AN ABSTRACT OF THE DISSERTATION OF

Younggi Choi for the degree of Doctor of Philosophy in Chemistry presented on February 4, 2003.

Title: TOTAL SYNTHESIS OF INDOLE ALKALOIDS: PART I. ASYMMETRIC SYNTHESIS OF (-)-IBOGAMINE. PART II. AN APPROACH TOWARD THE SYNTHESIS OF KOUMINE.

Redacted for privacy

Abstracted approved: \qquad
U

James D. White

PART I. The preparation of $(-)$-ibogamine (1) in fourteen steps from benzoquinone and in 10\% overall yield is a powerful illustration of the value of the asymmetric Diels-Alder reaction as a starting point in a multistep synthesis. All four cycloadducts, 70, 77, 84 and 96 , obtained with the (S) - $\mathrm{BINOL}_{-\mathrm{TiCl}_{2}}$ complex were found to have the same absolute configuration. Furthermore, they are in the same enantiomeric series that Mikami observed with 1,4naphthoquinone using the same catalyst, lending confidence to future stereochemical predictions that may be made with this system.

PART II. Three different routes for the synthesis of the hexahydroisoquinoline 98 met obstacles which defeated our approach to
koumine. The Diels-Alder reaction of cyclic 1 -azadienes 102 and 108 was abandoned due to the lack of reactivity of the dienes. An anionic oxy-Cope rearrangement of the azabicyclo[2.2.2]octane system caused mainly decomposition of the starting materials. Finally, an intramolecular [2+2] photocycloaddition generated "crossed", "straight" and hydroisoquinoline products in varing ratios, depending on the substituent pattern of the substrate, but this approach was not synthetically useful. The results from this last study may be valuable for predicting the regiochemical outcome of certain intramolecular photocycloadditions.

${ }^{\oplus}$ Copyright by Younggi Choi

February 4, 2003.
All Rights Reserved

TOTAL SYNTHESIS OF INDOLE ALKALOIDS:
PART I. ASYMMETRIC SYNTHESIS OF (-)-IBOGAMINE.
PART II. AN APPROACH TOWARD THE SYNTHESIS OF KOUMINE.

by
Younggi Choi
A DISSERTATION
submitted to
Oregon State University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Presented February 4, 2003
Commencement June 2003

Doctor of Philosophy dissertation of Younggi Choi presented on February 4. $\underline{2003}$

APPROVED:

Redacted for privacy

MajorProfessor, representing Chemistry

Redacted for privacy

Chair of the Department of Chemistry

Redacted for privacy

Dean of Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes the release of my dissertation to any reader upon request.

Redacted for privacy

Younggi Choi, Author

ACKNOWLEDGMENTS

I am very grateful for the help of many people who made the writing of this thesis possible. First and foremost, I would like to sincerely thank my major Professor James D. White for his patience, support and critical guidance. His help was invaluable and is greatly appreciated. I would also like to thank my committee members: Dr. Deinzer, Dr. Gable, Dr. Loeser, Dr. Dilles and Dr. Carter for their time and support.

I thank the past and present members of Dr. White group, Paul R. Blakemore, Cindy Browder, Rich G. Carter, Bobby Chow, Jorg Deerberg, Nicholas E. Drapela, Uwe Grether, Roger Hanselmann, Joshua D. Hansen, Carla Hassler, Bryan E. Hauser, Jian Hong, Peter Hrnciar, Scott J. Kemp, Linda E. Keown, Jungchul Kim, Sung-kee Kim, Eric A. Korf, Christian L. Kranman, Punlop Kuntiyong, Chang-Sun Lee, Nadine Lee, Tae-Hee Lee, Christopher M. Lincoln, Barton W. Phillips, Laura Quaranta, Sigrid Quay, Lonnie A. Robarge, Volker K. Schulze, Keith Schwartz, Sundaram M. Shanmugham, Helmars Smits, Kurt F. Sundermann, Michael Thutewohl, Guoqiang Wang, Shan Wang, Wolfgang Wenger, Qing Xu and Darrell Ziemski for their friendship and useful discussion.

I thank Alex Yokochi for X-ray crystallographic analysis and Rodger Kohnert for his advice and assistance on the NMR analysis.

Finally, I could not have come to where I am without the financial and spiritual support from my loving parents, Ilsup Choi and Younghee Jung.

TABLE OF CONTENTS

Page
Chapter I GENERAL INTRODUCTION 2
Chapter II ASYMMETRIC SYNTHESIS OF (-)-IBOGAMINE 3
History and Background 3
Results and Discussion 16
Experimental Section General 43
Experimental Section 45
References 76
Chapter III AN APPROACH TOWARD THE SYNTHESIS OF KOUMINE 80
History and Background 81
Results and Discussion 105
Experimental Section 139
References 175
Chapter IV GENERAL CONCLUSION 180
Bibliography 181
Appendices 192

LIST OF FIGURES

Figure Page
1.1 Ibogane type alkaloids. 3
1.2 Two-point ligation of β-dicarbonyl compounds. 16
1.3 ORTEP representation of X-ray structure of 85. 25
1.4 ORTEP representation of X-ray structure of 109. 35
1.5 Proposed (S)-BINOL-TiCl ${ }_{2}$-benzoquinone complex. 36
2.1 Some alkaloids from the plant genus Gelsemium. 81
2.2 NOE data for the N -methylamine 132. 114
2.3 ORTEP representation of X-ray structure of 152. 119
2.4 ORTEP representation of X-ray structure of 157. 122
2.5 NOE data for the photoadducts 189a and 190a. 133

