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Transportation agencies continuously strive to improve driving quality and highway 

safety, which are both highly correlated with the level of smoothness of the road. The 

International Roughness Index (IRI) is a widely adopted, standardized metric 

calculated from longitudinal profile data collected on the road. Inertial profilers are 

devices mounted to vehicles that are commonly utilized by transportation agencies to 

determine the IRI. However, inertial profilers have a narrow field of view and 

relatively low positioning accuracy, resulting in a lack of context of the conditions 

across the road surface. In contrast, remote sensing techniques such as Structure of 

Motion (SfM) Multi-view Stereopsis MVS) photogrammetry or lidar from an 

uncrewed aircraft system (UAS) have the ability to efficiently and safely capture 

detailed 3D texture information across the road surface. Nevertheless, there is still a 

need to examine the accuracy of determining the pavement roughness (e.g., IRI) with 

UAS SfM/MVS data. To this end, this study (1) assesses the accuracy of UAS 

SfM/MVS photogrammetric data, (2) establishes a framework to extract IRI metrics 

from point cloud data, and (3) explores factors that can impact the quality of point 

cloud data, such as the flight plan, weather conditions, sensor calibrations, and so 

forth through a detailed case study. 
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CHAPTER 1.    INTRODUCTION 

1.1 Background 

In order to ensure travelers’ comfort, safety, and fuel efficiency, roadways must not only be 

functional but must be in decent condition (Louhghalam et al., 2015). To achieve performance 

goals, the Pavement Management System (PMS) is an automated system that transportation 

agencies heavily rely on to monitor and assess road surface conditions, which aids decision-

makers in making consistent, cost-effective decisions through good management practices to 

maintain pavements in serviceable condition (Ragnoli et al., 2018). Roughness statistics, along 

with surface distress, skid resistance, rutting, and structural capacity, are among the most critical 

aspects for pavement management systems when analyzing pavement data. Surface roughness, in 

general, refers to the degree to which a road's surface deviates from a perfectly flat plane along 

axes such as a longitudinal profile, transverse profile, or cross slope. Deteriorated pavement 

surfaces tend to have higher surface roughness (Fakhri et al., 2021); as a result, smooth 

pavements have numerous advantages, such as: requiring less maintenance; being safer; resulting 

in less dynamic stress on vehicles compared with roads with a rough surface, which provides 

environmental benefits such as higher fuel efficiency and less wear on vehicles; lasting longer; 

and being more solid (De Blasiis et al., 2020a; ASTM E1926-08, 2021).  

1.1.1 Road roughness indices 

Numerous roughness dynamic indices have been used to determine the roughness/ 

smoothness of a pavement surface. The most common ones are the International Roughness 

Index (IRI), the Profilograph Index (PrI), the Quarter-car Index, the root-mean-square vertical 

acceleration, and the rod and level surface smoothness measurement (Zak, 2016). Among these 

indices, IRI was established in 1982 through a joint effort involving institutions from around the 

globe, road maintenance departments and agencies, research institutes, and the World Bank in 

order to standardize the measurement of roughness across organizations and eliminate the 

inconsistencies that had previously resulted from the use of different instruments and approaches 

(Sayers, 1986). It has become the most extensively used roughness index (Olsen & Chin, 2012a; 

Múčka, 2017; Cruz et al., 2021; Karamihas, 2021) due to its reproducibility and stability over 

time (Sayers, 1998). Currently, the majority of US State Departments of Transportation (DOTs) 
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use IRI to evaluate pavement roughness (Ong et al., 2010; Smith & Ram, 2016). The World 

Bank has taken ownership of the definition of standards and recommendations for this index 

(Thomas, 2021). 

The ASTM E1926-08 standard defines IRI as mathematical processing of longitudinal profile 

data to provide road roughness statistics, which correspond to cumulative units of slope 

suspension motions divided by the distance traveled with a quarter-car model at 80 km/h (50 

mph) speed (Cruz et al., 2021; ASTM E1926-08, 2021). This quarter-car model (also known as 

the Golden Car) models the impact of a single tire system on the road surface. It comprises one 

wheel represented by a vertical spring, axle mass supported by the tire, a suspension spring and 

damper, and vehicle body mass supported by the suspension (Sayers, 1989). As a result, it is 

typically stated as a ratio, such as meters per kilometer or inches per mile (Figure 1.1) 

Some important considerations for determining the IRI value are listed as follows based on 

previous studies:  

• The IRI calculation relies on the longitudinal profile qualities being measured accurately; 

hence, the elevation profile measuring equipment utilized in this technique must have 

sufficient accuracy and resolution, particularly at the local, relative measurement level 

(Olsen & Chin, 2012a; Chin & Olsen, 2014). 

• The precision of the IRI depends on the interval (i.e., distance) between consecutive 

profile elevation measurements; hence, decreasing the spacing often improves precision. 

A maximum interval of 0.3 m (12 in.) is recommended by ASTM standards (ASTM 

E1926-08, 2021) 

• A moving average filter uses a low pass filter of 9.85 in (250 mm) to smooth the profile 

by using the average values of adjacent points to simulate the tire encircling effect of tires 

(Sayers, 1998).  

• Particularly rough areas can be lost in the averaging process when computing IRI over a 

large distance. Hence, localized roughness has been defined as any 25-foot (7.62-meter) 

segment with IRI values that has a disproportionate effect on the overall IRI (AASTHO-

R54-10,2010; Olsen & Chin, 2012a). 
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Figure 1.1. The IRI Roughness Scale (Elghriany et al., 2016; Sayers, 1986) 

 

1.1.2 Road profile measurement 

Road surface profiles, which capture elevation variations of a road over a certain distance, 

can be measured using a variety of devices for both new and existing pavements  (Olsen & Chin, 

2012a). The ASTM E 950-94 standard groups roughness measuring equipment into four classes 

based on the survey accuracy (Bennett et al.,2006; Radović et al., 2016; Prosser-Contreras et al., 

2020; Thomas, 2021); 

• Class 1 - indicates the highest accuracy and, regardless of speed, corresponds to a 

longitudinal profile with a vertical precision of 0.5 mm (non-contact lightweight profiling 

devices, portable laser profilers, dipsticks). 

• Class 2 - considers alternative profiling strategies for IRI measurement in which a 

longitudinal profile is required (Profilographs, optical and inertial profilers) 

• Class 3 - incorporates measurements of correlation, which imply a mathematical 

calculation is needed to acquire the result, and so represents a lower quality level (e.g., 

Roadmaster, ROMDAS) 

• Class 4 - reflects the use of subjective procedures and measurements that have not been 

calibrated (visual inspection, ride over the section, etc.) 
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The Rod and Level, inclinometer-based profilers (Walking Profilers etc.), and Profilographs 

are the conventional tools used for data collecting during roughness evaluations. Each of these 

conventional methods has some distinct advantages. Rod and level grade surveys combined with 

static profilometer surveys may produce an exceptionally precise (sub-millimeter) profile of the 

roadway, which is why it is frequently referred to as the "TRUE profile" (Sayers, 1995; Olsen & 

Chin, 2012a). However, a key limitation of a rod and level is the time required to capture the 

data and the relatively poor sampling interval compared with other techniques. Manually 

controlled walking profilers, or inclinometer-based profilers, are substantially faster than the rod 

and level technique while often providing a real-time display of the data. Profilographs can 

collect continuous profile data through a wheel-track (Smith & Ram, 2016).  

These conventional methods can suffer from several drawbacks (Olsen & Chin, 2012a). First 

of all, all the aforementioned measuring instruments and techniques require lane closure or some 

traffic control. Additionally, only one wheel route can be measured at a time while some systems 

are limited to their operation speed limit. As a result, it is especially challenging to utilize these 

systems and techniques for high-traffic routes or a large area as it can be time-consuming and 

prone to safety hazards. Moreover, sufficient expertise and extensive training are required for the 

implementation teams to be able to acquire high-quality data efficiently. 

