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HOMOTOPY CONSTRUCTION TECHNIQUES APPLIED

TO THE CELL LIKE DIMENSION RAISING PROBLEM

AND TO HIGHER DIMENSIONAL DUNCE HATS

1. DIMENSION THEORIES

The problems addressed in this dissertation are deeply involved with the con-

cept of dimension, and so we begin by including a brief summary of the theory of

topological dimension.

The first definition presented here is the large inductive dimension first pub-

lished by Cech in 1931.

1.1.1. Definition. For every normal space X, the large inductive dimension

of X is an integer n where n is greater than or equal to 1, denoted IndX = n, or

is infinite, denoted IndX = oo, and is assigned according to the following rules:

IndX = 1 if and only if X = 0.

IndX < n for 0 <n < oo if for each closed set A C X and every open set

U C X with A C U there exists an open set V C X such that A C V CV CU

with the Ind(BdV) <n 1.

The IndX = n if the IndX <n and the IndX > n 1.

The IndX = oo if the IndX > n for each n E { 1, 0, 1, ...}.

A closely related definition of dimension is the small inductive dimension of a

space X, denoted indX, first presented by Menger and Urysohn.

The definition of small inductive dimension is identical to that of the large in-

ductive dimension except the arbitrary closed subset A in the second rule is replaced

by an arbitrary point a E X.
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The second dimension theory which will now be presented, known as covering

dimension, has its roots in an early paper by Lebesgue in 1911, and was formally

defined by Oech in 1933.

1.1.2. Definition. Let U be a collection of subsets from a set X. For any

subset A C X the order of A in II will be the largest number n of elements of U

which contain some point x E A, and will be denoted by the ordAU = n. If A = {x}

for some x E X then the order of x in U will be denoted by the ordzU = n. If no

such largest integer exists, then A will be said to have infinite order in U, and will

be denoted by the ordAU = oo. The order of U will be defined and denoted by the

orclil = suplordxUlx E Xl.

1.1.3. Definition. For every paracompact space X, the covering dimension

of X is an integer n > 1, denoted by the dimX = n or is said to be infinite,

denoted by the dimX = oo, which is assigned according to the following rules:

The dimX = 1 if and only if the space X = 0.

The dimX < n,n E {0, 1, 2 ...}, if every open cover U of X has an open

refinement V, with the ordV <n+ 1, which also covers X.

The dimX = n if the dimX <n and if the dimX > n 1.

The dimX =- oo if the dimX > n for each n E {-1, 0, 1, ...}.

1.1.4. The Coincidence Theorem. [Kat -etov (1952), Morita (1954)] For

every separable metric space X, the indX = IndX = dimX.

The proof of The Coincidence Theorem can be found in [E].

A third dimension theory uses the concepts of essential families, and agrees

with inductive dimension and covering dimension on finite dimensional spaces. The

dimension theory based on essential families however has the property that it can

separate infinite dimensional spaces into different categories.
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1.1.5. Definition. [R-S-W] Let X be a separable metric space and r be an

indexing set. A family F = {(Ak, Bk)lk E F} is essential in X if for all k E F,

(Ak,Bk) is a pair of disjoint closed sets in X such that if Sk separates Ak and Bk

in X, then n Sk 0. We say F is an a -essential family if card(r) = a.
kEr

1.1.6. Theorem. The dimX > n if and only if X has an n-essential family.

Proof. Assume dimX < n 1 and if F {(Ak , Bk)lk = 1, , n} is a set of

n disjoint closed sets in X, then there exists a partition L1 such that L1 separates

(Ai, BO and dim(Li n X) < (n 1) 1 n 2. This follows from the second

separation theorem [E]. Thus there exists a partition L2 such that L2 separates

(A2, B2) and dim(L2 n (Li n .x)) < (n 2) 1 = n 3.

Continuing inductively, there exists partitions L1, ,L,i+i such that

dim(Li n L2 n n n Ln+i) < (n 1) Hence n Li 0. Thus if X has

an n-essential family then dimX > n 1 and so dimX > n.

Now assume for all families F = {(Ak, B k)} k = 1, , n1 of pairs of disjoint

closed sets, there exists a collection of closed sets L = {L i = n} where Li

separates Ai from Bi and n Li = 0. Consider an open cover = 1,...,n 1}

of the space X. The space X has a closed shrinkage {Bili = 1, ,n 1} [En] (i.e.

there exists a family of closed sets {B, = 1, ... ,n 1} such that Bi C U for all I

and {ik = 1, ,n 1} is a cover of the space X).

Let Ai = X Ili for i = 1, ,n. The sequence (A1, B1),. , (An, Bn) consists

of n pairs of disjoint closed subsets of X. Hence there exists separators L1,. . . ,Ln

such that Li separates Ai and Bi and n Li = 0.

Now consider the open sets V, W C X such that Ai C 1 and Bi C Wi and

n = 0, and X Li = U Wi for i = 1, ,n.

Notice that
n n n n n

(U VOLYU WO = U(Vi U Wi) = U(X = X Li = X.

i=1 i=1 i=1 i=1 i=1



We have 1372+1 C Un-Fi. Thus

n n

(U Wi) U[Un+i Vi)] = WOUUn+11 nqj WOU(U D Bi = X.
i+1 i=1 i+1 i=1 j+1

Thus the family {Wili = 1, , n 1} with Wn+i = Un+1 n (U vi) is an open
i=1

shrinkage of the cover {Uili = 1, , n 1}. Thus

n+1 n+1 n n+1

fl wi (11 w)n[un+i n(11
vo] c (1-1 w2)n(r1 0.

i=1 i+1 i+1 i=1 1+1

Hence dimX <n I [En]. Thus if dimX > n then X has an n-essential family.

1.1.7. Corollary. The dimX = oo if and only if there exists an n-essential

family for all rt E {1,2,3, .. .}.

1.1.8. Definition. A space X is Strongly Infinite Dimensional (S.I.D.) if X

has an w-family, where w represents the cardinality of the natural numbers.

1.1.9. Definition. An infinite dimensional space X is Weakly Infinite Di-

mensional (W.I.D.) if X is not Strongly Infinite Dimensional.

1.1.10. Definition. A space X is Countable Dimensional (C.I.D.) if X is

the countable union of finite dimensional spaces.

For the purpose of this dissertation another definition of dimensions is more

appropriate. This definition is identical with covering dimension for metric spaces.

1.1.11. Definition. If Sn is the sphere with covering dimension n

(i.e. Sn =A for I = [0, 1]), then

4

1) a space X has dimension less than or equal to n written dimX < n, provided

each map a : A-->Sn from a closed subset into the n-sphere, extends to a map



dimX = n provided dimX < n and dimX > n 1,

dimX = oo provided dimX > n for all n.

1.1.12. Theorem. Definition 1.11 is equivalent to covering dimension.

Theorem 1.1.12. is found in Hurewicz and Wallman [H-W] as theorem V14.

The purpose of this characterization of dimension is for easy comparison with

cohomological dimension which we now present.

We represent the Oh homotopy group of a space X by rk(X,*). A brief

discussion of homotopy groups is found in Section 2.3.

1.1.13. Definition. An Eilenberg-MacLane space of order n, designated Kr,

is a space satisfying

ric(Kn,*) 7rk(Sn,*) k < n
0 ifk>n+1.

Eilenberg-MacLane spaces can be constructed by attaching cells of appropriate

dimension using a mapping cone. Mapping cones are discussed in Section 2.4.

1.1.14. Definition. If KT, is an Eilenberg-MacLane space of order n, then

a space X has cohomological dimension < n written c dimX < n, provided

each map a : A-4Kn from a closed subset into an Eilenberg-MacLane space,

extends to a map a :

c dimX = n provided c dimX < n and c dimX > n 1,

c dimX = oo provided c dimX > n for all n.

1.1.15. Theorem.

For any space X, c dimX < dimX.

For any space X with dimX < oo, c dimX = dimX.

Theorem 1.1.15. and its proof is found in [W] as theorem 3.2.

5



2. PRELIMINARY DEFINITIONS AND RESULTS

In this chapter we present some preliminary definitions and results.

2.1. Homotopy.

We will use the convention that a map is a continuous function.

2.1.1. Definition. Two maps f,g : X---17. are homotopic (f:.-2 g) if there

exists a map F : X x I---Y , I = [0,1], where F(x, 0) = f(x) and F(x, 1) = g(x),

for all x E X. If a map f is homotopic to a constant map we say it is inessential,

otherwise we say it is essential.

We remark that (following Spanier) we will be considering the homotopy cate-

gory of (pointed) topological spaces where the objects are pointed topological spaces

and the morphisms are homotopy classes of maps.

2.1.2. Definition. Two topological spaces X and Y are homotopy equivalent,

or of the same homotopy type, if there exist maps h : X-17 and h' : Y>X
where h' o h : X--a. and h o h' : Y>Y are each homotopic to the identity. I.e.

h' o h id: X--->X and h o h''.. , id: Y---3Y. We designate homotopy equivalent

spaces by X '_-_-_, Y.

2.1.3. Definition. If X ':_-_ W and Y '- -' Z, then the maps f : X>17. and

g : W*Z are said to be homotopy equivalent if k o fL.- g o h,

6

(2.1)

w -Y- z

where the vertical maps are homotopy equivalences. In this case we say that the

diagram in (2.1) commutes homotopically.



(2.2)
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From a category point of view, the objects are the morphisms X>Y (of the

homotopy category) and its morphisms with domain X ' c>37 and range W ±>Z are

pairs of morphisms h : and k : such that diagram 2.1 commutes

homotopically. This is called the category of morphisms of the homotopy category.

We see that homotopic maps are also homotopy equivalent since we can let the

vertical maps be the identities as in (2.1).

X Y

If h and k are homeomorphisms and k of = go h, we say the maps f and

g are topologically equivalent. Clearly topological equivalence implies homotopy

equivalence.

2.2. Cones and Suspensions.

2.2.1. Definition. Let I be the closed interval [0,1] and let (X,*) be a

pointed topological space. The reduced cone of X, CX, is the space X x I where

the subset (X x 111) U (144 x I) is identified to a single point. Throughout the

remainder of this paper we shall refer to CX as simply the cone of X.

We can formally define C X by CX = 2 whereR, is the equivalence relationR,

defined by (x,t)R,(x',e) if (x,t) = (x',e), or t --= t' = 1, or x = x' = *.

We denote the equivalence class of (x, t) with respect to R, by [x, t].

2.2.2. Definition. The reduced suspension of a pointed space (X,*),SX, is

the space X x I where the subset (X x {1}) U (X x {0}) U ({*} x ./) is identified to

a single point. Again throughout the remainder of this paper we shall refer to SX

as simply the suspension of X.

We formally define SX by SX = x
xR,

I where R, is the equivalence relation

defined by

(x,t)R,(x' ,t') if f (x, t) = (x' ,t'),
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or t = t' = 0, or t = t' = 1, or x = x' = *.

