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Abstract

Many machine learning applications require
classi�ers that minimize an asymmetric cost
function rather than the misclassi�cation
rate, and several recent papers have ad-
dressed this problem. However, these pa-
pers have either applied no statistical testing
or have applied statistical methods that are
not appropriate for the cost-sensitive setting.
Without good statistical methods, it is di�-
cult to tell whether these new cost-sensitive
methods are better than existing methods
that ignore costs, and it is also di�cult to tell
whether one cost-sensitive method is better
than another. To rectify this problem, this
paper presents two statistical methods for the
cost-sensitive setting. The �rst constructs a
con�dence interval for the expected cost of a
single classi�er. The second constructs a con-
�dence interval for the expected di�erence in
costs of two classi�ers. In both cases, the
basic idea is to separate the problem of es-
timating the probabilities of each cell in the
confusion matrix (which is independent of the
cost matrix) from the problem of computing
the expected cost. We show experimentally
that these bootstrap tests work better than
applying standard z tests based on the nor-
mal distribution.

1. Introduction

Most existing classi�cation methods were designed to
minimize the number of mistakes that are made, also
called the 0/1 loss. However, real-world applications
often require classi�ers that minimize the total cost of
misclassi�cations given that each error has an associ-
ated cost. For example, the cost of false positive errors
(e.g., giving chemotherapy to a patient that does not
have cancer) is typically di�erent from the cost of false
negative errors (e.g., failing to treat a patient that does
have cancer). This problem is widely recognized, and

many researchers have tried to incorporate cost infor-
mation into learning algorithms.

We address one of the most studied settings for cost-
sensitive learning, which is de�ned by a set of labeled
training examples fhx`; y`ig and a cost matrix C. The
contents of C(i; j) specify the cost incurred when an
example is predicted to be in class i when in fact it
belongs to class j. The goal of the learning algorithm
is to output a classi�er 
 whose expected cost is mini-
mized when classifying new examples drawn from the
same distribution as the training examples. There are
two main approaches to cost-sensitive learning. The
�rst approach assumes that C is available at learn-
ing time, and several methods have been developed
to incorporate C into the learning process (see, for
example, Knoll & al., 1994; Bradford & al., 1998;
Kukar & Kononenko, 1998; Domingos, 1999; Fan &
al., 1999; Margineantu & Dietterich, 1999). The sec-
ond approach is to assume that C is not available and
to seek learning algorithms that produce hypotheses
that have good performance over a wide range of dif-
ferent cost matrices (e.g. any method that outputs
the optimal decision-theoretic prediction based on the
class probability estimates of the test examples).

For either approach, cost-sensitive statistical methods
are needed to help choose algorithms for a particular
application and to guide the development of new algo-
rithms. This paper proposes two statistical methods
for the case where C is available. We do not treat the
case where C is not available, although one strategy
might be to apply the methods of this paper to sev-
eral di�erent C matrices drawn by sampling from some
distribution of likely cost matrices.

Our statistical methods address two questions. First,
given a classi�er, we would like to use test data to es-
timate a con�dence interval for the mean cost of that
classi�er. This is useful for estimating the costs that
are likely to be incurred on a given practical task and
also for determining whether the available test data
set is large enough to estimate the expected cost accu-
rately. Second, given two classi�ers, we would like to



decide whether one classi�er has lower expected cost
than another. This is useful for comparing classi�ers
for a particular application, and it can also help guide
research on cost-sensitive learning. We do not ad-
dress the more di�cult statistical question of deciding
whether one learning algorithm is better than another
within a particular domain (i.e., over all training sets
of �xed size m). In other words, our statistical tests
control for variation in the test set, but they do not
control for variation in the training set or any internal
randomness inside the learning algorithm. See (Diet-
terich, 1998) for a discussion of these issues.

This paper is organized as follows. The next section in-
troduces the cost-sensitive classi�cation problem and
then discusses possible statistical methods and their
drawbacks. The third section presents the new sta-
tistical methods for cost-sensitive evaluation of classi-
�ers. In Section 4, we evaluate these two statistical
methods through a simulation study, and discuss the
results. Section 5 concludes the paper.

