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Pseudomonas is a diverse, ubiquitous, and widely studied genus of bacteria. As 

Pseudomonas species occupy a wide range of niches in the ecosystem, they have 

made remarkable biological impacts. Better understanding of Pseudomonas biology, 

genetic diversity, and functional interactions with other organisms and the 

environment will provide valuable insights into our understanding of their roles in 

nature, and open doors to developing practical scientific applications involving these 

bacteria. Chapter 1 of this dissertation provided background information about 

Pseudomonas spp., and discussed strategies for investigating these and other bacteria 

in the postgenomic era.  The first data chapter of this dissertation, Chapter 2, focused 

on the genomes of phages that infect Pseudomonas spp. bacteria; phages directly 

influence the diversity and evolution of their host bacteria, yet remain an 

understudied component of Pseudomonas biology. The diversity, phage host range 

evolution, and the evolutionary pressures acting on Pseudomonas phage genes were 

investigated using whole genome comparative and evolutionary analysis, focusing on 

130 complete phage genomes. The results revealed immense genome sequence 



 

 

variation, evidence that some phage possess potential to shift between host species, 

and purifying selection as the dominant evolutionary force acting on phage genes. In 

Chapter 3, a metagenomic approach was applied to detect and characterize phage 

DNA, including those that infect Pseudomonas spp. and other bacteria, focusing on a 

set of eight metagenomic data sets associated with two different plant-parasitic 

nematode species: Globodera pallida (potato cyst nematode) and Heterodera glycines 

(soybean cyst nematode).   Three complementary bioinformatics strategies were 

deployed to analyze phage DNA in this study.  Phage DNA was detected in all of the 

metagenomes, with varying patterns observed between the different focal nematode 

species.  Strengths and weaknesses of the three different analytical strategies were 

considered in this chapter.  One phage DNA sequence, with fixed length and highly 

similar DNA sequences and gene annotations, was detected at very high DNA 

sequence coverage levels in each of the eight metagenomes. Chapter 4 explored the 

dynamics of Pseudomonas spp. and other bacteria in microbiomes associated with a 

slug-parasitic nematode, Phasmarhabditis hermaphrodita, before and after nematodes 

infect slugs in a controlled laboratory setting.16S rRNA amplicon data analysis was 

conducted to investigate the microbial community composition, infer the microbiome 

diversity and level of dissimilarity between pre- and post-infection time points. 

Notable shifts in microbial community composition before and after infection was 

detected. Four 16S rRNA sequences classified as Pseudomonas expanded in post-

infection samples during the assay, and constitute candidate bacterial contributors that 

might positively interact with P. hermaphrodita nematodes in the slug killing process.  

Chapter 5 discussed future study directions that will potentially advance the results of 



this work. Altogether, this dissertation provides findings that may contribute to the 

integrated understanding of microbes and their dynamics, with special focus on 

Pseudomonas spp. and the organisms with which these bacteria interact. The 

dissertation research delivered new insights, with the potential to contribute to the 

future development of clinical and industrial applications, and genomic exploratory 

tools. 
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Chapter 1: Introduction 

The genus Pseudomonas, with 255 species currently recognized (Parte, 2018), is 

the largest genus of Gram-negative bacteria, and has successfully colonized a wide 

variety of ecological habitats. First classified at the end of the 19th century, Pseudomonas 

has since been recognized as one of the most diverse, dynamic, tolerant, and widespread 

bacterial genera. In each of their ecological niches, Pseudomonas bacteria form diverse 

interactions with other organisms and collectively exert considerable influence across the 

biosphere. This chapter discusses the background overview of the genus Pseudomonas, 

their remarkable diversity, an important source of their genetic variation - bacteriophages, 

and a biocontrol application in Pseudomonas-relevant framework.  

Part I: History, Diversity, Genomics, and Applications of Pseudomonas spp. 

Bacteria of the Genus Pseudomonas: History and Classification  

Pseudomonas bacteria were initially identified as a new genus by Walter Migula in 1894 

(Migula, 1894), when he provided a general description of their phenotypic traits e.g. 

aerobic metabolism, rod-like shape, and motility by polar flagella. The term 

Pseudomonas was coined at the time without clarification of the etymology, and some 

thought that Migula intended to reflect the bacteria’s resemblance to the nanoflagellate 

Monas (Palleroni, 2010). The genus name was officially explained as a derivation from 

the Greek pseudes (“false”) and monas (“unit”) in Bergey's Manual of Systematic 

Bacteriology, 7th edition (Bergey and Breed, 1957). At first, due to the genus’ prevalence 

and the lack of a clear set of determinative taxonomic keys, numerous species were 

rapidly isolated and assigned to the genus by various bacteriologists - incorrectly in many 
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cases, and by the 1910s the number of members had reached one thousand (Cornelis, 

2008).  

Later, more modernized methodologies were applied to resolve the complex 

taxonomy of Pseudomonas. Efforts to revise and reclassify Pseudomonas bacteria had 

developed well beyond the initial simple observation of phenotypic appearance, using 

more focal criteria such as the remarkable nutritional versatility (Jong, 1926; Stephenson, 

1939), physiological and biochemical properties e.g. growth factor requirements, the 

capability to accumulate poly-β-hydroxybutyrate, oxidase , produce extracellular 

enzymes, and benzene ring cleavage mechanisms (Stanier et al., 1966). Early 

investigation of the bacterial genome involved describing the DNA base composition of 

DNA in different Pseudomonas species (Colwell and Mandel, 1964; Mandel, 1966). 

Further DNA studies focused on determining sequence similarity and comparison 

among Pseudomonas spp. genomes by nucleic acid hybridization, both DNA-DNA and 

DNA-RNA, which was a recommended method for distinguishing bacterial species at the 

time. The work using DNA-rRNA hybridization assigned Pseudomonas species into five 

large groups (Palleroni et al., 1973). Later, the five groups were found to be distributed 

over at least seven different genera across the class Proteobacteria (De Vos et al., 1989; 

De Vos and De Ley, 1983), and the remaining Pseudomonas ‘sensu stricto’ were grouped 

in the rRNA group 1, and under the subclass Gammaproteobacteria. 16S ribosomal RNA 

gene sequences were then directly employed as a taxonomic tool to cluster species, 

commencing the transformation of the genus’ taxonomy (Anzai et al., 2000; Moore et al., 

1996). Anzai and colleagues performed a detailed taxonomic revision for the genus using 

the 16S rRNA sequences of 128 strains then considered Pseudomonas, out of which 57 
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strains were found to be Pseudomonas ‘sensu stricto’ and arranged into seven clusters 

(Anzai et al., 2000). In the meantime, the classification approach that characterized 

bacterial macromolecules, compounds, and metabolites were still be applied. For 

example, species determination and grouping were performed based on isoelectric 

focusing (IEF) patterns of pyoverdines, a fluorescent siderophore pigment in iron-

limiting environment (Meyer et al., 2002), the ability to produce various pigments that 

becomes fluorescent under UV wavelength (Palleroni and Moore, 2004), the capacity of 

forming biofilm, which could help escaping phagocytosis by white blood cells, and 

broad-range antibiotic resistance (Ryan et al., 2014).  

Larger-scaled genomic approach to resolve Pseudomonas taxonomy 

Although the 16S rRNA has become a classic marker for taxonomic analyses, it was 

suggested that the information from a single orthologous gene is not sufficiently effective 

to resolve taxonomy at the species level (Janda and Abbott, 2007; Mignard and Flandrois, 

2006). For example, the type strains of three different Edwardsiella species may exhibit 

up to 99.81% similarity in 16S rRNA sequences, despite the clear divergence in their 

biochemical characteristics and DNA hybridization results that emphasized the species 

boundary (Janda and Abbott, 2007). Therefore, to distinguish closely related species or 

subspecies, and at least one additional housekeeping gene is necessary. Many other gene 

markers were also found to be informative for taxonomic studies, such as gyrB, rpoD, 

gacA, atpD, carA, and recA (Ait Tayeb et al., 2005; De Souza et al., 2003; Hilario et al., 

2004; Yamamoto et al., 2000). The multilocus sequence analysis (MLSA) approach 

characterized bacteria and inferred phylogenetic relationships based on the DNA 
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sequences of the 16S rRNA gene and multiple (typically four to eight) other protein-

coding genes (Frapolli et al., 2007; Gomila et al., 2015; Mulet et al., 2010, 2012) was 

demonstrated to be reliable for recognizing species with less defined boundaries 

(Almeida et al., 2010; Gevers et al., 2005). With the aid of new collective data, many 

species have been reclassified to other genera, for example Delftia, Aminobacter, 

Burkholderia, Acidovorax, Lysobacter, Sphingomonas, and Ralstonia (Denner, 1999; 

Loveridge et al., 2017; Miess et al., 2016; Urakami et al., 1992; Wen et al., 1999; 

Yabuuchi et al., 1992, 1995). The genus Pseudomonas was then divided into 11–13 

groups (Gomila et al., 2015; Mulet et al., 2010). 

As Next Generation Sequencing technologies rapidly advanced, complete 

genomes of many Pseudomonas species and strains have been sequenced, including P. 

aeruginosa PAO1 (Stover et al., 2000), P. putida KT2440 (Nelson et al., 2002), P. 

syringae DC3000 (Buell et al., 2003), P. protegens Pf-5 (Loper et al., 2007; Paulsen et 

al., 2005), and P. stutzeri A1501 (Yan et al., 2008). As of November 2019, the total 

number of draft and complete genomes of Pseudomonas spp. available in the 

Pseudomonas Genome Database (Winsor et al., 2016b) has exceeded nine thousand, 

providing valuable resources to study the sequence composition, evolution, and 

taxonomic relationships in the genus.  

Complete genome sequences allow access to all housekeeping genes that are 

taxonomically informative, and genome-wide analysis may provide a finer resolution of 

species assignment compared to MLSA. Thus, classification approaches have 

substantially broadened to genome-wide scale and included a large number of type strains 

for a more systematic and robust inference. In their 2018 study, Hesse and colleagues 
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analyzed 166 genomes of Pseudomonas type strains, representing 163 species and 3 

subspecies, to construct a phylogeny for the genus using the protein sequences of 100 

orthologous genes (Hesse et al., 2018). Thirteen groups of Pseudomonas were identified 

from the phylogeny. They also recognized 189 clusters of Pseudomonas spp. available in 

public database that show clear distinction to the existing type strains, which may 

indicate novel species. In addition, sequence comparison suggested yet another re-

evaluation of Pseudomonas species assignment, as the genomic data have pointed to 

several misclassified strains, as well as strains of other genera (i.e. Azotobacter and 

Azomonas) that may actually belong to Pseudomonas. Resources from genomic data are, 

therefore, powerful tools to advance the general knowledge of Pseudomonas biology, 

taxonomy, and relationships.   

Sources of genomic diversity in Pseudomonas bacteria  

Genome sequences indicated an enormous diversity among bacterial species of the genus 

Pseudomonas, with a core set of genes that are shared between all species accounting for 

only about 25% to 35% of each genome (Loper et al., 2012). It was estimated that the 

core genome size shared among ten strains of the P. fluorescens group is 2,789 genes. For 

five P. syringae and P. putida/entomophila strains the core genome sizes are 3,456 and 

3,185 genes (Loper et al., 2012). Five P. aeruginosa strains examined in the work 

(Mathee et al., 2008) share 5,021 common CDSs, however when one strain of P. 

fluorescens were added to the comparison, the core genome of this Pseudomonas spp. set 

is reduced to 1,836 genes. (Hesse et al., 2018) found that the core genome across the 166 

Pseudomonas type strains contain only 794 genes, and the pan genome size increases 
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with the number of genomes added to analysis, which is to be expected. This observation 

suggested the divergence of Pseudomonas species’ genome sequences.  

Among these 166 genomes, genome sizes vary from 3.03 to 7.38 Mbp, the 

number of putative coding sequences in each genome range from 2,877 to 7,113, and GC 

content vary from 48% to 68%. The variation in Pseudomonas genomes could be 

explained by many factors, including environmental conditions (e.g. species interactions, 

population competition, periodic mortality events, and energy input) (Mehrabi et al., 

2016; Spiers et al., 2000), genetic causes (mutation), and active horizontal gene transfer 

(HGT) activities. Gene exchanging may be promoted by transposons, plasmids, integrons 

and prophages (Nakamura et al., 2004). Plasmids are common in bacterial cells, can have 

a broad host range, and often encode beneficial pathways, which enable their transfer and 

persisting in new host cells. Other genetic mobile elements are frequently reported as 

causes of the diversity and the ability to adapt of Pseudomonas bacteria (Garrido-Sanz et 

al., 2016; Silby et al., 2011). Prophage, as an additional accessory, adds to the diversity of 

the host bacteria, and prophage sequences themselves usually varied between genomes 

(Ceyssens and Lavigne, 2010). 

Studies of Pseudomonas bacteriophages contribute to the understanding of their host 

bacteria  

As the origin of prophages in bacterial genomes, Pseudomonas phages are considered an 

important factor shaping the diversity and evolution of Pseudomonas bacteria through 

many mechanisms, actively contributing to HGT events and alterations of host virulence 

(Hayashi et al., 1990; Sano et al., 2004). Research of phages has been applied broadly in 
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epidemiological studies of Pseudomonas diseases over the last 50 years, including the 

identification and sub-classification of pathogenic strains (Bergan, 1978; Bernstein-Ziv et 

al., 1973; Lindberg and Latta, 1974), DNA transduction to introduce genes to bacterial 

cells (Darzins and Casadaban, 1989; Rolain et al., 2011), and therapeutic strategy for 

antibiotic-resistant Pseudomonas infections (Hraiech et al., 2015; Pires et al., 2015; 

Yayan et al., 2015). Therefore, Pseudomonas phages provide a valuable resource to study 

the driving evolutionary force influencing their host bacteria, and improved 

understanding of these phages may contribute to a broader understanding of 

Pseudomonas.  

Given the important role of Pseudomonas phages, many studies focused on 

gaining new insights into the phenotypic and genotypic characteristics of selected phage 

strains that are prevalent and/or of clinical and biocontrol relevance e.g. Pf1, DMS3, 

ϕKMV, ϕKZ, and EL infecting P. aeruginosa, PPpW-3 infecting P. plecoglossicida, and 

ϕIBB-PF7A infecting P. fluorescens (Budzik et al., 2004; Ceyssens et al., 2008; Hertveldt 

et al., 2005; Knezevic et al., 2015; Lavigne et al., 2003; Park et al., 2000; Sillankorva et 

al., 2008a). ϕIBB-PF7A belongs to the Podoviridae family and has a very short, 

noncontractile-tail, an icosahedral capsid, and a dsDNA genome of about 42 kb 

(Sillankorva et al., 2008a). The phage is capable of removing P. fluorescens biofilms and 

thus a promising sanitation agent to control spoilage in dairy and other food products 

(Sillankorva et al., 2008b). The P. aeruginosa phage ϕKMV is considered a 

Pseudomonas phage model species. ϕKMV also belongs to the Podoviridae family and 

shares several morphological traits and genome structure with the classic coliphage T7 

(Lavigne et al., 2003). The genome of ϕKMV is linear, double-stranded DNA with 
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relatively high GC content at 62%. As the phage is strongly lytic towards P. aeruginosa 

isolates and have a relatively narrow host range (Ceyssens et al., 2011), it has attracted 

attention as a potential candidate for phage therapy. Nevertheless, within the host species, 

Ceyssens and colleagues found that ϕKMV could infect several different strains, which 

suggests the potential nucleotide diversity that the phage may facilitate between their 

intra-species host strains when they shift across these hosts. Likewise, by tracing the host 

range evolution of phages, one might be able to partly explain and/or anticipate the 

diversity between their host bacterial strains and even species. 

The first chapter of this dissertation aimed to further understand the diversity, host 

range evolution and selection pressure acting on phages infecting Pseudomonas bacteria 

by investigating a set of 130 phage complete genome sequences available in public 

databases. The collection of Pseudomonas phage genomes was subsequently expanded to 

306 sequences and used in the second chapter, along with other phage complete sequence 

databases, and complementary genomic approaches to search and examine for the 

presence of phage DNA signatures in nematode-derived metagenomic data sets. 

Pseudomonas bacteria occupy a broad range of ecological niches 

Mediated in part by phages’ ability to diversify the genome reservoir for Pseudomonas 

spp., members of this bacterial genus have adapted to a wide variety of ecological 

habitats: water, soil, decaying matter and in associations with fungi, plants, animals, and 

humans. The most well-known Pseudomonas species is the opportunistic human 

pathogen P. aeruginosa, the leading cause of pneumonia and acute nosocomial 

infections, which poses a serious challenge to human patients with burn wounds, cancer, 
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and cystic fibrosis (Iglewski, 1996). Other species are pathogenic to ayu fish (P. 

plecoglossicida - Nishimori et al., 2000) and mushrooms (P. costantinii - Munsch et al., 

2002). P. syringae, with more than 50 identified pathovars infecting diverse plant species, 

is a major, well-studied plant pathogen (Benson et al., 2007; Morris et al., 2008). P. 

salomonii and P. palleroniana are pathogenic on garlic and rice, respectively (Gardan et 

al., 2002). Meanwhile, the bacteria P. protegens and P. chlororaphis are characterized as 

‘Plant Growth Promoting Rhizobacteria’ for their ability to protect plants against 

pathogens by competitive colonization (Andreolli et al., 2019), production of antifungal 

compounds and antibiotics (Calderón et al., 2015; Raaijmakers et al., 2010), and 

alternation of auxin level which benefits plant growth (Kang et al., 2006). Studies have 

reported the presence of P. thermotolerans in industrial cooking water, which could 

survive the temperature of 55 °C (Manaia and Moore, 2002), P. guineae in Antarctic soil 

(Ria Bozal et al., 2007), P. marincola in isolates from marine environments (Romanenko 

et al., 2008), and P. duriflava in desert soil (Liu et al., 2008). 

Pseudomonas as biocontrol agents 

Living in very diverse ecological niches, Pseudomonas spp. can be found in numerous 

types of biological associations, competitions or rivalries with a vast number of 

organisms in the ecosystem. Due to their extremely diverse interactions with different 

kinds of partners and hosts, it is perhaps not surprising to frequently find Pseudomonas 

names listed in biocontrol frameworks, where the relationship between two or more 

species is exploited for plant disease and pest management purposes. Pseudomonas 

bacteria have been utilized as a preventive method to restrict certain crop pathogens since 
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the 1980s (Raaijmakers et al., 1999; Schippers et al., 1987; Weller, 1988). Studies 

suggest that these bacteria produce pathogen-suppressing antibiotics, compete and limit 

the growth of pathogenic microorganisms, and promote plant resistance to diseases (Haas 

and Défago, 2005; Ramette et al., 2011; Weller, 2007). A considerable number of strains 

also engage in antifungal activities, e.g. P. chlororaphis (Chin-A-Woeng et al., 2000), P. 

syringae B359 (Fogliano et al., 2002), and P. fluorescens (Gaffney et al., 1994). The 

species P. aurantiaca has been reported to produce a metabolite with antibiotic activity 

against some Gram-positive bacteria (Esipov et al., 1975).  

At least two Pseudomonas bacteria - P. fluorescens and P. paucimobilis - were 

found in association with the slug-parasitic nematode Phasmarhabditis hermaphrodita 

(Wilson et al., 1995b). The nematode P. hermaphrodita was first isolated in 1859 

(Schneider, 1859), subsequently developed into a biological molluscicide against a broad 

range of slug families (Grewal et al., 2003; Rae et al., 2007) and have been sold 

commercially under the name Nemaslug® in 15 European countries since 1994 (Pieterse 

et al., 2017). In the production of Nemaslug®, P. hermaphrodita are specifically grown 

on the bacteria Moraxella osloensis; however, studies have suggested that the nematodes 

may associate with other bacteria (Rae et al., 2010; Wilson et al., 1995b, 1995a). P. 

hermaphrodita nematodes reared on P. fluorescens isolate 141 were shown to be 

pathogenic to grey field slugs while those cultured on several other bacteria were not 

(Wilson et al., 1995a). Nevertheless, the relative role of Pseudomonas in causing slug 

mortality, if there is any, is still unknown. The third chapter of this dissertation focused 

on Pseudomonas bacteria, along with two other bacterial communities, in the context of 

their association with nematodes in a biocontrol method against grey field slugs.  
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Part II: Strategies for Investigating Microbes and their DNA in the Post-Genomic 

Era 

Next Generation Sequencing and microbial study 

In the past two decades, the advent of Next Generation Sequencing (NGS) technologies 

has revolutionized biological research programs, bringing forth unprecedented amounts 

of DNA sequence data for investigators to examine and decipher. NGS platforms 

generate many millions of DNA sequence reads in parallel, and offer multiplexing 

approaches whereby many different biological samples can be analyzed in a single run. 

These new and continuously evolving technologies offer significantly reduced time 

investments and technical laboratory involvement as compared to first generation Sanger 

sequencing, which typically offered small numbers of reads per run (Behjati and Tarpey, 

2013).  

Currently, available sequencing platforms include Ion Torrent, Pacific 

Biosciences (PacBio), Oxford Nanopore, and Illumina (Solexa) sequencing, each requires 

specific DNA pre-processing procedures to serve different strategies of sequence reading 

(Buermans and den Dunnen, 2014; Kozińska et al., 2019). The Ion Torrent platform 

employs semiconductor technology, which detects the incorporation of each new 

nucleotide on DNA strands during synthesis not based on fluorescent signals, but on the 

release of protons (H+). DNAs are amplified by emulsion PCR on bead particles within 

proton-sensing wells, which detects the release of H+ by changes in pH (Rothberg et al., 

2011). PacBio’s strategy relies on single-molecule real-time sequencing, without 
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amplification step (Eid et al., 2009). DNA polymerases were bound to a DNA template 

strand, attached to the bottom of zero-mode waveguide (ZMW) wells, and allowed to 

perform uninterrupted DNA synthesis using fluorescently labeled nucleotides. As each 

new nucleotide is incorporated, its fluorescent signal is detected in real time by a 

sensitive optical laser system and a confocal recording system. Oxford Nanopore 

sequencer also produces single, long reads in real time without amplification or chemical 

labeling (Ashkenasy et al., 2005). The platform tunnels the DNA or RNA molecule of 

interest through a nano-sized protein pore that separates two compartments, and monitors 

the temporary changes in the electric current between these two compartments as the 

nucleic acid molecule is passed through the nanopore. Illumina technology performs 

sequencing by synthesis entirely on a flow cell surface, using fluorescently labeled 

nucleotides to read the sequence of the growing DNA chain (Bentley et al., 2008). In 

Chapters 3 and 4 of this dissertation, shotgun metagenomic data (Chapter 3) and 16S 

rRNA amplicon sequencing data (Chapter 4) were generated on Illumina platform. 

NGS can be used for a variety of applications that include sequencing complete 

target genomes or a specific gene/genome section of interest, or characterizing DNA 

profiles in environmental samples. The versatility of the approach enables the 

investigation of the genetic makeup of organisms, especially microbes previously 

difficult to study, by facilitating the acquisition of accurate reference genomes for 

microbial identification and genomic analysis, detecting low abundance members of the 

microbiome, determining molecular pathways, and profiling of the bacterial community 

composition.   
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Whole-genome sequencing and comparative genomics 

Whole-genome sequencing constructs the complete nucleotide sequence of genomes, 

which is widely utilized to achieve a comprehensive view of the genetic information and 

gene characteristics within the genomes (Hobert, 2010). As sequencing processes are 

constantly improved to be faster and at a lower cost, an immense amount of whole-

genome data of all organisms and living entities have been continuously generated and 

made available on public databases. The genomic data can be used for genome-wide 

comparative genomics to explore the similarities and diversity among different organisms 

(Brüssow and Hendrix, 2002) e.g. identify syntenic regions, sequence mosaicism, and 

gene acquisition; and furthermore to infer their relationships and evolutionary pattern. In 

their 2018 work, Hesse and colleague used whole-genome comparison to demonstrate a 

rarefaction curve of pan genome size from sequence comparisons and evaluate the 

current sampling effort and predict the comprehensive diversity of the Pseudomonas 

genus (Hesse et al., 2018). In term of taxonomy, whole-genomic analysis may 

complement and confirm the findings of 16S rRNA gene analysis. It has been noted that 

the phylogenetic trees based on 16S rRNA gene and the whole genomic trees are highly 

similar (Bansal and Meyer, 2002). Chapter 1 of this work focuses on whole-genome 

analysis of 130 phage complete sequences to investigate the diversity, potential of host 

shifting and phage gene evolution. 

