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Advancements in molecular biology and computer science have enabled
researchers the ability to investigate the transcriptiothe quantification of an
or g a n iN& mehxcriptR in response to its environment on a system wide scale. The
collective chapters of this thesis utilize hittiroughput RNA sequencing, which
produces hundreds of millions of higlsolution reads. In combination with computer
programs that gamine data with a biological purpose, the field of transcriptomics has
changed our understanding of how genomes are expressed. The continual decrease in

costs of transcriptomic studies lowers the barriers of partaking in such research.

A RNA-Seq protocolas developed for two varieties Dfiticum monococcuira
close ancestor dfriticum urarty the Agenome progenitor of hexaploid whdaiticum
aestivum The transcriptome captured in this study aimed to elucidate the genetic
response in regulating photomorphogenesis. As no reference genome was available at the
time, theT. monococcurtranscriptomes werge novaassembled, annotated, and used to
identify gene expression differences wild and domesticated diploid wheat. Furthermore,

sequence reads were used to identify genetic markers in the form of single nucleotide



polymorphisms and simple sequence repeats. This study provides data that contributes to
theimprovement off riticum genus genome annotations, insights into transcriptional

regulation during photomorphogenesis, and development of genetic markers.

Rice Oryza sativais a monocot grass that is a model cereal crop, but more
importantly, responsibléor feeding a majority of the world population. To better
understand the genetic response of rice under salt stress, a high regsohestigationof
the transcriptomic response was conducted over a period of 24 hours. Immediate
response timgoints werecollected at 1, 2, and 5 hours post salt exposure. Prolonged
response timgoints were collected at 10 and 24 hours. We compared the transcriptomic
profiles of IR29i a saltsensitive breeding line, and PokKal salttolerant native
variety. Our invesgation reveals the transcriptomic composition of both varieties to be
similar, however Pokkali exhibits an hour delay in response to salt stress. Futhermore, at
24 hours post salt exposure, Pokkali returns to a nearly homeostatic condition, whereas
IR29 montinues to express satisponsive genes. Sequence reads were aligned to the
reference rice genome to identify single nucleotide polymorphisms and transcriptomes

were assemblede novao enable discover of simple sequence repeats.

Altogether, this collective work of transcriptome analyses contributes to our
understanding of how organisms respond to environmental cues. By leveraging next
generatiorsequence technologies, we better understand the relationship between the

genome and environment.
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Chapter I Introduction

Matthew Geniza



Summary

The following thesis and supportigapterdocument the global transcriptomic
studies in various plant species. The genome is described as the set of all
deoxyribonucleic acid (DNA) molecules produced in a single organism, whereas the
transcriptome is t set of all ribonucleic acid (RNA) produced in an organism within a
specific set of cells. The aim of transcriptomic analyses is to further elucidate the genetic
response to environmental stimuli.

In this thesis, we explore and expand on the areasnef ggression, structural
and functional architectures of transcriptomes, comparative and evolutionary biology,
and genetic markers. Furthermore, the computational methodologies presented in this
thesis may be used for a broader audience, capturing boémtmodel and nemodel
species. Resources developed in this thesis create basic platform for researchers to study
any number of plant species.

The utilization of transcriptomic studies provides a higsolution analysis of
how an organism respondsit® environment. In plants, the ability to identify
commonalities and differences in expression response at théeyehsets up further
investigations of individual gene targets. With the aid of improving sequencing
technologies and bioinformatics teptranscriptomic studies are suitable for both

referencebased and referendeee approaches.



General experimental design

It is nonnegotiable requirement to have a sound experimental design in order for
a RNA-seq study to be successful. Starting witloatline of a biological question of
interest, key factors that go into the design of an Ri¢4 study start with the number of
biological replicates, planning and executing distinct treatment groups to prevent bias and
contamination of sequence data, hoet of RNA extraction, library design, and
sequencing depth (Figure 1.1).

To determine the number of replicates for a RBEY study, the researcher must
determine the potential variations; (1) within the organisms to be sampled, (2) in response
to the tratment administered. For RNgeq studies involving plants, keeping individuals
in a growth chamber may reduce environmental variability. The statistical power is
another factor that must be consideresspecially if the study goal is to determine
statistcally significant differences in expression between treatment groups. As a general
rule of best practice, a minimum of 3 biological replicates per treatment group is strongly
suggested.

In a typical cell, the composition of RNA is approximately 80% rilnosiocRNA
(rRNA), 15% transfer RNA (tRNA), and 5% messenger RNA (mRNA&Yish et al.,

2000) For a large majority of RNAeq studies, researchers are interested in mRNA,
since it is molecule that contains the nucleotide sequence afitim® acid protein

products of gene expression. The method in which RNA is extracted from the collected
sample generally captures the total RNA profile. A checkpoint for quality RNA is

typically done by a Bioanalyzer to assess levels of degradation.



A commonly used strategy to enrich mRNA in preparing sequencing libraries is to
select for mRNA via poly(A) tail. This is achieved by using oligo(dT) primers that will
bind to the poly(A) tai[Liang and Pardee, 199&ollowing mRNA enrichment,
sequencing libraries are produced by using reverse transcriptase to convert RNA to
complementary DNA (cDNA). At this step, researchers will want to determine if they
desire singleend (SE) or paireénd reads (PE). SE reads are inexpensive compared to
PE reads and are typically sufficient for gene expression studies in model organisms. PE
reads are highly recommended for fandel organisms and de novo assembly, as they
preserve information on transcriptional directiona{ltgvin et al., 201Q)Again, these
options in experimental design should always keep in mind the scientific question that is
proposed.

Finally, the last design option in a RNg&q study before sequencing is performed
is the desired sequenginlepthi the number of sequence reads produced from a sample
by the sequencing machine. In a situation where resources are unlimited, the greater
number of sequence reads increases the transcripts identified and more accurate
guantification from each sarg However, the reality is that researchers must balance
sequencing depth with available resources. In literature, the necessary sequencing depth
ranges from hundreds of thousands to hundreds of million (Patlen et al., 2014; Sims
et al., 2014)To determine an appropriate number of reads, a systematic approach of
using archived data th& similar to the proposed sequencing project is recommended.
This involves running subsets of sequence reads to identify differentially expressed genes

to provide points on a saturation curve. The point at which the curve reaches its second



asymptote ighe depth at which minimum number of reads is desired (Figure 1.2)

(Tarazona et al., 2011)

Sequencing tehnology

At its core, the aim of transcriptomics is to quantify the expression of an
organi smbs genes under a given condition.
choose to capture may range from tissues, environmental conditions, or time dependent
samples.

Before highthroughput methods were developed, quantification of a single RNA
transcript was obtained through Northern Blskvine et al., 1977)This technology was
displaced by the discovery of reverse transcriptBsétimore, 1970; Central dogma
reversed, 1970; Temin and Mizutani, 197@)major advantage that was gained in the
use of reverse transcripga convert RNA to complementary DNA (cDNA) was the
ability to amplify a sample through polymerase chain reaction (PCR), which eliminated
the need for an abundance of starting sample as required by Northern Blot.

In 1977, the development of sequenciygchain termination provided a tool to
obtain base pair resolution of transcripts from cDNA librag&mnger et al., 19777 his
ultimately led to the sequencing of the first plant genoknabidopsis thaliangPMC,
2000)in 2000. TheOryza sativesubspecies Japonica and Indica were also sequenced in
this manne(Goff et al., 2002; Yuteal., 2002)in 2002.

In the mid1990s, the development of DNA microarrays enabled researchers the
ability to measure the abundance a known set of transcripts. Through hybridization of

transcripts to probes on a glass chip, thousands of transcrigdsbeoguantified in a



single assayNelson, 2001; Schena et al., 1998)lvances in array design included two
color fluorescent probe hybridizatiérallowing for reliable measurement and relative
abundince of specific sequences in samg&&salon et al., 1996)

In the late1990s and early 2000s, the founders of Solexa (acquired by lllumina in
2007) developed a sequencing method that introduced reversibilerdyaators to
enable the synthesis of DNA strari@&ntley et al., 2008)This method, know as
Asequenymihige diys 8 e nabl simultaméodseseqoencingafthey e an d
genome. Higkthroughput DNA sequencing sparked by lllumina sequencing advanced
the field of transcriptomics and contributed to the decrease in cost per reaction that
mi mi cs t he tr e(Mardisp2008Mmrtaraei étal., 20@ByWwWang et al.,
2010; Wilhelm et al., 2008)

In particular, RNAseq refers to the higthroughput sequencing method applied
to cDNA that comes from RNA template. In comparison toraarray technology, RNA
seq offers two key advantages. First, RBEY is not limited to sequencing known genes
T as is the case via hybridization approaches. This advantage opens the sequencing world
to nonmodel specieflain, 2011; Vera et al., 2008)he second advantage of RMA&q
in comparison to microarrays is the low levels of backgraigdal due the number of
sequence reads produg@&@isolak and Milos, 2011RNA-seq can detect a wide range of
expressed transcripts, up to 5 enslof magnitudéMortazavi et al., 2008)Third, the
amount of input RNA is less for RNA seq. RNs&grequires nanograms of input RNA
whereas microarrays require micrografdashimshony et g12012) Since the raw data
represented in this thesis is from RNAq, the remainder of the thesis will focus on the

data analysis for this sequencing method.



General RNA-seq Transcriptomics Data Analysis Pipeline

To analyze the humdds of millionsof raw reads that RNA-seq experiment may
produce, data analysis requires bioinformatics software and the appropriate computing
resources. A majority of the followingethods useth data analysis were performed at
the Center for Genome Research and Biguating (CGRB) at Oregon State University.
The CGRB cluster contains nearly 4,000 cores and machines with up to 2 Terabytes of
RAM. The CGRB cluster takes input from a commdiné interface, hosting both Unix
and R environments for users. Although theeavariety of software available, the
basic data analysis pipeline contains; quality control, alignment, quantification, and
differential expression. The following section will also discuss assembly and genetic

marker discovery.