2. An Analysis of the Cost-Sensitive

Classi�cation Problem

To illustrate the cost-sensitive learning problem, con-
sider the 4 � 4 cost matrix shown in Table 1. In this
table, there are two errors that are very expensive (pre-
dicting class 2 when the true class is 4 costs 100.0, and
predicting class 3 when the true class is 1 costs 40.5).
Other errors are much less expensive (e.g., predicting
class 4 when the true class is 2 only costs 0.1). As
a consequence, a learning algorithm should not treat
all costs equally|it should avoid committing expen-
sive errors, possibly at the cost of committing a larger
number of inexpensive errors. For example, if the al-
gorithm believes that there is any chance that a test
example might belong to class 4, then it should pre-
dict class 4, because the costs of predicting any of the
other classes in this case are high.

Cost-sensitive learning problems are made more di�-
cult by the fact that in many domains the expensive er-
rors correspond to the rare cases. In air tra�c control,
for example, crashing an aircraft is a very expensive
error, but (fortunately) there are very few training ex-
amples of airplane crashes, compared to the number of
safe 
ights. A cost-insensitive learner might therefore
decide to ignore these rare events and always predict
that the airplane is safe. This would give a low number
of errors, but a very high cost.

The fact that di�erent kinds of errors can have ex-
tremely di�erent costs also means that we must take
care when measuring the performance of cost-sensitive

Table 1. Example of cost matrix for a four-class problem.

Predicted Correct Class
Class 1 2 3 4

1 0.0 3.2 2.5 12.7
2 1.0 0.0 3.0 100.0
3 40.5 2.2 0.0 5.5
4 1.0 0.1 7.1 0.0

learning algorithms. In the ordinary 0/1 loss case, we
can group together all of the di�erent misclassi�cation
errors and estimate the total fraction of misclassi�ca-
tions. But in the cost-sensitive case, we need to treat
each di�erent kind of misclassi�cation error separately,
because they have di�erent costs. The statistical prob-
lem is especially di�cult if there is a rare but expen-
sive kind of mistake. In that case, a larger test set
is needed to ensure that we obtain enough data to be
able to detect these rare, expensive cases.

Let us consider the most straightforward approach
to the statistical analysis of cost-sensitive classi�ers.
Given a set of n test examples, we can apply the
learned classi�er 
 to evaluate each example. Let
the cost of classifying example (x`; y`) be c` =
C(
(x`); y`). We can compute the mean and standard
deviation of the c` values and construct a con�dence
interval based on the t or z statistics. The central
limit theorem assures us that the mean of n cost values
will be normally distributed with a variance of �=

p
n,

where � is the variance of the c` values.

Unfortunately if the values in the cost matrix C are
very di�erent, the variance � will be very large, so the
resulting con�dence interval will be very wide. Con-
sequently, this procedure will not give us a very tight
con�dence interval.

The alternative approach that we describe in this pa-
per is to estimate the probability (on the test set) of
each kind of mistake. Let p(i; j) be the probability
that a test example belonging to class j was predicted
to be in class i. These probability values can be com-
puted by constructing a confusion matrix and dividing
each cell by n. Once these probabilities are computed,
we can compute the expected cost of the classi�er by
multiplying each element p(i; j) by the corresponding
cell C(i; j) and summing the results:

c =
X

i;j

p(i; j) � C(i; j):

Based on a small test set, there will be some uncer-
tainty about each of the p(i; j) values. If the corre-
sponding cost C(i; j) is very large, then this uncer-
tainty will have a big impact on the estimated er-
ror. Fortunately, each probability p(i; j) is a better-



behaved statistic than the average of the c values. It
has a variance that depends only on its true value, and
extreme values (near zero and one) have smaller vari-
ances than intermediate values. Moreover, when the
test data set is small, we can use Laplace corrections
(or equivalently, Dirichlet priors) to incorporate prior
beliefs about the sizes of the p(i; j) values (Good, 1965;
Fienberg & Holland, 1968; Cestnik, 1991).

The approach that we take in this paper is to compute
the p(i; j) values, adjust them using Laplace correc-
tions, and then apply bootstrap methods to construct
con�dence intervals for the expected cost of the classi-
�er. We will see that this approach gives much better
results than simply computing a con�dence interval
based on the t or z statistics.

3. New Statistical Methods

3.1 Estimating the Expected Cost of a

Classi�er: BCost

Let 
 be a classi�er, and D be a test set of n examples.
Let M be the k�k confusion matrix computed from 

and D, where elementM(i; j) is the number of test set
examples predicted by 
 to be in class i but actually
belonging to class j.

