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1. INTRODUCTION

1.1. The Question

One of the basic questions of the actuarial science is the following: “What is

the fair premium to be charged so that the insurance company may cover the risk

of future losses and stay solvent, at the same time?”

Recently, because of the rising interaction of financial instruments and insur-

ance products a more sophisticated question may be posed: “ What is the optimal

investment strategy so that for a given premium rate the company may cover future

losses and stay solvent at the same time?” .

In this thesis an “all or nothing” investment strategy is considered. Surpris-

ingly, it can be shown that investing all the surplus in a risky asset is more dangerous

than not investing at all. Here dangerous refers to the possibility of “ruin”, which

refers to the capital of the insurance company becoming negative for the first time.

This unfortunate event is quantified by the ruin probability Ψ(u), where u is the

initial capital of the insurance business.

Since it is difficult to calculate the probability of ruin exactly, one looks at the

asymptotic decay of the ruin probability, as the initial capital gets really large. The

desired scenario is that the probability of ruin will decay extremely fast to zero as

u gets extremely large.

It is known from actuarial risk theory that in the case of no-investments the

probability of ruin decays exponentially fast as u grows to infinity. In this thesis

it is shown that, if the insurance company starts with an initial capital, u, and

invests everything in a stock, whose price follows a geometric Brownian motion, the
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probability of ruin, Ψ(u), will go to zero more slowly than if no investments are

made. Therefore, a company will be better off choosing not to invest anything into

a risky asset than choosing to invest everything into it.

1.2. Brief history of the collective risk model

The collective risk model was introduced by Cramér and Lundberg in early

1900’s (Lundberg, 1909; Cramér, 1930). It is a compound Poisson model, as basic

as initial capital plus premium collected minus paid claims. Assumptions of inde-

pendence of claim times and sizes are made, in the sense that the time waited until

another claim occurs is not related to the severity of that claim. Also, a basic “net

profit condition” is necessary, saying that on average the incoming premium rate

is bigger than the outgoing paid claim rate. This is a standard model for non-life

insurance, simple enough to calculate probabilities of interest, but too simple to

be realistic. Over time, the model was improved by considering randomness on

the incoming premiums, time dependence or interest earned on the surplus. But

the classical model is still relevant because it explains the two major causes of big

losses: frequent claims and large claims. Most of the techniques developed for the

Cramér-Lundberg model are useful for the more realistic renewal risk model.

The probability of ruin, Ψ(u), is the subject of analysis of the insurance risk

model. However, it is generally difficult to determine the function Ψ(u) explicitly,

therefore, bounds and approximations to the probability of ruin Ψ(u) are investi-

gated.

Initially, the primary focus of investigation was on specific conditions on the

claim size distribution (Cramér, 1930; Gerber, 1973). For example, in the clas-
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sical risk model under the Cramér-Lundberg condition regarding the claim sizes,

the ruin probability presents an exponential decay as the initial capital u → ∞
(Cramér, 1930). If the Cramér-Lundberg condition is weakened, the asymptotic

behavior of the ruin probability changes dramatically. For instance, in the case of

sub-exponentially distributed claim sizes, the ruin is asymptotically determined by

a large claim (Embrechts et al., 1997).

Later on, some studies analyzed the effect of adding a perturbation modeled

by a diffusion on the classical model. These perturbations model uncertainties in the

rate at which premiums are being collected, or in the rate of returns on the invest-

ments performed by the insurance company (Paulsen and Gjessing, 1997; Paulsen,

1998a; Ma and Sun, 2003; Yuen et al., 2004; Pergamenshchikov and Zeitouny, 2006).

Except for the case of very heavy-tailed negative jumps (Paulsen, 2002), the pertur-

bations influence the asymptotic behavior of the ruin probability. For example, if

the perturbation is a Brownian motion, the ruin probability still presents an expo-

nential decay (Schmidli, 1995). On the other hand, if the risk model is altered by a

geometric Brownian motion, then the asymptotic decay rate of the ruin probability

is at best algebraic. This latter perturbation may be interpreted as the price of the

risky asset bought with the capital at hand (Frolova et al., 2002; Constantinescu,

2003). The need of an optimal investment strategy that minimizes the probability

of ruin is the subject of very recent studies (Gayer et al., 2003).

In 1957, Sparre Andersen suggested a more realistic model, by considering

non-exponential inter-arrival times. The focus switched towards the choice of the

distribution of the inter-arrival times and a new theory developed for the case “where

the intensity for occurrence of claims depends on the space of time which has passed

since the last claim.” (Andersen, 1957)
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Sparre Andersen model permits non-exponential inter-arrival times but retains

the Cramér-Lundberg assumptions on the claim sizes. Bounds and asymptotics

on the time value of ruin were derived under this new assumption regarding the

model. For instance, it was shown that for any inter-arrival time distribution, the

probability of ruin still has an exponential bound (Andersen, 1957). Also Lundberg

type bounds were obtained for the joint distribution of the surplus immediately

before and at ruin, by constructing an exponential martingale (Ng and Yang, 2005).

For particular distributions for the inter-arrival times, the papers of Dickson and

Hipp (1998); Dickson (2002); Li and Garrido (2004); Gerber and Shiu (2005) analyze

either the asymptotic behavior of the probability of ruin or the moments of the time

of ruin.

The subject of the most recent analyses is the effect of a perturbation intro-

duced in the Sparre Andersen model. If the model is perturbed by an independent

diffusion process and the inter-arrival time is Erlang(n) a generalization of the de-

fective renewal equation is presented in Li and Garrido (2003). This thesis sets up

the ground for an analysis of the asymptotic behavior of the probability of ruin for

a Sparre Andersen model perturbed by a non-negative stochastic process. More

specifically, a very comprehensive equation is derived for the probability of ruin

under very general conditions regarding the distributions of the inter-arrival times

and claim sizes as well as the investments model. This equation can be extended

to expected values of functions of the time of ruin, penalty and severity of ruin, the

so-called Gerber-Shiu functions (Gerber and Shiu, 1998).

In this thesis, a particular case is considered, namely the investment price is

modeled by a geometric Brownian motion. The decay of the probability of ruin is

analyzed for the inter-arrival times distributed sum of exponentials with identical or
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different parameters . It is shown that the decay rate is slower than the exponential

rate of the no investments case. More precisely the decay rate is at best algebraic,

for the inter-arrival times distributions mentioned.

1.3. Brief history of the mathematical tools

Nowadays, the calculation of the probability of ruin is a powerful concept used

in pricing insurance products and in optimal control problems.

In the analysis of the probability of ruin a multitude of tools have been used,

closely following the trends from applied mathematics. For instance, the first es-

timate for an upper bound for probability of ruin was derived by deep complex

variables methods (Cramér, 1930). Nowadays there is a very elegant derivation, for

the same result, using martingales methods (Rolski et al., 1999).

The relationship between the diffusion processes and the partial differential

equations brought new insights in the analysis of the problems. Hence, most of

the original proofs appearing in this thesis use real analysis results and partial

differential equations combined with probabilistic arguments. For instance, one

of the results presented in this thesis, the well-known exponential decay of the

probability of ruin in the classical Poisson compound model, may be derived by

means of completely monotone functions and basic properties of Laplace transforms

alone. The proof relies on an analysis of the solutions of the integro-differential

equation verified by the ruin probability.

The later developments of the financial mathematics tools impacted the de-

velopment of the actuarial field. The natural query of investing the capital arise.

The first investments considered were in risk-less assets. Hence, together with premi-
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ums the company receives deterministic returns on investments (Teugels and Sundt,

1995). Recently, a great deal of the actuarial literature considers diffusion processes

in the model (Paulsen and Gjessing, 1997; Paulsen, 1998a,b; Ma and Sun, 2003;

Yuen et al., 2004; Pergamenshchikov and Zeitouny, 2006), representing returns from

a risky investments.

In the case of the classical compound Poisson model combined with a geomet-

ric Brownian motion, a generalization of the (Frolova et al., 2002) result is obtained

by means of Laplace transforms and Karamata-Tauberian arguments. The general-

ization consists in relaxing the conditions on the claim size distribution (Constan-

tinescu, 2003). Following the same steps, an analysis of the decay of the Laplace

transform of the time of ruin, and implicitly of the probability of ruin in finite time,

for a classical model embedded into a geometric Brownian motion is presented in

this paper.

1.4. Insurance risk models

However, the focus of this PhD thesis is first in deriving a general integro-

differential equation for the probability of ruin and secondly in the analysis of the

asymptotic behavior of the probability of ruin under various scenarios. The different

scenarios, may be considered varying one of the random processes involved in the

model.

Under a constant stream of premiums, c, for a given initial capital u, the event

of ruin may be caused by any of the following three factors: large claim, frequent

claims and “poor” returns from the investments. Mathematically this is translated

in model incorporating three processes:
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1. (Xk)k the claim sizes process

2. (τk)k the inter-arrival times or (N(t))t the claim arrival process

3. (Zu
t )t≥0 the worth of a portofolio that invest the initial capital u and the

incoming premiums over time t in a risky asset. Throughout this thesis, this

is referred as the investment process.

The analysis requires some conditions for each of these random variables, more

precisely on their distributions.

First, the claim amounts should be “light” or have “well-behaved” distribu-

tions. This condition means that large claims are not impossible, but the probability

of their occurrence decreases exponentially fast to zero as the threshold x becomes

larger and larger. Heavy-tailed distributions or sub-exponential distributions will

not be considered in this thesis.

Second, the density fτ considered for the time in between claims (τk)k≥0 sat-

isfies an ordinary differential equation with constant coefficients, formally denoted

by

L(
d

dt
)fτ (t) = 0,

with L∗( d
dt

)fτ (t) denoting the formal adjoint of the linear operator L. Examples of

densities satisfying such a equation are the exponential density,

fτ (t) = λe−λt with (
d

dt
+ λ)fτ (t) = 0, i.e. L(

d

dt
) = (

d

dt
+ λ),

and the sum of exponentials, the so-called Erlang(n, β) distributions with n ∈ N,

fτ (t) =
βn

Γ(n)
tn−1e−βt with (

d

dt
+ β)nfτ (t) = 0, i.e. L(

d

dt
) = (

d

dt
+ β)n.
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The third assumption regards the investment strategy. It is assumed that the

company invests all its initial surplus and incoming premiums continuously into a

risky asset with a price modeled by a non-negative stochastic process.

The main idea of this new setting is that the ruin may occur only at the time

of a claim. Therefore, a discretization of the model is possible. There is a discrete

time Markov process embedded in the model, irrespective of the investment strategy

or the inter-arrival time distribution.The Cramér-Lundberg assumptions regarding

the independence of inter-arrival times and claim sizes still hold.

Moreover, a very general integro-differential equation for the probability of ruin

is derived in this case of a renewal process with inter-arrival time densities that verify

a ordinary differential equation with constant coefficients. It can be shown that

many integro-differential equations well-known in the literature are particular cases

of this equation. Some applications, for particular cases of time distributions, will

be discussed and the asymptotic behavior of the probability of ruin will be analyzed

for the newly introduced models. It is shown that the rate is at best algebraic

for inter-arrival times distributions that are sum of exponentials with identical or

different parameters.

Specifically, using the integro-differential equation derived for the ruin prob-

ability, by Karamata-Tauberian arguments, it is possible to analyze the decay of

the probability of ruin in the Sparre Andersen model with investments into a stock

modeled by a geometric Brownian motion. The inter-arrival times considered are

sum of exponentials with various parameters or Gamma(n, β) distributed, where n

is a natural number. The exponential time distribution is a be a particular case,

Gamma(1, β). Asymptotic bounds for the ruin probabilities are derived through

probabilistic arguments or through the analysis of the asymptotic decays of the
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solutions of the integro-differential equations considered.

1.5. Summary of the thesis

Throughout this thesis, all the stochastic quantities are defined on a filtered

complete probability space (Ω, (Ft)t≥0, P ). The filtration (Ft)t≥0 is right continuous

and all the stochastic processes to be defined in this thesis are adapted.

The second chapter introduces the assumptions and some of the basic proper-

ties for both the Cramér-Lundberg and the Sparre-Andersen risk insurance models.

The classical derivation of the equation for the probability of ruin is presented here

and then applied to a few particular cases.

The third chapter presents the derivation of the transition operator for the

surplus model under some given assumptions regarding the claim amounts, the

inter-arrival times and the returns from investments. A relation between this and

the probability of ruin allows the derivation of a general integro-differential equation

for the probability of ruin.

The fourth chapter is dedicated to the Cramér-Lundberg model with and

without investments. For the no-investments model the well-known results regarding

the exponential decay of the probability of ruin in finite Ψ(u, T ) and infinite time

Ψ(u) are re-derived by means of Laplace transforms properties only. This chapter

concludes with the analysis of a Cramér-Lundberg model with investments in a stock

modeled by a geometric Brownian motion. After revisiting the asymptotic behavior

of probability of ruin, Ψ(u), of Constantinescu and Thomann (2005), the asymptotic

decay of the probability of ruin in finite time, Ψ(u, T ), is examined. For investments

in a risky asset with small volatility the ruin probabilities have algebraic decay rates.
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The well-known result of Andersen (1957) presents the exponential asymptotic decay

of the ruin probability. Here it is shown that for a Sparre Andersen model with

investments in a stock modeled by a geometric Brownian motion, the asymptotic

decay of the ruin probability is at best algebraic. It is surprisingly found that the

decay has the same algebraic rate no matter what distribution is chosen for the inter-

arrival times. In fact the decay rate depends on the parameter of the investments

only.

The sixth chapter presents conclusions and future research projects. The last

chapter is an appendix, containing the concepts and theorems used throughout the

thesis.

The main results of this thesis are summarized in the following:

1. A general integro-differential equation for functions of the risk process.

2. An equation satisfied by the ruin probability in a general setup.

3. A comparison of ruin probabilities, for different inter-arrival time distribu-

tions.

4. Results on the decay of the ruin probabilities under various scenarios.

5. A unified approach for the asymptotic analysis: Karamata-Tauberian the-

orems.
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2. INSURANCE RISK MODELS- THE CASE OF NO
INVESTMENTS

In this chapter the collective risk model is reviewed together with some of

the main results from the actuarial literature. The goal is to derive a differential

equation for the probability of ruin. For some particular cases the equation has

an explicit form solution but, in general, it allows only an asymptotic analysis

of the ruin probability as a function of the surplus. For given inter-arrival time

distributions these equations are derived on a case by case basis in the actuarial

literature. The main strategy used in these examples is conditioning on the time

and size of the first claim followed by differentiation.

2.1. The risk model -no investments

The basic insurance risk model goes back to the work of Filip Lundberg and

Harald Cramér. Filip Lundberg laid the foundation of the actuarial risk theory in

early 1900. Later on, Harald Cramér incorporated Lundberg’s ideas into the theory

of stochastic processes. The structure of this model referred to as the Cramér-

Lundberg model is the following (Embrechts et al., 1997):

Definition 1. The Cramér-Lundberg model is given by conditions (1)-(5):

1. The claim arrival process: the number of claims in the interval [0, t] is denoted

by

N(t) = sup{n ≥ 1 : Tn ≤ t}, t ≥ 0,

where, by convention, sup ∅ = 0.
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2. The claim times: the claims occur at random instants of time

0 < T1 < T2 < · · · a.s.

3. The inter-arrival times:

τ1 = T1, τk = Tk − Tk−1, k = 2, 3, · · · (2.1)

are iid exponentially distributed with finite mean Eτ1 = 1
λ
.

4. The claim size process: the claim sizes (Xk)k∈N are positive i.i.d.r.v. having

a common distribution F with finite mean µ = EX1, and variance σ2 =

V ar(X1) ≤ ∞.

5. The sequences (Xk) and (τk) are independent of each other.

Clearly the Cramér-Lundberg model is a compound Poisson process. The

claim arrivals process N(t) is a homogeneous Poisson process with parameter λ > 0.

Hence,

P (N(t) = k) = e−λt (λt)k

k!
, k = 0, 1, 2, · · ·

The renewal model is a generalization of the Cramér-Lundberg model, and in

the actuarial literature is referred to as the Sparre Andersen model.

Definition 2. The Sparre Andersen model is given by conditions (1), (2), (4), (5)

from the Cramér-Lundberg model definition together with:

3’. The inter-arrival times:

τ1 = T1, τk = Tk − Tk−1, k = 2, 3, · · · (2.2)

are independent, identically distributed with finite mean Eτ1 = 1
λ
.
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The claim arrivals process in a Sparre Andersen model is a renewal counting

process, meaning:

Definition 3. A process {N(t), t ≥ 0} is called a counting process if for all

t, h ≥ 0 the following three conditions are satisfied:

• N(0) = 0

• N(t) ∈ N

• N(t) ≤ N(t + h)

In the risk theory literature, the renewal counting process {N(t)} is called the

claim counting process, where N(t + h) − N(t) models the number of claims

occurring in the interval (t, t + h.] The realizations of any counting process are

monotonically decreasing and right-continuous functions.

Sometimes, it may be assumed that the probability of the first claim occurrence

is different than that of the subsequent ones. In that case, the process is called,

“delayed”:

Definition 4. Assume that T1, T2, · · · is a sequence of independent nonnegative

random variable and that T2, T3, · · · are identically distributed with distribution FT .

The random variable T1 may have an arbitrary distribution F1, which need not be

equal to FT . Then {σn, n ≥ 1} with σn = T1 + T2 + · · ·Tn is called a delayed

renewal point process. The process {N(t), t ≥ 0}, is called a delayed renewal

counting process.

The surplus process (U(t))t≥0 is defined as

U(t) = u + ct−
N(t)∑

k=1

Xk, (2.3)



15

where u ≥ 0 denotes the initial capital and c > 0 is the incoming premium rate. In

order to measure the solvency of an insurance company, the following two measures

are introduced.

Definition 5. The probability of ruin in finite time, or before a given time T is

denoted by Ψ(u, T ) and is defined as the probability that the ruin happens before the

time T,

Ψ(u, T ) = P (Tu < T | U(0) = u).

By Tu is denoted the first time the surplus of the insurance company starting with

an initial capital u goes below zero:

Tu = inf
t≥0
{U(t) < 0 | U(0) = u}.

Tu is called the time of ruin.

Definition 6. The probability of ruin with infinite horizon, or simply the probability

of ruin, is denoted by Ψ(u) and is defined as the probability that the time of ruin is

finite,

Ψ(u) = P (Tu < ∞ | U(0) = u).

Obviously, Ψ(u) = Ψ(u,∞).

Intuitively, the premium rate c should be chosen so that for a given u and a

given T, Ψ(u, T ) will be small. A suitable premium rate c should first exceed the

average paid claims as seen in the following results:

Lemma 1. For the Cramér-Lundberg model,

EU(t) = u + ct− λµt. (2.4)

For the renewal model,

EU(t) = u + ct− µEN(t). (2.5)
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Proof. See e.g. Embrechts et al. (1997), page 24.