Quiality control

AlthoughRNA-seq produces hundreds of millions of reads per sample, not all
reads are perfect. Due to biases in the amplification process vigRZ&ewa et al.,
2009)and potential AT or GC rich repetitive region of the transcriptome, sequencing
errors are introduced. The accepted error rate for the lllumina platform is ~1% or 1/100
bases called incorrectly. This wherethe ansl at
guality, Q is defined by the following equation:

0 pTiCcQ

where fAed is the estimat ed (PeguertiagQudlity t y of

Scores) A quality score of 20 indicatesl in 100 probabilityof an incorrect base call



and 99% base call accuracy. Researchers may also choose to fine tune and trim
potentially incorrectly called bases in reads, however there is always the debate of

potentially trimming good dat@el Fabbro et al., 2013)

Sequence Read Alignment

To link sequence read abundance wigime expression, sequence reads must be
aligned to a reference genome. In the case where no closely related reference genome is
available, sequence reads may be aligned to a de novo assembled transcriptome, which
will be detailed later. An effective alignaims to align reads in their proper position,
resolve any multiple mapping reads, and deal with splice junctions in eukaryotic mMRNA
T all in a timely manner. It is particularly important for RM&q read aligners to deal
with splice junctions appropridieto prevent misalignment and maintain accuracy of
gene expression estimat{@&obin et al., 2013; Trapnell et al., 2009)

De novo transcriptome assembly may be performed to construriglth
transcriptgdMiller et al., 2010) This may prove useful to align sequence reads when no
closely related reference genome is available. In order to utilize the de novo asaembly
a reference, additional steps must be taken; most prevalent is functional annotation of
assembled transcripEdobnov and Apweiler2001) Not to be confused with de novo
genome assembly, the quality control metrics with transcriptome assembly are not the
same. Since the transcriptome is a dynamic measurement of the RNA an organism
produces in a given ewmvisomme(B@ppPNebpr mat ei
Emrich, 2013) The quality of a de novo transcriptome assembly is based through

statistics such as mean read length, the assigned annotations of transcripts, and frequency



of assembled transcript lengths (Figure 1L3)kt al., 2014a; Mikheenko et al., 2016;

Smith-Unna et al., 2016)

Quantification

Using the data generated from sequence read alignment, quantification of reads
representing a region of the genome occurs. Quantification of reads may occur at the
gene, exon, or transcript level. The most common output of read quantification is
counts representing a region. The HTSeq software package is the most renown
standalone read counter for genes and efdigdsen et al., 2011 however there are
several other software packages that may be more appropriate for transcript and isoform
level quantificationKim et al., 2015; Li and Dewey, 2011)

Although this thesis utilizes read count quantification, it should be noted that raw
read counts aloneenot the only component needed to compare expression levels
among samples. Transcript length and total sample read numbers vary between samples
within treatments and between treatmdMsrtazavietal.,,2008) The measure @dr
per kil obase of exon model per manplei on of
normalization method that will remove theaturelength and librarsize effects.
Software packages such as Cufflinks and StringTie utilize this stréRegiea et al.,
2015; Trapnell et al., 2010pifferential expression analysis software that utilize input
read count data employ different methods to deal with-sderple variation and will be
elaborated on in the following section.

After read counts are generated, a quality control step should be taken to assess

the individual samples in the study. Undee issumption that variability between counts
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in biological replicates within a treatment are low and across treatments are high, it
should be expected that biological replicates within a treatment will cluster together in a

principal component analysis.

Differential Expression Analysis

As stated in the previous section, read count based differential expression must
find a way to address the irteample variation that may affect gene expression levels.
The first approach is to compute differential expres using discrete probability
distributions, such as the Poisson or negative binomial distribuiorters et al., 2013)
These probability distributions accommodate an over dispersion of variance that expected
from the random sampling in read counts between individual samples. As used in this
thesis, the software package eddakes input read counts and performs the
aforementioned fit to probability distributigRobinson et al., 2010Comparative
differential expression analysis stusligave shown that software package choice may
affect the outcome of the analy$&oneson and Delorenzi, 2013; Tang et al., 20di%)
almost always offers no advantage between packages. This ambiguity should serve as a

reminder for researchers to consider multiple options.

Genetic Marker Development

The developmentf@enetic and genomic resources is crucial for gene discovery
and expression studies, especially in regard temodel species. The volume of reads
generated per sample in transcriptome sequencing provides an excellent opportunity to

identify genetic marérs. Single nucleotide polymorphisms/variants (SNPs/SNVs) may
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be determined by analyzing alignment data with SNP calling software. An advantage to

using RNAseq data opposed to tradition whole genome sequencing is that the sequenced

genic regions are enhed in transcriptome sequencing and increases the potential for
detecting functional SNR#®iskol et al., 2013)Simple sequence repeats (SSRs) may be
identifiedby mining a transcriptome assemiffyemnykh, 2001)SSRs are very useful
due to tleir instability which consequently leads to genetic divergiglubov et al.,
2010)in addition to being a costffective way to perform population genet{édlendorf

et al., 2010)

Dissertation Outline

In this dissertation, we present our study of specific environmental stesses
crop plants by leverage RNgeq technologies. In each chapter, we present our findings
as we expand the genomic resources of rice and wheat.

In the absence of species specific genomic resources, Chapter Two reports
strategies of dealing with this igs. For both Triticum monococcum accessions, we
produced a de novo transcriptome assembly. By creating a reference for use in
differential genes expression, we studied the photomorphogenesis profile for each wheat
variety. Functional annotation via homoyelgased descriptions of predicted protein
domains and gene ontology terms of the assembled transcriptomes further enriched
genomic resources.

Chapter Three presents a study of a model organism, Oryza sativa. The
transcriptomic profiles of two varieties @wn for their different responses to salt

exposure were in a higiesolution time course. In this study, experiment design plays a
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crucial role. The time intervals of which sampling took place enables the analysis of both
immediate response and prolongedponse of rice to salt stress. Similar to Chapter Two,
Chapter Three compares the transcriptomic profiles of both rice variety. In this
investigation, the advantage of studying a model organism is evident as species specific
annotation resources are rdgdivailable. De novo assembly of each rice variety was
performed, but primarily for identification of genetic markers. We focus on the findings
SSRs in two candidate genes and their potential functional consequences in both
varieties. Ultimately, this stly provides a robust resourfme applications in rice salt
response trait improvement.

The common theme in this dissertation is to observe differential expression
specific to environmental stress, identify candidate geyessetic variants, and markers
to provide informed decisions on potential marlissisted selection tools for operational
breeding programs. As stated in the preceding section, the potential for detecting
functional SNVs is increased in transcriptome sequrgndue to the enrichment of
sequenced genic regions. This dissertation reveals differentially expressed genes and
candidate genes containing markers that may be associated to their respective

environmental stresses.
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Figure 1.1. RNA-Seq study workflow.

A general workflow for RNASeq based studies. Experimental Design inclgdasideration of replicate number, treatment

groups, sequencing depth, sequencing library type, and RNA extraction method. Quality Control includes trimming/filtering raw
reads and read alignment. The pathway for bioinformatics analysis is dependentssedheh question asked, but generally
includes functional annotation, transcriptome assembly, gene expression analysis, and genetic marker discovery
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Figure 1.2. Determination of sequencing depth.

Line graph shows the running of increasing subsetse@iience reads to identify
differentially expressed genes to provide points on a saturation curve. The point at which
the curve reaches its second asymptote (dashed line) is the depth at which minimum
number of reads is desirédn this graph approximateb0 million reads per sample.
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Figure 1.3. Evaluation of de novo transcriptome assembly

The quality of a de novo transcriptome assembly is based through statistics such as (A) number of transcripts/contegs é8sembl
the assignedrmotations of transcripts, and (C) frequency of assembled transcript lengths.



21

Chapter 2 De Novo Transcriptome Assembly and Analyses of Gene Expression during
Photomorphogenesis in Diploid Wheat Triticum monococcum

Samuel E. Fok Matthew Geniz§ Mamatha Hanumappa, Sushma Naithani, Chris
Sullivan, Justin Preece, Vijay K. Tiwari, Justin Elser, Jeffrey M. Leonard, Abigail
Sage, Cathy Gresham, Arnaud Kerhornou, Dan Bolser, Fiona McCarthy, Paul Kersey,
Gerard R. Lazo, and Pankaj Jaiswa

$Co-first authors
PLOS ONE

10.1371/journal.pone.0096855
PMID: 24821410



22

ABSTRACT

Background: Triticum monococcur{n) is a close ancestor ©f urarty, the Agenome
progenitor of cultivated hexaploid wheat, and is therefore a useful model f&tutheof
components regulating photomorphogenesis in diploid wheat. In order to develop genetic
and genomic resources for such a studycorestructed genomeide transcriptomes of

two Triticum monococcuraubspecies, the wild winter whéatmonococcum ps
aegilopoidegaccession G3116) and the domesticated spring Wheabnococcum ssp.
monococcungaccession DV92) by generatidg novaassemblies of RNAeq data

derived from both etiolated and green seedlings.

Principal Findings: Thede novaranscriptane assemblies of DV92 and G3116

represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ~90%
of these transcripts from each accession to barley and ~95% of the transdripisaiu
genomes. However, only ~77% transcripts magpdte annotated barley genes and
~85% transcripts mapped to the annotdtedrartugenes. Differential gene expression
analyses revealed 22% more lightnggulated and 35% more light dowegulated
transcripts in the G3116 transcriptome compared t8 D\Mhe DV92 and G3116 mRNA
sequence reads aligned against the reference barley g@tbtoehe identification of
~500,000 single nucleotide polymorphism (SNP) and ~22,000 simple sequence repeat
(SSR) sites.

Conclusions:De novatranscriptome assemblies of two accessions of the diploid wheat
T. monococcumrovide new empirical transcriptome references for improving Triticeae

genome annotations, and insights into transcriptional programming during
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photomorphogenesis. The SNP ai@RSsites identified in our analysis provide additional
resources for the development of molecular markers.

