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Advancements in molecular biology and computer science have enabled 

researchers the ability to investigate the transcriptome ï the quantification of an 

organismôs RNA transcripts in response to its environment on a system wide scale. The 

collective chapters of this thesis utilize high-throughput RNA sequencing, which 

produces hundreds of millions of high-resolution reads. In combination with computer 

programs that can mine data with a biological purpose, the field of transcriptomics has 

changed our understanding of how genomes are expressed. The continual decrease in 

costs of transcriptomic studies lowers the barriers of partaking in such research.  

A RNA-Seq protocol was developed for two varieties of Triticum monococcum, a 

close ancestor of Triticum urartu, the A-genome progenitor of hexaploid wheat Triticum 

aestivum. The transcriptome captured in this study aimed to elucidate the genetic 

response in regulating photomorphogenesis. As no reference genome was available at the 

time, the T. monococcum transcriptomes were de novo assembled, annotated, and used to 

identify gene expression differences wild and domesticated diploid wheat. Furthermore, 

sequence reads were used to identify genetic markers in the form of single nucleotide 



 

polymorphisms and simple sequence repeats. This study provides data that contributes to 

the improvement of Triticum genus genome annotations, insights into transcriptional 

regulation during photomorphogenesis, and development of genetic markers. 

Rice (Oryza sativa) is a monocot grass that is a model cereal crop, but more 

importantly, responsible for feeding a majority of the world population. To better 

understand the genetic response of rice under salt stress, a high resolution investigation of 

the transcriptomic response was conducted over a period of 24 hours. Immediate 

response time-points were collected at 1, 2, and 5 hours post salt exposure. Prolonged 

response time-points were collected at 10 and 24 hours. We compared the transcriptomic 

profiles of IR29 ï a salt-sensitive breeding line, and Pokkali ï a salt-tolerant native 

variety. Our investigation reveals the transcriptomic composition of both varieties to be 

similar, however Pokkali exhibits an hour delay in response to salt stress. Futhermore, at 

24 hours post salt exposure, Pokkali returns to a nearly homeostatic condition, whereas 

IR29 continues to express salt-responsive genes. Sequence reads were aligned to the 

reference rice genome to identify single nucleotide polymorphisms and transcriptomes 

were assembled de novo to enable discover of simple sequence repeats.  

Altogether, this collective work of transcriptome analyses contributes to our 

understanding of how organisms respond to environmental cues. By leveraging next-

generation sequence technologies, we better understand the relationship between the 

genome and environment.
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Summary 

 The following thesis and supporting chapters document the global transcriptomic 

studies in various plant species. The genome is described as the set of all 

deoxyribonucleic acid (DNA) molecules produced in a single organism, whereas the 

transcriptome is the set of all ribonucleic acid (RNA) produced in an organism within a 

specific set of cells. The aim of transcriptomic analyses is to further elucidate the genetic 

response to environmental stimuli.  

 In this thesis, we explore and expand on the areas of gene expression, structural 

and functional architectures of transcriptomes, comparative and evolutionary biology, 

and genetic markers. Furthermore, the computational methodologies presented in this 

thesis may be used for a broader audience, capturing both current model and non-model 

species. Resources developed in this thesis create basic platform for researchers to study 

any number of plant species.  

 The utilization of transcriptomic studies provides a high-resolution analysis of 

how an organism responds to its environment. In plants, the ability to identify 

commonalities and differences in expression response at the gene-level sets up further 

investigations of individual gene targets. With the aid of improving sequencing 

technologies and bioinformatics tools, transcriptomic studies are suitable for both 

reference-based and reference-free approaches. 
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General experimental design 

 It is non-negotiable requirement to have a sound experimental design in order for 

a RNA-seq study to be successful. Starting with an outline of a biological question of 

interest, key factors that go into the design of an RNA-seq study start with the number of 

biological replicates, planning and executing distinct treatment groups to prevent bias and 

contamination of sequence data, method of RNA extraction, library design, and 

sequencing depth (Figure 1.1). 

 To determine the number of replicates for a RNA-seq study, the researcher must 

determine the potential variations; (1) within the organisms to be sampled, (2) in response 

to the treatment administered. For RNA-seq studies involving plants, keeping individuals 

in a growth chamber may reduce environmental variability. The statistical power is 

another factor that must be considered ï especially if the study goal is to determine 

statistically significant differences in expression between treatment groups. As a general 

rule of best practice, a minimum of 3 biological replicates per treatment group is strongly 

suggested. 

 In a typical cell, the composition of RNA is approximately 80% ribosomal RNA 

(rRNA), 15% transfer RNA (tRNA), and 5% messenger RNA (mRNA) (Lodish et al., 

2000). For a large majority of RNA-seq studies, researchers are interested in mRNA, 

since it is molecule that contains the nucleotide sequence of the amino acid protein 

products of gene expression. The method in which RNA is extracted from the collected 

sample generally captures the total RNA profile. A checkpoint for quality RNA is 

typically done by a Bioanalyzer to assess levels of degradation. 
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 A commonly used strategy to enrich mRNA in preparing sequencing libraries is to 

select for mRNA via poly(A) tail. This is achieved by using oligo(dT) primers that will 

bind to the poly(A) tail (Liang and Pardee, 1992). Following mRNA enrichment, 

sequencing libraries are produced by using reverse transcriptase to convert RNA to 

complementary DNA (cDNA). At this step, researchers will want to determine if they 

desire single-end (SE) or paired-end reads (PE). SE reads are inexpensive compared to 

PE reads and are typically sufficient for gene expression studies in model organisms. PE 

reads are highly recommended for non-model organisms and de novo assembly, as they 

preserve information on transcriptional directionality (Levin et al., 2010). Again, these 

options in experimental design should always keep in mind the scientific question that is 

proposed. 

 Finally, the last design option in a RNA-seq study before sequencing is performed 

is the desired sequencing depth ï the number of sequence reads produced from a sample 

by the sequencing machine. In a situation where resources are unlimited, the greater 

number of sequence reads increases the transcripts identified and more accurate 

quantification from each sample. However, the reality is that researchers must balance 

sequencing depth with available resources. In literature, the necessary sequencing depth 

ranges from hundreds of thousands to hundreds of million reads (Pollen et al., 2014; Sims 

et al., 2014). To determine an appropriate number of reads, a systematic approach of 

using archived data that is similar to the proposed sequencing project is recommended. 

This involves running subsets of sequence reads to identify differentially expressed genes 

to provide points on a saturation curve. The point at which the curve reaches its second 
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asymptote is the depth at which minimum number of reads is desired (Figure 1.2) 

(Tarazona et al., 2011). 

      

Sequencing technology  

 At its core, the aim of transcriptomics is to quantify the expression of an 

organismôs genes under a given condition. The expression profiles a researcher may 

choose to capture may range from tissues, environmental conditions, or time dependent 

samples.  

 Before high-throughput methods were developed, quantification of a single RNA 

transcript was obtained through Northern Blot (Alwine et al., 1977). This technology was 

displaced by the discovery of reverse transcriptase (Baltimore, 1970; Central dogma 

reversed, 1970; Temin and Mizutani, 1970). A major advantage that was gained in the 

use of reverse transcriptase to convert RNA to complementary DNA (cDNA) was the 

ability to amplify a sample through polymerase chain reaction (PCR), which eliminated 

the need for an abundance of starting sample as required by Northern Blot.  

 In 1977, the development of sequencing by chain termination provided a tool to 

obtain base pair resolution of transcripts from cDNA libraries (Sanger et al., 1977). This 

ultimately led to the sequencing of the first plant genome, Arabidopsis thaliana (PMC, 

2000) in 2000. The Oryza sativa subspecies Japonica and Indica were also sequenced in 

this manner (Goff et al., 2002; Yu et al., 2002) in 2002. 

 In the mid-1990s, the development of DNA microarrays enabled researchers the 

ability to measure the abundance a known set of transcripts. Through hybridization of 

transcripts to probes on a glass chip, thousands of transcripts could be quantified in a 
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single assay (Nelson, 2001; Schena et al., 1995). Advances in array design included two-

color fluorescent probe hybridization ï allowing for reliable measurement and relative 

abundance of specific sequences in samples (Shalon et al., 1996). 