Let p(i; j) be the normalized, Laplace-corrected con-
fusion matrix de�ned as follows:

p(i; j) =
M(i; j) + �

k2�+ n
:

Here, the constant � � 0 determines the strength
of the Laplace correction. The p(i; j) values can be
viewed as a multinomial probability distribution over
the k2 combinations of predicted and correct classes.

The BCost procedure computes a con�dence interval
for the expected cost of classi�er 
 as shown in Table 2.
This pseudo-code generates 1000 simulated confusion
matrices ~Mu by generating a sample of size n according
to the distribution p(i; j). For each simulated confu-
sion matrix, it then computes the cost ~cu by taking a
dot product between ~Mu and the cost matrix C. This
gives 1000 simulated costs. For a 95% con�dence in-
terval, it then outputs the 26th and 975th simulated
costs (after sorting them into ascending order). This is
a bootstrap con�dence interval for the mean cost after
applying a Laplace correction to the original confusion
matrix.

3.2 Comparing the Expected Cost of Two

Classi�ers: BDeltaCost

The second statistical problem is to compare the costs
of two di�erent classi�ers to decide which is better.

Table 2. Pseudo-code for the BCost method of construct-
ing a con�dence interval.

BCost(con�dence value �, cost matrix C,
distribution p, number of test examples n)

for u from 1 to 1000 do

Let ~Mu = 0, a simulated confusion matrix.
for v from 1 to n do

draw a pair (i; j) according to p(i; j)

increment ~Mu(i; j).
end // for v
Let ~cu = ~Mu � C be the cost of ~Mu

end // for u
Sort the ~cu values into ascending order.
Let lb = b 1��

2
� 1000c + 1

Let ub = 1001 � lb
The con�dence interval is [~clb; ~cub]

end BCost

Given two classi�ers 
1 and 
2, we want to test the
null hypothesis H0 that the two classi�ers have the
same expected cost (on new test data) against the al-
ternative hypothesis Ha that the two classi�ers have
di�erent costs. We want a test that will accept the null
hypothesis with probability � if the null hypothesis is
true (i.e., a test that has a Type I error of 1� �).

We follow essentially the same approach as for BCost.
The key is to de�ne a new kind of three-dimensional
confusion matrix M . The contents of cell M(i1; i2; j)
is the number of test set examples for which 
1 pre-
dicted that they belong to class i1, 
2 predicted that
they belong to class i2, and their true class was j.
Analogously, we can de�ne a three-dimensional cost
matrix � such that �(i1; i2; j) = C(i1; j)�C(i2; j). In
other words, the value of �(i1; i2; j) is the amount by
which the cost of classi�er 
1 is greater than the cost
of classi�er 
2 when 
1 predicts class i1, 
2 predicts
class i2, and the true class is j. Given a 3-D confusion
matrix measured over a test set, we can compute the
di�erence in the costs of 
1 and 
2 by taking the \dot
product":

M �� =
X

i1;i2;j

M(i1; i2; j)�(i1; i2; j):

We can obtain our statistical test by computing a con-
�dence interval for M � � and rejecting the null hy-
pothesis H0 if this con�dence interval does not include
zero. If the con�dence interval does contain zero, we
cannot reject the null hypothesis. The con�dence in-
terval is constructed in exactly the same way as for
BCost. We take the 3-D confusion matrix measured
on the test set, normalize it, and apply a Laplace cor-
rection to get a multinomial probability distribution
p(i1; i2; j). We then simulate 1000 confusion matrices



~Mu by drawing (i1; i2; j) triples according to this dis-
tribution. We compute the cost ~cu of each simulated
confusion matrix (by computing ~Mu � �), sort them,
and choose the appropriate elements to construct the
con�dence interval.

4. Experimental Evaluation of the

Proposed Methods

Now that we have described the two new statistical
methods, we present some experimental tests to verify
that the methods are working properly and to compare
them to the con�dence intervals based on the normal
distribution described above. In addition, we must ad-
dress the question of how to set the Laplace correction
parameter � and evaluate the sensitivity of the meth-
ods to this parameter.

4.1 Experimental Evaluation of BCost

We begin with an experiment to evaluate the BCost
procedure. The purpose of this experiment is to con-
struct a situation in which we have a classi�er 
 whose
true expected average cost is known. We can then sim-
ulate a large number of di�erent test sets, apply the
BCost procedure to each of them, and see whether
the resulting con�dence interval does indeed capture
the true mean in fraction � of the trials. In our ex-
periments, we set � = 0:95, so we are seeking a 95%
con�dence interval.