Inertial (or Laser) profilers are now one of the widely used instruments for collecting asphalt 

pavement data among transportation agencies (Ong et al., 2010; Smith & Ram, 2016). These 

systems utilize an accelerometer to track the frame's (vehicle) motion and noncontact laser 

sensors to track the frame's relative vertical movement to the road surface at a constant sampling 

interval. Simultaneously, a distance measuring instrument (DMI) keeps track of the travel 

distance along the highway during the data collection. The combination of these characteristics 

produces a longitudinal profile of the road.  

Although the inertial and laser profilers provide great accuracy, efficiency, and mobility, they 

still suffer from a few significant constraints. First and foremost, during the data collection, the 

speed needs to be consistent and should be faster than 15 km/hr (Sayers, 1998), resulting in 

challenges in collecting data in locales with substantial traffic ( Lee & Chou, 2010) such as urban 

areas (Loizos & Plati, 2008; Prosser-Contreras et al., 2020). Some studies cope with this by 
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modifying the quarter car model's parameters or filtering the data based on certain criteria (De 

Blasiis et al., 2020a). However, such methods may increase the workload, require more time for 

both data collection and processing, and potentially introduce biases or errors in the calculations. 

Another shortcoming is the variation in the vehicle’s trajectory, which may not precisely align 

with the road alignment. Although this may not be substantial when computing IRI, these 

variations in the wheel path across the surface render challenges when attempting to obtain a 

detailed comparison between elevation profiles to track changes in the road surface (Lee & 

Chou, 2010). Another drawback of profilers is their intrinsically limited field-of-vision (FOV), 

resulting in difficulty in obtaining a comprehensive understanding of the overall context of the 

scene (Olsen & Chin, 2012a; Chin & Olsen, 2014), particularly on roadways that have been 

significantly damaged. Furthermore, some profilometers struggle in measuring severely damaged 

or stone/dirt roads due to high-frequency variations (De Blasiis et al., 2020b). Lastly, inertial 

profilers are relatively more expensive to mobilize compared with emerging technologies such as 

ground or UAS-based photogrammetric or lidar technologies for evaluating shorter sections. 

1.2 Remote sensing technologies 

The advent of state-of-the-art remote sensing technology has opened up a substantial window 

of opportunities for transportation agencies to address some of the aforementioned shortcomings 

of profilers (De Blasiis et al., 2020b).  In contrast to earlier profiling technologies, remote 

sensing technology can be a much more economical solution as it has been widely used for 

applications such as topographic mapping, and the data can be re-used for multiple purposes 

beyond measuring elevations along a profile ( Olsen & Chin, 2012a; Olsen, 2013).  

1.2.1 Lidar technology 

Light detection and ranging (Lidar) are one of the most promising approaches among the 

remote sensing technologies for use in the built environment at the present time (Schnebele et al., 

2015; Barbarella et al., 2019; De Blasiis et al., 2020b) due to its high efficiency and accuracy 

(Olsen et al., 2009; White et al., 2010). Based on the mounting platform, lidar systems can be 

usually categorized into airborne laser scanning (ALS), mobile laser scanning (MLS), and 

terrestrial laser scanning (TLS).  
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ALS can capture a very large area efficiently and is widely used for topographic mapping 

(Vosselman & Maas, 2010; Shan & Toth, 2018). However, the point density and measurement 

accuracy are usually not sufficient for capturing geometric details on the road surface due to the 

long distance between the system and the objects. It is also not feasible to provide frequent 

monitoring given its cost and logistics.  

MLS and TLS are more suitable tools to capture the road surface and assess the road 

characteristics, and they also have the benefit of allowing for the acquisition of cross-sections 

from any portion of the road. Moreover, more and more automated approaches have been 

developed for a variety of feature extraction tasks to help improve the workability of the laser 

scanning data (Che et al., 2019). While MLS is more efficient in terms of the data collection 

speed due to the moving platform (De Blasiis et al., 2020b), TLS provides more flexibility to the 

operators on the scanning locations, settings, and other factors. There are more studies utilizing 

TLS for road surveying also because of its accuracy and lower cost when covering a relatively 

small area (Chin & Olsen 2014; Barbarella et al., 2019). Nonetheless, as Olsen & Chin (2012a) 

and Chin & Olsen (2014) pointed out in a study comparing different survey methods in 

quantifying the surface roughness, the data quality of TLS systems can suffer from long-range, 

oblique angles, intensity saturation, as well as low-reflectance surface. 

1.2.2 UAS technology 

In recent years, uncrewed aircraft systems (UAS) have become a potential alternative to the 

aforementioned technologies in many civil infrastructure applications (Dobson et al., 2013), 

including road pavement condition assessment evaluations (Nappo et al., 2021). UAS technology 

is rapidly evolving on both the hardware and software fronts and can significantly reduce costs 

while boosting safety, efficiency, resolution, and accuracy.  

Compared to ALS, UAS is able to survey at a much lower altitude to be able to capture 

improved detail on the road surface with a birds-eye perspective of the region of interest 

(Fonstad et al., 2013). On the other hand, compared with other ground-based lidar systems, UAS 

pilots need to stay away from the road and traffic for a safer operation to minimize driver 

distractions (Barlow et al., 2019). Moreover, the flexibility of the UAS can generally be 
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advantageous to provide access at locations that would otherwise be unsafe for MLS and TLS; 

however, sometimes the UAS access is limited due to public restrictions. Considering the flight 

duration and other restrictions according to the Federal Aviation Administration (FAA) laws 

(e.g., visual contact requirement with the UAS during flight), UAS is ideal for efficiently 

gathering data for areas less than 2 km2 (Simpson, 2018). 

1.2.3 Structure from Motion/Multiview Stereopsis 

Revolutionary photogrammetry techniques including Structure-from-Motion (SfM) and 

multi-view stereopsis (MVS) have been widely applied as a result of the rapid development of 

computer vision algorithms. These technologies make it possible to construct 3D models from 

2D images by utilizing image processing that applies a collection of algorithms to locate and 

identify points captured by UAS in a series of photos (Prosser-Contreras et al., 2020) through 

some software packages (e.g. Agisoft Metashape, Pix4D mapper, Visual SfM)(Voumard et 

al.,2018; Greenwood et al.,2019) without having the knowledge of the camera's location and 

orientation or reference points in the scene. It also enables users to automatically resolve or 

refine calibration issues during the process (Iglhaut et al., 2019). All of these advancements 

significantly reduce the number of ground control points (GCP) necessary for a successful 3D 

reconstruction. In principle, real-time kinematic (RTK) or post-processing kinematic (PPK) 

GNSS measurements obtained on the UAS simultaneously with the flight, sometimes with the 

aid of an inertial measurement unit (IMU), collected during the flight that records the position 

and orientation of each camera frame, a general-purpose 3D model can be generated without any 

GCPs, which can be very beneficial for areas that are difficult to access otherwise. That being 

said, to ensure the quality of the 3D models, an evenly distributed array of accurately surveyed 

GCPs across the area of interest is highly recommended (Fonstad et al., 2013). Data products 

derived from this process can include various types and formats including 3D point cloud, 

DEMs, orthomosaic images, triangular mesh, and so on. 

1.2.4 Pavement Assessment with UAS 

As one of today's cutting-edge technologies, UAS has been proven to be a useful tool for 

conducting accurate surveys (Varbla et al., 2021) and rapidly gained popularity in civil 

engineering applications. One of the applications is to evaluate pavement distress via measures 
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such as IRI leveraging UAS-SfM/MVS produced point clouds. This section provides an 

overview of several studies that used 3D point clouds and related techniques for pavement 

assessment. 