 In the late-1990s and early 2000s, the founders of Solexa (acquired by Illumina in 

2007) developed a sequencing method that introduced reversible dye-terminators to 

enable the synthesis of DNA strands (Bentley et al., 2008). This method, known as 

ñsequencing by synthesisò enabled wide coverage and simultaneous sequencing of the 

genome. High-throughput DNA sequencing sparked by Illumina sequencing advanced 

the field of transcriptomics and contributed to the decrease in cost per reaction that 

mimics the trend of Mooreôs Law (Mardis, 2008; Mortazavi et al., 2008; Wang et al., 

2010; Wilhelm et al., 2008).  

 In particular, RNA-seq refers to the high-throughput sequencing method applied 

to cDNA that comes from RNA template. In comparison to microarray technology, RNA-

seq offers two key advantages. First, RNA-seq is not limited to sequencing known genes 

ï as is the case via hybridization approaches. This advantage opens the sequencing world 

to non-model species (Jain, 2011; Vera et al., 2008). The second advantage of RNA-seq 

in comparison to microarrays is the low levels of background signal due the number of 

sequence reads produced (Ozsolak and Milos, 2011). RNA-seq can detect a wide range of 

expressed transcripts, up to 5 orders of magnitude (Mortazavi et al., 2008). Third, the 

amount of input RNA is less for RNA seq. RNA-seq requires nanograms of input RNA 

whereas microarrays require micrograms (Hashimshony et al., 2012). Since the raw data 

represented in this thesis is from RNA-seq, the remainder of the thesis will focus on the 

data analysis for this sequencing method. 
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General RNA-seq Transcriptomics Data Analysis Pipeline 

To analyze the hundreds of millions of raw reads that a RNA-seq experiment may 

produce, data analysis requires bioinformatics software and the appropriate computing 

resources. A majority of the following methods used in data analysis were performed at 

the Center for Genome Research and Biocomputing (CGRB) at Oregon State University. 

The CGRB cluster contains nearly 4,000 cores and machines with up to 2 Terabytes of 

RAM. The CGRB cluster takes input from a command-line interface, hosting both Unix 

and R environments for users. Although there are a variety of software available, the 

basic data analysis pipeline contains; quality control, alignment, quantification, and 

differential expression. The following section will also discuss assembly and genetic 

marker discovery. 

 

Quality control  

Although RNA-seq produces hundreds of millions of reads per sample, not all 

reads are perfect. Due to biases in the amplification process via PCR (Kozarewa et al., 

2009) and potential AT or GC rich repetitive region of the transcriptome, sequencing 

errors are introduced. The accepted error rate for the Illumina platform is ~1% or 1/100 

bases called incorrectly. This is translated into a ñSequencing Quality scoreò where the 

quality, Q is defined by the following equation: 

ὗ  ρπÌÏÇὩ 

where ñeò is the estimated probability of a base incorrectly called (Sequencing Quality 

Scores). A quality score of 20 indicates a 1 in 100 probability of an incorrect base call 
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and 99% base call accuracy. Researchers may also choose to fine tune and trim 

potentially incorrectly called bases in reads, however there is always the debate of 

potentially trimming good data (Del Fabbro et al., 2013).  

 

Sequence Read Alignment  

To link sequence read abundance with gene expression, sequence reads must be 

aligned to a reference genome. In the case where no closely related reference genome is 

available, sequence reads may be aligned to a de novo assembled transcriptome, which 

will be detailed later. An effective aligner aims to align reads in their proper position, 

resolve any multiple mapping reads, and deal with splice junctions in eukaryotic mRNA 

ï all in a timely manner. It is particularly important for RNA-seq read aligners to deal 

with splice junctions appropriately to prevent misalignment and maintain accuracy of 

gene expression estimates (Dobin et al., 2013; Trapnell et al., 2009). 

De novo transcriptome assembly may be performed to construct full-length 

transcripts (Miller et al., 2010). This may prove useful to align sequence reads when no 

closely related reference genome is available. In order to utilize the de novo assembly as 

a reference, additional steps must be taken; most prevalent is functional annotation of 

assembled transcripts (Zdobnov and Apweiler, 2001). Not to be confused with de novo 

genome assembly, the quality control metrics with transcriptome assembly are not the 

same. Since the transcriptome is a dynamic measurement of the RNA an organism 

produces in a given environment, the metric of ñN50ò is not appropriate (OôNeil and 

Emrich, 2013). The quality of a de novo transcriptome assembly is based through 

statistics such as mean read length, the assigned annotations of transcripts, and frequency 
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of assembled transcript lengths (Figure 1.3) (Li et al., 2014a; Mikheenko et al., 2016; 

Smith-Unna et al., 2016). 

 

Quantification 

 Using the data generated from sequence read alignment, quantification of reads 

representing a region of the genome occurs. Quantification of reads may occur at the 

gene, exon, or transcript level. The most common output of read quantification is in 

counts representing a region. The HTSeq software package is the most renown 

standalone read counter for genes and exons (Nielsen et al., 2011), however there are 

several other software packages that may be more appropriate for transcript and isoform 

level quantification (Kim et al., 2015; Li and Dewey, 2011).  

 Although this thesis utilizes read count quantification, it should be noted that raw 

read counts alone are not the only component needed to compare expression levels 

among samples. Transcript length and total sample read numbers vary between samples 

within treatments and between treatments (Mortazavi et al., 2008). The measure ñreads 

per kilobase of exon model per million of readsò (RPKM) represents a within-sample 

normalization method that will remove the feature-length and library-size effects. 

Software packages such as Cufflinks and StringTie utilize this strategy (Pertea et al., 

2015; Trapnell et al., 2010). Differential expression analysis software that utilize input 

read count data employ different methods to deal with inter-sample variation and will be 

elaborated on in the following section. 

 After read counts are generated, a quality control step should be taken to assess 

the individual samples in the study. Under the assumption that variability between counts 
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in biological replicates within a treatment are low and across treatments are high, it 

should be expected that biological replicates within a treatment will cluster together in a 

principal component analysis. 

 

Differential Expression Analysis 

 As stated in the previous section, read count based differential expression must 

find a way to address the inter-sample variation that may affect gene expression levels. 

The first approach is to compute differential expression using discrete probability 

distributions, such as the Poisson or negative binomial distributions (Anders et al., 2013). 

These probability distributions accommodate an over dispersion of variance that expected 

from the random sampling in read counts between individual samples. As used in this 

thesis, the software package edgeR takes input read counts and performs the 

aforementioned fit to probability distribution (Robinson et al., 2010). Comparative 

differential expression analysis studies have shown that software package choice may 

affect the outcome of the analysis (Soneson and Delorenzi, 2013; Tang et al., 2015), but 

almost always offers no advantage between packages. This ambiguity should serve as a 

reminder for researchers to consider multiple options.   

 

Genetic Marker Development  

 The development of genetic and genomic resources is crucial for gene discovery 

and expression studies, especially in regard to non-model species. The volume of reads 

generated per sample in transcriptome sequencing provides an excellent opportunity to 

identify genetic markers. Single nucleotide polymorphisms/variants (SNPs/SNVs) may 
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be determined by analyzing alignment data with SNP calling software. An advantage to 

using RNA-seq data opposed to tradition whole genome sequencing is that the sequenced 

genic regions are enriched in transcriptome sequencing and increases the potential for 

detecting functional SNPs (Piskol et al., 2013). Simple sequence repeats (SSRs) may be 

identified by mining a transcriptome assembly (Temnykh, 2001). SSRs are very useful 

due to their instability which consequently leads to genetic diversity (Golubov et al., 

2010) in addition to being a cost-effective way to perform population genetics (Allendorf 

et al., 2010). 

 

Dissertation Outline 

 In this dissertation, we present our study of specific environmental stresses on 

crop plants by leverage RNA-seq technologies. In each chapter, we present our findings 

as we expand the genomic resources of rice and wheat.  

 In the absence of species specific genomic resources, Chapter Two reports 

strategies of dealing with this issue. For both Triticum monococcum accessions, we 

produced a de novo transcriptome assembly. By creating a reference for use in 

differential genes expression, we studied the photomorphogenesis profile for each wheat 

variety. Functional annotation via homology-based descriptions of predicted protein 

domains and gene ontology terms of the assembled transcriptomes further enriched 

genomic resources. 