16S rRNA amplicon approach 

16S rRNA amplicon sequencing is a method commonly used to investigate microbiome 

genomics to investigate the composition, diversity and dynamics of bacterial 
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communities, including uncultured bacteria. The approach targets and sequences all the 

16S ribosomal RNA genes in the samples of interest. The 16S rRNA marker gene is 

present in virtually all living organisms, evolves at a slow rate (Woese and Fox, 1977) 

but may still carry sufficient differences to identify the bacterial origin down to the Genus 

level (sometimes even Species and Subspecies levels) and calculate statistically valid 

diversity measures. The nucleotide divergences are mainly located in the nine 

“hypervariable regions” V1-V9 (Van de Peer et al., 1996) and these regions are usually 

flanked by sequences conserved among  bacteria. Pre-designed universal primers can be 

annealed to these conserved regions, thus allowing PCR amplification of the target 

hypervariable sequences in almost all bacterial phyla (Baker et al., 2003; Lane et al., 

1985; McCabe et al., 1999). Each hypervariable region may have different level of 

diversity among taxa (Mills et al., 2006), and it has been suggested that no single region 

could reliably distinguish community components (Chakravorty et al., 2007). Therefore, 

the simultaneous use of multiple hypervariable regions is recommended for general 16S 

rRNA analysis. The amplification of the V3-V4 region was standardized in the Illumina 

MiSeq 16S sequencing library preparation protocol (Illumina, 2013), and probably is 

most commonly used in 16S rRNA microbiome diversity analysis (Klindworth et al., 

2013).  

The 16S rRNA amplicon sequences obtained from amplification and sequencing 

are assigned into Operational Taxonomic Units (OTUs) i.e. clusters of sequences that 

share 97% similarity (Stackebrandt et al., 1994) or exact Amplicon Sequence Variants 

(ASVs) (Callahan et al., 2016). OTUs/ASVs are treated as bacterial taxa, and subsequent 

analyses of community composition and diversity are conducted based on the 
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characteristics of these units, e.g. the presence and/or abundance (depending on which 

measures are being utilized), phylogenetic distances of the OTUs/ASVs.    

The method has the advantages of capturing broad levels of community 

composition, along with cost-effectiveness and less extensive computational analyses 

required. However, as the information obtained is only limited within one single gene, 

one could infer limited information about the functional profile and interaction network 

within the microbial community. Nevertheless, the method is still informative to quantify 

the richness, abundances of taxa components, and diversity metrics within the 

microbiomes. Furthermore, data achieved from 16S rRNA sequencing is capable of 

facilitating observations of the temporal changes and/or alterations in response to outside 

perturbations in microbial communities (Poretsky et al., 2014). Analysis of taxa 

abundances may potentially help discover the taxa that actively associate with the host 

activity (Warnecke et al., 2007), serving as a powerful method to infer the role of the taxa 

and the relationship between host and the associated microbial community. Therefore, the 

16S rRNA approach was chosen for analyses in Chapter 4, which addresses questions 

about the alterations occurring in the bacterial communities associated with gastropod-

parasitic nematodes after slug infection. The sample data sets were obtained by Illumina 

sequencing of the V3-V4 regions of the 16S rRNA, which was standardized by the 

Illumina protocol as discussed above.   

Metagenomic approach 

Metagenomics has emerged as a powerful tool to study the composition, evolution of 

microbiomes and interactions with the hosts. By directly sequencing all genomes present 
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in an environmental sample, metagenomics offers the independence from a limited 

number of phylogenetic markers e.g. 16S rRNA, 18S rRNA, and housekeeping genes. 

Metagenomic data can provide insights into the community’s gene composition, genomic 

linkages between functions, functional profile of a community, and phylogeny of 

organisms including uncultured microbes - with a potentially higher resolution and 

sensitivity compared to 16S rRNA analysis (Poretsky et al., 2014). As for investigation of 

taxonomic composition, direct analysis of metagenomic DNA has been considered the 

most accurate method (von Mering et al., 2007) since it is able to provide high sampling 

depth and avoid biases during PCR amplification of phylogenetic markers. Other novel 

applications include comparative metagenomics approach where taxonomic and 

functional profiles were compared between two or more metagenomic datasets (Huson et 

al., 2009; Shi et al., 2013; Tringe et al., 2005). The approach allows the possibility to 

improve understanding of microbial specialization and adaptive response to the 

environment.  

However, shotgun metagenome data is not without shortcomings. The method is 

costly to generate and requires more exhaustive computational resources compared to 

16S rRNA amplicon sequencing. Nonetheless, given the advantages, metagenomic-based 

research has been conducted broadly over the past 10 years and substantially contributes 

to the understanding of microbial communities. 

As metagenomic data capture all genetic materials in the sample of interest, one 

can obtain valuable information about sequences not well-characterized in existing 

databases, as well as sequences of low- or high-abundance. The advantage was applied in 

Chapter 3 of this work, which investigates eight metagenome datasets to identify and 
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characterize bacteriophage sequences in the microbiome of cyst plant-parasitic 

nematodes. 

Conclusion 

Collectively, this dissertation aims to address research questions regarding various 

organisms and biological frameworks, all of which are connected by the common thread: 

bacteria of the genus Pseudomonas. The data chapter 2 focuses on Pseudomonas 

bacteriophages, using comparative genomics to investigate their diversity, host range, and 

genome evolution. In Chapter 3, the set of Pseudomonas phage complete sequences is 

employed, along with other genomic tools, to identify and characterize phage DNA in 

cyst nematode metagenomic data. Chapter 4 explores the microbial communities 

associated with slug-killing nematodes and probes into the potential role of Pseudomonas 

bacteria in the nematode’s pathogenicity. Finally, Chapter 5 summarizes the findings of 

the three data chapters and discusses future study directions. Together, this work provides 

new insights that help broaden the understanding of phage and bacterial community’s 

diversity, dynamics, and evolution; also offers the potential for clinical and control 

applications, as well as for genomic exploratory tools development.   
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Abstract 

Bacteria of the genus Pseudomonas are genetically diverse and ubiquitous in the 

environment. Like other bacteria, those of the genus Pseudomonas are susceptible to 

bacteriophages which can significantly affect their host in many ways, ranging from cell 

lysis to major changes in morphology and virulence. Insights into phage genomes, 

evolution, and functional relationships with their hosts have the potential to contribute to 

a broader understanding of Pseudomonas biology, and the development of novel phage 

therapy strategies. Here we provide a broad-based comparative and evolutionary analysis 

of 130 complete Pseudomonas phage genome sequences available in online databases. 

We discovered extensive variation in genome size (ranging from 3 to 316 kb), G+C 

percentage (ranging from 37- 66%), and overall gene content (ranging from 81-96% of 

genome space). Based on overall nucleotide similarity and the numbers of shared gene 

products, 100 out of 130 genome sequences were grouped into 12 different clusters; 30 

were characterized as singletons, which do not have close relationships with other phage 

genomes. For 5/12 clusters, constituent phage members originated from two or more 

different Pseudomonas host species, suggesting that phage in these clusters can traverse 

bacterial species boundaries. An analysis of CRISPR spacers in Pseudomonas bacterial 

genome sequences supported this finding. Substantial diversity was revealed in analyses 

of phage gene families; out of 4,462 total families, the largest had only 39 members and 

there were 2,992 families with only one member. An evolutionary analysis of 72 phage 

gene families, based on patterns of nucleotide diversity at nonsynonymous and 

synonymous sites, revealed strong and consistent signals for purifying selection. Our 
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study revealed highly diverse and dynamic Pseudomonas phage genomes, and evidence 

for a dominant role of purifying selection in shaping the evolution of genes encoded in 

them.   

Introduction 

Bacteriophages are the most abundant, dynamic and genetically diverse forms of life in 

the biosphere, with an estimate existence of 1031 phages worldwide, continuously 

infecting 1023 to 1024 bacterial cells every second (Hendrix, 2010; Keen et al., 2017). 

That is, if we were to lay all 1031 phage particles in the world side by side, the length of 

that line would be about 200 million light years (estimated by Domingo et al., 2008), or 

about 1.892 x 1021 kilometers. The paramount number and diversity of phages, which 

exceed those of bacteria, are reflected in their varied habitats, reproduction cycles, 

infection strategies, and ability to shift hosts. Investigations of phage genomes by 

sequencing and metagenomics have already suggested enormous genomic diversity, 

complexity, and mosaic evolution (Lawrence et al., 2002), but a detailed understanding of 

phage genetic diversity and evolution remains a challenge. 

Bacteria of the genus Pseudomonas are Gram-negative, aerobic 

gammaproteobacteria with more than 200 species identified (Özen and Ussery, 2012). 

Pseudomonas bacteria live in a wide variety of niches and actively interact with other 

organisms. For example, members of the genus are known to be pathogenic to human (P. 

aeruginosa) and other vertebrates (P. mallei, P. plecoglossicida), pathogenic to plants 

and fungi (P. syringae, P. tolaasii, P. costantinii), promote plant growth (P. chlororaphis, 

P. protegens), produce antibiotics (P. aurantiaca), and have been reported in many other 
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biological interactions. Altogether, Pseudomonas bacteria have highly important and 

diverse environmental, biological, and human health-related impacts.  

Pseudomonas phages have been known to significantly influence the diversity and 

evolution of their host bacteria (Paulsen et al., 2005; Sano et al., 2004). Studies of phages 

have been applied extensively in Pseudomonas-related clinical applications, especially 

Pseudomonas disease epidemiology and therapeutic tool development (Bergan, 1978; 

Pires et al., 2015). Improved understanding of phages infecting Pseudomonas may 

actively contribute to a better understanding of Pseudomonas bacteria. 

Whole genome sequencing of phage virions and prophages, facilitated by the 

modern advance in sequencing technology and metagenomics, has been offering an 

exciting new avenue for understanding phages and their impacts on host bacteria. To 

date, approximately 8,300 complete bacteriophage genomes have been sequenced, and 

about 400 were isolated from members of Pseudomonas, providing valuable source for 

investigation into the diversity and complexity of Pseudomonas-infecting phages. Whole-

genome comparative analysis has been successfully applied in previous studies focused 

on mycobacteriophages (Hatfull et al., 2010), Staphylococcus aureus phages (Kwan et 

al., 2005), Bacillus phages (Grose et al., 2014), and Enterobacteriaceae phages (Grose 

and Casjens, 2014), the findings of which all highlighted the remarkable dynamics and 

diversity of phages. In each study, a large percentage of total genes identified (e.g. 47.2% 

of mycobacteriophage genes and 58% of Bacillus phage genes) were unique, lacking any 

clear discernible relationships to other genes. Phage genomes were commonly grouped 

into clusters of related phages, with outliers characterized as ‘singletons’ that lacked 

strong relationships with other genomes in the analysis. By identifying clusters of closely 
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related genomes, whole-genome analysis provides the opportunity to evaluate the 

diversity and complex relationship between phages, as well as exploring their dynamic 

host range.  

Comparative analysis of phage sequences also offers an avenue to understanding 

selection pressures acting on phage genes, providing further insight into their history of 

evolution. A common population genetic metric to study the evolutionary process of 

protein-coding genes is the ratio of nucleotide diversity at nonsynonymous and 

synonymous sites (πN and πS, respectively). In coding regions, nucleotide changes 

between sequences may either lead to amino acid substitutions (nonsynonymous) or 

keep the protein sequences unchanged (synonymous). Assuming that synonymous sites 

evolve neutrally and represent ‘background’ mutational variation in genome, the ratio 

πN/πS provides insights into the direction and magnitude of natural selection pressure. 

The ratio πN/πS < 1 is considered a signature of purifying selection, which maintains 

genetic stability of the genes of interest. It is hypothesized that the majority of phage 

protein coding genes, especially those encoding structural functions and survival benefits, 

are under purifying selection (Domingo et al., 2008; Hartl, 2014), therefore have πN/πS < 

1. Positive selection is inferred when πN/πS > 1.  If nucleotide substitutions happen 

randomly with respect to protein-coding function, the sequences of interest are likely 

evolving under neutrality and have πN/πS =1.  

To further study the deep divergence and potential for host range evolution of 

phages infecting Pseudomonas, we examined genome statistics, putative gene contents, 

and performed whole-genome comparative analysis of 130 phage sequences available in 
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NCBI GenBank databases. To probe into phage gene evolution, we reported, for the first 

time, the pattern of selection acting on phage putative gene orthologs by comparing the 

nucleotide diversity patterns πN/πS in predicted ORF families. Our study has contributed 

new insights into the diversity and evolution of phages infecting Pseudomonas and 

facilitate comparison with phages infecting other bacteria. 

Material and methods 

Phage genome sequences 

One hundred and thirty complete DNA genomes then available on the NCBI GenBank 

database were downloaded as fasta sequences on February 15, 2016. Only entries with 

the description “complete genome” in the “Definition” field and the isolation source 

“Pseudomonas” at the genus level, stated in the “host” field, were included in 

downstream analyses. The GenBank accession numbers of these genomes were included 

in Appendix Table 1. It was stated in the GenBank entries that the 130 phages selected 

for study were isolated from six different host species: P. chlororaphis, P. tolaasii, P. 

syringae, P. putida, P. fluorescens and P. aeruginosa, from varied sources (i.e. water 

sewage, hospital wastewater, and environmental samples) at different geographical 

locations. 

Genome annotation.  

All 130 phage genomes analyzed in this study were re-annotated to ensure annotation 

uniformity.  Gene prediction was performed with GeneMark.hmm 3.26 (Besemer and 

Borodovsky, 1999; Zhu et al., 2010) using the heuristic parameters, Glimmer 3.02 
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(Delcher et al., 1999; Salzberg et al., 1998), and BLASTN when necessary, followed by 

genome annotation by Phage Rapid Annotation using Subsystem Technology (RAST) 

(Aziz et al., 2008; Brettin et al., 2015; Overbeek et al., 2014) and PHASTER web server 

(Arndt et al., 2016; Zhou et al., 2011). Gene annotation was not manually curated 

systematically in all genomes. While annotation using the gene calling programs 

GeneMarkS and Glimmer were previously shown to be accurate and suitable for phage 

genome analysis (Besemer and Borodovsky, 1999; Delcher et al., 1999; Mills et al., 

2003), the GeneMarkS self-training version automatically excludes candidate ORFs 

which are shorter than 300 bp, and assign ORFs from the 5′-most ATG codon (Besemer 

et al., 2001). These automated rules likely resulted in slight underestimation of gene 

numbers and coding density in phage genomes.    

The program ARAGORN (Laslett and Canback, 2004) was used to detect tRNA 

and tmRNA genes in phage genome sequences. 

Genome mapping and assigning open reading frame (ORF) families 

The open-source program Phamerator (Cresawn et al., 2011) was used to map phage 

genomes in linear illustration and identify similarity between sequences. Predicted ORFs 

were assigned into families also using the program with a ClustalW threshold of 35% 

amino acid identity and a BLASTP score of 1e-50. Conserved protein domains in ORFs 

were identified by searching for hits from the NCBI Conserved Domain Database (CDD). 

To probe into the possibility of ‘ORFans’ (i.e. ORFs that shared no detectable 

relationships with other ORFs in this analysis) having homologs in undocumented 

phages, we compared the protein sequences of the 2,992 ORFans in our 130 genomes 
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with the globally sampled virome dataset constructed by Paez-Espino and colleagues 

(Paez-Espino et al., 2016) using TBLASTN (Camacho et al., 2009). All the 125,842 viral 

genomes/contigs assembled from this large-scale metagenomic dataset were downloaded 

from the public FTP site 

http://portal.nersc.gov/dna/microbial/prokpubs/EarthVirome_DP/. 

Genome clustering  

Genome alignment and calculation of percentage of nucleotide identity were performed 

with Kalign (Lassmann and Sonnhammer, 2005). A dot plot of whole genome 

comparison for all 130 phage DNA sequences was generated in Gepard 1.40 (Krumsiek 

et al., 2007) with a sliding window of 10 nucleotides, allowing for the visualization of 

pairwise similarity between genomes and assigning preliminary clusters. Phage genomes 

were incorporated into a cluster if they shared more than 45% nucleotide identity with the 

cluster’s genome members and there was nucleotide sequence similarity visually 

recognizable in the dot plot. Previous studies utilized the threshold 50% nucleotide 

identity (Hatfull et al., 2010; Pope et al., 2011), however, this value was applied for 

phages isolated from a single host (Mycobacterium smegmatis), while our study included 

phages infecting bacteria across the genus Pseudomonas, which potentially lead to 

greater variation in genome sequences. Therefore, we lowered the threshold parameter in 

our analysis to 45%. A second criterion for assigning members into cluster was that they 

share over 20 predicted protein families, to ensure detectable relatively conserved regions 

and synteny. Third, clusters were required to have at least three members. Phage genomes 

not meeting these three criteria were not included in clusters, identified as ‘singletons’. 
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Within each cluster, the variation of host bacterial species among phage members 

was investigated. Information of original host species was extracted from the ‘host’ field 

of the phage GenBank entry. To confirm the potential of phages, especially members of 

clusters with multiple hosts to infect different Pseudomonas species, we looked for 

signatures of past phage-host infections using the Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR)/ Cas (CRISPR-associated) spacer approach. All available 

spacer sequences identified in Pseudomonas bacteria were downloaded from the public 

database CRISPRdb (Grissa et al., 2007) and compared with phage genomes individually 

using BLASTN. Since spacer sequences, which range from 25 to 75 bp, are shorter than 

usual BLASTN query size, we utilized the following BLASTN parameters: maximum e-

value of 0.3, word size 7, gap extension penalty 2, gap opening penalty 10, mismatch 

penalty 1, dust filtering off (adapted with modification from Edwards et al., 2016). 

Evolutionary analysis  

To investigate the genetic variation and pattern of evolution in predicted coding regions, 

we calculated the nucleotide diversity within selected ORF families (πN/πS). Since 

evolutionary analysis using πN/πS test requires high confident alignment regions of ORF 

families, we increased ClustalW threshold value to 50% to ensure less diversity in ORF 

members and facilitate better alignments. All ORF families which have ClustalW score 

of at least 50%, BLASTP score threshold of 1e-50 and have 15 members or more were 

included in evolutionary analysis. Predicted protein-coding ORF sequences of each 

family were aligned using the MUSCLE program in MEGA7 software (Kumar et al., 

2016). πN and πS were calculated individually for each ORF family using the software 
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DNAsp v5.10.1 (Librado and Rozas, 2009). The πN and πS values of the ORF families 

were compared using the nonparametric Wilcoxon signed-rank test for paired data.   

Results 

Patterns of genomic variation 

The basic genome metrics of the 130 phage sequences included in this study (host, 

genome size, G+C content, number of predicted ORFs, number of tRNA or tmRNA 

genes) were provided in Appendix Table 1. The analyzed Pseudomonas phages showed 

broad diversity of genome size from 3 kb to 316 kb. The majority of phages (119 out of 

130 - 92%) had genome size in the range from 35 to 100 kb, distributing uniformly across 

this interval. Four outliers were very small at less than 8 kb, and seven were larger than 

200 kb (Figure 2.1A). This pattern was mirrored in the number of predicted ORFs (Figure 

2.1B), as the four phages with the smallest genomes contained only 3 to 8 predicted 

ORFs, whereas the seven unusually large genomes harbored more than 200 putative 

ORFs. The remaining 119 phages encoded 41 to 173 ORFs. The overall average of 

putative ORFs per genome was 93.4. G+C content also varied greatly (ranging from 

36.8% to 66.4%), averaging at 56.8% (Figure 2.1A, inset).  

Categorization of phage genomes into clusters 

To assign phage genomes to clusters, we calculated pairwise sequence similarity between 

all possible pairwise phage genomes and performed whole genome dot plot analysis. The 

methods of clustering phages based on dot plot matrix were similar to those previously 

applied to mycobacteriophages (Hatfull et al., 2010; Pope et al., 2011). All 130 
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nucleotide genomes were concatenated into a single sequence and duplicated to form two 

axes, generating a dot plot matrix (Figure 2.2). If two sequences had high similarity, a 

diagonal would show at that location on the plot (the center diagonal line demonstrated 

the 100% similarity where sequences were compared to itself). The resulting dot plot 

matrix revealed 12 clusters (Clusters A through M) of phages sharing at least 45% 

nucleotide similarity; 30 genomes were not assigned to any cluster and remained 

singletons. Pairwise nucleotide similarity between phages of each cluster were reported in 

Appendix Table 2. The number of members and pairwise nucleotide similarity between 

phage genomes of each cluster varied from cluster to cluster, e.g. cluster L has 8 

members sharing at least 58% nucleotide similarity, while this number in cluster K is 

75% among the 4 members (Appendix Table 2). Some clusters (Clusters A through D, H, 

and L) were further divided into subclusters. Details of phage assignment to clusters and 

subclusters were shown in Appendix Table 1. Basic characteristics of members in each 

cluster including morphotype (according to ICTV classification system), host species 

from which the members were isolated, average genome size, number of ORFs, GC 

content, number of tRNAs were also provided in Appendix Table 1.  

Characterization of open reading frames (ORFs) in phage genomes 

The annotation process predicted a total of 12,139 putative ORFs ranging from 54 bp to 

12 kb in size, with an average length of 650 bp among the 130 genomes analyzed. The 

predicted ORFs were assigned to groups of closely related sequences (ORF families) 

using Phamerator with a ClustalW threshold of 35% amino acid identity and a BLASTP 

score of 1e-50. In genomic maps, putative ORFs were colored and numbered according 
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to Phamerator assigned ORF family (white color denoted ORFs having no similarity with 

other ORFs, equal to the threshold BLASTP 1e-50 or smaller). A total of 4,462 ORF 

families were generated with an overall average number of only 2.72 members. The 

largest family had 39 members (family 107) and 2,992 families (67.1% of the total) only 

had one member (Figure 2.3). Out of these 2,992 ORFams, 365 sequences (12.2%) had 

significant hits (maximum e-value set at 1e-50) with the contigs in Paez-Espino et al., 

2016’s virome dataset, and with a more relaxed threshold (e-value 1e-25), homologs of 

665 ORFans (22.22%) were found.  

ORF density of all phage genomes varied from 0.83 to 2.50 per kb, averaging at 

1.42 ORFs per kb. This value was highly similar between members within each cluster 

i.e. shown in very small deviations from the mean (Table 1.1). Members of Cluster E and 

F showed higher mean ORF densities among all clusters, ranging from 1.73 to 1.87 ORFs 

per kb. However, the highest average numbers of ORFs each kb were observed in two 

singletons Pf1 and phi_Pto-bp6g (1.91 and 2.49). The lowest numbers of ORFs per kb 

(0.83 and 0.84) were found in PP7 and PRR1, the only two Leviphages included in this 

study.     

To investigate the mode of selection acting on phage ORFs, we calculated the 

nucleotide diversity at nonsynonymous sites and compared it to the diversity at 

synonymous sites (the πN/πS ratio) for a select set of 72 ORF families. πN/πS at or near 

one suggested that the ORF sequences of interest were likely evolving under neutrality; 

πN/πS values greater than one implied positive selection and values less than one indicated 

purifying selection. We observed a broad pattern of πN/πS values distribution, however, 
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all ORF families analyzed had πN/πS value under 1 (Figure 2.4A). The majority of the 

families had πN/πS ratio closer to zero (62/72 families - 86% have πN/πS within the range 

from 0.0 to 0.5) (Figure 2.4B).  