Figure 1 shows the decision boundaries for an arti�-
cial domain with two features and �ve classes. We
drew one million examples uniformly randomly from
this space, and labelled them according to the decision
boundaries in the �gure. To design a classi�er, we used
a version of the C4.5 algorithm (Quinlan, 1993) modi-
�ed to accept weighted training examples. Each exam-
ple was weighted in proportion to the average value of
the column of the cost matrix C corresponding to the
label of the example. This is the average cost (over the
training set) of misclassifying examples of this class.
Breiman (1984) suggests a similar method for building
cost-sensitive decision trees; Margineantu & Dietterich
(1999) compare this method against other methods for
incorporating costs into the decision tree learning al-
gorithm. We will call this cost-sensitive classi�er the
C4.5-avg tree. The classi�er is trained on a separate
set of one thousand examples drawn from the same
distribution as the one million test examples. Table 3
shows the probabilities of each of the class labels com-
puted from the test data.

Each experiment involves testing several di�erent cost
matrices, C. These were generated randomly based on
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Figure 1. daDecision boundaries for the Expf5 data set.

Table 3. Class frequencies for the Expf5 domain.

Class Frequency (%)

0 21.02
1 44.73
2 25.68
3 0.16
4 8.41

nine di�erent cost models. Table 4 shows the under-
lying distributions for each of the cost models. The
diagonal elements of C are always zero for cost mod-
els M1, M2, M4, M5, M6, and M7, and they are
drawn from a uniform distribution over the range de-
scribed in the third column for cost models M3, M8,
andM9. For all cost models, the o�-diagonal elements
are drawn from a uniform distribution over the range
described in the second column of the table. For cost
matrices drawn according to modelsM6,M7, andM9,
we set the cost using the frequency of the classes. In
cost modelM6, for example, the cost of mislabeling an
example from class j as belonging to class i is deter-
mined by the ratio of the number of examples in class
i to the number of examples in class j. In particular,
if class i is very common, and class j is very rare, then
this mistake will (on the average) be very expensive,
because P (i)=P (j) will be a large number. For cost
model M7, we reversed this relationship, so that the
least expensive errors are those that mislabel a rare
class j as belong to a common class i. Finally, model
M9 is like model M6 except that the costs are even
larger, and there are non-zero costs on the diagonal of
C. Cost models M6, M7 and M9 have a higher po-
tential of generating cost matrices for which there are
higher risks in making a decision. In the case of our ex-
perimental domain, a cost matrix based on cost model
M9 will have the value of C(1; 3) drawn from a uni-



Table 4. The cost models used for the experiments.
Unif[a; b] indicates a uniform distribution over the [a; b] in-
terval. P (i) represents the prior probability of class i.

Cost C(i; j) C(i; i)
Model i 6= j
M1 Unif[0; 10] 0
M2 Unif[0; 100] 0
M3 Unif[0; 100] Unif[0; 10]
M4 Unif[0; 1000] 0
M5 Unif[0; 10000] 0
M6 Unif[0; 1000 � P (i)=P (j)] 0
M7 Unif[0; 1000 � P (j)=P (i)] 0
M8 Unif[0; 10000] Unif[0; 1000]
M9 Unif[0; 2000 � P (i)=P (j)] Unif[0; 1000]

Table 5. Results of running BCost on the 1000 1000-
example test sets for nine di�erent cost models. 10 cost
matrices were used for each cost model. The second column
shows the average number of runs of BCost for which the
true cost was included in the con�dence interval. Laplace
correction � = 0:1. True cost was computed as the average
cost of the classi�er for all 1,000,000 examples.

Cost avg. # of cases for which the true cost
Model was included in the c.i. (out of 1000)
M1 956.1
M2 955.5
M3 953.1
M4 954.9
M5 953.9
M6 994.1
M7 971.7
M8 952.9
M9 995.6

form distribution over the interval [0, 559125] (because
2000� P (1)=P (3) = 559125) while other o�-diagonal
cells can be as low as 0.

For each of the one thousand test sets, we ran BCost
and computed the 95% con�dence interval for the ex-
pected cost. The true expected cost was considered to
be the average cost for the entire one million exam-
ple data set. We set the Laplace correction parameter
� = 0:1. Table 5 shows the number of test sets for
which BCost outputs a 95% con�dence interval that
includes the true expected cost. The values are av-
eraged over ten cost matrices for each cost model. A
perfect 95% con�dence interval would include the true
average cost exactly 950 times out of 1000. We see
that the con�dence intervals are all su�ciently wide,
although the intervals for M6, M9, and M7 are some-
what too wide.