LIST OF TABLES

Table Page
1.1 $\mathrm{BINOL}-\mathrm{TiCl}_{2}$ catalyzed Diels-Alder reaction of 93 with 1,4-benzoquinone. 30
1.2 TADDOL-TiCl ${ }_{2}$ catalyzed Diels-Alder reaction of 93 with 1,4-benzoquinone. 31
1.3 ${ }^{1} \mathrm{H}$ NMR shift of the R/S pairs of mandelates 104 and 105. 33
2.1 Interatomic separation of radical centers (IRD) for the minimum energy conformation of biradicals 168-171. 126
2.2 Interatomic separation of radical centers (IRD) for the minimum energy conformation of biradicals 180-183. 130
2.3 Photocycloaddition of alkenes 186-188. 132
2.4 Interatomic separation of radical centers (IRD) for the minimum energy conformation of biradicals 192-195. 135

LIST OF APPENDIX TABLES

Table Page
A. 1 Crystal data and structure refinement for 85. 194
A. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 85 195
A. 3 Bond lengths $[A ̊]$ and angles $\left[{ }^{\circ}\right]$ for 85. 196
A. 4 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 85 197
A. 5 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\left(\AA^{2} \times 10^{3}\right)$ for 85 198
A. 6 Torsion angles [${ }^{\circ}$] for 85. 199
B. 1 Crystal data and structure refinement for bromoketone 109. 201
B. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for bromoketone 109. 202
B. 3 Bond lengths $[\AA ̊]$ and angles [${ }^{\circ}$] for bromoketone 109. 203
B. 4 Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for bromoketone 109. 205
B. 5 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for bromoketone 109. 206
C. 1 Crystal data and structure refinement for 152. 209

LIST OF APPENDIX TABLES (Continued)

Table Page
C. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 152. 210
C. 3 Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 152. 211
C. 4 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 152. 213
C. 5 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 152. 214
D. 1 Crystal data and structure refinement for 157. 216
D. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 157. 217
D. 3 Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for 157. 218
D. 4 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 157. 220
D. 5 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 157. 221
D. 6 Torsion angles [${ }^{\circ}$] for 157. 222
D. 7 Hydrogen bonds for 157 [\AA and ${ }^{\circ}$]. 225

This dissertation is dedicated to my Mother and Father,
Younghee Jung and Ilsup Choi in appreciation of their love.

TOTAL SYNTHESIS OF INDOLE ALKALOIDS:
PART I. ASYMMETRIC SYNTHESIS OF (-)-IBOGAMINE.
PART II. AN APPROACH TOWARD THE SYNTHESIS OF KOUMINE.

PART I. ASYMMETRIC SYNTHESIS OF (-)-IBOGAMINE.

Chapter I. GENERAL INTRODUCTION

The term alkaloid refers to nitrogen-containing organic substances of natural origin with a greater or lesser degree of basic character. Organic chemists have long been interested in alkaloid chemistry because of the intriguing structures and interesting biological activities of these products of nature. Since alkaloids are often available in limited quantity from their natural source, the total synthesis of alkaloids is sometimes the only means for obtaining sufficient compound for further study. The synthesis of alkaloids has also been central to new drug discovery through the preparation of analogues based upon a parent structure.

The dissertation presented in the following pages describes synthetic efforts toward two indole alkaloids. The first part of the thesis describes an asymmetric synthesis of (-)-ibogamine, an alkaloid which was isolated from the west African shrub Tabernanthe iboga. An asymmetric Diels-Alder reaction of 1,4-benzoquinone in the presence of a chiral titanium derived catalyst is a key step in this synthesis. The second part of the thesis entails model studies for an eventual synthesis of (-)-koumine, an alkaloid isolated from the Chinese medicinal plant Gelsemium elegans Bentham. The key feature of this work is an examination of intramolecular [2+2] photocycloadditions of azabicyclo[2.2.2]octanes.

Chapter II. ASYMMETRIC SYNTHESIS OF (-)-IBOGAMINE

History and Background

$(-)$-Ibogamine (1) and its congener (- -)-ibogaine (2) are indole alkaloids found in the west-African shrub Tabernanthe iboga. ${ }^{1}$ Because of the remarkable CNS stimulating properties and hallucinogenic activities of these substances, African hunters used them to stay motionless for long periods without loss of concentration.

$\mathrm{R}=\mathrm{H},(-)$-Ibogamine (1)
$\mathrm{R}=\mathrm{OMe},(-)$-Ibogaine (2)

(+)-Catharanthine (3)

Figure 1.1 Ibogane type alkaloids

The iboga alkaloids have attracted attention due to anecdotal evidence that they reduce addiction to heroin and cocaine. ${ }^{2}$ Recently, preclinical studies have demonstrated that they attenuate both dependence and withdrawal symptoms associated with a variety of abused drugs including opiates, alcohols, nicotine, and psychostimulants. ${ }^{3}$

The structures of 1 and 2 were determined by Taylor in 1957 who employed both chemical degradation and X-ray crystallographic analysis; ${ }^{4}$ the absolute configuration of (-)-ibogamine (1) was established by circular dichroism
studies of ibogane-type alkaloids including (+)-catharanthine (3) (Figure 1.1). ${ }^{5}$ Based on the observation of opposite absolute configuration, it has been postulated an intermediary stage in the biosynthesis of the ibogane-type alkaloids which could lead to both enantiomeric series.

$\mathrm{R}=\mathrm{Me}$, Vinblastine (4)
$\mathrm{R}=\mathrm{CHO}$, Vincristine (5)
(-)-Ibogamine (1) has been the target of synthetic investigations both for itself and as a prelude to the synthesis of the binary indole alkaloids, vinblastine (4) and vincristine (5), which have been used extensively as anticancer agents. ${ }^{6}$

The first total synthesis of $(\pm$)-ibogamine (1) was reported by Büchi and coworkers in 1965 (Scheme 1). ${ }^{7}$ Their synthesis started with sodium borohydride reduction of N -benzyl-3-cyanopyridinium bromide 6. It is noteworthy that only the 1,6 -dihydropyridine $\mathbf{7}$ in the mixture from reduction of $\mathbf{6}$ underwent a Diels-Alder reaction with methyl vinyl ketone to produce the isoquinuclidine 9 . Sodium borohydride reduction of 9 gave a mixture of epimeric alcohols which were subsequently oxidized with sodium hypochlorite to give the urethane $\mathbf{1 0}$ resulting from a Hofmann rearrangement.