Diversity of phage hosts within clusters 

Of the 12 Pseudomonas phage clusters defined here, five contained phage members 

isolated from more than one host species (Clusters C, F, H, L and M) (Figure 2.5A). On 

the extreme end, the eight members of Cluster L were isolated from five different hosts: 

P. putida, P. fluorescens, P. tolaasii, P. syringae, and P. plecoglossicida, while all 

members shared at least 58% nucleotide similarity with others in cluster L (Appendix 

Table 2). When compared with the Pseudomonas bacterial CRISPR spacer library, all 

these phages showed matches with spacers of multiple Pseudomonas species that differed 

from the original hosts. Meanwhile, in clusters of phages all isolated from one sole 

species, especially Clusters A, E and I (all originated from P. aeruginosa), members 

tended to share more sequence similarities with spacers of P. aeruginosa - their host 

species (Figure 2.5B). 

Genomic map of phages in Cluster L was shown in Figure 2.6A. Within 

subcluster L1 and L2, we observed long regions of violet shading indicating long 

conserved regions between phage genomes. Meanwhile, between subclusters, this 

relationship was apparently weaker with shading towards the red end of the color 

spectrum. Regions of high similarity and same-colored ORF blocks shown on the map 

indicated prevalent synteny. Breaks in synteny were also evident as interspersed white 
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blocks and little or no sequence similarity between genome sequences. An example of 

such synteny breaks was shown in figure 2.6B. Between the two phage genomes gh-1 and 

phiPSA2 of subcluster L1, the presence of gh-1 ORFs (gh1_80 and gh1_170) had 

interrupted the synteny organization. 

On mapped sequences, conserved domain hits from CDD database could be 

found, including not only hits from Pseudomonas bacteria and their phages, but also from 

different prokaryotes and viruses. In many ORFs, multiple overlapped hits corresponding 

to the same portion of the ORF were observed. This pattern was more likely to be found 

in ORFs belonging to large families (e.g. gh1_30, gh1_150, phiPSA2_9, phiPSA2_13, 

Figure 2.6B). The domains identified usually involves in conserved phage functions (e.g. 

ORF gh1_150 contains peptidoglycan recognition protein domain, T3-like lysozyme 

domain, and domain of N-acetyl-anhydromuramyl-L-alanine amidase, which cleaves the 

amide bonds between N-acetyl-anhydromuramyl and L-amino acids in bacterial cell 

wall). 

Discussion 

Variation in Pseudomonas phage genomes and genes. 

The 130 phage genomes analyzed show a wide variety of G+C content, from as low as 

37% to 66%. Interestingly, since the average G+C percentage of bacterial Pseudomonas 

sp. genomes is in the range from 58% to 66% (Winsor et al., 2016a), the G+C content of 

a large number of Pseudomonas phage genomes in this study is much lower than that of 

its host (Table 1.2). Similar observation was noted in a sample of 18 P. aeruginosa 
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phages (Kwan et al., 2006), and did not agree with other findings that phage G+C content 

is usually similar to that of the host (see examples in Table 1.2). The low G+C percentage 

in Pseudomonas phage genomes may indicate an active history of shifting from other 

bacterial hosts where the phages acquired low G+C content sequences via horizontal gene 

transfer (HGT).  

Cluster assignment based on sequence similarity and homologs is supported by 

highly similar properties i.e. low standard deviation of the within-cluster average, such as 

morphotype, genome size, GC percentage, number of predicted ORFs (Table 1.1). The 

proportion of singletons (30/ 130 phages – 23.1%) is notably higher compared to 

previous results of other comparative genomic studies: 1.3% of 627 mycobacteriophage 

genomes (Pope et al., 2015); 5.3 % of 337 Enterobacteriaceae phages (Grose and 

Casjens, 2014), and 18.1% of 83 Bacillus phages (Grose et al., 2014) were designated to 

be singletons. It is worth noting that the small percentage of singletons in 

mycobacteriophage might be due to the very large scale of survey on phages isolated 

from a single species (Mycobacterium smegmatis). As the survey broadened to higher 

taxonomic level yet smaller sample size, the percentage of singletons increased 

noticeably. The large number of singletons suggests that the current stage of discovery 

has revealed just part of the dynamic diversity in the world of Pseudomonas phages. 

Adding new genomes could bring a singleton into a cluster by identifying intermediate 

phage relatives, therefore further sampling, profiling and reassigning of clusters might be 

necessary to better evaluate the extent of Pseudomonas phage diversity.   
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Genome mosaicism was observed extensively in all phage genomes with the 

remarkable frequency of ORF modules and breaks in synteny between genomes. ORFs of 

the same family consistently located between different flanking ORFs. This pattern of 

pervasive mosaicism is well in line with previous findings in Enterobacteriaceae phages, 

S. aureus phages and mycobacteriophages (Grose and Casjens, 2014; Kwan et al., 2005; 

Pope et al., 2011). The mosaicism may suggest 1) high activities of HGT and 2) phage 

evolution to drop unnecessary genes to keep the genome minimal and efficient as they 

adapt to new purposes. Dynamic HGT also hints at a flexible host range, which is needed 

for more opportunities to gain access to a larger gene reservoir. Other genomic events 

could also contribute to the large-scale mosaicism such as transposition (Edgell et al., 

2010), cleavage by endonucleases (Kristensen et al., 2013), phage recombinases acting 

on relaxed homology (De Paepe et al., 2014), and mistakes in genome replication and 

host repair mechanism during the prophage phase.   

The great diversity of Pseudomonas phage was also indicated on the scale of 

genes. With a ClustalW threshold of 35% amino acid identity and a BLASTP score of 1e-

50, the largest ORF family has only 39 members, which is remarkably small compared to 

the largest family (104 members) that (Pope et al., 2011) assigned with similar thresholds 

from 80 mycobacteriophage genomes. Moreover, 67.1% of the predicted ORF families 

have only one member, while the numbers of one-member families identified in studies 

of mycobacteriophages and Bacillus phages are much lower at 47.2% and 58%, 

respectively. Remarkably, a large number of presumptive insertions/ deletions in 

genomes are unique ORFs (displayed in genome map as white boxes), and rarely contain 
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known conserved domains. The vast number of unique ORFs and the diversity of ORF 

families suggest a large gene influx from novel bacterial hosts and/or other phages by 

HGT. Among the 2,992 ORFans identified, a considerable proportion (665 sequences - 

22.2%) had significant TBLASTN hits with the global virome dataset despite a stringent 

threshold (1e-25). This result further demonstrates the largely unexplored gene reservoir 

of Pseudomonas phages, with many potential homologs with undocumented phage 

sequences in nature. 

The number of predicted ORFs was significantly positively correlated with phage 

genome sizes (R2= 0.936, p < 0.001 - Figure 2.1B) in our study. ORFs account for more 

than 80% of the total genome sequence space for all phages examined (Appendix Table 

1) with an average coding percentage of 92.4%, indicating their high genetic efficiency, 

which is consistent with observations of previous studies, e.g. of mycobacteriophages 

(Rohwer et al., 2014), Staphylococcus aureus phages (Kwan et al., 2005).  Mean ORF 

density was at 1.42 ORFs per kb, which is slightly less than that in mycobacteriophages 

and Staphylococcus aureus phages (1.69 and 1.67 genes per kb, respectively) (Hatfull et 

al., 2010; Kwan et al., 2005). The only two Leviphages included in this study, PP7 and 

PRR1, have the lowest ORF densities (0.83 and 0.84 ORFs per kb, respectively), while 

possessing the smallest genomes among the 130 phages (3,588 and 3,573 kb). This may 

initially seem counter-intuitive, since small phages must compress a minimum number of 

genes required for surviving in very small sequence space, which should result in higher 

number of ORFs per kb - for example, Microphage φX174 accommodates 11 genes over 

the length of only 5,386 bp through gene overlap involving multiple reading frames 
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(Rohwer et al., 2014). However, small phages also must maintain minimum sizes and 

extra nucleotide sequences to allow for efficient packaging, thus decrease their ORF 

density. This was observed in phage lambda sequence, where non-coding sites (cos) are 

essential for DNA cleavage, processing, duplex nicking, enzyme binding (Catalano et al., 

1995; Feiss and Catalano, 2013). It is possible that non-ORF sequences in these small 

Pseudomonas phage genomes perform important functions that we do not yet understand. 

Insights into phage host range 

Eight members of Cluster L were reported to have five different host species while 

sharing at least 58.7% nucleotide identity. While these five hosts appear to be more 

related to each other than to P. aeruginosa (Ait Tayeb et al., 2005), interestingly, member 

of Cluster M, isolated from P. aeruginosa and P. chlororaphis, also share as high as at 

least 50.9% identity. Although it was expected that percentage of identity among Cluster 

M is smaller than that of clusters with members isolated from the same host species (e.g. 

members of Cluster K, all isolated from P. aeruginosa - different strains - share at least 

75.2% identity), this sequence clustering is remarkable as P. aeruginosa and P. 

chlororaphis are much further apart in the Pseudomonas phylogenetic tree (Ait Tayeb et 

al., 2005). This pattern of clustering suggests a flexible host range not only among strains 

within one species, but also could expand to between species. The dynamics would allow 

for better adaption to their fast-changing bacterial hosts.  

To further evaluate phage potential for broad host ranges beyond a single bacterial 

species, we computationally investigated the history of past infections in all 
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Pseudomonas species by comparing each phage genome with all available CRISPR 

spacers originating from Pseudomonas bacterial genomes.  CRISPR modules in the 

genome provide bacteria with an adaptive immunity against viruses and mobile genetic 

elements (Horvath and Barrangou, 2010). CRISPR arrays consist of interspaced repeated 

sequences that are separated by short different sequences named spacers. These 

fragments may represent a part of phage sequences inserted into CRISPR arrays on 

bacterial genome during previous infections and are constantly replaced and heritable. 

Therefore, spacers provide a paleogenomic window into recent phage infections. 

Members of Cluster L showed matches to various species, 100% of which are different 

from their host and might suggest the ability and/or a history of attacking different 

species in Pseudomonas, and then shifting to the current host, while in P. aeruginosa 

phages of Cluster A, E and I, this variation is much less extensive (Figure 2.5B). We note 

that Cluster D, also consists of all P. aeruginosa phages, shows a lower percentage of 

matches to P.aeruginosa itself (12.5% - Figure 2.5B), however, it is also worth noting 

that the total number of hits is only eight, hence this low proportion might be a result of 

error sampling. While the spacer library in P. aeruginosa is expected to be better 

documented than that in other Pseudomonas species, which could in part explain the 

dominant proportion of P. aeruginosa hits of phages in Cluster A, E and I, and the lack of 

matches to the recorded hosts of all phages in Cluster L, the presence of similarities to 

species other than the original hosts does imply the capability of host shifting.   
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Purifying selection is prevalent among a subset of predicted ORF families analyzed. 

Nucleotide diversity at nonsynonymous and synonymous sites among multi sequences, 

πN/πS, and Ka/Ks, which performs pairwise comparisons in different species, have been 

considered useful tools to evaluate the type of natural selection acting on coding regions 

(Chen et al., 2017; Howe and Denver, 2008; Zhang et al., 2016). The ratio Ka/Ks is 

frequently used in well-defined species, calculated by pairwise comparisons and highly 

time dependent (Rocha et al., 2006). Since we were comparing the diversity between 

ORF orthologs in multiple phages, of which the species taxonomic classification is not 

well established (Lawrence et al., 2002), we performed the πN/πS test to evaluate the 

selection pressure on phage putative genes. 

We found that all of the 72 ORF families included have a πN/πS ratio less than 1.0, 

which implies a reduced diversity in nonsynonymous sites and a history of long term 

purifying selection (Wilcoxon signed-rank test, p = 8.5e-14). Eighty-six percent (62/ 72) 

families have πN/πS ratio closer to zero, pointing to relatively strong purifying selection. 

Out of ten families indicating weaker purifying selection (πN/πS > 0.5), six showed πS < 

0.5. As lower values of πS points to smaller possibility of saturation at synonymous sites, 

these six families provided the most reliable evidence for purifying selection. Two 

families were annotated as housekeeping genes with structural function i.e. major capsid 

protein (family 1310) and putative large terminase subunit (family 5602). The other four 

families were unannotated and have no known domains identified. No signal of positive 

selection, which favors synonymous substitutions and results in πN/πS ratios above 1.0, 

was observed. This pattern agrees with previous studies of mycobacteriophages and 
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cyanophages. Weigele et al., 2007 measured the ratio Ka/Ks for all pairwise orthologues 

in 20 mycobacteriophages and 5 cyanophages and found that the values average at about 

0.25 and 0.01, respectively. Based on the fact that the majority of protein coding genes 

have πN/πS <1, the ratio offers the potential to assist the identification of true genes 

(Nekrutenko et al., 2002). Although the results of πN/πS and similar genetic code-based 

tests alone cannot absolutely confirm the accuracy of gene calling, they offer 

informative complementary strategies to evaluate the veracity of candidate ORFs 

identified by annotation tools and can be applied to any putative coding sequences.  

The genomic data of 130 phages included in this study has revealed extensive 

gene diversity and strong purifying selection acting on genes of Pseudomonas phages. 

Nevertheless, we note that the dataset used for the present study was downloaded in 

February 2016, incorporating the 130 complete Pseudomonas phage sequences then 

available on the NCBI GenBank database. In the time it took to execute the present 

analyses and write-up, the number of available genomes has more than tripled (391 

Pseudomonas phage genomes available in May 2018). Exhausting all available genome 

entries in public databases proves to be a continual problem for comparative genomic 

analyses, especially in this instance, as phages with small genomes are constantly added 

to databases at accelerating rates. However, given the high genetic diversity, cluster 

structures, and the abundance of unique genes with no apparent relatives, future analysis 

including an increased number of sequences will provide more information about the 

genetic diversity and evolution of the world of Pseudomonas phages. Expanding the 

scope of analysis with the ever-increasing numbers of genomes is expected to decrease 
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the number of ORFans as newly identified homologs in the broader gene reservoir could 

bring them into families; though how many genomes will be required to see substantial 

ORFan number reductions remains unclear.  

Currently, the number of complete Pseudomonas phage genomes available from 

GenBank is heavily skewed towards P. aeruginosa phages. In this study, 107 out of the 

130 phages analyzed were listed as isolated from P. aeruginosa. P. aeruginosa is a major 

human pathogen with the increasing ability to develop antimicrobial resistance and the 

potential for phage therapeutic strategy against P. aeruginosa infections has long been 

recognized. Consequently, it was anticipated that P. aeruginosa bacteriophages would 

receive preferential attention, and thus would be more frequently profiled and 

investigated. To achieve a more comprehensive understanding of phages infecting 

Pseudomonas, future research should include more sequences of phages isolated from 

other host species.  

  



  

 

 

Table 2. 1. Summary of phage characteristics by clusters. 

 

Cluster # mem. ICTV Family Host(s) # ORFs 
# ORFs per 
kb 

Genome 
size (bp) 

GC 
content 

# tRNAs 

A 20 Siphoviridae P. aeruginosa 53.6 ± 2.0 1.43 ± 0.06 
37289.5 ± 
1174.0 

64.0 ± 0.5 0 ± 0 

B 6 Siphoviridae P. aeruginosa 82.0 ± 4.3 1.37 ± 0.04 
59645.3 ± 
1973.1 

64.2 ± 0.4 0 ± 0 

C 13 Podoviridae 
P. aeruginosa, 
P. fluorescens 

52.0 ± 2.4  1.21 ± 0.06 
42945.2 ± 
522.7 

62.0 ± 1.0 0 ± 0 

D 6 Podoviridae P. aeruginosa 99.5 ± 11.4 1.36 ± 0.14 
73158.5 ± 
979.3 

54.4 ± 0.8 0 ± 0 

E 6 Myoviridae P. aeruginosa 157.3 ± 3.2 1.80 ± 0.02 
87273.0 ± 
1534.8 

54.7 ± 0.1 3 ± 0 

F 10 Myoviridae 
P. aeruginosa, 
P. syringae 

171.1 ± 1.4 1.83 ± 0.04 
93570.7 ± 
1668.2 

49.2 ± 0.5 15 ± 1.8 

G 3 Podoviridae P. aeruginosa 68.3 ± 2.9 1.52 ± 0.03 
45068.7 ± 
903.5 

52.2 ± 0.2 3.3 ± 0.5 

H 7 Podoviridae 
P. aeruginosa, 
P. fluorescens, 
P. putida 

68.0 ± 1.4 1.49 ± 0.03 
45698.1 ± 
291.3 

52.3 ± 0.5 
2.14 ± 
1.5 

I 14 Myoviridae P. aeruginosa 91.5 ± 2.7 1.38 ± 0.02 
66104.4 ± 
1066.5 

55.4 ± 0.3 0 ± 0 

K 4 Siphoviridae P. aeruginosa 54.3 ± 1.3  1.26 ± 0.03 
43031.0 ± 
157.3  

53.9 ± 0.5 
0.25 ± 
0.5 

L 8 Podoviridae 
P. aeruginosa, 
P. fluorescens, 
P. putida, P. 

48.1 ± 2.5 1.20 ± 0.03  
40032.5 ± 
1325.6 

57.0 ± 0.7 0 ± 0 
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plecoglossicida, 
P. chlororaphis 

M 3 Myoviridae 
P. aeruginosa, 
P. chlororaphis 

416.7 ± 52.1 1.38 ± 0.09 
302072.0 ± 
19192.2 

43.3 ± 5.7 6.3 ± 3.1 
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Table 2. 2. Examples of G+C content in different phages and their bacterial host. Many Pseudomonas phages included in this 

study have notably lower G+C content than their host, in contrast with the relative similarity between phages of other bacteria. 

 

Phage G+C content of phage G+C content of host 

phiKZ 36.83% P. aeruginosa strain PA01 (66.6%) (Labaer et al., 2004) 

phiPA3 47.73% 

PA2 54.86% 

PABG 55.82% 

UFV-P2  51.47% P. fluorescens (60 to 66%) (Cornelissen et al., 2012) 

phi_Pto-bp6g  42.71% P. tolaassii strain 6264 (60.6%) (Winsor et al., 2016a) 

eiAU 55.37% Edwardsiella ictaluri (57%) (Carrias et al., 2011) 

 

 eiDWF 55.54% 

eiMSLS 55.77% 

Staphylococcus aureus phages  33.7% Staphylococcus aureus (32.9%) (Kwan et al., 2005)  

mycobacteriophages 63.4%  Mycobacterium smegmatis (67.4%) (Mohan et al., 2015) 

Streptococcus pneumoniae phages  39.8% Streptococcus pneumoniae (39.7%) (Kwan et al., 2006) 



  

 

 

 

Figure 2.1. Genome characteristics of 130 Pseudomonas phages. Phages were rank-

ordered on the X axis based on the property identified on the Y axis. (A) A rank-ordered 

plot of genomes sizes reveals a range of 3-316 kb and only a few genomes larger than 

100 kb. Ranked plot of G+C content (inset) reveals a range of 37-66%. (B) The number 

of predicted ORFs in phage genomes showed a strong, statistically significant correlation 

with genome size (R2= 0.936, p< 0.001). The shading denoted 95% confident interval of 

the linear correlation.  
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Figure 2.2. Whole-genome dot plot comparison of phage nucleotide sequences. All 130 

genomes were concatenated into a single sequence, then plotted against itself with a 

sliding window of 10 bp and visualized by Gepard 1.40. 111 phage genomes were 

assigned to 12 (A-M) and 30 phage genomes remained singletons. The assignment of 

phages to clusters A-M is shown at the top horizontal axis. 

  



  

 

 

 

Figure 2.3. Number of members in ORFs families assigned by Phamerator. The largest family has 39 members and 2,992 families 

(67.1% of the total 4,462 ORF families generated) only have one member. 



  

 

 

 
Figure 2.4. Modes of selection acting on a subset of ORF families. (A) Seventy-two 

families were chosen for further evolutionary analysis. The πN/πS ratio of each family 

are shown on the Y axis. The Ps values are shown on the X axis. The red line indicates 

the πN/πS =1. (B) A histogram of the πN/πS values among ORF families analyzed. The 

majority (62/72 - 86%) of the families included has a πN/πS ratio ranging from 0- 0.5. 
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Figure 2.5. (A) Host species of phages in each cluster. Five clusters show closely related 

phages infecting different host species. (B). Matches between phage sequences in each 

cluster and CRISPR spacers in Pseudomonas host species. Significant matches were 

recorded as hits to spacers predicted in their original host species and hits to other 

Pseudomonas species. The total numbers of hits, regardless of the types found in each 

cluster were shown at the top. 
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Figure 2.6. (A) Genomic map of phages in Cluster L. Phage genomes were mapped using Phamerator. Genomes were arranged in the 

map according to the assigned subclusters: subcluster L1 with gh-1, phiPSA2, PPPL-1, subcluster L2 with Pf-10, phi-S1, phiIBB-

PF7A, and subcluster L3 with phi15 and PPpW-4. Boxes indicate predicted ORFs, numbers and colors are assigned according to 

predicted protein families. White boxes denote ORFs that have no similarity at an E-value 1e-50 or smaller to other predicted ORFs. 

Shading between genomes indicates regions of pairwise nucleotide similarity and was coded in color spectrum so that color indicates 

nucleotide similarity (violet representing highest similarity with an E-value of zero and red being similarity with E-value of 1e-50). 

(B) Close-up view of subcluster L1 map. Red arrows indicate breaks of synteny. Yellow boxes within ORFs display conserved 

domain hits from CDD database, separated by lines if there are multiple hits found in one ORF. 
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Abstract 

Bacteriophages are constant and important members of all existing microbial 

communities in our biosphere. As phages directly influence their bacterial hosts, they set 

substantial impacts on the dynamics and interactions within their home microbiomes. 

Therefore, research of phages as a component of metagenomes may facilitate better 

understanding of natural microbial community. Here we investigate eight nematode 

metagenomes generated from the microbiomes of cyst nematodes G. pallida and H. 

glycines to identify and characterize phage DNA using three approaches: 1) the software 

VirSorter, 2) BLAST and Blob, and 3) Sequence coverage threshold. We detected 

presumptive phage and prophage sequences in all of the eight data sets analyzed. We also 

note the constant presence of a single contig sequence with very high base coverage, a 

length of exactly 5,461 bp and similar gene content in all eight nematode metagenomes. 

The strengths and weaknesses of each viral-searching approach in this study were 

discussed, and we suggest the combined use of multiple discovery strategies to identify 

phages in metagenomic data. 

Introduction  

Bacteriophages are diverse and ubiquitous components of ecosystems, playing central 

roles in the ecological and evolutionary dynamics of all microbial communities on Earth 

(Clokie et al., 2011; Keen, 2015; Paez-Espino et al., 2016). Virtually every existing 

bacterium is thought to be infected by at least one (and most likely more than one) phage 

strain (Paul et al., 2002). Phages directly shape the diversity, ecology and evolution of 

their bacterial hosts in many ways, including altering the host’s biological properties and 
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fitness (Roossinck, 2011a, 2011b), regulating bacterial populations and concurrently 

maintaining the community’s diversity (Weinbauer and Rassoulzadegan, 2003), fueling 

the phage-host evolutionary arms races (Gómez and Buckling, 2011), and mediating 

horizontal gene transfers (Keen, 2015; Sano et al., 2004). Given their importance, 

detailed understanding of phages is necessary to explore the enormous complexity, 

evolutionary dynamics, and the interaction network in microbiomes.  