Notice that S X = cZ,c where [x , t] le [x' ,t1] if [x , t], = [x' , el, or t = t' = 0.

1 <Let Sn be the n-sphere and en be the n-cell {x E En11x11 1}. It is well known

that SS11-1---' ' Sn and CSn-1 LJ en and Sn.

If we wish to embed X into S X as the 'equator', then an alternate but equiv-

alent definition of S X is more convenient. Let J be the closed interval [-1, 1], and

let SX = xR" where

(x ,t).11s-(x' , t') iff (x ,t) = (xi , ti ),

or t = t' = 1, or t = t' -= 1,1or x = x = *.

We denote the equivalence class of (x, t) with respect to Rs or Rs- as [x, t]3 and

the natural embedding of X into SX is given by h(x) = [x, 0]9.

2.2.3. Definition. For f : X -.-1 7 , we define the cone map

Cf : CX--CY and the Suspension map Sf : SX --4 SY by

C f ([x ,t],) = [f (x), t], and S f([x,t],) = [f (x),t],,, respectively.

2.2.4. Definition. A space X is a suspension if it is homotopy equivalent to

SW for some space W.

2.2.5. Definition. A map f : X .1l. is said to be a suspension map if f is

homotopy equivalent to the suspension of a map F: W---Z, i.e. f is homotopy

equivalent to SF :SW---4SZ for some map F :W--4.Z.

Taking a suspension can be viewed as a functor on the homotopy category.

2.2.6. Lemma. If f: A>I3 and g : B*C are suspensions, then g o f is

a suspension.

Proof. Consider the following diagram where the vertical arrows are homo-

topy equivalences, and F : X-17 and G : are maps where the diagram

commutes homotopically.



A.i- B C

(2.3) 1 hi 1/12 th3
SF sy SG SZ

We have SG o S.F([x,t],) = SG([F(x),t],) = [G o F(x),49,

hence SG o SF = S(G o F) and thus the composition of suspensions is a suspension.

Since vertical arrows are homotopy equivalences the diagram commutes homo-

topically and thus g o f is a suspension.

2.2.7. Lemma. If f : X.-17 is inessential where X and Y are suspensions,

then f is a suspension map.

Proof. The map f is inessential and thus is homotopic to a constant map

fo : X-37 . Let yo E Y be the image of fo. The spaces X and Y are suspensions,

thus there exist homotopy equivalences h and k such that h : X --+SZ and

k : Y--6W for some spaces Z and W. We define the map g : SZ--6W as
k o fo o h' where h' is a homotopy inverse of h.

9

We are now left to show that g is homotopic to a suspension map.

If k(yo) . *, then g is a constant map and g([z,t]) = * = [*,t]. [G(z),t] where

G is the constant map G: Z--4*. Hence g is a suspension.

If k(yo) *, then k(yo) = [wo, to] where wo * and to E (0, 1).

Let k(y) = (w, t) and define a homotopy K of k by

{ [w, 0]
=K (y , s) 1111.11

'4", 1sto i

SX

if t < sto

if t > sto.

(2.4)

SZ

X -±+

I h

Y

lk

SW--



We have K(y, 0) [w,t] k(y) and

K(y,1) {[w,
0]

[w,m9o]

Hence K(yo, 1) = [wo, 0] = *. Let go = K1 o fo o h' where Ki(y) = K(y, 1). We

thus conclude that g is homotopic to the constant map go : SZ 4* and hence is a

suspension map.

2.3. Homotopy Groups.

Let X and Y be topological spaces and let A be the subset of X x I defined by

A = (X x {0} U (X x {1}) U ({*} x I). It is convenient and accurate to let the space

of all pointed maps from SX to Y, denoted (SX, Y), be viewed as the collection

of all maps f: (X x I, A)-417, yo).

If f,g E (SX,Y), we define the map h E (SX,Y) by

f(x 2t) if 0 < t < 1/2h(x,t) "
ig(x,2t-1), f 1/2 < t < 1,

and we write h = f + g.

Let [SX,Y] represent the collection of all homotopy classes of maps in

(SX,Y). Then [SX, Y] is a group with the group operation defined as follows:

For [f], [g] E ES X, Y] [f] + [g] = [f + g] [h]. The identity is [k] E [S X, Y] where

k is the constant map k(x,t) = yo. Define f E C(SX,Y) by f (x,t) = f(x,1t),

then [f] designated [f] is the inverse of [f].

If X is a suspension and Y an arbitrary pointed set, then the set of equivalence

classes of homotopic maps {[f] If : X---17.} is a group where the group structure is

induced by the following commutative diagram:

(2.5)

if t < to
if t> to.

10



The group operation is defined by [f] + [g] --= [(f o h' + g o h') o h].

We call this group the X -homotopy group of Y designated rx(17, yo). When

X is an n-sphere we simply call the group the n-homotopy group of Y, designated

rn(Y, yo). If n = 1, we call the group the fundamental group of Y.

Let X and Y be suspensions and Z arbitrary. If g : X---1/. and f :Y---Z,

then the notation [f] o [g] means [f o g].

2.3.1. Theorem. (Left distributivity) If Sg : SX--SY and

11,12 : SY ---*Z then ([M+ [f2]) o [Sg] . [fI. o Sg]-F[f2o Sg].

Proof. We view the suspension map Sg:SX--+SY as defined by

Sg([x,t],) = [g(x),t]s.

Thus,

{
fi[g(x),2t], if 0 < t < 1/2(11+ f2) 0 Sgrx,t] = (fi + f2)[g(x),t]. f2[g(x),2t 1], if 1/2 < t < 1

1110 Sg[x,2t], if 0 t 5_ 1/2
=-_

f2 0 Sg[x,2t 1], if 1/2 < t < 1

= ((fi 0 Sg) + (f2 o Sg))[x,t].

We of course may infer the following:

For g : X--4Y a suspension map and fi, 12 :17.--Z arbitrary maps, we have

([Id + [12]) o [9] = ([fi 0 91) + ([12 0 9]).

2.4. Wedges.

11

2.4.1. Definition. If (X, *) is a pointed space, then the k-wedge of X de-

noted V X is the disjoint union of k copies of X with the k points * identified.



where

(i,x)Rv(i' , x') if

We formally define V X by

k k-1U ({i} X X)

VX- 1=0 Rv

(i,x) = (i' , x')
or x = x' *.

12

We denote the equivalence class of (i,x) as [i, x] v

As an example we see that V Sn is a CW-Complex (see section 2.8) consisting

of k n-cells and one 0-cell.

2.4.2. Definition. We define the wedge of arbitrary pointed spaces

(X , x0) and (Y, yo), denoted X V Y, by

({0} x X) U ({1} x Y)
X V Y = Rv

where (0, x)Rv(1, y) if x = x0 and y = yo. Without loss of generality we can consider

X V Y as X U Y where X n Y = {*}.

2.4.3. Definition. If f: X--+Y and g : X'-4Y', then the wedge of f and

g, denoted f V g, is a map f V g :XV X'--+YVY' and is defined by

If (x) if x E X
g(x) if x E X' .

2.4.4. Definition. If f : (X, *)>(Y,*), then the k-wedge of f, denoted
k k

V f, is a map V f VV Y defined by

V f X1V) = f (x)iv for i = 0, , k 1.

(f v go\

2.4.5. Definition. If f : X--17. is a function from a set X to the set Y

then the equivalence relation on X induced by f, denoted R1 is defined by



(2.6)
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xRfx' if f(x) = f(x1). I.e. Rf partitions X into the equivalence classes of point
inverses.

2.4.6. Lemma. Let X, Y, Z be compact metric spaces and let f :

and g : X --4Z be surjections. If Rf = Rg, then there exists a homeomorphism

h : Y.--4Z such that the following diagram commutes.
IX 4 .1

Proof. Let h = g o f* Since Rf = Rg we have h is a function and one-
to-one, since f and g are surjections we have h is a surjection. To see that h is

continuous consider h-1(K), where K is closed. Then h-1(K) = f o g-1(K) and
(K) is closed since g is continuous. Then fig-1(K)) is closed since X and Y are

compact and hence f is a closed map. Thus h is a homeomorphism and g h o

2.4.7. Lemma. 1) If (X, x0) and (Y, yo) are pointed spaces, there is a home-

omorphism h1 : S(XV Y)(SX) V(SY) induced by the diagram below, and

2) If f : (X,x0)---4(X',4) and g : (Y, yo)q171, y) are pointed maps, there
exists a homeomorphism h2 : S(X' V Y')>(SX')V (SY') such that the maps
S(f V g) : S(X V Y)--S(X' VY') and (S f)V (Sg) : (S X) V(SY)---*(SX') V(SY')

are topologically equivalent by h1 and h2.

S (X V Y)
hi

(S X) V(SY)

IS( f V g) f)V(Sg)

S(X1 VY') h2 S(X')V S(Y')

Proof. Assume X and

Consider the following diagram:

(X

(X V

(2.7)

Y are disjoint, and let Lf-j be their topological sum.

j(Y x I)

Pv

V(Y x

V P'IP'

Y) x I I)L-f_-(X X

IPv Xid

Y) x I (X x I)
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The map k is the natural homeomorphism and Pv and P, are the projection maps

onto the wedge space and suspension space respectively. The equivalence relation

R1 on (X -Lij Y) x I induced by P, o (.13,, x id) is generated by (x, OR]. (y, t') if and

only if (x = xo and y = yo), or (t = t' = 0) or (t = t' = 1). It is easy to see that

the equivalence relation R2 on (X -W- Y) x I induced by (P, V Ps) o P, o k is the

same. Then h1 exists by the above lemma. The equivalence relations R3 and R4 on

(X -Lij- Y) x I induced by S(f V g) o P. o (P, x id) and (S f) V (Sg) o (P, V P,) o /3,, o k,

respectively are likewise equal and are generated by (x ,t) = (y, t') if and only if

(1(x) = xlo and f (y) = y), or (t = t' = 0), or (t = t' = I). The result follows.

2.4.8. Corollary. If f : X --4Y is a suspension map,
k k k

then V f : \ I X : --4 V Y is a suspension map.

Proof. This follows immediately from Corollary 2.4.7. using a finite induction

on k.

2.5. Mapping Cones.

2.5.1. Definition. Let X and Y be two disjoint spaces and let A be a closed

subset of X, and let f: A---Y. In X W- Y we generate an equivalence relation R1

XI-1-1 Yby a Ps-, f (a) for each a E A. the quotient space R1 is called the attachment of

X and Y by f and is denoted X Uf Y and called an adjunction space.

X WY
We formally define X Uf Y = RI where

x = XI
lor f (x) = f (x')xR fx' if

or f(x) = x'
or f(x') = x.