In either cases, using the elementary renewal theorem (see e.g. Mikosch (2004),

page 62), one has

lim
t→∞

EU(t)

t
= lim

t→∞
u

t
+ c− µ lim

t→∞
EN(t)

t
= c− λµ.

A natural necessary condition for solvency is the “net profit condition:”

c− µλ > 0.

Moreover, one has the following:

Proposition 1. On the event {Tu = ∞}, the model (2.3) has the following property:

U(t) →∞ as t →∞.

Proof. Since the ruin doesn’t occur, U(t) > 0 for any t > 0. Thus, using the Law of

Large Numbers and the Key Renewal theorem:

lim
t→∞

U(t)

t
= lim

t→∞
u

t
+ c−

∑N(t)
k=1 Xk

t

= c− lim
t→∞

∑N(t)
k=1 Xk

N(t)
lim
t→∞

N(t)

t

= c− λµ > 0.

In other words as t →∞, U(t) →∞.

2.2. The integro-differential equation of the ruin probability

Definition 7. Suppose that {Xt : t ≥ 0} is a continuous-parameter stochastic

process. The process has the Markov property if for each s < t, the conditional
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distribution of Xt given {Xu, u ≤ s} is the same as the conditional distribution of

Xt given Xs. Such a process is called a continuous- parameter Markov process.

The Cramér Lundberg risk process U(t) is an example of a continuous Markov

process. Between the jumps, caused by the claims, the process is deterministic. It

is possible to show that the process is Markov using the lack of memory property

of the exponential distribution.

Definition 8. Recall the transition operator Tt of a Markov process U(t) is

given by

Ttf(u) = E[f(U(t)) | U(0) = u] (2.6)

provided E[|f(U(t))|] < ∞.

Definition 9. The infinitesimal generator of {Tt, t > 0}, or of the Markov process

Xt, is the linear operator A defined by:

Ag(x) = lim
h→0

Thg(x)− g(x)

h

for all real-valued, bounded, Borel measurable functions g defined on S, g ∈ B(S)

such that the right side converges uniformly in x to some function. The class of all

such functions g comprises the domain DA of A.

The following is a fundamentally important result about the Markov processes.

Theorem 1. Let U(t) be a right-continuous Markov process on a metric space S,

and f ∈ DA. Assume that s → (Af)(U(s)) is right-continuous for all sample paths.

Then the process Zt given by

Zt := f(U(t))−
∫ t

0

(Af)(U(s))ds t ≥ 0,

is a {Ft}-martingale, with Ft := σ{U(x) : 0 ≤ x ≤ t}.
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Proof. See e.g. Bhattacharya and Waymire (1990), page 375.

Consequence of this theorem: Ag(u) = 0 implies that g(U(t)) is a martingale,

E[g(U(t)|U(0) = u] = g(u).

Paulsen and Gjessing (1997) introduces a relationship between the infinites-

imal generator of a function of the the risk process and the probability of ruin.

Actually they show that a function g that satisfies the equation Ag(u) = 0 together

with some boundary conditions, is the ruin probability. The following theorem is an

adapted form of their theorem to the Cramér-Lundberg case with no investments.

Their original theorem together with the proof will be presented in the 4th chapter

of this thesis.

Theorem 2. Assume g(u) is a bounded, differentiable function on u ≥ 0, with a

bounded derivative. If g(u) satisfies

Ag(u) = 0

together with the boundary conditions

g(u) = 1, for u < 0,

lim
u→∞

g(u) = 0

then g(u) is the probability of ruin, in other words

g(u) = P (Tu < ∞).

Proof. The detailed proof of the theorem from Paulsen and Gjessing (1997) can be

found in the next chapter. Here is presented a sketch of the proof.
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Let Tu = inf{t : U(t) < 0}, then g(U(Tu)) = 1 since U(Tu) < 0. By hypothe-

sis, Ag(u) = 0 thus, g(U(t)) is a martingale. Since Tu is a stopping time,

g(u) = Eu[g(U(Tu ∧ t))]

= Eu[g(UTu∧t)1{Tu<t}] + Eu[g(U(Tu ∧ t))1{Tu>t}]

= Eu[g(U(Tu))]P (Tu < t) + Eu[g(U(t))]P (Tu > t)

The result follows by letting t →∞ and using the boundary conditions and propo-

sition 1,

g(u) = 1 ∗ P (Tu < ∞) + 0 ∗ P (Tu = ∞) = P (Tu < ∞).

As a consequence, the integro-differential equation satisfied by the ruin proba-

bility may be obtained if the generator of the process is calculated. For the Cramér-

Lundberg risk process

U(t) = u + ct− S(t),

the infinitesimal generator is given by

Ag(u) = cg′(u) + λ

∫ ∞

0

g(u− x)dFX(x)− λg(u) = 0

where FX is the distribution of the claim amounts Xk. Hence the integro-differential

equation for the ruin probability is:

Ψ′(u) =
λ

c
Ψ(u)− λ

c

∫ ∞

0

Ψ(u− x)dFX(x). (2.7)

This equation was previously obtained by a “renewal argument” (Feller, 1971), page

183. Since the Poisson process is a renewal process and since ruin cannot occur in
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before the first claim arrival T1, then the probability ruin Ψ(u) satisfies the following

relation:

Ψ(u) = E[Ψ(U(T1)) | U0 = u]

= E[Ψ(u + cT1 −X1)]

=

∫ ∞

0

λe−λs

∫ ∞

0

Ψ(u + cs− x)dFX(x)ds

=

∫ ∞

0

λe−λs

∫ u+cs

0

Ψ(u + cs− x)dFX(x)ds +

∫ ∞

0

λe−λs

∫ ∞

u+cs

dFX(x)ds

As in Grandell (1991), the change of variables y = u + cs leads to

Ψ(u) =
λ

c

∫ ∞

u

e−λyc

∫ y

0

Ψ(y − x)dFX(x)dy +
λ

c

∫ ∞

u

e−λyc

∫ ∞

y

dFX(x)dy. (2.8)

Consequently, Ψ is differentiable and differentiation leads to

Ψ′(u) =
λ

c
Ψ(u)− λ

c

∫ ∞

0

Ψ(u− x)dFX(x).

with the boundary condition

lim
u→∞

Ψ(u) = 0.

Thus, either through the infinitesimal generator, or through probabilistic arguments,

the same integro-differential equation (2.7) may be derived for the probability of ruin

in the classical Cramér-Lundberg model.

The Sparre Andersen model is a discrete Markov process (See Appendix A2),

therefore one needs to define its generator, instead of an infinitesimal generator. This

generator and the theorems relating it to the ruin probability will be the subject of

the next chapter. However, once the inter-arrival time distribution is given, through

similar probabilistic arguments (conditioning and differentiation), the probability of

ruin equations may be obtained.
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Examples form the literature of equations for different inter-arrival times, in

a Sparre Andersen model are:

1. Erlang(2) (Dickson and Hipp, 1998; Dickson, 2002). Let fτ (t) = β2te−βt, for

t > 0, be the density of the inter-arrival times. Then, by conditioning on the

time and the amount of the first claim, the ruin probability satisfies

Ψ(u) =

∫ ∞

0

fτ (t)

∫ u+ct

0

Ψ(u + ct− x)fX(x)dxdt +

∫ ∞

0

fτ (t)

∫ ∞

u+ct

fX(x)dxdt.

After the change of variable, s = u + ct, differentiating the equation twice, it

becomes:

c2Ψ′′(u)− 2βcΨ′(u) + β2Ψ(u) = β2

∫ ∞

0

Ψ(u− x)fX(x)dx. (2.9)

2. Erlang(n) (Li and Garrido, 2004). Let fτ (t) = βntn−1 e−βt

(n−1)!
, for t ≥ 0, be the

inter-arrival times density. Then the equation satisfied by the ruin probability

is derived to be:

n∑

k=0




n

n− k


 Ψ(k)(u)[

−β

c
]n−k = [

−β

c
]n

∫ ∞

0

Ψ(u− x)fX(x)dx, (2.10)

where




n

k


 represents the number of possible combinations of n objects

taken k at a time.

3. Sum of exponentials (Gerber and Shiu, 2005). The inter-claim time random

variables {τk} are the sum of n independent, exponentially distributed random

variables. Denote τ := τ1. Then

τ = W1 + W2 + · · ·+ Wn,
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where Wi are n independent exponentially distributed random variables with

EWi = 1
λi

. Then, by conditioning in the value of W1 +W2 + · · ·+Wj− t, t ≥ 0

(because the conditional distribution of this random variable is identical to

the exponential distribution of Wj+1), one obtains the following recurrence:

Ψj = λj+1

∫ ∞

0

e−λj+1tΨj+1(u + ct)dt, j = 0, 1, 2, · · · , n− 2.

Using the change of variables z = u + ct one gets,

Ψn−1(u) =
λn

c

∫ ∞

u

e−λn(z−u)/c

∫ z

0

Ψ(z−x)fX(x)dx+
λn

c

∫ ∞

u

e−λn(z−u)/c

∫ ∞

z

fX(x)dx.

Differentiating with respect to u the appropriate number of times, one gets

the desired integro-differential equation:

γ(D)Ψ(u) =

∫ u

0

Ψ(u− x)fX(x)dx +

∫ ∞

u

fX(x)dx, u > 0, (2.11)

where D denotes the differentiation operator and

γ(D) =
n∏

j=1

[(1− c

λj

D].

For n = 2, the distribution is referred to as a sum of two exponentials,

fτ (t) =
λ1λ2

λ2 − λ1

(e−λ1t − e−λ2t)

and the ruin probability equation has the following form,

(1− c

λ1

d

du
)(1− c

λ2

d

du
)Ψ(u) =

∫ u

0

Ψ(u− x)fX(x)dx +

∫ ∞

u

fX(x)dx, u > 0,

equivalent to

c2Ψ′′(u)− (λ1 + λ2)cΨ
′(u) + λ1λ2Ψ(u) = λ1λ2

∫ ∞

0

Ψ(u− x)fX(x)dx. (2.12)
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To summarize, this chapter introduced the basic risk model with its assump-

tions and properties. Also, for a few particular inter-arrival time distributions, the

equations for the probability of ruin were derived using the classical approach used

in risk theory. Namely, calculate first the conditional expectation of the probabil-

ity of ruin as a function of the process immediately after the first claim, given the

initial surplus, then perform the necessary number of differentiations. These equa-

tions were written based on information about inter-arrival time distributions given

apriori, when the only incoming flow is the constant premium rate.

In the next chapter, the equation for the probability of ruin will be written for

a special class of distributions for the inter-arrival times, when the incoming flow

consists of premiums and stochastic returns from investments.
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3. INSURANCE RISK MODELS - THE CASE OF
INVESTMENTS

This chapter contains the main result of this thesis. It derives an integro-

differential equation for the probability of ruin, when the surplus process is a renewal

risk process with stochastic returns from investments. It is referred to as the Sparre

Andersen process with investments. The equation is written for a large class of inter-

arrival time distributions with the option of stochastic returns from investments (if

any). Many of the processes considered in the actuarial literature are particular

cases of this one.

The result is derived through the following steps, each on its own being an

original result.

First, for a Sparre Andersen surplus model with investments, a very general

integro-differential equation is derived for the semigroup operator or, in other words,

for the conditional expectation given the initial value of the process of a function of

the surplus process immediately after the first claim. The equation derived here is

valid for any claim sizes distribution, FX , and any non-negative stochastic invest-

ment process. The only constraint of the model considered is that the density of the

inter-arrival times needs to satisfy an ordinary differential equation with constant

coefficients. The class of such distributions is referred to as mixture of Erlangs or

phase type distributions.

The second result is the key result of this thesis. It connects the general

equation developed for the transition operator of a function with the probability of

ruin. Under a given assumption regarding the asymptotic behavior of the process at
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infinity, a function that satisfying the derived equation together with some specific

boundary conditions is the probability of ruin.

Given specific values for the inter-arrival times density, and the investment

process, one may obtain many of the well-known integro-differential equations sat-

isfied by the probability of ruin.

3.1. The risk model - with investments

An insurance risk model with investments, is a classical surplus model (2.3),

U(t) = u + ct−
N(t)∑

k=1

Xk

perturbed by a non-negative stochastic process. Recall that U(t) represents the sur-

plus at time t, u represents the initial surplus, c is the constant premium rate, N(t)

is a random variable representing the number of claims incurred up to time t, Xk

are random variables representing the claim sizes, and the non-negative stochastic

process represents the price of the risky asset where the surplus is invested.

The perturbed model is considered to model the surplus for an insurance

company investing all its money, continuously into a risky asset with a price which

follows a non-negative stochastic process. The non-negativity condition is imposed

so that the ruin will not occur due to the investment only.

Since the ruin may occur only at the claim times, Tk, the surplus process may

be discretized. The discrete version

Uk := U(Tk),

is a discrete time Markov process. The process Uk immediately after the payment



26

of the k−th claim Xk may be written

Uk = ZUk−1
τk

−Xk, (3.1)

where ZUk−1
τk

represents the worth of a portfolio that results from investing the

capital Uk−1 (immediately after the payment of the k − 1 claim) and the premiums

collected over the time τk, into a risky asset.

Some example of this model equation for specific investment strategies are the

following:

1. If there are no investments, then the surplus is the basic insurance risk process

(2.3):

U(t) = u + ct−
N(t)∑

k=1

Xk.

2. If the price of the risky asset follows a geometric Brownian motion with drift

a and volatility σ2, then the equation of the surplus process is

U(t) = u + ct + a

∫ t

0

U(s)ds + σ

∫ t

0

U(s)dWs −
N(t)∑

k=1

Xk. (3.2)

3. If the price of the risky asset is modeled by a diffusion, then the equation of

the surplus model is:

U(t) = u + ct +

∫ t

0

a(s, U(s))ds +

∫ t

0

σ(s, U(s))dWs −
N(t)∑

k=1

Xk, (3.3)

where Ws is a standard Brownian motion a(s, U(s)), is the infinitesimal drift

function and σ(s, U(s)) is the infinitesimal variance, provided that σ2(t, x) ≥ 0

for any t ≥ 0 and x ∈ E, where E is the state space of U(t).

Remark 1. If N(t) is Poisson distributed, the process (2.3) is a compound Poisson

process and refers back to the classical Cramér-Lundberg model. Under this assump-

tion, the process (3.1) is referred to as the Cramér-Lundberg model with investments.
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If N(t) is a renewal process, then the process (2.3) is called the Sparre Ander-

sen model and respectively (3.2) is referred to as the Sparre Andersen model with

investments.

Lemma 2. For the Cramér-Lundberg model with investments into an asset whose

price is modeled by a geometric Brownian motion (3.2),

EU(t) =
c− µλ

a
(eat − 1). (3.4)

Proof. Since

EU(t) = u + ct + a

∫ t

0

EU(s)ds + σ

∫ t

0

EU(s)dWs − E

N(t)∑

k=1

Xk,

where
∫ t

0
EU(s)dWs = 0 and for the Cramér-Lundberg model E

∑N(t)
k=1 Xk = µλt,

then denoting f(t) = EU(t), one has

f(t) = u + (c− λµ)t + a

∫ t

0

f(s)ds.

Taking the derivative of f, one obtains the following ordinary differential equation:

f ′(t) = (c− λµ) + af(t).

Using e−at as integrating factor, the solution of the ODE is exactly (3.4)

EU(t) =
c− λµ

a
(eat − 1).

This lemma shows that a solvency condition is c − λµ > 0 and also a > 0.

In other words a positive drift of the investments together with the “net profit

condition” introduced in the classical Cramér-Lundberg model.
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The claims occur at random times, T1, T2, · · · , where the time in between

claims are denoted by τ1 = T1, τ2 = T2 − T1, · · · τn = Tn − Tn−1, · · · , and the

assumption regarding the independence of the processes {τk}k and {Xk}k still holds.

This means that the size of a claim does not depend on the time elapsed since the

previous claim.

Under renewal considerations, the specific assumptions introduced for the

model to be analyzed here are with regard to the three main variables of the model:

the claim sizes Xk, the inter-arrival times τk and the value of the investment Zu
t .

First assumption. The claim amounts {Xk}k are said to be “light” or to

have a “well-behaved ” distribution FX , i.e. exponentially bounded tail distribution

1− FX(x) ≤ ce−ax

for some positive a and c and for all x ≥ 0.

Second assumption. The density of the inter-arrival times (τk)k, fτ satisfies

an ordinary differential equation with constant coefficients, formally denoted by

L(
d

dt
)fτ (t) = 0,

with L∗ denoting the formal adjoint of the linear operator L. In general, the linear

operator L is defined by

L(
d

dt
)fτ (t) =

n∑
j=0

αj
dj

dtj
fτ (t),

with the adjoint L∗,

L∗( d

dt
)fτ (t) =

n∑
j=0

(−1)jαj
dj

dtj
fτ (t).

Third assumption. The company receives premium at a constant rate c

and invests all its money continuously into a stock with a price which follows a
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non-negative stochastic process. The investment process Zu
t is a continuous Markov

process with infinitesimal generator A. For instance, for an investment into a stock

modeled by a geometric Brownian motion, the infinitesimal generator is

A = (c + au)
d

du
+

σ2

2

d2

du2
,

whether if no investments are made, the “infinitesimal generator” is

A = c
d

du
.

By a method to be introduced here, a general integro-differential equation for

the probability of ruin is derived and later on analyzed. Many particular cases of

the equation have been already analyzed in the actuarial literature, but new higher-

order integro-differential equations may be written for investment scenarios never

considered before.

First an integro-differential equation is derived for the transition operator as-

sociated to the risk process.

3.2. The integro-differential equation of the transition op-
erator

Definition 10. For the discrete Markov process U0, U1, U2, · · · , where U0 = u, Uk =

UTk
, on the set of all real-valued, bounded, Borel-measurable functions h, define the

transition operator Th : R → R,

Th(u) := E(h(U1) | U0 = u) =

∫ ∞

0

fτ (t)

∫ ∞

0

E(h(Zu
t − x) | U(0) = u)fX(x)dxdt.
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Definition 11. The generator of the time discrete Markov process {(Uk)k≤0 | U0 =

u} is,

AUg(u) = (T − I)g(u).

Remark 2. Note that AU denotes the generator for the process U and A the in-

finitesimal generator for the process Zu
t . DAU

is the domain of the operator AU and

respectively, DA is the domain of the operator A.

Proposition 2. Mn = f(Un) −∑n−1
k=0 AUf(Uk) = f(Un) −∑n−1

k=0(T − I)f(Uk) is a

martingale.

Proof.