 Chapter Three presents a study of a model organism, Oryza sativa. The 

transcriptomic profiles of two varieties known for their different responses to salt 

exposure were in a high-resolution time course. In this study, experiment design plays a 
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crucial role. The time intervals of which sampling took place enables the analysis of both 

immediate response and prolonged response of rice to salt stress. Similar to Chapter Two, 

Chapter Three compares the transcriptomic profiles of both rice variety. In this 

investigation, the advantage of studying a model organism is evident as species specific 

annotation resources are readily available. De novo assembly of each rice variety was 

performed, but primarily for identification of genetic markers. We focus on the findings 

SSRs in two candidate genes and their potential functional consequences in both 

varieties. Ultimately, this study provides a robust resource for applications in rice salt-

response trait improvement. 

 The common theme in this dissertation is to observe differential expression 

specific to environmental stress, identify candidate genes, genetic variants, and markers 

to provide informed decisions on potential marker-assisted selection tools for operational 

breeding programs. As stated in the preceding section, the potential for detecting 

functional SNVs is increased in transcriptome sequencing due to the enrichment of 

sequenced genic regions. This dissertation reveals differentially expressed genes and 

candidate genes containing markers that may be associated to their respective 

environmental stresses.
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Figure 1.1. RNA-Seq study workflow. 

 

A general workflow for RNA-Seq based studies. Experimental Design includes consideration of replicate number, treatment 

groups, sequencing depth, sequencing library type, and RNA extraction method. Quality Control includes trimming/filtering raw 

reads and read alignment. The pathway for bioinformatics analysis is dependent on the research question asked, but generally 

includes functional annotation, transcriptome assembly, gene expression analysis, and genetic marker discovery



 

 

19 

 
Figure 1.2. Determination of sequencing depth. 

 

Line graph shows the running of increasing subsets of sequence reads to identify 

differentially expressed genes to provide points on a saturation curve. The point at which 

the curve reaches its second asymptote (dashed line) is the depth at which minimum 

number of reads is desired ï in this graph approximately 50 million reads per sample. 
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A B 

C  

Figure 1.3. Evaluation of de novo transcriptome assembly. 

 

The quality of a de novo transcriptome assembly is based through statistics such as (A) number of transcripts/contigs assembled, (B) 

the assigned annotations of transcripts, and (C) frequency of assembled transcript lengths. 
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ABSTRACT 

Background: Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome 

progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of 

components regulating photomorphogenesis in diploid wheat.  In order to develop genetic 

and genomic resources for such a study, we constructed genome-wide transcriptomes of 

two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. 

aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. 

monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data 

derived from both etiolated and green seedlings. 

Principal Findings: The de novo transcriptome assemblies of DV92 and G3116 

represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ~90% 

of these transcripts from each accession to barley and ~95% of the transcripts to T. urartu 

genomes.  However, only ~77% transcripts mapped to the annotated barley genes and 

~85% transcripts mapped to the annotated T. urartu genes.  Differential gene expression 

analyses revealed 22% more light up-regulated and 35% more light down-regulated 

transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA 

sequence reads aligned against the reference barley genome led to the identification of 

~500,000 single nucleotide polymorphism (SNP) and ~22,000 simple sequence repeat 

(SSR) sites. 

Conclusions: De novo transcriptome assemblies of two accessions of the diploid wheat 

T. monococcum provide new empirical transcriptome references for improving Triticeae 

genome annotations, and insights into transcriptional programming during 
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photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional 

resources for the development of molecular markers.  

Keywords: Transcriptome; Wheat; Einkorn wheat; RNA-Seq; de novo assembly; NGS; 

SNP; SSR; Photomorphogenesis; Light regulation, Genetic diversity, Gene Ontology; 

mitochondrial transcription termination factor; late embryogenesis abundant protein; 

Rossmann-like alpha/beta/alpha sandwich fold; RUBISCO, chloroplast; gene expression, 

wheat A-genome; Triticum monococcum; photosystem-I subunit PSAK; photosystem-I 

subunit PSAH; Chlorophyll a/b binding protein LHCB; seed germination; light regulated 

gene expression; comparative plant genomics; comparative genomics 
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INTRODUCTION  

 Einkorn wheat is one of three cereal crops domesticated prior to 7000 B.C. that 

contributed to the Neolithic Revolution [1]. Stands of wild einkorn, subspecies Triticum 

monococcum ssp. aegilopoides, are extensive in rocky areas of southeastern Turkey [1]. 

Domesticated einkorn, subspecies T. monococcum L. ssp. monococcum L. (2n = 14) 

originated in the Karacadaĵ mountains of Turkey [2] and was widely cultivated during 

the Neolithic period. Domesticated einkorn differs from the wild accessions in possessing 

plumper seeds and tough rachis phenotypes that prevent seed shattering, a domesticated 

trait selected for avoiding loss of yield [3].  

 T. monococcum, carrying the representative diploid wheat A genome (AmAm), is 

closely related to T. urartu (AuAu), the donor of the A genome of cultivated hexaploid 

(AABBDD) wheat (T. aestivum) [4]. The genome size of T. monococcum is about 5.6 

Gb, which is 12 times the size of the rice genome and 40 times the genome of the model 

dicot plant Arabidopsis thaliana [5]. However, in comparison to the ~17 Gb genome size 

of common hexaploid wheat, the diploid T. monococcum offers relative simplicity and 

has been used extensively as a model [6]. The many existing wild populations of T. 

monococcum growing in their natural habitat have suffered little selection pressure and 

thus offer opportunities to study its diversity [7]. They also serve as a reservoir of useful 

alleles and traits, such as salinity tolerance [8] and disease resistance [9,10], and thus 

have been utilized for generating genetic maps to facilitate comparative mapping [11] and 

map-based cloning of genes [12,13].  Combining the sequence and positional information 

of the genes based on recently published barley (Hordeum vulgare) [14], T. urartu [15] 

and Aegilops tauschii [16,17] genomes with the genetic tools and transcriptome-based 
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resources available for T. monococcum reported herein will allow progress in future 

genetic studies in wheat and other closely-related species.  

 Light regulates a wide range of plant processes including seed germination, organ, 

cell and organelle differentiation, flowering [18ï21] and metabolism [22]. The 

germination of a seed in the dark follows skotomorphogenesis (the growth of an etiolated 

seedling). Upon exposure to light, seedlings go through photomorphogenesis (greening) 

that is marked by chlorophyll biosynthesis, differentiation of protoplastids into 

chloroplasts, the initiation of carbon assimilation, elongation and thickening of the 

hypocotyl, and the activation of the shoot apical meristem leading to the development of 

the first true leaves [23ï25]. Although the transition from skotomorphogenic to 

photomorphogenic growth has been well-documented in Arabidopsis [24,25], the 

complex gene networks at the genome level controlling this developmental transition in 

wheat are not well understood.  

 In order to investigate and identify the complex transcriptional network associated 

with seedling photomorphogenesis in Einkorn wheat, we conducted Illumina-based 

transcriptome analyses (RNA-Seq) of two T. monococcum subspecies: DV92, a spring 

Einkorn accession of the cultivated T. mononcoccum ssp. monococcum collected in Italy 

and G3116, a wild winter Einkorn, T. monococcum ssp. aegilopoides, collected in 

Lebanon [11].  Computational analysis of the transcriptome data provided functional 

annotations to the gene models and gene families. We also identified gene loci harboring 

SSR and SNP sites and predicted their consequences on transcript structure, coding 

features and expression.  

RESULTS 
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Sequencing and de novo assembly of transcriptomes 

 A total of twelve cDNA libraries were created, six from each of the DV92 and 

G3116 accessions.  These libraries represent three replicates prepared from dark-grown 

seedlings sampled eight days (8DD) after germination, and three replicates prepared from 

seedlings grown in the dark for eight days and then exposed to continuous light for 48 

hours, sampled eleven days after germination (48LL). The sequencing of cDNA libraries 

from the 8DD and 48LL samples on the Illumina HiSeq 2000 platform generated 39.56 

Gbp of nucleotide sequence from DV92 and 37.65 Gbp from G3116. De novo assemblies 

were performed using Velvet and Oases [26], resulting in a total number of 120,911 

transcripts for DV92 and 117,969 transcripts for G3116 (Ó 200 bp in length; Table 2.1). 

The assemblies of each accession were created in a two-step process: first, two separate 

assemblies were generated from optimized 31 and 35 K-mer lengths; second, transcript 

isoforms were clustered to obtain discrete assemblies for DV92 and G3116, representing 

the total number of unique transcripts after merging.  The quality of transcriptome 

assemblies was assessed with various statistical metrics including the overall number 

(coverage), average length and diversity of transcripts (the estimated number of discrete 

loci assembled), and via comparison with published, annotated genomes. The average 

length for DV92-derived transcripts was 1,847 bp; the average length for G3116-derived 

transcripts was 1,783 bp (Table 2.1). The overall frequency distributions of transcript 

lengths are similar to other de novo plant transcriptome assemblies [27ï29] and similar to 

the overall distribution of barley and T. urartu gene lengths (Figure S2.1). 