To utilize UAS-SfM/MVS as an alternative since it can produce high-quality 3D point 

clouds, Inzerillo et al. (2018) demonstrated the validity of UAS image-derived 3D models for 

road condition surveys and analyzing pavement distress deformations. Tan & Li (2019) and Saad 

& Tahar (2019) utilized oblique images acquired by UAS flying over the asphalt paved road at 

about 20 meters to detect and measure potholes resulting in centimeter accuracy. More recently, 

Nappo et al. (2021) used the 3D models reconstructed via UAS-SfM/MVS to evaluate the cracks 

on asphalt-paved roads exposed to landslides in Como, Italy. The research was able to 

quantitatively detect and describe longitudinal and transverse cracks wider than 1 cm, and the 

International Roughness Index (IRI) was computed to classify their severity. Nonetheless, 

several considerations need to be taken into account when performing pavement evaluation using 

UAS-SfM/MVS including accuracy, ground control points, flight altitude, surface 

characteristics, and so on (Javadnejad et al., 2021).  

1.2.5 Factors affecting UAS data quality factors  

Accuracy of the data products (e.g., point clouds, DEMs, etc.) plays an important role in the 

3D representation of the pavement, especially for IRI calculations. A wide variety of factors can 

affect the accuracy of the data products as revealed in many studies investigating the use of 

UAS-SfM/MVS point clouds in mapping and surveying applications. Some of the critical factors 

include the accuracy, number, and distribution of ground control points (GCP), resolution, 

number, blurriness, noise, overlap percentage of images, complexities, shadow effect, and 

lighting condition of the texture. Some other considerations such as moving objects in the scene, 

the presence of dense vegetation, the geometry of camera distribution, and image matching 

performance can also impact the data quality (Fonstad et al., 2013; Agüera-Vega et al., 2017; 

Bolkas, 2019; Javadnejad et al., 2021).  
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One way to ensure the accuracy of the 3D reconstruction result is to set up ground control 

points (GCP). Liao & Wood (2020) explored how the number and distribution of GCPs can 

affect IRI values. Although the authors pointed out that the consumer-grade GNSS equipped on 

the UAS platform does not necessarily improve the data quality, it is worth pointing out that 

many modern systems support RTK or PPK GNSS providing high precision positioning which 

can reduce the number of GCPs required to achieve the same accuracy (Prosser-Contreras et al., 

2020). Similarly, Agüera-Vega et al., (2017) also presented their study on the impact of the 

number of Ground Control Points in georeferencing on the accuracy of DEMs and orthomosaic 

images. This research reveals that increasing the number of GCPs improves horizontal and 

vertical accuracy. The experiment shows that more GCPs would reduce the uncertainty of the 3D 

reconstruction process. In addition to the GCPs, Varbla et al. (2021) included flight altitude in 

their analysis of UAS-SfM/MVS data in detecting road structure deformation. The study 

concluded that the ideal number of GCPs required decreases as survey altitude increases, which 

means the georeferencing accuracy starts declining when the recommended number of GCPs is 

surpassed. 

Although in principle, a lower flight altitude can result in higher accuracy and resolution of 

the 3D point cloud (Saad & Tahar, 2019; Tan & Li, 2019; Romero-Chambi et al., 2020), a UAS 

flight that is too low can disrupt or distract the traffic causing safety hazards (Hurwitz et al., 

2018). As a result, even though some studies demonstrated a very low altitude (e.g., 10 m) can 

yield very high-resolution 3D point clouds with high accuracy (Prosser-Contreras et al., 2020), 

such flight parameters would not be applicable to highways that have more damaged pavement 

and high-volume traffic. In this regard, Zeybek & Biçici (2021) examined the impact of flying 

height on the accuracy of resulting 3D point clouds for IRI evaluations. The study tested flying 

heights of 35 and 50 m and found no significant difference in point cloud resolution and IRI 

evaluation results with low and close flying heights.  

Given that the SfM technique relies on the contrast and features of the pavement surface 

captured in the images, the type of pavement is also a significant factor. Alhasan et al. (2015) 

compared the accuracy of point clouds acquired with TLS and terrestrial-based SfM for 

assessing road roughness over different types of surfaces including gravel roads, Portland cement 
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concrete (PCC), and one newly paved asphalt surface. Due to the low contrast and poor 

reflectivity on the fresh asphalt, there are insufficient points captured for IRI computations in 

both SfM and TLS data. Ward & Newman (2019) also did a study using UAS-SfM/MVS and 

lidar to analyze airport pavement roughness based on Boeing Bump Index (BBI) and IRI values. 

On four distinct surface types—sand-asphalt, dirt, main runway asphalt, and concrete pad—they 

compared results derived from UAS-SfM/MVS against the lidar data for accuracy assessment. 

For the sand-asphalt surface and the concrete pad surface, the correlation between lidar and 

UAS-SfM/MVS approaches utilizing both BBI and IRI parameters was found to be poor; 

however, the correlation was high for the brownish-colored dirt-strip surface. For the runway 

asphalt surface, the correlation between lidar and UAS-SfM/MVS data was low when using the 

BBI parameter but acceptable for the IRI parameter. Furthermore, it should be noted that the 

illumination conditions on an airfield are more ideal than those on a typical roadway since there 

are limited vertical obstructions near the airport to cause shadows. 

Moreover, even under the same concept, the algorithms and implementations in the 

SfM/MVS software can be different while the parameter settings have a significant impact on the 

accuracy of the resulting point clouds (Slocum & Parrish, 2017). Agisoft Metashape and Pix4D 

Mapper are two of the most well-known commercial SfM-based programs.  Zeybek & Biçici 

(2021) compared them, and concluded that Agisoft Metashape is slightly better in terms of its 

accuracy and efficiency, but only in their specific testing settings. However, it is challenging to 

establish a well-controlled experimental setting, especially considering the variant outdoor 

environment. Fortunately, Slocum & Parrish, (2017) proposed a workflow, named simUAS, that 

generates virtual UAS surveys in a simulated graphical environment which can be used to test a 

wide variety of factors (e.g., lighting, texture, topography, flight altitude, camera resolution, 

etc.). Furthermore, Javadnejad et al. (2021) thoroughly tested several critical factors for dense 

point clouds in different scenarios. The key point feature distribution was examined as a result of 

the bundle adjustment process, camera stand-off distances, angle of incidence, brightness, and 

darkness index for image-based reconstruction. The study found all the aforementioned factors 

can affect the quality of 3D reconstruction to different degrees.  
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1.3 Objectives of Study 

As discussed in the previous sections, UAS-SfM/MVS can be a great tool for assessing and 

monitoring a relatively small area, especially for those that are subject to ground movement from 

geohazards (e.g., landslides, sinkholes, soil collapse) and need frequent maintenance and repair. 

Such areas usually feature multiple patches of pavement resulting in substantial variation in 

surface roughness, which in turn generates a variety of errors and artifacts (Figure 1.2).  Most 

existing work focuses on road sections with the uniform pavement. Hence, the objectives of this 

research are to: 

(1) Develop a framework for obtaining pavement roughness metrics (e.g., IRI) from UAS-

SfM/MVS,  

(2) Validate the feasibility of using UAS-SfM/MVS point clouds to assess pavement 

condition through a rigorous accuracy analysis to evaluate the accuracy of the UAS-

SfM/MVS point clouds, DEMs, and derived IRI values by comparison to the TLS scans 

and control survey results.  

(3) Provide recommendations and considerations when utilizing UAS-SfM/MVS for road 

roughness assessment, including both field practice and procedures in the workflow. 