E(Mn+1 | F(U0, U1, · · ·Un)) = E(f(Un+1) | U0, U1, · · ·Un)−
n∑

k=0

(T − I)f(Uk)

= Tf(Un)− Tf(Un) + f(Un)−
n−1∑

k=0

(T − I)f(Uk)

= Mn

One of the main results of this thesis shows that a certain integro-differential

can be written for expected values of the function of both the risk process and the

claim sizes process.

Theorem 3. Let g ∈ DA. If fτ satisfies the ordinary differential equation with

constant coefficients

L(
d

dt
)fτ (t) = 0

and

1. f (k)(0) = 0, for k = 0, . . . , n− 2
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2. limx→∞ f (k)(x) = 0, for k = 0, . . . , n− 1

then

L∗(A)Tg(u, 0) = f (n−1)
τ (0)Eg(u,X1).

Proof. Recall that the surplus process at the time of the k−th claim, Tk, is Uk =

Z
Uk−1
τk − Xk. Consider the process (Z

Uk−1
τk , Xk)k≥0, with the first two states (Z0 =

u,X0 = 0), (Zu
τ1

, X1). Then the transition operator Tg of this process equals:

Tg(u, 0) =

∫ ∞

0

∫ ∞

0

E(g(Zt, x) | Z0 = u)fτ (t)fX(x)dxdt.

Since by assumption,

fτ (t) = − 1

α0

n∑
j=1

αj
dj

dtj
fτ (t)

then it follows that

Tg(u, 0) =

∫ ∞

0

∫ ∞

0

(− 1

α0

n∑
j=1

αj
dj

dtj
fτ (t))E(g(Zt, x) | Z0 = u)fX(x)dxdt

= − 1

α0

n∑
j=1

αj

∫ ∞

0

∫ ∞

0

dj

dtj
fτ (t)E(g(Zt, x) | Z0 = u)fX(x)dxdt

Integration by parts leads to

Tg(u, 0) =

∫ ∞

0

fX(x)[− 1

α0

n∑
j=1

αj[

j∑

k=0

dk

dtk
E(g(Zt, x) | Z0 = u)f (j−1−k)

τ (t) |∞t=0

+ (−1)j

∫ ∞

0

dj

dtj
E(g(Zt, x) | Z0 = u)fτ (t))dt]dx.

Due to the hypothesis on the derivatives of fτ , it further equals:

Tg(u, 0) =
1

α0

∫ ∞

0

fX(x)E(g(Z0, x) | Z0 = u)f (n−1)
τ (0)dx

−
∫ ∞

0

∫ ∞

0

1

α0

n∑
j=1

αj(−1)j dj

dtj
E(g(Zt, x) | Z0 = u)fτ (t))dtfX(x)dx.
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Using Kolmogorov’ backward equation and the fact that E[g(Zt, x)|Z0 = u] and A

commute on DA, one has

d

dt
E[g(Zt, x)|Z0 = u] = AE[g(Zt, x)|Z0 = u] = E[Ag(Zt, x)|Z0 = u].

Inductively, the equality becomes:

Tg(u, 0) =
1

α0

∫ ∞

0

fX(x)E(g(Z0, x) | Z0 = u)f (n−1)
τ (0)dx

−
∫ ∞

0

∫ ∞

0

1

α0

n∑
j=1

αj(−1)jEA(j)(g(Zt, x) | Z0 = u)fτ (t))dtfX(x)dx

where A(j)g = A(A(A . . . ))g, j times. Adding and and subtracting to the right-hand

side of the equality

Tg(u, 0) = E[g(ZT1 , X1) | Z0 = u]

=

∫ ∞

0

∫ ∞

0

1

α0

α0EA(0)(g(Zt, x) | Z0 = u)fτ (t))dtfX(x)dx

one obtains:

Tg(u, 0) = Tg(u, 0) +
1

α0

∫ ∞

0

fX(x)E(g(Z0, x) | Z0 = u)f (n−1)
τ (0)dx

−
∫ ∞

0

∫ ∞

0

1

α0

n∑
j=0

αj(−1)jE[A(j)(g(Zt, x) | Z0 = u)]fτ (t))dtfX(x)dx

= Tg(u, 0) +
1

α0

∫ ∞

0

fX(x)E(g(Z0, x) | Z0 = u)f (n−1)
τ (0)dx

−
∫ ∞

0

∫ ∞

0

1

α0

E[
n∑

j=0

αj(−1)jA(j)(g(Zt, x) | Z0 = u)]fτ (t))dtfX(x)dx

= Tg(u, 0) +
1

α0

∫ ∞

0

fX(x)E(g(Z0, x) | Z0 = u)f (n−1)
τ (0)dx

−
∫ ∞

0

∫ ∞

0

1

α0

EL∗(A)(g(Zt, x) | Z0 = u)fτ (t))dtfX(x)dx

= Tg(u, 0) +
1

α0

f (n−1)
τ (0)E(g(u,X1)− 1

α0

EL∗(A)(g(ZT1 , X1) | Z0 = u)
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Since T and A commute in DA, i.e. TA = AT, then by the linearity property of the

expected value, inductively, EL∗(A) = L∗(A)E. Thus,

Tg(u, 0) = Tg(u, 0) +
1

α0

f (n−1)
τ (0)Eg(u,X1)− 1

α0

L∗(A)E(g(ZT1 , X1) | Z0 = u)

In other words, for any function g in the domain of A,

1

α0

f (n−1)
τ (0)Eg(u,X1)− 1

α0

L∗(A)E(g(ZT1 , X1) | Z0 = u) = 0,

or

L∗(A)Tg(u, 0) = f (n−1)
τ (0)Eg(u,X1).

Corollary 1. If the same conditions regarding the inter-arrival times distribution

hold and moreover

Tg(u, 0) = E[g(ZT1 , X1) | Z0 = u] = g(u, 0)

then

L∗(A)g(u, 0) = f (n−1)
τ (0)Eg(u,X1).

Corollary 2. Let h ∈ DA. Then under the same conditions regarding the inter-

arrival times distribution h satisfies the equation:

L∗(A)h(u) = f (n−1)
τ (0)

∫ ∞

0

h(u− x)fX(x)dx. (3.5)

Proof. For the proof of corollaries, one has that if,

E[g(ZT1 , X1) | Z0 = u] = g(u, 0),

equivalent to Tg(u, 0) = g(u, 0) then

L∗(A)g(u, 0) = f (n−1)
τ (0)Eg(u,X1).



34

Also, for h(u− x) = g(u, x) one has

L∗(A)h(u) = f (n−1)
τ (0)

∫ ∞

0

h(u− x)fX(x)dx.

3.3. Relation to the probabilities of ruin

As mentioned before, the mathematical assignment is the asymptotic analysis

of the ruin probability of an insurance company that receives premiums, pays claims

and invests its capital.

Recall that Tu denotes the first time the surplus of the insurance company

starting with an initial capital u goes below zero:

Tu = inf
t≥0
{U(t) < 0 | U(0) = u}

and is called the time of ruin. The event of ruin refers to the first time the surplus

is negative and the probability of ruin is defined as Ψ(u) = P (Tu < ∞ | U(0) = u).

Let Tk be the time of the k− th claim. Then, the risk process

Uk = Z
Uk−1

Tk
−XTk

is a discrete Markov process. Moreover, the claim amount Xk and and the time in

between claims τk = Tk+1 − Tk are independent, meaning that the severity of the

claim doesn’t depend on the amount of time elapsed since the last claim.

Theorem 4. Assume that on the event {Tu = ∞}, Ut → ∞ as t →∞. Assume

that P (Tu < ∞) = Ψ(u) ∈ DA. Then the following are equivalent:
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1. g ∈ DA satisfies

AUg(u) = (T − I)g(u) = 0

together with the boundary conditions

g(u) = 1, on u < 0,

lim
u→∞

g(u) = 0

2. g(u) is the probability of ruin, in other words

g(u) = Ψ(u).

From AUg = (T − I)g = 0 one has Tg = g. Thus, a corollary of the theorem

is:

Corollary 3. Assume that Ψ(u) ∈ DAU
. Then the following are equivalent:

1. A function g ∈ DAU
satisfies

L∗(A)g(u) = f (n−1)
τ (0)

∫ ∞

0

g(u− x)fX(x)dx (3.6)

together with the boundary conditions

g(u) = 1, on u < 0,

lim
u→∞

g(u) = 0

2. g(u) is the probability of ruin, in other words

g(u) = Ψ(u).
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Proof. The theorem is proved first.

First part “(2) =⇒ (1).”

Since the process Uk is a renewal process and since ruin cannot occur in the the

interval (0, T1), where T1 represents the time of the first claim, then the probability

of ruin, g(u), satisfies the renewal equation,

g(u) = E(g(U1) | U0 = 0) =: Tg(u).

It is proved in the previous theorem that Tg satisfies the equation for any g ∈ DA.

Since, Tg = g it follows that g satisfies the equation. Since g is the probability of

ruin, it also satisfies the boundary conditions.

Second part, “(1) =⇒ (2).”

Let Eug(Uk) := E(g(U(Tk)) | U0 = u). Since g ∈ DAU
with

AUg(u) = 0,

then g(Uk) = g(U(Tk) is a martingale, i.e for any k,

g(u) = Eug(U(Tk)).

The time of ruin Tu is a stopping time, thus

g(u) = Eug(U(Tu))

and moreover

g(u) = Eug(U(Tu ∧ Tk))

= Eu[g(U(Tu ∧ Tk))1{Tu<Tk}] + Eu[g(U(Tu ∧ Tk))1{Tu>Tk}]

= Eug(U(Tu))P (Tu < Tk) + Eug(U(Tk))P (Tu > Tk)
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The result thus follows by letting t →∞ and using the boundary conditions,

g(u) = 1 ∗ P (Tu < ∞) + 0 ∗ P (Tu = ∞) = P (Tu < ∞).

Remark 3. The general assumption made in the theorem that on the event {Tu =

∞}, Ut → ∞ as t →∞, can be reformulated as a condition on the investment

process Zu
t .

Example 1. For a renewal risk process with no investments, it is true that on the

event {Tu = ∞}, Ut →∞ as t →∞, through a law of large number type argument,

as mentioned in the previous chapter (Proposition 1).

Example 2. For a renewal risk process with investments in a stock modeled by a

geometric Brownian motion, the following are known:

1. Using Lemma (2), one has that for c > λµ and a > 0,

EU(t) →∞ as t →∞.

2. If the process U(t) is a geometric Brownian motion with no jumps (no claims)

and no premiums, then, according to Oksendal (1998), page 65, for 2a
σ2 > 1,

U(t) →∞ as t →∞.

The derivation of the exact conditions between the parameters of a Sparre Andersen

model with investments in a stock priced by a geometric Brownian motion will be

subject of future research.
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3.4. The integro-differential equation of the ruin probability

Using theorem 4, the ruin probability satisfies the general integro-differential

equation:

L∗(A)Ψ(u) = f (n−1)
τ

∫ ∞

0

Ψ(u− x)fX(x)dx (3.7)

together with the boundary conditions:

1. limu→∞ Ψ(u) = 0,

2. (BC)

where (BC) stands for boundary conditions and n represents the degree of the

ordinary differential equation satisfied by the density of the inter-arrival times. The

boundary conditions (BC) may be derived from “compatibility” conditions assuming

that the integro-differential equation and its derivatives hold at zero. For instance,

if the investment considered is a geometric Brownian motion then the equation has

order “2n”. If the average time in between claims is 1
λ
, then the boundary conditions

will be:

1. limu→∞ Ψ(u) = 0,

2. cΨ′(0)− λΨ(0) + λ = 0,

3. k−th derivative of the equation at zero, k = 1, 2, · · · , n− 2.

Many well-known equations are a particular form of the equation (3.7). For

instance, in the Cramér-Lundberg model with no investments, the density of the

inter-arrival times is exponential, fτ (t) = λe−λt, for t > 0. Hence, it satisfies the
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following ODE with constant coefficients:

(
d

dt
+ λ)fτ (t) = 0.

Reconciling with the notation introduced here, one has

L(
d

dt
)fτ (t) = (

d

dt
+ λ)fτ (t),

with the adjoint

L∗( d

dt
)fτ (t) = (− d

dt
+ λ)fτ (t).

Since there are no investments, just a constant flow of premiums at a rate c, the

infinitesimal generator of the “investment ” process is

A = c
d

du
.

Therefore the integro-differential equation obtained from the general form (3.7) is:

(−c
d

du
+ λ)Ψ(u) = λ

∫ ∞

0

Ψ(u− x)fX(x)dx (3.8)

equivalent to the equation (2.7) and with the same boundary condition,

lim
u→∞

Ψ(u) = 0.

Also, for the Sparre Andersen with no investments, the equations and their boundary

conditions can be derived for different inter-arrival times.

1. Erlang(2). Using (3.7) the same equation can be derived for the ruin proba-

bility as in (Dickson and Hipp, 1998; Dickson, 2002):

(−c
d

du
+ β)2Ψ(u) = β2

∫ ∞

0

Ψ(u− x)fX(x)dx,

equivalent to (2.9), with the boundary conditions:



40

(a) limu→∞ Ψ(u) = 0,

(b) c2Ψ′′(0)− 2βcΨ′(0) + β2Ψ(0) = β2.

2. Erlang(n). Using (3.7) the same equation can be derived for the ruin proba-

bility as in (Li and Garrido, 2004):

(−c
d

du
+ β)nΨ(u) = βn

∫ ∞

0

Ψ(u− x)fX(x)dx,

equivalent to (2.10), with the boundary conditions:

(a) limu→∞ Ψ(u) = 0,

(b) (−c d
du

+ β)nΨ(0) = βn,

(c) the first n− 2 derivatives of the equation (2.10) evaluated at zero.

3. Sum of two exponentials. Using (3.7) the same equation can be derived for

the ruin probability as in (Gerber and Shiu, 2005):

(−c
d

du
+ β1)(−c

d

du
+ β2)Ψ(u) = β1β2

∫ ∞

0

Ψ(u− x)fX(x)dx,

equivalent to (2.12), with the boundary conditions:

(a) limu→∞ Ψ(u) = 0,

(b) c2Ψ′′(0)− c(β1 + β2)Ψ
′(0) + β1β2Ψ(0) = β1β2.

3.5. Remarks

Remark 4. The model (3.2) applies even if only a part η ∈ (0, 1] of the capital is

invested in the risky asset. In such a case, one should replace the parameters a, σ,

with ηa, respectively ησ.
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Remark 5. A very similar derivation of the transition operator Tg can be done

if the inter-arrival times density fτ satisfies a ordinary differential equation with

polynomial coefficients. The equation obtained is

EL∗(A)(g(ZT1 , X1) | Z0 = u) = f (n−1)
τ (0)E(g(u,X1),

where this time L is an operator with coefficients not necessarily constants. There-

fore, in general E and L∗(A) will not commute. Thus, this is the general equation

that can be obtained for the case of polynomial coefficients.

Remark 6. One of the difficult parts in applying Theorem 4 is determining the

domain of the operator DA. It will have to be studied on a case by case basis.

For instance, Paulsen and Gjessing (1997) considered the case of exponen-

tially distributed inter-arrival times and defined the operator AU acting on twice

continuously differentiable functions as follows:

AUg(u) =
σ2

2
u2g′′(u) + (c + au)g′(u) + λ

∫ ∞

0

(g(u− x)− g(x))dFX(x)

where λ is the intensity of the number of claims process N and FX is the distribution

of the claim amounts Xk. Their theorem is written for this special operator and it will

be presented here, in the following paragraph. Also, the ruin probability equation

for some special cases of claim sizes distributions are reproduced from their paper,

to show the technique used in determining the boundary conditions for the ruin

probability equation.

Theorem 5.

1. Assume g(u) is a bounded and twice continuously differentiable function on

u ≥ 0 with a bounded first derivative. If g(u) solves

Ag(u) = 0 on u > 0,
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together with the boundary conditions

g(u) = 1 onu < 0,

lim
u→∞

g(u) = 0,

then

g(u) = P (Tu < ∞).

2. Assume qα(u), α ≥ 0 is a bounded and twice continuous differentiable function

on u ≥ 0 with a bounded first derivative. If qα(u) solves

Aqα(u) = αqα(u) on u > 0,

together with the boundary conditions

qα(u) = 1 on u > 0,

lim
u→∞

qα(u) = 0,

then

qα(u) = E[e−αTu ].

Proof. See Paulsen and Gjessing (1997).

Paulsen and Gjessing (1997) concluded that the boundary conditions together

with the boundedness assumptions are sufficient to determine g and qα uniquely,

provided the solutions exist. They also observed that for special claim size dis-

tributions the relevant integro-differential equations may be differentiated once or

several times and thus remove the integral operator. In this case, one may retain
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the boundary value information from the original equation. To be specific, consider

the equation

Aqα(u)− αqα(u) = 0 (3.9)

since the equation Ag(u) = 0 is obtained from this by setting α = 0 and qα = g.

Then letting u → 0 in this equation and using the boundary conditions from the

theorem one finds,

cq′α(0)− (λ + α)qα(0) + λ = 0. (3.10)

If (3.9) needs to be differentiated twice, then letting u → 0 in

d

du
(Aqα(u)− αqα(u)) = 0

and assuming fX = F ′
X exists and in continuous in an interval [0, ε), one gets the

following additional boundary condition,

cq′′α(0) + (a +
cλ

α + λ
fX(0)− λ− α)q′α(0)− αλ

α + λ
fX(0) = 0. (3.11)

Since the integral term involves the distribution of the claim amounts, in order to

illustrate the choice of boundary conditions, consider the following three examples:

Example 3. Consider the case when the claim sizes Xk are exponentially distributed

with expectation 1
µ

and the inter-arrival times are exponentially distributed with ex-

pectation 1
λ
. Then from the fact that the derivative of an exponential is also an

exponential, taking the derivative of (3.9), one finds:

d

du
(Aqα(u)− αqα(u)) + µ(Aqα(u)− αqα(u)) = 0

Thus, qα(u) solves

σ2

2
u2q′′′α (u)+(

σ2

2
µu2+(a+σ2)u+c)q′′α(u)+(µau+(µc+a−σ−λ))q′α(u)−αµqα(u) = 0,

(3.12)
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with the boundary conditions

qα(u) = 1 on u < 0,

lim
u→∞

qα(u) = 0,

cq′α(0)− (λ + α)qα(0) + λ = 0.

This implies that the ruin probability Ψ(u) solves the equation

σ2

2
u2Ψ′′′(u)+(

σ2

2
µu2+(a+σ2)u+c)Ψ′′(u)+(µau+(µc+a−σ−λ))Ψ′(u) = 0, (3.13)

with the boundary conditions

Ψ(u) = 1 on u < 0,

lim
u→∞

Ψ(u) = 0,

cΨ′(0)− λΨ(0) + λ = 0.