9

11

10

13

1. DMSO, TFA, DCC, $\xrightarrow[\text { 2. } \mathrm{NaOMe}, 93 \%]{66 \%}$

14
2. $\mathrm{Zn}, \mathrm{AcOH}, 59 \%$
3. $\mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{KOH}$ 26%
(\pm)-Ibogamine (1)

Scheme 1. Büchi's synthesis of (\pm)-ibogamine

Hydrolysis of 10 followed by acetylation of the resulting pair of alcohols afforded 11 which was debenzylated and further condensed with β-indolylacetyl
chloride to yield 12. When 12 was exposed to acidic conditions, an unexpected rearrangement of the bicyclo[2.2.2]octane skeleton to a bicyclo[3.2.1] framework occurred, and the product was identified as 13 after lithium aluminum hydride reduction. To generate ibogamine, the diol 13 was first oxidized and dehydrated to the enone 14. Zinc reduction of 14 followed by Wolff-Kishner reduction then completed the synthesis of (\pm)-ibogamine (1).

21

Scheme 2. Sallay's synthesis of (\pm)-ibogamine

Subsequent to Büchi's synthesis, numerous routes to racemic ibogamine were published. ${ }^{8}$ Sallay's synthesis appeared in 1967 and began with the dione 15 which was readily available from a Diels-Alder reaction of benzoquinone with trans 1,3-hexadiene (Scheme 2). ${ }^{82}$ The less hindered ketone of 15 was protected as its ethylene ketal, and oxime formation at the remaining ketone provided 16. The latter underwent a regioselective Beckmann rearrangement to give the ε-lactam 17. In order to introduce the additional carbon at C -2 into the congested endo pocket of 17, the double bond was epoxidized and the resulting epoxide was converted to the ketone 18. A Wittig methylenation of 18 followed by hydroboration and oxidation furnished 19 which was advanced to 20 in three steps. When 20 was exposed to hydrogen bromide in acetic acid, cyclization occurred spontaneously to give the tricyclic amino ketone 21 which was successfully transformed to ibogamine by Fischer indolization.

Scheme 3. Nagata's synthesis of (\pm)-ibogamine

1.

2. $\mathrm{KOH}, 33 \%$ from 25
3. DMSO, $\mathrm{Ac}_{2} \mathrm{O}$

$\xrightarrow[\text { 2. } \mathrm{NaOMe}]{\text { 1.PTSA }}$ 30% from 28

$\xrightarrow[\text { 2. } \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, 55 \%]{\text { 1. } \mathrm{LAH}, 40 \%}(\pm)$-Ibogamine (1)
29

Scheme 3. Nagata's synthesis of (\pm)-ibogamine

Nagata's synthesis of (\pm)-ibogamine employed a Claisen rearrangement at an early stage of the sequence to construct the cis disubstituted cyclohexene 25 (Scheme 3). ${ }^{8 b}$ The preparation of 25 was initiated by lithium aluminum hydride reduction of the enone 22 followed by vinylation to provide 23. Claisen rearrangement of 23 and reduction of the resultant aldehyde led to 24. Upon deprotection of $\mathbf{2 4}$, the resulting alcohol was converted to its tosylate which was subjected to a Gabriel amine synthesis to afford 25. Lead tetraacetate mediated oxidation of 25 generated the bridged aziridine 26 which was immediately acylated with the anhydride 27, and the product was further oxidized to the ketone 28. Cyclization of 28 was effected in the presence of p-toluenesulfonic acid, and subsequent methanolysis provided the lactam 29 . For completion of the synthesis, 29 was first reduced with lithium aluminum hydride to give a
carbinolamine which was dehydrated and hydrogenated to furnish (\pm)-ibogamine (1).

35

Scheme 4. Atta-ur-Rahman's synthesis of (\pm)-ibogamine

The key reaction of Atta-ur-Rahman's approach involved cleavage of the pentacyclic quaternary salt $\mathbf{3 3}$ using activation by the indole nucleus (Scheme 4). ${ }^{8 e}$ En route to the synthesis of 33, Michael addition of ethyl 2-carbethoxy-4,4-
diethoxybutanoate 30 to methyl α-ethylacrylate followed by a Krapcho decarbethoxylation furnished 31. Direct condensation of 31 with tryptamine produced 32 which was reduced and mesylated to yield the quaternary salt 33. When 33 was heated with potassium cyanide at $200^{\circ} \mathrm{C}$, the desired C - N bond cleavage occurred, and subsequent methanolysis of the intermediate nitrile yielded 34. Mercuric acetate mediated oxidation of 34 followed by decarbomethoxylation completed the synthesis of (\pm)-ibogamine (1).

 $\xrightarrow[\text { 2. } \mathrm{BF}_{3}-\mathrm{MeOH}, 86 \%]{\text { 1. } \mathrm{KOH}, \Delta, 98 \%}$

38

39

2. $\mathrm{TsCl}, 85 \%$

$\xrightarrow[\text { 2. LAH, } 72 \%]{\text { 1. } \mathrm{AlCl}_{3}, 42 \%} \quad(\pm$-Ibogamine (1)

Scheme 5. Kuehne's synthesis of (\pm)-ibogamine

Kuehne's synthesis began with alkylation of 1-pyrrolidinobutene 36 with diethyl methylenemalonate followed by cyclization with triphenylvinylphosphonium bromide (Scheme 5). ${ }^{89}$ The resulting dicarboxylate 37
was hydrolyzed and then esterified to give a $1: 1$ mixture of cis and trans esters 38. Epoxidation of 38 with m-chloroperbenzoic acid followed by condensation with tryptamine provided an alcohol which was converted to its tosylate 40. The synthesis was completed by cyclization of $\mathbf{4 0}$ with aluminum chloride to provide 5 -oxoibogamine which was reduced with lithium aluminum hydride to (\pm)ibogamine (1).