Keywords: Transcriptome; Wheat; Einkorn wheat; RNg&(q; de novo assembly; NGS;
SNP; SSR; Photomorphogenesis; Light regulation, Genetic diversityg Getology;
mitochondrial transcription termination factor; late embryogenesis abundant protein;
Rossmantlike alpha/beta/alpha sandwich fold; RUBISCO, chloroplast; gene expression,
wheat Agenome; Triticum monococcum; photosystesubunit PSAK; photosysmt |

subunit PSAH; Chlorophyll a/b binding protein LHCB; seed germination; light regulated

gene expression; comparative plant genomics; comparative genomics
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INTRODUCTION

Einkorn wheat is one of three cereal crops domesticated prior to 7000 B.C. that
contributed to the Neolithic Revolutidd]. Stands of wild einkorn, subspecigsticum
monococcunssp aegilopoidesare extensive in rocky areas of southeastern Tutkey
Domesticated einkorn, subspeciesanonococcurh. ssp.monococcunt. (2n = 14)
originated i n the Ka [2leandavdsamidelywcoltivated durings o f
the Neolithic period. Domesticated einkorn differs from the wild accessions in possessing
plumper seeds and tough rachis phenotypes that prevent seed shattering, a domesticated
trait selected for avoiding loss of yi€8].

T. monococcungarrying the representative diploid wheat A genom@&A®), is
closelyrelated torl. urartu(AUYAY), the donor of the A genome of cultivated hexaploid
(AABBDD) wheat (T. aestivun[4]. The genome size df. monococcuris about 5.6
Gb, which is 12 times the size of the rice genome and 40 times the genome of the model
dicot plantArabidopsis thaliand5]. However, in comparison to the ~17 Gb genome size
of common hexaploid wheat, the dipldid monococcuroffers relative simplicity and
has been used extensively as a mf@lelThe many existing wild populations ©f
monococcungrowing in their natral habitat have suffered little selection pressure and
thus offer opportunities to study its diverdii}. They also serve as a reservoir of useful
alleles and traits, such as salinity toleraj8jeand disease resistan@10], and thus
have been utilized for generating genetic maps to facilitate comparative mgdiagd
mapbased cloning of gen¢$2,13] Combining the sequence and positional information
of the genes based on recently published baHeydeum vulgarg[14], T. urartu[15]

andAegilops tauschijl6,17]geromes with the genetic tools and transcriptdmsed
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resources available far. monococcumeported herein will allow progress in future
genetic studies in wheat and other closeljated species.

Light regulates a wide range of plant processes inclusieg germination, organ,
cell and organelle differentiation, flowerifg8i 21] and metabolisn22]. The
germination of a seed in the dark folloglsotomorphogenesis (the growth of an etiolated
seedling) Uponexposure to light, seedlings go through photomorphogenesis (greening)
that is marked by chlorophyll biosynthesis, diffetiation ofprotoplastids into
chloroplasts, the initiation of carbon assimilatielgngation and thickening of the
hypocotyl, and the activation of the shoot apical meristem leading to the development of
the first true leaveR3i 25]. Although the transition from skotomorphogenic to
photomorphogenic growth has Imeselldocumented iRrabidopsig24,25] the
complex gene networks at the genome level comgpthis developmental transition in
wheat are not well understood.

In order to investigate and identify the complex transcriptional network associated
with seedling photomorphogenesis in Einkorn wheat, we conducted llitased
transcriptome analys€éRNA-Seq) of twol. monococcurmsubspecies: DV92, a spring
Einkorn accession of the cultivatéd mononcoccuresp.monococcuneollected in Italy
and G3116, a wild winter Einkorii, monococcurssp.aegilopoidescollected in
Lebanon11]. Computational analysis of the transcriptome datsigeal functional
annotations to the gene models and gene families. We also identified gene loci harboring
SSR and SNP sites and predicted their consequences on transcript structure, coding
features and expression.

RESULTS
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Sequencing and de novo assembdyf transcriptomes

A total of twelve cDNA libraries were created, six from each of the DV92 and
(G3116 accessions. These libraries represent three replicates prepared frgnowlark
seedlings sampled eight days (8DD) after germination, and three reppcapared from
seedlings grown in the dark for eight days and then exposed to continuous light for 48
hours, sampled eleven days after germination (48LL). The sequencing of cDNA libraries
from the 8DD and 48LL samples on the lllumina HiSeq 2000 platf@neigated 39.56
Gbp of nucleotide sequence from DV92 and 37.65 Gbp from G¥id Govoassemblies
were performed using Velvet and Oaf#3, resulting in a total number of 120,911
transcripts for DV92 and 117,969 transcrip
The assemblies of eaelecession were created in a tatep process: first, two separate
assemblies were generated from optimized 31 and-B8&Klengths; second, transcript
isoforms were clustered to obtain discrete assemblies for DV92 and G3116, representing
the total numberfaunique transcripts after merging. The quality of transcriptome
assemblies was assessed with various statistical metrics including the overall number
(coverage), average length and diversity of transcripts (the estimated number of discrete
loci assembled and via comparison with published, annotated genomes. The average
length for DV92derived transcripts was 1,847 bp; the average length for G&drlved
transcripts was 1,783 bp (Table 2.1). The overall frequency distributions of transcript
lengths aresimilar to otherde novagplant transcriptome assembli@si 29] and similar to
the overall distribution of barley arid urartugene lengthgFigure S2.1).

Comparisons with the Triticeae genomes
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To annotate, characterize and approximate the coverage of sequenced and
assembled transcripts representing common gene loci, we compared the transcripts of
DV92 and G3116 to transcripts of other plapécies from Poaceae (Table 2.2) using
BLAST [30]. Triticum shares a more recent common ancestor with barley than with
Brachypodiuni11], therefore, we chose the barley genofmneneé30312v2.18) as
the reference for further comparative analySigser 92% of transcripts from both DV92
and G3116 were successfully mapped to the barley genoméandsoad coverage of
the genome (Table 2.2; Figure 2.1A). Approximately 77% of DV92 and G3116
transcripts mapped to ~90% of the barl ey
(Figure 2.1; Tables 2 and 3). In the reciprocal BLAST analysis, we successagped
~91%oof the barley gene models to the G3116 transcriptome-88% of the barley
transcripts to th®V92 transcriptome (Table 2.3).

Comparison of the DV92 and G3116 transcriptomes witfTtheartu (wheat A
genome) and thA. tauschiilwheat D gaome) genomes and gene modé&i 17]
suggest that ~84% of tile monococcurtranscripts from both accessions mapped to the
T. urartugene mdels, while ~86% mapped to the tauschiigene models (Table 2.2).
80-85% of theA. tauschiiandT. urartucoding sequences matched DV92 or G3116
transcripts in a reciprocal BLASTn analysis (Table 2.3).

Functional annotation

InterProdomain annotations were assigned to 54,814 DV92 transcripts and
53,627 G3116 transcripts based on analyses of putative polypeptide encoded by the
longest Open Reading Frame (ORF) for a given transcript (Table S2.1). InterPro domain

mappings provided Ger@ntology (GO) annotations for 42,931 DV92 transcripts and
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41,983 G3116 transcripts. Blast2G&1] analysis provided GO annotations for 64,950
DV92 and 61,783 G3116 transcripts (see Data Access section). Using both InterPro and
Blast2GO methods, we assigned functional annotation to a total of 71,633 (59.0%) DV92
and 69,437 (58.8%) G3116 transcripts. Overall, 2,897 and 2,867 GO terms were assigned
to DV92 and G3116 transcripts respectively, with 2,742 GO terms common to both.
Differential expression of genes during photomorphogenesis

The RNASeq short reads from tldark-grown, etiolated (8DDand light
exposed, green (48LL) samples were mapped agamsespective transcriptomes of
DV92 and G3116 to study ligiiegulated gene expression during photomorphogenesis.
25,742 G3116 and 23, 52f6o |DdV 9c2h atnrgaen sicnr iepxtpsr ess
between 8DD and 48LL samples (Figure 2.2A and 83116 contains more light up
regulated and dowregulated transcripts compared to DV92 (Figure 2.2A and C). The
differentially expressed transcripts from both accessions maps to 7,248 (30%) unique
barley homologs. Henceforth, we analyzed differential@sgion of corresponding
putative homologou$. monococcurgenes in etiolated (8DD) and green (48LL) samples
across two accessions DV92 and G3116 in afoay comparison (Figure 2.2C).
Compared to DV92, more than double the number of unique genes in &&ldp and
downregulated by light. Thiryseven genes (Table S2.2) show a common profile across
all four samples. This set includes homologs of ligéwtvesting chlorophyll Byinding
protein, 3ketoacytCOA synthase, pyruvate kinase, tubulin beta chraithchlorophyll
catabolite reductase and cellulose synthHé&seprotein (Table S2.2). Interestingly,
unique set of fiftyone genes show increased expression in DV92, but decreased

expression in G3116 in response to light (Figure 2.2C). This set inclodeddys of
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rubisco activase, brassinoster@axidase, ketoacytCoA-synthase, histone H2A,

SEGC motif-containing protein, ATRIependentlp protease ATHbinding subunit, heat

shock protein 90 and cpn60 chaperonin family protein (Table S2.2). Conversetyof
forty-one genes shows decreased expression in DV92 but increased expression in G3116
in response to light (Figure 2.2C). This set includes homologs of géikaiprotein 1,

plastid transcriptionally active 13, Tetratricopeptide repeat (AIRR)superfamily

protein and CAX interacting protein 1 (Table S2.2).