We also computed a normal con�dence interval for
each test set. For all �ve cost models, the true av-
erage cost was included in the normal 95% con�dence
interval 100% of the time (i.e., for all 1000 test sets).
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Figure 2. Plots that describe the sensitivity of BCost to
the choice of � for the nine cost models. For each cost
model, 10 di�erent matrices were tested, and each point in
the plots the average result over the 10 matrices.

This means that the normal con�dence intervals are
de�nitely too wide.

The sensitivity of BCost to the choice of the Laplace
correction parameter is shown in Figure 2. Each curve
illustrates the probability that BCost returns a con-
�dence interval that includes the true cost for one of
the nine cost models, as � varies from 0.0 to 3.0. For
our experimental domain, all curves reach a maximum
within the interval (0.0,0.5]. No Laplace correction
(� = 0) will cause BCost to generate con�dence in-
tervals that are too narrow while values of � larger
than 0.5 will produce intervals that are too wide and
biased too high.

4.2 Experimental Evaluation of BDeltaCost

Any statistical test can commit two kinds of errors:
Type I and Type II. We evaluate BDeltaCost on
each of these kinds of errors.

A Type I error occurs when two classi�ers have exactly
the same cost, but the statistical test rejects the null
hypothesis. If a statistical test is conducted with a
con�dence level of 0.95, then it should commit a Type
I error with probability 0.05.

To evaluate the probability that BDeltaCost com-
mits a Type I error, we faced a di�cult experimen-
tal problem. We need two classi�ers, 
1 and 
2, that
are di�erent and yet that have identical average costs.
Furthermore, the worst case scenario for a statisti-
cal test usually occurs when the two classi�ers are
very di�erent from each other (Dietterich, 1998), since
this variability tends to \fool" the statistical test into
thinking that the classi�ers have di�erent expected



costs. So we want to design the two classi�ers so that
they misclassify di�erent test examples and yet have
the same average cost.

To do this, we �rst ran C4.5 as described above to
produce 
1. Then, we computed the confusion ma-
trix M� for 
1 on the entire collection of one million
test examples. To construct our second classi�er, 
2,
we don't need to actually construct a decision tree (or
any other real classi�er)|all we need to do is assign
a label to each test example, which we will declare to
be the label assigned by 
2. We want to assign these
labels so that the cost of 
2 (de�ned in this way) over
the entire one million test examples is the same as the
cost of 
1. We will do this by ensuring that 
2 has the
same confusion matrix as 
1. For each test example,
hx`; y`i, we choose randomly a new label y1 such that
M�(y1; y`) > 0, assign that label to example `, and
decrement M�(y1; y`). When we have labeled all of
the test examples, every cell of M� will be zero. This
is equivalent to randomly permuting the 
1 labels of all
test examples belonging to the same true class. This
makes the individual decisions of each classi�er highly
uncorrelated, but makes their confusion matrices iden-
tical, so their average cost on each of the 1000 test sets
is the same.

Table 6 shows the results of running this procedure un-
der each of our nine cost models with no Laplace cor-
rection. It plots the number of test sets for which the
null hypothesis is not rejected. This number should
be 950 if the test is working perfectly. The results
show that the probability of Type I error is higher in
the case of cost models that involve higher risks for
making a decision.

To test the sensitivity of BDeltaCost to the choice
of the Laplace correction parameter, we ran the pro-
cedure described in the previous paragraph for di�er-
ent values of � from the interval (0.0,0.5]. � � 0:1
caused BDeltaCost to generate con�dence intervals
that were too wide in the case of all cost models. In
particular, for modelsM6,M7, andM9, the probabil-
ity of rejecting the null hypothesis for any � > 0 was
smaller than 0.005, which indicates that the con�dence
intervals were de�nitely too wide.

The second kind of error, the Type II error, occurs
when the statistical test fails to reject the null hy-
pothesis even when the two classi�ers have di�erent
expected costs. The standard way of measuring Type
II errors is to plot a power function which plots the
probability that the null hypothesis will be rejected as
a function of the amount by which the two classi�ers
di�er in their expected costs.

Table 6. Results of running BDeltaCost on the 1000
1000-example test sets for the two classi�ers that have the
same expected average cost. � = 0.

