addition,
we use simulation to compare the performance of our
methods to that of the logistic phenology model of
Dennis et al. (1986), an alternative approach that has
been widely used and discussed.

We claim that our approach is superior for com-
paring phenology between different populations or
locations. Other models (e.g., degree-day models for
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specific organisms) may be superior for other uses,
such as predicting the timing of developmental events.

A motivating example used throughout the paper
is the phenology of the cinnabar moth, Tyria jaco-
baeae L. (Lepidoptera: Arctiidae), in the Pacific
Northwest region of the United States. This moth,
which was introduced to North America as a bio-
control agent for ragwort (McEvoy et al. 1991),
develops from the egg to adult through five larval
stages and a pupal stage.

Notation and Data Structure. We are interested in
investigating the development of an organism that has
a life cycle with K prepupal stages. For the cinnabar
moth we have K = 6, for egg, L1, 12, L3, L4, and L5.
At each of | sampling occasions, counts are obtained
for each development stage; ny is the observed count
for sampling occasion j,j = 1, ..., ], and stage k, k =
1,...,K Lett;be the time (calendar time or accumulated
degree-days) associated with the j” sample. Such data
may be gathered for more than one population or loca-
tion, and the goal is then to compare the timing of
life-cycle events between different populations, and to
perform tests of the null hypothesis that the phenological
patterns are the same across populations.

The Logistic Phenology Model. Dennis et al. (1986)
proposed a logistic phenology model based on the bud
phenology model of Osawa et al. (1983). The amount
of development up to time ¢ is modeled as a stochastic
process S(t). The process S(t) is modeled with a lo-

T
gistic distribution with mean t and variance ?B%t,

where B, is a parameter that determines the spread of
the stochastic process at time t. Parameters —o =
Bi = ... = Bx., = o are then used to model
development as follows:
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P(Stage 1 at time t) = P(S(t) = B;)
P(Stage 2 at time t) = P(B, = S(t) = By)

[1]
P(Stage K at time t) = P(Bx_; = S(¢))

The model may be fit to the observed data using a
maximum likelihood approach, conditioning on the
number of individuals observed at each sampling oc-
casion. Hypothesis tests may be performed to compare
the resulting estimates of (B, By, - - ., Bx_;) between
two populations; details are given in Appendix 1 and in
the original paper by Dennis et al. (1986).

Comparison of Observed Times in Stage. We pres-
ent two simple approaches to comparing phenology
between two populations that are based on the “av-
erage” times that the organism is observed in a given
stage. A set of observed times for each of the K stages
is constructed from the count data as follows. Let

J
% n;; be the total number of individuals ob-

N¢ =
=1
served in stage k, and define
X = (Xu, Xpoo -+ 0 Xiw)
to be the set of observed times obtained by repeating
time ¢; a total of ny, times for each j = 1, ..., J. The
average time in stage k is then
Nk
Xk: Ein/Nk, [2]

i=1

Table 1. Hypothetical data
Number observed
Sample Time
Stage 1 Stage 2

1 2.6 3 0
2 4.7 5 1
3 48 2 4
4 5.1 1 7

For instance, assume the data for a particular pop-
ulation are as in Table 1. Then the sets of observed
times would be:

X, =(2.6,2.6,2.6,4.7, 4.7, 47,47, 47,48, 4.8, 5.1)
X, =1(4.7,48,48,48,48,51,5.1,51,5.1, 5.1,
5.1, 5.1).

We consider two ways of using the time-in-stage data
to compare two populations.

1. The t-test approach. To compare stage k between
two populations, Welch’s (1951 ) two-sample ¢-test can
be performed on (X); and (X}),, the observed times
for stage k in populations 1 and 2, respectively. Let p,
be the resulting P value. The smaller the value of p,
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the stronger the evidence against the null hypothesis
that the mean time in stage k is the same in the two
populations.

A “global” test of the hypothesis that the two pop-
ulations have identical phenology can be based on
Fisher’s meta-analysis method of combining P values
(Fisher 1970). Calculate

Q= -2 log(py,

k=1

where p, is the P value obtained for stage k. Under
the null hypothesis, assuming independence of the P
values, Q has a y3¢ distribution.

There may be some weak dependence among the
stage-specific P values. For example, if stage k tends to
have alarger mean time (or accumulated degree days)
in one population, that will tend to increase the sizes
of the means for subsequent stages in that population.
However, these effects will likely be small under the
null hypothesis of identical distributions between the
two populations.