In spite of their prevalence and influence, phages remain relatively understudied 

compared to their bacterial hosts. Traditionally, characterization of environmental phages 

largely relies on laboratory cultivation, which isolates and propagates phage particles on 

defined single-strain hosts (Green and Joseph, 2012). Cultured phages may then be 

described using quantitative techniques e.g. serology, electron microscopy, three-

dimensional image reconstruction, and mass spectrometry (Ackermann, 2012; Amos and 

Klug, 1975; Ceyssens et al., 2006; Dowell and Rosenblum, 1962; Rosenblum and 

Tyrone, 1964). Nonetheless, the culturing procedure has several significant limitations, 

including long hands-on procedure time, suboptimal culturing conditions, and 

uncultivable bacterial hosts. It is estimated that only less than 5% of bacteria in the 

environment can be grown under laboratory conditions (Rappé and Giovannoni, 2003), 

and even then, the presence of phages have not been reported in these cultivated bacteria 

(Chen and Novick, 2009; Duhaime and Sullivan, 2012). Although cultivation-based 

approaches, for over a century, have provided great fundamental knowledge of phage 

biology and phage-host interactions, it is unlikely a comprehensive perspective of phages 

in natural microbial systems can be obtained using these methods.  
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To circumvent the culture step, various molecular technologies have been 

developed to characterize phages at the genetic level e.g. gene marker-based survey 

(Breitbart et al., 2004; Comeau and Krisch, 2008; Sullivan et al., 2006), restriction 

fragment length polymorphisms (RFLP) (Karama and Gyles, 2008), randomly amplified 

polymorphic DNA (RAPD) PCR (Winget and Wommack, 2008), and single virus 

genomics (Allen et al., 2011). These techniques have been applied successfully to reveal 

ample insights into the composition and diversity of phages in environmental samples. 

Nevertheless, they also face technical obstacles, including the lack of universally present 

regions or genes in all phages and the lack of quantitative information achieved. 

Therefore, a method capable of providing a broader view of all viral sequences and more 

data for inferences is anticipated.  

In the past few years, the advance of metagenomic strategies has offered a new, 

efficient approach to unveil a broader picture of bacteria and their phages in 

microbiomes, including the unculturable components. Metagenomics provides a 

comprehensive picture of all the sequences in a biological sample without undergoing 

marker gene amplification step and its bias. This may allow details of the community’s 

phage gene composition and possibly detecting phage genes of abundance and/or 

significance based on the sequence coverage in the data set. Specific protocols have been 

developed to specially target phages in microbiomes by including an additional 

enrichment step for viral particles (Bachrach and Friedmann, 1971; Shkoporov et al., 

2018; Thurber et al., 2009). Yet, it is worth noting that to date, only about 4% of all 

present microbiome datasets were generated with this viral-targeted approach (Paez-

Espino et al., 2017), and for the rest, phage sequences - though presumably present in 
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abundance - have usually been overlooked. Phage DNA sequences in these untargeted 

data sets, however, could be a useful resource to unveil more information about the 

prophages residing as lysogenic elements in bacterial genomes as well as phage particle-

bound forms in the microbiome. 

“Cyst nematode” is the name commonly given to certain species of plant-parasitic 

roundworms, mostly from the genera Heterodera and Globodera, which can form a 

structure called “cyst”. Adult female cyst nematode typically enlarges her body into a 

spherical shape to retain eggs inside, and when she dies, the sac-like body browns to 

become a cyst shielding the eggs until hatching conditions (Bernard et al., 2017; Jones et 

al., 2013). Cyst nematodes are internationally recognized as major plant pathogens 

(Contina et al., 2018; Lilley et al., 2005), with the most damaging species include the 

potato cyst nematode Globodera pallida and the soybean cyst nematode Heterodera 

glycines. G. pallida could cause up to 80% yield loss of potato in severely infected areas 

and 9% loss of production globally (Jones et al., 2013), while H. glycines infestation is 

estimated to result in $1,29 billion yearly soybean loss - solely in the US (Bernard et al., 

2017). Given the economical impact, detailed knowledge of the nematodes’ biology and 

interactions with other organisms is required to assess their pathogenicity and to optimize 

control strategies. 

The microbial communities associated with H. glycines and G. pallida, which can 

be integral to the nematode’s lifestyle and development, have been attracting growing 

interest (Eberlein et al., 2016; Nour et al., 2003; Zhu et al., 2013). However, the identities 

and diversity of phages within these microbiomes have not been investigated. In this 

study, we investigated eight untargeted nematode metagenome datasets - four G. pallida 
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and four H. glycines to search for phage DNA using three independent approaches: 1) 

Viral contigs searching by the software VirSorter, 2) BLAST and Blob, and 3) Sequence 

coverage threshold. The program VirSorter (Roux et al., 2015) is a widely-used tool to 

detect both prophage sequences and lytic particles in assembled metagenome data sets 

using gene-based comparison to available viral gene databases and other types of 

evidence e.g. short and uncharacterized genes. The second approach relied on nucleotide 

sequence similarity searches against complete phage genome databases. The third 

approach specifically targeted lytic sequences, assuming that free particles, as the result 

of a lytic burst, should be present in large numbers and therefore, lytic sequences should 

have high sequencing coverage. Understanding of phages as a component in these 

nematode’s microbiome should contribute to a broader understanding of the microbiome 

as a functioning intricate system. 

Materials and Methods 

Nematode sampling 

A total of eight nematode samples, four potato cyst (G. pallida) and four soybean cyst 

nematodes (H. glycines) were collected from eight different locations. The ‘field’ potato 

cyst nematode samples (Gp_Bin25, Gp_Bin26, and Gp_Bin258) were collected from 

infested fields in Southern Idaho during the years from 2006 to 2014. In each location, 

22.42 kg/hectare of soil were collected, from which cysts were extracted using the 

Fenwick flotation method (Fenwick, 1940). The ‘greenhouse’ sample (named Gp_GH) 

was collected from cysts formed by G.pallida in the University of Idaho’s greenhouse in 

January 2017. This greenhouse population derived from the field sample Gp_Bin25. The 
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soybean cyst nematode samples (Hg_Al, Hg_Aud, Hg_Pet, and Hg_War) were collected 

in Alabama and Missouri, USA. Details of the samples’ collection information and 

assembly statistics are shown in Table 3.1.  

DNA extraction, metagenome sequencing and assembly 

For each sample, 50 cysts were pooled for DNA extraction. Cysts were homogenized by 

mortar and motorized micro pestle. DNA was isolated from the homogenate using 

QIAmpDNA Micro kit (Qiagen, Hilden, Germany) and quantified by the Qubit dsDNA 

HS Assay kit.  

The obtained DNA was then sheared to peak library fragment size, ~500 bp. 

Libraries were prepared using the NEBNext® Ultra™ II DNA Library Prep Kit for 

Illumina (San Diego, CA, USA). Paired-end 150 bp sequencing of barcoded DNA 

libraries was performed using the Illumina HiSeq 3000 at the Center for Genome 

Research and Biocomputing at Oregon State University (Corvallis, OR, USA). Raw reads 

are available from NCBI’s Sequence Read Archive (SRA). 

Raw reads were trimmed and quality controlled using bbduk (DOE Joint Genome 

Institute). Reads shorter than 50 bp and/or containing more than 20% of called bases with 

low Phred quality scores (Q<20) were excluded from datasets. Filtered reads were then 

de novo assembled with MetaSPAdes (Nurk et al., 2017) to generate contigs for 

downstream annotation. Contigs less than 300 bp in length were excluded from 

subsequent analyses.  
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Approach #1. Phage sequence identification by VirSorter 

The metagenome assemblies were examined for the presence of phage sequences. Viral 

contigs were first predicted using the program VirSorter (Roux et al., 2015), which 

searched for the presence of ‘hallmark’ viral genes (e.g. capsid protein, spike, terminase 

subunit, portal protein), signatures of enrichment of virus-like, non-Caudovirales, short, 

or uncharacterized genes, depletion of Pfam-affiliated genes or strand switch. If a 

predicted region on a contig was more than 80% length of the contig, the entire contig 

would be classified a “phage”; if it was less than 80%, the subset of the contig would be 

called a “prophage”. Only contigs predicted by the program as ‘phage’ or ‘prophage’ 

with higher confidence (categories 1, 2 for “phages” and 4, 5 for “prophages”) were 

included in subsequent analysis. Characteristics of the contigs were summarized and 

visualized using the anvi’o pipeline (Eren et al., 2015), Blobtools (Laetsch and Blaxter, 

2017), and R.  

Predicted phage contig sequences of categories 1 and 2 were annotated using 

RAST subsystem (Aziz et al., 2008) and prokka (Seemann, 2014). The program 

Phamerator (Cresawn et al., 2011) was used to map contig sequences and assemble gene 

families with a ClustalW threshold of 35% amino acid identity and a BLASTP score of 

1e-50.  

Approach #2. BLAST and Blob - Detecting phage DNA using complete genome 

databases 

Complete genome sequences of phages infecting bacteria of the three genera 

Pseudomonas, Mycobacteria and Bacillus then available on the NCBI GenBank database 
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were downloaded as FASTA sequences to build local phage databases. Search in the 

NCBI GenBank Nucleotide with keywords specific to the bacterial genus, (e.g. 

“(Pseudomonas phage[Title]) AND Pseudomonas[All Fields] AND complete genome”) 

resulted in 306 DNA sequences of Pseudomonas phages, 206 sequences of  Bacillus 

phages and 1,237 sequences of Mycobacteriophages, which were assembled to build 

three phage databases in February 2019. To detect signals for phages infecting each 

bacterial genus, all contigs in the greenhouse G. pallida (Gp_GH) and H. glycines from 

Alabama (Hg_Al) datasets were compared to the three phage databases using TBLASTX 

with an e-value threshold 1e-5 and minimum score of 50.  

Approach #3. Sequence coverage threshold 

We targeted metagenomic contigs displaying exceptionally high coverage patterns for 

focused analysis, reasoning that high-abundance lytic phage particle DNA might be 

present at high levels in the metagenomes.  All contigs with length greater than 3 kb and 

outstandingly high coverage, determined by the Interquartile Range method as extreme 

outliers (lying more than five Interquartile Range above the third quartile of all contigs’ 

coverage in the dataset) were selected for further analysis. The threshold 3 kb was chosen 

based on the length of the shortest Pseudomonas phage sequence reported (Ha and 

Denver, 2018). To examine their biological origin, the contigs of interest were annotated 

with the RAST annotation server (Aziz et al., 2008), prokka (Seemann, 2014), and 

compared to the NCBI nr/nt database using BLASTN megablast with a threshold of 95% 

identity and maximum E-value of 1e-25.  

Comparisons of 5461-bp-long ‘phage’ contigs in all datasets   
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For each dataset, one contig with a length of 5461 bp and outstandingly high coverage 

was extracted. Sequences were aligned using MAFFT alignment module (Katoh, 2002). 

To investigate the variation within a dataset at this particular contig, we performed 

variant calling in Geneious Prime 2019.2.1.    

Results  

Approach #1. Phage DNA detected by VirSorter in nematode metagenomes 

The analysis based on VirSorter detected from 2 to 8 prophages and 6 to 62 phage 

sequences (i.e. more than 80% of the total length was predicted to be phage genes), with 

an average of 4 prophages and 32 phage sequences per data set. These sequences were 

predicted to have originated from phage genomes with high confidence (VirSorter 

categories 1, 2, 4, and 5). The predicted phage sequences accounted for from 0.05% 

(Hg_War and Hg_Pet) to 0.16% (Hg_Al) of the total length of all sequences in the whole 

data set. The total number of putative phage genes found in the eight metagenomes varied 

greatly from 87 (data set Hg_War) to 881 (Gp_Bin26), with a mean of 388 phage genes. 

The shortest phage contig identified was 689 bp long, and 97,440 bp was the size of the 

longest one. Details of the phage contigs found by VirSorter are provided in Figure 3.1A-

H and Table 3.2. The GC contents and average base sequencing coverages of predicted 

phage contigs in relative to other contigs in the same metagenome assembly are 

demonstrated in Figure 3.2A-H. 

Within one data set, phage sequence features also varied considerably. For 

example, phage contig length in Gp_GH ranged from 1,304 to 79,137 bp, and the number 

of predicted phage genes varied from 2 to 118 (Figure 3.1G), having a mean length of 
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6,732 bp and a very large standard deviation of 11,871 bp. Fifty-four contigs of category 

1 and 2, i.e. classified as complete phage contigs with high confidence (see Materials and 

Methods) in Gp_GH data set were selected for gene content clustering analysis. A total of 

489 genes predicted in the contigs were assigned into 456 families, out of which 93.6% 

(427/ 456) are ‘orphams’ i.e. genes that shared no detectable relationships with other 

genes in all of the 54 contigs analyzed. No tight clustering was observed among these 

sequences as the content of gene families varied greatly. The relationships among these 

contigs based on shared gene families were illustrated in Figure 3.3.  

Approach #2. Phage genome sequence search strategy 

We searched for phage DNA sequences using TBLASTX comparison with three local 

databases built from complete genomes of phages originally isolated from three bacterial 

genera Pseudomonas, Bacillus, and Mycobacterium. Due to the extensive computational 

resource that TBLASTX similarity search method requires, we only performed the 

BLAST and Blob approach on two metagenome data sets G. pallida greenhouse 

(Gp_GH) and H. glycines Alabama sample (Hg_Al). Each of these data sets was found to 

contain a high number of phage sequences predicted by VirSorter in Approach #1. In the 

data set Gp_GH, we found 7,567 contigs spanning 17,160,241 bp that match Bacillus 

phage genomes; 4,217 (totaling 12,511,463 bp) and 2,635 contigs (9,730,094 bp) match 

to Pseudomonas phage and Mycobacteriophage databases, respectively. There were 492 

contigs with a total length of 6,494,777 bp showing similarity with sequences of all three 

types of phages (Figure 3.4A). In the data set Hg_Al, 523 contigs (2,416,344 bp) aligned 

with Pseudomonas phage sequences, 319 contigs (1,593,218 bp) to Mycobacteriophages, 

and 904 contigs (3,940,898 bp) hit to Bacillus genomes. Seventy-two contigs (total length 
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882,201 bp) matched partially or completely to all three phage databases (Figure 3.4B). 

The GC contents and coverage of contigs that match all three databases compared to 

other contigs in the same metagenome assembly are illustrated in Figure 3.5. 

Details of the distribution of GC content, size, sequence coverage, and the 

percentage of contigs that match phage DNA of each of the three groups are displayed in 

Appendix Figure 1.  

Approach #3. Searching for putative lytic phage DNA using a coverage threshold 

A five Interquartile Range coverage threshold was applied to specifically target 

sequences with very high base coverage, a metagenomic feature expected of sequences of 

phages that recently experienced a lytic burst. In the eight data sets, the number of 

contigs that showed homology to characterized sequences in the nr/nt database varied 

from 8% (Hg_Al) to 93% (Gp_Bin26) of the contigs that passed that threshold (Figure 

3.6). Among these identified sequences, we detected groups that are expected to be 

present at high coverage, such as mitochondrial DNA, ribosomal RNA, and satellite 

DNA.  

One circular contig with a fixed length of 5,461 bp, had very high coverage 

compared to other contigs in the same assembly, and similar gene annotation was 

detected in all of the eight meta-datasets analyzed; and was identified as phage sequence. 

The contigs were annotated with the following seven phage signature genes, listed in 

order: phage DNA replication protein, single-stranded DNA synthesis, external 

scaffolding protein D, DNA-binding protein, major capsid protein, major spike protein, 

minor spike protein (DNA pilot protein). The features of this particular contig in the 

dataset Gp_GH was shown in Figure 3.7A.  
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Little nucleotide variation was observed for this circular contig within each 

dataset - only one transversion SNP of frequency less than 7%, with two exceptions: a 

transition of 33.3% frequency and a double nucleotide substitution of 14.3% frequency in 

the datasets Gp_Bin25 and Gp_Bin258, respectively. Details of the variant calling results 

are listed in Table 3.3. Between different datasets, the contigs also showed limited 

variations, with pairwise percentage of identity all exceeds 97%. Visualization of 

comparison between these ‘phage’ contig sequences was demonstrated in Figure 3.7B, 

and their pairwise percentage of identity were shown in Table 3.4.  

 

Discussion 

Evaluation of approaches to identify and characterize phage DNA 

The contribution of phage DNA to metagenomic datasets remains an underexplored 

question in the postgenomic era.  This “viral dark matter” consists of sequences that 

originate from viruses but otherwise show no detectable similarity with previously 

characterized sequences, and are estimated to account for 40 to 90% of a dataset 

(Krishnamurthy and Wang, 2017). This uncertainty is largely due to limitations in 

existing reference viral genomes or protein databases. In addition, phage sequences are 

greatly diverse and often mutate at a high rate (Rohwer et al., 2014; Rose et al., 2016), 

which might confound sequence alignment and classification. These ongoing unresolved 

issues require the application of diverse and complementary bioinformatic strategies to 

identify and characterize phage DNA in metagenome data.  
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Here in this study, we applied three different strategies to identify phage DNA in 

cyst nematode metagenome data sets: 1) the phage prediction tool VirSorter, 2) 

Alignment-based similarity search using known phage complete genome databases - 

“BLAST and Blob”, and 3) a sequence coverage threshold-based method. While 

VirSorter mainly utilizes a phage gene-based comparison approach, the BLAST and Blob 

approach utilizes complete phage genome sequences. Coverage threshold also depends 

on sequence comparisons, but specially focuses analysis on high-coverage contigs. These 

three approaches are expected to deliver different strengths and weaknesses. 

The phage-predicting tool VirSorter executes multiple evaluations in addition to 

gene-based similarity searches on assembled metagenomic contigs to detect phage 

signals, enabling more reliable elucidations of phage sequences and the semi-

independence from currently available databases of viral protein sequences. It could 

detect both lytic and lysogenic sequences, including potentially novel viruses. However, 

as VirSorter assigns the categories ‘phage’ or ‘prophage’ to a contig based only on the 

proportion of that contig predicted to be phage, with a rather arbitrary threshold (80%), 

the classification might be less accurate to some extent, for example, a contig labeled 

“phage” could actually be part of a prophage, or a fragmented phage genome could be 

labeled “prophage” for having longer non-coding region, which might account for up to 

19% of some viral genomes (Mahmoudabadi and Phillips, 2018). Another disadvantage 

of VirSorter is that the program may perform inefficiently on short (especially < 3 kb) 

viral contigs (Roux et al., 2015). Lastly, predictions by protein-based search strategy may 

be compounded by fragmented viral genes, which could be prevalent in metagenomic 

data, leading to false negative detection.  
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The second approach, BLAST and Blob, deviated from gene-based searching and 

instead performed comparison with complete phage genome sequences. The search tool 

utilized, TBLASTX, which compares the six-frame translations of metagenomic 

sequences against the six-frame translations of complete phage genome databases is 

especially suitable for fast-modifying viral sequences, lowering the chance of false 

negatives. Since sequences were compared directly, this approach was less sensitive to 

the size of contigs or fragmented viral genes. However, a potentially large number of hits 

found by this strategy could be false positives. For instance, bacterial contigs containing 

genes that were present in phage genome sequences via earlier horizontal gene transfers 

would be reported as a ‘phage hit’. As phages constantly acquire genes or sequence 

fragments from their hosts (Breitbart et al., 2007; De Paepe et al., 2014), this could be 

significantly problematic to discern the true origin of the sequences. Another clear 

weakness of this method is that its sequence similarity search to known phage database 

could not facilitate detecting novel phage sequences.  

Lastly, the coverage threshold method relied on the assumption that lytic 

sequences might have higher copy number and thus higher sequencing coverage 

compared to the majority of other contigs in the same assembly. On average, a lytic burst 

could release around 100 particles per host cell, although the burst size largely depends 

on the phage and the latent time (Heilmann et al., 2010; Wang, 2006). Using the coverage 

threshold, we identified sequences of varied biological origins that were expected to be 

present in high copy number, such as mitochondrial DNA, ribosomal RNA gene, satellite 

DNA, which might lend more plausibility to the method. The phage contig found was 

packed with phage genes and annotated with high confidence. However, this approach 
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was clearly biased to target phage particles and not likely to find prophages. Furthermore, 

similar to BLAST and Blob, the annotation step did not allow identifying novel viral 

sequences with no known reference in existing databases. 

Complex phage signal detected in cyst nematode metagenome data sets  

Phage sequences were identified by all of the three approaches in all eight cyst 

metagenomic datasets analyzed. The number of phage sequences varied among datasets, 

ranging from 12 to 64 sequences found by VirSorter. These numbers are considerably 

lower than those found by many previous studies using the same viral prediction tool, 

which are usually around hundreds of sequences (Garin-Fernandez et al., 2018; Leigh et 

al., 2018; Miller-Ensminger et al., 2018; Nigro et al., 2018). It may first be explained by 

the lack of a viral enrichment procedure when generating the untargeted nematode meta-

datasets examined in this study, while the other studies all included standard steps of viral 

purification and enrichment. However, the consistent detection of phage sequences in all 

of our eight data sets suggested that generic untargeted metagenomes may be a useful 

resource to study phage diversity and significance. 

The BLAST and Blob results of the G. pallida data set showed that sequences 

sharing similarity with Bacillus phage genomes were the most abundant, followed by 

those matching Pseudomonas phages, and Mycobacteriophage database had the least 

number of matches; this pattern was also observed in the H. glycines data set examined. It 

could be possible that the diversity of bacterial host species in each phage databases 

might have contributed to the match abundance observed. The Bacillus phages included 

in the local database infected a total of seventeen Bacillus host species with no clear skew 

towards a particular host. Meanwhile, only nine species of Pseudomonas bacterial host 
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species were reported among all the Pseudomonas phages, 75% of which were P. 

aeruginosa. And although the Mycobacteriophage database was the largest among the 

three, almost all of the Mycobacteriophages in the reference set were isolated from a 

single host species Mycobacterium smegmatis. The bacterial host diversity may have 

resulted in more diverse phage regions and increased the chance of matching with 

metagenomic sequences.  

Signal searching with VirSorter and the TBLASTX approaches both indicated 

that phage sequence contigs in G. pallida data sets exist in larger abundance compared to 

those of H. glycines. For example, the number, individual length, and total length of 

phage contigs found by the tool VirSorter in Gp_GH were almost twice those of phages 

found in Hg_Al (Table 3.2). Likewise, TBLASTX search detected a much higher number 

of contigs that match phage local databases in the Gp_GH data compared to Hg_Al 

(Figure 3.4). The difference might be accounted for by several reasons. First, it is 

possible that the pattern might have resulted from analytical discrepancy. Assembly 

statistics of H. glycines data sets indicated better assembled metagenomes in general 

(Table 3.1). Therefore, phage contig sequences in G. pallida microbiomes might actually 

be present in the same abundance - but more fragmented or just partly complete, and thus 

added up to a higher total length. Second, the microbial communities of G. pallida might 

contain more bacterial hosts of the phages that we detected. This may potentially explain 

the higher sequencing coverage of phage contigs and number of ‘prophage’ sequences in 

Gp_GH in comparison with Hg_Al. For instances, the 5,461-bp phage contig in Gp_GH 

had a sequencing coverage of 688.7, while the coverage of its counterpart in Hg_Al was 

316.9. Furthermore, the bacterial members in Gp_GH may also be susceptible to more 
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phage particle per host cell. Lastly, there is a possibility that the relatively low abundance 

of phage sequences in H. glycines metagenomes was simply a temporal/seasonal state, as 

all the four Hg samples were collected in January 2018, and could change substantially 

with time.      

The coverage thresholding strategy has revealed a single phage contig that was 

highly conserved within and between the data sets, with very little nucleotide variation. 