Cost avg. # of cases for which
Model H0 is not rejected (out of 1000)
M1 948.83
M2 950.50
M3 948.26
M4 950.46
M5 951.16
M6 934.03
M7 943.76
M8 949.96
M9 932.06
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Figure 3. Power of BDeltaCost (� = 0). Each curve plots
the probability of rejecting H0 as a function of the cost
ratio rc.

To generate the power curve, we must generate pairs
of classi�ers 
1 and 
2 that have a speci�ed degree
of di�erence in their expected costs. We started with
the 
1 and 
2 classi�ers constructed above. We then
built a new classi�er, 
0

2
by randomly changing q of

the labels that 
2 had assigned to the test eamples.
We varied q from 0 to 1,000,000, ran BDeltaCost 10
times for each value of q, and averaged the results for
three matrices within each cost model.

Figure 4 plots these power functions for each of the
nine cost models as a function of q (we have split up
the nine curves for readability purposes) and Figure 3
plots the power functions as a function of the ratio in
the cost of 
0

2
to 
1

rc =
jcost(
0

2
)� cost(
1)j

cost(
1)
;

where cost(
) is the cost incurred by classi�er 
 when
it classi�es all the examples in a test set.

Figure 4 shows that in the case of cost modelsM6 and
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Figure 5. Enlarged plots from Figure 4. Error bars show range of observed probability of rejecting H0.� = 0.

M9 the test has a higher probability of Type II errors.
These two cost models assign higher costs for misclassi-
fying instances that belong to rare classes, and we can
observe that in these two cases the probability that
H0 is not rejected is greater than 0 (0.427 for cost
model M9 and 0.092 for cost model M6) even when
q = 1; 000; 000. Notice that while M7 looks best in
Figure 4, it appears worst in Figure 3. This is because
M7 assigns high costs to frequent errors, so even a
small change in the number of such errors gives a high
change in the cost ratio. For M7, BDeltaCost re-
quires a large change in the cost ratio before it can
discriminate between the two classi�ers.

We have also looked at the variability of the probabil-
ity of rejecting the null hypothesis, within each cost
model. For readability purposes we have plotted this
information only for cost models M1, M2, M6, M7,
and M9, and we have split them up into two graphs

shown in Figure 5. Each graph uses error bars to show
the range of measured values. The variability is minor
except for cost models M9 and M6 when q is large.

In addition to running BDeltaCost on each pair of
classi�ers, we also ran the paired-di�erences z test as
follows. Let c1` be the cost incurred by classi�er 
1
when it classi�es example `, and c2` be the cost in-
curred by classi�er 
0

2
, when it classi�es example `.

The paired-di�erences test constructs a normal 95%
con�dence interval for the di�erences c1` � c2` and re-
jects the null hypothesis if this con�dence interval does
not contain zero.

When we ran this test for the various cost models and
the various values of q, we found that in all cases, the
null hypothesis was never rejected. In other words,
this test has no power to detect when one classi�er
has di�erent expected cost than another.



5. Conclusions

We have presented two procedures for the cost-
sensitive evaluation of k-class classi�ers.

The �rst procedure, BCost, derives a bootstrap con-
�dence interval for the expected cost of a classi�er for
a given domain. The experimental results presented in
Table 5 show that BCost behaves very well, although
it is slightly too conservative in some cases. The ex-
periments showed that BCost becomes too aggressive
if we set the Laplace correction parameter, �, to zero.
The greatest drawback of BCost is that we have no
principled way of setting �. Nonetheless, for a wide
range of values for �, BCost performs much better
than the other method that we tested|a con�dence
interval based on the normal distribution. We recom-
mend � = 0:1.

The second procedure, BDeltaCost, derives a boot-
strap con�dence interval for the expected value of the
di�erence in cost between two classi�ers. This proce-
dure also performed very well: For most cost matrices,
it achieves a 50% H0 rejection rate when only 3% of
the training examples have di�erent predicted classes.
However, for cost matrices having very large di�er-
ences between the maximum and minimum costs, the
method performs more poorly, and larger test sets are
probably required before BDeltaCost will perform
well. An important question for future research is to
establish a relationship between the range of costs in
the cost matrix and the required size of the test set.
We found that � should be set to zero in all cases.

In both cases, con�dence intervals and statistical tests
based on the normal distribution performed so badly
that they are worthless for guiding machine learning
research. The statistical tests reported in this paper
are the �rst usable methods for cost-sensitive learning
with a known cost matrix.
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