We denote the equivalence class of x as [x] f. If x E X A, it will be convenient to

let x = [x] 1 .
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2.5.2. Definition. Let X be compact and f: X+Y. The mapping cone

of f designated M1 is defined by

Mf cx Y

where X is regarded as a closed subset of CX by embedding it in C X as p(X X {O})

where p: X X I---+CX is athe projection map.

2.5.3.Lemma. If X is compact and if f : X--*Y and g : Y--->Z are surjec-

tive maps, then there are maps f^ and such that the following diagram commutes,

where the vertical arrows are injections:

X --+ Y Z

(2.8)
1

C X Mf Mgof

Proof. The map f is defined by

fax,tp= {[x
t]f(x)]

and the map-j is similarly defined by

Xf[x,t1) = fgx(fti(x))]

We notice that"j(f tD) g o f({x,t]) where g o f : CX+Mg.f.

For the remainder of section 2.5 let I = [0,1], and J = [-1, 1].

2.5.4. Lemma. If R1 1?2 are equivalence relations on Xx,IxI defined by

(x, s,t) = (x' , s'
(x , s ,t)Ri(x' , ,t1) if or X = X = *

or s -= s' = 1 and t =

and

1(x , s,t) = (x' , s' , t')
(x , s,t)R2(x' , s' ,t' or) if x = XI = *

or s = s' = 1,

then R1 = R2

if t =--

if t > 0

if t = 0
if t > 0 .
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For convenience we will henceforth use the terminology; R1 is generated by

(x x' = *) or (s = s' = 1 and t t') and R2 is generated by (x = x' = *) or
(s = s' -= 1).

Proof. We will use the classical definition of equivalence relation to show

that Ri and R2 are equal sets in (X X J X I) X (X X J X I).

It follows automatically that if e = ((x,s,t),(x' ,s' ,t')) E R, then e E 112 and

hence R1 C R2. Now let e ((x, s, t), (x1,31, t1)) E 112. Ifs 1 or s' 1, then

(x,s,t) = (x', s,e) or x = x' = *; and hence e E R1. Now consider the case where

s = s' = 1. We have (x, 1, t).R1(*, 1, t) and (*, 1, t)Ri (*, 1, t') and (*,1,e)Ri(x1,1,e)

and thus by transitivity (x, 1, OR]. ((x', 1, t') or ((x, 1, t),(x` , 1,e)) E

Thus R2 C R1 and hence Ri = R2

2.5.5. Lemma. There is a naturally defined homeomorphism

a CSX :--SCX and hence CSX is a suspension.

Proof. Let Pc : X x /--+CX and P3: X x J--*SX be the projection maps

andleth:XxJx/a"x/xJbe the natural homeomorphism defined by
h(x, 8, t) = (x, t, 8). Consider the following diagram.

To produce a it is sufficient by Lemma 2.4.6 to show that the equivalence

relations induced onXxJx/by Pco(13,9x id) and /33 o x id) o h are equal.

First, the equivalence relation on X xJx/ induced by Pco(Psxid) is generated

by (s = s' = and t t') or (s = s' = 1 and t = t') or (x x' * and t = t') or
(t = t' 1) or (x = By Lemma 2.5.4. this is equivalent to

(I) (s = s' = 1) or (s = = 1) or (x = x' = *) or (t = = 1).

(2.9)

XxJxI

XxIxJ
h

P,xid SX x I

CX x J

Pc
C S

SC

X

XPcxid

---+

22-+



fux,tic), {[x'tic
[f(x)]f

Thus S".1: CSX+CSX Usf SY = Ms f is defined by

[[x , s] , t] if t > 0f [[x , , t]([[x, s] , t] c) = {[Sf[x,s],]sf if t =0 [f(x), S]sk/

and sf : scx--->s(cx U1 CY) = S M f is defined by

if t> 0
if t = 0 .

if t > 0
if t = 0
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We now consider the bottom of the diagram. Since h is a homeomorphism we

need only check the equivalence relation on X x /xJ induced by P, o (P x id).
The equivalence relation on X x /xJ induced by P3 o x id) is generated by

[(t = t' = 1 or x = x' = *) and s = si] or (s = s' = or (s = s' = 1) or
(x = x' = *), which is equivalent to (t = t' = I and s = s') or (x = x' = * and
s = s') or (s = s' = 1) or (s = s' = 1) or (x = x' = *). This by Lemma 2.5.4.
reduces to:

(II) (t = t' = 1) or (s = s' = 1) or (s = s' = 1) or (x x' *).

Since the relations I and II are the same, by Lemma 2.4.6., there exists a

homeomorphism o: CSX--6VX such that the diagram commutes.

Recall that if f : X--4Y, then Sf : SX SY is defined by

S f ([x , s]s) = [f (x), 4, and f U1 Y is defined by

S (Rx , tic, s] s) = [J ([x, t] c) , s] = [[x
' tic's's if t > 0

[[f (x)] f,Sls if t 0

2.5.6. Lemma If f : X *Y is a surjection between compact metric spaces, then

the maps Sf : CSX*M51 and sf : scx>smf are topologically equivalent
and hence S f is a suspension.

Proof. Let Pc, Ps and h be the maps as defined as above. Consider the

following diagram.
Peo(Ps xid) csxXxJxI CSXUsf SY MS f

1

(2.10) th lk
Pao(Pid)cxXxIxJ , SC X :-9-1+ S(C X U f Y) = SM/
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From (I) in Lemma 2.5.5. we see that the equivalence relation on X xJx/ induced

by S f o P o (P, x id) is generated by (s = s' = 1) or (s = s' = 1) or (x = x' = *)

or (t = t' = 1) or (f(x) f(x1) and s = s' and t t' = 0). From II in the proof

of Lemma 2.5.5. we can see that the equivalence relation on X xJx/ induced

by Si' oP3 o (P, x id) o h is the same and hence by Lemma 2.4.6. there exists a

homeomorphism k:Msf--*SMf such that the diagram commutes.

From the definition of Cf : C X --CY and Sf : S X SY we see that the

maps CSf :CSX--+CSY and SCf : SCX---*SCY are defined, respectively, as

follows:

CS f ([[x , s] , t]c) = [S f [x , s], , tic = [[f (x), 8],,t1, and

S C f ([[x , t]c, sis) = [C f tic, s], = [[ f (x), t]c, s],.

2.5.7. Lemma. The maps CS f : CSX--CSY and SC f : SCX--6rY
are topologically equivalent and hence CS f is a suspension map.

From (I) in Lemma 2.5.5. we conclude that the equivalence relation on X xJx/

induced by CSf o P o (P, x id) is generated by (s s' 1) or (s = s' = 1)
or (x x' = *) or (t = t' = 1) or (f (x) = f (xi) and s = s' and t t'), and

from (II) in Lemma 2.5.5 we have the equivalence relation on X x IxJ induced

by SC f o P, o (P, x id) is the same and hence by Lemma 2.4.6., there exists a

homeomorphism # such that the diagram commutes.

2.5.8. Corollary. msf V msgr=d- smf v smg s(mf V mg).

2.5.9. Corollary. If F = Sn f : X SnY is a multiple suspension, then

MF = 1115n1 SnMf.

Proof.

(2.11)

Consider the

XxJxI

XxIxJ

diagram;

C S

SC

Cs!X C

SCY

SY

.

Pco(Ps xid)

th
1,8 o(Pexid) SCIX



2.6. Homotopy Addition.

Let f,g : SX--+Y be maps. Recall that homotopy addition is defined by:

[f} -f- [g] [h]

where h is defined by

f([x,2s]) if s E [0,1/2]
has, xi) =

g([x,2s 1]) if s E [1/2,11.

We can conveniently write the sum of k maps fo, , fk-1

k-1 k-1

E[ f [E fi]
=o i=o

k-i
where is defined by:

i=0

19

: SX---17. by:

k-1
f([x,]) = fi([x,kt i]) if t E [ki +k 1].

i=0

Let Px be the projection map Px : SX>V SX, where Px is defined as

follows:
i i 1

P([x,t].9) = (i,[x,kt i],) for t E [k-,

i 0,1,2,...,k 1.

Px is commonly referred to as a pinch map.

2.6.1. Lemma. If X is a suspension, then the pinch map Px is a suspension

map. In particular, the maps Psx : SSX SSX and SPx : SSX--+S(V SX)

are topologically equivalent.



(2.12)

Proof. In the diagram,

XxJxI

th

Pxid-÷ SX x I

13

i=0

ssx

20

XxIxJ P.xid SX x J P, ssx S-Ac s(VSX)
the maps h and j are from corollary 2.5.6. where h(x,s,t) = h(x,t,$). The map

Psx is defined by

Psx([x, s], t]) = [i,[[x, s],kt

and the map SPx is defined by

SPx([[x,t], s]) = [[i,[x,kt - i]]v,s].

The corresponding equivalence relations induced on X xJx / are equal and, for

(x ,s,t),(x' , s' , t') EX xJxI, are induced by (s = .s' = +1) or (t = = i k ,) for

some i = 0,1, , k) or (x = = *).

2.6.2. Definition. Let fo, , fk-1 be maps from SX to (Y,*). We define

the map (fi) : V i 0, , k - 1 by

(L)(j,[x,s]s) = h(fx,sls).

This simply applies h to the Ph copy of SX in V SX.

We now give a more geometric version of homotopy addition.

To add the maps fo, ,fk_i : SX+(Y,*) in homotopy, we will first pinch

SX to form a wedge of k copies of SX and then apply each fi to a different copy.

k-1
2.6.3. Lemma. [(f2)o P] [L].

J.°

Proof. The proof is actually done in the topological category. For t E [1, i+]
and for i = 0, 1,2, ... ,k -1, we have

k-1
(fi) o P([x,.s]) = (fi)(i,[x,ks i]s) = fi([x,ks i]) LUx,sll.

Psx



Thus we see homotopy addition can be factored as [(f) o 13].

2.6.4. Definition. If f: SX --q17, *) is a pointed map, we define

f : SX-4(Y,*) by

f Gx, sn = f Gx,1 s]),

and we define (-1)mf by:

(_irif 1 f if m is even
1 f if M is odd.

It is clear and a standard result in homotopy theory that f + (f) is inessential.

In the suspension space SX, X x 11/21 is called the equator of SX, and X

is called the desuspension of SX. In general the equator and the desuspension are

unique, however if a space Y is a multiple suspension, i.e. Y = SnX then there are

multiple equators and desuspensions.

E.g. If Y = SSX, then Y . {[[x,si]s,s2]3}"=-' {P02,18,31131.

The desuspension are thus {[x,si]s} and {[x, s2]3}, respectively. And the equa-

tors are {[[x,31],1/2],} and fqx,s2],,1/218}.

In the case of multiple suspensions the pinch map can be defined to run trans-

verse to the equator.