Comparisons with the Triticeae genomes 
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 To annotate, characterize and approximate the coverage of sequenced and 

assembled transcripts representing common gene loci, we compared the transcripts of 

DV92 and G3116 to transcripts of other plant species from Poaceae (Table 2.2) using 

BLAST [30]. Triticum shares a more recent common ancestor with barley than with 

Brachypodium [11], therefore, we chose the barley genome (Gramene 030312 v2.18) as 

the reference for further comparative analysis. Over 92% of transcripts from both DV92 

and G3116 were successfully mapped to the barley genome and show broad coverage of 

the genome (Table 2.2; Figure 2.1A).  Approximately 77% of DV92 and G3116 

transcripts mapped to ~90% of the barley gene models with Ó95% percent identity 

(Figure 2.1; Tables 2 and 3). In the reciprocal BLAST analysis, we successfully mapped 

~91% of the barley gene models to the G3116 transcriptome and ~93% of the barley 

transcripts to the DV92 transcriptome (Table 2.3).  

 Comparison of the DV92 and G3116 transcriptomes with the T. urartu (wheat A 

genome) and the A. tauschii (wheat D genome) genomes and gene models [15ï17] 

suggest that ~84% of the T. monococcum transcripts from both accessions mapped to the 

T. urartu gene models, while ~86% mapped to the A. tauschii gene models (Table 2.2). 

80-85% of the A. tauschii and T. urartu coding sequences matched DV92 or G3116 

transcripts in a reciprocal BLASTn analysis (Table 2.3).  

Functional annotation 

 InterPro domain annotations were assigned to 54,814 DV92 transcripts and 

53,627 G3116 transcripts based on analyses of putative polypeptide encoded by the 

longest Open Reading Frame (ORF) for a given transcript (Table S2.1).  InterPro domain 

mappings provided Gene Ontology (GO) annotations for 42,931 DV92 transcripts and 
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41,983 G3116 transcripts. Blast2GO [31] analysis provided GO annotations for 64,950 

DV92 and 61,783 G3116 transcripts (see Data Access section). Using both InterPro and 

Blast2GO methods, we assigned functional annotation to a total of 71,633 (59.0%) DV92 

and 69,437 (58.8%) G3116 transcripts. Overall, 2,897 and 2,867 GO terms were assigned 

to DV92 and G3116 transcripts respectively, with 2,742 GO terms common to both.  

Differential expression of genes during photomorphogenesis 

 The RNA-Seq short reads from the dark-grown, etiolated (8DD) and light-

exposed, green (48LL) samples were mapped against the respective transcriptomes of 

DV92 and G3116 to study light-regulated gene expression during photomorphogenesis.   

25,742 G3116 and 23,526 DV92 transcripts show Ó2-fold change in expression (p Ò0.05) 

between 8DD and 48LL samples (Figure 2.2A and B).  G3116 contains more light up-

regulated and down-regulated transcripts compared to DV92 (Figure 2.2A and C). The 

differentially expressed transcripts from both accessions maps to 7,248 (30%) unique 

barley homologs.  Henceforth, we analyzed differential expression of corresponding 

putative homologous T. monococcum genes in etiolated (8DD) and green (48LL) samples 

across two accessions DV92 and G3116 in a four-way comparison (Figure 2.2C). 

Compared to DV92, more than double the number of unique genes in G3116 are up- and 

down-regulated by light. Thirty-seven genes (Table S2.2) show a common profile across 

all four samples. This set includes homologs of light-harvesting chlorophyll B-binding 

protein, 3-ketoacyl-COA synthase, pyruvate kinase, tubulin beta chain, red chlorophyll 

catabolite reductase and cellulose synthase-like protein (Table S2.2). Interestingly, 

unique set of fifty-one genes show increased expression in DV92, but decreased 

expression in G3116 in response to light (Figure 2.2C). This set includes homologs of 
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rubisco activase, brassinosteroid-6-oxidase, 3-ketoacyl-CoA-synthase, histone H2A, 

SEC-C motif-containing protein, ATP-dependent clp protease ATP-binding subunit, heat 

shock protein 90 and cpn60 chaperonin family protein (Table S2.2). Conversely, a set of 

forty-one genes shows decreased expression in DV92 but increased expression in G3116 

in response to light (Figure 2.2C). This set includes homologs of germin-like protein 1, 

plastid transcriptionally active 13, Tetratricopeptide repeat (TPR)-like superfamily 

protein and CAX interacting protein 1 (Table S2.2). 

For each set of differentially expressed genes (Figure 2.2C), enrichment of a 

selected GO molecular function categories is shown in Figure 2.2D. We found that the 

41- and 51-gene sets show enrichment for proteins that are likely to have ion and cation 

binding, nucleotide binding and transfer activities.  The 41-gene set has a greater 

percentage of hydrolases, whereas, the 51-gene set contains a greater percentage of 

transporters (Figure 2.2D). Among the light up-regulated genes common to both DV92 

and G3116, we found enrichment of genes encoding for structural components of cell 

envelopes, proteins involved in anatomical structure formation and proteins associated 

with cellular component biogenesis, having cellular component location óplastidô 

(GO:0009536) or óintracellular organelleô (GO:0043229), and enrichment of gene 

products targeted to óthylakoidô (GO:0009579). Other categories of genes that show 

increased expression after exposure to light include components of carbohydrate 

metabolism, namely, the óoligosaccharide metabolismô (GO:0009311), cell wall 

remodeling (GO:0004553; glycosyl hydrolases), and ópost-translational protein 

modificationô (GO:0043687). The light down-regulated genes were associated with the 



 

 

30 

biological process óphosphate metabolic process (GO:0006796) with enrichment for 

ónucleotide diphosphatase activityô (GO:0004551) (Table S2.3).  

In DV92, transcripts encoding red (phytochrome) and blue (cryptochrome) light 

receptor proteins are down-regulated by 2-fold or more, whereas, orthologous transcripts 

in G3116 are up-regulated by 2-fold or more during photomorphogenesis (Table S2.1). A 

small subset of DV92 and G3116 transcripts mapped to genes with known homologs in 

plants exhibit differential expression during photomorphogenes (Table S2.4).  The light-

induced genes include lhcb coding for chlorophyll a/b binding proteins, Elongated 

hypocotyl 5 (HY5) coding for a positive regulator of photosynthesis associated nuclear 

genes, rbcs coding for ribulose bisphosphate carboxylase small subunit, homologs of rice 

YGL138(t) gene involved in chloroplast development [32], genes coding for 

mitochondrial transcription termination factor, late embryogenesis abundant protein LEA, 

and those coding for Rossmann-like alpha/beta/alpha sandwich fold containing protein 

(Table S2.4). Notably, homologs of gene coding for ABA 8ô-hydroxylase activity 

associated with germination are significantly light up-regulated in G3116 but not in 

DV92. The light down-regulated genes include homologs of wheat Rht-B1 DELLA 

protein, a nuclear repressor of gibberellin response, and TaIAA1, a primary auxin-

response gene [33]. 

Developing genetic marker resources from the sequenced transcriptome 

 Molecular genetic markers are very useful for the analysis of genetic variation and 

heritable traits. Well established genotyping methods, such as high-throughput 

genotyping-by-sequencing (GBS) and chip-based methods using genomic DNA facilitate 

the interrogation of SNP and SSR markers. Similarly, large RNA-Seq data sets can be 
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mined for molecular marker sites [27], which may then be used for genetic trait mapping, 

diversity analysis and marker-assisted selection in plant breeding experiments. This 

method permits future systems-level studies to explore the integrated analysis of gene 

function, expression, and the consequence of sequence variation on gene structure and 

function.  