$\left.\begin{array}{l}43(\mathrm{R}=\mathrm{H}) \\ 40(\mathrm{R}=\mathrm{Ts})\end{array}\right) \mathrm{TsCl}, 54 \%$

Scheme 6. Huffman's formal synthesis of (\pm)-ibogamine

Shortly after Kuehne's synthesis was completed, Huffman and co-workers published their investigation which adopted a similar strategy to that of Kuehne in constructing a $N-\beta$-(indolylethyl)isoquinuclidine (Scheme 6). ${ }^{\text {sh }}$ They found that addition of ethylmagnesium bromide in the presence of copper (I) iodide to bicyclic lactone 41 generated the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ product which was esterified and then equilibrated to give a $3: 2$ epimeric mixture at $\mathrm{C}-4$ of 42. Epoxidation of the mixture followed by condensation with tryptamine furnished the alcohol 43 which
was converted to its tosylate 40. Since the conversion of 40 to (\pm)-ibogamine (1) was already described by Kuehne, ${ }^{89}$ the preparation of 40 constituted a formal synthesis of the racemic natural product.

$\mathrm{LAH} / \mathrm{AlCl}_{3}$
51%
(\pm)-Ibogamine (1)

Scheme 7. Herdeis's synthesis of (\pm)-ibogamine

In a recent synthesis of (\pm)-ibogamine by Herdeis and coworkers, a DielsAlder reaction of 1-benzyl-5-benzyloxy-2(1H)-pyridone 44 with (E)-1,2-bis(phenylsulfonyl)ethene was used to construct the isoquinuclidine ring system of

45 (Scheme 7). ${ }^{8 i}$ A subsequent stereocontrolled cuprate addition gave the trans adduct 46 which was advanced to the bicyclic amine 47 . The condensation of 47 with 3 -indolylacetic acid afforded 48 which spontaneously cyclized in the presence of p-toluenesulfonic acid to the ε-lactam 49. The final step involved reduction with lithium aluminum hydride and aluminum chloride to furnish (\pm)ibogamine (1).

52

54

55

Scheme 8. Grieco's synthesis of (\pm)-ibogamine

Grieco and coworkers have described a novel approach to ibogamine which featured formation of the $\mathrm{C}_{17}-\mathrm{C}_{18}$ bond at an early stage in order to direct
construction of a hydroazepine ring (Scheme 8). ${ }^{8 j}$ Thus, a Grignard reaction on the known vinylogous ester 50 , followed by an acidic workup and esterification, first gave the enone 51. Luche reduction of 51 afforded a diastereomeric mixture of alcohols which was condensed with N -carbobenzyloxytryptamine to give 52. Stereoselective hydroboration of 52 followed by oxidation with the hypervalent iodine complex 53 furnished the ketone 54. Following removal of the amine protecting group from 54 using catalytic hydrogenation, intramolecular reductive amination provided the tetracyclic amine 55. Final intramolecular cyclization of 55 and lithium aluminum hydride reduction of the resulting lactam completed the synthesis of (\pm)-ibogamine (1).

Scheme 9. Trost's synthesis of (+)-ibogamine

Only one asymmetric pathway to ibogamine has been reported and this concluded at a 80:20 mixture favoring the non-natural (+)-enantiomer (Scheme 9). ${ }^{\text {.k }}$ Trost and coworkers used a catalyzed Diels-Alder reaction of the chiral diene 56 to construct the enantioenriched cyclohexene 57. The latter underwent reductive amination with tryptamine to afford the amine 58 which cyclized in the presence of a palladium(0) catalyst to give the isoquinuclidine 59. Completion of the synthesis was effected by a second palladium-mediated cyclization followed by a reductive workup. The synthesis of (+)-ibogamine in 17% overall yield and eight steps demonstrated that a concise approach to this structure was possible, albeit in enantiomerically impure form.

In summary, ibogamine (1) has been the target of numerous synthetic investigations, in large part due to its intriguing structure and interesting biological activities. The majority of the approaches to (\pm-ibogamine have adopted a common strategy which constructs a $\mathrm{N}-\beta$-(indolylethyl)isoquinuclidine and then effects subsequent cyclization to a hydroazepine ring. Our plan for the synthesis of $(-)$-ibogamine built upon the earlier work of Sallay, ${ }^{\text {8a }}$ but foresaw the possibility of turning Sallay's route into one of greater economy by employing a more highly functionalized diene in the initial Diels-Alder reaction. More importantly, we postulated that the Diels-Alder reaction planned for our synthesis could be mediated by a chiral catalyst, thus leading to an asymmetric synthesis of natural (-)-ibogamine (1). This work will be described in detail in the following chapter.

Results and Discussion

The asymmetric Diels-Alder reaction has become one of the most widely used constructs for the assembly of enantiomerically enriched chiral carbocycles. ${ }^{9}$ In its catalyzed version, the reaction offers an especially powerful synthetic method which can lead to adducts from achiral materials in good yield and high enantiomeric excess at or below ambient temperature. ${ }^{10}$ Catalyzed asymmetric cycloadditions have been particularly successful with dienophiles which can achieve a high level of organization in their coordination with Lewis acids.

Figure 1.2 Two-point ligation of β-dicarbonyl compounds

One class of dienophiles that meets this condition includes β-dicarbonyl compounds. These structures can form a relatively rigid, highly asymmetric, activated complex with a chiral catalyst by two-point ligation (Figure 1.2)..11,12 In
this complex, only one face of the dienophile is exposed for reaction with its diene partner resulting in high enantioselectivity.