Moreover, if the volatility σ = 0 then the surplus process U(t) is given by

U(t) = u + ct + a

∫ t

0

U(s)ds−
N(t)∑

k=1

Xk

and the ruin probability is the solution of the equation

(c + au)Ψ′′(u) + (µau + µc + a− λ)Ψ′(u) = 0 (3.14)

with the boundary conditions

lim
u→∞

Ψ(u) = 0,

cΨ′(0)− λΨ(0) + λ = 0

and it has an exact form:
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Ψ(u) =

∫∞
u

e−µx(1 + ax
c
)

λ
a
−1dx

c
λ

+
∫∞
0

e−µx(1 + ax
c
)

λ
a
−1dx

,

a result that does back to Segerdahl (1942).

Example 4. Assume that σ = 0 and the distribution of the claim amounts is a

mixture of two exponentials:

fX(x) = (θµ1e
−µ1x + (1− θ)µ2e

−µ2x)1{x≥0}.

Then the equation to be solved by the ruin probability is

d2

du2
AUΨ(u) + (µ1 + µ2)

d

du
AUΨ(u) + µ1µ2AUΨ(u) = 0

i.e. the following differential equation:

(c + au)Ψ′′′(u) + ((µ1 + µ2)au + (2a + (µ1 + µ2)c− λ))Ψ′′(u)

+(µ1µ2au + (µ1 + µ2)a + µ1µ2c− λ((1− θ)µ1 + θµ2)))Ψ
′(u) = 0

with the boundary conditions

lim
u→∞

Ψ(u) = 0,

cΨ′(0)− λΨ(0) + λ = 0,

cΨ′′(0) + (a + c(θµ1 + (1− θ)µ2)− λ)Ψ′(0) = 0.

Example 5. Consider the case when the claim sizes Xk are exponentially distributed

with expectation 1
µ

and the inter-arrival times are Erlang(2, β) distributed with ex-

pectation 2
β
. Then taking the derivative of (3.7), one finds that Ψ(u) solves a fifth

order ordinary differential equation:

d

du
(−A + β)2Ψ(u) = β2[− µ

β2
(−A + β)2Ψ(u) + µΨ(u)], (3.15)

where, A = σ2

2
u2 d2

du2 + (c + au) d
du

, with the boundary conditions
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1. Ψ(u) = 1 on u < 0,

2. limu→∞ Ψ(u) = 0,

3. c2Ψ′′(0) + c(a− 2β)Ψ′(0) + β2Ψ(0)− β2 = 0,

4. c2Ψ′′′(0)+(2ac+2aσ2+cσ2+ac−2β)Ψ′′(0)+(a−β)2Ψ′(0)−β2µΨ(0)+β2µ = 0,

5. c2Ψ(4)(0)+ (4cσ2 +5ac+2aσ2− 2βc)Ψ′′′(0)+ (4a2 +2aσ2 +σ4− 2βσ2− 4aβ +

β2)Ψ′′(0)− β2µΨ′(0)− β2µ2 = 0.

Remark 7. If the density of the claim sizes satisfies an ODE with constant coeffi-

cients of order m, then the integro-differential equations may be reduced to homoge-

neous differential equations (after taking m derivatives). The boundary conditions

may be obtained from the compatibility conditions.

In view of equation (3.7) various integro-differential equations may be written

for specific choices regarding the inter-arrival times, claim sizes or the investments

process, leading to corresponding probabilities of ruin. A few of these cases will be

presented in the next chapters, but many others can be considered.
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4. RUIN PROBABILITIES IN THE CLASSICAL RISK
MODEL

This chapter contains the analysis of the ruin probabilities for the Cramér-

Lundberg model with and without investments. The surprising result is that in-

vesting everything in an asset with returns following a geometric Brownian motion

leads faster to ruin than if no investments are made.

In the first section covering the classical case with no investments the well

known exponential bound for the probability of ruin is derived through a modern,

elegant martingale method (Rolski et al., 1999). Also, the well-known exponen-

tial decay of the probability of ruin is derived by means of Laplace transform and

completely monotone function properties Feller (1971) .

The next section addresses the case of investments in an asset with stochastic

returns modeled by a geometric Brownian motion. The asymptotic decay for both

the ruin probability in finite and infinite time is analyzed using Karamata Tauberian

methods.

For the probability of ruin with infinite horizon the surprising result is that

the probability of ruin decays slower to zero than in the classical case without

investments. Intuitively, this may be explained by the fact that a claim may occur

when the market value of the asset is low and it is not possible to be cover the losses

just by selling these assets (Frolova et al., 2002). Also surprising is that the decay of

the ruin probability in case of investments (with small volatility) depends only on the

investment parameters suggesting that the “insurance” part of the model does not

influence the long term asymptotic behavior of the ruin probability. Investments in
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a stock with large volatility lead to ruin with probability one whatever is the initial

capital.

The asymptotic behavior of the Laplace transform of the probability of ruin in

finite time is shown to have an algebraic decay rate depending on the investments

parameters and the Laplace transform coefficient.

4.1. Asymptotic analysis of the ruin probability-no invest-
ments

Recall that the classical risk model

U(t) = u + ct−
N(t)∑

k=1

Xk, (4.1)

is a compound Poisson process. The net profit conditions c > λµ guarantees a

positive incoming flow.

4.1.1 The classical martingale method

Lemma 3. Consider {U(t)t≥0} a stochastic process with stationary and independent

increments. Then a process of the form {e−RU(t)}t≥0 is a martingale iff

cR− λ(f̂X(−R)− 1) = 0. (4.2)

This is called the fundamental Lundberg equation.

Proof. Since the moment generating function of a compound Poisson process is

Ee−R
PN(t)

k=1 Xk = eλt(f̂x(R)−1)

then the conditional expected value is

E(e−RU(t) | U(0) = u) = exp(−Ru−Rct + λt(f̂X(−R)− 1)).
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Therefore, the martingale condition is equivalent to (4.2).

This R has a crucial role in the asymptotic decay of the ruin probability.

Definition 12. The exponent R > 0 for which the process is a martingale is called

the Lundberg exponent or the adjustment coefficient.

Theorem 6. Under Cramér-Lundberg conditions, the following holds

Ψ(u) ≤ e−Ru,

where R is the Lundberg exponent.

Proof. For this martingale, Doob’s inequality provides an easy and elegant way to

prove the exponential upper bound of the ruin probability:

P ( sup
0≤v≤t

(

N(v)∑

k=1

Xk−cv) ≥ u) = P ( sup
0≤v≤t

eR(
PN(v)

k=1 Xk−cv) ≥ eRu) ≤ EeR(
PN(t)

k=1 Xk−ct)

eRu
= e−Ru

Let t →∞ to get

Ψ(u) = P (inf
t≥0

(u + ct−
N(t∑

k=1

Xk) ≤ 0) = P (sup
t≥0

(

N(t∑

k=1

Xk − ct) ≥ u) ≤ e−Ru.

4.1.2 The Karamata method

The following well-known theorem regarding the exponential decay of the ruin

probability in the classical Cramér-Lundberg model will be proved using Laplace

transforms properties only. Some of the completely monotone functions properties

used here are presented in the Appendix D.
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Theorem 7. Consider the classical Cramér-Lundberg risk model (2.3),

U(t) = u + ct−
N(t)∑

k=1

Xk,

under the net profit condition, λµ < c. Assume that there exists an R > 0 the

smallest positive solution of the Lundberg equation,

∫ ∞

0

eRxdFI(x) =
c

λµ
,

where

FI(x) =
1

µ

∫ x

0

(1− FX(y))dy x ≥ 0.

Then

lim
u→∞

e−RuΨ(u) =
λµ− c

c + λf̂X

′
(−R)

. (4.3)

Proof. The integro-differential equation for the probability of ruin is

Ψ′(u) =
λ

c
Ψ(u)− λ

c

∫ ∞

0

Ψ(u− x)F (dx).

Splitting the integral from 0 to u and from u to ∞,

Ψ′(u) =
λ

c
Ψ(u)− λ

c

∫ u

0

Ψ(u− x)F (dx)− λ

c

∫ ∞

u

Ψ(u− x)F (dx),

and recalling that Ψ(x) = 1 for x < 0 we have

Ψ′(u) =
λ

c
Ψ(u)− λ

c

∫ u

0

Ψ(u− x)F (dx)− λ

c
(1− F (u)),

since F (∞) = 1. Taking the Laplace transform and using its properties, one obtains

the equation

sΨ̂(s)−Ψ(0) =
λ

c
Ψ̂(s)− λ

c
Ψ̂(s)f̂(s)− λ

c
(
1

s
− f̂(s)

s
)
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with the solution

Ψ̂(s) =
cΨ(0)− λ

s
(1− f̂(s))

cs− λ(1− f̂(s))

=
csΨ(0)− λ(1− f̂(s))

cs− λ(1− f̂(s))

1

s

=
csΨ(0) + [cs− λ(1− f̂(s))]− cs

cs− λ(1− f̂(s))

1

s

= (1 +
csΨ(0)− cs

cs− λ(1− f̂(s))
)
1

s

= (1 +
Ψ(0)− 1

1− λ
c

(1−f̂(s))
s

)
1

s
.

Since f̂ is completely monotone, that implies that 1−f̂(s)
s

is also completely

monotone (see the Appendix) . Therefore

1 +
Ψ(0)− 1

1− λ
c

(1−f̂(s))
s

is the Laplace Stieltjes transform of a measure P .

The denominator of the function Ψ̂(s) is the quantity appearing in the Lund-

berg equation(4.2), thus it vanishes at −R. Since the numerator doesn’t vanish at

−R, −R is a pole of Ψ̂(s). Rewrite

Ψ̂(s) = (1 +
Ψ(0)− 1

1− λ
c

(1−f̂(s))
s

)
s + R

s

1

s + R
,

where R is the adjustment coefficient. The function h(s) = s is completely mono-

tone, therefore (h(s))−1 = 1
s

is completely monotone and also h(s + R) and (h(s +

R))−1 are completely monotone. Since a product of completely monotone functions

is completely monotone, that means that

1 +
Ψ(0)− 1

1− λ
c

(1−f̂(s))
s

s + R

s
=: Ĝ(s)
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is completely monotone and thus the Laplace Stieltjes transform of a measure Q.

Hence, the function Ψ̂(s) can be written as

Ψ̂(s) =
1

s + R
Ĝ

=
1

s + R
(Ĝ(s)−Ψ(0) + Ψ(0))

=
1

s + R
Ĥ(s) +

1

s + R
Ψ(0),

where Ĥ(s) = Ĝ(s) − Ψ(0), for all s in the domain of Ĝ. The function Ĝ(s) is

the Laplace transform of a function G(u) and Ĥ(s) the Laplace transform of the

corresponding H(u). As the Laplace transform of a product of two functions is the

Laplace transform of the convolution of the given functions, by the uniqueness of

the Laplace transform it follows that:

Ψ(u) =

∫ u

0

e−(u−t)RH(t)dt + e−RuΨ(0). (4.4)

Passing to the limit,

lim
u→∞

eRuΨ(u) =

∫ ∞

0

e−(−R)tH(t)dt + Ψ(0) = Ĥ(−R) + Ψ(0),

which is equivalent to

lim
u→∞

eRuΨ(u) = Ĝ(−R)−Ψ(0) + Ψ(0) = Ĝ(−R).

Recall, by definition, Ĝ(s) = Ψ̂(s)(s + R), thus

Ψ̂(s) =
Ĝ(s)

s + R
=

cΨ(0)− λ
s
(1− f̂(s))

cs− λ(1− f̂(s))
:=

a(s)

b(s)

This set of equalities requires that

Ĝ(s) =
a(s)
b(s)
s+R

=
a(s)

b(s)−b(−R)
s+R

, (4.5)
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where b(−R) = 0, since b(s) = 0 is the Lundberg equation. Under these same

considerations, cs/λ = (1− f̂(s)), for s = −R. This implies

Ĝ(−R) =
a(−R)

b′(−R)
=

cΨ(0)− λ
−R

c
λ
(−R)

c + λf̂ ′(−R)
=

Ψ(0)− 1

1 + λ
c
f̂ ′(−R)

.

The initial condition, Ψ(0) = λµ
c

, leads to

Ĝ(−R) =
λµ− c

c + λf̂ ′(−R)
.

Thus,

lim
u→∞

eRuΨ(u) =
λµ− c

c + λf̂ ′(−R)
. (4.6)

Remark 8. If the claim sizes are exponentially distributed, the conditions on the

Laplace transform of the ruin probability are trivially satisfied, since Ĥ(s) = 0. In

general, the existence of the function H depends upon the tail of the distribution of

the claim sizes.

4.2. Asymptotic analysis of the ruin probabilities - invest-
ments

If the surplus is continuously invested in a risky asset the asymptotic behavior

of the probability of ruin changes dramatically. Namely, if the insurance company

invests the capital in an asset with a price that follows a geometric Brownian motion

with drift a and volatility σ, then the ruin probability has an algebraic decay rate

or equals one, depending only on the parameters a and σ of the asset.

The integro-differential equation satisfied by the probability of ruin is a par-

ticular case of the equation (3.7) derived in the previous chapter. The asymptotic
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analysis uses Karamata-Tauberian theorems and permits a generalization of the re-

sult from Frolova et al. (2002). In the cited paper the result is established only for

exponentially distributed claim sizes with a method of proof relying on special prop-

erties of the exponential functions. A generalization of the result for distributions

of the claim sizes having moment generating functions defined on a neighborhood

of the origin is possible.

4.2.1 Asymptotic decay of the probability of ruin

Recall the surplus process with investments in a stock modeled by a geometric

Brownian motion

U(t) = u + ct + a

∫ t

0

U(s)ds + σ

∫ t

0

U(s)dWs−
N(t)∑

k=1

Xk, (4.7)

is a continuous Markov process. Here Ws denotes the standard Brownian motion.

The infinitesimal generator of the process U(t) is denoted by AU . The investments

process satisfies

dZt = (c + aZt)dt + σZtdWt,

with

A = (c + au)
d

du
+

σ2

2

d2

du2.

Using the equation introduced in the previous chapter, the probability of ruin

satisfies

L∗(A)Ψ(u) =

∫ ∞

0

Ψ(u− x)fX(x)dx

since the exponential distributed inter-arrival times satisfy L∗ = (− d
dt

+ λ). Hence,

in this case the equation is

(−(c + au)
d

du
− σ2

2
u2 d2

du2
+ λ)Ψ(u) = λ

∫ ∞

0

Ψ(u− x)fX(x)dx. (4.8)
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Lemma 4. Let Ψ ∈ DA such that

AUΨ(u) = 0

with the boundary conditions

lim
u→∞

Ψ(u) = 0,

cΨ′(0)− λΨ(0) + λ = 0.

Then the Laplace transform of the equation has the form

σ2s2

2
Ψ̂′′(s)+(2sσ2−as)Ψ̂′(s)+(cs−λ+λf̂X(s)+σ2−a)Ψ̂(s) = cΨ(0)−λ

s
(1−f̂X(s)).

(4.9)

Proof. For the model (4.7) the following is true:

AUΨ(u) =
σ2

2
u2Ψ′′(u) + (au + c)Ψ′(u) + λ

∫ ∞

0

(Ψ(u− y)−Ψ(u)) dFX(y).

Because, by definition, Ψ(u−y) = 1 for any u < y, and
∫∞

0
dFX(y) = 1, the equation

is equivalent to

σ2

2
u2Ψ′′(u) + (au + c)Ψ′(u) + λ

∫ u

0

Ψ(u− y) dFX(y) + λ(1− FX(u))− λΨ(u) = 0.

The Laplace transform of this equation is

σ2

2

d2(s2Ψ̂(s))

ds2
−a

d(sΨ̂(s))

ds
+ csΨ̂(s)−λΨ̂(s)+λΨ̂(s)f̂X(s)+

λ

s
(1− f̂X(s)) = cΨ(0),

and after differentiation becomes

σ2s2

2
Ψ̂′′(s)+(2sσ2−as)Ψ̂′(s)+(cs−λ+λf̂X(s)+σ2−a)Ψ̂(s) = cΨ(0)−λ

s
(1−f̂X(s)).
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Lemma 5. Consider the same model (4.7), with a, σ2, λ, µ, c defined as before. Let

p, q, g : R → R holomorphic functions defined by

p(s) = p0 =
2(2σ2 − a)

σ2

q(s) = q0 + q1(s) =
2(σ2 − a)

σ2
+ q1(s)

g(s) = g0 + g1(s) =
2(cΨ(0)− λµ)

σ2
+ g1(s)

where q1, g1 are also holomorphic. Then the equation (4.9) has the form

s2y′′ + p(s)sy′ + q(s)y = g(s), (4.10)

and its solution has the form

y = c1s
−1γ1(s) + c2s

−2+ 2a
σ2 γ2(s) + c3γ3(s), (4.11)

under the condition 2a
σ2 < 2, with c1, c2, c3 real constants, γ1, γ2 and γ3 holomorphic

functions and γ1(0) = γ2(0) = γ3(0) = 1.

Proof. The homogeneous part of the equation (4.10) is

s2y′′ + p(s)sy′ + q(s)y = 0.

It has s = 0 as a regular singular point. Thus, the solution of the homogeneous

equation has the form

y(s) = sρ

∞∑

k=0

cks
k =

∞∑

k=0

cks
ρ+k, (4.12)

where the coefficients satisfy the recurrence system of equations c0 = 1 and

ckf(ρ + k) + ck−1f1(ρ + k − 1) + · · ·+ c0fk(ρ) = 0,
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with

f(ρ) = ρ(ρ− 1) + p0ρ + q0,

and

fk(ρ) = ρpk + qk

as in Fedoryuk (1991). The first of these equations c0f(ρ) = 0 is equivalent to

ρ2 +
3σ2 − 2a

σ2
ρ +

2σ2 − 2a

σ2
= 0.

If 2σ2 6= a, the solutions of the homogeneous equation are of the form

y1(s) = s−1γ1(s) y2(s) = s−2+ 2a
σ2 γ2(s),

where γ1(0) = γ2(0) = 1 with c1, c2, c3 real constants, γ1, γ2 and γ3 holomorphic

functions and γ1(0) = γ2(0) = γ3(0) = 1..

Using the method of variation of parameters, the particular solution of the non-

homogeneous equation is obtained using the general form from Boyce and DiPrima

(2005), (page 239):

yp(s) =
n∑

m=1

ym(s)

∫ s

s0

g(t)Wm(t)

W (t)
dt (4.13)

where n is the order of the differential equation, s0 is arbitrary, g(s) = g(s)
s2 is

the non-homogeneous part of the equation, W (s) is the determinant of coefficients

W (y1, y2) and it is nowhere zero since y1, y2 are linearly independent solutions of the

homogeneous equation. Here Wm is the determinant obtained from W by replacing

the m-th column by the column (0, 1).