Identification of SSR marker loci 

We mined the DV92 and G3116 transcriptome assemblies for di-, tri-, tetra-, 

penta-, and hexa-nucleotide SSRs with a minimum of 8, 6, 4, and 3 repeat units, 

respectively. We identified 29,887 SSR sites in 22,019 unique DV92 transcripts and 

28,122 SSR sites in 20,727 unique G3116 transcripts (Figure 2.3A; Table S2.5) . 3,413 

transcripts orthologous between DV92 and G3116 contain identical SSRs, whereas 703 

DV92 and G3116 orthologous transcripts contain variable-length SSRs. Some of these 

703 sites may represent duplicate SSRs found in transcripts that map to the same or 

overlapping locus; therefore we aligned our assembled transcripts to the barley genome 

and identified 148 unique barley gene loci that harbor the variable SSR-containing 

sequence (Figure 2.3C). We experimentally verified a small number of SSRs for 

genotyping the DV92 and G3116 accessions (data not shown), though a majority of the 

markers will require experimental validation before they can be used. 

Identification of SNP marker loci 

 To identify single nucleotide polymorphism (SNP) sites across the DV92 and 

G3116 transcriptomes, we used SOAPsnp [34] to align and identify the raw T. 

monococcum sequence reads against the barley genome. We identified 510,627 SNPs 

with an average of one SNP per 3600bp of the assembled barley genome. Of these, 
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170,377 SNP sites were unique to G3116, and 37,380 SNP sites were unique to DV92 

(Figure 2.3B). More than 50% of the SNP sites (330,444) are present in both the DV92 

and G3116 accessions. Of these common sites, 9,808 SNP sites were identified with 

different alleles for DV92 and G3116. These 9,808 SNP sites show a uniform distribution 

along the barley genome (Figure 2.3C), thus holding potential utility as genetic markers 

in wheat breeding programs. These 9,808 SNP sites are present in 5,989 unique protein 

coding genes, which include a subset of 4,935 GO-annotated genes (Table S2.6) and 

2,543 differentially expressed genes. A greater number of nucleotide transitions were also 

discovered in DV92 when compared to G3116, which had more transversions (Table 

S2.7). In order to address the biological relevance of these SNPs, we predicted the 

potential effects of the variants and identified a diverse set of consequences on the 

transcriptôs structure, splicing and protein coding features with reference to the barley 

genome and annotated gene models (Table 2.4). Notably, we identified over 300,000 

downstream variants, ~200,000 missense variants, 10,000-18,000 transcript splice site 

mutations, and more than 400 sites with a gain in stop codons (Table 2.4). Unique DV92 

and G3116 SNPs are distributed across variance consequence categories in similar 

proportions to combined SNPs (Table 2.4). 

DISCUSSION  

 This study provides the de novo assembled transcriptomes of two T. monococcum 

sub-species, representing the domesticated accession DV92 and the wild accession 

G3116. High-throughput RNA-Seq technology, bioinformatics tools and publicly 

available databases enabled higher quality transcriptome assemblies of these diploid 

wheat varieties, both of which are closely related to the wheat A-genome progenitor T. 
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urartu. However, approximately 15% of the DV92 and G3116 transcriptomes do not map 

to the T. urartu and A. tauschii (progenitor of the wheat D genome) gene models (Table-

3). We compared these unmapped T. monococcum transcripts against the barley genome 

and found 4,954 DV92 and 5,362 G3116 transcripts bear homology to 2,607 barley 

genes, suggesting that these genes have not been annotated in the published wheat A and 

D genomes [15ï17]. Furthermore, comparison of the T. monococcum, T. urartu and 

barley gene models also revealed other disparities. For example, gene models for the T. 

urartu gene TUIUR3_02586-T1 lack exon-4, 3` and 5` UTRs and potentially unspliced 

introns when compared to the barley homolog MLOC_59496. In our analysis, multiple T. 

monococcum transcript isoforms aligned with the barley homolog MLOC_59496 support 

the barley gene model (Figure S2.2) and thus provide empirical evidence for the missing 

features in T. urartu gene TUIUR3_02586-T1 (Figure S2.3). Our findings demonstrate 

the utility of the T. monococcum transcriptome data in enriching and improving Triticeae 

genome annotation, including the recently published A and D genomes. 

To our knowledge, this study is the first to provide the relative expression of 

transcript isoforms (Figure 2.2, Table S2.1) in both etiolated seedlings and light-exposed 

green seedlings of cultivated spring accession DV92 and wild winter accession G3116 of 

T. monococcum (Figure S2.4). In order to preserve the granularity of the transcript 

isoform-based expression profile, we avoided projecting a weighted expression profile of 

the genes. This allowed us to identify a greater number of differentially expressed 

transcripts in G3116 (Figure 2.2A). However, for simplicity, the four-way Venn diagram 

(Figure 2.2C) was constructed to show comparison between the light up- and down-

regulated genes from the two accessions.  
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In general, the transcriptomes of both DV92 and G3116 suggest up-regulation of 

the genes involved in chloroplast biogenesis, photosynthesis and carbohydrate 

metabolism, such as the homologs of Elongated hypocotyl 5 (HY5), YGL138(t) [32,35] 

and photosystem II chlorophyll a/b-binding protein lhcb (Table S2.4). In addition, 

differentially expressed transcripts encoding for mitochondrial transcription termination 

factor-like protein (mTERF), late embryogenesis abundant protein (LEA) and Rossmann-

like alpha/beta/alpha sandwich fold containing protein family members were found to be 

light up-regulated (Table S2.4). In humans, the mitochondrial transcription termination 

factor attenuates transcription from the mitochondrial genome, up-regulates the 

expression of 16S ribosomal RNA, and has high affinity for the tRNALeu(UUR) gene [36ï

38]. The Arabidopsis mTERF gene family members are known to play roles in 

organelles; for example, SUPPRESSOR OF HOT1-4 1 (SHOT1), a mitochondrial protein, 

is involved in heat tolerance and regulation of oxidative stress [39], SINGLET OXYGEN-

LINKED DEATH ACTIVATOR10 (OLDAT10), a plastid protein, activates retrograde 

signaling and oxidative stress, and BELAYA SMERT (BSM) regulates plastid gene 

expression [40]. The mTERF domain containing proteins from both the DV92 and G3116 

accessions showing light up-regulation are predicted to be chloroplast proteins (TargetP 

value ~0.9) (Figure S2.5). To our knowledge, this is the first report of light up-regulation 

of wheat gene family members encoding mTERF, LEA and Rossmann-like 

alpha/beta/alpha sandwich fold containing proteins.  

Other proteins that show light-induced differential regulation are involved in 

phytohormone metabolism and signaling. Transcripts homologous to T. aestivum Rht-B1 

that code for a DELLA protein were down-regulated by light [41]. DELLA proteins are 
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repressors of gibberellin (GA) signaling and act immediately downstream of GA 

receptor.  When GA synthesis is induced by light, the binding of GA to its receptor 

causes degradation of DELLAs via the ubiquitin-proteasome pathway [42].  GA is a 

hormone that is well known to promote seed germination in addition to participating in 

other parts of the plant life cycle.  DELLAs have also been suggested to mediate 

interaction between GA and abscisic acid (ABA) pathways, as one of its targets, 

XERICO, is known to regulate ABA metabolism [42]. The levels of transcripts 

homologous to ABA 8ô-hydroxylase were significantly higher in G3116 relative to 

DV92.  ABA 8ô-hydroxylase degrades ABA, a hormone involved in dormancy [43]. 

Degradation of ABA results in a decreased ABA-to-GA ratio resulting in the breaking of 

dormancy [44]. ABA 8ô-hydroxylase activity may be one of the difference between 

winter and spring varieties. Conversely, increased levels of transcripts homologous to 

gene encoding for brassinosteroid-6-oxidase were found in DV92 in response to light, but 

not in G3116.  Transcripts homologous to TaIAA1, an early auxin-response gene from 

wheat [33], were down-regulated by light in both DV92 and G3116, which is consistent 

with the previous report [33]. In addition to auxin, the TaIAA1 gene is also induced by 

brassinosteroids [33]. Several genes showed accession-specific expression profile, such 

as the 51 and 41 gene sets (Figure 2.2C, Table S2.2), which may reflect differences in 

anatomical features and the plantôs response to its immediate environment. For instance, 

the levels of transcripts homologous to rice germin-like protein 1 show decrease in DV92 

but increase in G3116 in light-exposed seedlings. The germin-like protein-1 in rice has 

been shown to play a role in the regulation of plant height and disease resistance [45]. 

Transcripts homologous to genes coding for heat shock protein 90 and cpn60 chaperonin 
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family protein increase in DV92, but decrease in G3116 in response to light (Table S2.2). 