E.g. if thx,s113,1/2],} is chosen as the equator we define the pinch map by

P([x, 311.9,32],9) = [i,[[x,ksi 49,82]]v for si E [77, /-7-1

and i= 0,1, ... , k 1.

21



S2

1 k - 1

Pinch Map

Fig. 2.1

Thus the pinch map restricted to the desuspension is still a pinch map and the

equator is mapped on the equators of each (SX)i in V SX.

The following is a reformulation of Left Distributivity (see Theorem 2.3.1).

2.6.5. Lemma. If f : SX---17 is a suspension map and di : Y--*Z are

arbitrary maps for i = 0, , k 1, and P is the pinch map F: SX SX, then

k-1
(di)oVfoP= (Edi)of.

i=0

k-1
Proof. Since f is a suspension map Y is a suspension, and consequently di

i=o
k k

is well defined. We have the maps V f: SX> Y and (di) : Y Z and

P : SXSX.

Thus we have the following composition of maps;

k Vf k d)
SX--4\1

1

2

22



which is equivalent to

which is equivalent to

E o f
i=0SX

and thus
k-1 k-1

(di)oVfoP= diof = (Edi)of
i=0 i=0

by left distributivity (Theorem 2.3.1).

The following commutative diagram is a summary of this result:

(2.13)

SX((-1±cl.f)Z

k k
(di)SX -2--% VSX Y4 V Y Z

f P

Ed,
Y -- z

23

where Vi represents a deleted vertex. The notation + < vi, > and < vi, >
represent even and odd permutations of < v,, >

2.7. Simplices and Face Maps.

We now recall some facts about simplices. Let An =< Vo, v1, , vn > . Then

An is an n-cell and BdAn = Sn-1. Let (An)(k) be the polyhedron consisting of the

union of all faces of An with dimension < k. It is easy to see (An)(n-1)

In the following, pAn is a historically motivated representation of (An)(7-1-1)

where orientation of the faces are consistantly preserved.

2.7.1. Definition. We define the boundary operator, aAn, by

°An
< VO7 >

i=0



2.7.2. Definition. Let A" .< vo,...,vn > and 1n+1 =-< u0, >
We define n + 2 simplicial maps di : An--n+1, i --= 0, ...,n 1, by

di(< vo, , v >) .< uo, >, where Ili is a deleted vertex. The

maps di are called face maps. I.e. di maps An linearly onto the face opposite the

ith vertex preserving the order of the vertices.

E.g. d2 : A3---÷A4 is defined by

d2(< Vo, 24, V2, >) UO, U1,113, u4 >

Now consider di restricted toan n - I face of An.

< UO, fij-I-1, un+1 >di(< >) =
< 220, .. Un+1 >

E.g. d2(< >) .< 2.4 >=< 210,2i1,U3 >

and d2(< vo,i)i, v2, v3 >) .< uo, it2,u3, u4 >=< uo,u3,u4 >.

We will have use for the following simple version of the Homotopy Addition

Theorem. We will prove it here for completeness and for motivating generalizations

of it that we will prove later.

nnWe now notice that di restricted to oAn is a map di : 5n-1,(A+1)(-1),
and hence represents an element of rn_1((An+1)(n+1)). We thus have the notion

of homotopy addition.

2.7.3. Theorem. (Homotopy Addition Theorem)
If di (An)(n-1)__(An+1)(n-1), U 1, , n are the face maps,

then. E0(-1)idi 0.

Proof. We first compute

di(aAn) =-- diE(-1)i < vo, ,i)j, vn >
j=0

i-1
fti, , 11,6_ >

j=o

-1)j < Uo, un+1 >

ifi<j
if i > j.

24



En+1
=

i=0 j=0

1) < uo,. ilj+1, nn+1 >

< 710, >

25

We now compute the alternating sum of (-1)2d2, i = 0, ,n 1 and show that

the sum is 0.
1

(( 1)id,(0 < vo,..., Vn >)
i=0

n+1 (i-1
(-1)1 < up, , ü,. , un+1 >

i=0 j=0

I.e. di o di is a map that maps An linearly onto the n-face of An+2 that does

not contain the vertices ui and uj.

j-I-1

< uo , ) ili, ii)+11 Un+1 >

It can be seen that when the simplex < uo,..., > in the first

sum has the same vertices as the simplex < ii. . , . . . ,un+1 > in the

second sum then j in the first sum equals i in the second sum and i in the first

sum equals j 1 in the second sum and thus replacing the i and j of the second

sum in the coeficient (_1)i with the equivalent i and j of the first sum we have

(-1)i+i = = (-1)i+j. And thus the terms of the comprehensive sum

cancels in pairs and the sum is 0.

Now consider di An(An+1 (n)) and di An+1__(An+2)n-f-1.

di(An) =< >

di(An+1) ---=< UO, flj, >

and thus

di 0 di(An) = di(< vo, >=< UO, Un+2 >



(2.14)

We can extend this to the composition of any number of maps.

An dik An-Fk-1 An-Fk

Zk<il if k<l.

Then dik o o di, : aAn----*(An+k )(n-1) is a map that maps aAn onto the

boundary of the n-face of An+k that does not contain the vertices

The following diagram demonstrates the composition of maps:

An

aAn

An1-1

aAn+i

(An-F1 )(n-1)

di

di

di

oAnd-2 = yn-F1)

The diagram can be extended up and to the right indefinetly. For convenience

we abbreviate . odtk o tl = C121,-,2k

For all maps di, i 0, d(v0) = uo. To preserve the base points for all

maps di we want do(vo) = uo. To do this we alter do. We define d*0 : An >An+1

by the composition of maps do* =d0 o a : An >An+1 where a is the linear map

a : An +AnU < > defined by;

a : v0 i v1
:< 1/2v0 1/2v1,..., 1/2v0 + 1/2v, > >vo

a : vn vn Vn 0

and i is defined by ii0(x)= do(x) if x E An and if x E< v1, vo >, then

x = A(vi)-F (1 A)vo and then do(x) = Avo + (1 A)vi.

26



Face Map

Fig. 2.2

When a is restricted to 0An, a maps cells onto < v1, vo > in pairs with

opposites orientation and hence the inessentiality of E di is preserved.

2.8. CW-Complexes.

We conclude this chapter with a section on CW-complices. The lemmas are

given without proof as the proofs of these results can be found in [Sw].

2.8.1. Definition. [Sw 5.11 A Cell Complex K on a space X is a collection

K {era' = 0,1, 2, ... ,aEJ} of subsets of X indexed by n E {0,1, ...} and for

each n by a running through some index set Jr,. The set eicz, is called a cell of

dim it. K must satisfy the following conditions;

X = ena =

if bd ea" n bd 1, then n = m and a =

for each cell ena there is a map frc: (Do sn-1)_(ectn, bdena) which is SUT-

jective and maps int Dn homeomorphically onto int enc,.

2.8.2. Definition. [Sw 5.3.] A CW-Complex K on a space X is a cell

complex K on X satisfying:

C) K is closure finite, i.e. each cell has only a finite number of faces.

27



28

W) X has the Weak Topology induced by K, i.e. A subset S c X is closed if

and only if S n e7,1., is closed in c7z, for each n, a.

We easily see that any simplicial complex is a CW-complex on its underlying

polyhedron.

The following theorem follows directly from Lemmas 6.4, 6.5, 6.6 of [Sw].

2.8.3. Theorem. If (X, A) is a relative CW-Complex and A is contractible,

then the projection p: (X,A)--qX/A,*) is a homotopy equivalence.



1. Dn is not collapsible.

3. DUNCE HATS

3.1. Introduction.

The traditional dunce hat, which was supposedly worn by grammar school

pupils of an era gone by for failure to grasp the lessons of their teacher, was a

triangular piece of material where two sides were sewn together. The third side

formed a circle that fit around the head and thus formed a hat in the shape of a
cone.

Traditional Dunce Hat

Fig. 3.1

The topological dunce hat is the simplicial abstraction of the traditional dunce

hat where the seam is sewn to the circular base. The topological dunce hat is the

simplest example of a polyhedron that is contractible in the sense of homotopy, but

not collapsible in the sense of J. H. C. Whitehead. We shall henceforth omit any

reference to traditional or topological dunce hat, and it will be understood that

dunce hat will mean topological dunce hat.

In this chapter we construct a sequence of spaces D" that are n-dimensional

dunce hats in the sense of Thomas [T] and prove the following three properties:

29
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For n = 0,1, 2, ... , D is contractible.

For n = 0,1,2, ... , D2' is homotopically equivalent to S2n+1.

In a preprint by Marjanovic and Schori [M-S] a homology proof is given for the

second property. In this paper a homotopy proof is given.

3.2. An n-dimensional dunce hat.

In this section we will define the 2-dimensional dunce hat and generalize that

definition to n-dimensional dunce hats for n = 0,1,.... We also show that the
n-dimensional dunce hat is not collapsible for n = 1,2,....

3.2.1. Definition. Let (Ai, A2, A3) represent the barycentric coordinates of

a point in A2 and identify points according to the following;

(1,0,0) -7, (0,1,0) .. (0,0,1)

(a, b, 0)E-,-- (a, 0, b)_.. (0,a, b)

then the resulting space is called the dunce hat.

V2

44, o,-41-) (o,i,14-)

Vo

el -1- 0)4'4'

Dunce Hat

Fig. 3.2

In Figure 3.2, the dunce hat is formed by identifying the three vertices to a
single point, and by identifying the edges as indicated by the arrows.
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We use the following definition by Thomas [T] to define the higher dimensional

dunce hats.

3.2.2. Definition. Let An be the standard n-simplex. The n-dimensional

dunce hat Dn is the quotient space of An where points are identified as follows: If

p, q E An, then p-_--7-_ q if and only if the ordered r-tuples, 1 < r < n +1, of non-zero

barycentric coordinates of p and q are equal.

We illustrate this definition by observing that for A2, the points (3/4,1/4, 0) :.--,---_-

(0,3/4, 1/4)E-_- (3/4,0,1/4) as seen in Figure 3.2.

To see that the ndimensional dunce hat is not collapsible we follow the poly-

hedral definition of collapsing in Zeeman [Z].

3.2.3. Definition. Let X be a polyhedron and Y a subpolyhedron. There is

an elementary collapse from X to Y if for some n there is an nball Bn with face

B1 such that
X =YUBn

Bn-1 = Y n B.
We describe the elementary collapse from X to Y by saying collapse across Bn onto

Bn-1, or collapse across Bn from .131 where B*n-1 is the complementary face of

B. We say X collapses to Y, written X \ Y if there is a sequence of elementary

collapses

X = X0 \ Xi \ . Xn =--- 17.

If Y is a point we call X collapsible and write X \ 0.

3.2.4. Theorem. The n-dimensional dunce hat Dn is collapsible if and only

zf n = 0.