W (s) = W (y1, y2) =

∣∣∣∣∣∣∣
y1 y2

y′1 y′2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
sρ1γ1(s) sρ2γ2(s)

sρ1−1γ1
1(s) sρ2−1γ1

2(s)

∣∣∣∣∣∣∣
= sρ1+ρ2−1γ(s),
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where γ1
i = ρiγi + γ′i and γ = γ1γ

1
2 − γ2γ

1
1 . Also, the Wm determinants look like

W1(s) = W (I, y2) =

∣∣∣∣∣∣∣
0 y2

1 y′2

∣∣∣∣∣∣∣
= −y2 = −sρ2γ2(s)

and

W2(s) = W (y1, I) =

∣∣∣∣∣∣∣
y1 0

y′1 1

∣∣∣∣∣∣∣
= y1 = sρ1γ1(s)

Thus, the particular solution looks like

yp(s) = y1(s)

∫ s

0

g(t)W1(t)

t2W (t)
dt + y2(s)

∫ s

0

g(t)W2(t)

t2W (t)
dt

= sρ1

∫ s

0

g(t)(−tρ2γ2(t))

t2tρ1+ρ2−1γ(t)
dt + sρ2

∫ s

0

g(t)(tρ1γ1(t))

t2tρ1+ρ2−1γ(t)
dt

= −sρ1

∫ s

0

g1(t)t
−ρ1−1dt + sρ2

∫ s

0

g2(t)t
−ρ2−1dt

= −sρ1s−ρ1g1
1(s) + sρ2s−ρ2g1

2(s)

= γ3(s)

where g1, g2, g
1
1, g

1
2, γ3(s) are holomorphic. In order to integrate within the process,

the following conditions should be imposed

−ρ1 − 1 > −1 and − ρ2 − 1 > −1

in other words

ρ1 < 0 and ρ2 < 0.

Since ρ1 = −1 < 0 for any a, σ but ρ2 < 0 imposes the condition 2a
σ2 < 2.

Thus, the solution of this equation (4.10) has the form

y = c1s
−1γ1(s) + c2s

−2+ 2a
σ2 γ2(s) + c3γ3(s),
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under the condition 2a
σ2 < 2, with c1, c2, c3 real constants, γ1, γ2 and γ3 holomorphic

functions and γ1(0) = γ2(0) = γ3(0) = 1.

Theorem 8. Consider the model given by (4.7) and assume that σ > 0. Assume

also that the distribution of the claims sizes F has a moment generating function

defined on a neighborhood of the origin. Then:

1. If the ruin probability decays at infinity, then

2a/σ2 > 1.

2. If 1 < 2a/σ2 < 2, then for some K > 0,

lim
u→∞

Ψ(u)u−1+ 2a
σ2 = K.

Proof. According to Karamata-Tauberian theorem, in order to find the asymptotic

behavior of Ψ(u) at infinity it is enough to analyze the asymptotic behavior of the

Laplace transform Ψ̂ at zero. Therefore, first is analyzed the asymptotic behavior at

zero of the solution of equation (5.7). The leading term of this linear combination

dictates the asymptotic behavior of the solution as s → 0. Since

ρ1 ≤ ρ2

two cases can be distinguished.

Case 1. If the leading term of the linear combination is sρ1 = s−1 then

Ψ̂(s) ∼ c1γ1(s)s
−1 as s → 0,
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where γ1(0) = 1. Applying Karamata Tauberian theorems

Ψ(u) ∼ c1

Γ(2)
γ(

1

u
) as u →∞.

Hence

lim
u→∞

Ψ(u) = c1,

where c1 6= 0 is a real constant. In other words, the ruin probability has a constant

asymptotic behavior, as u → ∞. Obviously, in this case, the function does not

satisfy the boundary conditions of the equation the of the ruin probability. Thus,

it is not a solution that can be considered.

Case 2. If sρ2 = s−2+ 2a
σ2 is the leading term, then

Ψ̂(s) ∼ c2γ(s)s−2+ 2a
σ2 as s → 0.

Then the Proposition 10 for l(s) = γ2(s) implies

Ψ(u) ∼ c2(2− 2a
σ2 )

Γ(3− 2a
σ2 )

γ(
1

u
)u2− 2a

σ2−1, as u →∞.

Since Ψ(u) must decay, 2a
σ2 needs to satisfy the condition 2− 2a

σ2 −1 < 0 which proves

the first part of the theorem 2a
σ2 > 1. Thus, the asymptotic decay at infinity is

lim
u→∞

Ψ(u)u−1+ 2a
σ2 = K, for 1 <

2a

σ2
< 2,

where K =
c2(2− 2a

σ2 )

Γ(3− 2a
σ2 )

, which proves the second part of the theorem.

4.2.2 Asymptotic decay of the probability of ruin in finite time

Gerber and Shiu (1998) derive the decay for the Laplace transform of the

probability of ruin in finite time, Ψ̂(u, t) via the Laplace transform of the time of
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ruin Φλ(u) = Eu(e
−λTu). The relationship between the two is a simple integration

by parts:

Φλ(u) = E(e−λTu | U(0) = u]

=

∫ ∞

0

e−λt d

dt
Ψ(u, t)dt

= λ

∫ ∞

0

e−λtΨ(u, t)dt

= λΨ̂(u, t).

In their paper, Gerber and Shiu show that Φλ(u) has an exponential decay at infinity

given by

Φλ(u) ∼ λ

−λf̂ ′X(−R)− c
(
1

R
+

1

ρ
)e−Ru

and conclude that the decay of the Laplace transform of the ruin probability in finite

time has an exponential decay as well

Ψ̂(u, t) ∼ 1

−λf̂ ′X(−R)− c
(
1

R
+

1

ρ
)e−Ru,

where R and ρ are solutions of the Lundberg equation.

The decay of the Laplace transform of the probability of ruin in finite time

Ψ̂(u, t) may be obtained from the asymptotic decay of the Laplace transform of the

time of ruin Φλ(u). Recall the theorem of Paulsen and Gjessing (1997) that gives

an equation for the Laplace transform of the time of ruin:

Theorem 9. Let Φλ be a bounded twice continuous differentiable on u ≥ 0 with a

bounded first derivative. If Φλ solves

AΦλ(u) = λΦλ(u)

together with the boundary conditions

Φλ(u) = 1, on u < 0,
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lim
u→∞

Φλ(u) = 0

then

Φλ(u) = E(e−λTu)

Obviously when λ = 0, Φλ = Ψ.

Lemma 6. Let Ψ ∈ DA such that

AΦλ(u) = λΦλ(u)

with the boundary conditions

lim
u→∞

Φλ(u) = 0,

cΦ′
λ(0)− (λ + α)Φλ(0) + λ = 0.

Then the Laplace transform of the equation has the form

σ2s2

2
Φ̂′′

λ(s)+(2sσ2−as)Φ̂′
λ(s)+(cs−λ+λf̂X(s)+σ2−a−λ)Φ̂λs) = cΦλ(0)−λ

s
(1−f̂X(s)).

(4.14)

Proof. The Laplace transform of this equation is

ÂΦ̂λ(s) = λΦ̂λ(s).

The left hand side is exactly the same as before, the only difference is a λΦ̂λ(s) on

the right hand side that it will combine with the other Φ̂λ(s) on the left proving the

result.

The equation (4.14) has the same form as before

s2y′′ + p(s)sy′ + q(s)y = g(s),
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with p, q and g holomorphic functions of the form. The only difference appears in

the q0 term.

p(s) = p0 =
2(2σ2 − a)

σ2

q(s) = q0 + q1(s) =
2(σ2 − a− λ)

σ2
+ q1(s)

g(s) = g0 + g1(s) =
2(cΨ(0)− λµ)

σ2
+ g1(s).

Following the same regularity arguments in analyzing the homogeneous equation,

the equation to be solved is

ρ(ρ− 1) + p0ρ + q0 = 0

with solutions

ρ1 = −1 +
(a− σ2

2
)−

√
(a− σ2

2
)2 + 2λσ2

σ2

ρ2 = −1 +
(a− σ2

2
) +

√
(a− σ2

2
)2 + 2λσ2

σ2
.

Thus, the solution of the non-homogeneous equation will be a linear combination

of the solutions of the homogeneous and a particular solution. For the particular

solutions, the method of variation of parameter will be used in the same manner

as in the previous chapter. From (4.13) one has that yp(s) = γ3(s), where γ3 is

a holomorphic function. As before, in order to integrate within the process, the

following conditions should be imposed

ρ1 < 0 and ρ2 < 0.

It can be shown that ρ1 < 0 for any a, σ, λ, but ρ2 < 0 imposes the condition

λ < σ2 − a. For λ = 0 the condition derived from ρ2 < 0 is 2a
σ2 < 2.
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Exactly like in the calculations of the Laplace transform of the probability of

ruin, the equation for Φ̂λ(u) has the form:

Φ̂λ(s) = c1s
−1γ1(s) + c2s

−2+ 2a
σ2 γ2(s) + c3γ3(s),

under the condition λ < σ2 − a, with c1, c2, c3 real constants, γ1, γ2 and γ3 holo-

morphic functions and γ1(0) = γ2(0) = γ3(0) = 1.

The asymptotic decay of the Laplace transform of the time of ruin will be

given by the following theorem:

Theorem 10. Consider the model given by (4.7) and assume that σ > 0. Assume

also that the distribution of the claims sizes F has a moment generating function

defined on a neighborhood of the origin. Define

Φλ(u) = E(e−λTu|U(0) = u)

and

δλ = −
(a− σ2

2
) +

√
(a− σ2

2
)2 + 2λσ2

σ2
.

If λ < σ2 − a, then for some Kλ > 0,

lim
u→∞

Φλ(u)u−δλ = Kλ.

Proof. Under the assumption σ2

2
− a > 0 there is the following ordering among the

powers of the solutions

ρ1 ≤ −1 ≤ ρ2.

As discussed in the case of the decay of the probability of ruin, sρ1 will not produce

decay on the u side. Therefore, the only candidate for the decay is

sρ2 = s−1+
(a−σ2

2 )+

√
(a−σ2

2 )2+2λσ2

σ2 .
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Then, by Proposition 10, the conclusion is

lim
u→∞

Φλ(u)u
(a−σ2

2 )+

√
(a−σ2

2 )2+2λσ2

σ2 = Kλ,

and the result follows.

Corollary 4.

lim
u→∞

Ψ̂(u, t)u−δλ =
Kλ

λ

Remark 9. Note that for λ = 0 the necessary condition for integrability is again

1 < 2a
σ2 < 2 and the asymptotic decay is

lim
u→∞

Φ0(u)uρλ = lim
u→∞

Φ0(u)u−1+ 2a
σ2 = K

where Φ0 = Ψ, i.e. the decay for the ruin probability is re-derived.

Surprisingly, investing everything in a risky asset leads faster to ruin than

not investing anything. This result is proved for a Cramér -Lundberg model with

investments is a stock with returns modeled by a geometric Brownian motion. More

surprising is the fact that the decay rate depends on the parameters of the investment

only, namely the drift a and the volatility σ. This suggests that the premium rate,

the average claim size or the average waiting time are irrelevant in terms of the decay

rate. This idea will prove instrumental in understanding the intuition of the next

chapter result, where the asymptotic decay will be studied for inter-arrival times

that are sum of exponentials with identical or various parameters. It will be shown

that the asymptotic behavior has the same decay rate irrespective of the waiting

time in between claims.

Karamata-Tauberian theorems are the key arguments in the analysis of the

asymptotic behavior of the probability of ruin in both finite or infinite time. Also,



66

this type of argument is proved to work in deriving the well-known exponential

decay of the probability of ruin if no investments are made. The same steps will be

taken in the next chapter to derive the asymptotic decay for the ruin probability

for a discrete time Markov process, in other words for a Sparre Andersen surplus

model with investments.
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5. RUIN PROBABILITIES IN THE RENEWAL RISK
MODEL

This chapter presents a comparison of the ruin probabilities when only the

inter-arrival times distributions are different.

First, by probabilistic arguments an ordering of the ruin probabilities is pre-

sented. Next, since the probabilities or ruin are solutions of the newly introduced

integro-differential equations, new comparisons are possible. The striking conclusion

is that the probabilities of ruin will have the same asymptotic decay rate, irrespective

of the inter-arrival times distribution as long as they are sums of exponentials with

identical parameters. The case of a sum of exponentials with different parameters

is conjectured to have the same asymptotic decay rate.

Note that the models considered have investments in a risky asset with prices

modeled by a geometric Brownian motion. As before, the decay rate depends on the

parameter a and σ of the investment. For small volatility 2a > σ2 the probability

of ruin has the common algebraic decay rate irrespective of the inter-arrival times

and claim sizes processes. The large volatility case is still an open question.

5.1. Ordering of the Ruin Probabilities

One of the possible methods in establishing the comparison between ruin prob-

abilities is the sample path-wise domination.
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Let

U (1)(t) = u + ct + a

∫ t

0

U(s)ds + σ

∫ t

0

U(s)dWs −
N(1)(t)∑

k=1

Xk (5.1)

be a Cramér-Lundberg risk model with investments in a risky asset with a price

which follows a geometric Brownian motion. The inter-arrival times {τ (1)
k }k are in-

dependent, exp(β) distributed random variables . The claims arrival process N (1)(t)

is a Poisson process. The probability of ruin for this process will be denoted by

Ψ1(u) = P (T (1)
u < ∞).

Let

U (2)(t) = u + ct + a

∫ t

0

U(s)ds + σ

∫ t

0

U(s)dWs −
N(2)(t)∑

k=1

Xk

be a Sparre Andersen risk model with investments in the same risky asset as in (5.1),

but with inter-arrival times {τ (2)
k }k independent, Erlang(2, β) distributed random

variables. The claim arrivals process N (2)(t) is a renewal process. The corresponding

ruin probability is

Ψ2(u) = P (T (2)
u < ∞).

Recall that τ
(1)
1 + τ

(1)
2 have the same distribution as τ

(2)
1 .

The comparison of the surplus processes under these different inter-arrival

times distributions may be achieved by a coupling of both processes derived from

the common underlying Brownian motion. To be precise, one uses

Z(t) = Z(0) exp{(a−σ2

a
)t+σWt}+c

∫ t

0

exp{(a−σ2

a
)(t−u)+σ(Wt−Wu)}du, (5.2)

the explicit representation in terms of the Brownian motion of the solution of the

stochastic differential equation governing the investment process
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dZ = (aZ + c)dt + σZdWt,

given in e.g. Thomann and Waymire (2003)). This can be thought of as a type of

stochastic Duhamel principle which can be verified using Itô’s lemma.

Lemma 7. If Z(t) satisfies the equation (5.2), then for any 0 ≤ s ≤ t,

Z(t) = Z(s) exp{(a−σ2

a
)(t−s)+σ(Wt−Ws)}+c

∫ t

s

exp{(a−σ2

a
)(t−u)+σ(Wt−Wu)}du

Proof.

Z(t) = Z(0) exp{(a− σ2

a
)t + σWt}+ c

∫ t

0

exp{(a− σ2

a
)(t− u) + σ(Wt −Wu)}du

= Z(0) exp{(a− σ2

a
)(t− s + s) + σ(Wt −Ws + Ws)}

+ c

∫ s

0

exp{(a− σ2

a
)[(t− s) + (s− u)] + σ[(Wt −Ws) + (Ws −Wu)]}du

+ c

∫ t

s

exp{(a− σ2

a
)(t− u) + σ(Wt −Wu)}du

= {Z(0) exp{(a− σ2

a
)s + σWs}+ c

∫ s

0

exp{(a− σ2

a
)(s− u) + σ(Ws −Wu)}du}

× exp{(a− σ2

a
)(t− s) + σ(Wt −Ws)}

+ c

∫ t

s

exp{(a− σ2

a
)(t− u) + σ(Wt −Wu)}du

= Z(s) exp{(a− σ2

a
)(t− s) + σ(Wt −Ws)}

+ c

∫ t

s

exp{(a− σ2

a
)(t− u) + σ(Wt −Wu)}du.

Proposition 3. For the processes U (1) and U (2) defined above, the probabilities of

ruin have the following order:

Ψ1(u) ≥ Ψ2(u).
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Proof. In order to compare the two ruin probabilities Ψ1(u) and Ψ2(u), one compares

the two surplus processes U (1) and U (2) along each sample path of the Brownian

motion. Both start with the same initial surplus u and have the same underling

Brownian motion. Let T
(1)
1 denote the time of the first claim in the U (1) process.

Then for any 0 ≤ t < T
(1)
1 , according to the equation (5.2) one has

U (2)(t) = u exp{(a− σ2

a
)t + σWt}+ c

∫ t

0

exp{(a− σ2

a
)(t− u) + σ(Wt −Wu)}du

= U (1)(t).

At t = T
(1)
1 ,

U (2)(T
(1)
1 ) = u{exp[(a− σ2

2
)T

(1)
1 + σW

T
(1)
1
}

+ c

∫ T
(1)
1

0

exp{(a− σ2

2
)(T

(1)
1 − u) + σ(W

T
(1)
1
−Wu}du

≥ u{exp[(a− σ2

2
)T

(1)
1 + σW

T
(1)
1
}

+ c

∫ T
(1)
1

0

exp{(a− σ2

2
)(T

(1)
1 − u) + σ(W

T
(1)
1
−Wu}du−X

(1)
1

= U (1)(T
(1)
1 ).

For T
(1)
1 ≤ t < T

(1)
2 , according to Lemma 7

U (2)(t) = U (2)(T
(1)
1 ) exp{(a− σ2

a
)(t− T

(1)
1 ) + σ(Wt −W

T
(1)
1
}

+ c

∫ t

T
(1)
1

exp{(a− σ2

a
)(t− u) + σ(Wt −Wu)}du

≥ U (1)(T
(1)
1 ) exp{(a− σ2

a
)(t− T

(1)
1 ) + σ(Wt −W

T
(1)
1
}

+ c

∫ t

T
(1)
1

exp{(a− σ2

a
)(t− u) + σ(Wt −Wu)}du

= U (1)(t)

It follows by induction that U (1)(t) ≤ U (2)(t) for any t. Therefore, P (T
(1)
u <

∞) ≤ P (T
(2)
u < ∞) for any u.



71

Proposition 4. For m < n, in the case of Erlang(m,β), Erlang(n, β) risk pro-

cesses

Ψn(u) ≤ Ψm(u).

Proof. Analogously to the previous proof, it can be shown that

Ψn+1(u) ≤ Ψn(u).

Inductively, this means

Ψ1(u) ≥ Ψ2(u) ≥ Ψ3(u) ≥ · · ·Ψn(2) · · ·

for any n ∈ N. Thus, for an m < n, the result follows.

5.2. Asymptotic analysis of the ruin probability

5.2.1 Inter-arrival times Erlang(2, β) distributed

Lemma 8. Consider that the surplus model (3.2)) has inter-arrival times τk that

are Erlang(2, β), distributed with the density function

fτ (t) = β2te−βt, for t ≥ 0.