 

Figure 1.2. Example road profile of TLS and UAS-SfM/MVS point clouds. 
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CHAPTER 2.    MATERIAL & METHODS 

2.1 Overview 

Field data for this research was collected at the Arizona Inn Landslide site along the Oregon 

Coast Highway (U.S. Route 101, MP 312) (Figure 2.1) on June 14th, 2021. This active slide 

routinely causes damage to the road surface resulting in frequent repairs and maintenance 

throughout the year (Olsen et al., 2022; Senogles et al., 2022). The research team acquired aerial 

photos with UAS and generated point clouds utilizing SfM/MVS photogrammetric processing 

techniques. The point clouds were then converted into a digital terrain model (DEMs), which 

was then used to calculate the roughness/smoothness metrics (i.e., IRI) of the road surface. In 

addition, total station (TS) measurements on the road surface and terrestrial lidar scans (TLS) 

were collected for comparison and analysis. The equipment used in the field effort is provided in 

Table 2.1. 

 

Table 2.1.  Key equipment list for the field effort 

INSTRUMENT LIST 

Riegl VZ400 Laser Scanner with Nikon D700 Digital Camera 

Leica GS14 GNSS Receiver 

DJI Phantom 4 Pro RTK UAS 

Leica TS15P 1” Total Station 

Leica 360° prism with bipod 

2’ x 2’ Iron Cross Targets 
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Figure 2.1. Satellite imagery and site map of the study area with GCPs marked 
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2.2 GNSS and Total Station Survey 

GNSS was used to determine the positions of 10 ground control points (GCPs) across the site 

(Figure 2.1) and each terrestrial lidar scan station. The location of the GCPs was planned and set 

up based on the following considerations: even distribution throughout the proposed area; 

personnel safety (i.e., not located near abrupt cliffs, or near traffic); and sky visibility for both 

GNSS and UAS imagery data collection. For all the GNSS surveys, a minimum of 5 minutes of 

observations were obtained at a 1 Hz data logging rate. The coordinates of a local base station 

setup on the project site were computed utilizing OPUS-Projects v4.12 which referenced the base 

station to 6 of the nearest NGS CORS located approximately 80km, on average, from the project 

site. Leica Infinity v3.4 was then used to compute baseline vectors from this GNSS base station 

using the Post-processed Kinematic (PPK) approach. 

 

A total station survey was performed with a Leica TS15P 1” instrument to provide a 

substantial number of checkpoints to validate the terrestrial lidar and UAS-SfM/MVS data. All 

GCPs were captured with a Leica 360° prism while all the checkpoints on the road surface were 

acquired via reflectorless observations due to safety concerns. A total of 180 checkpoints were 

observed across 7 different profiles including 4 profiles parallel to and 3 profiles perpendicular to 

the flow of traffic (Figure 2.2). The collected TS points cover the section between 200 m and 

450 m of the study area due to the constraints of access to certain areas as well as safety 

concerns. For the same reasons, all the measurements were made with reflector-less shots rather 

than using prisms.  

 

 

Figure 2.2. The checkpoints on the road surface surveyed by the total station. 
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All resulting data from the GNSS and total station surveys were combined via a least square 

adjustment performed in MicroSurvey Star*NET v10.0. The resulting coordinates were projected 

into the Oregon Coordinate Reference System (OCRS) Oregon Coast Zone and referenced to the 

North American Datum of 1983 (2011) epoch 2010.00. Geoid12B was used to obtain the 

orthometric height of the data points which are referenced to the North American Vertical Datum 

of 1988 (NAVD88).  

2.3 Terrestrial Lidar Data 

A total of 17 terrestrial lidar scans with images were collected using Riegl VZ-400 to cover 

the entirety of the area of interest (Figure 2.3). The scanner was set up on both sides of the road 

to increase the overall point density as well as to mitigate the occlusions caused by moving 

vehicles. The typical scan resolution was set to 0.05° horizontally and vertically, which can 

result in an approximate point spacing of 1 cm at 10 m away from the scan setup on an 

orthogonal surface. Note that the point spacing increases with an increasing range as well as the 

angle of incidence from the scanner. Therefore, it was important for the scan positions to not be 

spaced far from each other such that a higher point density could be achieved throughout the 

project area. With the GNSS receiver mounted on top of the scanner, global coordinates for each 

scan can be acquired and processed against the base station similarly to the GCPs, which can 

substantially simplify the initial alignment of the scans. The registration of the initial aligned 

scans was further refined using PointReg software (Olsen et al., 2011; Olsen et al., 2012b) 

utilizing a cloud-to-cloud matching algorithm known as ICP (Iterative Closest Point) combined 

with constraints to the GNSS coordinates at the scanner location. Such workflow balances the 

absolute geo-referencing accuracy and relative local accuracy via GNSS measurements and 

cloud-to-cloud matching, respectively. 
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Figure 2.3. Terrestrial lidar scan positions with the project area. 

 

2.4 UAS-SfM/MVS Data 

A DJI Phantom 4 RTK drone was deployed to capture the RGB imagery for 3D 

reconstruction based on the SfM technique in this investigation. Special care was taken to set 

appropriate image acquisition parameters for the camera, including ISO range, shutter speed, 

aperture, and white balance (Table 2.2). All imagery was captured and processed in jpeg file 

format.  

 

Table 2.2. UAS and camera specification 

Make/Model: DJI P4 RTK (FC6310R) 

Resolution (pix): 5472 x 3648 

Pixel Size (μm): 2.41 x 2.41 

Focal Length (mm): 8.8 

File Format: .jpeg 

Shutter Speed (sec): Auto [1/100, 1/1000] 

Aperture: f/4 

ISO: Auto [100, 400] 

Focus: Auto (center) 

Ground Sampling Distance (GSD) 1.4 cm per pixel 

Flying Height  ~48.8 m 

Overlap 80% 

Sidelap 80% 
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For SfM/MVS processing, the raw file format is generally preferred as it maintains all data 

acquired by the sensor while providing a high dynamic range that can decrease the total area of 

poorly exposed features in an image. Unfortunately, not all software/firmware supports the 

collection or processing of raw files. The image acquisition settings were chosen based on the 

previous survey of the site for topographic mapping and change detection. It is important to note 

that the UAS survey was not performed directly over the roadway with a low flight altitude to 

minimize the distraction to the drivers (Barlow et al. 2019). 

 

The trajectory of the UAS was derived via GNSS relative positioning between the UAS and 

the GNSS base stations discussed in Section 2.2.  The open-source GNSS processing software 

package, RTKLIB (Takasu & Yasuda, 2009), was used in post-processing kinematic (PPK) 

positioning mode to compute the remote aircraft’s trajectory. Using a custom Python script, the 

camera positions and their covariances were extracted from the GNSS trajectory, transformed to 

the desired map projection, and used as input in Agisoft Metashape for SfM/MVS processing 

(Senogles A., 2021). Note that using the PPK GNSS positions of the acquired images reduces the 

need for GCPs when using SfM/MVS software, hence decreasing the total data acquisition time. 

The coordinates (X, Y, Z) of each photo are attained from the PPK trajectory and used to seed 

the SfM algorithm. Constraining the position for each photo rather than relying solely on 

established GCPs provides a refined position to use in the least squares bundle block adjustment 

to determine the remaining extrinsic (roll, pitch, yaw) and intrinsic parameters of the camera.  

GCPs were still used to provide the SfM software with more information to better compute the 

position and orientation of each image as well as the intrinsic camera parameters. The resulting 

3D point cloud, cropped to the roadway, from the SfM reconstruction is shown in Figure 2.4. 
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Figure 2.4. UAS-SfM/MVS dense point cloud data representation of the highway 

 

2.5 Point Cloud Processing 

The point clouds from UAS-SfM/MVS and terrestrial laser scanning (TLS) both included a 

substantial amount of data off the road that was not relevant to this research. As a result, the 

point cloud data were cropped in CloudCompare, a commonly used open-source 3D point cloud 

(and triangular mesh) editing and processing software (Transtec Group, 2016).  