The entire phage sequence and its particular set of genes are likely to have a significant 

role in cyst nematode metagenomes. Previous studies have utilized abundance 

information in metagenomic data to investigate environment-specific changes in the 

phage composition and infer the significant role of specific phages in different ecological 

niches (Dutilh et al., 2014; Norman et al., 2015; Roux et al., 2016). Clearly there might 

be sequencing bias - but over, or under representation of particular genes can yield useful 

information about phage biology. However, we do not exclude the possibility that the 

sequence is just an experimental artifact, which was introduced to the metagenomes from 

contaminants in the DNA extraction kit or other sources during our sample preparation. 

Nonetheless, we noted that the pairwise differences between these sequences, in most of 

the cases, were likely to be more significant than what would be observed if they all 

originated from a contaminant (Appendix Table 3).  

Conclusion 

In this chapter, we detected varied signals of phage DNA in all of our eight metagenome 

data sets, and noted the lower number of phage sequences identified in all H. glycines 

data sets compared to those of G. pallida. One specific contig with a fixed length and 

highly similar annotation was found in all of the eight data sets. We also discussed the 
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strengths and weaknesses of the three independent search approaches utilized in the 

work, and we suggest applying multiple complementary strategies in phage discovery 

from metagenomic sequences.  

 

  



  

 

 

Table 3. 1. Collection information and de novo assembly statistics of the datasets. 

 

Sample Location (USA) Date of 

collection 

Total number 

of QC-passed 

reads 

# of contigs 

(>= 300 bp) 

Largest 

contig (bp) 

N50 L50 

Gp_GH Green house, U 

of Idaho 

Jan 2017 37,117,112 272,561 601,196 1,341  38,690 

 

Gp_Bin25 Site #25, 

Bingham, Idaho 

May 2007 27,323,936 494,453 

 

600,871 

 

789 

 

87,997 

 

Gp_Bin26 Site #26, 

Bingham, Idaho 

May 2007 40,795,618 782,171 

 

1,079,796  

 

841 133,680 

Gp_Bin258 Site #258, 

Bingham, Idaho 

May 2014 29,074,518 323,949 

 

595,308 

 

1,009 

 

50,718 

 

Hg_Al Alabama Jan 2018 26,524,664 90,110 139,523 2,860 9,311 

Hg_Aud Pettis, Missouri Jan 2018 57,878,600 122,813 1,533,904 3,164 10,090 

Hg_Pet Audrain, 

Missouri 

Jan 2018 44,414,058 133,920 1,016,637 1,853 11,949 

Hg_War Warren, 

Missouri 

Jan 2018 26,333,758 89,735 809,795 3,321 7,521 
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Table 3. 2. Phage contigs predicted by the tool VirSorter in each of the eight nematode metagenome data set. 

  

Dataset Prophage Phage No. of 

genes in 

phages 

Total 

phage 

length  

Total length 

of all contigs 

>= 300 bp 

% 

phage 

in 

dataset 

Avg. 

phage 

length 

Min 

phage 

length 

Max 

phage 

length 

Gp_GH 6 54 489 363,567 249,932,024 0.15 6,732 ± 

11,871 

1,304 79,137 

Gp_Bin26 2 62 881 578,508 581,324,724 0.10 9,331 ± 

16,155 

1,418 97,440 

Gp_Bin25 2 36 471 349,861 354,249,375 0.10 9,718 ± 

17,914 

915 87,008 

Gp_Bin258 3 45 487 316,802 256,003,752 0.12 7,040 ± 

9,281 

882 46,884 

Hg_Al 3 29 214 189,412 116,527,583 0.16 6,531 ± 

4,258 

689 15,570 

Hg_War 4 8 87 65,058 138,887,545 0.05 8,132 ± 

8,380 

3,055 28,235 

Hg_Pet 8 6 119 85,053 157,290,633 0.05 14,175 ± 

14,656 

2,596 41,400 

Hg_Aud 6 18 356 247,514 186,127,784 0.13 13,750 ± 

19,080 

1,246 65,170 



  

 

 

Table 3. 3. Nucleotide variation of phage sequences observed within each metagenome. 

 

Dataset Name Change Coverag

e 

Polymorphism Type Variant 

Frequency 

Variant P-Value 

(approximate) 

Gp_GH T G -> T 648 SNP (transversion) 4.50% 9.10E-58 

Hg_Al A C -> A 300 SNP (transversion) 4.00% 3.40E-24 

Hg_War T G -> T 212 SNP (transversion) 5.20% 1.40E-23 

Gp_Bin26 T G -> T 361 SNP (transversion) 6.90% 2.20E-52 

Gp_Bin25 A C -> A 651 SNP (transversion) 5.10% 4.90E-64 

G A -> G 39 SNP (transition) 33.30% 1.20E-15 

Gp_Bin258 T G -> T 332 SNP (transversion) 5.40% 5.60E-38 

AA TT -> AA 7 Substitution 14.30% 0.00056 

Hg_Pet T G -> T 692 SNP (transversion) 4.30% 2.50E-50 

Hg_Aud A C -> A 443 SNP (transversion) 5.60% 3.60E-40 
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Table 3. 4. Pairwise percentage of identity between the 5,461-bp long contigs with high sequence coverage from each of the 

eight datasets analyzed. 

 

 

Hg_Al_

NODE_

3798 

Gp_25_

NODE

_3025 

Hg_Aud

_NODE

_4214 

Gp_GH

_NODE

_3750 

Hg_Pet_

NODE_

1496 

Gp_258

_NODE

_3062 

Gp_26_

NODE

_7217 

Hg_War

_NODE

_3465 

Hg_Al_NODE_

3798  98.9 97.2 97.2 98.5 98.5 98.5 97.2 

Gp_25_NODE_

3025   97.2 97.2 98.5 98.5 98.5 97.2 

Hg_Aud_NODE

_4214    97.3 98.6 98.6 98.6 97.3 

Gp_GH_NODE_

3750     98.6 98.6 98.6 97.3 

Hg_Pet_NODE_

1496      100 100 98.6 

Gp_258_NODE

_3062       100 98.6 

Gp_26_NODE_

7217        98.6 

Hg_War_NODE

_3465         
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Figure 3.1. Basic characteristics of predicted phage and prophage contigs in the dataset Hg_War (A), Hg_Pet (B), Hg_Aud 

(C), Hg_Al (D), Gp_Bin25 (E), Gp_Bin258 (F), Gp_GH (G), and Gp_Bin 26 (H). Each ring is a basic feature of the sequences, 

ordered from inner to outer rings: GC content, standard deviation of sequence coverage, mean sequence coverage, mean 

sequence coverage Q2Q3, variability, phage name, phage category, phage length, number of genes in phage sequences, and 

number of hallmark genes in the contigs.  
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Figure 3. 2. GC content and base sequencing coverage of contigs predicted by the program 

VirSorter to be of phage origin in the dataset Hg_War (A), Hg_Pet (B), Hg_Aud (C), Hg_Al 

(D), Gp_Bin25 (E), Gp_Bin258 (F), Gp_GH (G), and Gp_Bin 26 (H). The base coverage of 

contigs are indicated on the Y axis. The GC content of the contigs are shown on the X axis. 

Each dot represents a contig, and the size of the dot correlates to contig length. “Phage” 

contigs are demonstrated in red and “prophage” are in green (categories were designated by 

VirSorter).  One contig identified as ‘phage’ has a very high read coverage. 



  

 

 

 

Figure 3.3. Relationship between the 54 VirSorter-predicted ‘phage’ contigs in the data set Gp_GH based on shared gene 

families.  
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Figure 3.4. The number of contigs that matched to three phage genome databases in the dataset Gp_GH (A) and Hg_Al (B). 

The proportion of BLAST hits was conserved between the two data sets. 
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Figure 3.5. GC content, size and sequencing coverage of the contig that hit to all the three 

phage databases in Gp_GH (A) and Hg_Al (B). The x axis is GC content, and the y axis is 

sequence coverage.  
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Figure 3.6. Close-up view of 100 contigs with the highest coverage in datasets Hg_War (A), Hg_Pet (B), Hg_Aud (C), Hg_Al 

(D), Gp_Bin25 (E), Gp_Bin258 (F), Gp_GH (G), and Gp_Bin 26 (H). Different colors denote the biological identity of the 

contigs based on megablast results. The ‘phage’ contig is shown in red.  



  

 

 

A 

 

 

B 

 
Figure 3.7. (A) Gene annotation of the contig with length 5461 bp and high coverage (contig NODE_3750) in the dataset 

Gp_GH. (B) Sequence alignment of all contigs with length 5461 bp and high coverage in the eight datasets analyzed.
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Abstract 

The slug-parasitic nematode Phasmarhabditis hermaphrodita is currently recognized as a 

promising candidate in biological control of slug pests. P. hermaphrodita closely 

resemble the insect control agent Steinernema spp.; however, unlike Steinernema 

nematodes, which form an obligate symbiosis with the specific bacteria Xenorhabdus 

spp., P. hermaphrodita have no specific bacterial associates reported. Nevertheless, the 

presence of different bacterial partners during slug infection was shown to affect the 

pathogenicity and efficiency of the nematodes. Therefore, characterization of P. 

hermaphrodita’s microbial community and determining the bacteria that could 

potentially improve the nematode’s performance may assist the optimization of the 

sustainable biocontrol method using this nematode species. In this chapter, we examined 

three P. hermaphrodita populations cultured in three different microbial conditions: 

plates seeded with Escherichia coli, a newly discovered Pseudomonas sp. that co-

cultured with P. hermaphrodita, and the original complex bacterial community associated 

with the nematode. For each of the three treatments, we evaluated the pathogenicity of P. 

hermaphrodita, explored the composition of their microbial communities, and 

investigated the changes in microbiome structure before and after slug infection using 

16S rRNA amplicon sequencing. We identified a wide variety of taxa components (82 

genera) in the community associated with the nematode pre-infection, most of which are 

of low abundance. In all bacterial treatments post-infection, the number of genera almost 

quadrupled and those taxa’s abundance changes remarkably, although the composition of 

highest abundance taxa remained stable. Alpha diversity analyses showed that the 

community richness alter between collection time points, but the community diversity did 
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not significantly differ among types of bacterial treatment post-infection. Beta diversity 

results indicated clear clustering of the six sample sets. Finally, we observed four 

Pseudomonas ASVs that conserved and increased abundance after slug infection in the 

Pseudomonas treatment, which may suggest a role of the taxa in the infection process. 

Introduction  

Invasive pest slug species, such as Deroceras reticulatum (‘grey field slug’), are among 

the most widespread, damaging pests of agricultural and horticultural production, causing 

reductions in quality and yield loss on a broad range of crops including wheat, corn, 

legumes, vegetables, and fruits (Barker, 2002; Godan, 1983; Mc Donnell et al., 2009). 

Slug pests have also been documented to vector several plant and human pathogens e.g. 

Alternaria brassicicola (causing black spot disease in brassica), Escherichia coli (causing 

food poisoning) (Mc Donnell et al., 2009) and Angiostrongylus cantonensis, the causal 

agent of the potentially lethal eosinophilic meningitis (Centers for Disease Control and 

Prevention, 2019). Conventional slug control methods are largely chemical-based, using 

active molluscicide ingredients such as metaldehyde, iron phosphate, and carbamates 

(Barker, 2002). However, there is growing environmental concern about these chemical 

molluscicides harming non-target organisms (Aktar et al., 2009).There is also evidence 

that target slugs might be developing resistance to these molluscicide compounds 

(Barker, 2002). Therefore, current research efforts focused on combating these damaging 

slug pests have focused on alternative control strategies, such as biological control 

approaches.  

Phasmarhabditis hermaphrodita is a parasitic, rhabditid nematode species that has 

long been known to be a natural enemy of slugs and snails. The potential of P. 
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hermaphrodita for biocontrol against slugs was realized as early as 1988, when it was 

confirmed to have high virulence against a wide range of pest gastropods (Rae et al., 

2007; Wilson et al., 1993). The nematode has been sold commercially under the trade 

name Nemaslug® in Europe for over 20 years but is not commercially available in the 

United States due to regulatory concerns about the unknown effects of this nematode on 

North America-native gastropod species, such as banana slugs. Recently, the discovery of 

P. hermaphrodita in California (Lopez et al., 2014) and then later in Oregon by our 

research team (Howe et al. - in preparation) has provided justification for further 

exploring this nematode as a potential slug biocontrol agent in the United States.  

Regarding the mechanism of infection, P. hermaphrodita shares notable 

similarities with the well-studied entomopathogenic nematodes (EPNs) of the genus 

Steinernema, which has been commonly used as biological control agents of insect 

herbivores (Smart, 1995). In both systems, the infective juvenile-stage nematodes live 

freely in soil and gain entrance to the targeted hosts upon exposure, usually through the 

mantle cavity. Once inside, infective juveniles develop into self-fertilizing 

hermaphroditic adults, reproduce, and the infection spreads to the entire body of the slug 

host, eventually leading to its death within 4-21 days. The nematodes continue to 

consume the slug carcass until the food source is depleted, and their new infective 

juveniles again move into soil to search for new susceptible hosts (Rae et al., 2007; Tan 

and Grewal, 2001a).  

Despite sharing many similarities in the life cycle with the EPNs of the genus 

Steinernema, which engage in an obligate, specific mutualism with Xenorhabdus spp. 

bacteria (Sicard et al., 2004) required for insect host infection, P. hermaphrodita has 
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more uncertain and understudied relationship with its bacterial associates. In fact, the 

scientific literature focusing on the role of bacteria in the lifestyle, virulence and mollusc-

killing efficacy of P. hermaphrodita remains quite contradicting. The Nemaslug® 

product consists of both P. hermaphrodita and the bacterium Moraxella osloensis, and it 

is often assumed that both biotic components of this product play roles in slug infection 

and killing.  However, P. hermaphrodita can feed on and carry out slug infection with 

many other bacterial partners that include Pseudomonas fluorescens, and Pseudomonas 

paucimobilis (Wilson et al., 1995a, 1995b). Little is known about the nature of P. 

hermaphrodita-bacteria association and how the two partners interact, if at all, to achieve 

pathogenicity to gastropods.  

Different bacteria have been shown to have different effects on the virulence of the 

nematode-bacteria combination in the P. hermaphrodita system (Wilson et al., 1994, 

1995a). Some studies suggested that the sole agent responsible for pathogenicity was a 

number of particular bacterial species, most notably M. osloensis (Tan and Grewal, 

2001b). Meanwhile, other studies suggested that P. hermapherodita lacks a specific 

obligate partner in killing the slugs, and bacteria did not have discernible influence on 

virulence (Rae et al., 2010). The association between P. hermaphrodita and bacteria is 

then expected to be complex, variable, and the role of each partner in slug infection is yet 

to be well understood, preventing the optimization of the biocontrol method using the 

nematode. This gap in knowledge requires further study and is necessary for the 

development of the prospective biocontrol strategy using the newly found P. 

hermaphrodita in the United States.  
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To better understand the composition and function of the natural bacteria harbored 

in P. hermaphrodita, and whether there are alterations in the bacterial community before 

and after slug infection, we conducted a set of slug infection trials involving nematodes 

reared on different bacterial communities in an effort to: 

1) Evaluate the pathogenicity of P. hermaphrodita nematodes reared on Escherichia 

coli strain OP50, a known non-pathogenic bacterium that is the common food 

source for laboratory populations of the infamous model organism Caenorhabditis 

elegans. 

2) Investigate the pathogenicity of P. hermaphrodita reared on a Pseudomonas sp. 

bacterium, which was isolated from the complex bacterial community associated 

with nematodes infecting grey field slugs in Oregon.   

3) Evaluate the pathogenicity of P. hermaphrodita reared on the total complex 

bacterial community that co-cultured with nematodes infecting gray field slugs in 

Oregon.  

4) For each of the three above bacterial communities, investigate how bacterial 

communities associated with the nematodes changed before and after slug infection 

experiments in the lab. 

We performed a 16S rRNA-based analysis of the P. hermaphrodita microbiota 

sampled immediately before and after infection of the grey field slug Deroceras 

reticulatum. Previous research has suggested that P. hermaphrodita is capable of carrying 

out slug infection with many different bacterial partners, and that the bacteria might play 

a legible role in the infection process. Nevertheless, we hypothesized that microbiomes 

associated with P. hermaphrodita will impact the nematode’s ability to infect slugs, either 
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through direct effects (e.g., direct involvement of bacteria in slug mortality) or through 

indirect means (e.g., through variable nutritional effects on nematode metabolism).  We 

predicted changes to occur in nematode-associated microbiomes, when comparing pre-

infection to post-infection nematode samples.  The infection of a slug host might act as a 

selection pressure on the bacterial community, favoring the bacteria that can better 

contribute to the nematode’s virulence, spread, reproduction and killing efficacy. This 

research provides further insights essential for the development and optimization of this 

nematode-based slug biocontrol strategy. 

Materials and Methods  

Nematode Preparation 

Prior to the slug infection assay, P. hermaphrodita nematodes were bleached with 5% 

solution of sodium hypochlorite following standard nematode bleaching protocol 

(Sulston and Hodgkin, 1988) to remove/minimize their associated bacteria. After 

bleaching, nematodes were cultured on nutrient growth media (NGM) plates (Stiernagle, 

2006) seeded with one of three designated bacterial food sources: E. coli OP50 (EC), 

Pseudomonas sp (PS)., and the complex total bacterial community (BC) associated with 

the nematodes. The E. coli OP50 culture was obtained from the Caenorhabditis Genetics 

Center at the University of Minnesota. The Pseudomonas sp. culture was previously 

isolated from a single colony deriving from the complex bacterial community that co-

cultured with a P. hermaphrodita strain discovered in Oregon (isolated from a slug found 

on the Oregon State University Campus (McDonnell et al., 2018).  

Nematode culturing and transfers were performed using ‘semi-sterile’ conditions 

that are typical in many laboratory-based nematode research programs. NGM plates were 



103 

 

 

initially poured using autoclave-sterilized media, equipment, and sterile plastic plates 

(VWR International, Lutterworth, UK).  Bacteria cultures were grown using autoclave-

sterilized flasks.  NGM plates were seeded with the appropriate bacterial cultures on lab 

bench tops, exposing the agar media and bacterial cultures to potential environmental 

bacteria found in the lab environment. Nematodes were added to plates in a similar 

fashion, both upon initial establishment of cultures and subsequent sub-culturing. Thus, 

we expected to detect the presence of additional non-target bacteria (e.g., bacteria other 

than E. coli OP50 in the EC samples) in our subsequent analyses. 

Nematode Sample Collection  

Collecting samples at the first time point - before infection  

This dissertation chapter relied on the collection of nematode samples that were part of a 

larger slug infectivity assay, the broader results of which are separate from the 

microbiome-centric focus on this chapter.  The results of the broader slug assay, led by 

Dr. Rory Mc Donnell and his research team in the OSU Department of Crop and Soil 

Science, were summarized in supplementary document 1 to provide necessary context for 

this dissertation research chapter.  We plan to ultimately combine the broader slug 

infectivity assay results (supplementary document 1) and the results of this microbiome-

focused research chapter for a larger, collaborative peer-reviewed publication (we plan to 

submit this article to PLoS Pathogens).   

We collected nematode samples in a fixed volume of 200 µL nematode 

suspension in sterile M9 solution, using semi-sterile lab benchtop techniques as 

previously described. For each of the three bacterial conditions examined in this study 

(EC, PS, BC), three biological replicates were collected and analyzed.  Immediately 
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before the infection assay, three replicates of nematode suspensions (8,000 

nematodes/ml) were taken out from each of the three combinations, totaling nine ‘before’ 

samples. The worms were washed once with 200 µL M9 buffer, then twice with 200 µL 

distilled H2O. We also included six negative controls to assess the contamination 

introduced during the preparation procedure and sequencing: three samples of the M9 

buffer, three samples of distilled H2O from the Denver Lab, three samples of distilled 

H2O from the McDonnell Lab where the slug infection assay was carried out, and three 

DNA Extraction kit blanks. The nine pre-infection nematode samples (hereafter referred 

to as “PreInf” sample) and twelve negative controls were stored immediately after 

collecting at -80 °C.  

Collecting samples at the second time point - after infection  

Nematode and bacteria from the high-dose nematode treatment (see Supplementary 

Document 1 for description of high- and low-dose treatment) were collected in three 

biological replicates. For each of the three bacteria treatment, we collected three slug 

carcasses (each from a separate container) to extract nematode populations. Immediately 

following the death of a slug, the fresh carcass was submerged in 200 µL of sterile M9 

solution to elute nematodes. Collected nematodes were washed once with 200 µL M9 

buffer and then twice with 200 µL of molecular biology grade water (VWR International, 

Lutterworth, UK). The nematode samples (hereafter referred to as “PostInf” samples) 

were then stored at -80 °C until DNA extraction. The simplified scheme for referring to 

the six different bacterial treatment types, used hereinafter in this manuscript, is 

summarized in Table 1. 
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DNA Isolation, 16S rRNA Amplification and Sequencing   

Prior to DNA isolation, nematode samples were homogenized thoroughly by bead 

beating. We conducted DNA extraction from the homogenate, and from the negative 

control samples, using the PowerSoil DNA Extraction kit (MOBIO, Carlsbad, CA, USA).  

DNA extractions were then quantified using a fluorescent plate reader at the OSU Center 

for Genome Research and Biocomputing (CGRB). 

The process of 16S library preparation, amplification and sequencing were 

conducted by the OSU CGRB. Amplicon libraries were prepared following the standard 

protocol by Illumina (16S Metagenomic Sequencing Library Preparation, 2013). Primers 

targeting the V3-V4 region (forward: 

5'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGC 

WGCAG3’; reverse: 

5'GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGT 

ATCTAATCC 3’) were utilized for PCR amplification (Klindworth et al. 2013). 

Subsequently, the PCR products were proceeded through clean-up, index PCR, library 

quantification, normalization, and pooling. Libraries were sequenced using paired-end 

MiSeq v2 Nano 300 bp platform (Illumina, USA).  

DNA Sequence Data Processing 

DNA sequence quality control procedures began with read trimming: raw forward reads 

were trimmed off 17 nucleotides on the left and truncated to a length of 283 bases while 

reverse reads were trimmed 21 nucleotides on the right and truncated to a length of 266 

bases using the DADA2 pipeline (Callahan et al., 2016). The trimmed nucleotides 

included the 16S amplification primers. DADA2 was also used to merge paired reads, 
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denoise, quality filter, and infer amplicon sequence variants (ASVs). ASVs represent 

exact 16S rRNA gene sequence variants resolved to the level of single-nucleotide 

dissimilarity; ASVs constituted the fundamental unit of taxon identity used in subsequent 

analyses. Compared to the commonly used operational taxonomic units (OTUs) with a 

threshold of nucleotide difference of 97%, ASVs have been shown to offer better 

reproducibility, reusability, and comprehensiveness in 16S microbiome analyses 

(Callahan et al., 2017). 

Phylogenetic analyses and representations of the ASVs were constructed using 

MAFFT alignment (Katoh, 2002) and FastTree (Price et al., 2010). To assign taxonomy 

to the ASVs, we utilized a self-trained classifier, trained on the Silva Project’s database 

(release 132) (Quast et al., 2013). Putative contaminant sequences were identified and 

filtered out of sample data using the R package decontam (Davis et al., 2018). ASVs were 

considered a contaminant if they were more prevalent in negative controls than in 

positive samples and/or their frequency significantly varied inversely with sample DNA 

concentration (probability threshold p < 0.1). 

We utilized the Phylum, Genus, and ASV levels as units for subsequent 

compositional taxa analyses. Since different taxonomic classifiers trained on different 

databases may differ at lower taxonomic ranks (Balvočiūtė and Huson, 2017), the 

Phylum level were chosen as the unit for taxa analysis; however, the Genus and ASV 

level were also selected for a finer resolution and subsequent composition analysis.  