Then the equation for the probability of ruin is

(−A + β)2Ψ(u) = f (n−1)
τ (0)

∫ ∞

0

Ψ(u− x)fX(x)dx (5.3)
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equivalent to

β2

∫ u

0

Ψ(u− x)fX(x)dx + β2(1− FX(u)) = (
σ2

2
)2u4Ψ(4)(u)

+ σ2u2(c + au + σ2u)Ψ′′′(u)

+ [(c + au)2 + σ2u[2au +
σ2

2
u− βu + c)]Ψ′′(u)

+ (c + au)(a− 2β)Ψ′(u)

+ β2Ψ(u)

with the boundary conditions:

1. limu→∞ Ψ(u) = 0,

2. c2Ψ′′(0) + c(a− 2β)Ψ′(0) + β2Ψ(0)− β2 = 0,

3. c2Ψ′′′(0)+92ac+2aσ2 + cσ2 +ac− 2β)Ψ′′(0)+ (a−β)2Ψ′(0)−β2Ψ(0)fX(0)+

β2fX(0) = 0,

4. c2Ψ(4)(0)+ (4cσ2 +5ac+2aσ2− 2βc)Ψ′′′(0)+ (4a2 +2aσ2 +σ4− 2βσ2− 4aβ +

β2)Ψ′′(0)− β2fX(0)Ψ′(0) + β2f ′X(0) = 0.

Proof. For an Erlang(2, β) distribution,

L(
d

dt
) = (

d

dt
+ β)2,

thus the equation (3.7) is specifically:

(−A + β)2Ψ(u) = f (n−1)
τ (0)

∫ ∞

0

Ψ(u− x)fX(x)dx

equivalent to

(AA− 2βA + β2)Ψ(u) = β2

∫ u

0

Ψ(u− x)fX(x)dx + β2

∫ ∞

u

fX(x)dx (5.4)
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where

A =
σ2

2
u2 d2

du2
+ (au + c)

d

du

and

AA =
σ2

2
u2A′′ + (au + c)A′

with

A′Ψ(u) =
σ2

2
u2Ψ′′′(u) + σ2uΨ′′(u) + aΨ′(u) + (c + au)Ψ′′(u)

and

A′′Ψ(u) =
σ2

2
u2Ψ(4)(u) + (2σ2u + c + au)Ψ′′′(u) + (2a + σ2)Ψ′′(u).

Thus, the explicit equation for the ruin probability in case on investments in a

geometric Brownian motion with inter-arrival times Erlang(2, β) distributed is a

forth order integro-differential equation:

β2

∫ u

0

Ψ(u− x)fX(x)dx + β2(1− FX(u)) = (
σ2

2
)2u4Ψ(4)(u)

+ σ2u2(c + au + σ2u)Ψ′′′(u)

+ [(c + au)2 + σ2u[2au +
σ2

2
u− βu + c)]Ψ′′(u)

+ (c + au)(a− 2β)Ψ′(u)

+ β2Ψ(u)

with the boundary conditions obtained from the fact that the equation holds at zero

and so do the first two derivatives of the equation.

Lemma 9. The Laplace transform of equation (5.4) is of the form

ÂÂΨ̂− 2βÂΨ̂ + β2Ψ̂ = β2Ψ̂f̂X , (5.5)

and its general solution have the form:

Ψ̂(s) = c1s
ρ1γ1(s) + c2s

ρ2γ2(s) + c3s
ρ3γ3(s) + c4s

ρ4γ4(s) + c5γ5(s),
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under the condition 2a
σ2 < 2, with

1. ρ3 = −1 +
−(σ2

2
−a)+

q
(σ2

2
−a)2+4βσ2

σ2 = ρ2−1
2

+
√

(ρ2+1
2

)2 + 4β
σ2

2. ρ4 = −1 +
−(σ2

2
−a)−

q
(σ2

2
−a)2+4βσ2

σ2 = ρ2−1
2
−

√
(ρ2+1

2
)2 + 4β

σ2

and c1, c2, c3 real constants, γi, holomorphic functions, γi(0) = 1, for i = 1, .., 5.

Proof. The Laplace transform of equation (5.4) is of the form

ÂÂΨ̂− 2βÂΨ̂ + β2Ψ̂ = β2Ψ̂f̂X , (5.6)

where

ÂΨ̂(s) =
σ2

2

d2

ds2
[s2Ψ̂(s)]− a

d

ds
[sΨ̂(s)] + c(sΨ̂(s)−Ψ(0))

and

ÂÂΨ̂(s) = (
σ2

2
)2 d2

ds2
[s2 d2

ds2
s2Ψ̂(s)]− a

σ2

2

d2

ds2
[s2 d

ds
sΨ̂(s)] + c

σ2

2

d2

ds2
[s2(sΨ̂(s)−Ψ(0))]

− σ2

2
a

d

ds
[s

d2

ds2
(s2Ψ̂(s))] + a2 d

ds
[s

d

ds
(sΨ̂(s))] + ac

d

ds
(s2Ψ̂(s)− sΨ(0))

+
σ2

2
cs

d2

ds2
[s2Ψ̂(s)]− acs

d

ds
[sΨ̂(s)] + c2s(sΨ̂(s)−Ψ(0))− cAΨ(u) |u=0 .

All together,
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β2Ψ̂(s)f̂X(s) =
σ4

4

d2

ds2
[s2 d2

ds2
s2Ψ̂(s)]− σ2

2
a

d2

ds2
[s2 d

ds
sΨ̂(s)]

+
σ2

2
c

d2

ds2
[s2(csΨ̂(s)−Ψ(0))]− σ2

2
a

d

ds
[s

d2

ds2
(s2Ψ̂(s)]

+ a2 d

ds
[s

d

ds
(sΨ̂(s))]− ac

d

ds
[s2Ψ̂(s)− sΨ(0)]

+
σ2

s
cs

d2

ds2
[s2Ψ̂(s)]− acs

d

ds
[sΨ̂(s)] + c2s2Ψ̂(s)− c2sΨ(0)

− cAΨ(u) |u=0 −2β
σ2

2

d2

ds2
[s2Ψ̂(s)] + 2βa

d

ds
[sΨ̂(s)]

− 2βc(sΨ̂(s)−Ψ(0)) + β2Ψ̂(s) + β2(
1

s
− f̂X(s)

s
)

Thus, the equation to be analyzed in the Laplace side is a non-homogeneous ordinary

differential equation of the form

s4y′′′′ + p(s)s3y′′′ + q(s)s2y′′ + r(s)sy′ + m(s)y = n(s), (5.7)

with p, q, r, m and n holomorphic functions. The regularity at zero of this ODE

implies that the solution has the form

ŷ(s) = sρ

∞∑

k=0

cks
k =

∞∑

k=0

cks
ρ+k, (5.8)

Since the equation is regular at zero, the coefficients of powers of s less or equal

than ρ should be zero. The powers higher than ρ will be zero at zero, therefore their

coefficients will not be classified.

Looking term by term at the Laplace transform equation, the different powers

ρ of s and their coefficients are found as follows.

The terms that are the power ρ of s :

T (sρ) :=
σ4

4

d2

ds2
[s2 d2

ds2
s2Ψ̂(s)]− σ2

2
a

d2

ds2
[s2 d

ds
sΨ̂(s)]− σ2

2
a

d

ds
[s

d2

ds2
(s2Ψ̂(s)]

+ a2 d

ds
[s

d

ds
(sΨ̂(s))]− 2β

σ2

2

d2

ds2
[s2Ψ̂(s)] + 2βa

d

ds
[sΨ̂(s)] + β2Ψ̂(s)(5.9)
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with the equation in ρ to be solved:

[−(ρ + 1)(
σ2

2
(ρ + 2)− a) + β]2 = β2. (5.10)

Denote δ := (ρ + 1)[σ2

2
(ρ + 2)− a] then the equation to be solved is of the form

(−δ + β)2 = β2. (5.11)

This equation has two solutions

δ1 = 0

and

δ2 = 2β,

that lead to two second order equations in ρ:

(ρ + 1)[
σ2

2
(ρ + 2)− a] = 0

and

(ρ + 1)[
σ2

2
(ρ + 2)− a] = 2β.

The first equation produces the same solutions as in the exponential times case.

The other equation produces solutions that depend on the parameter β of the time

density. The solutions are:

1. ρ1 = −1

2. ρ2 = −2 + 2a
σ2

3. ρ3 = −1 +
−(σ2

2
−a)+

q
(σ2

2
−a)2+4βσ2

σ2 = ρ2−1
2

+
√

(ρ2+1
2

)2 + 4β
σ2

4. ρ4 = −1 +
−(σ2

2
−a)−

q
(σ2

2
−a)2+4βσ2

σ2 = ρ2−1
2
−

√
(ρ2+1

2
)2 + 4β

σ2
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Note that the order of these solutions is the following:

ρ4 ≤ ρ1 ≤ ρ2 ≤ ρ3.

If 2σ2 6= a, the solutions of the homogeneous equation are distinct:

y1(s) = sρ1γ1(s) y2(s) = sρ2γ2(s) y3(s) = sρ3γ3(s), y4(s) = sρ4γ4(s)

where γ1(0) = 1, for i = 1, . . . , 4. Using the method of variation of parameters, the

particular solution of the non-homogeneous equation is obtained using the general

form from Boyce and DiPrima (2005), (page 239):

yp(s) =
n∑

m=1

ym(s)

∫ s

s0

g(t)Wm(t)

W (t)
dt

where, in this case, n = 4 is the order of the differential equation, s0 will be con-

sidered zero, g(s) = n(s)
s4 is the right-hand side of the equation. Proceeding in the

same manner as in the previous chapter, one obtains:

W (s) = W (y1, y2, y3, y4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣∣∣

= sρ1+ρ2+ρ3+ρ4−6γ(s)

where γ(s) is a holomorphic function. Here Wm is the determinant obtained from

W by replacing the m-th column by the column (0, 0, 0, 1). Consequently,

W1(s) = W (I, y2, y3, y4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y2 y3 y4

0 y′2 y′3 y′4

0 y′′2 y′′3 y′′4

1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣∣∣

= γ1(s)sρ2+ρ3+ρ4−3

. . .
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W4(s) = W (y1, y2, y3, I) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 0

y′1 y′2 y′3 0

y′′1 y′′2 y′′3 0

y′′′1 y′′′2 y′′′3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= γ4(s)sρ1+ρ2+ρ3−3

where γi are holomorphic, for i = 1, 2, 3, 4.

Thus, the particular solution is:

yp(s) =
4∑

m=1

ym(s)

∫ s

0

n(t)Wm(t)

t4W (t)
dt

= y1

∫ s

0

n(t)W1(t)

t4W (t)
dt + y2

∫ s

0

n(t)W2(t)

t4W (t)
dt + y3

∫ s

0

n(t)W3(t)

t4W (t)
dt + y4

∫ s

0

n(t)W4(t)

t4W (t)
dt

= sρ1

∫ s

0

C1n(t)tρ2+ρ3+ρ4−3

Ct4tρ1+ρ2+ρ3+ρ4−6
dt + sρ2

∫ s

0

C2n(t)tρ1+ρ3+ρ4−3

Ct4tρ1+ρ2+ρ3+ρ4−6
dt

+ sρ3

∫ s

0

C3n(t)tρ1+ρ2+ρ4−3

Ct4tρ1+ρ2+ρ3+ρ4−6
dt + sρ4

∫ s

0

C4n(t)tρ1+ρ2+ρ3−3

Ct4tρ1+ρ2+ρ3+ρ4−6
dt

= sρ1

∫ s

0

C1n(t)t−ρ1−1

C
dt + sρ2

∫ s

0

C2n(t)t−ρ2−1

C
dt

+ sρ3

∫ s

0

C3n(t)t−ρ3−1

C
dt + sρ4

∫ s

0

C4n(t)t−ρ4−1

C
dt

= sρ1s−ρ1n1(s) + sρ2s−ρ2n2(s) + sρ3s−ρ3n3(s) + sρ4s−ρ4n4(s)

= γ5(s)

where γ5(s) is a holomorphic function. Note that in order to integrate the following

restriction should be imposed on the powers ρis:

−1− ρi > −1 or ρi < 0

for any i = 1, 2, 3, 4. Since some of the powers are negative for any a, σ, β and

between the powers there is the following order

ρ4 ≤ ρ1 = −1 ≤ ρ2 ≤ ρ3
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the only conditions to be imposed are:

ρ2 = −2 +
2a

σ2
< 0

and

ρ3 = −1 +
−(σ2

2
− a) +

√
(σ2

2
− a)2 + 4βσ2

σ2
< 0.

These translate into

2a

σ2
< 2

and

−(σ2

2
− a) +

√
(σ2

2
− a)2 + 4βσ2

σ2
< 1

√
(
σ2

2
− a)2 + 4βσ2 < σ2 +

σ2

2
− a

(
σ2

2
− a)2 + 4βσ2 < σ4 + 2σ2(

σ2

2
− a) + (

σ2

2
− a)2

i.e.

β <
σ2 − a

2
.

Therefore, the solution of the Laplace transform equation is

Ψ̂(s) = c1s
ρ1γ1(s) + c2s

ρ2γ2(s) + c3s
ρ3γ3(s) + c4s

ρ4γ4(s) + c5γ5(s),

under the conditions 2a
σ2 < 2, and β < σ2−a

2
with ci real constants and γi holomorphic

functions with γi(0) = 1, for i = 1, .., 5.

Theorem 11. Consider the model given by

Ut = u + ct + a

∫ t

0

Usds + σ

∫ t

0

UsdWs−
N(t)∑

k=1

Xk, (5.12)
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with positive volatility σ > 0. The distribution of the inter-arrival times Fτ is

Erlang(2, β) and the distribution of the claim sizes FX is assumed to have a moment

generating function defined on a neighborhood of the origin, with mean µ. Then as

u →∞,

Ψ(u) ∼





k1u
1− 2a

σ2 if 1 < 2a
σ2 < 2

k2u
−2
q

β

σ2 if 2a
σ2 = 1

k3u
−α if 2a

σ2 < 1

where α =
−(σ2

2
−a)+

q
(σ2

2
−a)2+4βσ2

σ2 > 0 when 2a < σ2.

Proof. Similarly to the exponential inter-arrival times analysis (Constantinescu and

Thomann, 2005), the main ingredient of the proof is the Karamata-Tauberian the-

orem.

Since the equation of the Laplace transform is regular at zero, it was estab-

lished that the solution is a linear combination of powers of s, ρ1, ρ2, ρ3, ρ4. The

equation for the coefficient of sρ will be a fourth order equation in ρ whose solu-

tions are the powers of the Laplace transform of the ruin probability, Ψ̂(s). In other

words, they will indicate the decay of Ψ̂(s) as s → 0 and imply the decay of Ψ(u)

as u →∞. The asymptotic behavior of the solution as s → 0, is determined by the

smallest power of s. When written in increasing order,

ρ4 ≤ ρ1 ≤ ρ2 ≤ ρ3

they allow an analysis of their individual potential to be the leading term of the

decay.

Consider ρ4 = −1+
−(σ2

2
−a)−

q
(σ2

2
−a)2+4βσ2

σ2 the first candidate for the algebraic
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decay rate of Ψ̂(s). This means,

Ũ(s) = Ψ̂(s) ∼ k̃s−1+
−( σ2

2 −a)−
√

( σ2
2 −a)2+4βσ2

σ2 as s → 0

and the Karamata-Tauberian theorem implies that

Ψ(u) ∼ k̃s
( σ2

2 −a)+

√
( σ2

2 −a)2+4βσ2

σ2 as u →∞,

where
(σ2

2
−a)+

q
(σ2

2
−a)2+4βσ2

σ2 is always positive. Thus, as u → ∞ the probability

of ruin has an algebraic growth, contradicting the fourth boundary condition that

requires decay to zero at infinity. Hence, since both ρ4 and ρ1 are less or equal than

−1, they cannot be leading terms. This implies that the linear combination of the

other two solutions

Ψ̂(s) = c2s
ρ2γ2(s) + c3s

ρ3γ3(s)

will determine the decay as s → 0, and furthermore the decay as u → ∞ of Ψ(u).

Depending on the drift and volatility of the risky asset, the following cases are

analyzed.

Case 1. If 2a/σ2 > 1, then the asymptotic behavior is given by the linear

combination of powers ρ2 and ρ3 of s. Since the decay is driven by the slowest one,

the leading term is ρ2 = −2 + 2a
σ2 . By Karamata-Tauberian arguments

Ψ(u) ∼ c2(2− 2a
σ2 )

Γ(3− ρ)
γ(

1

u
)u1− 2a

σ2 , as u →∞,

where γ(0) = 1. Letting

k1 =
c2(2− 2a

σ2 )

Γ(3− ρ)

gives

Ψ(u) ∼ k1u
1− 2a

σ2 , as u →∞.
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If the coefficient c2 = 0 this implies the leading term is sρ3 , but this will imply

that the probability of ruin decays faster in the Erlang(2) than in the Erlang(3)

risk model, contradicting the ordering established at the beginning of this chapter.

Therefore, c2 6= 0 which proves the first part of the theorem.

Case 2. If 2a/σ2 = 1, as before, ρ2 = −1 cannot be considered. The leading

term is

ρ3 = −1 + 2

√
β

σ2

and going through Karamata-Tauberian arguments, the asymptotic decay of the

ruin probability is:

Ψ(u) ∼ k2u
−2
q

β

σ2 , as u →∞.

Case 3. If 2a/σ2 < 1, ρ2 is excluded because is not producing decay of the

ruin probability. Again the leading power is

ρ3 = −1 +
−(σ2

2
− a) +

√
(σ2

2
− a)2 + 4βσ2

σ2
.

The same Karamata-Tauberian, Monotone Function Theorem arguments imply that

the asymptotic decay of the ruin probability is:

Ψ(u) ∼ k3u
−−( σ2

2 −a)+

√
( σ2

2 −a)2+4βσ2

σ2 , as u →∞

5.2.2 Inter-arrival times Erlang(n, β) distributed

Theorem 12. Consider the model given by

Ut = u + ct + a

∫ t

0

Usds + σ

∫ t

0

UsdWs−
N(t)∑

k=1

Xk, (5.13)
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with positive volatility σ > 0. The distribution of the inter-arrival times Fτ is

Erlang(n, β) and the distribution of the claim sizes FX is assumed to have a moment

generating function defined on a neighborhood of the origin, with the n-th moment

E(Xn) = µn. Then

lim
u→∞

Ψ(u)u−1+ 2a
σ2 = kn for

2a

σ2
< 3.

Proof. As before, the probability of ruin satisfies the equation

L∗(A)Ψ(u) = βn

∫ ∞

0

Ψ(u− x)fX(x)dx,

where for the Erlang(n, β) distributed inter-arrival times, L∗( d
dt

) = (− d
dt

+ β)n.