Changes in the expression levels of transcripts encoding components of hormone 

biosynthesis, signaling and protein targets suggest that photomorphogenesis is a carefully 

orchestrated interplay of both developmental signals (often genotype-specific) and light 

response.  

We identified over 500,000 SNP sites and approximately 22,000 

SSR/microsatellite sites in the transcriptome assemblies of T. monococcum. Of these, 

9,808 SNP and 148 SSR sites are common polymorphic sites in both accessions. The 

9,808 SNPs overlap 2,543 barley genes that show light mediated up- and down-regulation 

of homologous transcripts in T. monococcum.  A few notable genes in this differentially 

expressed set include (Figure S2.6 and Table S2.8) the light down-regulated protein 

coding genes for CASP-like membrane protein, Xyloglucan endo-transglycosylase 

activity, Auxin-responsive family protein and a novel protein carrying the DUF1644 

domain. Whereas, the light up-regulated protein coding genes includes, photosystem-I 

subunit PSAK, PSAH, Ribulose-1,5-bisphosphate carboxylase (RUBISCO) small subunit 

RBCS, Chlorophyll a/b binding protein LHCB, Mitochondrial transcription termination 

family member and novel uncharacterized proteins (Figure S2.6 and Table S2.8). Our 

data suggest that 170,377 SNPs is unique to G3116 and 37,380 SNPs is unique to DV92 

(Figure 2.3B); this provides an opportunity to study the wild winter and cultivated spring 

habits of the two accessions in greater detail. The SNP and SSR genetic sites identified in 

our dataset, along with those identified in other genetic populations [46] and wheat 

projects [47], will provide useful marker resources for fine mapping experiments and 

marker-assisted wheat breeding programs.  
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Along with the T. monococcum transcriptomes from two accessions, we have 

provided additional genomic and genetic resources including their functional annotations, 

differential gene expression analyses and potential SNPs and SSRs, which can be used to 

explore Triticeae genome diversity, co-expression networks involved in 

photomorphogenesis and to develop stochastic and metabolic networks [22,48,49]. In 

addition, these resources can be used to identify novel genes, transcript models and 

eQTLs, and to study plantôs adaptation to diverse climatic conditions, impacts of 

domestication on crop plants and evolution of novel genes.  

METHODS 

Plant material and growth conditions 

 Seeds of the Triticum monococcum ssp. monococcum accession DV92, a 

cultivated spring wheat, and Triticum monococcum ssp. aegilopoides accession G3116, a 

wild winter wheat, were sown into sunshine mix (Sun Gro Horticulture, Agawam, MA, 

USA). The trays were watered thoroughly and were shifted (in the evening hours) to a 

dark growth chamber set to cycle temperature between 20oC for 12 hours (8am-8pm) and 

18oC for the next 12 hours (8pm-8am). The seedlings were grown in the dark for next 8 

days and the soil was kept moist by gently spraying with water every 72 hours.  Seeds 

were not vernalized prior to sowing. Germination was observed within two days for both 

accessions.  The first set of dark-grown seedlings shoot samples (8DD), consisting of 

three replicate from each accession, were collected at the end of day-8 under green light. 

(8DD). On day-9 at 10 am, continuous light (120µmol/m2/sec at soil surface) was started 

for 48 hours (48LL) and a second set of seedling shoot samples (48LL), consisting of 

three replicates from each accession, were collected at the end of 48 hours of treatment 
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on day 11. Each replicate contained shoots of three seedlings of similar height (Figure 

S2.4). Harvested samples were immediately frozen in liquid nitrogen and stored at -80oC. 

Sample preparation for Illumina sequencing 

 Total RNA from frozen seedling shoot sample was extracted using RNA Plant 

reagent (Invitrogen Inc., USA), RNeasy kits (Qiagen Inc., USA), and treated with RNase-

free DNase (Life Technologies Inc., USA) as previously described [27,50]. The mRNA 

concentration, quality were determined using ND-1000 spectrophotometer (Thermo 

Fisher Scientific Inc., USA) and Bioanalyzer 2100 (Agilent Technologies Inc., USA). 

Samples were prepared using the TruSeqTM RNA Sample Preparation Kits (v2) and 

sequenced on the Illumina HiSeq 2000 instrument (Illumina Inc., USA) at the Center for 

Genomic Research and Biocomputing, Oregon State University.  

De novo transcriptome assembly and annotation 

 Illumina sequences were processed for low quality at an error rate of 0.00001, 

parsed for index sequences and pairs, and filtered and trimmed using customized Perl 

scripts.  FASTQ file generation and removal of low quality reads were performed by 

CASAVA software v1.8.2 (Illumina Inc.). The high-quality sequences used in the 

assembly process included 435,806,374 and 366,215,814 paired-end 101bp reads for 

DV92 and G3116 respectively (Table 2.1). The samples were assembled with Velvet 

(Velvet v1.2.08), which uses De Bruijn graphs to assemble short reads [51]. An assembly 

of 31 and 35 k-mer length was performed separately for both the DV92 and G3116 reads. 

The assemblies generated by Velvet were analyzed using Oases (Oases v0.2.08), which 

was developed for the de novo assembly of transcriptomes [26], and uses the read 

sequence and pairing information to produce transcript isoforms.  
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 Similarity searches were conducted with BLASTn [30] (E-value <= 1e-5) using 

assembled transcripts as a query against gene model sequence databases of other species 

of grasses with sequenced genomes, namely, hexaploid wheat (T. aestivum) transcripts 

(DFCI release 12.0), T. aestivum (Plant GDB GenBank release 175), barley (Hordeum 

vulgare) transcripts (Gramene v.2.16), barley genome (Gramene v.2.16), Oryza sativa 

spp. indica (Gramene ASM465v1.16), Oryza sativa spp. japonica (Gramene MSU6.16), 

Brachypodium distachyon transcripts (Gramene v.0.16), and the Brachypodium 

distachyon genome (NCBI). T. monococcum transcripts were functionally annotated 

using a combined approach based upon functional motif analysis and sequence 

homology. Transcripts were translated into the longest predicted open reading frame 

(ORF) peptide sequences using the ORFPredictor web application [52] and resulting 

proteins assigned InterPro identifiers using InterProScan v4.8 [53,54]. These InterPro 

assignments were also mapped to Gene Ontology (GO) terms. Additionally, we did 

Blast2GO analysis [31] of T. monococcum transcripts to transfer GO annotations from 

functionally annotated genes in non-wheat genomes. A BLASTx search (E-value Ò 1e-2 

and percent identity Ó 90%) was performed to identify highly homologous sequences 

against the NCBI GenBank non-redundant protein database. The resulting best hits with 

GO annotations were used to project similar GO assignments [55,56] to T. monococcum 

transcripts. GO annotations from both methods were combined and duplicated 

annotations were removed to produce non-redundant gene ontology annotation files for T. 

monococcum DV92 and G3116. The AgriGO Analysis Toolkit [57] was used to identify 

statistically-enriched functional groups. This method includes a Fisherôs exact test with a 
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Yekutieli correction for false discovery rate calculation. Significance cutoffs included a 

P-value of 0.05 and a minimum of 5 mapping entries per GO term.   

Genetic marker development 

 The assemblies of DV92 and G3116 were mined for SSRs using Perl code from 

the Simple Sequence Repeat Identification Tool (SSRIT; [58]; 

http://archive.gramene.org/db/markers/ssrtool). We identified di-, tri-, tetra-, penta-, and 

hexa-nucleotide SSRs with a minimum of 8, 6, 4, 3, and 3 repeat units, respectively. We 

then used custom Perl scripts to identify orthologous DV92 and G3116 transcripts 

containing common SSRs.  

 An alignment database was generated using SOAP's 2bwt-builder with the barley 

genome (version 030312v2). Illumina sequences (FASTQ formatted) of length 51bp were 

processed and aligned through SOAP (Version: 2.20) [59] with default options. 

Alignment data was then separated into different text files based on the chromosome of 

the hit sequence and each chromosome alignment file was sorted based on hit start 

position. After separation and sorting, data was processed through SOAPsnp (version 

1.02) [34] to identify single nucleotide polymorphisms (SNPs). SOAPsnp was run using 

standard options for a diploid genome as stated in the documentation. SOAPsnp output 

files were then reformatted to VCF output, a community standard format developed by 

the 1000 Genomes project 

(http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-

call-format-version-41) to make them more accessible for analysis by other downstream 

programs. To call a SNP, values for novel homozygous prior probability and novel 

heterozygous prior probability were set at 0.0005 and 0.0001, respectively. The 

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
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transition/transversion ratio was set to 2:1 in prior probability. The rank sum test was 

enabled to give heterozygous prior probability further penalty if reads did not have the 

same sequencing quality for better SNP calling. A maximum read length of 51bp was 

used. We used the Ensembl Plants API Effect Predictor tool [60] to infer potential 

consequences of the SNP variants. 