Scheme 10

The Diels-Alder reaction with a simple α, β-unsaturated ketone or a 1,4 quinone raises the question of whether stereocontrol can be exercised effectively by single-point ligation of a chiral catalyst with the lone pair of electrons of only one carbonyl group. This question was first answered in the affirmative by Mikami who showed that the reaction of 1,4-naphthoquinone with 1 -methoxybuta-1,3-diene in the presence of a BINOL-Ti(IV) catalyst led to diketone 60 in high enantiomeric excess (Scheme 10). ${ }^{13}$

Subsequently, Corey and Breuning reported the participation of 1,4benzoquinone monoketal 61 in asymmetric Diels-Alder reactions catalyzed by Mikami's BINOL-TiCl ${ }_{2}$ system (Scheme 11). ${ }^{14}$ In this paper, the authors announce that although the structure of Mikami's catalyst is unknown, it appears to be chloride free and to involve μ-oxo bridges between at least two Ti units.

Scheme 11

64
$+$

65
(S)- $\mathrm{BINOL} \cdot \mathrm{TiCl}_{2}$
$30 \mathrm{~mol} \%$
$90 \%, 94 \%$ ee

Scheme 12

Nicolaou and coworkers employed a catalytic asymmetric Diels-Alder reaction in their total synthesis of $(-)$-colombiasin A with the addition of quinone 64 to diene 65 (Scheme 12). ${ }^{15}$ This reaction produced the cycloadduct 66 in high
enantiomeric excess. However, the argument for single-point ligation is less clear in this case due to the possible bidentate coordination involving the methoxy group of 64 with the catalyst.

Scheme 13

Recently, MacMillan and Northrup showed that α, β-unsaturated ketones, for which single-point carbonyl ligation is obligatory, undergo Diels-Alder addition to various dienes in the presence of a chiral imidazolidinone to give cycloadducts in moderate to high enantiomeric excess. However, the generality of this process remains to be established (Scheme 13). ${ }^{16}$

In principle, any asymmetric catalyst attached to one of the carbonyl groups of 1,4-benzoquinone breaks the $D_{2 d}$ symmetry of this dienophile and should therefore be capable of producing an asymmetric Diels-Alder adduct if (i) the 1,3 -diene component is not symmetrical, and (ii) the rate of the catalyzed reaction substantially exceeds that of the uncatalyzed process. Despite the aforementioned examples which suggest that 1,4-benzoquinone could be employed successfully in an asymmetric Diels-Alder reaction with a chiral
catalyst, a general strategy which could be used to prepare Diels-Alder adducts of quinones in high enantiomeric purity remained to be demonstrated. Thus, our initial goal was to investigate the asymmetric Diels-Alder reaction of 1,4benzoquinone with several dienes in the presence of a chiral catalyst. If successful, we hoped to apply this process in an asymmetric synthesis of the indole alkaloid (-)-ibogamine (1).

Our first experiments with 1,4-benzoquinone, various dienes, and the TADDOL- TiCl_{2} catalyst ${ }^{17}$ at ambient temperature were not encouraging. The enantiomeric excess of Diels-Alder adducts was generally below 60%, and it became clear that this catalyst system was not sufficiently active to accelerate cycloaddition at lower temperatures where improved stereoselectivity might be observed. We therefore turned to the Mikami $\mathrm{BINOL}-\mathrm{TiCl}_{2}$ catalyst, a proven commodity in the context of asymmetric Diels-Alder addition to naphthoquinone, ${ }^{13}$ and we were pleased to find that Diels-Alder adducts of 1,4benzoquinone could be obtained in good yield and high enantiomeric excess with this catalyst. ${ }^{18}$

Scheme 14

Thus, addition of 2-methylpenta-1,3-diene to benzoquinone in the presence of $10 \mathrm{~mol} \%$ of (S)-BINOL-TiCl ${ }_{2}$ gave 70 in 80% ee (Scheme 14). Because the dione 70 was unstable to chromatography it was immediately subjected to Luche reduction ${ }^{19}$ with sodium borohydride and cerium(III) chloride heptahydrate to afford a mixture of diol 71 and hydroxy ketone 72. The latter was converted to its (S) Mosher ester 73, ${ }^{20}$ which permitted the determination of ee by NMR analysis of its ${ }^{19} \mathrm{~F}$ spectrum; 72 was also esterified with (R) - and (S) mandelic acids to produce mandelates 74 and 75 (Scheme 15). Shielding of H_{a} by the phenyl ring of (R)-mandelate 74 relative to its (S) diastereomer 75 and applying Trost's model ${ }^{21}$ enabled the absolute configuration of these esters and hence 70 to be determined as shown.
$(S)-\mathrm{PhC}\left(\mathrm{CF}_{3}\right)(\mathrm{OMe}) \mathrm{CO}_{2} \mathrm{H}$ DCC, DMAP

$(R)-$ or $(S)-\mathrm{PhCH}(\mathrm{OMe}) \mathrm{CO}_{2} \mathrm{H}$, DCC, DMAP, 75\%

Scheme 15

76

77, 83% ee

1. $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{MeOH}, 1 \mathrm{~h}, 0^{\circ} \mathrm{C}$
2. $\mathrm{TsOH}, \mathrm{MeOH}$ 65\% from 76

We next examined the cycloaddition of silyloxydiene 76 with $1,4-$ benzoquinone in the presence of (S) - $\mathrm{BINOL}-\mathrm{TiCl}_{2}$ and again found that the reaction was greatly accelerated relative to the uncatalyzed process (Scheme 16). Luche reduction ${ }^{19}$ of cycloadduct 77 and deprotection of the resultant diol provided the triol 78. Ketal formation of 78 with 2,2-dimethoxypropane and p toluenesulfonic acid gave the acetonide 79 .