Alpha Diversity Analyses 

We used four metrics: Chao1, Shannon, Inverse Simpson and Faith’s Phylogenetic 

Diversity (PD) to compare and evaluate alpha diversity from different approaches. Chao1 
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index is an estimator of species richness i.e. the expected total number of OTUs/ASVs in 

the sample given all the species were identified. It weighs the low abundance taxa (i.e. 

only singletons and doubletons) to infer the number of missing species (Chao, 1984). 

Shannon Index estimates the overall richness and also the evenness/uniformity between 

the taxa present in the sample (Spellerberg and Fedor, 2003). Also focusing on the 

species richness and evenness, however, Inverse Simpson emphasizes more on species 

evenness (Simpson, 1949) while Shannon index gives a greater weight to the species 

richness. Faith’s PD metric considers the phylogeny of taxa to estimate diversity, and is 

proportional to how much of the OTU/ASV phylogenetic tree is covered by the taxa 

present (Faith, 1992).  

To calculate Shannon Index and Inverse Simpson, the ASV table were rarefied ten 

times to a depth of 100,000 reads in order to lessen the random biases introduced by 

randomly subsampling. Rarefying the ASV table to a fixed number of reads per sample is 

necessary for calculations of Shannon and Inverse Simpson, as these two abundance-

based indices could be substantially affected by the differences in the total number of 

reads between samples. The two indices were calculated for each of the ten rarefied table 

using the package phyloseq, and the mean values were used for alpha diversity analysis. 

As for Chao1, which depends on low-abundance taxa, the ASV table was not rarefied to 

retain all ‘rare’ taxa. The index Faith’s PD was calculated using the package picante. 

Kruskal-Wallis tests were conducted to assess the significance of the differences among 

the bacteria-nematode combinations at the same time point, and Mann-Whitney U tests or 

paired t-test were applied, as appropriate, for the difference between the two time points 

before and after infection. The normality of diversity values was assessed using Shapiro-
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Wilk normality test; when the p-value of Shapiro test is larger than 0.05, it is implied that 

the distribution could be assumed normal.  

Beta Diversity Analyses 

To assess the difference in microbial community between samples, we used four beta 

diversity metrics: two abundance-weighted beta diversity indices (Bray-Curtis and 

weighted UniFrac) and two presence-absence indices (Jaccard and unweighted UniFrac). 

While Bray-Curtis and Jaccard are non-phylogenetic metrics, weighted and unweighted 

UniFrac also take into account the phylogeny of the bacterial community composition to 

assess differences between samples. Specifically, UniFrac distances are based on the sum 

of branch length shared between samples on the phylogenetic tree constructed from all 

the 16S rRNA sequences of from all communities of interest. To test whether the groups 

differ significantly from each other, we conducted the permutational multivariate analysis 

of variance (PERMANOVA) test using the package vegan (Oksanen et al., 2019). 

The beta diversity distance matrices obtained were visualized using the ordination 

technique Principal Coordinates Analysis (PCoA), which reduced the number of 

dimensions of the distance matrices and visualized the sample dissimilarities in a low-

dimensional space. In the result plots, each sample was a point, and the 

clustering/distance between these points might indicate the similarity/dissimilarity of the 

samples.   
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Results 

16S rRNA Sequence Data 

After quality filtering and removing chimeric sequences, we obtained a total of 

10,485,882 reads, with an average of 582,549 reads and a median depth of 349,960 reads 

per sample. 2,938 ASVs (i.e. taxa) were identified. The decontamination procedure 

removed 131 ASVs, leaving 2,807 unique ASVs for subsequent analyses. The 

components of the removed contaminants are shown in Appendix Figure 2. The filtered 

data set then contained 10,422,195 reads in total, with an average depth of 579,010 reads 

and a median 343,942 reads per sample. Details of the number of quality-controlled reads 

obtained in each sample, as well as the total number of reads, median and mean values of 

reads per nematode-bacterial combination were listed in Appendix Table 4.  

Microbiome shifts before and after slug infection experiment 

The number of different genera detected in each sample included in the analysis were 

listed in Table 4.1. On the Phylum level, the majority of bacterial components in all 

samples were identified as members of the phyla Bacteroidetes and Proteobacteria. We 

observed a shift in composition towards Proteobacteria in the BC-PostInf and PS-PostInf 

samples compared to their PreInf counterparts, while in the EC-PostInf samples there was 

a shift towards Bacteroidetes (Figure 4.1A). In general, the number of genera in all 

samples increased almost fourfold after infection. The abundance of the main genera also 

altered remarkably between PreInf and PostInf samples (Figure 4.1B).  

In P. hermaphrodita’s original microbiome (i.e. the BC-PreInf community), 15 

Phyla were identified with Bacteroidetes being the most abundant phylum, followed by 
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Proteobacteria. On the Genus level, the most abundant groups were Pseudochrobactrum, 

Flavobacterium, Raoultella, and Pseudomonas out of the 82 genera observed (Figure 

4.1B). Details of relative taxa abundance on the Phylum and Genus level in the BC-

PreInf communities were shown in Appendix Table 5.  

The numbers of ASVs unique to specific sample sets and shared among sample 

sets, were illustrated in Figure 4.2. In general, the number of ASVs unique to a single 

sample set were higher than those shared between different sets. The BC-PostInf samples 

had the largest number of unique ASVs (i.e. 600) that were not shared with any other 

type of samples, followed by the EC-PostInf and PS-PostInf (451 and 337 ASVs, 

respectively). Comparing PreInf and PostInf samples, the BC-PreInf and BC-PostInf 

communities shared 82 common ASVs, while PS-PreInf and PS-PostInf shared 36 ASVs, 

and 44 ASVs were shared between EC-PreInf and EC-PostInf samples.    

Patterns of change in alpha diversity 

We evaluated alpha diversity using the four metrics Chao1, Faith’s PD, Inverse Simpson, 

and Shannon Index (Figure 4.3A). Chao1 index had significantly higher median across all 

PostInf samples compared to PreInf (Mann-Whitney U test, p = 4.114e-05). There was 

suggestive evidence that the Faith’s PD and Shannon indices were lower in PreInf- than 

PostInf-samples (Mann-Whitney U, p = 0.06 and p = 0.09, respectively).  

Analysis of the EC microbiomes suggested some evidence that the mean Shannon 

index increased after the slug infection process (Welch two sample t-test, p = 0.068). The 

BC samples showed a moderately significant increase in Faith’s PD and Chao1 value (p 

= 0.029 and p = 0.03) and suggestive decrease of Inverse Simpson index. The PS-PostInf 

samples demonstrated strong evidence of an increase in Shannon and chao1 index (p = 
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0.01 and p < 0.0004, respectively) compared to PS-PreInf. The changes in alpha diversity 

of each bacteria-nematode combination at the two time points were summarized in Figure 

4.3B and detailed in Table 4.2.  

There was some evidence that the diversity in all bacteria-nematode combinations 

prior to infection was not equal (Kruskal-Wallis, p = 0.05). After the infection assay, 

alpha diversity indices between the three bacteria-nematode combination did not differ 

significantly (Kruskal-Wallis test, p = 0.3012). 

Patterns of change in beta diversity 

We applied four beta diversity indices to evaluate the dissimilarity between samples of 

the three combinations sampled before and after the infection assay: Bray-Curtis 

dissimilarity, Jaccard, unweighted and Weighted UniFrac (see Materials and Methods). 

Bray-Curtis results showed a clear pattern of distinct sample clustering (Figure 5). The 

bacterial community structures were significantly different between the EC, PS, and BC 

sample sets (PERMANOVA, p = 0.001, R2 = 0.541). This result was robust to Jaccard 

and Weighted UniFrac indices (PERMANOVA, p = 0.001 for both), but not to UniFrac 

(PERMANOVA, p = 0.06). Between samples collected PreInf and PostInf, Bray-Curtis 

dissimilarity, Jaccard, and UniFrac indices indicated a significant difference 

(PERMANOVA, p = 0.02, p = 0.01, p = 0.001, respectively); however, Weighted 

UniFrac did not show a clear deviation (p = 0.25). PCoA ordination plots of the four beta 

diversity indices were shown in Figure 4.4.    

Pseudomonas ASV expansion after slug infection in the PS samples 

We analyzed the ASV components of the PS microbiome, with specific focus on those 

deriving from Pseudomonas spp., to evaluate the potential effects of the infection process 
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on this group of bacteria (Figure 4.5). The microbiome of PS-PostInf only shared a total 

of 36 ASVs with PS-PreInf, four of which were identified to be of the genus 

Pseudomonas. The relative abundance of these four ASVs in PS-PreInf samples was 

13.23% of the total, and expanded to 59.58% in PS-PostInf samples. Out of these four 

ASVs, one was present in all three bacterial-nematode combinations sampled both before 

and after infection, and displayed an increase of 7.5%, 3.6%, and 3.2% in EC, PS, and 

BC communities, respectively. The three other Pseudomonas ASVs were only detected in 

the microbiomes of PS and BC nematodes, both before and after the infection assay; they 

were absent in all EC samples. While their abundances all increased after the course of 

infection in PS samples - by 6.9%, 30.5%, and 5.5%, there was a consistent decrease of 

1.38%, 4.13%, and 0.73% from BC-PreInf to BC-PostInf samples. Two Pseudomonas 

ASVs only present in PS-PreInf accounted for just 0.004% abundance, whereas the 14 

ASVs unique to the PS-PostInf had a total relative abundance of 1.11%. 

Discussion 

Complex composition of bacterial communities associated with P. hermaphrodita 

The microbiome samples of all the EC, PS, and BC samples showed complex taxa 

(ASVs) compositions both before and after slug infection. The species richness and 

diversity of EC-PreInf and PS-PreInf communities were higher than our expectations, 

given that the nematodes had been bleached with hypochlorite, washed thoroughly with 

water and salt solution, and reared on pure cultures of E. coli or Pseudomonas sp prior to 

the infection assay. The intended bacteria were present in the samples collected before 

infection trials; however, Pseudomonas sp. and E. coli were a relatively minor 

component of the community by the time the infection experiments began - as 
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characterized in our 16S composition analyses. There are many likely contributors to the 

unexpectedly high taxonomic diversity observed in the EC and PS samples, including 

laboratory contamination associated with our ‘semi-sterile’ lab techniques, some bacteria 

surviving the bleaching procedures, and the possibility that there are unknown bacterial 

endosymbionts associated with P. hermaphrodita as has been reported in other nematode 

systems (Denver et al. PLoS Pathogens 2008). 

Before the infection trial, fifteen different phyla and 82 genera were observed in the 

BC-PreInf samples, with Pseudochrobactrum, Flavobacterium, Raoultella, and 

Pseudomonas being the four most abundant taxa in the community. These four genera all 

have been reported in association or rivalry with nematodes: Pseudochrobactrum spp. 

with the EPNs Heterorhabditidae (Sharifi 2016), Raoultella spp. with the root-knot and 

pine wood nematodes (Wen 2015, Liu 2019), Flavobacterium sp. with the insect-parasitic 

nematode Rhabditis blumi, the soybean cyst nematode Heterodera glycines, the oriental 

beetle pathogenic nematode Butlerius sp. (Tian 2000, Ook Kim 2011, Woong Park, 

2007), and Pseudomonas spp. with Caenorhabditis elegans. The high-abundance 

components in BC-PreInf samples is relatively similar to that of Caenorhabditis elegans, 

whose dominant genera are Pseudomonas, Stenotrophomonas, Ochrobactrum, 

Sphingomonas, and unclassified Enterobacteriaceae (Raoultella is a representative of this 

family) (Dirksen 2016, Samuel 2016). Stenotrophomonas, Ochrobactrum, and 

Sphingomonas spp. are all detected in top 10 most abundant genera in our BC-PreInf 

bacterial community.    

The complex features of the bacterial community structure and the results of slug 

mortality during the infection assay (See Supplementary Document 1) indicated that P. 
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hermaphrodita can carry out slug infection with various bacteria regardless of the 

primary bacterial food source, albeit at different rates. This observation agrees with Rae 

and colleague’s finding that the nematode is able to associate with non-specific and 

complex microbial assemblages (Rae et al., 2010). However, the slug-killing efficacy 

varied between different bacteria-nematode combinations. The BC-cultured nematodes 

were the first out the three treatments to cause significant slug mortality compared to the 

negative controls on Day 5, followed by the PS nematodes on Day 6, and lastly the EC 

nematodes, starting Day 10. Once began, the nematodes treated with Pseudomonas took 

only three days to kill slugs and were the first to cause 100% slug mortality on Day 8, 

followed by the BC nematodes (100% slug mortality on Day 9 - spanning five days) and 

EC nematodes (Day 10). The results may imply that Pseudomonas spp. might potentially 

be a bacterial partner that could help maximize the nematode’s ability to kill slug hosts. 

This could be done by assisting P. hermaphrodita’s pathogenicity and/or providing a 

favorable food source, which may benefit the worm’s growth and development for better 

infection. These insights could be useful from the biocontrol viewpoint - to optimize the 

pathogenicity and slug-killing efficacy of P. hermaphrodita nematodes. 

Analysis of ASVs in both the PS-PreInf and PS-PostInf sample sets revealed four 

common ASVs that belonged to the genus Pseudomonas (see Results). Out of these four 

ASVs, we detected the presence of one particular ASV in all sample sets, of which the 

relative abundance consistently increased after the course of infection in all three 

bacterial treatment. This suggests that the specific ASV is stably retained with the 

nematode and could be important to the slug infection activity. The abundance of three 

other common ASV before and after infection also expanded, however, their absence in 
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all EC sample, as well as the decline in abundance observed in the BC treatment could 

indicate that these ASVs might originated from bacteria that are beneficial to the 

nematode, but not crucial to the pathogenicity and could be easily outgrown by other 

bacteria in the microbiome.    

Bacterial community shifts after slug infection 

In general, we found that alpha diversity indices increased in all of the post-infection 

samples, especially the PS-PostInf and BC-PostInf samples. For BC-PostInf samples, 

Chao1 and Faith’s PD alpha diversity indices increased significantly, which may indicate 

the enrichment of low-abundance taxa during the course of infection and also implied 

that the diversity in the PostInf microbiome is not just the result of the presence of a few 

highly diverse taxonomic groups, but rather a broader range of phylogenetically different 

taxa. Indeed, for example, the total number of different genera in the BC microbiomes 

more than tripled after infection, however, the composition of the top 20 most abundant 

taxa remained stable. Likewise, for the Pseudomonas-enriched treatment we reported a 

significant increase in Chao1 and Shannon indices after the assay, indicating a spike in 

rare taxa post infection, although composition analysis pointed to the dominance of taxa 

of the genus Pseudomonas in the community.  

 Microbial community differs by type of bacterial treatment and time of collection. 

We found that the difference between samples from different bacteria-nematode 

combinations were significant for Bray-Curtis and weighted UniFrac metrics, but not for 

unweighted UniFrac. This means that between bacterial treatments, the communities tend 

to have a common set of core ASVs (i.e. similar richness), but these ASVs have highly 

varied abundances (i.e. diversity). Additionally, it is likely that the higher abundance taxa 
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are distinct between samples from different bacterial treatments, and shared taxa are of 

low abundance.  

In the meantime, samples collected before and after infection did not show a 

significant difference by the weighted UniFrac metric, indicating that only low-

abundance taxa differ between the communities pre- and post-infection. This observation 

is in concordance with the findings of the alpha diversity analyses discussed above. 

Conclusion 

In this chapter, we described the microbial community associated with the slug-parasitic 

nematode P. hermaphrodita, and reported the compositional changes in the nematode’s 

microbiome before and after slug infection. We observed a substantial increase in species 

richness; however, the composition of the top abundant taxa pre-infection remained 

mostly the same post-infection. We also detected four specific taxa of the genus 

Pseudomonas, whose relative abundance expanded remarkably after infection in the 

communities originally enriched with Pseudomonas. This finding suggests future 

investigations to further evaluate the possible role of Pseudomonas sp. in the killing of 

slugs, which will assist the optimization of the slug biocontrol method using P. 

hermaphrodita. 
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Table 4. 1. Naming scheme of samples. 

 

Bacterial treatment Time point Sample name 

E. coli-enriched samples before infection EC-PreInf 

after infection EC-PostInf 

Pseudomonas sp. - 

enriched samples 

before infection PS-PreInf 

after infection PS-PostInf 

Complex bacterial 

community 

before infection BC-PreInf 

after infection BC-PostInf 
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Table 4. 2. The number of different genera detected in each sample.  

 

 

Bacterial treatment 
Sample (before 

infection) 

No. of 

genera 

Sample (after 

infection) 
No. of genera 

E. coli 

EC-PreInf-1 30 EC-PostInf-1 108 

EC-PreInf-2 31 EC-PostInf-2 185 

EC-PreInf-3 32 EC-PostInf-3 80 

Pseudomonas sp. 

PS-PreInf-1 
22 

PS-PostInf-1 
108 

PS-PreInf-2 
27 

PS-PostInf-2 
115 

PS-PreInf-3 
24 

PS-PostInf-3 
107 

Bacterial complex 

BC-PreInf-1 
66 

BC-PostInf-1 
130 

BC-PreInf-2 
36 

BC-PostInf-2 
182 

BC-PreInf-3 
35 

BC-PostInf-3 
144 
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 Table 4. 3. Changes in alpha diversity indices of each bacteria-nematode combination 

after infection trial.  

 

Diversity 

metrics 

E. coli (EC) Bacterial Complex 

(BC) 

Pseudomonas sp. (PS) 

Shannon Increase (p = 0.068) No significant 

difference 

(p = 0.25) 

Increase 

(p = 0.01) 

Faith’s PD No significant 

difference 

(p = 0.67) 

Increase 

(p = 0.029) 

No significant 

difference 

(p = 0.7) 

Inverse 

Simpson 

No significant 

difference 

(p = 0.27) 

Decrease 

(p = 0.09) 

No significant 

difference 

(p = 0.24) 

Chao1 No significant 

difference 

(p = 0.19) 

Increase 

(p = 0.03) 

Increase 

(p < 0.0004) 
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Figure 4. 1. (A). Phylum composition of communities associated with P. hermaphrodita. (B) Genus composition of the 

communities. Each stacked colored bar indicates a different genus with relative abundance of more than 0.1%. 
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Figure 4. 2. The ASV components present in each of the sample sets. Each horizontal colored bar (left) indicates the number of 

unique ASVs per sample group. Each vertical bar in the plot illustrates the number of ASVs detected in the samples. The dots 

(bottom) correspond to the presence of those numbers of ASV in the sample sets, and co-appearance of one dot in multiple 

samples demonstrates the number of ASVs that are shared among those different sets.    
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Figure 4. 3. Alpha diversity indices Shannon, Inverse Simpson, Chao1 and Faith’s Diversity of samples grouped by (A) Time 

of collection and (B) Bacterial treatment. Significant differences of the metrics between pre- and post-infection of each 

bacterial treatment are indicated with the significant code: (***) 0-0.001, (**) 0.001-0.01, (*) 0.01-0.05, (.) 0.05-0.1, ( ) > 0.1.    
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Figure 4. 4. Beta diversity indices of the microbiome samples. Principal coordinate analysis (PCoA) with a (A) Bray-Curtis 

dissimilarity, (B) Jaccard distance, (C) Unweighted UniFrac distance, and (D) Weighted UniFrac distance. The samples are 

colored by the type of bacterial treatment and shaped by the time of collection.  



  

 

 

 
 

 

Figure 4. 5. Genus components of microbial communities in each PS biological replicate. 

Relative abundance of the observed genera are colored on a gradient - the darker the color, 

the higher abundance.



  

 

 

Chapter 5: Conclusion 

This dissertation combined diverse evolutionary and genomic investigation methods, 

applied to diverse and complementary research subjects, in an effort to further understand 

the diversity and evolution of organisms in nature, with special focus on those that 

interact with Pseudomonas spp. bacteria. The work extended over a range of biological 

systems, from bacteriophages and bacterial communities to nematodes. The research 

analyzed different sets of data - ranging from single complete genomes to metagenomic 

sequences and microbiome amplicon data, and utilized different approaches such as 

laboratory slug infection assays, whole-genome sequencing and comparative genomics, 

16S rRNA microbiome analyses, and shotgun metagenome sequencing analyses. The 

three data chapters are linked by a common thread: Pseudomonas bacteria. Chapter 2 

focuses on bacteriophages infecting Pseudomonas, a factor that may substantially 

influence the bacteria’s diversity. Chapter 3 progressed from the Pseudomonas phage 

complete genome dataset and transition to a broader microbial community framework, 

where the set of sequences were the references to search for general phage DNA in 

metagenomes. Chapter 4 investigated the bacterial community associated with slug-

killing nematode, and began to explore the potential role of Pseudomonas spp. in the 

scheme of slug infection. This concluding chapter summarizes the findings of those data 

chapters, relates to the broader observations in other studies, and proposes directions for 

future research.  
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Phage genomic diversity and evolution  

The specific goals of Chapter 2 were to evaluate the genomic diversity, capability to shift 

hosts, and selection force acting on bacteriophages infecting Pseudomonas. We observed 

enormous genomic diversity among the 130 genomes examined, with highly varied 

genome characteristics as well as a large number of phage singletons and ORFams. These 

findings agreed with results from other studies of other phage groups e.g. 

Mycobacteriphage (Hatfull et al., 2010; Pope et al., 2015), Bacillus phages (Grose et al., 

2014), Acinetobacter phages (Turner et al., 2018), Lactobacillus phages (Kiliç et al., 

2001), Lactococcus lactis phages (Murphy et al., 2016), and thus reaffirmed the 

commonly observed pattern of bacteriophage hyper-diversity in different environments. 

As previously discussed, the current database for Pseudomonas bacterial genome is still 

heavily skewed towards P. aeruginosa (by the time of this dissertation, 50% of the 

available draft and complete Pseudomonas genomes are P. aeruginosa - Winsor et al., 

2011). The number of phage genomes sequenced deposited in public databases is 

correlated to, and much smaller than that of their own hosts. This is expected to 

substantially obstruct the comprehensive evaluation Pseudomonas phage diversity and 

evolution. Therefore, we consider it essential to discover and sequence novel phages, 

which would provide important resources for more thoroughly understanding the 

diversity of phage genes, and provide broader resources to evaluate the biology of these 

phages and their host bacteria.     

Our second finding demonstrated that Pseudomonas phages have a considerable 

potential to shift hosts, as phages infecting different host trains and even species shared 

reportable sequence similarities, and diverse CRISPR spacer sequences from multiple 
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host species within a single phage were detected. While bacteriophages have been well-

known for the high host-specificity observed in some strains (which is particularly 

suitable for the development of phage therapy), other groups of phages expressed the 

ability to infect more than one host species (Murphy et al., 2016). The observation 

suggests future study directions to explore phages’ extent and rate of switching hosts, and 

also to further probe into the potential causes and environmental prompts that may lead to 

host shifting. These questions could be addressed in a microbiome theme, where the 

dynamic network among microbial organisms and the close interactions between phages 

and bacteria are likely to be important factors that influence both phage and bacterial 

evolution. For example, an induced disturbance of the microbial community (e.g. 

changing in temperature, humidity, or administration of specific antibiotics) that reduced 

the bacterial host population might be used to test phages’ host shifting rate. By putting 

investigations into more practical framework, we expect the achievement of helpful 

insights that would unveil more details about the nature of phages and could be applied 

towards the development of clinical applications.   

Lastly, we identified a dominating pattern of purifying selection on phage genes 

using the ratio of nucleotide diversity at non-synonymous (πN) and synonymous sites 

(πS). The evolutionary test πN/πS and its sister - dN/dS have been applied to various 

groups of phages, and our findings are in line with previous results of other studies, 

which demonstrated that purifying selection are exerting on the majority of phage genes. 

Other studies have noted that the ratios are higher in smaller genomes in general (Kuo et 

al., 2009; Sela et al., 2016), which suggests further investigation into smaller phages i.e. 