 

There are a few procedures to clean up the data to remove the artificial roughness provided 

by DEMs. For instance, the raw point clouds include non-ground objects such as cars in traffic as 

an isolated cluster. Therefore, prior to creating a digital elevation model, the ground and non-

ground points must be separated. This process referred to as ground filtering, can be arduous and 

time-consuming if performed manually due to the amount of effort required. An effective and 

scalable versatile ground filter based on multi-scale voxelization and smooth segments, named 

Vo-SmoG (Che et al., 2021) was used to accomplish the ground filtering. It is also worth noting 

that a better result can be achieved with additional manual cleaning.   

 

It is also necessary to eliminate data gaps that have developed as a result of various 

impediments blocking the line of sight to the object of interest. These holes also may stem from 

portions that were captured with oblique scans when scanning near cliffs, especially in highway 

projects (Olsen et al., 2009).  One way to reduce these data gaps is by increasing the number of 
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scans. Fortunately, in this project, there was a sufficient number long and short-range scans for 

the TLS data acquisition to minimize gaps/holes in the dataset (Figure 2.3). As a side note, even 

though Riegl VZ-400 is equipped with inclination sensors that can provide the tilting angles of 

each setup such that the scanner is not required to be physically leveled. For long-range scans, 

however, it is recommended that the scanner be leveled to minimize potential errors (Silvia & 

Olsen, 2012). Similarly, the high overlap and sidelap percentages (80%) of the UAS mission 

plan help to ensure that the project area is thoroughly imaged such that the resulting UAS-

SfM/MVS data has the least amount of gaps and holes. 

 

For some areas with data gaps, the alternative method is to fill these holes by predicting the 

topography in those areas with the existing measurement. The RAMBO software (Olsen et. al, 

2020) was used to generate 0.1 m resolution DEMs from the point clouds with data gaps filled 

using a windowed thin plate spline method (Olsen et. al, 2015) to provide a smooth interpolation 

through the data gaps based on surrounding data. RAMBO also performs a median filter to 

smooth out noise within a cell. Optimal results are obtained when a proper balance between 

modeling resolution and hole filling is struck to minimize data gaps while avoiding over-

interpolation (Olsen et al., 2015).  

2.6 Roughness Index Calculations  

2.6.1 Profile Extraction 

The pavement profiles for roughness calculation were extracted from the DEMs using python 

scripts for batch processing developed in ArcGIS Pro version 2.9.0 software. The primary 

process flowchart is depicted in the steps below (Figure 2.5): 

 

1. TLS point cloud data was first georeferenced using GNSS data obtained at each setup, 

while the GNSS data at GCPs were used to georeferenced UAS-SfM/MVS point cloud 

data. Afterward, CloudCompare was used to crop the dense point cloud to the pavement 

surface area, followed by Vo-SmoG ground filtering that down-sampled the data and 

classified it into the ground and non-ground points. 
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2. RAMBO software was used to generate DEMs with 0.1m resolution with the function of 

gap-filling enabled. 

3. Prospective pathways for the car wheels were manually digitized in ArcGIS Pro with 

longitudinal road markings as guidelines, resulting in 6 longitudinal profiles including 4 

north-bound and 2 south-bound.  

4. Sampling points were extracted along these 6 profiles with a fixed interval of 0.3 m (12 

in.) based on the recommendations from existing studies (Chin & Olsen, 2014) and 

existing guidelines (ASTM E1926-08, 2021). The elevations of the sampling points were 

extracted from the DEMs using bilinear interpolation if needed. 

5. The attribute table containing the point ID, XY coordinates, and elevation information of 

the sampling points was exported into a spreadsheet for generating ERD files for the 

subsequent analysis. 

6. The IRI analyses were conducted for each longitudinal profile through the ProVAL 

software with ERD files as input. 

 

 

Figure 2.5. Main Workflow 

2.6.2 ProVAL Computations 

IRI analyses were conducted using ProVAL (Profile Viewing and Analysis) version 3.61.42. 

ProVAL is a software tool for viewing and analysis of longitudinal pavement profiles in a variety 

of ways (Transtec Group, 2016). Many pavement smoothness specifications, such as those 

developed by AASHTO, FHWA Federal Lands, and US DOT, cite ProVAL as the official 

standard analysis and reporting tool (Transtec Group, 2015). 
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The ProVAL software reads in ERD files, which are a standard data format for analyzing and 

measuring road profiles (Sayers & Karamihas, 1997). ERD files can either contain profile data in 

ASCII text or two 4-byte floating-point binary formats. ERD files are divided into two distinct 

sections: (1) the header containing basic information about the data (e.g., samples/channel, 

interval, storage format, unit, etc.), and (2) the data section, which stores all the profile elevations 

(Figure 2.6.). The output for each profile from the GIS extraction process was converted into an 

ERD file.  

 

 

Figure 2.6. Example ERD file header 

 

The following parameters were applied in the ProVAL analysis. For each profile in both the 

UAS-SfM/MVS and TLS data, ProVAL’s “Ride Quality” function was used with the 250 mm 

filter enabled for the roughness computations. This function also provides three types of ride 

statistical analysis: Overall, Continuous, and Fixed Interval. The Continuous analysis type was 

selected because it reports statistics for every sample location and simulates a ride more 

realistically. In addition to the IRI, which was the focus of this investigation, MRI (the Mean 

Roughness Index) and HRI (Half-car Roughness Index) indices can also be analyzed. A segment 

length of 30 m was used considering the sampling interval (0.3 m) and the number of samples for 

each segment. ProVAL provides two primary outputs: a spreadsheet listing the maximum IRI 

values for each segment related to the location as distance, and a visual graph representation of 

the result.  

 



22 

 

 

CHAPTER 3.    ANALYSIS & DISCUSSION 

 

3.1 Vertical Accuracy Assessment 

In the initial step of the analysis, TS data served as the ground truth data against which our 

TLS and UAV-SfM/MVS data sets were compared, and both point-based and model-based 

comparisons were performed to check the data sets accuracy. The north side of the site (0 – 

200m along the highway) was not covered because of the limited field of view as previously 

mentioned (Figure 2.2). That prevented us from making accuracy checks for the whole stretch of 

models. 

 

Maintaining the same XY location of 180 total station points, the elevation values were 

generated from both the TLS and UAS-SfM/MVS DEMs in order to compare their vertical point 

base accuracy check with TS points by following standards (Authority, 1998). The statistical 

analysis demonstrates that the vertical accuracy from both data sources is within a few 

centimeters (Table 3.1). 

 

Table 3.1. Summary of Vertical Accuracy (unit: meters) 

 
UAS-SfM/MVS TLS 

Average 0.017 0.035 

Maximum 0.038 0.058 

Minimum -0.009 -0.007 

Std. Deviation 0.008 0.014 

RMSE 0.019 0.037 

95% confidence 0.037 0.073 

 

The root means square error (RMSE) (Eq. 3.1) computations validate the reliability of the 

collected data in reference to accuracy criteria. 

 

𝑹𝑴𝑺𝑬𝒁 = √
∑ (𝑍𝑑𝑎𝑡𝑎𝑖−𝑍𝑐ℎ𝑒𝑐𝑘𝑖)

𝟐𝒏
𝒊=𝟏

𝒏
                                  Eq. 3.1 
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The standard deviations of the vertical errors are around 0.01 m which, in principle, should 

support an IRI assessment considering the fact the bias (average error) does not affect the IRI 

assessment as significantly. It is also worth noting that even though TLS data is intended to be 

used as control data, its overall vertical accuracy is lower than that of UAS-SfM/MVS data. The 

following factors could lead to this situation: 

 

• UAS-SfM/MVS used the same GCPs as the total station, which can minimize its vertical 

bias. Meanwhile, TLS was georeferenced with just GNSS post-processed kinematic 

(PPK) data collected from a receiver mounted on top of the scanner independent from 

the GCPs except for the shared base station. As shown in the statistical analysis, the 

vertical accuracy of the TLS-derived DEMs is in line with the typical accuracy of GNSS 

measurements.   