Dess-Martin periodinane 88\%

80
$(R)-$ or $(S)-\mathrm{PhCH}(\mathrm{OMe}) \mathrm{CO}_{2} \mathrm{H}$, DCC, DMAP, 75%

82, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OMe}$

Scheme 17

Dess-Martin oxidation of the protected allylic alcohol 79 led to $\alpha, \beta-$ unsaturated ketone $\mathbf{8 0}$ which allowed us to determine its ee (83%) by HPLC analysis using a chiral OD column (Scheme 17). Although none of the substances in the series originating from diene 76 could be crystallized, the (R) and (S)-mandelates, 81 and $\mathbf{8 2}$, prepared from 79 established that 77 possessed the absolute configuration shown. ${ }^{21}$

83
(S)-BINOL-TiCl ${ }_{2}$
$10 \mathrm{~mol} \%$
toluene- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 0.5 h , rt

84, 79\% ee

85

86

87
88

Scheme 18

Silyloxydiene 83 and benzoquinone were engaged in the asymmetric Diels-Alder reaction with (S)-BINOL-TiCl 2 to give the cycloadduct 84 , which was immediately reduced to diol 85 under Luche conditions (Scheme 18). ${ }^{19}$ Cleavage of the silyl ether from 85 and acetonide formation afforded 87 . Alcohol 87 was oxidized to the α, β-unsaturated ketone 88 to determine its ee (79%) by HPLC analysis using a chiral OD column. Fortunately, diol 85 was conveniently crystalline which enabled its absolute configuration to be determined by X-ray crystallographic analysis (Figure 1.3).

Figure 1.3 ORTEP representation of X-ray structure of 85

Thus, all three cycloadducts, 70, 77, and 84, obtained with the (S)-BINOLTiCl_{2} complex are found to have the same absolute configuration. Furthermore, they are in the same enantiomeric series that Mikami observed with 1,4naphthaquinone using the same catalyst, lending confidence to future stereochemical predictions that may be made with this system.

Scheme 19

Unfortunately, an attempt to extend the $\mathrm{BINOL}-\mathrm{TiCl}_{2}$ catalyzed Diels-Alder reaction to methyl 1,4-benzoquinone-2-carboxylate was less successful (Scheme 19). The latter, prepared by oxidation of methyl 2,5-dihydroxbenzoate as reported by Kraus^{22} and used in situ, was reacted with diene 83 to give cycloadduct 89 in only 36% ee. The racemic version of 89 has provided a convenient platform from which to launch syntheses of polyhydroxylated sesquiterpenoids of the agarofuran family, including (\pm)-euonyminol, ${ }^{23}$ but an efficient asymmetric entry to the highly functionalized decalin core of this group remains elusive at this point.

Scheme 20

On the other hand, our effort to exploit the catalyzed asymmetric DielsAlder reaction of 1,4-benzoquinone in a synthesis of the indole alkaloid (-)ibogamine (1) was more rewarding. We envisaged the tricyclic lactam 90 with the absolute configuration shown as a plausible precursor of (-)-ibogamine (1) and conjectured that this intermediate could be accessed via an intramolecular alkylation of 91 (Scheme 20). A synthesis of the ε-lactam 91 would be possible by Beckmann rearrangement of the oxime of ketone 92. The cis-decalin 92 could be conveniently derived from a Diels-Alder reaction of benzoquinone with the diene 93. Our first focal point therefore became the preparation of a 1,3-
disubstituted butadiene 93 which carried appendages appropriate for constructing the non-indolic portion of 1 without the need to forge additional carbon-carbon bonds beyond the Diels-Alder step.

1. $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
2. TBSCl, imidazole DMF

94

93

Scheme 21

The diene 93 was obtained by a Suzuki coupling of (E)-boronate 94 , prepared by the reaction of 1-butyne with catecholborane, ${ }^{24}$ with the 2 -bromoallyl silyl ether 95 (Scheme 21). The latter was acquired from 2-bromoallyl bromide by hydrolysis and protection of the resultant alcohol. ${ }^{25}$

Scheme 22

Although the reaction of 93 with benzoquinone was cleanly endo selective, completion of the uncatalyzed cycloaddition required two hours at $80^{\circ} \mathrm{C}$ (Scheme 22). By contrast, the same Diels-Alder addition in the presence of Mikami's (S)-BINOL-TiCl ${ }_{2}$ complex ${ }^{13}$ ($10 \mathrm{~mol} \%$) proceeded to completion in less than 30 minutes at room temperature and gave a single endo adduct 96 in high yield. The relative stereochemistry of 96 was deduced from the coupling
constant ($J=5.6 \mathrm{~Hz}$) between the ring junction protons. As with previous adducts, 96 was unstable towards chromatographic purification on silica, which resulted in its conversion to the quinone 97 , and it was not possible to determine either the enantiomeric purity or the absolute configuration of 96 . For this reason, the crude Diels-Alder adduct 96 was subjected to hydrogenation over either Wilkinson's catalyst or rhodium on alumina to give 98 in one case and 99 in the other. However, when 96 was exposed to Luche reduction ${ }^{19}$ with sodium borohydride and cerium(III) chloride, the stable endo hydroxy ketone 100 resulting from reduction of the less hindered carbonyl could be purified for further assay. A small amount (7\%) of the dihydronaphthalene 101 was also isolated from this reaction, presumably a consequence of tautomerization of the diketone 96.

Concentration of $\mathrm{BINOL}-\mathrm{TiCl}_{2}(\mathrm{~mol} \%)$	Yield of $\mathbf{1 0 0}(\%)$	ee of $\mathbf{1 0 0}(\%)$
10	65	81
20	62	82
30	65	87

Table 1.1 $\mathrm{BINOL}^{2}-\mathrm{TiCl}_{2}$ catalyzed Diels-Alder reaction of 93 with 1,4-benzoquinone

HPLC analysis of 100 , employing a chiral OD column and a hexaneisopropanol mixture as eluent, established that the enantiomeric excess of this substance, and hence 96 , was 81% (Table 1.1). An increase in the catalyst concentration from $10 \mathrm{~mol} \%$ first to 20% and then to $30 \mathrm{~mol} \%$ improved the ee of

100, but no enhancement beyond 87% ee occurred with increasing quantities of the catalyst. It is worth mentioning that Mikami's $\mathrm{BINOL}-\mathrm{TiCl}_{2}$ complex is only effective at room temperature; an attempt to catalyze the Diels-Alder reaction of 93 with benzoquinone below ambient temperature was not successful.