For each set of differentially expressed genes (Figure 2.2C), enrichment of a
selected GO molecular function categories is shown in Figure 2.2D. We found that the
41- and 5kgene sets shownachment for proteins that are likely to have ion and cation
binding, nucleotide binding and transfer activities. Theydfte set has a greater
percentage of hydrolases, whereas, thgéde set contains a greater percentage of
transporters (Figure 2.2DAmong the light upregulated genes common to both DV92
and G3116, we found enrichment of genes encoding for structural components of cell
envelopes, proteins involved in anatomical structure formation and proteins associated

with cellular component biogesish avi ng cel l ul ar component

(GO: 0009536) or oO6intracellular organell ebd

products targeted to 6thylakoidd (GO: 00095

increased expression after exposure totligclude components of carbohydrate

met abol i sm, namely, the 6édoligosaccharide

remodeling (GO: 0004553 ; -tphskatoralsprotein hydr ol as e

modi f i (6G@:0043687)0The light dowregulated genes were associated with the

(

m
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bi ol ogical process Ophosphate metabolic

6nucl eotide diphosphatase activityé (GO:

In DV92, transcripts encoding red (phytmome) and blue (cryptochrome) light
receptor proteins are dowagulated by Zold or more, whereas, orthologous transcripts
in G3116 are upegulated by Zold or more during photomorphogenesis (Table SA1).
small subset of DV92 and G3116 transcriptgpped to genes with known homologs in
plants exhibit differential expression during photomorphogenes (Table S2.4). The light
induced genes includiecb coding forchlorophyll a/b binding proteinglongated
hypocotyl 5HY5)coding for a positive regulat@f photosynthesis associated nuclear
genesrbcscoding forribulose bisphosphate carboxylase small subtwoitnologs of rice
YGL138(t)gene involved in chloroplast developmég3R], geres coding for
mitochondrial transcription termination factor, late embryogenesis abundant protein LEA,
and those coding for Rossmalike alpha/beta/alpha sandwich fold containing protein
(Table S2.4)Notably, homologsoff e ne ¢ o d i n-gydroxglas a&iBtyA 8 6
associated with germination are significantly lightregulated in G3116 but not in
DV92. The light dowrregulated genes include homologs of whghatB1 DELLA
protein, a nuclear repressor of gibberellin responseTal@Al, a primary auxin
response geng83].
Developing genetic marker resources from the sequenced transcriptome

Molecular genetic markers are very useful for the analysis of genetic variation and
heritable traits. Well established genotyping methods, such aghrigighput
genotypingby-sequencing (GBS) and cHigased methods using genomic DNA facilitate

the interpgation of SNP and SSR markers. Similarly, large RB&% data sets can be

pr
00
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mined for molecular marker sit§&7], which may then be used for genetic trait mapping,
diversity analysis and markassisted selection in plant bdéeg experiments. This
method permits future systertessel studies to explore the integrated analysis of gene
function, expression, and the consequence of sequence variation on gene structure and
function.
Identification of SSR marker loci

We mined the D¥2 and G3116 transcriptome assemblies fortdi, tetra,
penta, and hexanucleotide SSRs with a minimum of 8, 6, 4, and 3 repeat units,
respectively. We identified 29,887 SSR sites in 22,019 unique DV92 transcripts and
28,122 SSR sites in 20,727 unyG3116 transcripts (Figure 2.3A; Table S2.5) . 3,413
transcripts orthologous between DV92 and G3116 contain identical SSRs, whereas 703
DV92 and G3116 orthologous transcripts contain variddrigth SSRs. Some of these
703 sites may represent duplicateRSSound in transcripts that map to the same or
overlapping locus; therefore we aligned our assembled transcripts to the barley genome
and identified 148 unique barley gene loci that harbor the variablec8&Rining
sequence (Figure 2.3C). We experiménteerified a small number of SSRs for
genotyping the DV92 and G3116 accessions (data not shown), though a majority of the
markers will require experimental validation before they can be used.
Identification of SNP marker loci

To identify single nucleatie polymorphism (SNP) sites across the DV92 and
G3116 transcriptomes, we used SOAPE4) to align and identify the ravi.
monococcungequence reads againse tharleygenome. We identified 510,627 SNPs

with an average of one SNP per 3600bp of the assembled barley genome. Of these,
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170,377 SNP sites were unique to G3116, and 37,380 SNP sites were unique to DV92
(Figure 2.3B). More than 50% of the SNP sites (338) are present in both the DV92
and G3116 accessions. Of these common sites, 9,808 SNP sites were identified with
different alleles for DV92 and G3116. These 9,808 SNP sites show a uniform distribution
along the barley genome (Figure 2.3C), thus holgwigntial utility as genetic markers
in wheat breeding programs. These 9,808 SNP sites are present in 5,989 unique protein
coding genes, which include a subset of 4,935d&a0otated geng3 able S2.6) and
2,543 differentially expressed genésgreater nmber of nucleotide transitions were also
discovered in DV92 when compared to G3116, which had more transversions (Table
S2.7). In order to address the biological relevance of these SNPs, we predicted the
potential effects of the variants and identified\getse set of consequences on the
transcriptds structure, splicing and prote
genome and annotated gene models (Table 2.4). Notably, we identified over 300,000
downstream variants, ~200,000 missense varia@t80018,000 transcript splice site
mutations, and more than 400 sites with a gain in stop codons (Table 2.4). Unique DV92
and G3116 SNPs are distributed across variance consequence categories in similar
proportions to combined SNPs (Table 2.4).
DISCUSSION

This study provides theée novoassembled transcriptomes of tivomonococcum
subspecies, representing the domesticated accession DV92 and the wild accession
G3116. Highthroughput RNASeq technology, bioinformatics tools and publicly
available datab&s enabled higher quality transcriptome assemblies of these diploid

wheat varieties, both of which are closely related to the whegndme progenitor.
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urartu. However, approximately 15% of the DV92 and G3trifiscriptomes do not map
to theT. urartuandA. tauschii(progenitor of the wheat D genome) gene models (Fable
3). We compared these unmapgdednonococcurtranscripts against the barley genome
and found 4,954 DV92 and 5,362 G3116 transcripts bear homology to 2,607 barley
genes, suggesting théiese genes have not been annotated in the published wheat A and
D genome$15i 17]. Furthermore, comparison of the monococcunT. urartuard
barley gene models also revealed other disparities. For example, gene models .for the
urartu gene TUIUR3_ 025841 lack exord, 3" and 5° UTRs and potentially unspliced
introns when compared to the barley homolog MLOC 59496. In our analysis, multiple
monococcuntranscript isoforms aligned with the barley homolog MLOC_59496 support
the barley gene model (Figure S2.2) and thus provide empirical evidence for the missing
features inl. urartugene TUIUR3 025841 (Figure S2.3). Our findings demonstrate
the utility of theT. monococcurtranscriptome data in enriching and improving Triticeae
genome annotation, including the recently published A and D genomes

To our knowledge, this study is the first to provide the relative expression of
transcript isoforms (Figure 2.2, Table S2.1) in both etiolated seedlings andXjgbdged
green seedlings of cultivated spring accession DVf@Rvald winter accession G3116 of
T. monococcurfFigure S2.4). In order to preserve the granularity of the transcript
iIsoformbased expression profile, we avoided projecting a weighted expression profile of
the genes. This allowed us to identify a greatenber of differentially expressed
transcripts in G3116 (Figure 2.2A). However, for simplicity, the foay Venn diagram
(Figure 2.2C) was constructed to show comparison between the ligdmdipown

regulated genes from the two accessions.
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In generalthe transcriptomes of both DV92 and G3116 suggesegplation of
the genes involved in chloroplast biogenesis, photosynthesis and carbohydrate
metabolism, such as the homolog€tdngated hypocotyl BHY5), YGL138(t)32,35]
and photosystem Il chlorophyll atiinding proteinihcb (Table S2.4)In addition,
differentially expressed transpts encoding for mitochondrial transcription termination
factorlike protein (INTERF), late embryogenesis abundant protein (LEA) and Rossmann
like alpha/beta/alpha sandwich fold containing protein family members were found to be
light up-regulated (Table S2). In humans, the mitochondrial transcription termination
factor attenuates transcription from the mitochondrial genomeggyates the
expression of 16S ribosomal RNA, and has high affinity fotfi¢A-eU(UUR) gene[36i
38]. The ArabidopsisnTERF gene family members are known to play roles in
organelles; for exampl§UPPRESSOR OF HO#L1 (SHOTZ1)a mitochondrial protein,
Is involved inheat tolerance and regulation of oxidative stf889% SINGLET OXYGEN
LINKED DEATH ACTIVATOR10 (OLDAT1@® plastid protein, activates retrograde
signaling and oxidative stress, aBELAYA SMERTBSM requlates plastid gene
expressiorj40]. The mTERFdomain containing proteins from both the DV92 and G3116
accessions showing light apgulation are predicted to be chloroplast proteins (TargetP
value ~0.9) (Figure S2.5J.0 our knowledge, this is the first report of light-tggulation
of wheat gene family members encoding mTERF, LEA and Rossiikann
alpha/beta/alpha sandwich fold containing proteins.

Other proteins that show ligitduced differential regulation are involved in
phytohormone metabolism and signaling. Transcripts homologdusagestivunRhtB1

that code for HELLA protein were dowsregulated by lighf41]. DELLA proteins are
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repressors of gibbelin (GA) signaling and act immediately downstream of GA
receptor. Whe®GA synthesis is induced by light, theabing of GA to its receptor

causes degradation of DELLAs via the ubiqujiteasome pathwd$2]. GAis a
hormone that is well known to promote seed germination in addition to participating in
other parts of the plant life cycl®ELLAs have also beesuggested to mediate
interaction between GA and abscisic acid (ABA) pathways, as one of its targets,
XERICQ is known to regulate ABA metabolisi#2]. The levels of transcripts

homol og ou shydraxylageBvare dgdificantly higher in G3116 relative to
DVo92. -ydBokylaBedegrades ABA, a hormone involved in dorm#4gly
Degradation of ABA results in a decreased ABRAGA ratio resulting in the breaking of
dormancy44]. A B-AydrBx§lase activity may bene of the difference between

winter and spring varietie€onverselyjncreased levels dfanscripts homologous to
gene encoding fdsrassinosteroi®-oxidase were found in DV92 in response to light, but
not in G3116. Transcripts homologousT@AAl an early auxirresponse gene from
wheat[33], were dowrregulated by light in both DV92 and G3116, whicleassistent

with the previous repofB3]. In addition to auxin, th&alAAlgene is also induced by
brassinoteroids[33]. Several genes showed accessipacific expression profile, such

as the 51 and 41 gene sets (Figure 2.2C, Table S2.2), which may reflect differences in
anatomical features and the plantds respon
the levels offanscripts homologous to rigerminlike protein 1show decrease DV92

but increase in G3116 in ligltixposed seedling$hegerminlike proteirtl in rice has

been shown to play a role in the regulation of plant height and disease red#&fhnce

Transcripts homologous to genes coding for heat shock protein 90 and cpn60 dhaperon
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family protein increase in DV92, but decrease in G3116 in response to light (Table S2.2).
Changes in the expression levels of transcripts encoding components of hormone
biosynthesis, signaling and protein targets suggest that photomorphogenesisfslig car
orchestrated interplay of both developmental signals (often genspgasfic) and light
response.