• The smoothing process during the DEMs generation is relatively more effective in 

filtering the noise in the UAS-SfM/MVS point cloud partially because it typically has a 

more uniform point distribution than TLS which is heavily impacted by the range and 

angle of incidence. In the study area, there are sections where the measurements from 

long-range and oblique angles had to be used due to occlusions and restrictions of setup 

locations.  

• The total station measurements were mostly obtained on or near the pavement markings 

where the UAS-SfM/MVS have superior performance because the high contrast 

provides more key points for matching in the 3D reconstruction. Although reflective 

markings can be captured at a longer range for the TLS compared with the pavement 

surface, the TLS scans can suffer from an oblique angle at a long range because the 

larger footprint of the laser beam can introduce more ranging errors.  

3.2 DEMs Comparisons 

The DEMs generated from the UAS-SfM/MVS and TLS point clouds were compared 

visually and quantitatively using several data products from both data sources such as the 

orthomosaic image, hillshades, and the DEMs difference raster (Figure 3.1). Closeup views of 

certain features will be shown in Section 3.3 which focuses on the localized analysis results.  
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Figure 3.1.  Overview of data products from TLS and UAS-SfM/MVS. A) The Orthomosaic of the pavement, B) 

UAS-SfM/MVS derived DEMs` hillshade map, C) TLS derived DEMs` hillshade map, D) The vertical difference 

UAS-SfM/MVS and DEMs data representation 
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The orthomosaic shows an overview of the area of interest (AOI) including three newly 

paved portions (Figure 3.1.A). Note the AOI is referenced with the local stationing starting from 

north to south. Between 0 and 150 m, the west side of the road (the lanes on the left on the map) 

is newly paved with asphalt, resulting in a very dark surface. In the same area, significant rough 

artifacts occur in the UAS-SfM/MVS DEMs corresponding to the darker area (Figure 3.1.B). On 

the other hand, it appears substantially smoother in the TLS hillshade map than in the UAS-

SfM/MVS, only with some minor artifacts present. The artifacts in the TLS data are most likely 

caused by the fact that it is so close to the AOI's boundary, resulting in a much lower point 

density in this area. UAS-SfM/MVS, however, has adequate buffers to ensure the full coverage 

of the AOI. Thus, the artifacts are mostly from the lack of matching key points caused by dark 

and texture-less surfaces (Figure 3.2). This is further observed within other segments such as 

250 – 350 m and 400 – 500 m along the highway the UAS-SfM/MVS behaves similarly while 

TLS again obtains a smooth surface (Figure 3.1.C), showing a strong correlation between the 

dark surface and rough artifacts of the UAS-SfM/MVS DEMs.  

 

It is also worth noting that even though overall the TLS accurately reflects the geometric 

characteristics of the road surface regardless of the color and material of the pavement, some 

artifacts still occur occasionally across the site (e.g., linear artifacts near 110 m along the 

highway). These are mostly caused by geo-referencing and registration errors between the TLS 

scans due to many factors such as obliqueness, leveling errors, GNSS errors, ranging errors, lack 

of smooth surface serving as constraints in point cloud alignment, and so on. All the 

aforementioned artifacts are presented and quantified in the difference map between the UAS-

SfM/MVS and TLS DEMs (Figure 3.1.D). In the following sections, the difference between 

UAS-SfM/MVS and TLS DEMs will be further analyzed quantitatively. 
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Figure 3.2. Close inspection of gaps in the UAS-SfM/MVS data where orange pixels represent interpolated data 

gaps and the DEMs colored by intensity. 

 

3.3 Lane Profile and IRI Comparison 

In order to further evaluate the IRI values derived from the UAS-SfM/MVS point cloud, the 

total station checkpoints and terrestrial lidar point cloud were also used to generate IRI values 

along a number of pre-defined longitudinal profiles. The IRI values from TLS and UAS-

SfM/MVS were first compared against the TS measurements. Then a more comprehensive and 

detailed comparison and analysis were conducted to compare TLS- and UAS-SfM/MVS-derived 

IRI values. 
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3.3.1 Validation of Total Station Data 

About 3500 points were produced along four parallel longitudinal profiles and their elevation 

was extracted from each of these three DEMs through ArcGIS pro software. Because the DEM 

from total station data needs to be heavily interpolated due to the relatively low spatial 

resolution, the elevations of the total station points were first compared against those from TLS 

and UAS-SfM/MVS for assessment. The RMSE for UAS-SfM/MVS and TLS is about 2 cm and 

3 cm from the TS checkpoints, respectively (Table 3.2). These values are on par with the 

accuracy assessment in the previous section on the checkpoints, which validates the overall 

effectiveness of the total station data in producing a DEM for this task. It is also worth noting 

that the standard deviation, minimum, and maximum values tend to vary more due to the limited 

representation of the local surface variation from the total station data. 

  

Table 3.2. The elevation difference statistics both between UAS-SfM/MVS-TS and TLS-TS (unit: meters) 

 UAV-SfM/MVS-TS TLS-TS 

 Lane1L Lane1R Lane2L Lane2R Lane1L Lane1R Lane2L Lane2R 

Average -0.011 -0.011 -0.004 -0.006 -0.027 -0.027 -0.020 -0.023 

Maximum 0.044 0.031 0.035 0.035 0.019 0.004 0.014 0.008 

Minimum -0.088 -0.060 -0.047 -0.095 -0.078 -0.061 -0.050 -0.064 

Std. Deviation 0.019 0.011 0.015 0.010 0.015 0.012 0.012 0.012 

RMSD 0.022 0.016 0.016 0.012 0.031 0.030 0.023 0.026 

95% Confidence 0.043 0.032 0.031 0.024 0.061 0.058 0.046 0.051 

 

 

 

Next, the IRI indices produced from the TS, TLS, and UAS-SfM/MVS DEMs were 

compared to each other (Table 3.3). The IRI values derived from TLS data show more 

consistency with the TS than those generated from UAS-SfM/MVS DEMs across different lanes 

(Figure 3.3). For example, the RMSD of IRI values obtained from UAS-SfM/MVS data on Lane 

1 Right (Lane1R) is nearly three times of TLS data. Additionally, the maximum IRI and the 

standard deviation values for the UAS-SfM/MVS data indicate high noise levels and they also 

vary significantly in different lanes.  
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Table 3.3. IRI index difference statistics (unit: m/km=m/mm) 

 UAV-SfM/MVS-TS TLS-TS 

 Lane1L Lane1R Lane2L Lane2R Lane1L Lane1R Lane2L Lane2R 

Average 1.2 3.1 1.7 3.1 -0.5 0.7 -0.4 1.2 

Maximum 7.6 9.7 18.1 14.5 4.0 3.8 3.5 4.2 

Minimum -3.3 -0.8 -3.2 -1.2 -4.4 -2.2 -4.2 -1.6 

Std. Deviation 3.1 3.1 3.2 2.6 2.3 1.2 2.2 1.6 

RMSD 3.3 4.4 3.6 4.0 2.4 1.4 2.2 2.0 

95% Confidence 6.6 8.7 7.2 7.9 4.6 2.8 4.4 3.8 

 

 

 

 

 
 

Figure 3.3. Differences between UAS-SfM/MVS-TS TLS-TS derived IRI values diagram 

 

3.3.2 Comparison between UAS-SfM/MVS and TLS 

Presented as in the statistical analysis, the deviations observed across all profiles are very 

consistent where the average difference, standard deviation, and RMS of the differences are 

around 0.01 m, 0.02 m, and 0.03 m, respectively.  (Table 3.4). As shown in the statistical 

analysis, the deviations observed across all profiles are very consistent where the average 

difference, standard deviation, and RMS of the differences are around 0.01 m, 0.02 m, and 0.03 

m, respectively. However, it is worth noting that the maximum and minimum difference between 
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the two models shows substantially greater discrepancies, likely due to the dark and texture-less 

nature of the surface resulting in poorer performance of the UAS-SfM/MVS data near the 

landslide boundaries or areas of localized failure. 