102, $\mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me}$
103, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Et}$

Catalyst (30 mol\%)	Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Yield of $\mathbf{1 0 0}(\%)$	ee of $100(\%)$
102	25	41	26
102	0	29	55
102	-15	25	58
103	25	23	10

Table 1.2 TADDOL-TiCl ${ }_{2}$ catalyzed Diels-Alder reaction of 93 with 1,4-benzoquinone

For comparison, the same Diels-Alder reaction between 1,4-benzoquinone and 93 was run in the presence of the chiral titanium complexes 102 and 103 derived from $\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOLs) ${ }^{17}$. In these cases, the reaction was much slower than that with the Mikami catalyst and gave only a modest yield of adduct in low enantiomeric excess (Table 1.2).

The ee improved with catalyst 102 as the reaction temperature was decreased from ambient to $0^{\circ} \mathrm{C}$ and then to $-15^{\circ} \mathrm{C}$, but this was at the expense of chemical yield. A change of substituent groups R_{1} and R_{2}, as in the TADDOL 103 did not improve either yield or ee. It is clear from the above results that BINOL is a much superior chiral ligand to TADDOL in catalyzing the addition of 1,4 -benzoquinone to 93 . However, it is important to note that only the protocol specified by Mikami, ${ }^{13}$ in which the catalyst is prepared in situ from BINOL and diisopropoxytitanium dichloride, was effective. An alternative catalyst preparation in which BINOL, titanium tetraisopropoxide, and silicon tetrachloride were used ${ }^{26}$ resulted in both a lower yield and diminished ee of 100.

100

105

	$\delta \mathrm{H}_{\mathrm{a}}(\mathrm{ppm})$	$\delta \mathrm{H}_{\mathrm{b}}(\mathrm{ppm})$
(R)-Mandelate, 104	6.24	2.89
(S)-Mandelate, 105	6.45	2.75

Table $1.3^{1} H$ NMR shift of the R/S pairs of mandelates 104 and 105

It was possible to ascertain the absolute configuration of 96 indirectly by employing the (R)- and (S)-mandelates, 104 and 105, respectively, derived from hydroxy ketone 100 (Scheme 23). The ${ }^{1} \mathrm{H}$ NMR spectra of both diastereomers showed the expected chemical shift patterns (Table 1.3) based on the projections proposed first by Mosher ${ }^{20}$ and subsequently by $\operatorname{Trost}^{21}$ as substituents in the vicinity of the O-methylmandelate aryl group are shielded. Thus, the upfield shift of H_{a} in $\mathbf{1 0 4}$ relative to $\mathbf{1 0 5 (\Delta \delta 0 . 2 \mathrm { ppm }) \text { agrees with the }}$ prediction for this enantiomer and gave assurance that we could proceed towards an asymmetric synthesis of (-)-ibogamine from this substance.

Subsequently, there developed a conclusive means for verifying that 96 was in the correct enantiomeric series when exhaustive Luche reduction of cycloadduct 96 was found to give cis diol 106 (Scheme 24). When 106 was treated with N -bromosuccinimide, it afforded a mixture of inseparable bromo ethers 107 and 108, which upon oxidation with pyridinium dichromate yielded the bromo ketones 109 and 110. These compounds were separated with relative ease by chromatography, and X-ray analysis of crystalline 109 using the anomalous dispersion technique established its absolute stereochemistry as shown in Figure 1.4. This result confirmed the absolute configuration of 96 , from
which 109 was derived, and illustrates the advantage of pursuing chemical transformations of reaction products of uncertain stereochemistry.
96
$\xrightarrow[62 \%(\text { from } 93)]{\substack{\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \bullet \\ \mathrm{MeOH}, 8 \mathrm{~h}, \mathrm{rt} \\ \mathrm{M} \\ \hline}}$

106

NBS, THF, l h
91%

107
$+$
$1.5: 1$

108

109
PDC, NaOAc 73\%
110

Scheme 24

Figure 1.4 ORTEP representation of X-ray structure of $\mathbf{1 0 9}$

Scheme 25

In contrast to 106, hydroxy ketone $\mathbf{1 0 0}$ did not produce a bromo ether upon exposure to N -bromosuccinimide but instead gave bromohydrin 112 resulting from external solvolytic attack on the intermediate bromonium ion 111 (Scheme 25).

A possible transition state for the enantioselective and regioselective endo Diels-Alder addition leading to 96 is shown in Figure 1.5. However, it must be remembered that the precise structure of the Mikami catalyst is unknown, and the formalism expressed as Figure 1.5 is not in accord with speculations made by Corey. ${ }^{14}$ This model postulates a $\pi-\pi$ interaction between the $(S)-\mathrm{BINOL}^{-T i C l}{ }_{2}$
catalyst and benzoquinone which allows exposure of only one face of one the two double bonds of the quinone to the diene.

Figure 1.5 Proposed (S)-BINOL-TiCl ${ }_{2}$-benzoquinone complex

With diol 106 of known absolute configuration in hand, it was now necessary to modify the left-hand ring of this structure in a way that would lead to the tricyclic framework of the non-indolic portion of ibogamine (1). The first requirement toward this end was reduction of both olefinic bonds of 106, a transformation that was accomplished in a single step by hydrogenation over rhodium on alumina (Scheme 26). The selection of this catalyst ensured that no hydrogenolysis of the three allylic oxygen functions would occur during saturation of 106, but equally important was delivery of hydrogen to the trisubstituted olefin exclusively from the exo face. This would result in positioning the alkoxymethyl substituent on the concave interior of the cis decalin structure 113 for a subsequent cyclization that would create the azatricyclic core of ibogamine (1).