2. The Linear Regression Approach. For each ob-
servation in the data set, form a triplet of values, (X;,
Y,, Z;), where X; is the stage of individual i (coded as
1,2,...,K), Y, is the time (or degree days) at which
individual i was encountered, and Z, identifies which
of the two populations individual i is from. Then fit two
regression models, using ordinary least squares:

Model 1: E(Y,) = Bo + lei
Model 2: E(Y)) = By + B.X; + B:Z; + B:3X.Z;

Model 2 fits a separate regression line for each
population. To test the null hypothesis that the two
lines are the same (i.e., B, = B3 = 0), we can do an
extra-sum-of-squares test comparing Models 1 and 2.
Let RSS; and df; be the residual sum of squares and
residual degrees of freedom, respectively, for Model j
(j = 1, 2). Compute

_ RSS, — RSS;  RSS, 5
TTah-dn Cdh 131
and obtain a P value by comparing F* to an F distri-

bution with (df; — df,) numerator degrees of freedom
and df, denominator degrees of freedom.

ok

A simple example of the use of these approaches is
presented, along with R code, in Appendix 2.

Both of these approaches can be extended easily to
compare more than two populations. The t-test
method generalizes to Welch’s contrast test, which
does not assume equal variance between the groups
being compared (Welch 1951). At each stage, Welch’s
contrast test is used to test that all of the groups have
the same mean observation time for that stage; then
Fisher’s combined P value is computed in exactly the
same way as for two populations. The regression
method is extended easily by incorporating a factor
variable that indicates which population each obser-
vation comes from. A full model containing stage, the
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population factor, and all of the interaction terms
between stage and population is then compared to a
reduced model that includes only stage, generating an
F-statistic as in Equation 3. For both of these ap-
proaches, a significant result would imply that it is
unlikely that all of the populations have exactly the
same phenology pattern. Identifying which popula-
tions differ would require post-hoc tests and possible
adjustments for multiple comparisons.

The Case of Cluster Sampling. As presented above,
the logistic phenology model and the two approaches
based on time in stage all assume that we have simple
random samples of the animals in two populations. In
practice, it is more likely that some form of cluster
sampling is used to gather data. For example, Kemp et
al. (1986) enumerated budworms on individual
branches removed from randomly selected trees. If
cluster sampling is used, it is essential that the analysis
method account for the dependence in the data that
this induces.

Suppose we randomly select P plants from each
population and then enumerate all of the animals on
each plant. If X; ,, is the time (or degree days) asso-
ciated with the s" individual of stage k on plant p, and
N, is the total number of stage-k individuals on plant
p, then our data for stage k look like:

Xy =Xt Xpao -+ s kakl)> (Xjat, Xias

oo Xianw)s o (Xiprs Xipao -+ + o X 1.
The mean for stage k in a particular site is
. 1 PN
D E Exkps > [4]

EP Nkp p=1ls=1
p=1
and the stage-k difference between locations is

D, = X (location 1) — X (location 2). [5]

Because of the clustering of observations on plants,
the two methods based on time in stage, as described
in the preceding section, underestimate the variance
of the observed times. Simulations show that this can
result in grossly inflated rejection rates when the null
hypothesis is true. We assume the same problem af-
fects the logistic phenology model, but we have not
explored this. We developed bootstrapping ap-
proaches to properly estimate the variances for our
two methods when cluster sampling is used; these are
described in Appendix 3.

Comparison of the Methods. We used simulation to
compare the performances of the methods under the
assumption of random sampling. The following pro-
cedure was performed 500 times for each set of sim-
ulations. We chose random starting times in a 2-wk
window for two sets of 5,000 eggs. For each individual,
we randomly selected durations of six stages (egg
through L5) from a normal distribution having a mean
of 10 d and standard deviation of 2 d. The individuals
were allowed to grow according to these stage dura-
tions, over a 10-wk period. At weekly intervals, ran-
dom samples of size equal to 1% of the starting pop-
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Fig. 1. Rejection rates of (a) the logistic phenology
model, and (b) the new methods based on #-tests (solid line)
and linear regression (dashed line), applied to data simulated
under the null hypothesis. The horizontal axis gives the
proportion of the original cohort (of 5,000 animals) sampled
for each combination of location and date. See the text for
other details of the simulations. Each point represents 500
simulations. Points falling within the gray regions are statis-
tically indistinguishable from 0.05 (at the 0.05 level).

ulation were taken (with replacement) from the two
sets of insects, and the numbers of individuals in the
different stages were recorded. We then compared
the two sets of sampled individuals using the logistic
phenology model and the two approaches based on
time in stage.