 

Table 3.4. Elevation difference analysis between UAS-SfM/MVS and TLS data (unit: meters) 

 

 

Later, IRI values were computed at distinct intervals along each profile from UAS-SfM/MVS 

and TLS data. Based on the IRI values derived from TLS data, the average IRI values are 

relatively consistent across all profiles and range from 3.9 to 4.7 m/km which is expected for 

most parts of the pavement. However, the average IRI values from UAS-SfM/MVS data have 

significantly more variations and range from 7.5 to 11.4 m/km. Additionally, the IRI values from 

UAS-SfM/MVS data are consistently higher than TLS data, which indicates that the road surface 

in UAS-SfM/MVS is rougher than the TLS DEMs. More noticeably, the difference between the 

profile elevations is clearly amplified and propagated to the IRI calculations, especially for UAS-

SfM/MVS data. For example, the maximum IRI values computed from UAS-SfM/MVS data for 

all profiles range from 45.5 to 79.6 m/km, which shows tremendous roughness. Nonetheless, 

despite some variations in the maximum IRI values in TLS data, it is much more consistent 

compared to UAS-SfM/MVS data (ranging from 10.3 to 16.5 m/km), which can be largely 

explained by some localized differences between lanes and profiles.  

 

Then, the differences in IRI computed from TLS and UAS-SfM/MVS datasets are further 

reported statically (Table 3.5) while Table 3.6 shows how the elevation differences in the 

profiles affect the IRI values. The average difference between the IRI values ranges between 2.9 

and 7.6 m/km for each profile, which shows a clear bias in using UAS-SfM/MVS data to 

estimate the IRI values. The RMSD also considers both the bias and variation in the difference of 

 Lane1_L Lane1_R Lane2_L Lane2_R Lane3_L Lane3_R 

Minimum -0.137 -0.135 -0.138 -0.128 -0.089 -0.142 

Maximum 0.059 0.055 0.054 0.063 0.061 0.077 

Median 0.010 0.009 0.009 0.008 0.008 0.009 

Average 0.011 0.011 0.012 0.011 0.011 0.011 

Std. Deviation 0.021 0.022 0.021 0.022 0.021 0.022 

RMSD 0.029 0.027 0.027 0.028 0.026 0.028 
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IRI value and it ranges from 9.0 to 13.7 m/km. Considering the typical scale of the IRI measures 

(Figure 1.1), the TLS-derived IRI indicates that the road is “Older Pavement” overall with some 

sections that are “New Pavements” and “Damaged Pavements”. On the other hand, the IRI 

assessment from UAS-SfM/MVS data shows that the road is “Damaged Pavements” on average 

with some “New Pavements” and some “Rough Unpaved Roads”. In this instance, the TLS-

derived IRI values more accurately depict the road surface condition. 

 

Table 3.5. Statistical summary of IRI values for each profile from TLS and UAS-SfM/MVS data 

 

 

Table 3.6. Statistical summary of the IRI value differences (unit: m/km) 

(m/km) Lane1_Left Lane1_Right Lane2_Left Lane2_Right Lane3_Left Lane3_Right 

Minimum -3.1 -6.5 -5.3 -10.8 -9.8 -13.8 

Maximum 69.7 58.6 69.6 41.3 57.8 67.5 

Median 2.8 1.9 2.4 1.7 1.2 1.0 

Average 7.6 6.5 5.1 3.6 3.1 2.9 

Std. Deviation 11.4 11.5 9.1 8.3 8.6 10.2 

RMSD 13.7 13.2 10.5 9.0 9.1 10.6 

 

 

To further analyze how the IRI difference between TLS and UAS-SfM/MVS data behave 

and vary across the site, the difference between datasets is plotted in a graph (Figure 3.4). First 

of all, it is worth noting that some of the large discrepancies from the beginning and end of the 

profiles could be a result of the artifacts near the boundary from both the data and ProVAL 

software. Aside from those areas, most of the larger discrepancies occur in three zones whereas 

Terrestial Lidar Data IRI (m/km) 

(m/km) Lane1_Left Lane1_Right Lane2_Left Lane2_Right Lane3_Left Lane3_Right 

Minimum 0.8 1.1 1.0 1.2 1.3 1.0 

Maximum 11.1 11.0 10.3 14.1 11.9 16.5 

Median 3.5 3.8 3.5 3.6 3.8 3.8 

Average 3.9 4.1 3.8 4.3 4.4 4.6 

UAS-SfM/MVS Data IRI (m/km) 

Mimimum 1.9 2.2 2.0 2.0 1.8 2.1 

Maximum 77.6 68.2 79.6 45.5 65.4 71.2 

Median 7.0 6.5 6.4 4.5 4.2 4.6 

Average 11.4 10.6 9.0 7.9 7.5 7.6 
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the difference in other areas is generally within 3 m/km, which shows that the IRI assessments 

from TLS and UAS-SfM/MVS are on par with each other.  

 

Then for those three zones (i.e., Zone-A, Zone-B, and Zone-C) with large differences, a more 

detailed analysis is carried out. As shown in the close-up views of the three zones (Figure 3.5), 

they all feature large roughness caused by data gaps and errors, particularly where the recently 

paved areas are located with darker surfaces in comparison to other parts. To further quantify the 

impact of such texture-less and dark surfaces on the IRI assessment, the research team extracted 

these subsections from the profiles and analyzed the difference in both elevations and IRI values 

statistically (Table 3.7 and Table 3.8 ). 

 

 

Figure 3.4. Differences between UAS-SfM/MVS and TLS-derived IRI values diagram 

 

Based on the statistical analysis, large vertical variations were observed in Zone A and Zone 

C, whereas there are no notable differences in vertical data in Zone B. The IRI difference in 

these zones follows the same trend in general. For Zone A and Zone B, the large discrepancy can 

be largely explained by the higher noise level and more data gaps in those areas. For Zone B, 

however, despite the fact that the average, standard deviation, and RMSD of the elevations from 

UAS-SfM/MVS data are on par with those of the TLS data, the UAS-SfM/MVS data still 

provides a higher estimation of the IRI values. The reduction in artifacts in Zone B can be 
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explained by 1) Zone B has the smallest patch of very dark asphalt pavement, and 2) the irregular 

shape of the patch provides relatively more contrast to the image which is essential for the 3D 

reconstruction process. That being said, there are still many small data gaps in this section and 

the gap-filling algorithms can cope with this to generate reasonable DEMs. Besides, given the 

complexity of the surface itself, the assumptions made in the gap-filling and smoothing 

approaches can no longer accurately predict the actual surface characteristics.  
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Figure 3.5. Close-up views of the zones with new asphalt pavement. 
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Table 3.7. The elevation difference between UAS-SfM/MVS and TLS by zones (unit: meters) 

(m) Lane1_L Lane1_R Lane2_L Lane2_R Lane3_L Lane3_R 

Z
o

n
e 

A
 

Minimum -0.137 -0.135 -0.138 -0.128 -0.076 -0.123 

Maximum 0.035 0.029 0.043 0.042 0.036 0.077 

Median 0.003 0.002 0.003 0.001 0.001 0.000 

Average -0.001 -0.001 0.001 -0.001 -0.001 -0.004 

Std. Deviation 0.023 0.019 0.017 0.018 0.016 0.019 

RMSD 0.023 0.019 0.017 0.018 0.016 0.019 

Z
o

n
e 

B
 

Minimum -0.021 -0.031 -0.024 -0.027 -0.023 -0.026 

Maximum 0.038 0.032 0.039 0.031 0.026 0.034 

Median 0.010 0.008 0.009 0.010 0.010 0.011 

Average 0.007 0.006 0.007 0.007 0.007 0.008 

Std. Deviation 0.014 0.013 0.012 0.011 0.011 0.011 

RMSD 0.015 0.014 0.014 0.013 0.013 0.014 

Z
o

n
e 

C
 

Minimum -0.086 -0.025 -0.022 -0.067 -0.046 -0.001 

Maximum 0.059 0.055 0.050 0.063 0.061 0.049 

Median 0.032 0.033 0.032 0.032 0.029 0.029 

Average 0.027 0.032 0.031 0.028 0.026 0.030 

Std. Deviation 0.020 0.011 0.011 0.016 0.016 0.008 

RMSD 0.034 0.034 0.034 0.033 0.031 0.032 

 