Hence the probability of ruin is a solution of the equation,

(−A + β)nΨ(u) = βn

∫ ∞

0

Ψ(u− x)fX(x)dx

with the boundary conditions:

1. limu→∞ Ψ(u) = 0,

2. (−σ2

2
u2 d2

du2 − (c + au) d
du

+ β)nΨ(0) = βn.

The other 2n− 2 boundary conditions regarding the values of the derivatives of Ψ

at zero will not be used in the derivation of the asymptotic decay. The Laplace

transform of this equation is

((−1)nÂnΨ̂(s) + · · · βn) = βnΨ̂(s)f̂x(s) + βn(
1

s
− f̂X(s)

s
),

with s = 0 a regular singular point of the homogeneous equation. Thus, solving the

homogeneous equation it reduces again to solving the indicial equation. Also, note

that since the right-hand side of the equation is analytic, it can be shown that the
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particular solution of the non-homogeneous equation is analytic. For the asymptotic

analysis to follow, this means that the particular solution will not be a candidate for

the decay rate. Therefore, the relevant solutions are the ones coming from solving

the homogeneous equation, which in this case means solving the indicial equation.

Recall that the coefficient Tρ of the sρ is as follows:

Tρ(ÂΨ̂) = [
σ2

2
(ρ + 2)− a](ρ + 1) := δ,

Tρ(ÂÂΨ̂) = [
σ2

2
(ρ + 2)− a]2(ρ + 1)2 := δ2

and, by induction,

Tρ(Â
(n)Ψ̂) = [

σ2

2
(ρ + 2)− a]n(ρ + 1)n := δn.

Thus, the Tρ coefficient in the Laplace transform equation is

Tρ(equation) := (−δ + β)n − βn.

This should be zero, leading to the conclusion that the solutions are of the form

δ = β(1− e
2πik

n ), (5.14)

where k = 0, 1, 2, · · · , n − 1, and δ = (ρ + 1)(ρ + 2 − 2a
σ2 ). These solutions should

be real, therefore, two cases can be distinguished, n odd and n even. But before

discussing this particular cases, an important observation may be made about the

complex solutions of this equation.

Proposition 5. The real parts of the complex conjugate solutions of the equation

(5.14) lie always outside the interval determined by ρ1 = −1 and ρ2 = −2 + 2a
σ2 .

Proof. The equation (5.14) is equivalent to

(ρ− ρ1)(ρ− ρ2) = β(1− e
2πik

n ). (5.15)
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Consider the complex solutions ρ = α + ib, where b 6= 0. Then the equation (5.15)

may be written as

(α− ρ1 + ib)(α− ρ2 + ib) = β(1− cos(
2πk

n
)− i sin(

2πk

n
)),

with the real part satisfying the equation

(α− ρ1)(α− ρ2)− b2 = β(1− cos(
2πk

n
)).

This implies

(α− ρ1)(α− ρ2) = b2 + β(1− cos(
2πk

n
)) > 0,

i.e. the product (α−ρ1)(α−ρ2) is always positive. Therefore, (α−ρ1) and (α−ρ2)

have to have the same sign, in other words, α is either bigger than both ρ1 and ρ2

or is smaller than both. Thus the result follows.

After analyzing the complex solutions, returning to the possible real solutions,

one has the following two cases.

Case 1. For n odd the only two real solutions are

1. ρ1 = −1

2. ρ2 = −2 + 2a
σ2

where ρ1 ≤ ρ2. This is exactly the same situation encounter in the exponential case.

Since ρ1 doesn’t produce decay, ρ2 is the leading term, i.e.

lim
s→0

Ψ̂(s) = s2− 2a
σ2 c2
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. The same Karamata Tauberian arguments used before imply that the decay of

the probability of ruin is

lim
u→∞

Ψ(u)u−1+ 2a
σ2 = kn for 1 <

2a

σ2
< 2.

Case 2. For n even there are four real solutions

1. ρ1 = −1

2. ρ2 = −2 + 2a
σ2

3. ρ3 = −1 +
−(σ2

2
−a)+

q
(σ2

2
−a)2+4βσ2

σ2 = ρ2−1
2

+
√

(ρ2+1
2

)2 + 4β
σ2

4. ρ4 = −1 +
−(σ2

2
−a)−

q
(σ2

2
−a)2+4βσ2

σ2 = ρ2−1
2
−

√
(ρ2+1

2
)2 + 4β

σ2 ,

where ρ4 ≤ ρ1 ≤ ρ2 ≤ ρ3. The first two candidates, ρ4 and ρ1 do not produce decay.

Therefore, Ψ̂(s) ∼ c2s
ρ2 + c3s

ρ3 are to be considered. The decay will not be faster

than the slowest one, so sρ
2 is the leading term. This gives the same decay as for

exponentials,

lim
u→∞

Ψ(u)u−1+ 2a
σ2 = kn for 1 <

2a

σ2
< 2.

Suppose c2 = 0. Then the leading term of the decay is sρ3 . This will imply

lim
u→∞

Ψ(u)u
−( σ2

2 =kn−a)−
√

( σ2
2 −a)2+4βσ2

σ2 (=− ρ2−1
2

+
q

(
ρ2+1

2
)2+ 4β

σ2 ) for 1 <
2a

σ2
< 2.

a faster decay at infinity than the one of an exponential. Due to the ordering of the

ruin probabilities established before, Ψn+1(u) ≤ Ψn(u) ≤ Ψn−1(u), where n− 1 and

n + 1 are odd, i.e. both Ψn−1 and Ψn+1 decay as slow as an exponential (Case 1)

then Ψn(u) cannot decay faster than an exponential, i.e. c2 6= 0.

Thus, for any n the probability of ruin has the same decay rate as in the case

of inter-arrival times exponentially distributed

lim
u→∞

Ψ(u)u−1+ 2a
σ2 = kn for 1 <

2a

σ2
< 2.
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5.2.3 Inter-arrival times distributed as a sum of two exponentials

As a summary of the steps introduced here for the asymptotic analysis, the case

of inter-arrival times that are distributed as a sum of two exponentials is presented

in detail.

Theorem 13. If in the Sparre Andersen model with investments in a stock with

returns modeled by a geometric Brownian motion with drift a and positive volatility

σ,

Ut = u + ct + a

∫ t

0

Us + σ

∫ t

0

UsdWs −
N(t)∑

k=1

Xk,

the inter-arrival times follow a mixture of exponentials type distribution,

fτ (t) =
β1β2

β2 − β1

(e−β1t − e−β2t)

then the probability of ruin has an algebraic decay rate as u goes to infinity,

Ψ(u) ∼





k1u
1− 2a

σ2 if 1 < 2a
σ2 < 2

k2u
−2
q

β1+β2
2σ2 if 2a

σ2 = 1

k3u
−α if 2a

σ2 < 1

where α =
−(σ2

2
−a)+

q
(σ2

2
−a)2+2(β1+β2)σ2

σ2 > 0 when 2a < σ2.

Proof. Recall that the probability of ruin satisfies the integro-differential equation

L∗(A)Ψ(u) = f (n−1)
τ (0)

∫ ∞

0

Ψ(u− x)fX(x)dx.
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In the case of inter-arrival times distributed as a mixture of exponentials, the density

fτ satisfies an ordinary differential equation of order n = 2, and the linear operator

L is

L(
d

dt
)fτ (t) = (

d

dt
+ β1)(

d

dt
+ β2)fτ (t) = 0,

thus

L∗(A) = (−A + β1)(−A + β2).

Hence the integro-differential equation satisfied by the probability of ruin is:

(−A + β1)(−A + β2)Ψ(u) = f ′τ (0)

∫ ∞

0

Ψ(u− x)fX(x)dx

equivalent to

AAΨ(u)− (β1 + β2)AΨ(u) + β1β2Ψ(u) = β1β2[Ψ ∗ fX(u) + 1− FX(u)]

where FX is the distribution of the claim amounts, F ′
X = fX . Since an exact solution

of such an equation cannot be established without enough boundary conditions, an

asymptotic analysis of the behavior at infinity is presented. For that purpose, it will

be analyzed the asymptotic behavior of the Laplace transform of the solution around

zero and then the conclusion regarding the asymptotic behavior of the probability

of ruin as u →∞ will be made using Karamata-Tauberian theorems.

In other words, the equation is transformed using the Laplace transform and

the result is an non-homogeneous ordinary differential equation (Step 1). Moreover,

it is shown that the homogeneous part of the ODE is regular at zero, thus the solution

of the equation is a power function sρ (Step 2). Using regularity arguments, the

candidates of ρ are established (Step 3). Since the original function Ψ(u) presents

a decay at infinity, its Laplace transform Ψ̂(s) should have a decay at zero. Among
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all the possible candidates, it is argued that the only one possible is

Ψ̂(s) ∼ s−2+ 2a
σ2 , as s → 0

which by Karamata-Tauberian completes the proof (Step 4).

Step 1. The Laplace transform equation

ÂÂΨ̂(s)− (β1 + β2)ÂΨ̂(s) + β1β2Ψ̂(s) = β1β2[Ψ̂(s)f̂X(s) +
1

s
− f̂X(s)

s
]

is equivalent to the following ordinary differential equation in Ψ̂(s) :

ÂÂΨ̂(s)− (β1 + β2)ÂΨ̂(s) + β1β2Ψ̂(s)− β1β2Ψ̂(s)f̂X(s) = β1β2(
1

s
− f̂X(s)

s
)

where

ÂΨ̂(s) =
σ2

2

d2

ds2
[s2Ψ̂(s)]− a

d

ds
[sΨ̂(s)] + c(sΨ̂(s)−Ψ(0))

ÂÂΨ̂(s) = (
σ2

2
)2 d2

ds2
[s2 d2

ds2
s2Ψ̂(s)]− a

σ2

2

d2

ds2
[s2 d

ds
sΨ̂(s)] + c

σ2

2

d2

ds2
[s2(sΨ̂(s)−Ψ(0))]

− σ2

2
a

d

ds
[s

d2

ds2
(s2Ψ̂(s))] + a2 d

ds
[s

d

ds
(sΨ̂(s))] + ac

d

ds
(s2Ψ̂(s)− sΨ(0))

+
σ2

2
cs

d2

ds2
[s2Ψ̂(s)]− acs

d

ds
[sΨ̂(s)] + c2s(sΨ̂(s)−Ψ(0))− cAΨ(u) |u=0 .

The equation is of degree four, and has the form:

p1(s)Ψ̂
′′′′(s) + p2(s)Ψ̂

′′′(s) + p3(s)Ψ̂
′′(s) + p4(s)Ψ̂

′(s) + p5(s)Ψ̂(s) = p6(s)

where the coefficient of the fourth order derivative is p1(s) = k1s
4 suggesting that

s = 0 is a singular point.
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Since

lim
s→0

(s− 0)
p2(s)

p1(s)
= s

k2s
3

k1s4
< ∞

lim
s→0

(s− 0)2p3(s)

p1(s)
= s2k3s

2

k1s4
< ∞

lim
s→0

(s− 0)3p4(s)

p1(s)
= s3k4s

1

k1s4
< ∞

lim
s→0

(s− 0)4p5(s)

p1(s)
= s4k5s

0

k1s4
< ∞

then the homogeneous equation is regular at zero, s− 0 is a regular singular point.

Therefore, it may be assumed that the equation has a solution of the form

Ψ̂(s) = sρ.

In order to solve for ρ, the so called indicial equation has to be solved. This equation

says that the coefficient of the sρ term should be zero.

Step 2. The regularity of the homogeneous part

Considering the term by term expansion, the coefficients of the sρ terms, will

be denoted Tsρ and are identified to be as follows. For

ÂΨ̂(s) =
σ2

2

d2

ds2
[s2(sρ)]− a

d

ds
[s(sρ)] + c(s(sρ)−Ψ(0))

Tsρ(ÂΨ̂) =
σ2

2
(ρ + 2)(ρ + 1)− a(ρ + 1) = (ρ + 1)(

σ2

2
(ρ + 2)− a) := δ

Analogously, it can be shown:

Tsρ(ÂÂΨ̂) = δ2.

Also, obviously the coefficient of sρ is one for the following:
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Tsρ(Ψ̂) = 1

Tsρ(Ψ̂f̂X) = 1

thus, the indicial equation is:

δ2 − (β1 + β2)δ + β1β2 − β1β2 = 0

in other words,

δ(δ − (β1 + β2)) = 0

having as solutions

δ = 0

or

δ = β1 + β2.

The δ = (ρ+1)(σ2

2
(ρ+2)−a) = 0 solution returns the same two solutions encounter

before in the exponential time distribution (Cramér-Lundberg model), more specif-

ically

ρ1 = −1

and

ρ2 = −2 +
2a

σ2

and then two other solutions from δ = β1 + β2,

ρ3 = −1+
−(σ2

2
− a) +

√
(σ2

2
− a)2 + 2σ2(β1 + β2)

σ2
=

ρ2 − 1

2
+

√
(
ρ2 + 1

2
)2 +

2(β1 + β2)

σ2
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ρ4 = −1+
−(σ2

2
− a)−

√
(σ2

2
− a)2 + 2σ2(β1 + β2)

σ2
=

ρ2 − 1

2
−

√
(
ρ2 + 1

2
)2 +

2(β1 + β2)

σ2

Analogously with the case of inter-arrival times Erlang(2, β) distributed, the method

of variation of parameters provides the particular solution of the non-homogeneous

equation according to the general form:

yp(s) =
n∑

m=1

ym(s)

∫ s

s0

g(t)Wm(t)

W (t)
dt.

Here n = 4, s0 is chosen to be zero, and g(s) = p6(s)
s4 . The determinant of the

coefficients, W (s) = W (y1, y2, y3, y4) = γ(s)sρ1+ρ2+ρ3+ρ4−6 and the determinants

Wm = sρm−1+ρm+1+ρm+2−3γm(s) where γ, γm are holomorphic, for any m = 1, . . . , 4.

Thus, the particular solution is, as before:

yp(s) =
4∑

m=1

ym(s)

∫ s

0

n(t)Wm(t)

t4W (t)
dt = γ5(s) (5.16)

where γ5(s) is a holomorphic function. As before, due to integration, the restrictions

on the powers ρis are

ρi < 0 for any i = 1, 2, 3, 4.

Since some of the powers are negative for any a, σ, β and between the powers there

is the following order

ρ4 ≤ ρ1 = −1 ≤ ρ2 ≤ ρ3

the only conditions to be imposed are: ρ2 = −2 + 2a
σ2 < 0, i.e.

2a

σ2
< 2

and ρ3 = −1 +
−(σ2

2
−a)+

q
(σ2

2
−a)2+2(β1+β2)σ2

σ2 < 0, leading to

β1 + β2 < σ2 − a.
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Step 3. The possible solutions, candidates for decay

The asymptotic behavior of the solution as s → 0, is determined by the small-

est power of s. When written in increasing order,

ρ4 ≤ ρ1 ≤ ρ2 ≤ ρ3

they allow an analysis of their individual potential to be the leading term of the

decay.

Step 4. The asymptotic behavior at zero, respectively at infinity

Consider ρ4 = −1 +
−(σ2

2
−a)−

q
(σ2

2
−a)2+2(β1+β2)σ2

σ2 the first candidate for the

algebraic decay rate of Ψ̂(s). This means,

Ũ(s) = Ψ̂(s) ∼ k̃s−1+
−( σ2

2 −a)−
√

( σ2
2 −a)2+2(β1+β2)σ2

σ2 as s → 0

and the Karamata-Tauberian theorem implies that

Ψ(u) ∼ k̃s
( σ2

2 −a)+

√
( σ2

2 −a)2+2(β1+β2)σ2

σ2 as u →∞,

where
(σ2

2
−a)+

q
(σ2

2
−a)2+2(β1+β2)σ2

σ2 is always positive. Thus, as u →∞ the probability

of ruin has an algebraic growth, contradicting the fourth boundary condition that

requires decay to zero at infinity. Hence, since both ρ4 and ρ1 are less or equal than

−1, they cannot be leading terms. This implies that the linear combination of the

other two solutions

Ψ̂(s) = c2s
ρ2γ2(s) + c3s

ρ3γ3(s)

will determine the decay as s → 0, and furthermore the decay as u → ∞ of Ψ(u).

Depending on the drift and volatility of the risky asset, the following cases are

analyzed.

Case 1. If 2a/σ2 > 1, then the asymptotic behavior is given by the linear

combination of powers ρ2 and ρ3 of s. Since the decay is driven by the slowest one,
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the leading term is ρ2 = −2 + 2a
σ2 . By Karamata-Tauberian arguments

Ψ(u) ∼ c2γ( 1
u
)(2− 2a

σ2 )

Γ(3− ρ)
u1− 2a

σ2 , as u →∞.

Letting

k1 =
c2γ( 1

u
)(2− 2a

σ2 )

Γ(3− ρ)

gives

Ψ(u) ∼ k1u
1− 2a

σ2 , as u →∞.

If the coefficient c2 = 0 this implies the leading term is sρ3 , but this will imply

that the probability of ruin in the case of inter-arrival time distributed as a sum of

exponentials with parameters (β1, β2) decays faster than an Erlang (2, max β1, β2),

which is conjecture to be impossible. Therefore, c2 6= 0 which proves the first part

of the theorem.

Case 2. If 2a/σ2 = 1, as before, ρ2 = −1 cannot be considered. The leading

term is

ρ3 = −1 + 2

√
β1 + β2

2σ2

and going through Karamata-Tauberian arguments, the asymptotic decay of the

ruin probability is:

Ψ(u) ∼ k2u
−2
q

β1+β2
2σ2 , as u →∞.

Case 3. If 2a/σ2 < 1, ρ2 is excluded because is not producing decay of the

ruin probability. Again the leading power is

ρ3 = −1 +
−(σ2

2
− a) +

√
(σ2

2
− a)2 + 2(β1 + β2)σ2

σ2
.

The same Karamata-Tauberian, Monotone Function Theorem arguments imply that

the asymptotic decay of the ruin probability is:
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Ψ(u) ∼ k3u
−−( σ2

2 −a)+

√
( σ2

2 −a)2+2(β1+β2)σ2

σ2 , as u →∞

Remark 10. As discussed in Fedoryuk (1991), page 8, if the powers ρ1, ρ2 of the

solutions of a second order differential equation, that has s = 0 a singular point ,

differ by an integer, then the fundamental system of solutions has the form:

y1 = sρ1γ1(s) y2 = ay1lns + srho2γ2(s),

where a is a constant and γ1, γ2 are holomorphic. Since in the cases considered here,

ρ1 = −1 and −1 < ρ2 < 0, such a situation cannot occur.