Gene expression analysis 

 We used CASHX v2.3 to align the DV92 and G3116 reads to their respective 

transcriptome assembly [61]. Indexed reads were used for each replicate for both dark 

and light comparisons of DV92 and G3116. We then used Edge R-package (v. 2.0.3) [62] 

to conduct differential gene expression analysis. We identified differentially expressed 

transcripts with a significance of P-value cutoff/FDR corrected P-value of 0.05. We also 

further filtered the differentially expressed genes by 2-fold cutoffs and those identified to 

be differentially expressed by the EdgeR. Principal components analysis (PCA) 

multidimensional scaling (MDS), and correlation matrix algorithms were used to assess 

and visualize a cross-sample comparisons. Both analyses show clustering based upon 

RPKM values for all genes among all replicates. The results, as expected, show four 

separate visualized clusters (DV92 light and dark replicates and G3116 light and dark 

replicates; Figure S2.7-9).  

Data Access 

 Sequence files, assemblies, annotation files, SNP, SSR, transcript alignments, 

gene expression, network data files and results are available at the Jaiswal lab website at 

Oregon State University (http://jaiswallab.cgrb.oregonstate.edu/genomics/wheat). The 

http://jaiswallab.cgrb.oregonstate.edu/genomics/wheat
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transcriptome data are being integrated in the Barley Genome Browser available from the 

Ensembl Plants database (http://plants.ensembl.org). The data are also being provided to 

the small grains database GrainGenes (http://www.graingenes.org). The raw sequence 

files were submitted to the National Center for Biotechnology Information (NCBI) 

Sequence Read Archive under the accessions SRX283514/SRR924098 (DV92) and 

SRX257915/SRR922411 (G3116). 

SUPPORTING INFORMATION  

Figure S2.1.  The frequency distribution of transcripts of varying size (bp: base pair) in 

the de novo transcriptome assemblies of DV92, G3116 and the annotated transcriptomes 

of barley and wheat T. urartu.  

Figure S2.2.  A view of the Ensembl Plants barley genome browser showing the 

comparison between the models of barley gene MLOC_59496 and the homologous T. 

monococcum gene models derived from DV92 and G3116 transcriptomes.  This 

alignment was generated using the Exonerate software package by allowing for gapped 

alignments (introns).  The red arrows depict intron retention events and the blue arrow 

depicts intron-3 in the annotated barley gene model.  Our data support barley 

MLOC_59496 gene model, including its 3` and 5` untranslated regions shown by open 

blocks. 

Figure S2.3. A view of the Ensembl Plants T. urartu genome browser showing the 

comparison between the T. urartu gene TUIUR3_02586-T1 model and the homologous 

T. monococcum gene models derived from DV92 and G3116 transcriptomes.  This 

alignment was generated using the Exonerate software package by allowing for gapped 

alignments (introns).  Our models show retention of introns (red arrows) in a couple of T. 

http://plants.ensembl.org/index.html
http://www.graingenes.org/
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monococcum gene models, and the presence of an exon -4 (same as exon-3 in the barley 

model shown in figure-S2) missed in the T. urartu genome annotation (the dotted-line 

box).  Our data do not support the presence of exon-3 in (blue arrow) in the annotated T. 

urartu gene TUIUR3_02586-T1.  

Figure S2.4. Seedling samples used for generating the transcriptomes of wheat 

accessions DV92 (left panel) and G3116 (right panel).  

Figure S2.5. TargetP analysis of the DV92 and G3116 peptides bearing the 

Mitochondrial transcription termination factor-related domain. The proteins were 

predicted to be targeted to chloroplast (cTP) with a high confidence score of ~ 0.9. Both 

peptides were predicted to have a transit peptide length (Tplen) of 78aa.  

Figure S2.6. The line plot display expression level in RPKM log2 values of transcripts 

that were grouped into light down regulated and light up-regulated co-expressed clusters 

(Figure 2.3 and 4) and have overlapping SNPs from the 9,808 SNP set. The table on the 

right shows homologous barley gene, functional annotation and the SNP variant effect on 

the transcript structure and/or function.  

Figure S2.7. Principal component analysis (PCA) analysis of RNA-Seq reads.  

Figure S2.8. Multidimensional scaling (MDS) analysis of RNA-Seq reads. 

Figure S2.9. Correlation matrix analysis of RNA-Seq reads.  

Table S2.1. Expression profiles of assembled transcripts from DV92 and G3116.  

Table S2.2. List of barley homologs clustered in a four-way Venn diagram (Figure 2.2C) 

Table S2.3. Enrichment of the Gene Ontology-based functional annotation of the barley 

homologs clustered in a four-way Venn diagram (Figure 2.2C).  



 

 

44 

Table S2.4. A short list of transcripts mapped to known and novel genes along with their 

expression datasets from the DV92 and G3116 accession.  

Table S2.5. SSR identification.  

Table S2.6. Enrichment of the Gene Ontology based functional annotation of the barley 

homologs overlapping the 9,808 SNP sites that had a different allele for DV92 and 

G3116 with reference to barley allele. 

Table S2.7. Transitions and transversions identified by SNP analysis.  

Table S2.8. A list of DV92 and G3116 transcripts homologous to the barley genes 

overlapping the 9,800 SNP set. Table includes DV92 and G3116 transcript IDs, 

homologous barley gene ID, RPKM values, respective p-value scores, putative gene 

function annotation and the resultant SNP variant effect with reference to the barley gene 

models. 
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Figure 2.1. Mappings DV92 and G3116 transcripts to the sequenced Hordeum 

vulgare (barley) genome v1.0 (source: Gramene/Ensembl Plants).  

 

(A) A hive plot shows comparison between Triticum monococcum accessions G3116 and 

DV92 vs. the barley genome. (B) A density plot view of the Ensembl Plants genome 

browser showing barley chromosome-1H karyotype view (track-1) with annotated barley 

genes (track-2; maroon) and the mapped G3116 transcripts (track-3; blue) and DV92 

transcripts (track-4; red).  
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Figure 2.1. Mappings DV92 and G3116 transcripts to the sequenced Hordeum vulgare (barley) genome v1.0 (source: 

Gramene/Ensembl Plants). 
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Figure 2.2. Analyses of the differentially expressed transcripts.  

 

A scatter plot of light up- regulated (red colored) and down-regulated (green colored) 

transcripts from G3116 (A) and DV92 (B) accessions of T. monococcum. Each spot 

represents a single transcript. (C) The table lists counts of differentially expressed 

transcripts from the DV92 and G3116 accessions shown in the adjacent scatter plots and 

their barley homologs. The four-way Venn diagram shows the distribution of barley 

homolog counts with reference to the mapped light up-regulated (red shaded boxes) and 

light down-regulated (green shaded boxes) transcripts. (D) Barley homologs from various 

unique sets identified in the Venn diagram (C) and their selected molecular function 

enrichment. 
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Figure 2.2. Analyses of the differentially expressed transcripts. 
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Figure 2.3. Genetic marker discovery.  

 

Polymorphic sites identified in the transcriptome of DV92 (blue) and G3116 (red). (A) 

Number of SSR identified in the transcriptomes. (B) Number of SNPs identified in the 

two genotypes by aligning against the sequenced barley reference genome. 9,808 out of 

340,250 common SNP sites have polymorphism between DV92 and G3116.  (C) 

Mapping of common, variable 9,808 SNP and 148 SSR sites identified in the DV92 and 

G3116 transcriptomes on the karyotype view of the reference barley genome hosted by 

the Ensembl Plants. The SNP sites are shown as red colored density plot and SSR sites 

are depicted as black triangles along the length of the respective barley chromosomes. 
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Figure 2.3. Genetic marker discovery.
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TABLES   

Table 2.1.  Transcriptome assembly statistics.  

 

Transcriptome assembly statistics for T. monococcum ssp. monococcum (DV92) and T. 

monococcum ssp. aegilopoides (G3116) generated by Velvet/Oases. The statistics describe 

the sequence input to the assembler and the number of assembled transcripts and relative 

transcript length in base pairs (bp). The merged assembly is a feature of Oases that merges 

transcript isoforms into putative gene loci.  
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Table 2.1.  Transcriptome assembly statistics. 