First, we consider the performances of the methods
when the null hypothesis is true, i.e., when there are
truly no differences in phenology between popula-
tions. As shown in Fig. 1, the rejection rates for the
logistic phenology model are strongly dependent on
the proportion of the original cohort (of 5,000 ani-
mals) that is sampled, and they can stray widely from
the nominal 0.05: for the smallest samples in the figure,
the rejection frequency was 0.61, and for the largest
samples, it was just 0.008. This behavior alone suggests
that the logistic model is not a useful tool for com-
paring phenology patterns between populations.

The two methods based on time in stage have close
to the nominal level for all sample sizes, though there
is a tendency for rejection frequencies to increase as
sample size increases (Fig. 1b). This appears to be due
to dependence that is introduced when a sizeable
fraction of the original cohort is sampled.
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Fig. 2. Rejection rates of the t-test and regression-based
methods and the logistic phenology model under a range of
alternatives. The rates for the logistic model are calibrated to
give 2 0.05 rejection probability under the null hypothesis (cf.
Figure 1a). In (a), the baseline stage durations are 10 d for
all six stages; in (b), the durations are 12, 11, 10,9, 8 and 7 d,
for egg through L5. The horizontal axis shows the difference
in mean stage durations between populations, assumed the
same for all six stages. Each point represents 500 simulations;
vertical lines are 95% confidence intervals.

Fig. 2 shows power curves for the two methods
based on time in stage, for increasing differences in
mean stage duration between populations. In addition,
we show calibrated power for the logistic method, i.e.,
we use a cutoff for statistical significance (4.5 X 1077)
that would yield a 5% level under the null hypothesis
for this sample size (cf. Figure 1a). The method based
on linear regression is more powerful than the method
based on t-tests for the alternatives used for Fig. 2, and
for other alternatives considered in Appendix 4. Sur-
prisingly, the regression method works well even
when the true relationship between time and stage is
nonlinear (Fig. 2b, Appendix 4). The logistic method,
even after calibration, is inferior to the other two
methods.

Application to the Cinnabar Moth Data. We com-
pared the phenology of the cinnabar moth between
two sites in western Oregon: one in the Coast Range
and the other in the Willamette Valley. (These two
sites were chosen arbitrarily from four that were sam-
pled by PBM and KMH in 2010.) On each of 11 (Coast
Range) or 12 (Willamette Valley) sampling dates,
thirty plants were randomly selected from 50 previ-
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Fig.3. Boxplots of observed degree-days by stage for two
locations, based on the cinnabar moth data. The numbers
across the bottom of the plot are stage-specific P values from
the t-test approach (the P value for L3 is 5.2 X 10~%). The
global P value from the ¢-test approach and the single P value
from the regression-based approach are both highly signifi-
cant (see text). All Pvalues are based on bootstrap-corrected
variance estimates, as described in Appendix 3.

ously marked plants, and all of the eggs and larvae on
each plant were enumerated. Pooled over all sampling
dates, 12,021 individuals were counted from the Coast
Range site, and 5,768 individuals were counted from
the Willamette Valley site. (Because sampling was
nondestructive, it is possible that some individuals
were counted on more than one date.)

We used the two methods based on time in stage to
compare phenology between these two locations. Be-
cause of the cluster sampling used in the gathering of
data, it was essential to use the bootstrapping estima-
tion of standard errors described in Appendix 3. Sim-
ulations show that, if we were to use the unadjusted
methods that are appropriate for random sampling, we
would greatly overestimate the evidence for differ-
ences between locations.

Fig. 3 shows a graphical summary of the observed
times in stage for the two sites. Based on the ¢-test
approach, the stage-specific P values are statistically
significant (<0.05) for three stages and nonsignif-
icant for three stages. The global P value from the
t-test approach is 1.5 X 105, and the single P value
from the regression-based approach is 5.9 X 1075,
suggesting real differences in phenology between
these two sites.

To illustrate the importance of adjusting standard
errors for the cluster sampling that was used in data
collection, we redid the stage-specific comparisons
summarized in Fig. 3, ignoring the clustering of insects
on plants. The P values from the resulting ¢-tests (with
the adjusted P values from Fig. 3 in parentheses) are:
egg, 43 X 1072° (0.22); L1, 0.049 (0.77): 12, 1.5 X
10770 (0.0084); 1.3, 7.6 X 107'°* (5.2 X 1073); 1.4, 0.24
(0.46); and L5, 1.4 X 10~'% (0.0017).
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Discussion

The two tests based on observed times in stage
operate at close to the nominal level (Fig. 1) and have
good power against a range of alternatives (Fig. 2,
Appendix 4). The logistic phenology model, however,
has a level that can differ markedly from the nominal
value (Fig. 1), and, even after calibration, it is less
powerful than the two other approaches (Fig. 2).