We identified over 500,000 SNP sites and approximately 22,000
SSR/microsatellite sites in the transcriptome assembli€smbnococcunOf these,
9,808 SNP and 148 SSR sites are common polymorphic sites in both accessions. The
9,808 SNPs overlap 2,543 barley genes that show light mediatediaiplowrregulation
of homologous transcripts I monococcumA few notable genes in this differentially
expressed set include (Figure S2.6 and Table S2.8) the light-cemyutated protein
coding genes for CASkke membrane protein, Xyloglucan enttansglycosylase
activity, Auxin-responsive family protein and a novel protein carrying the DUF1644
domain. Wheras, the light upregulated protein coding genes includes, photosystem
subunit PSAK, PSAHRIibulosel,5-bisphosphate carboxylase (RUBISCO) small subunit
RBCS, Chlorophyll a/b binding protein LHCB, Mitochondrial transcription termination
family member andhovel uncharacterized proteins (Figure S2.6 and Table S2.8). Our
data suggest that 170,377 SNPs is unique to G3116 and 37,380 SNPs is unique to DV92
(Figure 2.3B); this provides an opportunity to study the wild winter and cultivated spring
habits of the tw accessions in greater detail. The SNP and SSR genetic sites identified in
our dataset, along with those identified in other genetic populddéhsnd wheat
projects[47], will provide useful marker resources for fine mapping experiments and

markerassisted wheat breeding programs.
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Along with theT. monococcurtranscriptomes from two accessions, we have
provided additional genomic and genetic resources including their functional annotations,
differential gene expression analyses and potential SNPs and SSRs, which can be used to
explore Triticeae genome divessicoexpression networks involved in
photomorphogenesis and to develop stochastic and metabolic nefd@&,49] In
addition, these resources can be used to igemivel genes, transcript models and
eQTLs, and to study plantdés adaptation t
domestication on crop plants and evolution of novel genes.

METHODS
Plant material and growth conditions

Seeds of th@riticum monococcunssp. monococcum accession DV92, a
cultivated spring wheat, arititicum monococcurasp. aegilopoides accession G3116, a
wild winter wheat, were sown into sunshine mix (Sun Gro Horticulture, Agawam, MA,
USA). The trays were watered thoroughly avete shifted (in the evening hours) to a
dark growth chamber set to cycle temperature betwe¥h 20 12 hours (8ar8pm) and
18°C for the next 12 hours (8p8am). The seedlings were grown in the dark for next 8
days and the soil was kept moist by gesflyaying with water every 72 hours. Seeds
were not vernalized prior to sowing. Germination was observed within two days for both
accessions. The first set of dayjfown seedlings shoot samples (8DD), consisting of
three replicate from each accession,evenllected at the end of d&yunder green light.
(8DD). On day9 at 10 am, continuous light (120umotfsec at soil surface) was started
for 48 hours (48LL) and a second set of seedling shoot samples (48LL), consisting of

three replicates from each acsies, were collected at the end of 48 hours of treatment
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on day 11. Each replicate contained shoots of three seedlings of similar height (Figure
S2.4). Harvested samples were immediately frozen in liquid nitrogen and steBfCat
Sample preparation for lllumina sequencing

Total RNA from frozen seedling shoot sample was extracted using RNA Plant
reagent (Invitrogen Inc., USA), RNeasy kits (Qiagen Inc., USA), and treated with RNase
free DNase (Life Technologies Inc., USA) as previously descf®e80] The mRNA
concentrationguality were determined using NIDDOO spectrophotometer (Thermo
Fisher Scientific Inc., USA) and Bioanalyzer 2100 (Agilent Technologies Inc., USA).
Samples were prepared using the TrU8eRNA Sample Preparation Kits (v2) and
sequenced on the Illlumina H§ 2000 instrument (Illumina Inc., USA) at the Center for
Genomic Research and Biocomputing, Oregon State University.
De novotranscriptome assembly and annotation

lllumina sequences were processed for low quality at an error rate of 0.00001,
parsed foindex sequences and pairs, and filtered and trimmed using customized Perl
scripts. FASTQ file generation and removal of low quality reads were performed by
CASAVA software v1.8.2 (lllumina Inc.). The higduality sequences used in the
assembly process iludled 435,806,374 and 366,215,814 paged 101bp reads for
DV92 and G3116 respectively (Table 2.1). The samples were assembled with Velvet
(Velvet v1.2.08), which uses De Bruijn graphs to assemble short[EHd&n assembly
of 31 and 35 ¥mer length was performed separately for both the D&#82G3116 reads.
The assemblies generated by Velvet were analyzed using Oases (Oases v0.2.08), which
was developed for th#e novoassembly of transcriptom§26], and uses the read

sequence and pairing information to produce transcript isoforms.
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Similarity searches wereonducted with BLAST30] (E-value <= 1&) using
assembled transcripts agj@ery against gene model sequence databases of other species
of grasses with sequenced genomes, namely, hexaploid Wheats(ivurtranscripts
(DFCl release 12.0),. aestivun{Plant GDB GenBank release 175), barlepideum
vulgarg transcripts Gramene v.2.16), barley genoifig&ramene v.2.16Qryza sativa
spp. indica (Gramene ASM465v1.16)ryza sativespp. japonica (Gramene MSU6.16),
Brachypodium distachyamanscripts (Gramene v.0.16), and Brachypodium
distachyorgenome (NCBI)T. monococcun transcripts were functionally annotated
using a combined approach based upon functional motif analysis and sequence
homology. Transcripts were translated into the longest predicted open reading frame
(ORF) peptide sequences using the ORFPredictor wdlecaippn [52] and resulting
proteins assigned InterPro identifiers using InterProScanv3,84] These InterPro
assignments were also mapped to Gene Ontology (GO) terms. Additionally, we did
Blast2GO analysif31] of T. monococcurtranscripts to transfer GO annotations from
functionally annotated genes in noteat genomes. A BLASTx searchyEa | ue O 1le
and percent identity O % Bomologaussequences or me d
against the NCBI GenBank n@adundant protein database. The resulting best hits with
GO annotations were used to project similar GO assignrfiE&6]to T. monococcum
transcripts. GO annotations from both noets were combined and duplicated
annotations were removed to produce-nedundant gene ontology annotation filesTor
monococcundV92 and G3116The AgriGO Analysis Toolkif57] was used to identify

statisticallye nr i ched functional groups. This met h
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Yekutieli correction for false discovery rate calculation. Significance cutoffs included a
P-value of 0.05 and a minimum of 5 mapping entries per GO term.
Genetic marker development

The assemblies of DV92 and G3116 were mined for SSRs using Perl code from
the Smple Sequence Repeat Identification Tool (SSHI8];
http://archive.gramene.org/db/markers/ssrtool). We identifiedrdi tetra, penta, and
hexanucleotide SSRs #h a minimum of 8, 6, 4, 3, and 3 repeat units, respectively. We
then used custom Perl scripts to identify orthologous DV92 and G3116 transcripts
containing common SSRs.

An alignment database was generated using SOAP'st#blder with the barley
genone (version 030312v2). lllumina sequences (FASTQ formatted) of length 51bp were
processed and aligned through SOAP (Version: 2584])with default options.

Alignment data washen separated into different text files based on the chromosome of
the hit sequence and each chromosome alignment file was sorted based on hit start
position. After separation and sorting, data was processed through SOAPsnp (version
1.02)[34] to identify single nucleotide polymorphisms (SNPs). SOAPsnp was run using
standard options for a diploid genome as stated in the documentation. SOAPsnp output
files were tlen reformatted to VCF output, a community standard format developed by
the 1000 Genomes project
(http://www.1000genomes.org/wiki/Analysis/Mant%20Call%20Format/vefariant
call-formatversion41l) to make them more accessible for analysis by other downstream
programs. To call a SNP, values for novel homozygous prior probability and novel

heterozygous prior probability were set at 0.0005 a@@dl, respectively. The
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transition/transversion ratio was set to 2:1 in prior probability. The rank sum test was
enabled to give heterozygous prior probability further penalty if reads did not have the
same sequencing quality for better SNP calling. Aimar read length of 51bp was
used. We used the Ensembl Plants API Effect Predictof@0pto infer potential

consequences of the SNP variants.

Gene expression analysis

We used CASHX v2.3 to align the DV92 and G3116 reads to their respective
transcriptome assemb]§l1]. Indexed reads were used for each replicate for both dark
and light comparisons of DV92 and G3116. We then used Eqmpekage (v. 2.0.352]
to conduct differential gene expression asmlyWe identified differentially expressed
transcripts with a significance of\Rilue cutoff/FDR corrected-Palue of 0.05. We also
further filtered the differentially expressed genes Hgl@ cutoffs and those identified to
be differentially expressed/lthe EdgeR. Principal components analysis (PCA)
multidimensional scaling (MDS), and correlation matrix algorithms were used to assess
and visualize a crossample comparisons. Both analyses show clustering based upon
RPKM values for all genes among alpleates. The results, as expected, show four
separate visualized clusters (DV92 light and dark replicates and G3116 light and dark
replicates; Figure S2-9).
Data Access

Sequence files, assemblies, annotation files, SNP, SSR, transcript alignments,
gere expression, network data files and results are available at the Jaiswal lab website at

Oregon State Universitynitp://jaiswallab.cgrb.oregonstate.edu/genomics/whéae
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transcriptone data are being integrated in the Barley Genome Browser available from the
Ensembl Plants databadetp://plants.ensembl.oygThe data are also being provided to
the small grains database GrainGemip (//www.graingenes.olgThe raw sequence

files were submitted to the National Center for Biotechnology Information (NCBI)
Sequence Read Archive under the accessions SRX283514/SRR924098 (DV92) and
SRX257915/SRR22411 (G3116).