Transcriptome 

assemblies 

Total number of 

reads 

Number of 

Transcripts 

Largest sequence 

(bp) 

Average length 

(bp) 

Median length 

(bp) 

DV92-31 k-mer 435,806,374 87,972 21,251 1633 1393 

DV92-35 k-mer 435,806,374 82,185 13,427 1699 1460 

DV92 Merged  120,911 21,331 1847 1600 

G3116-31 k-mer 366,215,814 84,491 21,999 1579 1316 

G3116-35 k-mer 366,215,814 79,936 13,528 1624 1372 

G3116 Merged  117,969 22,045 1783 1525 
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Table 2.2.  BLAST results.  

 

BLASTn (E-value 1e-5) nucleotide sequence comparisons of T. monococcum ssp. 

Monococcum (DV92) and T. monococcum ssp. aegilopoides (G3116) transcripts against 

gene models and genomes from other sequenced grass species suggesting the coverage 

represented in the T. monococcum transcriptome. 
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Table 2.2.  BLAST results. 

Target Query 

  DV92 (120,911) G3116 (117,969) 

  # hits % hits # hits % hits 

DV92 - - 116,227 98.50% 

G3116 117,872 97.50% - - 

T. urartu (wheat A genome) * 118,618 98.10% 115,498 97.90% 

T. urartu Transcripts* 102,176 84.50% 99,148 84.00% 

A. Tauschii (wheat D genome)* 120,061 99.30% 117,090 99.25% 

A. tauschii Transcripts* 104,932 86.70% 101,749 86.25% 

T. aestivum Transcripts§ 115,528 95.50% 113,064 95.80% 

T. aestivum Transcripts^ 115,244 95.30% 112,786 95.60% 

H. vulgare genome v2.18# 112,442 92.30% 109,816 93.10% 

H. vulgare Transcripts v2.16# 93,369 77.20% 91,411 77.50% 

O. sativa indica ASM465 v1.16# 83,775 69.30% 82,176 69.70% 

O. sativa japonica MSU6# 84,836 70.20% 83,291 70.60% 

B. distachyon v1.1# 88,655 73.30% 86,990 73.70% 

Source: *GigaBD; #Gramene; ^Plant GDB GenBank release 175; § DFCI release 12.0 
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Table 2.3. The coverage and mapping of T. urartu, A. tauschii and H. vulgare 

transcripts on DV92 and G3116 transcriptomes using BLASTn (E-value 1e-5).  

 

The number of transcripts and percent of transcripts from each query that hit a transcript 

from DV92 and G3116 are shown.  
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Table 2.3. The coverage and mapping of T. urartu, A. tauschii and H. vulgare transcripts on DV92 and G3116 transcriptomes using 
BLASTn (E-value 1e-5). 

Target Query 

 T. urartu A. tauschii H. vulgare 

(Transcripts #34,879)* (Transcripts #43,150)* (Transcripts #62,240)^ 
 # hits % hits # hits % hits # hits % hits 

DV92 29,784 85.40% 35,618 82.50% 57,781 92.80% 

G3116 29,108 83.40% 34,783 80.60% 56,609 90.90% 

Source: *GigaBD; ^Gramene 
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Table 2.4. Prediction of SNP variant consequence with reference to the annotated 

barley genome.  

 

SNP Variant Consequence Prediction based on the T. monococcum SNPs identified by 

aligning the sequenced reads from DV92 and G3116 to the reference barley genome and 

the barley gene models (v1.0) available from Ensembl Plants database. Listed variant 

effect types are based on the categories adopted by the Ensembl Plants database. 
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 Table 2.4. Prediction of SNP variant consequence with reference to the annotated barley genome. 

Predicted variant effect 
Number of SNP sites with consequences Unique 

DV92 G3116 DV92 G3116 

3 prime UTR variant 131,758 165,696 6,918 9,022 

5 prime UTR variant 86,389 127,854 4,450 9,371 

coding sequence variant 21,545 30,920 2,422 3,704 

downstream gene variant 328,112 440,765 19,120 26,060 

initiator codon variant 364 507 22 49 

initiator codon variant, splice region variant 6 8 none None 

intergenic variant 35,753 54,722 2,682 24,136 

intron variant 46,901 111,413 4,717 14,217 

missense variant 198,794 258,081 9,929 17,763 

missense variant, splice region variant 1,145 1,866 89 188 

non coding exon variant, nc transcript variant 7 11 1 1 

splice acceptor variant 10,094 18,609 572 2,103 

splice donor variant 18,433 34,503 1,145 3,985 

splice region variant, 3 prime UTR variant 681 962 25 51 

splice region variant, 5 prime UTR variant 685 1,137 50 80 

splice region variant, coding sequence variant 136 272 15 39 

splice region variant, downstream gene variant 2 3 none None 

splice region variant, intron variant 31,692 63,891 2,270 8,074 

splice region variant, synonymous variant 3,500 5,083 176 448 

stop gained 462 732 40 62 

stop gained, splice region variant 4 8 none 2 

synonymous variant 451,169 538,115 18,687 29,046 
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SUPPORTING INFORMATION  

Figure S2.1. The frequency distribution of transcripts. 

 

The frequency distribution of transcripts of varying size (bp: base pair) in the de novo 

transcriptome assemblies of DV92, G3116 and the annotated transcriptomes of barley 

and wheat T. urartu.  
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Figure S2.1. The frequency distribution of transcripts. 
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Figure S2.2.  Comparison between the models of barley gene MLOC_59496 and the 

homologous T. monococcum gene models derived from DV92 and G3116 

transcriptomes. 

 

A view of the Ensembl Plants barley genome browser showing the comparison between 

the models of barley gene MLOC_59496 and the homologous T. monococcum gene 

models derived from DV92 and G3116 transcriptomes.  This alignment was generated 

using the Exonerate software package by allowing for gapped alignments (introns).  The 

red arrows depict intron retention events and the blue arrow depicts intron-3 in the 

annotated barley gene model.  Our data support barley MLOC_59496 gene model, 

including its 3` and 5` untranslated regions shown by open blocks. 
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Figure S2.2.  Comparison between the models of barley gene MLOC_59496 and the homologous T. monococcum gene 

models derived from DV92 and G3116 transcriptomes.
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Figure S2.3. Comparison between the T. urartu gene TUIUR3_02586-T1 model and 

the homologous T. monococcum gene models derived from DV92 and G3116 

transcriptomes. 

 

A view of the Ensembl Plants T. urartu genome browser showing the comparison 

between the T. urartu gene TUIUR3_02586-T1 model and the homologous T. 

monococcum gene models derived from DV92 and G3116 transcriptomes.  This 

alignment was generated using the Exonerate software package by allowing for gapped 

alignments (introns).  Our models show retention of introns (red arrows) in a couple of T. 

monococcum gene models, and the presence of an exon -4 (same as exon-3 in the barley 

model shown in figure-S2) missed in the T. urartu genome annotation (the dotted-line 

box).  Our data do not support the presence of exon-3 in (blue arrow) in the annotated T. 

urartu gene TUIUR3_02586-T1.  
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Figure S2.3. Comparison between the T. urartu gene TUIUR3_02586-T1 model and the homologous T. monococcum gene 

models derived from DV92 and G3116 transcriptomes.
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Figure S2.4. Seedling samples used for generating the transcriptomes of wheat accessions 

 

Seedling samples used for generating the transcriptomes of wheat accessions DV92 (left panel) and G3116 (right panel).  
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Figure S2.5. TargetP analysis of the DV92 and G3116 peptides. 

 

TargetP analysis of the DV92 and G3116 peptides bearing the Mitochondrial transcription termination factor-related domain. The 

proteins were predicted to be targeted to chloroplast (cTP) with a high confidence score of ~ 0.9. Both peptides were predicted to 

have a transit peptide length (Tplen) of 78aa.  
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Figure S2.6. Light regulated co-expressed clusters. 

 

The line plot display expression level in RPKM log2 values of transcripts that were 

grouped into light down regulated and light up-regulated co-expressed clusters (Figure 

2.3 and 4) and have overlapping SNPs from the 9,808 SNP set. The table on the right 

shows homologous barley gene, functional annotation and the SNP variant effect on the 

transcript structure and/or function.
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Figure S2.6. Light regulated co-expressed clusters. 


































































































































