Proof. For any polyhedron X to be collapsible there must exist a cell B C X

with a free face on which to begin the collapse. In the dunce hat all faces have

been identified so as to eliminate all free faces and thus Dn is not collapsible for

any n 0. For n = 0, D° is a single point and thus is trivially collapsible.



3.3. Symmetric Products.

The higher dimensional dunce hats can be developed through the notion of

symmetric products. We will use the symmetric product characterization of dunce

hats to prove the second two properties. In particular we will need to define the

quotient map, qn, from the n-simplex An to the n-dimensional dunce hat D. This

is easily done through the notion of symmetric products.

3.3.1. Definition. Let X be a topological space. We designate the set of all

nonempty closed subsets of X by 2x, i.e. 2x = {AIA is a non-empty closed subset

of X}.

We define a topology on 2x by: If G1,...,Gn are open sets in X,

let U(Gi,... ,Gn) = {A E 2X124. C UGi & A n Gi 0 for each i =

The set of all such U(Gi,...,Gn) is a basis for a topology on 2x called the Vietoris

(finite) topology on 2x .

3.3.2. Definition. If A is a subset of a metric space X let N,A represent the

set of all points in X whose distance to A is less than e. Let (X, d) be a bounded
metric space. We define the metric on 2x as follows: If A, B E 2x, then

D(A,B), inf{e > 01A c NEB B C NEA}.

The topology induced by this metric is called theHausdorff metric topology.

3.3.3. Definition. If X is T1 and n > 1, then the n-fold symmetric product

of X is X (n) = {A E 2x Icard A < n}.

We define a map f : X--+X(n) by f(x1,...,x)= {xi, ... ,xn}.
If x2 = X j, then they represent the same element in {x1, .. ,xn}.

E.g. {0,1/2,1/2,1} = 0,1/2,11.

We define an equivalence relation , on Xn by

(x1. ,xn)=- (Y1) ,yn) < = 01,
E.g. (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) in /3.
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From [S] we have the following two results:

3.3.4. Theorem. If X is a compact metric space, then the Vietoris topology

on 2x is equivalent to the Hausdorff metric topology on 2x .

3.3.5. Theorem. If X is Ti., then X(n) = X/ ._.

3.3.6. Definition. For I = [0, 1], we shall let

10(n) = {A E /(n)I0 E A} and

Id(n) = {A E /(n)10,1 E A}.

For example, consider ./;1- (4). In view of theorem 3.3.5., .41(4) is the projection

of E = {(a, b, c, d)la,b, c, d E I, where at least one coordinate is 0 and one coordinate

is 1} under the quotient map. See Figure 3.3 for a picture of one 'leaf' of E.

and (0, b, 0,1) _= (0,0, b, 1):...-,-_- (0, b, 1,1) -= (0,1, b, 1) -= (0, b,b,1).
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(0, 0, 1, 1)

(0, 0, b, 1)

(0, 0, 0, 1)

Notice that (0, 0, 0, 1)

(0, b, 1,1)
(0,

(0,

(0,

(0,

1, 1, 1)

1, b, 1)

1, 0, 1)

1, 1, 1)

/

(0, h, h, 1)

(0, 0,

(0, b, 0, 1)

Leaf of E

Fig. 3.3

1, 1) FE- (0, 1, 0, 1) _=---



Quotient of E

Fig. 3.4

This is the usual representation for the 2-dimensional dunce hat.

3.3.7. Theorem. n(n + 2)'"=-' D'.

Proof. We first give an alternate presentation for the standard n-simplex,
An AivilAi 0, E = 11,

i=0 i=0

where vo = (0, 0, . , 0), v1 = (1, 0, . , 0), . . . vn = (0, 0, . , 1).

We define a 'nonstandard' n-simplex, An, by

= {(cii,... ,an)10 <a1 < < < an < 1}.

= {(a,b)10 < a < b < 1}
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Figure 3.3 reduces under the equivalence relation to the following figure where

the edges are identified as indicated and all vertices are identified to a single point.

Non Standard n-Simplex

Fig. 3.5

a
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We define the homeomorphism from the standard simplex An represented in

barycentric coordinates to the nonstandard simplex A" represented in rectangular

coordinates by

h(E Aivi) = (Ao, Ao Ai,.. , Ao . An-1)
i=0

and its inverse is given by

11,-1 (cti , , an) = aivo (a2 ai)vi (az, an_i)vn_i + (1 an)vn

We now define the projection map qn : An--Jj(n + 2) from the nonstandard

n-simplex, An, to (n + 2) by

qn((ai,a2, an)) = {0, a1,

Let Pn : An --Dn be the projection map from the standard n-simplex, An, to

the dunce hat, D, as defined in definition 3.2.2.. Let x (A0, , An) and

y = (Ko, , KO be barycentric coordinates of points in An.

We need only show that P(x) = P(y) if and only if qn o h(x) = qn o h(y) to induce

a homeomorphism f: Dn-4id(n + 2).
An h An

(3.1)
IPn Ign

Dfl (n + 2)

Now, P(x) = P(y) if and only if the ordered r-tuples of non-zero barycentric

coordinates of x and y are equal, and this is true if and only if (A0, Ao A1, , Ao

An_i) and ('to, Ko , Ko Kn_i) have the same coordinate values

in the same order disregarding duplication, and with the possible exceptions of the

first and last coordinates where one may have the entry 0 or 1, respectively, and

the others first or last entry is equal to the first or last non 0 or non 1 entry of the

former.



We can now define the face maps between the nonstandard simplices in terms

of these face maps.
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This is true if and only if the following equations hold:

qn °h(I) = qn(Ao, Ao Ai,...,A0 +n-1)
-7-- {0, A0, A0 + Ai, Ao +... + Ani, 1}

= 10 , ko , + 1

=-- qn(Ko, Ko + Ko + n-1)

qn o h(y).

E. g. consider the points indicated in Figure 3.2.

(3/4,0,1/4) -- {0,3/4,1}

(3/4,1/4,0) (3/4,1) {0,3/4,1}

(0,3/4,1/4) (0,3/4) {0,3/4,1}

3.3.8. Corollary. Dn-1 C D.

Proof. Ij (n 1) C ./j(n + 2).

3.4. The relationship between Dn-1 and D.

Since Dn-' and Dn are quotient spaces of An-1 and An respectively, the

relationship between Dn-1 and D" is closely related to the relationship between

An-1 and L.

We begin by recalling the definition of the canonical face maps

dy. : An--aAn+1 between standard simplices.

3.4.1. Definition. The canonical face maps c17 : An--*(An+1)(n),

for i = 0,1, ... ,n+ 1 are defined by

i 1 n+1

3 ) = OVi Ai_lvi.
j=0 j=0 j=i1-1
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3.4.2. Definition. Let h be the homeomorphism between standard and

nonstandard simplices. The canonical face map between nonstandard simplices is

defined as d7 .hocriz ohi.

Let (al, an) E L. We now directly compute d7(ai, .. , an).

For i 0,n +1 we have

h o criz o , an) = h ° driVaivo + (a2 - ai)vi

+ (1 - an)vn)

h(aivo (a2 - ai)vi + (ai - ai-i)vi-i

+ Ovi + (ai+i - ...+ (1- an)vn+i)

=-- ,a1,a1,ai+1, ,an).

It is easily checked that for i = 0 and i = n + 1 we have

do ((al , an)) = (0, , . , an) and

dn+i((ai, ,an--i)) =

For the remainder of the paper simplices and face maps will be understood to

be nonstandard and thus we will omit the underline symbol to designate them, and

simply use the symbols A" and d7.

Recall that qn : An = 13-(n + 2) is defined by

qn(ai, ,an) =

We let (An)(n-1)_4 7-m-1LI denote the restriction of qn to (An)(n-1).

3.4.3. Lemma. For each i = 0, 1, . n, qn+1 o d = qn : An

Proof. We have

o cri2((ai,a2,..., an)) = qn+i((ai, a2,..., ai, ai, an))

=

= qn(ai,a2, , an).



(3.2)

3.4.4. Lemma. For each n > 1, Dn'-="' An U4-., D1.

Proof. Since qn : (An)(n-1)-->Dn-1 is onto we have the naturally defined

quotient map a An u Dn-1. The map qr, : An-->Dn is one-to-one on the

interior of An and is equal to on (An)71-1 and hence qn and a induce the same

equivalence relation on An. Thus there exists a homeomorphism

h : An Uqn D'D..

3.4.5. Corollary. For each n > 1, DI 1 I Dn-1 sn

Proof. The composition of maps An+a An U h Dn Dn-1

clearly shows that Dn/Dn-1 Ani(An)(n-1) sn.

The following lemma and its corollary follow directly from Theorem 2.8.3.

3.4.6. Lemma. ([Wh] Cor. 5.12 chap. 1) Let A, B, X be CW-Complexes.

If A C X, h : A--I3 is a homotopy equivalence, then f : B is also a

homotopy equivalence, where f is defined by

f(x) h(x) if x E A
x ifxEXA.

3.4.7. Corollary. For A, X CW-Complexes, if A is a contractible closed

subset of X, then the identification map p : X --*X IA defined by

f * ifxEA
"1 ix if x EXA

is a homotopy equivalence.
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Diagram (3.2) is a commutative diagram showing the relationships of these

maps.

qn Dn
qn +1



Proof. The map p: is a homotopy equivalence since A is contractible,

and XIA = X Up*.

3.4.8. Corollary. If Dn-1 is contractible, then Dn Sn.

The following commutative diagram exemplifies the relationships of the sim-

plices, dunce hats, and maps.

An-1 qn-1 Dn-1 5n-1

Id7-1
4-n

an

(3.3)
An Dn Dn ID' Sri

qn+1
d7

aAn+1

inc

An-F1 qn+1 Dn+1 Dn+1 IDn r=f Sn+1

t

3.5. The Main Result.

To complete the proofs of properties 2 and 3 we need two technical lemmas

and the Homotopy Addition theorem.

3.5.1. Lemma. If f,g : X>17 are maps and h : Y--÷Z is a homotopy

equivalence where h o fL.s_d h o g, then f g.

Proof. fr__,Wohoff..-zhiohogg.

D11-1 iDn-2

3.5.2. Lemma. If f : X--+17 and g : Y are homotopy equivalences,

then g o f is a homotopy equivalence.

39
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Proof. Let f' and g' be the respective homotopy inverses. Then we have

fogiogofa.,

We will use the Homotopy Addition Theorem as found in Hu [Hu]. This is a

more general version than Theorem 2.7.3.

3.5.3. Homotopy Addition Theorem. For any map
f ((An+1)(n), (A72+1)(n-1))_÷(x, x0), the homotopy class of f,[f] E 7(X, X0),

n+1

and for n > 2 we always have [f] (-1)i[f o cl7], where the cl7 An_OAn+1
i=0

are the face maps, and for n = 1 we have [f] = [f o cll] [f o cl4] [f o

We are now ready to complete the proofs. We need one final lemma

3.5.4. Lemma. If Dn-1 is contractible and n is odd, then D71+1 is con-

tractible.