SUPPORTING INFORMATION

Figure S2.1. The frequency distribution of transcripts of varying size (bp: base pair) in
thede novaranscriptome assemblies of DV92, G3116 and the annotated transcriptomes
of barley and wheak. urartu

Figure S22. A view of theEnsembl Plants barley genome browser showing the
comparison between the models of barley gdh©®C 59496and the homologous.
monococcungene models derived from DV92 and G3116 transcriptomes. This
alignment was generated using the Exonerate software package by allowing for gapped
alignments (introns). The red arrows depict intron retention events and the blue arrow
depicts introrA3 in the annotated barley gene model. Our data support barley

MLOC _59496gene model, including its 3° and 5™ untranslated regions shown by open
blocks.

Figure S2.3.A view of theEnsembl Plant3. urartugenome browser showing the
comparison between tie urartu geneTUIUR3_02586T1 model and the homologous

T. monococcurgene models derived from DV92 and G3116 transcriptomes. This
alignment was generated using the Exonerate software package by allowing for gapped

alignments (introns). Our models show retemiod introns (red arrows) in a couplef
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monococcungene models, and the presence of an e4deame as exe8 in the barley
model shown in figur&2) missed in th&. urartugenome annotatiofthe dotteeline

box). Our data do not support the present exon3 in (blue arrow) in the annotatédd
urartu geneTUIUR3_02586T1.

Figure S2.4.Seedling samples used for generating the transcriptonvelseait

accessions DV92 (left panel) and G3116 (right panel).

Figure S2.5.TargetPanalysis of the DV92 and G3116 peptides bearing the
Mitochondrial transcription termination factoelated domain. The proteins were
predicted to be targeted to chloroplast (cTP) with a high confidence score of ~ 0.9. Both
peptides were predicted to hawéransit peptide length (Tplen) of 78aa.

Figure S2.6.The line plot display expression level in RPKM log2 values of transcripts
that were grouped into light down regulated and lightegulated ceexpressed clusters
(Figure 2.3 and 4) and have overlappSNPs from the 9,808 SNP set. The table on the
right shows homologous barley gene, functional annotation and the SNP variant effect on
the transcript structure and/or function.

Figure S2.7.Principal component analysis (PCA) analysis of REéq reads.

Figure S2.8.Multidimensional scaling (MDS) analysis of RN®eq reads.

Figure S2.9.Correlation matrix analysis of RN&eq reads.

Table S2.1.Expression profiles of assembled transcripts from DV92 and G3116.
Table S2.2 List of barley homologs clusterad a fourway Venn diagram (Figure 2.2C)
Table S2.3.Enrichment of the Gene Ontolodpased functional annotation of the barley

homologs clustered in a foway Venn diagram (Figure 2.2C).
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Table S2.4 A short list of transcripts mapped to known and ngezies along with their
expression datasets from the DV92 and G3116 accession.

Table S2.5.SSR identification.

Table S2.6.Enrichment of th&ene Ontology based functional annotation of the barley
homologs overlapping tH&808 SNP sites that had a difet allele for DV92 and

G3116 with reference to barley allele.

Table S2.7 Transitions and transversions identified by SNP analysis.

Table S2.8.A list of DV92 and G3116 transcripts homologous to the barley genes
overlapping the 9,800 SNP set. Table includes DV92 and G3116 transcript IDs,
homologous barley gene ID, RPKM values, respectivalpe scores, putative gene
function annotation and thesultant SNP variant effect with reference to the barley gene
models.

ACKNOWLEDGEMENTS

We would like to thank Center for Genome Research and Biocomputing (CGRB) core
facility staff, AnneMarie Girard and Caprice Rosato for qualitative assessment of RNA,
Mark Dasenko for lllumina cluster generation and sequencing and Matthew Peterson for
computational support.

AUTHORS' CONTRIBUTIONS

PJ led the project and together with SEF, MH, VKT and JL conceived the study design.
MH, SEF, AS and VKT carried out the ddight sample treatment experiment. MH, AS
and VKT extracted RNA. MG, GL and SEF conducted various blast analyses. SEF and
MG conducted the de novo transcriptome assembly. JP, SEF and MG conducted the SSR

analysis. CS and SEF conducted the gene expressioBNP identification. AK, DB



45

and PK performed the SNP variant consequence analysis and integrated the data for
public release from the Ensembl Plants database. CG and FM did the IntrerPro
annotation. SEF, MG, SN, JE and PJ analyzed all the data. MBEFSN, JL, VKT and

PJ were responsible for writing the manuscript. All authors read, edited and approved the

final manuscript.



46

BIBLIOGRAPHY

1. Harlan JR, Zohary D. Distribution of Wild Wheats and Bwrlgcience. 1966;153:
1074 1080. doi:10.1126/science.153.3740.1074

2. Heun M, SchafePregl R, Klawan D, Castagna R, Accerbi M, Borghi B, et al. Site
of Einkorn Wheat Domestication Identified by DNA Fingerprinting. Science.
1997;278: 13121314. doi:10.11@/science.278.5341.1312

3. Salamini F, Ozkan H, Brandolini A, Schaferegl R, Martin W. Genetics and
geography of wild cereal domestication in the near east. Nat Rev Genet. 2002;3:
429 441. doi:10.1038/nrg817

4. Zoccatelli G, Sega M, Bolla M, Cecconi Baccino P, Rizzi C, et al. Expression of
U-amylase inhibitors in diploid Triticum species. Food Chem. 2012;13512643
2649. doi:10.1016/j.foodchem.2012.06.123

5. Bennett MD, Leitch IJ. Nuclear DNA Amounts in Angiosperms. Ann Bot. 1995;76:
113'176. doi:101006/anbo.1995.1085

6. Brenchley R, Spannag|l M, Pfeifer M, Bar k
Analysis of the bread wheat genome using wAggleome shotgun sequencing.
Nature. 2012;491: 70510. doi:10.1038/nature11650

7. Jing HC, Kornyukhin D, Kaguka K, Orford S, Zlatska A, Mitrofanova OP, et al.
Identification of variation in adaptively important traits and genaowige analysis
of traiti marker associations in Triticum monococcum. J Exp Bot. 2007;581 3749
3764. doi:10.1093/jxb/erm225

8. Munns RJames RA, Xu B, Athman A, Conn SJ, Jordans C, et al. Wheat grain yield
on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol.
2012;30: 360364. d0i:10.1038/nbt.2120

9. ShiF, Endo TR. Production of wheadrley disomic additiolines possessing an
Aegilops cylindricgametocidal chromosome. Genes Genet Syst. 1997;72: 243
248.

10. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, et al.
Identification of Wheat Gene Sr35 That Confers Resistance to Ug99 Stem Rust
Race Group. Science. 2013; doi:10.1126/science.1239022

11. Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, et al.
Genetic Map of Diploid Wheat, Triticum monococcum L., and Its Comparison With
Maps of Hordeum vulgare L. Genetics. 1996;19&3 999.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

a7

Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Miaased isolation of
the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum
aestivum L.) genome. Proc Natl Acad Sci. 2003;100: 16P5358.
doi:10.1073/pas.2435133100

Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J.
Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci.
2003;100: 626136268. doi:10.1073/pnas.0937399100

International Barley Genonfeequencing Consortium, Mayer KFX, Waugh R,
Brown JWS, Schulman A, Langridge P, et al. A physical, genetic and functional
sequence assembly of the barley genome. Nature. 2012;497:1611
doi:10.1038/nature11543

Ling H-Q, Zhao S, Liu D, Wang J, Sun Bhang C, et al. Draft genome of the
wheat Agenome progenitor Triticum urartu. Nature. 2013;496 987
doi:10.1038/nature11997

Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al. Aegilops tauschii draft genome
sequence reveals a gene repertoirevieeat adaptation. Nature. 2013;496t 94.
doi:10.1038/nature12028

Luo M-C, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, et al. Agigabase physical
map unlocks the structure and evolution of the complex genome of Aegilops
tauschii, the wheat {genome progetor. Proc Natl Acad Sci. 2013;110: 7940
7945. doi:10.1073/pnas.1219082110

Arsovski AA, Galstyan A, Guseman JM, Nemhauser JL. Photomorphogenesis. Arab
Book Am Soc Plant Biol. 2012;10. doi:10.1199/tab.0147

Filichkin SA, Breton G, Priest HD, Dharmawdhana P, Jaiswal P, Fox SE, et al.
Global Profiling of Rice and Poplar Transcriptomes Highlights Key Conserved
CircadianControlled Pathways and eigegulatory Modules. PLoS ONE. 2011;6:
€16907. doi:10.1371/journal.pone.0016907

Li J, Terzaghi W, Deg XW. Genomic basis for light control of plant development.
Protein Cell. 2012;3: 166.16. doi:10.1007/s1323812-20167

Hanumappa M, Preece J, Elser J, Nemeth D, Bono G, Wu K, et al. WikiPathways
for plants: a community pathway curation portal ama@se study in rice and
arabidopsis seed development networks. Rice. 2013;6: 14. doi:10.1188A339
6-14

Dharmawardhana P, Ren L, Amarasinghe V, Monaco M, Thomason J, Ravenscroft
D, et al. A genome scale metabolic network for rice and accompanyahgsa of



23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

48

tryptophan, auxin and serotonin biosynthesis regulation under biotic stress. Rice.
2013;6: 15. d0i:10.1186/193%336-15

Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, et al. The developmental
dynamics of the maize leaf transcriptenNat Genet. 2010;42: 1061067 .
doi:10.1038/ng.703

Seo HS, Yang-Y, Ishikawa M, Bolle C, Ballesteros ML, Chuatl LAF1
ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1.
Nature. 2003;423: 99999. d0i:10.1038/nature01696

Szekeres M, Németh K, Kondgalman Z, Mathur J, Kauschmann A, Altmann T, et
al. Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450,
Controlling Cell Elongation and Detiolation in Arabidopsis. Cell. 1996;85: 171
182. do0i:10.1016/S0@98674(00)8109%6

Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo 8t
assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:
1086 1092. doi:10.1093/bioinformatics/bts094

Fox SE, Preece J, Kimbrel JMarchini GL, Sage A, YouerSlark K, et al.
Sequencing and De Novo Transcriptome Assembly of Brachypodium sylvaticum
(Poaceae). Appl Plant Sci. 2013;1: 1200011. doi:10.3732/apps.1200011

Fu N, Wang Q, Shen-. De novo assembly, gene annotation arulker
development using Illumina pairexhd transcriptome sequences in celery (Apium
graveolens L.). PloS One. 2013;8: e57686. doi:10.1371/journal.pone.0057686

Wang Y, Zeng X, lyer NJ, Bryant DW, Mockler TC, Mahalingam R. Exploring the
Switchgrass Tnascriptome Using Secordeneration Sequencing Technology.
PL0S ONE. 2012;7: e34225. doi:10.1371/journal.pone.0034225

Mount DW. Using the Basic Local Alignment Search Tool (BLAST). Cold Spring
Harb Protoc. 2007;2007: pdb.topl17. doi:10.1101/pdb.top17

Conesa A, Gotz S, Garetadmez JM, Terol J, Talén M, Robles M. Blast2GO: a
universal tool for annotation, visualization and analysis in functional genomics
research. Bioinformatics. 2005;21: 3634676. doi:10.1093/bioinformatics/bti6 10

Zhang F, LuoX, Hu B, Wan Y, Xie J. YGL138(t), encoding a putative signal
recognition particle 54 kDa protein, is involved in chloroplast development of rice.
Rice. 2013;6: 7. d0i:10.1186/19834336-7

Singla B, Chugh A, Khurana JP, Khurana P. An early atespnsive Aux/IAA
gene from wheat (Triticum aestivum) is induced by epibrassinolide and



34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

49

differentially regulated by light and calcium. J Exp Bot. 2006;57: #86%90.
doi:10.1093/jxb/erl182

LiR, LiY, Fang X, Yang H, Wang J, Kristiansen K, et al. SNRed&bn for
massively parallel wholgenome resequencing. Genome Res. 2009;1911132.
doi:10.1101/gr.088013.108

Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein
that regulates stimuldsiduced development of root and logotyl. Genes Dev.
1997;11: 298B2995. doi:10.1101/gad.11.22.2983

Fernandesilva P, MartinezAzorin F, Micol V, Attardi G. The human

mitochondrial transcription termination factor (INTERF) is a multizipper protein but
binds to DNA as a monomer, witlridence pointing to intramolecular leucine

zipper interactions. EMBO J. 1997;16: 106679. doi:10.1093/emb0j/16.5.1066

Hyvérinen AK, Pohjoisméaki JLO, Reyes A, Wanrooij S, Yasukawa T, Karhunen PJ,
et al. The mitochondrial transcription terminationté@anTERF modulates

replication pausing in human mitochondrial DNA. Nucleic Acids Res. 2007;35:
6458 6474. doi:10.1093/nar/gkm676

Robles P, Micol JL, Quesada V. Unveiling Plant mTERF Functions. Mol Plant.
2012;5: 294296. doi:10.1093/mp/sss016

Kim M, Lee U, Small I, FraneSmall CC des, Vierling E. Mutations in an
Arabidopsis Mitochondrial Transcription Termination FatRelated Protein
Enhance Thermotolerance in the Absence of the Major Molecular Chaperone
HSP101. Plant Cell Online. 2012;24: 388365. doi:10.1105/tpc.112.101006

Babiychuk E, Vandepoele K, Wissing J, GafDimz M, Rycke RD, Akbari H, et al.
Plastid gene expression and plant development require a plastidic protein of the
mitochondrial transcription termination factor famiBroc Natl Acad Sci.

2011;108: 66746679. doi:10.1073/pnas.1103442108

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al.
AGreen revolutiond genes encode mutant
1999;400: 256261.d0i:10.1038/22307

Harberd NP. Relieving DELLA Restraint. Science. 2003;299: 18534.
doi:10.1126/science.1083217

Xiong L, Zhu 3K. Regulation of Abscisic Acid Biosynthesis. Plant Physiol.
2003;133: 2936. d0i:10.1104/pp.103.025395

Liu A, Gao F, Kanno Y, Jordan MC, Kamiya Y, Seo M, et al. Regulation of Wheat
Seed Dormancy by AfteRipening Is Mediated by Specific Transcriptional



45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

50

Switches That Induce Changes in Seed Hormone Metabolism and Signaling. PLoS
ONE. 2013;8: €56570. doi:10.1371/joalpone.0056570

Banerjee J, Maiti MK. Functional role of rice gerntike proteinl in regulation of
plant height and disease resistance. Biochem Biophys Res Commun. 2010;394:
178 183. doi:10.1016/j.bbrc.2010.02.142

Poland JA, Brown PJ, SorrellsB/Jannink <L. Development of higldensity
genetic maps for barley and wheat using a noveldnayme genotypingy-

sequencing approach. PloS One. 2012;7: e32253. doi:10.1371/journal.pone.0032253

Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S,Xiahal. Genomwide
comparative diversity uncovers multiple targets of selection for improvement in
hexaploid wheat landraces and cultivars. Proc Natl Acad Sci. 2013;110:88@2/
doi:10.1073/pnas.1217133110

Poolman MG, Kundu S, Shaw R, Fell DResponses to light intensity in a geneme
scale model of rice metabolism. Plant Physiol. 2013;162:11106B®.
doi:10.1104/pp.113.216762

Guerriero ML, Pokhilko A, Fernandez AP, Halliday KJ, Millar AJ, Hillston J.
Stochastic properties of the plant eidéan clock. J R Soc Interface R Soc. 2012;9:
744 756. doi:10.1098/rsif.2011.0378

Fox S, Filichkin S, Mockler TC. Applications of Uldtagh-Throughput
Sequencing. In: Belostotsky DA, editor. Plant Systems Biology. Humana Press;
2009. pp. 78108. Avalable: http://link.springer.com/protocol/10.1007/9%8
60327563 7_5

Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de
Bruijn graphs. Genome Res. 2008;18:18229. doi:10.1101/gr.074492.107

Min XJ, Butler G, Storm®&, Tsang A. OrfPredictor: predicting protesonding
regions in ESTderived sequences. Nucleic Acids Res. 2005;33: \M&/GBO.
doi:10.1093/nar/gki394

Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al.
InterProScan: protein damns identifier. Nucleic Acids Res. 2005;33: W116
W120. doi:10.1093/nar/gki442

Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, et al. InterPro
in 2011: new developments in the family and domain prediction database. Nucleic
Acids Res2012;40: 472b64725. doi:10.1093/nar/gks456



55.

56.

57.

58.

59.

60.

61.

62.

51

Gotz S, Garci@somez IM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al.
High-throughput functional annotation and data mining with the Blast2GO suite.
Nucleic Acids Res. 2008;36: 34284 35. doi:10.1093kr/gkn176

Barrell D, Di mmer E, Huntl ey RP, Binns
database in 20@an integrated Gene Ontology Annotation resource. Nucleic Acids
Res. 2009;37: D39®403. doi:10.1093/nar/gkn803

Du Z, Zhou X, Ling Y, Zhang Z, Sd. agriGO: a GO analysis toolkit for the
agricultural community. Nucleic Acids Res. 2010;38: W84/ 0.
doi:10.1093/nar/gkg310

Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S.
Computational and Experimental Analysis of Microfitiss in Rice (Oryza sativa
L.): Frequency, Length Variation, Transposon Associations, and Genetic Marker
Potential. Genome Res. 2001;11: 14#452. doi:10.1101/gr.184001

Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignnpeogram.
Bioinformatics. 2008;24: 71314. doi:10.1093/bioinformatics/btn025

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the
consequences of genomic variants with the Ensembl APl and SNP Effect Predictor.
Bioinformatics. 210;26: 20692070. doi:10.1093/bioinformatics/btq330

Cumbie JS, Kimbrel JA, Di Y, Schafer DW, Wilhelm LJ, Fox SE, et al. GENE
Counter: A Computational Pipeline for the Analysis of RISAq Data for Gene
Expression Differences. PLoS ONE. 2011;6: e25279.
doi:10.1371/journal.pone.0025279

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinforma Oxf
Engl. 2010;26: 138140. doi:10.1093/bioinformatics/btp616



52

Figure 2.1. Mappings DV92 and G3116 transcripts to the sequencétbrdeum
vulgare (barley) genome v1.0 (source: Gramene/Ensembl Plants).

(A) A hive plot shows comparison betwe€énticum monococcuraccessions G3116 and
DV92 vs. the barley genome. (B) A density plot view of the Ensembl Plants genome
browser showing barley chromosorh karyotype view (tracid) with annotated barley
genes (traclk?; maroon) and the mapped G3116 transcripts {Badkue) and DV92
transcripts (tracid; red).



Contigs with Percent Identity
" Unmapped or <95%
95-98%
98 -99%
99-100%
100%

>3500 bp

1500-3500 b

1-Barley Chromosome 1H
2-Barley protein coding genes
3-DV92 mapped transcript contigs

4-G3116 mapped transcript contigs

Hordeum vulgare (Morex)

\J

Figure 2.1. Mappings DV92 and G3116 transcripts to the sequencétbrdeum vulgare(barley) genome v1.0 (source:
Gramene/Ensembl Plants).
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Figure 2.2. Analyses of the differentially expressed transcripts.