 
Table 3.8. IRI value difference UAS-SfM/MVS and TLS by zones (unit: m/km) 

(m/km) Lane1_L Lane1_R Lane2_L Lane2_R Lane3_L Lane3_R 

Z
o

n
e 

A
 

Minimum  3.7 0.8 -1.2 -8.3 -8.8 -13.8 

Maximum 69.5 58.3 69.5 37.7 57.8 67.8 

Median 16.3 11.1 7.6 2.4 0.6 0.8 

Average 20.2 17.8 12.0 5.0 5.1 7.0 

Std. Deviation 14.1 15.9 14.8 10.3 14.6 20.3 

RMSD 24.6 23.9 19.1 11.4 15.4 21.4 

Z
o

n
e 

B
 

Minimum  0.2 -1.0 -1.8 -1.9 -2.6 -7.7 

Maximum 15.6 7.3 13.0 8.5 6.3 7.6 

Median 4.4 3.4 4.8 3.6 3.0 2.4 

Average 5.1 3.3 4.9 3.5 2.5 1.8 

Std. Deviation 3.8 1.8 3.3 2.6 2.1 3.7 

RMSD 6.4 3.7 5.9 4.4 3.2 4.1 

Z
o

n
e 

C
 

Minimum  -2.7 1.4 -2.0 -2.4 -0.4 -1.3 

Maximum 44.8 21.4 24.2 41.3 27.7 11.8 

Median 5.7 9.2 9.6 7.1 8.6 6.4 

Average 14.3 11.2 10.1 13.6 11.4 5.8 

Std. Deviation 16.1 5.9 7.8 15.1 9.3 3.7 

RMSD 21.5 12.7 12.7 20.3 14.7 6.8 
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3.3.3 Correlation between DEM and IRI Deviation 

The statistical metrics used in determining the deviation of the DEM models were also 

examined with the RMSD of IRI values to determine the effectiveness of predicting the accuracy 

of IRI calculation with the point cloud or DEM accuracy (Figure 3.6). It is worth mentioning 

that for all the metrics, the samples in Zone B are clustered together while the other two zones 

are more scattered. This is because the color of the paved patch in this zone is more uniform with 

the existing pavement surface. The size of the new patch in that section is also considerably 

smaller as against the patches in the other two zones.  

 

First of all, the IRI-RMSD has no clear correlation with the median (Figure 3.6.D) or 

average errors in the DEMs derived from UAS-SfM/MVS point clouds (Figure 3.6.E). This 

aligns with the fact that IRI is a metric describing the local variation of the surface, whereas 

those two metrics mostly present the global bias in the UAS-SfM/MVS data. Simply moving the 

entire dataset vertically to account for a bias will not result in any additional error in the IRI. For 

the same reason, the metric considering the bias in the data, elevation RMSD, does not provide a 

significant correlation either. It is slightly better than the median and average errors because the 

local variation also plays a role in such a metric.  

 

Then we tested both the standard deviation and range of the errors which describe the local 

variation of the surface. A moderate correlation can be observed from both metrics (Figure 

3.6.A & Figure 3.6.C). The range is computed as the difference between the maximum and 

minimum errors. Typically, such a metric can be sensitive to large errors or blunders, which 

makes it less reliable. However, during the 3D reconstruction in the SfM process and DEMs 

production stage, the most significant errors/blunders were filtered from the data. In addition, 

ProVAL also applies a moving low pass filter (with a 250 mm window) to the longitudinal 

profile to simulate the tire encircling effect by averaging values of nearby points. As a result, the 

standard deviation of the errors is very small and ranges from less than 0.01m to 0.025 m 

(Figure 3.6.A). On the other hand, thanks to the aforementioned smoothing process, the range of 

errors is much less sensitive and has a good correlation with IRI RMSD with a coefficient of 

0.75 (Figure 3.6.C), the highest among all the metrics tested. In summary, the range of errors 
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observed in the DEMs derived from UAS-SfM/MVS point clouds is the better indicator of the 

accuracy of the IRI assessment. 

 

 

Figure 3.6. Correlation between statistical metrics and IRI RMSD (unit: m/km). 
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CHAPTER 4.    CONCLUSION & RECOMMENDATION 

 

This research developed a framework for collecting and processing UAS-SfM/MVS data to 

extract pavement information and examined the feasibility of employing UAS-derived point 

clouds to evaluate pavement roughness. A rigorous accuracy assessment and analysis were then 

conducted. First, the research team evaluated the absolute accuracy of the UAS-SfM/MVS 

DEMs against the total station survey including where the RMSE is 0.019 m among 180 

checkpoints along the study area. Next, the UAS-SfM/MVS DEMs were further compared to the 

DEMs generated from TLS data along a number of profiles and the RMSDs were consistently 

under 0.03 m. Furthermore, the differences in IRI values along these profiles from TLS and 

UAS-SfM/MVS data were compared.  

 

Based on these analyses, the following observations are made when using UAS-SfM/MVS 

data for pavement smoothness evaluation:  

• UAS provides additional data on surrounding features, as expected from an air-based 

vehicle with a large field of view; thereby, the collected data can be used for more 

comprehensive analysis and other applications. This can also help provide more context 

to the pavement roughness information. 

• It is challenging for the SfM technique to reconstruct 3D information on dark and texture-

less surfaces such as newly paved asphalt. The results show that the dark and texture-less 

surface (e.g., asphalt) can result in significant vertical errors and data gaps, leading to 

unreliable IRI readings. On the other hand, for other parts of the road surface in a lighter 

color, the UAS-SfM/MVS data slightly overestimates the roughness (generally within 3 

m/km) compared to the TLS data. 

• Relatively small elevation derivations may have a massive effect on the IRI analysis. A 

localized analysis is recommended if abnormal IRI values are spotted. 

 

Therefore, the research concludes that UAS-SfM/MVS can be a suitable technique for road 

surface roughness assessment with some restrictions of the color of the pavement due to its 

newness. 
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The following tasks could be tackled in future research: 

 

• Test if the artifacts in the UAS-SfM/MVS data can be mitigated by different flight 

planning and data acquisition strategies.   

• Compare the UAS-SfM/MVS point clouds generated from different software and 

settings, as well as their derivative roughness assessment results. 

• Investigate the impact of different approaches and parameters in generating DEMs and 

interpolations. 
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Appendix A 

ArcGIS workflow with pane parameters: 

 

 

2-Generate points along 
Lines

6-Extracting Attribute Table as 
Excel file

5-Generate Point ID3-Getting Elevation 
Values from DEMs

4-Adding Geographical 
coordinates

Manually 

Drawing 

Longitudinal 

Profiles

Step 1

Generate points along
Longitudinal Profiles 

Extracting Attribute Table
as Excel file

Generate Point ID

Getting Elevation Values from 
DEMs

Adding Geographical 
coordinates

Manually Drawing 

Longitudinal 

Profiles

1 2 3

456



46 

 

 

Appendix B 

Poster for 2022 Region 10 Transportation Conference: 
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Appendix C 

Poster for 3D Geo-Info 2021 Conference: 

 

 