Proof. Let p: Dn ---+Sn be the homotopy equivalence of Corollary 3.4.7.

Consider the map p 0 qn.+1 (aAn+1, (An+1)(n-1))(sn,*).

By virtue of the Homotopy Addition Thereom we have the following result:

For n 1,

[po421---,[poq2o41[poq2o431404.2o4-1

= [P ° qd [P ° [P ° = [P °

and for n > 2, we have

n+1 1

[P0 qn+11 = o qn+i o (-1)2[p o qn].
i=0 i=0

Since n is odd, we have an odd number of maps each of which is the same except

for sign, and thus [p 0 [p 0 gn]. Thus, [p 0 4Y,,+1] as an element of r n(Sn ,*) is

represented by p o qn (An, a An),(sn ,*\) which represents the identity element

of rn(Sn) since the restriction of p 0 gn to the interior of An is a homeomorphism.
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: 49An-1-1 .5n. sConsequently, p o qn+i 1 homotopic to a homeomorphism and is

therefore a homotopy equivalence.

By hypothesis, D11-1 is contractible and consequently p: Dn ---d:)nIDn-1 is a

homotopy equivalence by Corollary 3.4.7. Therefore if p' is a homotopy inverse of

p, then +1 Ls._-, p' op o 4-72+1 : aAn+i, ,-..rtii is a homotopy equivalence. It follows

directly from Lemmas 3.4.4 and 3.4.6 that Dn+1 f=d An+1 U4n+1 Dn '- -' An+1, which

is contractible.

3.5.5. Theorem. D2n is contractible for n = 0, 1, . . ..

Proof. We have shown that if n 1 is even and Dn-1 is contractible, then

Dn+1 is contractible. We observe that D° is a single point and thus contractible.

Thus, we conclude that D2n is contractible for n -= 0,1, ....

3.5.6. Corollary. D21Z+1 ''' -' s2n-F1 for n = 0,1, ....

Proof. Since D2n is contractible, we have D21+1 , s2n+1 for n = 0,1, ....



4. CONSTRUCTION TECHNIQUES APPLIED TO THE

CELL LIKE DIMENSION RAISING MAP PROBLEM

4.1. Introduction.

This section is motivated by a long and important history in topology. The

original and historical problem was due to Alexandrov and the second became widely

known in the 1960's as an important problem in infinite dimensional topology,

manifold topology, and homotopy theory.

Problem 1. (Alexandrov) Does there exist an infinite-dimensional compactum

that has finite cohomological dimension?

Problem 2. (Cell-Like Dimension Raising Mapping Problem) Does there exist

a cell-like map between compacta that raises dimension?

In 1978, Robert D. Edwards [Ed] announced two results that had a significant

impact on the area. The first, was written up and publilshed by John Walsh [W]

and shows one direction in the proof of the equivalence of Problems 1 and 2.

4.1.1. Theorem. (Edwards-Walsh) If Y is a compact metric space with

c dim Y < n, then. Y is the cell-like image of a compact metric space X with

dim X < n.

Thus, if Y is an infinite-dimensional compactum with finite-cohomological di-

mension, then Y is the image of a cell-like dimension raising map. The other direc-

tion is a consequence of the Vietoris-Begle mapping theorem. A complete discussion

of this equivalence is found in Walsh [W].
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The validity of the other result announced by Edwards in [Ed] is the specific

motivation of this section. We list it here as a conjecture.



.f; f;Sin° ,._Sm1 Sm2 where rni <m3 for i <j
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4.1.2. Conjecture. (Edwards [Ed]) There exists an infinite-dimensional

compactum with finite cohomo logical dimension if there exists an inverse sequence

of spheres

and where all of the bonding maps have been suspended at least once and all finite

compositions of the maps are essential.

This conjecture has been worked on seriously by at least a hand full of topolo-

gists including Edwards, Walsh, Coppola, West, and Schori. A methodology evolved

for solving this conjecture and it is the purpose of this section to elucidate this

methodology and show that in its current form it will not work. In the process we

have taken construction techniques involving cones, mapping cones, suspensions,

and wedges that are in the tool box of homotopy theorists for use in the homotopy

category and we have formulated and proved many results in the topological cat-

egory. Apparently several of our formulations are new and should be of particular

interest to point-set and geometric topologists.

To complete the history discussed in this introduction we remark that in 1988

A.N. Dranishnikov [D] announced the following result:

4.1.3. Theorem There exists an infinite dimensional compact metric space

with the integral cohomological dimension equal to three.

This result answers both problems listed above in the affirmative but does not

settle conjecture 4.1.2.

4.2. Definitions and General Strategy.

The notion of cell-likeness is equivalent to the shape theory concept of having

the shape of a point. A convenient setting for cell-like sets is in the generalization

of simplicial complexes called absolute neighborhood retracts. A metric space X
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is an absolute neighborhood retract (ANR) if for each closed embedding of X in a

metric space Y, there is a neighborhood of X in Y that retracts to X.

4.2.1. Definition. A compact metric space C is cell-like if for each embed-

ding h of C into an ANR Y and for each neighborhood U of h(C) in Y, h(C) can

be contracted to a point in U.

A mapping f : X+Y is a proper map if the inverse image of each compact

subset of Y is compact.

4.2.2. Definition. A map f : X--17. is cell-like if it is proper and surjective

and f-1(y) is a cell-like space for each y in Y.

The methodology developed for proving Edward's conjecture was based largely

on a remark by J. J. Walsh in the paper Dimension, Cohomological Dimension, and

Cell-Like Mappings.

(4.2.3. Walsh's Remark. "The adjunction space LiUgjkLkn)has a 'natu-

ral' structure of a finite CW-complex having no cells in dimension n 1,

n + 2, ... , n i. A consequence (for example see [MS]) is that a compactum X

having cohomological dimension < n is the limit of a sequence {Lq, fq} satisfying:

Each Lq is a finite CW-complex.

(n+1) ))For each q there is an integer i(q) such that Lq(n) Lq = Lq

and lim i(q) = oo.

For each q, there is an e(q) > 0 such that sup{diam f-1(e)je is a cell ofooq

Lq} < 6(q) and glim e(q) = 0."

Assuming the existence on an inverse sequence of spheres of increasing dimen-

sion with essential bonding maps and all compositions essential, create a sequence

of spaces and maps satisfying Walsh's comment but whose inverse limit has infinite

dimension. The existence of such an inverse sequence of spheres is unknown.



Sril° 4-.57111 4-SM2 . .

Assume the existence of an inverse sequence of spheres

where mi <m3 for i <j

where all maps are suspensions and all finite compositions fi =f o . . . of: are

essential. The simplex Am°+2 is a CW-complex with cells of dimension

0,1, ... mo + 2. If r1 = 2, and rk = (mki + rki) MO, we want to construct

spaces:

L2 with cells of dimension 0,1, ... , mo, ± 1, mi Ti,

L3 with cells of dimension 0,1, . ?no, m2 + 1, 77/2 + 2, . 77/2 +

Lk+i with cells of dimension 0, 1, . . . , m, mk +1,mk + 2, . rnk + rk,

The technique for constructing these spaces will be inductive and use the map-

ping cone Mf=CX U1 Y where the map f:X.*Y is essential and a suspension.

We require f to be a suspension so that we may use the Homotopy Addition Theo-

rem to construct a finite sequence of maps and spaces for the construction of each

Li.

To guarantee criteria 2 we construct the spaces Lk such that mi < m, if

i < j. This creates larger gaps in the dimension of the cells as higher dimensional

CW-complexes are constructed.

To guarantee criteria 3 we create Lk+i from Lk by taking a sufficiently fine

subdivision of Lk and 'replace' cells of lower dimension with cells of higher dimen-

sion.

To guarantee dim L = oo, L is constructed so that c dim L < dim L1 and

the bonding maps are constructed so that they are essential and all compositions

are essential. This will imply that dim L > dim L1 > c dim L and thus by a

theorem of Kozlowski [K] dim L = oo.
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c dimL < me.

It was hoped that the dimension mo would have a finite upper bound, however

the construction technique developed in this paper leads one to the conclusion that

as the higher dimensional complexes are constructed the dimension mo must also

rise and thus this strategy to construct the desired space must fail. As stated before

we believe the construction techniques developed in this paper are of value.

In this paper we will focus on constructing spaces 'up to homotopy type' and

maps that are `homotopy equivalent'.

4.3. Some construction Techniques.

If we have an essential map f: Srn---Sn (e.g. the Hopf map h: S3-6'2),

then the mapping cone M f = C Sin Uf Sn = en1+1 U f S'1 a CW-complex consist-

ing of an m -I- 1 cell and an n cell, and furthermore the boundary of the m + 1 cell,

in Mf, is an n sphere. In the Hopf map example Mh = U, S2 is known to be

the complex projective 2-space CP2.

4.3.1. Definition. Diagrams of maps and spaces are said to be homotopy

equivalent if the corresponding maps and spaces are homotopy equivalent.

We decompose the m+1 sphere into the three closed subsets, the northern

hemisphere, the southern hemishere, and equator. We indicate this decomposition

with the following diagram where the vertical arrows are inclusions.

CS'
T

= mIs

1
c Sr'

We will often use the following standard result in homotopy theory.

I---

(4.1) Sm+1
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We let L = lim{Lq, fq} and we notice that if Walsh's conditions are satisfied

4.3.2. Theorem. A map f: Sm+X is inessential if and only if f can be
extended to a map 0 : C SmX.



(4.3) Sm =

(4.4)

We now combine these ideas.

4.3.3. Theorem. The diagram

Mf

Tin Tin

(4.2) Sm+1 = Sin f X

l4>in /
CS'

defines a suspension map g : Snz+1--M1 if the map f : Sni is the suspension

of an inessential map.

Proof. Let F : S"-1 4T be an inessential map where f '- -' SF. Then F

extends to cb' : CS'--÷T, and we have the following diagram.

C S' MF

Tin in

sml

tin

CS'
This defines a map G: Snz--MF, the suspension of which, SG : Sni+1----*SMF

is defined by the diagram:

SC Sm-1

lin

SS' = 55"-1

lin
sc sm-1

F4
/

T

SMF

Tin

ST
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which is homotopy equivalent to:

C 5'

Tin

(4.5) Sm." = Sm

tin

CS'

It is known that the Hopf map provides an example of a suspension map

Sf :SX--4SY that is inessential where the map on the equators

f : X-->Y" is essential. This example is given in 4.4.2.

vi

Wedge of (k-1) n-spheres

Fig. 4.1

Our next job is to generalize the following version of the Homotopy Addition

Theorem which was proved in Chapter 2.