In all the three cases considered in this chapter the probability of ruin has the

same algebraic decay rate as in the exponential arrivals case. Thus, whether the dis-

tribution of the inter-arrival times is exponential, or a general sum of exponentials,

the ruin probability has the same asymptotic behavior (see Theorems 12, 13, 14).

Intuitively, one expects that for less frequent claims of equal intensity the company

will stay solvent a longer period of time, but these results show the opposite. The

results hold for a drift-volatility ratio of the stock satisfying 1 < 2a
σ2 < 2. For the

complementary case, ( 2a
σ2 < 1), the above mentioned theorems provide some insight,

and a thorough asymptotic analysis will be the subject of future research.
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6. CONCLUSIONS AND FUTURE RESEARCH

The classical approach in deriving equations satisfied by the probability of ruin

is conditioning on the time of the first claim and its size, followed by differentiation.

In contrast, the uniform approach of this thesis consists in deriving a general equa-

tion for the classical conditional expectation that relates to the probability of ruin

via Theorem 4. The general integro-differential equation (3.7) derived in chapter

3 can be applied to the Cramér-Lundberg model (chapter 4) and Sparre-Andersen

model (chapter 5) to obtain asymptotics of ruin probabilities.

The asymptotics of the ruin probabilities are also derived via a novel approach.

The classical approach in deriving the asymptotics for the ruin probability is to dif-

ferentiate the integro-differential equation until it becomes a differential equation

with no integral term. The current thesis illustrates how Laplace transforms and

Karamata Tauberian arguments can be used effectively in the analysis of the asymp-

totic behavior of the ruin probabilities. For example, the classical Cramér-Lundberg

result can be obtained using elementary properties of the Laplace transform.

When investments with stochastic returns are modeled by a geometric Brown-

ian motion the asymptotic behavior of the ruin probability can be derived using this

methodology for inter-arrival times having as distribution a mixture of Erlangs. The

surprising result is that irrespective of the waiting time between claims investing

everything in a stock is more likely to lead to ruin than if no investments were made

at all. An analysis of the optimal investment strategy in risky versus riskless assets

will be the subject of future research.
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6.1. Conclusions

Using probabilistic arguments, proposition 4 proves that the probability of ruin

in the Erlang case is bounded from above by the probability of ruin with exponential

time. The asymptotic analysis of the ODE solved by the Laplace transform of the

probability of ruin gives a lower bound (Theorems 12, 13).

For any Erlang distributed times, in the case of investments with small volatil-

ity the algebraic decay rate of the probability of ruin is the same as the one for the

exponential times u1− 2a
σ2 . If Ψn denotes the ruin probability for Erlang(n) processes,

then

lim
u→∞

Ψn(u)u
2a
σ2−1 = Kn

where Kn depends on n, in other words

limu→∞ Ψm(u)

limu→∞ Ψn(u)
=

Km

Kn

.

The comparison of different Kn will be subject of future research.

In the case of light claims and investments in stocks modeled by a geometric

Brownian motion, the asymptotic decay rate of the ruin probability depends only

on the parameters of the investments. Since the average time between claims is not

a parameter in the decay rate, the results for different Erlangs leading to the same

asymptotic behavior are not surprising. In other words, changing the expected time

between two claims from β to 2β has no effect on the asymptotic decay.

In the classical Cramér-Lundberg model without investments, the equation is

of order one, while in the case of Cramér-Lundberg with investments is of order two,

as in the case of Sparre Andersen without investments. Depending on the distri-

bution chosen for inter-arrival times the equation of the model without investment
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will have the same order as the order of the ODE satisfied by the density. If the

investments considered are in a risky asset with a stock price following a geometric

Brownian motion, the order of the equation will be twice the order of the ODE

satisfied by the time density.

The general form of the integro-differential equation allows different non-

negative stochastic processes as investments. Any combination of exponentials is a

good candidates for the claims inter-arrival times. The equations obtained will be

high order integro-differential equations.

6.2. Future research

The results obtained in this thesis raise further interesting questions and chal-

lenges.

1. Identify conditions on the investment strategy Zu
t so that U(t) → ∞ as u →

∞.

2. Write explicitly the particular form of the equation (3.7) when also the density

of the claim sizes satisfies an ODE with constant coefficients. In this case after

a sufficient number of differentiations, the equation becomes an homogeneous

ODE with given boundary conditions. Identity a general method in solving

this equations exactly or at least asymptotically.

3. Calculate the decay of the Laplace transform of the time of ruin in the case

of a Sparre Andersen model with investments.
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There are three main venues of future research to pursue (that do not exclude

each other).

1. Gamma(α, β) inter-arrival times. Erlang(n, β) is a Gamma distribution with

the first parameter an integer. A natural extension of the problems presented

is for inter-arrival times distributed Gamma(α, β), where α is real.

One idea is to use fractional calculus. Through the natural conditioning on

the time and size of the first claim, a fractional integro-differential equation

may be derived for the probability of non-ruin Φ(u),

Φ(u) =

∫ ∞

0

(β)α

Γ(α)
tα−1e−βt

∫ u+ct

0

Φ(u + ct− x)p(x)dxdt.

After few changes of variables and using some fractional integral properties

the equation can be written:

e(β
c
)(u)

(β

c

)−α
Dα
−[e(−β

c
)uΦ(u)] =

∫ u

0

Φ(u− x)fX(x)dx,

for a Sparre Andersen model with no-investments.

Another idea is to identify the ODE solved by the density γ(α, β) and proceed

in a similar manner as in the case of Erlang distributions

2. Gerber-Shiu Functions

In Gerber and Shiu (1998) the expected penalty at ruin function is introduced,

Φ(u) = E[w(U(T−), | U(T ) |)e−δTu1T<∞ | U(0) = u],

where Tu is the time of ruin, U(T−) represents the surplus immediately before

ruin and | U(T ) | the surplus at ruin, often called the severity of ruin. This

function solves the integro-differential derived under appropriate boundary
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conditions, allowing for the analysis of the penalty at ruin and severity of

ruin.

3. Stochastic control.

There is an extensive literature using the probability of ruin as a control mea-

sure. For instance, determine the investment strategy that would minimize

the ruin probability. Or, determine the reinsurance policy that would min-

imize the ruin probability. These stochastic control problems could use the

integro-differential equations derived in this thesis. Hamilton-Jacobi-Bellman

type equations need to be solved in order to establish the optimal investment

strategy or the recommended reinsurance policy.
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A Stochastic Processes

All the processes and random variables are defined in a probability space

(Ω,F , P ), where Ω is a nonempty set of all possible “outcomes” of an experiment,

F is a set of “events”, and P: F → [0, 1] is a function that assigns probabilities

to events. Most of the definitions from this section are from Bhattacharya and

Waymire (1990).

Definition 1. Given an index set I, a stochastic process indexed by I is a col-

lection of random variables {Xλ : λ ∈ I} on the probability space (Ω,F , P ) taking

values in a set S. The set S is called the state space of the process.

Definition 2. A stochastic process X0, X1, . . . , Xn, . . . has the Markov property if,

for each n and m, the conditional distribution of Xn+1, . . . , Xn+m given X0, X1, . . . , Xn

is the same as its conditional distribution given Xn alone. A process having the

Markov property is called a discrete time Markov process.

If, in addition, the state space of the process is countable, then the Markov process

is called a Markov chain.

B Diffusion Processes

Definition 1. A Brownian motion with drift a and diffusion coefficient σ2

is a stochastic process {Xt : t ≥ 0} having continuous sample paths and independent

Gaussian increments. The increments Xt+s −Xt have mean sa and variance sσ2.

Definition 2. A Brownian motion with drift zero and diffusion coefficient of 1 is

called standard Brownian motion.
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Definition 3. Let Xt = X0 + at + σWt, t ≥ 0 where Wt is a standard Brownian

motion starting at zero and independent of X0. Then the process

Zt = Z0e
(a−σ2

2
)t+σWt

with Z0 = eX0 is the geometric Brownian motion.

Definition 4. A Markov process {X(t), t ≥ 0} on the state space S = {(a, b),−∞ ≤
a < b ≤ ∞} is said to be a diffusion with drift a(t, x) and diffusion coefficient

σ2(t, x) > 0, if it has continuous sample paths, and the following relationships hold

for all ε > 0:

E((Xs+t −Xs)1[|Xt+s−Xs|≤ε]|Xs = x) = ta(t, x) + o(t)

E((Xs+t −Xs)
21[|Xt+s−Xs|≤ε]|Xs = x) = tσ2(t, x) + o(t)

P ((|Xs+t −Xs| > ε)|Xs = x) = o(t)

as t → 0+, where a(t, x) and σ2(t, x) > 0 are continuous differentiable with bounded

derivatives on S. Also, σ′′ exists and is continuous, and σ2 > 0 for all x.

The stochastic differential equation

dX(t) = a(t,X(t))dt + σ(t,X(t))dWt, (B.1)

is equivalent to the equation

X(t) = X(0) +

∫ t

0

a(s, X(s))ds +

∫ t

0

σ2(s,X(s))dWs, t ≥ 0. (B.2)

If the solution is unique, then the process X(t) is called a diffusion process with in-

finitesimal drift function a(t, x) and infinitesimal variance σ2(t, x) at (t, x), provided

that σ2(t, x) > 0 for all t ≥ 0 and x ∈ S, where S ⊂ R is the state space of X(t)

(Rolski et al., 1999).
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Lemma 10 (Itô’s lemma). Let Xt be a process given by

dX(t) = a(t,X(t))dt + σ(t,X(t))dWt. (B.3)

Let g(t, x) ∈ C2([0,∞)×R), i.e. f is twice continuously differentiable in [0,∞)×R.

Then Yt = f(t,Xt) is also a diffusion process and (Oksendal, 1998)

dYt =
ρf

ρt
(t,Xt)dt +

ρf

ρx
(t,Xt)dXt +

1

2

ρ2f

ρx2
(t,Xt)(dXt)

2 (B.4)

Proposition 6. Let {Xt} be a diffusion process on S = (a, b):

dX(t) = a(t,X(t))dt + σ(t,X(t))dWt, (B.5)

Then, for all twice continuously differentiable g, vanishing outside a closed bounded

subinterval of S, and belonging to DA, the infinitesimal generator is given by

Ag(x) = a(t, x)g′(x) +
1

2
σ2(t, x)g′′(x). (B.6)

Remark 11. The drift of Yt = g(Xt) is a(Xt)g
′(Xt) + σ2(Xt)

2
g′′(Xt), so Ag(Xt)

can be interpreted as the drift term of the function g of the diffusion process (Xt).

In the special case of a(t,X(t)) = aX(t) and σ(t,X(t)) = σX(t) the infinitesimal

generator is given by

Ag(x) = axg′(x) +
σ2

2
x2g′′(x), (B.7)

C Stopping Times and Martingales

Consider a sequence of random variables {Xn : n = 0, 1, 2, · · · } defined on

the probability space (Ω,F , P ). Stopping times with respect to {Xn}, also called

Markov times, are defined as follows.
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Definition 1. A stopping time τ for the process {Xn} is a random variable taking

non-negative integer values, including possibly the value +∞ such that

{τ ≤ n} ∈ Fn (n = 0, 1, · · · ).

Since Fn are increasing sigma-fields and τ is integer-valued, an equivalent

definition is

{τ = n} ∈ Fn (n = 0, 1, · · · ).

Definition 2. The first passage time τB to a (Borel) set B ∈ R, is a stopping time,

defined by

τB = min{n ≥ 0 : Xn ∈ B}.

If Xn doesn’t lie in B for any n, one takes τB = ∞.

Definition 3. Let {Xn}n≥0 be a sequence of random variables, and {Fn} an in-

creasing sequence of sigma-fields such that, for every n, X0, X1, X2, · · · , Xn are Fn-

measurable. If E | Xn |< ∞ and

E(Xn+1 | Fn) = 0

holds for all n, then {Xn : n = 0, 1, 2, · · · } is said to be a sequence of Fn-martingale

differences. The sequence of partial sums {Sn = X0 + · · · + Xn : n = 0, 1, 2, · · · } is

then said to be a Fn-martingale.

Theorem 14. Doob’s Inequality

Let {X(t)} be a submartingale. Then for each x > 0 and t ≥ 0,

P ( sup
0≤v≤t

X(v) ≥ x) ≤ EX(t)

x
.

Proof. See e.g. Rolski et al. (1999).
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D Laplace Transforms

The following definitions and results help in proving the asymptotic decay of

the ruin probability for a classical risk model using completely monotone functions

and Laplace transforms properties only. In the classical Cramér Lundberg case the

integro-differential equation of the probability of ruin becomes a linear equation in

the Laplace transform side. Thus, the Laplace transform of the probability of ruin

has a very simple form. The question arising is if the expression obtained for the

Laplace transform of the probability of ruin can be proved to be the Laplace trans-

form of a density function. Feller (1971) introduces methods to recognize if a given

function is the Laplace transform of a probability density function. The following

results are stated from (Feller, 1971) and they will be useful in the derivation of the

exponential decay of the probability of ruin by Laplace transform properties only.

Definition 1. Let F be a measure concentrated on (0,∞). If the integral

F̃ (λ) =

∫ ∞

0

e−λxF (dx) =

∫ ∞

0

e−λxdF (x)

converges for λ > a then the function F̃ defined for λ > a is called the Laplace

Stieltjes transform of F . If F has a density f , the Laplace Stieltjes transform

of F is also called the Laplace transform of f,

F̃ (λ) =

∫ ∞

0

e−λxF (dx) =

∫ ∞

0

e−λxf(x)(dx) := f̂(λ).

The Laplace Stieltjes transform will be denoted with “tilde” and the Laplace

transforms with “hat”.

Definition 2. A function ϕ on (0,∞) is completely monotone if it possesses
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derivatives ϕ(n) of all orders and

(−1)nϕ(n)(λ) ≥ 0, λ > 0.

The theorem that will help build the rationale is the following:

Theorem 15. A function ϕ on (0,∞) is the Laplace Stieltjes transform of a proba-

bility distribution F (the Laplace transform of the density f = F ′), iff it is completely

monotone, and ϕ(0) = 1.

The equivalent form of the theorem is:

Theorem 16. The function ϕ on (0,∞) is completely monotone iff it is of the form

ϕ(λ) =

∫ ∞

0

e−λxF (dx) =

∫ ∞

0

e−λxf(x)dx),

λ > 0, where F is not a necessarily finite measure on [0,∞), with f = F ′.

This theorem leads to simple tests to check whether a given function is the

Laplace Stieltjes transform of a probability distribution F or the Laplace transform

of the density f = F ′. Other useful propositions regarding completely monotone

functions are presented next.

Proposition 7. If ϕ and ψ are completely monotone so is their product ϕψ.

Proof. Using induction one can show that the derivatives of ϕψ alternate in sign. As-

sume that for every pair ϕ, ψ of completely monotone functions the first n derivatives

of ϕψ alternate in sign. As −ϕ′ and −ψ′ are completely monotone, the induction

hypothesis applies to the products −ϕ′ψ and −ϕψ′, and from

−(ϕψ)′ = −ϕ′ψ − ϕψ′,

the conclusion is that the first n + 1 derivatives of ϕψ alternate in sign. Since the

hypothesis is trivially true for n = 1 the proposition is proved.
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Proposition 8. If ϕ > 0 on (0,∞) and has a derivative ϕ′ that is completely

monotone there, then 1
ϕ

is also completely monotone.

Corollary 5. If ϕ < 1 on (0,∞) and has a derivative ϕ′ that is completely monotone

there, then 1
1−ϕ

is also completely monotone.

Feller (1971) is able to show using Laplace transform properties that the

integro-differential equation satisfied by the non-ruin probability Φ has a unique

solution, and calculates its value at zero, Φ(0).

Proposition 9. Let Φ(u) be the probability of non-ruin starting with an initial

capital u. Then the integro-differential equation

Φ′(u) =
λ

c
Φ(u)− λ

c

∫ u

0

Φ(u− x)fX(dx),

with

lim
u→∞

Φ(u) = 1,

has a unique solution Φ, where fX is a probability density with finite expectation µ.

Also,

Φ(0) = 1− λµ

c
.

E Karamata-Tauberian Theorems

For the asymptotic analysis, the following Karamata-Tauberian theorems are

used. A comprehensive reference is Bingham et al. (1987)

Definition 1. Let l be a positive measurable function, defined in some neighborhood

[M,∞) of infinity, and satisfying

l(λx)

l(x)
→ 1, as x →∞,∀λ > 0,
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then l is said to be slowly varying in Karamata’s sense (Bingham et al., 1987).

Theorem 17. (Karamata Tauberian Theorem)

Let U be a nondecreasing right continuous function on R with U(x) = 0 for all

x < 0. If l varies slowly and c ≥ 0, ρ ≥ 0 the following are equivalent:

U(x) ∼ cl(x)

Γ(1 + ρ)
xρ, as x →∞,

Ũ(s) ∼ cl(1/s)x−ρ, as x →∞,

where Ũ(s) =
∫∞

0
e−sudU(u) is the Laplace-Stieltjes transform of U.

Definition 2. A function f is ultimately monotone if there exists y such that for

any x > y, f(x) is monotone.

Theorem 18. Monotone Density Theorem Let U(x) =
∫ x

0
u(y)dy. If

U(x) ∼ cl(1/s)xρ, as x →∞,

where c ∈ R, l ∈ R0, and if u is ultimately monotone, then

u(x) ∼ cl(1/s)xρ−1, as x →∞.

The following theorem relates the asymptotic behavior of a function at infinity

with the asymptotic behavior at zero of its Laplace transform.

Proposition 10. Given that the Laplace transform of a function behaves asymptot-

ically like sρ at zero,

Ψ̂(s) ∼ cl(s)sρ as s → 0

then the function will behave asymptotically as u−ρ−1 at infinity.

Ψ(u) ∼ ku−ρ−1 as u →∞



114

Proof. Consider the function

U(u) =





0 if u < 0
∫ u

0
Ψ(x)dx if u ≥ 0.

Note that the Laplace transform of the function Ψ(u), Ψ̂(s), equals the Laplace

Stieltjes transform of the function U(u), Ũ(s),

Ψ̂(s) = L(Ψ(u))(s) =

∫ ∞

0

e−suΨ(u)du =

∫ ∞

0

e−sudU(u) = Ũ(s).

Take the Laplace transform of Ψ(u), and analyze its asymptotic behavior. Assume

that Ψ̂(s) behaves at zero as cl(s)sρ. Thus,

Ũ(s) = Ψ̂(s) ∼ cl(s)sρ as s → 0

Then, using the Karamata Tauberian Theorem, U(u) behaves asymptotically at

infinity,

U(u) ∼ c

Γ(1− ρ)
l(

1

u
)u−ρ as u →∞

The result then follows from the Monotone Density Theorem applied to U(u) =
∫ u

0
Ψ(y)dy.

————————————————————————