The interpretation of the parameters in the logistic
phenology model is difficult. Heuristically, the rela-
tionships in (1) imply that “Individual i will be in stage
k at time ¢ if the random variable S, (t) is in the k" of the
intervals defined by -0 = B, = ... = B _; =" The
parameter f3, is related to the variance of the stochastic
process that determines the intervals in (1): smaller val-
ues of 3, indicate that the stages do not overlap each
other very much in the population, whereas larger values
of B, indicate that at any given time there may be indi-
viduals in several different stages.

The models based on observed time in stage are
more easily understood. The estimates X, (Equation 2)
provide a simple summary of the times at which stage
kis observed in a particular population. A t-test can be
used to compare these summaries between popula-
tions for each stage, and the stage-specific results can
be combined into a global P value for testing whether
the two populations have the same phenology. Alter-
natively, one can fit linear regressions of observed
times versus stage for each population, and then com-
pare the lines between populations. The regression-
based method was somewhat more powerful against
the alternatives that we considered, but the t¢-test
approach has the advantage that it provides stage-
specific P values.

The power and calibration of all of these methods
will depend on the sampling frequency. More fre-
quent sampling will increase the (calibrated) power,
but will also slightly increase the probability of a Type
Ierror, because the correlation of the observations will
increase with the chance that an individual is sampled
more than once. In practice, sampling frequency is
likely constrained by time and budgetary consider-
ations. We therefore recommend sampling as often as
is feasible, with the understanding that the improve-
ment in power must be balanced against the risk of
obtaining a highly correlated sample if some individ-
uals are encountered repeatedly.

In summary, the methods based on observed time in
stage provide a simple way of comparing phenology
between sites that is easily implemented and interpreted.
In addition, simulations show that these methods have
much better operating characteristics than the logistic
phenology model, a more complicated approach that has
been used in past studies of phenology.
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Appendix

Appendix 1: Hypothesis Testing with the Logistic
model. As described by Dennis et al. (1986), the max-
imum-likelihood estimates of the model parameters
have an asymptotically normal distribution. Letting

B, m = 1 or 2, be the estimate of B, for population
m, single-parameter tests are based on the statistic
o = Bu — B
K T
\ 04+ 0%

for k = 0, K — 1, where 6, and §;, are the
estimated standard errors of the estimates B;, and B,
respectively. Asymptotically, z, has a standard normal
distribution under the null hypothesis, so two-sided P
values may be obtained as p, = 2 min (®(zy), 1

D ().

Dennis et al. (1986) present a global test based on
the asymptotic multivariate normal distribution of the
vector B = (By, B -Br_y). Let B, and B, be the
vectors for populations 1 and 2, respectively, and let S,
and S, be the corresponding estimated covariance
matrices. Then a global test statistic given by

T= (ﬁliﬁZ)T(sl + Sz)il(ﬁlfﬁz)

has a i asymptotic distribution under the null hy-
pothesis. Therefore, a p-value for the global test of the
hypothesis that the two populations have identical
phenology across all stages may be obtained by com-
paring the statistic T to a g distribution.

Appendix 2: A Simple Example with R Code. Sup-
pose we have random samples of larvae from two
locations, yielding Table Al. Applied to these data, the
t-test method gives stage-specific P values (egg
through L5) 0f0.013, 0.82,0.26, 0.57, 0.26 and 0.22, and
aglobal Pvalue of 0.099. The regression-based method
gives a P value of 0.16. R code (R Development Core
Team 2011) that can be used to implement our meth-
ods is given below.

R code:
phen.test <- function (input=‘“example.

txt”, method=1, prnt=T) {

d <- read.table(input, header=T)
sites <- sort(unique (dsSite))
n.site <- 2

n.stage <- 6
counts <- cbind(d$SEgg, dsLl, dSL2,
dsn4, dsLs)

dsL3,

pvals <- rep(NA, n.stage)
day <- site <- stage <- NULL
for (i in 1l:n.stage) {
for (j in 1l:n.site) {
ind <- d$Site==sites[]j]
day.new <- rep(d$Dhay[ind],
[ind,di])

day <- c(day, day.new)
site <- c(site, rep(sites[j],
length (day.new)))

counts

ENVIRONMENTAL ENTOMOLOGY
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Appendix 1 Table 1.