We restate theorem 2.7.3.

k-1
4.3.4. Lemma. (An+2)(n) .._._, V Sn where k --=

of n + 1 cells in An+2.

(n+3\
kn-1-2/
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= n + 3, the number

Proof. The n-cells containing the vertex vo contracts to vo yielding a wedge

of (k 1) n-spheres.

I X
4)/



Face Map of A2 into ,6,3

Fig. 4.2
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Theorem 4.3.5. (Homotopy Addition Theorem) If the maps
di O___*( z+1)(1) are the restrictions of the standard face maps to DL',

then
n+1

E(-1)idi = 0.
i=o

We make the following remarks as a motivation for generalizing this version of

the HAT.

Remark 1. As discussed in Section 2.6, the summation statement in Theorem

4.3.5 can be represented geometrically as

ni-2
sn-111>

V S11-1
d (An+1)(n-1)

where P = n+2 is the (n+2) pinch map and d --= ((-1)id2).

n+1

By Lemma 4.3.4, (An+1)(n-1) is homotopy equivalent to V Sn-1 which facil-

itates the following remark.

Remark 2. The face map do : OAn÷(An+1)(n-1) is homotopy equivalent
n+1

to the pinch map Pn+1 : Sn-1 Sn-1 and for each i = 1, , n 1, the map

(-1)idi : 0An(An+1)0n-1) is homotopy equivalent to the map
n+1

id i : Sn-1 Sn-1 which injects Sn-1 onto the ith copy of Sn-1 in the wedge

with the orientation reversing homeomorphism.

We illustrate this remark in the case for n = 2 as in Figure 4.2.



Let A2 =< uo , , u2 > and A3 =< Vo, V2, V3 >. Then

do(a <uo,ui,u2>)= do(< ui,u2 > <uo, U2 > < UO, >)

=< V2, V3 > < V3,14 > < V1, V2 >

The orientation of these image simplices are the same as the original orientations.

This along with the fact that under the contraction mentioned in the proof of Lemma

4.3.4, the edges of (A3)(1) that contain vo will be collapsed to a point yielding a

wedge of three S1 's with orientations consistent with the orientations induced by

the pinch map P12+1.

To illustrate the (-1)id2 map, note that

d1(49 < uo,ui, U2 >) = 49(< Vo, V2, V3 >

= V2, V3 > < Vo, V3 > < VO, V2 >

In this case the simplices containing vo are shrunk to a point leaving the < v2, v3 >

simplex with the opposite orientation than was originally assigned. This corresponds

precisely to the injection of s1 onto the lst copy of S1 in the wedge of three S1 's

with a negative orientation.

Now we are ready to state a more general result.

4.3.6. Theorem. (Generalized Homotopy Addition Theorem) Let X be a

compact metric space and consider the diagram

k-1
V sx-cl* V sx

k-1
where P = Pk is a k-fold pinch map and d = Pk' V V(id). Then do P 0.

k-1
Proof. In the range space V SX, with each copy of SX is associated an

image of a copy of SX under the id map and the (id) map. In homotopy this

is equivalent to id + (id) 0 and consequently the result follows (essentially by

definition of the maps involved).
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k-1
4.3.7. Definition. We call the map d = dx :V SX--+ SX the addition

map.

4.3.8. Theorem. (Left Distributivity) If f : S X SY is a suspension

map, then the composition of maps in the diagram

SX-11 Vk SXV2 Vk SY---*ci kV-1SY

d oV f o P is inessential.

Proof. The result follows directly from Lemma 2.6.5 and Theorem 4.3.5.

4.3.9. Corollary. If Sm+1 f : Sm+1X).S7n+1Y is an (m 1)suspension

map, then d oV Sf oP is inessential.

Proof. The result follows from the preceeding theorem by a finite inductive

argument.

4.3.10. Lemma. The addition map dsx :V S2 X defined by
k-1

dSX 1:1-1
V V (id) is a suspension. In particular, the map

k-1
dsx :V S2 X --4 \I S2 X is topologically equivalent to

k-1 k-1
Sdx : S(V 5X)--4S(V SX) where dx = P1 V V(id).

Proof. By Lemma 2.4.8, the wedge of suspension maps is a suspension.

4.3.11. Theorem. If f: SX--+SY is a suspension map, then the composi-

tion of maps in the diagram

k-1
S2X Vk S2XV--Sf Vk V S2Y

k-1
d oV Sf oP: S2 X \Iv S2Y is a suspension map. In fact



k k-1
d oV f o P: S2 X+ V S2Y is topologically equivalent to

k k-1
S(d oV f o P: S(SX)---S(V SY).

Proof. The three maps of the composition are suspension maps, hence the

composition is a suspension.

4.4. Constructing a suspension map.

In this section we construct an m-suspension map between an m -I- 2-suspension

and the mapping cone Md. vk f.

Let f: Sr"' X --Sm-FlY be an (m + 1)-suspension map.

Thus f rs-' 5m+1F1 : Sm+1X --*Sm+1Y. We desuspend f m times to get the map

SF' : SX--6T-. For convenience let SF' = F. Decompose S2X by

(4.6) S2 X =

and consider the diagram:

CSX

(4.7) S2 X =
Tin

CP-->

P
____4

C S X

Tin

5m+1

tin

C SX

k

V F

k

V F

id

M F

Tin

k

V SY

ci-->

d

1W -do F

Tin

k-1

V SY

Tc6'
C SX

52

k

By Theorem 4.3.8 the composition of maps doVFoP is inessential, and thus this
k-1

composition can be extended to a map 01 : C SX> V SY '
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The diagram defines a map C: S2 X -- M dov F . We suspend this diagram m

times to get the following diagram;

(4.8) k

k
CP SmV FSmCSX -- Sm V CSX --* SmM k F SmilldoF

Tin Iin k Tin Iin
Sm+2X = k

Sm_yF
k

k-1
Sm SX -1'- Sm V SX Sm\l SY ----

lin .1(k
SmCSX id+ SmCSX

which defines the map Sin G : Sm+2 X MdovF

The diagram in (4.8) is homotopy equivalent to the following diagram;

(4.9)

Sm+2 X =
ST11+1 X

tin

C Sm+1 X

where cb ,_-_- Sm 01 .

CS"14-1X
CP--)

k

VCSm+1X

P___
k

V Sm+1X

We thus have the following result.

4.4.1. Theorem. If f : Sm+1 X 6'1+1Y is an

(m + 1)suspension map, then diagram (4.9) defines an msuspension map

g: Sm+2 X >M do f .

4.4.2. Remark. It was hoped that given an m + 1 suspension map the

diagram of Theorem 4.4.1 would yield an in + 1 suspension map. However this
k k

is possible only if d o V F' o P is inessential. We observe here that do VFoP

id

d__+



(4.10)
(An+2 )(n+1)

Tin
(And-2)(n)

Tin

(And-2 )(n-1)

Tin

(And-3 )(n-F2)

Tin

(An-F3 )(n-F1)

in

(And-3)(n)

Tin

(n+3 )(n_1)

dk

dk_4

dk

dk_4
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was inessential because the pinch map could be chosen to run transverse to the

equator. If the desuspension of F, F', is not a suspension map the pinch map cannot

run transverse to the equator and hence we cannot guarantee the inessentiality of

d o V F' o P.

We provide here a key example which shows that if the suspension of a map

Sf is inessential, that the map f need not be inessential.

It is well known that r3(S2) Z and that the Hopf map p: S3 represents

a generator. It is also true, [Hu, p 328] that 71-4(S3) Z2 and the suspension of

the Hopf map Sp represents a generator. Consequently, if f = p p, then S f is

inessential whereas f is essential.

We note at the end of section 4.5 that this appears to be an insurmountable

obstacle.

4.5. Constructing a replacement simplicial complex.

In the following construction we will have frequent use of the composition of

face maps as shown in diagram 4.10.

Let f : 5m , m > n, be a suspension map. We first will show how to

modify n+2 to obtain a CW-complex with cells of dimension m + 2, m 1, n,

di

di

di

di_4

di



n-1, , 1, 0. Let k= n+3, the number of (n+1)-faces of An+2, let d = ((-1)i di),

where di (An-F1)n___(An+2 ) n, i = 0, ,n + 2, are the face maps, and observe
that (An+l)n rfn,) The composition of maps

kVf k d
VSm V Sn qAn+2)(n)

leads to the following mapping cone construction diagram:

V e +
doVi

doVf

(4.11)

V Sm
dov f (n+2 )(n)

The map d o Vf induces the mapping cone MdoV f = V em+1
(And-2)(n)

do Vf

which can be thought of as the (n 1)-skeleton of An+2 where the

(n 1)-cells have been replaced by (m 1)-cells. We introduce the notation

MdoVf )(An+2)(n+1)( 1-V_F \ to emphasize this property.

Now we want to 'replace' the n + 2 cell with an m + 2 cell.

CSn2 = e7+1

Decompose Sm+1 as Sm+1 =
inc

ni-F1C .5" = e1.
n+2

Since (And-2)(n) Sn and by Theorem 4.4.1, the diagram

(4.12) 5712+1

CP

V f

id-4

Mk
v f

Tin

Vs'

Mdo vk f

(And-2)(n)

eTiz-1-1
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defines a map gi : Srn+1*Md k that is a 1-suspension, ando v f

M
+ 2 m + 1= An+2(m

91 = em+2m do f + 2 n + 1

The mapping cone Mg, is a CW-complex with cells of dimension m + 2,

m +1, n, , 1, O. We view Mg, as an n+2 simplex where the open n + 2 and n+1

cells have been replaced by open m + 2 and m -1- 1 cells, respectively.

For simplification of notation we will let A(p, q) represent the (n -1- q) skeleton

of the (n + p) simplex where the n -1- 1, n + 2, ... , n + q faces have been 'replaced'

with m -1- 1, m + 2, ... , m + q faces, respectively. Notationally, we use

(p q) = (An-I-p )(n+ q) M m + 2 m+ 1

n + 2 n + 1

Thus in our construction above we have constructed Mdovf = A(2,1) and

Mg, = A(2,2). We view this construction as the first step in an inductive con-

struction of A(r, r) for each positive integer r > 2. For r > 2, we now describe the

construction in steps. The steps will be referred to when describing the inductive

steps of the construction.

Step 1). Given A(2,1), construct the spaces A(3,1), ,(r, 1) and maps
: A(2, 1)>A(3, 1), cik : A(3, 1) ,6(4, 1), . .. Starting from diagram 4.12

construct the following diagram where d = (di).
doVf

A(2, 1) A(3, 1)

doVf+ (An+2)(n) d5(An+3)(n)

The spaces A(3,1), , A(r, 1) are obtained in a natural way. The space A(3,1) =
(An+3)(n+1)( ) is constructed as the mapping cone M cloV f in

k1

Vem +1 MdoVf = A(3, 1)

(4.14)

V Sm
dov f (An+3)(n)

dk di
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(4.17) Sm+2
Sm+1

tin

e_m+2

\I en11-2 M-cloVgi

(4.16)

V Sm+1 A(3,1)

which gives A(3,2).