Leviviruses and Inoviruses. Small viruses are underrepresented in our genome collection, 
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as only two Leviphages and two Inophages were available on GenBank database at the 

time. Currently, more Inoviruses and Leviviruses, including those infecting 

Pseudomonas, are being discovered and continuously added to genome databases (Roux 

et al., 2019). Including more phages of these families in comparative analyses may reveal 

novel evolutionary patterns.    

Searching for phage sequences in metagenome data  

Chapter 3 aimed to identify and characterize phage DNA in cyst nematode metagenome 

data that were not specifically generated for virome studies. We used three different, 

independent phage DNA search strategies, which were based on both public phage gene 

databases and complete genome sequences, and detected complex phage signals in all of 

the eight cyst nematode metagenome data sets included. We noted that using the program 

VirSorter, the numbers of phage DNA identified in any of our data sets were substantially 

lower than those in other studies employing the same software (Garin-Fernandez et al., 

2018; Leigh et al., 2018; Miller-Ensminger et al., 2018; Nigro et al., 2018). This might 

have resulted partly from a lack of a viral enrichment procedure prior to our metagenome 

sequencing, while the other studies followed standard handling protocols including the 

enrichment step. It is not clear of the extent of phage matter that was lost during our 

initial prep, and how this would skew the search results. Therefore, future work might 

include a comparison of two data sets from a single microbiome, generated with and 

without the viral purification procedure. During preparation for sequencing, the 

microbiome sample of interest could be divided in half, one would undergo the standard 

viral enrichment protocol (i.e. following the viral targeted approach), and the other would 

have no enrichment step (i.e. untargeted approach). The difference in phage signals 
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detected would allow the evaluation of the effect of the viral enrichment step, and also 

reveal the characteristics of particular sequences that tend to be lost (or remain) without 

those steps. For example, we speculate that more circular sequences with signatures of 

phage hallmark genes, which indicates phage lytic particles, would be found in the viral 

targeted data; while the untargeted data would contain more prophage sequences.  

 Our findings also showed that among our eight data sets, the numbers of phage 

sequence contigs identified in H. glycines-associated metagenomes are generally lower 

than those of G. pallida (about one-third on average). It was unclear whether the 

difference was truly biological or caused by analytical discrepancy. We noted the lower 

quality of G. pallida metagenome assemblies, which raised the concern that lower-

confidence assembled contigs may resulted in misidentification of phages and/or falsely 

adding up multiple fragmented parts of the same phage sequence, inflating the number of 

phages reported. Therefore, we propose that future studies include optimization of the 

assembling step and ensure the quality uniformity across data sets. Another suggested 

approach to circumvent issues regarding metagenome assembly is to develop a 

bioinformatic pipeline that recognizes and detects patterns of viral sequences directly 

from raw reads, for example aligning reads to a marker gene database and characterizing 

based on the alignments, which was employed for the program MetaPhlAn2 (Truong et 

al., 2015). This method may help avoiding technical errors of assembly, such as 

fragmented and incomplete sequences, chimeras (i.e. sequences from different genomes 

that are incorrectly assembled into one contig). Using raw reads will be especially helpful 

when comparing signals from different metagenomic data and provide a valuable 

exploratory tool to investigate phage signals in metagenomes.    
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Microbial communities have been known to be fluid and regularly experience 

natural temporary changes (Caporaso et al., 2011; Gerber, 2014; Uhr et al., 2019). As all 

of our four H. glycines samples were collected around the same time - which was 

different than the collection time points of the four G. pallida samples, the speculation 

that low phage biomass is in fact a temporal state remains untested. Therefore, future 

research might focus on testing the stability of the phage community in nematode 

metagenomes over time. Microbiome samples could be collected in a time series, with a 

set of time points ranging from shorter intervals (i.e. hours, days) to long period of time 

(weeks, months, years). Findings of this experiment would be able to provide a broader 

picture of the phage component in metagenomes and potential roles/ significance of the 

phage community as well as particular phage sequences. For our work in particular, more 

information about the sequences, especially the 5,461-bp contigs observed (e.g. whether 

or not they were in fact a contaminant, the temporal relative abundance, and the 

importance of the phage) could be further inferred. 

Microbial community associated with slug-parasitic nematodes  

Chapter 4 examined microbiomes associated with the slug-parasitic nematode P. 

hermaphrodita in the context of experimental slug infections in the lab. Three bacterial 

communities, including nematodes fed on E. coli OP50, Pseudomonas sp., and the 

bacterial complex associated with the nematodes, were set up as media for P. 

hermaphrodita with the intention of evaluating the slug-killing efficiency of nematodes 

accompanied by these bacteria. The three treatments demonstrated varied in their 

capacity to kill slugs, which may implicate roles of the bacterial partners in the slug 

infection process. However, we noted the non-uniform microbial communities that were 
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present in the PS-PreInf and EC-PostInf samples instead of the expected sole presence of 

Pseudomonas sp. and E. coli, respectively. This is likely to have resulted from multiple 

contributing factors such as residual bacteria that was retained within the nematode, and 

the ‘semi-sterile’ laboratory technique used to handle nematodes in the infection 

experiment, which is the current standard practice in this field of research. This 

observation suggested future research focused on the role of bacteria in this system 

should implement improved sterile nematode culturing techniques, essentially repeat the 

infection assay with better starting sterilization procedures. Nematode sterilization could 

be tested by submerging in sterilizing agents e.g. thimerosal (Wilson et al., 1995b), 

Nycodenz, a gradient method which is able to separate worms and their bacterial 

symbionts (Woyke et al., 2006), and culturing media solution with multi antibiotics. 

More confident conclusions about the roles of the bacterial partners might be revealed as 

the nematode is grown on monoxenic bacterial cultures. 

An additional future direction in this research program will be to better dissect the 

relative roles of the nematodes and the bacteria in killing slug hosts, and help resolve the 

contradicting and controversial findings in current literature (Rae et al., 2010; Tan and 

Grewal, 2001b). Following the optimized sterilization procedures, ‘clean’ nematode 

might be introduced in the proximity of grey field slugs and monitor slug mortality. P. 

hermaphrodita’s performance may help verify its intrinsic killing capability. Clearly, we 

cannot exclude the possibility that the nematode may pick up certain bacteria within the 

microbiome of slugs, which is non-pathogenic to the slug host until being put in an 

association with P. hermaphrodita. In that case, the nematode’s unassisted pathogenicity 

may not be confirmed, and it would be difficult to limit the presence of the slug 
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microbiome without affecting their vitality. Nevertheless, this approach using sterilized 

nematodes i.e. without their native bacteria may provide a closer view to the nematode’s 

nature. Regarding the role of bacteria, they may also be tested separately for killing 

ability. Bacterial pure cultures of different experimental concentration might be injected 

into the slug mantle, or pipetted directly over the opening of the dorsal integumental 

pouch, posterior to the mantle, where nematode infective juveniles presumably enter the 

slug body (Tan and Grewal, 2001a) to facilitate bacterial infection. If choosing injection, 

pilot study assessing the effect of injecting using syringes to slug’s vitality should be 

conducted, in which slug negative controls (i.e. injected with sterile solution such as 

saline) will need to be handled and monitored carefully.  

Finally, a prospective research direction could focus on testing different natural 

strains of P. hermaphrodita. It is possible that different P. hermaphrodita strains possess 

significantly varied characteristics, including pathogenicity towards slugs. Multiple 

strains that are genetically distinguished have recently been identified team (Howe et al. - 

in preparation), which could provide the nematode source for evaluating experiments. 

While Chapter 4 in this dissertation work has been centered on testing different bacterial 

partners in the association, the nematode itself should also be examined among different 

strain candidates to investigate any variation in slug-killing efficiency. The results of this 

evaluation may contribute to the development and optimization of the slug biocontrol 

method using P. hermaphrodita. 

Concluding remarks 

Overall, this dissertation research provides new insights into the dynamics of 

Pseudomonas bacteriophage genomes and nematode microbiomes associated with 
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bacteria of the genus Pseudomonas. We present different analysis approaches, applied on 

multiple types of data sets in an effort to further understand the characteristics, biology, 

dynamics, interactions, and evolution of various biological organisms, and contribute to 

the broader knowledge of the Pseudomonas genus and its associates.  
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Appendix A: Supplementary material for Chapter 2 

Appendix Table 1. Basic genome metrics of the 130 Pseudomonas phage sequences included. 

 

Phage name Cluster Host species 

No. 

of 

ORFs 

Genome 

size (bp) 
%ORF  

ORF 

per 

kb 

%GC 
ICTV 

Family  
tRNAs tmRNA 

B3 A1 P. aeruginosa 51 38,439 92.9 1.3 63.2 Siphoviridae 0 0 

JBD18 A1 P. aeruginosa 51 39,014 95.5 1.3 63.4 Siphoviridae 0 0 

JBD25 A1 P. aeruginosa 55 39,552 96.4 1.4 62.5 Siphoviridae 0 0 

vB_PaeS_PM105 A1 P. aeruginosa 55 39,593 95.2 1.4 63.1 Siphoviridae 0 0 

D3112 A2 P. aeruginosa 55 37,611 94.4 1.5 64.3 Siphoviridae 0 0 

DMS3 A2 P. aeruginosa 53 36,415 94.4 1.5 64.3 Siphoviridae 0 0 

H70 A2 P. aeruginosa 55 37,359 94.7 1.5 64.2 Siphoviridae 0 0 

JBD24 A2 P. aeruginosa 55 37,095 95.7 1.5 64.2 Siphoviridae 0 0 

JBD30 A2 P. aeruginosa 52 36,947 93.8 1.4 64.3 Siphoviridae 0 0 

JBD5 A2 P. aeruginosa 58 37,740 96.6 1.5 64.3 Siphoviridae 0 0 

JBD88a A2 P. aeruginosa 54 36,429 95.7 1.5 64.0 Siphoviridae 0 0 

JD024 A2 P. aeruginosa 57 37,380 95.8 1.5 64.2 Siphoviridae 0 0 

LPB1 A2 P. aeruginosa 53 36,814 95.2 1.4 64.4 Siphoviridae 0 0 

MP22 A2 P. aeruginosa 52 36,409 96.4 1.4 64.2 Siphoviridae 0 0 

MP29 A2 P. aeruginosa 52 36,632 95.7 1.4 64.3 Siphoviridae 0 0 

MP38 A2 P. aeruginosa 52 36,885 95.6 1.4 64.5 Siphoviridae 0 0 

MP42 A2 P. aeruginosa 52 36,847 94.4 1.4 64.2 Siphoviridae 0 0 

MP48 A2 P. aeruginosa 54 36,838 95.6 1.5 64.1 Siphoviridae 0 0 

PA1/KOR/2010 A2 P. aeruginosa 51 34,553 92.0 1.5 64.8 Siphoviridae 0 0 

vB_PaeS_PAO1_Ab30 A2 P. aeruginosa 54 37,238 93.6 1.5 64.1 Siphoviridae 0 0 

PaMx11 B1 P. aeruginosa 86 59,878 93.6 1.4 64.5 Siphoviridae 0 0 

vB_PaeS_PAO1_Ab18 B1 P. aeruginosa 76 56,537 93.7 1.3 63.5 Siphoviridae 0 0 
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M6 B2 P. aeruginosa 83 59,446 94.9 1.4 64.5 Siphoviridae 0 0 

MP1412 B2 P. aeruginosa 82 61,167 94.9 1.3 64.3 Siphoviridae 0 0 

PAE1 B2 P. aeruginosa 87 62,181 94.8 1.4 64.2 Siphoviridae 0 0 

YuA B2 P. aeruginosa 78 58,663 94.3 1.3 64.3 Siphoviridae 0 0 

DL62 C1 P. aeruginosa 52 42,508 92.8 1.2 62.2 Podoviridae 0 0 

LKD16 C1 P. aeruginosa 50 43,200 89.8 1.2 62.3 Podoviridae 0 0 

LUZ19 C1 P. aeruginosa 55 43,548 93.0 1.3 62.3 Podoviridae 0 0 

MPK6 C1 P. aeruginosa 53 42,957 92.7 1.2 62.3 Podoviridae 0 0 

MPK7 C1 P. aeruginosa 54 42,874 93.3 1.3 62.1 Podoviridae 0 0 

phikF77 C1 P. aeruginosa 54 43,152 92.7 1.3 62.9 Podoviridae 0 0 

phiKMV C1 P. aeruginosa 49 42,519 91.1 1.2 62.3 Podoviridae 0 0 

PT2 C1 P. aeruginosa 50 42,961 89.9 1.2 62.2 Podoviridae 0 0 

vB_Pae-TbilisiM32 C1 P. aeruginosa 53 42,966 91.9 1.2 62.3 Podoviridae 0 0 

vB_PaeP_PAO1_Ab05 C1 P. aeruginosa 50 43,639 90.0 1.1 62.3 Podoviridae 0 0 

vB_PaeP_PPA-ABTNL C1 P. aeruginosa 52 43,227 91.5 1.2 62.4 Podoviridae 0 0 

LKA1 C2 P. aeruginosa 56 41,593 92.1 1.3 60.9 Podoviridae 0 0 

phi-2 C2 P. fluorescens  48 43,144 89.9 1.1 58.9 Podoviridae 0 0 

KPP21 D1 P. aeruginosa 116 73,420 84.6 1.6 53.5 Podoviridae 0 0 

LUZ7 D1 P. aeruginosa 112 74,901 94.7 1.5 53.2 Podoviridae 0 0 

LIT1 D2 P. aeruginosa 94 72,544 93.8 1.3 55.0 Podoviridae 0 0 

Pa2 D2 P. aeruginosa 93 73,008 94.1 1.3 54.9 Podoviridae 0 0 

vB_PaeP_C2-10_Ab09 D2 P. aeruginosa 90 72,028 94.1 1.2 54.9 Podoviridae 0 0 

YH6 D2 P. aeruginosa 92 73,050 93.4 1.3 54.9 Podoviridae 0 0 

CHA_P1 E P. aeruginosa 160 88,255 91.1 1.8 54.6 Myoviridae 3 0 

KPP10 E P. aeruginosa 157 88,322 91.0 1.8 54.8 Myoviridae 3 0 

PAK_P3 E P. aeruginosa 160 88,097 91.3 1.8 54.8 Myoviridae 3 0 

PAK_P5 E P. aeruginosa 160 88,135 91.5 1.8 54.7 Myoviridae 3 0 

vB_PaeM_PAO1_Ab03 E P. aeruginosa 154 86,246 90.6 1.8 54.7 Myoviridae 3 0 

vB_PaeM_PS24 E P. aeruginosa 153 84,583 91.6 1.8 54.7 Myoviridae 3 0 
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C11 F P. aeruginosa 172 94,109 88.8 1.8 49.4 Myoviridae 15 0 

JG004 F P. aeruginosa 172 93,017 89.6 1.8 49.3 Myoviridae 15 0 

K8 F P. aeruginosa 172 93,879 89.2 1.8 49.4 Myoviridae 14 0 

PAK_P1 F P. aeruginosa 172 93,198 89.8 1.8 49.5 Myoviridae 14 0 

PAK_P2 F P. aeruginosa 173 92,495 89.9 1.9 49.3 Myoviridae 14 0 

PAK_P4 F P. aeruginosa 170 93,147 89.7 1.8 49.3 Myoviridae 14 0 

PaoP5 F P. aeruginosa 172 93,464 89.0 1.8 49.5 Myoviridae 14 0 

PaP1 F P. aeruginosa 170 91,715 89.9 1.9 49.4 Myoviridae 15 0 

phiPsa374 F P. syringae 169 97,906 88.7 1.7 47.7 Myoviridae 20 0 

vB_PaeM_C2-10_Ab01 F P. aeruginosa 169 92,777 89.2 1.8 49.3 Myoviridae 15 0 

DL54 G P. aeruginosa 70 45,673 92.3 1.5 52.4 Podoviridae 3 0 

PaP3 G P. aeruginosa 70 45,503 91.9 1.5 52.2 Podoviridae 4 0 

vB_PaeP_p2-10_Or1 G P. aeruginosa 65 44,030 92.5 1.5 52.0 Podoviridae 3 0 

LUZ24 H1 P. aeruginosa 68 45,625 90.7 1.5 52.2 Podoviridae 3 0 

PhiCHU H1 P. aeruginosa 70 45,626 91.4 1.5 52.0 Podoviridae 3 0 

phiIBB-PAA2 H1 P. aeruginosa 69 45,344 91.9 1.5 52.3 Podoviridae 3 0 

TL H1 P. aeruginosa 67 45,696 89.5 1.5 52.4 Podoviridae 3 0 

vB_PaeP_C2-10_Ab22 H1 P. aeruginosa 69 45,808 90.9 1.5 52.4 Podoviridae 3 0 

tf H2 P. putida  66 46,271 89.9 1.4 53.2 Podoviridae 0 0 

UFV-P2 H2 P. fluorescens 67 45,517 91.5 1.5 51.5 Podoviridae 0 0 

14-1 I P. aeruginosa 91 66,235 92.5 1.4 55.6 Myoviridae 0 0 

DL60 I P. aeruginosa 90 66,103 92.5 1.4 54.9 Myoviridae 0 0 

DL68 I P. aeruginosa 90 66,111 91.8 1.4 55.7 Myoviridae 0 0 

F8 I P. aeruginosa 93 66,015 91.9 1.4 54.9 Myoviridae 0 0 

JG024 I P. aeruginosa 93 66,275 92.4 1.4 55.6 Myoviridae 0 0 

KPP12 I P. aeruginosa 87 64,144 92.0 1.4 55.6 Myoviridae 0 0 

LBL3 I P. aeruginosa 86 64,427 92.0 1.3 55.5 Myoviridae 0 0 

LMA2 I P. aeruginosa 91 66,530 91.4 1.4 55.6 Myoviridae 0 0 

NH-4 I P. aeruginosa 93 66,116 91.3 1.4 55.5 Myoviridae 0 0 
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PB1 I P. aeruginosa 92 65,764 92.1 1.4 54.9 Myoviridae 0 0 

SN I P. aeruginosa 92 66,390 92.0 1.4 55.6 Myoviridae 0 0 

vB_Pae_PS44 I P. aeruginosa 96 68,871 90.4 1.4 55.2 Myoviridae 0 0 

vB_PaeM_C1-14_Ab28 I P. aeruginosa 93 66,181 92.4 1.4 54.9 Myoviridae 0 0 

vB_PaeM_PAO1_Ab27 I P. aeruginosa 94 66,299 91.8 1.4 55.7 Myoviridae 0 0 

73 K P. aeruginosa 54 42,999 93.4 1.3 53.6 Siphoviridae 0 0 

PaMx42 K P. aeruginosa 53 43,225 91.4 1.2 54.6 Siphoviridae 1 0 

vB_Pae-Kakheti25 K P. aeruginosa 56 42,844 94.2 1.3 53.8 Siphoviridae 0 0 

vB_PaeS_SCH_Ab26 K P. aeruginosa 54 43,056 92.2 1.3 53.4 Siphoviridae 0 0 

gh-1 L1 P. putida 44 37,359 94.1 1.2 57.4 Podoviridae 0 0 

phiPSA2 L1 P. syringae  49 40,472 93.7 1.2 57.4 Podoviridae 0 0 

PPPL-1 L1 P. syringae  50 41,149 93.2 1.2 57.0 Podoviridae 0 0 

Pf-10 L2 

P. fluorescens; 

P. putida  46 39,167 93.6 1.2 56.5 Podoviridae 0 0 

Phi-S1 L2 P. fluorescens 47 40,192 93.8 1.2 56.2 Podoviridae 0 1 

phiIBB-PF7A L2 P. fluorescens 51 40,973 93.2 1.2 56.3 Podoviridae 0 0 

phi15 L3 P. putida 47 39,562 92.7 1.2 58.2 Podoviridae 0 0 

PPpW-4 L3 

P. 

plecoglossicida 51 41,386 92.3 1.2 56.8 Podoviridae 0 0 

201phi2-1 M P. chlororaphis 470 316,674 94.7 1.5 45.3 Myoviridae 1 0 

phiKZ M P. aeruginosa 366 280,334 91.9 1.3 36.8 Myoviridae 7 0 

PhiPA3 M P. aeruginosa 414 309,208 93.0 1.3 47.7 Myoviridae 5 0 

119X NON P. aeruginosa 53 43,365 93.1 1.2 44.9 Podoviridae 0 0 

AF NON P. putida 61 42,689 95.6 1.4 58.4 Podoviridae 0 0 

Bf7 NON P. tolaasii 46 40,058 94.7 1.1 58.4 Podoviridae 0 0 

D3 NON P. aeruginosa 99 56,426 89.4 1.8 57.8 Siphoviridae 4 0 

DL64 NON P. aeruginosa 90 72,378 93.0 1.2 55.0 Podoviridae 0 0 

EL NON P. aeruginosa 206 211,215 93.1 1.0 49.3 Myoviridae 1 0 

F10 NON P. aeruginosa 62 39,199 94.8 1.6 62.1 Myoviridae 0 0 

F116 NON P. aeruginosa 73 65,195 93.5 1.1 63.2 Podoviridae 0 0 
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KPP25 NON P. aeruginosa 87 64,113 92.1 1.4 60.3 Podoviridae 0 0 

Lu11 NON P. putida  383 280,538 95.8 1.4 50.9 Myoviridae 0 0 

OBP NON P. fluorescens  305 284,757 94.3 1.1 43.5 Myoviridae 4 0 

PaBG NON P. aeruginosa 328 258,139 94.3 1.3 55.8 Myoviridae 5 0 

PAJU2 NON P. aeruginosa 78 46,872 90.8 1.7 56.3 Siphoviridae 0 0 

PaMx28 NON P. aeruginosa 74 55,108 92.4 1.3 66.4 Siphoviridae 0 0 

PaP2 NON P. aeruginosa 52 43,783 93.0 1.2 45.4 Podoviridae 0 0 

PaP4 NON P. aeruginosa 69 43,895 94.6 1.6 52.5 Podoviridae   0 

Pf1 NON P. aeruginosa 14 7,349 96.4 1.9 61.5 Inoviridae 0 0 

Pf3 NON P. aeruginosa 8 5,833 92.0 1.4 45.4 Inoviridae 0 0 

phi_Pto-bp6g NON P. tolaasii 66 26,499 80.9 2.5 42.7 unclassified 0 0 

phi297 NON P. aeruginosa 62 49,135 88.9 1.3 62.1 Siphoviridae 0 0 

phiCTX NON P. aeruginosa 41 35,580 84.9 1.2 62.6 Myoviridae 0 0 

phiPSA1 NON P. syringae 78 51,090 93.4 1.5 58.6 Siphoviridae 1 0 

PP7 NON P. aeruginosa 3 3,588 94.7 0.8 54.2 Leviviridae 0 0 

PPpW-3 NON 

P. 

plecoglossicida 63 43,564 93.0 1.4 61.1 Myoviridae 1 0 

PRR1 NON P. aeruginosa 3 3,573 89.0 0.8 49.2 Leviviridae 0 0 

PS-1 NON P. sp.  79 48,666 89.4 1.6 59.8 Siphoviridae 0 0 

vB_PaeP_Tr60_Ab31 NON P. aeruginosa 68 45,550 93.0 1.5 57.1 unclassified 1 0 

vB_PaeS_PMG1 NON P. aeruginosa 90 54,024 91.2 1.7 57.5 Siphoviridae 1 0 

YH30 NON P. aeruginosa 91 72,192 94.3 1.3 54.9 Podoviridae 0 0 

YMC11/02/R656 NON P. aeruginosa 108 60,919 86.9 1.8 58.7 Siphoviridae 1 0 
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Appendix Table 2. Pairwise nucleotide similarity between phages of each cluster. 