A scatter plot of light upregulated (red colored) and dowegulated (green colored)
transcripts from G3116 (A) and DV92 (B) accession$.ahonococcunEach spot

represents a singleamscript. (C) The table lists counts of differentially expressed
transcripts from the DV92 and G3116 accessions shown in the adjacent scatter plots and
their barley homologs. The fouvay Venn diagram shows the distribution of barley
homolog counts with ference to the mapped light-uegulated (red shaded boxes) and

light downregulated (green shaded boxes) transcripts. (D) Barley homologs from various
unique sets identified in the Venn diagram (C) and their selected molecular function
enrichment.
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Figure 2.2. Analyses of the differentially expressed transcripts.
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Figure 2.3. Genetic marker discovery

Polymorphic sites identified in the transcriptome of DV92 (blue) and G3116 (red). (A)
Number of SSR identified in the tracriptomes. (B) Number of SNPs identified in the

two genotypes by aligning against the sequenced barley reference genome. 9,808 out of
340,250 common SNP sites have polymorphism between DV92 and G3116. (C)
Mapping of common, variable 9,808 SNP and 148 Skes identified in the DV92 and
G3116 transcriptomes on the karyotype view of the reference barley genome hosted by
the Ensembl Plants. The SNP sites are shown as red colored density plot and SSR sites
are depicted as black triangles along the lengthefespective barley chromosomes.
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TABLES
Table 2.1. Transcriptome assembly statistics.

Transcriptome assembly statistics Tormonococcum ssmonococcuniDV92) andT.
monococcum sspegilopoide{G3116) generated by Velvet/Oases. The statistics describe
the sequence input to the assembler and the number of assembled transcripts and relative
transcript length in base pairs jbfphe merged assembly is a feature of Oases that merges
transcript isoforms into putative gene loci.



Table 2.1. Transcriptome assembly statistics.

59

_ Total number of Number of Largest sequence| Average length | Median length
Transcriptome reads Transcripts (bp) (bp) (bp)
assemblies
DV92-31 k-mer 435,806,374 87,972 21,251 1633 1393
DV92-35 k-mer 435,806,374 82,185 13,427 1699 1460
DV92 Merged 120,911 21,331 1847 1600
G311631 k-mer 366,215,814 84,491 21,999 1579 1316
G311635 k-mer 366,215,814 79,936 13,528 1624 1372
G3116 Merged 117,969 22,045 1783 1525




60

Table 2.2. BLAST results.

BLASTnN (E-value 1¢€) nucleotide sequence comparisond ofmonococcum ssp.
Monococcum{DV92) andT. monococcum ssp. aegilopoid&€3116) transcripts against

gene models and genomes from other sequenced grass species suggesting the coverage
represented in thE. monococcurtranscriptome.



Table 2.2. BLAST results.

Target Query

DV92 (120,911) G3116(117,969)

# hits % hits # hits % hits
DV92 - - 116,227 | 98.50%
G3116 117,872 | 97.50% | - -
T. urartu (wheat A genome) 118,618 | 98.10% | 115,498 | 97.90%
T. urartu Transcripts” 102,176 | 84.50% | 99,148 84.00%
A. Tauschii(wheat D genomeg) 120,061 | 99.30% | 117,090 | 99.25%
A. tauschiiTranscripts” 104,932 | 86.70% | 101,749 | 86.25%
T. aestivumTranscripts® 115,528 | 95.50% | 113,064 | 95.80%
T. aestivumTranscripts” 115,244 | 95.30% | 112,786 | 95.60%
H. vulgaregenomev2.18 112,442 | 92.30% | 109,816 | 93.10%
H. vulgare Transcripts v2.16* 93,369 77.20% | 91,411 77.50%
O. sativa indicAASM465 v1.16 83,775 ]69.30% |82,176 |69.70%
O. sativa japonicaMSU6* 84,836 | 70.20% | 83,291 | 70.60%
B. distachyorv1.1” 88,655 | 73.30% |86,990 | 73.70%

Source: *GigaBD; #Gramene; “"Plant GIEnBank release 17§,DFCI release 12.
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Table 2.3. The coverage and mapping df. urartu, A. tauschiiand H. vulgare
transcripts on DV92 and G3116 transcriptomes using BLASTn (Evalue 1¢d).

The number of transcripts and percent of transcripts from each query that hit a transcript
from DV92 and G3116 are shown.
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Table 2.3. The coverage and mapping of T. urartu, A. tausgidi H. vulgare transcripts on DV92 and G3116 transcriptomes using
BLASTn (Kalue 1e5).

Target Query
T. urartu A. tauschii H. vulgare
(Transcripts #34,879) (Transcripts #43,150) | (Transcripts #62,240)
# hits % hits # hits % hits # hits % hits
DV92 | 29,784 85.40% 35,618 82.50% 57,781 92.80%
G3116 | 29,108 83.40% 34,783 80.60% 56,609 90.90%

Source: *GigaBD; "Gramene
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Table 2.4. Prediction of SNP variant consequence with reference to the annotated
barley genome.

SNP Variant Consequence Prediction based oifl theonococcurBNPs identified by

aligning the sequenced reads from DV92 and G3116 to the reference barley genome and
the barley gene models (v1.0) available from Ensembl Plants database. Listed variant
effecttypes are based on the categories adopted by the Ensembl Plants database.



Table 2.4. Prediction of SNP variant consequence with reference to the annotated barley genome.

. . Number of SNP sites with consequencs Unique
Predicted variant effect
DV92 G3116 DV92 | G3116

3 prime UTR variant 131,758 165,696 6,918 | 9,022
5 prime UTR variant 86,389 127,854 4,450 | 9,371
coding sequence variant 21,545 30,920 2,422 | 3,704
downstream gene variant 328,112 440,765 19,120( 26,060
initiator codon variant 364 507 22 49
initiator codon variant, splice region variant| 6 8 none | None
intergenic variant 35,753 54,722 2,682 [ 24,136
intron variant 46,901 111,413 4,717 | 14,217
missense variant 198,794 258,081 9,929 | 17,763
missense variant, splice region variant 1,145 1,866 89 188
non coding exon variant, nc transcript varia| 7 11 1 1
splice acceptor variant 10,094 18,609 572 2,103
splice donor variant 18,433 34,503 1,145 | 3,985
splice region variant, 3 prime UTR variant | 681 962 25 51
splice region variant, prime UTR variant 685 1,137 50 80
splice region variant, coding sequence varig 136 272 15 39
splice region variant, downstream gene var| 2 3 none | None
splice region variant, intron variant 31,692 63,891 2,270 | 8,074
splice region variangynonymous variant 3,500 5,083 176 448
stop gained 462 732 40 62
stop gained, splice region variant 4 8 none |2
synonymous variant 451,169 538,115 18,687| 29,046
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SUPPORTING INFORMATION
Figure S2.1.The frequency distribution of transcripts.

The frequency distribution of transcripts of varying size (bp: base pair) adethevo
transcriptome assemblies of DV92, G3116 and the annotated transcriptomes of barley
and wheaf . urartu



& Velvet/Oases DV92 Velvet/Oases G3116

& H. vulgare

"r'\v’&
“ ]
PO M O

25 T
20 1 “ T. urartu
i
=
;': 15 -
T
LE)
5 10 A
5
=
_ﬂ
£
g 5
2
&
D-
o o S &
e P I P e
O B AT AT AT NN NN NN W www»
AR U SR, R, I S, g - X
WY N7 N AR ) 4 4
Contig/gene length

Figure S2.1. The frequency distribution of transcripts.
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Figure S2.2. Comparison between the models of barley gendLOC_ 59496 and the
homologousT. monococcungene models derived from DV92 and G3116
transcriptomes.

A view of theEnsemblPlants barley genome browser showing the comparison between
the models of barley geMéLOC_59496and the homologouE. monococcurgene

models derived from DV92 and G3116 transcriptomes. This alignment was generated
using the Exonerate software packagelywing for gapped alignments (introns). The
red arrows depict intron retention events and the blue arrow depicts inahe

annotated barley gene model. Our data support bistl€yC 59496gene model,

including its 3" and 5" untranslated regiohswn by open blocks.
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models derived from DV92 and G3116 transcriptomes.
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Figure S2.3.Comparison between theTl. urartu geneTUIUR3_02586T1 model and
the homologousT. monococcungene models derived from DV92 and G3116
transcriptomes.

A view of theEnsembl Plant$. urartugenome browser showing the comparison

between thd. urartugeneTUIUR3_02586T1 model and the homologoUs
monococcungene models derived from DV92 and G3116 transcriptomes. This
alignment was generated using the Exonerate software package by allowing for gapped
alignments (introns). Our models show retention of introns (red ariovascouple off.
monococcungene models, and the presence of an e4deame as exe8 in the barley
model shown in figur&2) missed in th&. urartugenome annotatiofthe dotteeline

box). Our data do not support the presence of éxam(blue arow) in the annotated.

urartu geneTUIUR3_02586T1.
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Figure S2.3. Comparison between the T. urartu gene TUIUR3_02586L model and the homologous T. monococcum gene
models derived from DV92 and G3116 transcriptomes.



Figure S2.4.Seedling samples used for generating the transcriptomeswheat accessions

Seedling samples used for generating the transcriptonvelseaft accessions DV92 (left panel) and G3116 (right panel).
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### targetp v1.l prediction results HHHHHHERHHHHHAHBRRRHBHBARERAREHIHH
Humber of query sequences: 2

Cleavage site predictions included.

Using PLANT networks.

Hame Len cTP mTP SP other Loc RC TPlen
TmoDVI2vl 074634 224 0.881 0.008 0.127 0.0868%9 C 2 78
TmcGBllEvl_DBEEEE 137 0.89¢ 0.00% O0.104 0.072 C 2 78
cutoff 0.000 O0.000 O0.000 0O.000

Figure S2.5.TargetP analysis of the DV92 and G3116 peptides.

TargetP analysis of the DV92 and G3116 peptides bearing the Mitochondrial transcription terminatiaelttetbdomain. The
proteins were predicted to be targeted to chloroplast (cTP) with a high confidereefse®.9. Both peptides were predicted to
have a transit peptide length (Tplen) of 78aa.
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Figure S2.6.Light regulated co-expressed clusters.

The line plot display expression level in RPKM log2 values of transcripts that were
grouped into light down regulated and lightrggulated ceexpressed clusters (Figure

2.3 and 4) and have overlapping SNPs from the 9,808 SNP set. The table on the right
shows homologous barley gene, functional annotation and the SNP variant effext on th
transcript structure and/or function.



Figure S2.6.Light regulated co-expressed clusters.
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