Step 3). Constructing the map g2 : 2). Consider the following

diagram;

C P
k2

V ni+2
Tin

k2

Sm+1

k2

'j1

k2

Vgl

id4

= A(3, 2)

V k2 Mgi

lin
k2

V A(2, 1)
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where k1(++= the number of (n 1)-faces of An+3, and d = (di o di) for all:24\)

allowable combinations of i, j where di, di are the face maps from diagram 4.10.

To construct the maps di, we use Lemma 2.5.3. which is illustrated by

the diagram

CX Mf 424 M giof

(4.15)

X gi

which provides for the existence of :

Step 2). Construction of A(3,2).

We construct A(3,2) as a mapping cone. The composition of maps

Sm+1 \ .> A(2,1)±(3, 1),

where a = (ai) and k = n + 4, the number of (n 2)-faces of An+3, yields the

diagram



58

where ci = ((-1)iii) and -a = ((-1)i j) , where the ci maps come from diagram

4.13 and the ai maps come from an application of Lemma 2.5.3.

k2 k2

We have ((_1)i) o V i o P = (E((-1)i cii)) o (gi), and we claim
j=o

(-1)'a = 0. If we let lik represent the (m + 1)-cell in .o.(2, 1) that replaces the
3=0

(n + *cell in (An+2)(n+1) we see that in the argument that
k3

E(-1)idi (An+2)(n+1)_4(An+3)(n+1)
j=0

is inessential, every cell tik appears twice in the sum with opposite sign and hence

the sum is 0, as in the E( i)jdi case.

k2

Thus ((-1)3ai) o V gio P : Sm+1>A(3, 1,) is inessential and thus by

Theorem 4.4.1 and Lemma 2.5.6, if gi is a suspension map then the diagram defines

a map g2 : Sm+2--+A(3, 2) and Mg2 = em+3 Ug2 A(3, 2)

(An+3)( nr*F: T-Ti+4) A(3,3), a CW-complex with cells of dimension

m + 3, m + 2, m + 1, n, n 1, . . . , 1, 0. This completes Step 3).

If r = 3, then Mg2 = A(3,3) and we are finished. If r > 3, we will repeat Steps

1) - 3) in abreviated form, but showing the major changes. The diagram for Step

1) becomes

V en+2 A(3, 2) (-1-+ A(4, 2) .. A(r, 2)

(4.18)

V s' cioVgi
(A(3,1) cii`> A(4,1) c '1> A(r, 1)

where the spaces A(4,2), , A(r, 2) are constructed as before. For A(4,2), let

k2 = (ni++53) = the number of (n 2)-faces of An+4 and let d = o di). Then the

mapping cone MdoVg2 in the diagram
k2

V em+2

k2

Sm+1
doVgi

= A(4, 2)
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is the space A(4, 2). The maps k,. . . , di are obtained with applications of Lemma

2.5.3.

To construct A(4,3), the diagram from Step 2) becomes

k3 k3

V Sin+2 V .A.(3, 2)--+L(4, 2)

where d = (dk) and k3 = n + 5 and then A(4,3) = M--
doVg2

A diagram corresponding to the one in Step 3) yields g3 : Sm+3--A(4, 3) and

Mg3 = en1+3 U93 A(4, 3) = .6,(4, 4).

In general to construct (r, r) given that we have constructed

.6,(r 1, r 1) we construct, in order, the adjunction spaces,

r 2) and A(r,r, 1) and construct the map

g(r_i) : Sm+r-1--*A(r, r 1) using the commutative diagram presented in this

section. Then Mg(?--1) = enz+r U9(r-1) A(r,r, 1) -,---- (r, r).

We observe that the construction of g(r1) will require the original map f to
be an r 1 suspension map. Hence we have f '-. -' Sr-1 F : Sm --- *Sri and thus we

are forced to conclude n > r. This conclusion appears to be a fatal flaw in this

construction technique. As we construct higher dimensional spaces for our inverse

sequence we are also forced to increase the dimension of the initial space of the

sequence, and hence defeats our goals.

We conclude this paper with the construction of the spaces of the inverse se-

quence and the construction of the bonding maps to show that the rest of the

construction methodology for the problem works.

4.6. Constructing the spaces of an inverse sequence.

We assume there exists an inverse sequence of spheres of increasing dimen-

sion where the bonding maps and all compositions are essential and suspensions of

sufficient order.



.fFSin° Sir" Sni2 <m3 for i < j.

Let ft =f of o ... : (smi,*)---(smo,*).

Let f =Ii, n = mo and construct the space A(ro, ro) where ro = 2.

Let f = f2, n = mo, and r1 = ro (mi mo) and construct the space

A(r1,r1). We iteratively construct spaces A(ri,ri) where f = fi+1, n = mo,
and ri ---= ro (mi mo).

We now construct the spaces L1, L2, . . . of the inverse sequence.

Let L1 = Am°+", and let L2 = A(ro, ro), a CW-complex with cells of dimension

0, 1, , mo , mi + 1, ... mi ro. We take a simplicial subdivision of L2 to get a

space L12 that has cells of all dimensions 0, , ml ro.

We now use the A-functor of R.F. Williams [Wi] to replace all mi ro-cells

of L12 with A(ri,ri) to form L3. L3 is a CW-complex with cells of dimension

0, 1, .. , rno T/12 -F 7722 -F ri

Again we take a simplicial subdivision to get a space Li3 that has cells of all

dimensions 0,1, ... , m2 + ri and we use the A-functor of R.F. Williams to replace

all m2 + r1 cells of LI3 with A(r2,r2) to form L4.

We continue iteratively in this fashion to construct the spaces L5, L6,

taking simplicial subdivisions we can guarantee the diameter of each cell

of Lq decreases to zero as q goes to oo. We also notice that the gap in dimensions

increases as q oo, and clearly each Lq is a finite CW-complex. Thus the three

conditions of Walsh's remark are met.

We have yet to construct the bonding maps betwen the coordinate spaces.

4.7. Constructing the bonding maps.

To construct the bonding map rk : Lk+i---Lk we simply need to construct

a map r : A(r,r)*An+r, where (r, r) is a 'cell' in Lk+i and An+r is the
corresponding cell in Lk and extend r to all cells in Lk+1.
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(4.20)

by

(4.21)
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4.7.1.Lemma. If X is compact and if f : X---17 and g : are surjec-

tive maps, then there are maps f and such that the following diagram commutes,

where the vertical arrows are injections:

Proof. The map f is defined as in Lemma 2.5.3. and the map is defined

[x, t]) = Kg o f (x), t].

Let f: --+Sn be the map in section 4.5. In the diagram

idSm>f sn sn

C Sm M f C Sn =

.2111---An+1 is determined by Lemma 4.7.1.

In the construction of A(2,1) we used the diagram

V1 V/1/I (( 6'PM
(4.22)

V Sm
Vi ((-1)1d

V Sn ((-2)1-di) (n+2)(n)

where the maps di and cli, i = 0, ,n + 2, determine the map

r : A(2, 1)(An-F2)(n+1) as in the diagram:2

V M (2,1)

(4.23) rl 17)2

V An+1
((-1)i di) )(n-1-1)



In the construction of 6(2,1) we constructed a map gi : SM+1 A(2,1). We

use gi in the diagram

Sm+1 (2,1) --r2 (An+2)(n+1)

(4.24)

em+2 41---+r2 An+2A(2,2)

to obtain r2 : A(2, 2)>An+2 by Lemma 4.7.1.

In the construction of A(3,2) we used the diagram

where the maps cii and di, are induced face maps. Thus, we have a uniquiely defined

r A(3, 2)---+(An+3)(n+2) as determined by the diagram

VMg'
((-0i ;1;

A(3,2)

(4.26) IV" Irs3

V An+2
((-1)i di) (And-3)(n+2).

In the construction of A(3,2) we constructed a map g2 : Sm+2> A(2,1). We
use g2 in the diagram

5'1+2 9 2---+ A(3, 2)i>r (An+3)(n+2)

(4.27)

ern+3 (3,3) An+3

to obtain r3 : d(3,3)---*An+3 by Lemma 4.7.1.

We continue in this fashion constructing maps r'k and rk until' we have const-

tructed the map rr : A(r,r)--+An+r.
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We can now define our map rk : Lk+i--*Lk by rk = r, on every A(r, r) cell in

(4.25)

V eln+2

V Sm+1

g «--1)j60 A(3,

(A(3,

2)

1)

v

V g

Mgt

(( °id')A(2,1)V



4.8. Concluding Remarks and Summary.

We finish this chapter by summarizing the status of the Edward's Conjecture,

4.1.2. The methodology as laid out in Section 4.5 evolved over the years with several

researchers as discussed earlier. However, no one has been successful in making

the program work, and John Walsh of the University of California, Riverside, is

reported to have suspected that the bonding maps between the spheres were being

forced to be of higher and higher order of suspension. In this chapter, using some

preliminaries from Chapter 2, we have carefully developed the necessary homotopy

equivalences between maps and spaces, many of which turned out to be topological

equivalences required to carry out this program. In the inductive construction of

the spaces, a map f : Sm+Sn was needed to be a suspension in order to construct

a map g : SM+1 M doV f as in the diagram:

(4.28) Sm+1 =

m+1e+
CP enz+1

Tin

V Sm Vs

M kdovf

(n+2 )(n)

ni+1C_
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The map g is then used in place of the map f in a higher dimensional version of

this diagram which means that g must be a suspension which by our Theorem 4.4.1

requires f to be a double suspension. In this way, the map f is inductively forced

to be a higher and higher order suspension which leads to a contradiction.

We summarize the specific homotopy issue that causes this problem. In diagram

4.28 if f is a suspension, then the whole upper part of the diagram is a suspension

but not the map IS in the lower part of the diagram. For 0 to be a suspension,

the map d o Vf o P, which is a suspension and inessential, must desuspend to an

inessential map. This need not be the case as we have illustrated with an example
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constructed from the Hopf map, see 4.4.2. However, our case is quite special in the

sense that do Vf o P desuspends to a map of the form d' o Vf' o P' where d = Sd',

f = S f' , and P = SP', where d' = (d'i) and E o, and P' is a pinch map on

Furthermore, d' o o P' is a 'geometric' version of E(dli o f') and if we

have Left Distributivity, E(d'i o f') = (E cri) o f', then we in fact have that this

map is nullhomotopic. However, we only have Left Distributivity if f' (in this case)

is a suspension; and this is the problem. If f' is a suspension, then f has to be

a double suspension, etc. Finally, we point out that Left Distributivity has little

chance of succeeding for specific functions unless the function is a suspension and

in that case we know it works.
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