 

Cluster A1 

 

  JBD18 JBD25 JBD24 

JBD18 100 59.78 52.56 

JBD25   100 60.52 

JBD24     100 

 

 

Cluster A2 

 

  JBD5 JBD88a JBD30 

vB_ 

PaeS_ 

PAO1_ 

Ab30 

vB_ 

PaeS_ 

PM105 B3 

PA1/ 

KOR/ 

2010 DMS3 H70 JD024 D3112 MP29 MP42 

JBD18 57.06 52.82 51.7 52.24 59.34 61.13 57.89 51.61 56.02 55.94 56.8 57.47 51.95 

JBD25 60.59 59.44 59.01 59.91 47.9 57.52 61.41 59.53 60.91 59.56 60.78 59.97 58.92 

JBD24 80.95 86.64 91.48 95.13 54.26 52.16 82.77 93.62 83.17 80.87 82.95 82.2 90.87 

JBD5 100 84.81 81.4 80.34 53.69 52.48 96.38 80.41 92.95 95.65 91 94.31 80.2 

JBD88a   100 86.6 85.86 51.92 52.08 84.76 85.14 82.18 84.52 80.01 83.3 85.36 

JBD30     100 92.72 53.48 52.28 81.65 92.23 83.57 81.97 83.17 81.34 95.11 

vB_PaeS_ 

PAO1_ 

Ab30       100 53.5 52.02 81.1 93.42 83.02 80.19 83.14 81.01 91.07 

vB_ 

PaeS_ 

PM105         100 58.58 54.86 55.6 54.44 53.71 54.46 54.01 54.59 

B3           100 53.49 52.04 52.38 52.74 52.39 53.07 51.95 
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PA1/ 

KOR/ 

2010             100 80.7 92.89 96.02 92.47 98.21 81.12 

DMS3               100 83.45 80.48 83.65 79.95 93.33 

H70                 100 93.78 92.98 91.62 82.43 

JD024                   100 91.33 94.8 79.8 

D3112                     100 93.37 84.28 

MP29                       100 82.61 

MP42                         100 

 

 

Cluster B 

 

  PaMx11 YuA M6 MP1412 PAE1 vB_PaeS_PAO1_Ab18 

PaMx11 100 54 54.58 53.84 54.51 82.63 

YuA   100 94.13 94.27 93.95 54.5 

M6     100 95.66 96.73 53.21 

MP1412       100 95.19 54.36 

PAE1         100 52.59 

vB_PaeS_PAO1_Ab18           100 

 

 

Cluster C 

 

  DL62 phiKMV MPK7 PT2 phikF77 LKD16 

vB_ 

PaeP_ 

PPA- 

ABTNL MPK6 

vB_ 

PaeP_ 

PAO1_ 

Ab05 

vB_Pae-

TbilisiM32 LUZ19 

DL62 100 91.23 92.12 92.52 88.87 86.9 91.07 92.69 91.82 93.55 93.67 
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phiKMV   100 92.46 97.8 88.63 86.27 92.1 91.14 90.38 95.56 91.14 

MPK7     100 93.09 88.28 85.4 94.55 93.54 90.96 91.2 92.6 

PT2       100 88.23 86.21 92.61 91.78 90.17 94.75 92.09 

phikF77         100 86.34 88.15 90.46 88.73 90.31 90.85 

LKD16           100 87.08 86.77 86.81 87.23 86.62 

vB_ 

PaeP_ 

PPA- 

ABTNL             100 92.95 89.23 91.36 91.16 

MPK6               100 90.9 92.68 95.75 

vB_ 

PaeP_ 

PAO1_ 

Ab05                 100 91.84 90.11 

vB_ 

Pae-

TbilisiM32                   100 92.63 

LUZ19                     100 

 

 

Cluster D 

 

  KPP21 Pa2 LUZ7 

vB_PaeP_C2-

10_Ab09 LIT1 YH6 

KPP21 100 58.9 85.78 59.63 58.83 58.46 

Pa2   100 61.35 95.32 94.5 93.2 

LUZ7     100 62.07 61.08 61.57 

vB_PaeP_C2-10_Ab09       100 94.17 94.3 

LIT1         100 94.54 

YH6           100 
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Cluster E 

 

  CHA_P1 KPP10 PAK_P3 PAK_P5 vB_PaeM_PAO1_Ab03 vB_PaeM_PS24 

CHA_P1 100 95.72 95.13 96.42 91.78 94.95 

KPP10  100 95.29 95.98 91.24 96.16 

PAK_P3   100 95.22 91.73 95.3 

PAK_P5    100 91.8 95.78 

vB_PaeM_PAO1_Ab03     100 90.93 

vB_PaeM_PS24      100 

 

Cluster F 

 

  C11 JG004 PAK_P1 PAK_P2 PAK_P4 PaoP5 K8 PaP1 phiPsa374 

vB_PaeM_ 

C210_Ab01 

C11 100 93.66 89.72 93.57 93.52 93.08 93.4 91.04 51.81 91.9 

JG004  100 88.51 94.46 95.33 91.84 91.93 92.04 52.01 92.65 

PAK_P1   100 88.57 89.24 91.76 90.08 90.37 52.08 90.78 

PAK_P2    100 96.06 90.81 92.85 92.89 52.7 94.39 

PAK_P4     100 90.73 93.6 93.45 52.77 94.71 

PaoP5      100 90.98 90.35 51.89 91.39 

K8       100 94.8 51.99 92.16 

PaP1        100 51.96 92.12 

phiPsa374         100 53.27 

vB_PaeM_C2-

10_Ab01          100 
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Cluster G 

 

  DL54 PaP3 vB_PaeP_p2-10_Or1 

DL54 100 79.04 79.1 

PaP3  100 96.2 

vB_PaeP_p2-10_Or1   100 

 

Cluster H 

 

  UFV-P2 

vB_PaeP_C2-

10_Ab22 

phiIBB-

PAA2 TL PhiCHU LUZ24 tf 

UFV-P2 100 58.97 58.41 59.02 58.17 58.6 55.32 

vB_PaeP_C2-

10_Ab22  100 90.25 93.2 79.13 92.37 56.1 

phiIBB-PAA2   100 91.93 77.83 94.06 55.98 

TL    100 79.27 94.18 56.15 

PhiCHU     100 78.94 55.43 

LUZ24      100 56.57 

tf       100 

 

Cluster I 

 

  LBL3 PB1 DL60 DL68 LMA2 

vB_ 

Pae_ 

PS44 KPP12 SN 

vB_ 

PaeM_ 

C1-

14_ 

Ab28 

vB_ 

PaeM_ 

PAO1_ 

Ab27 JG024 14-1 F8 

NH-

4 

LBL3 100 91.29 44.72 45.76 92.32 93.03 92.89 92.76 91.32 93.07 92.98 92.92 91.13 92.12 

PB1  100 43.69 44.62 87.79 90.36 88.85 87.71 94.29 88.6 87.92 89.35 94.69 87.99 

DL60   100 80.57 44.93 44.86 44.92 45 43.57 45.07 45.02 45.03 43.88 45.02 
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DL68    100 46.2 46.11 46.24 46.25 44.44 46.27 46.23 46.2 44.78 46.27 

LMA2     100 93.14 95.71 94.59 87.21 96.31 93.9 93.81 89.07 96.74 

vB_Pae_ 

PS44      100 93.51 94.87 89.78 93.42 93.49 94.34 90.75 93.32 

KPP12       100 94.91 88.54 96.88 94.67 94.49 89.25 95.52 

SN        100 87.37 94.9 95.58 95.42 89.06 95.02 

vB_ 

PaeM_ 

C1-14_ 

Ab28         100 88.19 87.62 88.42 94.94 87.68 

vB_ 

PaeM_ 

PAO1_ 

Ab27          100 94.21 94.59 89.66 95.71 

JG024           100 96.21 88.65 95.27 

14-1            100 89.54 94.73 

F8             100 89.04 

NH-4              100 

 

Cluster K 

 

  73 PaMx42 

vB_Pae-

Kakheti25 

vB_PaeS_ 

SCH_Ab26 

73 100 75.84 95.38 94.48 

PaMx42  100 75.66 76.04 

vB_Pae-Kakheti25   100 94.18 

vB_PaeS_SCH_Ab26    100 
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Cluster L 

 

 gh-1 phiPSA2 PPPL-1 Phi-S1 

phiIBB-

PF7A Pf-10 phi15 PPpW-4 

gh-1 100 95.4 74.38 61.62 61.91 61.72 59.83 59.29 

phiPSA2  100 72.78 60.33 60.95 60.47 58.23 57.86 

PPPL-1   100 59.44 60.23 59.75 57.7 57.79 

Phi-S1    100 81.12 89.57 64.35 64.98 

phiIBB-

PF7A     100 85.03 64.75 65.23 

Pf-10      100 64.84 65.39 

phi15       100 66.96 

PPpW-4        100 

 

 

Cluster M 

 

  phiKZ PhiPA3 201phi2-1 

phiKZ 100 50.89 52.67 

PhiPA3  100 51.89 

201phi2-1   100 

  



  

 

 

Appendix B: Supplementary material for Chapter 3 

Appendix Table 3. Number of pairwise differences between contigs with length 5,461 bp and high coverage in the eight data 

sets. 

 

 

Hg_Al_

NODE_

3798 

Gp_25_

NODE

_3025 

Hg_Aud

_NODE

_4214 

Gp_GH

_NODE

_3750 

Hg_Pet_

NODE_

1496 

Gp_258

_NODE

_3062 

Gp_26_

NODE

_7217 

Hg_War

_NODE

_3465 

Hg_Al_NODE_

3798  60 157 157 82 82 82 157 

Gp_25_NODE_

3025   155 155 80 80 80 155 

Hg_Aud_NODE

_4214    150 75 75 75 150 

Gp_GH_NODE_

3750     75 75 75 150 

Hg_Pet_NODE_

1496      0 0 75 

Gp_258_NODE

_3062       0 75 

Gp_26_NODE_

7217        75 

Hg_War_NODE

_3465         
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C 

 

Appendix Figure 1. TBLASTX hits to Pseudomonas phage (A), Bacillus phage (B), and 

Myobacteriophage (C) databases. Each dot represents a contig, and the size of the dot 

correlates to contig length. Contigs are shaded based on the degree of matching to phage 

database - the darker the color, the higher the percentage of that contig match to phage 

DNA.  
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Appendix C: Supplementary material for Chapter 4 

 

 
 

Appendix Figure 2. Composition of ASVs contaminants removed from ASV table. 



  

 

 

 

 

Appendix Table 4. The number of quality controlled read counts in decontaminated samples. 

 

Sample No. of 

reads 

Total reads in 

each 

combination 

Median value 

in each 

combination 

Mean value 

in each 

combination  

EA1 604,813 4,087,108 490,705 681,185 

EA2 1,610,879 

EA3 1,091,611 

EB1 224,670 

EB2 376,596 

EB3 178,539 

UA1 153,427 2,572,446 231,484 428,741 

UA2 153,680 

UA3 100,672 

UB1 309,288 

UB2 1,005,733 

UB3 849,646 

PA1 641,501 3,762,641 453,176 627,107 

PA2 1,198,645 

PA3 1,231,796 

PB1 264,851 

PB2 250,356 

PB3 175,492 
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Appendix Table 5: (A). Phylum composition and relative abundance of the bacterial 

community associated with P. hermaphrodita before infection (samples BC-PreInf). Phyla 

were sorted from highest to lowest mean abundance in samples. 

 

Phylum meanRA sdRA minRA maxRA 

D_1__Bacteroidetes 0.022711 0.05372 1.30E-05 0.216386 

D_1__Proteobacteria 0.0099 0.025887 1.99E-05 0.195276 

D_1__Gemmatimonadetes 0.002883 0.004853 7.81E-05 0.010142 

D_1__Firmicutes 0.002073 0.003461 1.95E-05 0.012119 

D_1__Chloroflexi 0.001788 NA 0.001788 0.001788 

D_1__Planctomycetes 0.001664 0.001337 3.90E-05 0.003268 

D_1__Acidobacteria 0.001592 0.000449 0.001222 0.002245 

NA 0.001585 0.002498 1.30E-05 0.006981 

D_1__Actinobacteria 0.001375 0.001653 3.26E-05 0.006019 

D_1__Verrucomicrobia 0.001323 0.001488 0.000169 0.003447 

D_1__WS2 0.000864 NA 0.000864 0.000864 

D_1__Armatimonadetes 0.000808 NA 0.000808 0.000808 

D_1__Patescibacteria 0.000505 2.30E-05 0.000489 0.000521 

D_1__Cyanobacteria 0.000192 0.000169 5.96E-05 0.000437 

D_1__Deinococcus-Thermus 4.97E-05 NA 4.97E-05 4.97E-05 
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B. Genus composition of the natural bacterial community associated with P. hermaphrodita. 

Genera were sorted from the highest to lowest mean abundance in samples. 

Genus meanRA sdRA minRA maxRA 

D_5__Pseudochrobactrum 0.069449 0.085976 0.002215 0.195276 

D_5__Flavobacterium 0.045221 0.077108 1.30E-05 0.216386 

D_5__Raoultella 0.01917 0.020054 0.000404 0.062018 

D_5__Pseudomonas 0.018958 0.027937 4.55E-05 0.110072 

D_5__Brevundimonas 0.010851 0.011081 0.000467 0.029283 

D_5__Sphingobacterium 0.007877 0.00789 0.000235 0.026679 

D_5__Pedobacter 0.005992 0.002071 0.003795 0.009097 

D_5__wb1-P19 0.005553 NA 0.005553 0.005553 

D_5__Ochrobactrum 0.005453 0.003768 0.001662 0.011023 

D_5__Bauldia 0.005066 NA 0.005066 0.005066 

D_5__Paenibacillus 0.004858 0.004821 0.000469 0.012119 

D_5__Achromobacter 0.004599 0.002172 0.001597 0.00691 

D_5__Kaistia 0.004247 0.004221 0.00058 0.00886 

NA 0.003932 0.007775 1.30E-05 0.033866 

D_5__Sphingomonas 0.003857 0.003819 0.000111 0.009262 

D_5__ADurb.Bin063-1 0.003447 NA 0.003447 0.003447 

D_5__Microbacterium 0.003383 0.002822 0.000372 0.006019 

D_5__Rhodococcus 0.003253 0.002015 0.000111 0.00509 

D_5__Stenotrophomonas 0.003141 0.004696 1.99E-05 0.012148 

D_5__Allorhizobium-

Neorhizobium-Pararhizobium-

Rhizobium 

0.003072 0.001925 0.000891 0.005275 

D_5__Rhodoferax 0.002959 NA 0.002959 0.002959 
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D_5__uncultured 0.002167 0.002845 3.90E-05 0.010142 

D_5__Comamonas 0.002157 0.001104 0.001356 0.003416 

D_5__Anaerococcus 0.002007 NA 0.002007 0.002007 

D_5__Bacteroides 0.001973 0.002716 5.21E-05 0.003894 

D_5__Marmoricola 0.001828 0.001888 0.000104 0.00449 

D_5__uncultured soil 

bacterium 

0.001788 NA 0.001788 0.001788 

D_5__Herminiimonas 0.001429 0.000767 0.000886 0.001972 

D_5__Chryseobacterium 0.001421 NA 0.001421 0.001421 

D_5__Caulobacter 0.001351 0.001301 5.96E-05 0.003084 

D_5__Propionivibrio 0.001297 NA 0.001297 0.001297 

Ambiguous_taxa 0.001281 0.000945 0.000613 0.001949 

D_5__Oikopleura dioica 0.001245 NA 0.001245 0.001245 

D_5__RB41 0.001222 NA 0.001222 0.001222 

D_5__Porphyrobacter 0.001162 NA 0.001162 0.001162 

D_5__uncultured bacterium 0.001155 0.001066 0.000489 0.003258 

D_5__Terrimonas 0.001108 NA 0.001108 0.001108 

D_5__Nakamurella 0.001108 NA 0.001108 0.001108 

D_5__Nesterenkonia 0.001088 NA 0.001088 0.001088 

D_5__Rathayibacter 0.001036 NA 0.001036 0.001036 

D_5__Crossiella 0.000939 NA 0.000939 0.000939 

D_5__Leucobacter 0.000917 0.000763 0.00013 0.002781 

D_5__Lachnoclostridium 0.000867 NA 0.000867 0.000867 

D_5__Pir4 lineage 0.00072 0.000963 3.90E-05 0.001401 

D_5__Variovorax 0.000719 0.000572 0.000137 0.001623 
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D_5__Friedmanniella 0.000704 NA 0.000704 0.000704 

D_5__Nordella 0.000691 NA 0.000691 0.000691 

D_5__Devosia 0.000677 0.000596 0.000104 0.001744 

D_5__Brevibacillus 0.00062 0.000738 9.78E-05 0.001464 

D_5__Phreatobacter 0.000602 0.000382 0.000332 0.000872 

D_5__Shinella 0.000591 0.000626 0.000119 0.001301 

D_5__Faecalibacterium 0.00055 0.000578 0.00015 0.001212 

D_5__Nocardioides 0.000521 0.000516 0.000156 0.000886 

D_5__Hydrogenophaga 0.000504 0.000621 6.52E-05 0.000944 

D_5__Medicago truncatula 0.000437 NA 0.000437 0.000437 

D_5__Arenimonas 0.00043 0.000378 0.000163 0.000697 

D_5__Candidatus Udaeobacter 0.00043 NA 0.00043 0.00043 

D_5__Geodermatophilus 0.000398 NA 0.000398 0.000398 

D_5__Gemmatimonas 0.000365 NA 0.000365 0.000365 

D_5__Streptococcus 0.000328 NA 0.000328 0.000328 

D_5__Jatrophihabitans 0.000274 NA 0.000274 0.000274 

D_5__Moheibacter 0.00026 NA 0.00026 0.00026 

D_5__Roseburia 0.000254 0.000323 2.60E-05 0.000482 

D_5__Sphingopyxis 0.000247 0.00023 8.47E-05 0.00041 

D_5__uncultured 

Sphingomonadaceae bacterium 

0.000235 NA 0.000235 0.000235 

D_5__alphaI cluster 0.000235 NA 0.000235 0.000235 

D_5__Coprococcus 1 0.000215 NA 0.000215 0.000215 

D_5__Gaiella 0.000202 NA 0.000202 0.000202 

D_5__Leptothrix 0.000182 NA 0.000182 0.000182 
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D_5__Prosthecobacter 0.000169 NA 0.000169 0.000169 

D_5__Aeromicrobium 0.000163 NA 0.000163 0.000163 

D_5__Rubellimicrobium 0.00015 NA 0.00015 0.00015 

D_5__Candidimonas 0.000143 NA 0.000143 0.000143 

D_5__Mesorhizobium 0.00014 0.000124 5.21E-05 0.000228 

D_5__Delftia 7.81E-05 NA 7.81E-05 7.81E-05 

D_5__metagenome 7.81E-05 NA 7.81E-05 7.81E-05 

D_5__Rhodopseudomonas 6.52E-05 NA 6.52E-05 6.52E-05 

D_5__Deinococcus 4.97E-05 NA 4.97E-05 4.97E-05 

D_5__Mycobacterium 3.91E-05 NA 3.91E-05 3.91E-05 

D_5__Conexibacter 3.26E-05 NA 3.26E-05 3.26E-05 

D_5__Hyphomicrobium 2.60E-05 NA 2.60E-05 2.60E-05 

D_5__Dorea 1.95E-05 NA 1.95E-05 1.95E-05 
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Appendix Document 1. Slug infection assay procedure. 

 

Note: This document provides a summary of the slug infection assay experiment carried out 

in the laboratory of Rory Mc Donnell, which provided the Phasmarhabditis hermaphrodita 

nematode-associated microbiomes used for the dissertation Ch. 4 analysis.  The results of 

dissertation Ch. 4 will be combined with the infection assay results described here for 

publication in a peer-reviewed scientific manuscript. 

 

1. Nematode-Bacteria Combination Set-up 

Three populations of the nematode P. hermaphrodita were reared separately on three 

types of bacteria: E. coli, Pseudomonas sp., and the natural bacterial community associated 

with nematodes that were collected from a slug carcass discovered on OSU campus. We 

used the strain E. coli OP50, which has been grown and maintained in the Denver Lab. The 

bacterium Pseudomonas sp. were isolated from the nematode’s original microbiome and 

confirmed the genus identity with 16S rRNA and rpoB gene sequencing. 

Prior to the culturing step, nematodes were bleached with alkaline hypochlorite 0.25M 

solution following the standard worm bleaching protocol (Stiernagle, 2006) to minimize the 

bacteria on the surface and inside. The worms were monitored on blank NGM agar plates 

for 2 days to ensure no bacterial growth. Subsequently, P. hermaphrodita nematodes were 

harvested from agar plates and washed once with sterile M9 buffer then twice with 

molecular water. 

Nematodes were then distributed onto 10 replicates per combinations, five with a 

higher concentration (8,000 nematodes/ml -‘high dose’) and five in ‘low dose’ (4,000 

nematodes per ml). The number of nematodes were estimated by counting sub-samples 

under light microscopy. In total, 30 samples were set up [3 nematode-bacteria combinations 

x 2 doses x 5 replicates = 30 replicates]. 

2. Infection Assay Procedure 
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The assay was conducted in Mc Donnell lab (Department of Crop and Soil Science, 

OSU). Test slugs were collected one day prior to the experiment and maintained in growth 

chambers at 18C, which is the optimal temperature for slugs until the infectivity trials. 

Bioassay containers were also stored in the same growth chamber. 

Infectivity trials were performed in 16oz plastic round containers (13.8 cm height x 

11cm in diameter) containing 25g sterilized, damp topsoil. Worms were sprayed onto the 

soil to the final concentration of 210 worms/cm2 for low dose, or 420 worms/cm2 for high 

dose. Afterwards, six healthy, mature D. reticulatum slugs (>100 mg) were added to each of 

the 30 containers. In the previous pilot trial, no sign of aggression was documented with this 

number of slugs cohabiting in the same container. Five additional containers, each held six 

slugs and no nematodes were also set up as negative controls.  

The slugs were monitored for symptoms of nematode infection (e.g. swelling of the 

mantle, emaciation of the slug body, exposure of the internal shell, and nematodes visible on 

the slug body) and mortality were recorded daily for 15 days. Statistical analysis was 

conducted using the non-parametric Kruskal-Wallis test and corrected with Bonferroni 

correction. 

3. Results highlights 

 Significant differences were between the controls and nematode/bacteria treatments. 

 The BC High concentration was the first nematode/bacteria treatment to cause 

significantly more slug mortality than the negative controls (Day 5, p = 0.015).  

 The first Pseudomonas treatment to cause significantly more mortality than the 

control was the High concentration (Day 6, p = 0.01). 

 It took 10 days for the first E. coli treatment (i.e. the high concentration) to cause 

significantly more slug mortality than the controls. 

 The Pseudomonas High rate treatment was the first to cause 100% slug mortality in 

all replicates (Day 8). The Pseudomonas Low rate and the BC High rate caused 



181 

 

 

100% slug mortality on Day 9. This occurred for BC Low and E coli High on Day 

10, and on Day 13 for E coli Low. 

 Pseudomonas High was the first treatment to cause significantly more slug mortality 

than any other treatment (i.e. E. coli Low) on Day 7 (p = 0.004).  

 The second treatment to cause significantly more slug mortality than another 

treatment (E. coli Low) was BC High (Day 8, p = 0.002). The third and fourth 

treatments to cause significantly more slug mortality than E. coli Low were 

Pseudomonas Low (Day 9, P = 0.028) and BC Low (Day 10, p=0.001). 

 

 

Figure S1. Mean percentage (+SE) slug mortality caused by Phasmarhabditis 

hermaphrodita cultured on its native bacterial community (BC), Pseudomonas sp. that co-

cultured with this bacterial community, and E. coli OP50 over 13 days in a laboratory 

infection trial.  

 