sites

Hypothetical phenology data from two

Site Day Egg L1 L2 L3 L4 L5
1 194 20 10 0 0 0 0
1 201 3 5 10 1 0 0
1 208 0 0 10 8 2 0
1 215 0 0 0 10 15 1
1 222 0 0 0 0 5 10
2 194 15 12 0 0 0 0
2 201 12 5 8 0 0 0
2 208 0 0 5 15 0 0
2 215 0 0 4 9 10 2
2 222 0 0 0 0 5 1

stage <- c(stage, rep(i, length(day.
new) ) )

}

}

if (method==1) {

for (i in l:n.stage) {

indl <- site==sites[l] & stage==i

ind2 <- site==sites[2] & stage==i

tmp <- t.test(day[indl], day[ind2], var.
equal=F)
pvals[i]
}

combQ <- —2 * sum(log(pvals))

<- tmp$p.value

Pval <- 1 - pchisg(combQ, df=2*length
(pvals))

}

if (method==2) {

modl <- Im(day ~ stage)

mod2 <- 1lm(day ~ stage*factor(site))
tmp <- anova (modl, mod2)

Pval <- tmpS$Pr[2]

}

if (prnt==T) {

cat (paste (“\nStage-specific p-values:
\n"))

print (signif (pvals,4))

cat (paste (“\nGlobal P-value =",signif
(Pval,4),“\n"))

}

invisible (list (pvals=pvals, Pval=Pval))
}

Appendix 3: Bootstrap Estimation of Variances Un-
der Cluster Sampling. A single bootstrap sample is
obtained as follows. For each combination of location
and sampling date, select with replacement a sample
of plants having the same size as the original sample for
that location and date. Enumerate the individuals on
each plant, keeping track of the stage and time (or
degree days) for each individual. The subsequent
steps differ between analysis methods.

1. The t-test Approach. When the b™ bootstrap
sample is complete, compute (D), as in Equations 4
and 5, fork=1,... K

From the B bootstrap samples, compute for each k
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B
> (Dy,/B, and

b=1

Dy

D
\/2221[(@9» - D (B-1)

The two-sided P value for stage k is then p, = 2
min($p(z,), 1 — ¢(z,)), where ¢(¢) is the cumulative
distribution function of a standard normal random
variable.

2. The Regression Approach. When the b*" boot-
strap sample is complete, regress observed time vs.
stage (coded as 1, 2, ..., K) separately for the two
populations. Let (By;);, and (B,;), be the estimated
intercept and slope, respectively, for sample j (j = 1,
2) in bootstrap sample b. Calculate

(dy)y = (Bol)b - (Boz)b

(dy), = (Bll)b - (Bm)h-

Letd, = [(do_)p (dg)gs - - (do)gl’s (_11 = [(d)1, (dy) 2
- (dy)pl', dy==F-1(dy)i/B, and d; = =F_(d,);/B.
Compute

T =

~ o o Vardy)  Cov(dy dy)\[dy
0= dl)(ﬁ&(do, d)  Var(d) ><d1>’

Where Var (-)and Cov () indicate sample variance
and covariance, respectively. A p-value for testing the
hypothesis that the two regression lines are the same
can then be obtained as P()3 > Q), where x3 is a
chi-square random variable with 2 degrees of freedom.

Appendix 4: Further Simulation Results. Here we
present comparisons of the performances of the #-test
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and regression-based approaches in some additional
circumstances. Simulations of two populations were
performed as described in the text, under Comparison
of the Methods.

Nonmonotonic Stage Durations. One population
had stage durations, in days, of (12, 8,12, 8,12, 8), and
the other population had durations of (12 + §,8 + §,
12+ 68,8+ 8,12 + 8,8 + 8), with 8 ranging from 0 to
0.5 d. The following table shows the proportions of 500
simulations in which the null hypothesis of identical
phenology was rejected.

Appendix 4 Table 1. Rejection frequencies

Value of &
Method
0 0.1 0.2 0.3 0.4 0.5
t-test 0.042 0.080 0.178 0.348 0.580 0.798
Regression 0.062 0.096 0.290 0.522 0.808 0.966

Populations Differing With Respect to Only One
Stage. One population had stage durations, in days, of
(10, 10, 10, 10, 10, 10), and the other population had
durations of (10, 10, 10, 10 + §, 10, 10), with 8 ranging
from 0 to 2.5 d. The following table shows the pro-
portions of 500 simulations in which the null hypoth-
esis of identical phenology was rejected.

Appendix 4 Table 2. Rejection frequencies

Value of &
Method
0 0.1 0.2 0.3 0.4 0.5
t-test 0.040 0.090 0.156 0.264 0.430 0.660
Regression 0.082 0.104 0.256 0.430 0.684 0.884