113
114

PPTS, MeOH , $3 \mathrm{~h}, 55^{\circ} \mathrm{C}$

 89\%
117

115

92

116

Scheme 26

Oxidation of diol 113 to diketone 114 with pyridinium dichromate was straightforward, but it now became necessary to distinguish between the two keto groups of $\mathbf{1 1 4}$ in order to proceed with chemistry on the ring that contained them. Our first attempt to discriminate between the keto groups of 114 involved cleavage of the silyl ether to give 115 , which, we had hoped, would close to the six-membered hemiketal 116 in acidic methanol. This would have provided a
means for blocking one ketone while synthetic operations were conducted on the other. Although the endo configuration of the hydroxymethyl substituent in 115 appeared to favor formation of 116 , no means could be found for effecting this conversion. A possible explanation for this failure is that the cis decalin 116 cannot attain a conformation in which both the hydroxymethyl and ethyl substituents occupy the axial orientation necessary for internal hemiketalization. In any case, this disappointing result forced us to consider other means for differentiating the keto groups of 114, and it was quickly discovered that only the less hindered ketone formed a dimethyl ketal 117. The process of ketalization led to simultaneous cleavage of the tert-butyldimethylsilyl ether of 114 , an observation which conveyed the message that more robust protection of the primary alcohol would be needed for the next transformation. Ketal 117 was therefore converted to its more durable triisopropylsilyl ether 92.

The pivotal Beckmann rearrangement envisioned for enlargement of the ketone ring of 92 to an ε-lactam required the preparation of anti oxime 118, a reaction which was accomplished in high yield with hydroxylamine hydrochloride and sodium acetate in methanol at reflux (Scheme 27). Although ketoximes are known to undergo Beckmann rearrangement under a wide variety of conditions, ${ }^{27}$ previous experience had taught us that oxime tosylates are particularly good substrates for this transformation. ${ }^{28}$ In the event, exposure of 118 to p toluenesulfonyl chloride and triethylamine containing a small quantity of 4(dimethylamino)pyridine led to its smooth conversions to lactam 119. None of the isomeric lactam 120 resulting from migration of the less substituted carbon was detected in the reaction mixture.

119

120

TBAF, THF, (121, $\mathrm{R}=$ TIPS rt, 1h, 95\%

122, $\mathrm{R}=\mathrm{H}$

123

Scheme 27

Our attention next turned to conversion of 119 into the azatricyclic core of ibogamine for which connection of the nitrogen atom to the carbon bearing the triisopropylsilyl ether group was the key step. A displacement across the endo face of the bicycle to forge this N-C bond required an active nitrogen nucleophile, and it was initially supposed that the secondary amine derived from reduction of lactam 119 would be best suited to this purpose. Lactam 119 was therefore reduced with sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al), and the resulting amine 121 was treated with tetra- n-butylammonium fluoride to give
amino alcohol 122. Surprisingly, all attempts to effect transannular cyclization of 122, for example via a Mitsunobu reaction, ${ }^{29}$ were unsuccessful. Subsequent examination of the transition state for this displacement not only provided an explanation for its failure but also suggested a remedy. Specifically, as the nitrogen atom of 122 is brought towards the methylene bearing the tosylate group for backside attack, a steric interaction develops between the endo hydrogen of the methylene adjacent to the nitrogen atom and the endo methoxy substituent in the azepine ring. This steric confrontation is evidently sufficient to block cyclization.

On the other hand, 119 with a sp^{2} rather than a sp^{3} carbon adjacent to nitrogen would suffer no such steric impediment, and closure of the lactam to the tricyclic core of ibogamine (1) should therefore be more facile (Scheme 28). On the basis of this hypothesis, 119 was advanced to alcohol 124 and then to its tosylate 91. That our conjecture was indeed correct was confirmed by the fact that exposure of 91 to sodium hydride in tetrahydrofuran produced the tricyclic lactam 90 cleanly and in good yield. The displacement of tosylate 91 by the lactam nitrogen must be energetically quite favorable since the amide resonance of $\mathbf{9 1}$ is clearly lost in the course of its conversion to $\mathbf{9 0}$.

The remaining transformation of 90 into (-)-ibogamine first required release of the keto function masked as its dimethyl ketal, a process that was most efficiently accomplished by transketalization with acetone in the presence of an acidic catalyst. ${ }^{30}$ The resulting keto lactam 125 was next subjected to a Fischer indole synthesis ${ }^{31}$ with phenylhydrazine in acetic acid, the initially formed hydrazone requiring extended treatment with hot boron trifluoride etherate to
complete the reaction. Only one indole can be formed from 125 since the keto group is situated next to a bridgehead carbon, and 126 was indeed produced in good yield by this process.

125
$\mathrm{PhNHNH}_{2}, \mathrm{AcOH} ;$

77%

90

126
$\mathrm{NaBH}_{4}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$
THF, 3h, rt
78%
(-)-Ibogamine

Scheme 28

The final stage, reduction of lactam 126, proved to be more difficult than expected, conventional reagents such as lithium aluminum hydride being completely ineffective. Fortunately, a protocol due to Sundberg ${ }^{32}$ using diborane
generated in situ from sodium borohydride and boron trifluoride etherate was successful and furnished crystalline (-)-ibogamine (1), identical with a sample of the natural alkaloid kindly provided by Professor Huffman of Clemson University.

The preparation of $(-)$-ibogamine (1) in fourteen steps from benzoquinone and in 10% overall yield is powerful illustration of the value of the asymmetric Diels-Alder reaction as a starting point in a multistep synthesis. Furthermore, the knowledge that catalyzed asymmetric Diels-Alder reactions can now be applied with efficiency to 1,4-benzoquinone, at least with Mikami's $\mathrm{BINOL}-\mathrm{TiCl}_{2}$ system, opens the way to more structurally varied chiral products than were attainable previously. It can be expected that much use will be made of this new paradigm of synthesis in the future.

Experimental Section General

Starting materials and reagents were obtained from commercial sources and were used without further purification. Solvents were dried by distillation from the appropriate drying agents immediately prior to use. Tetrahydrofuran (THF), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, and toluene were distilled from sodium benzophenone under an argon atmosphere. Diisopropylamine, triethylamine, benzene, acetonitrile and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were distilled from calcium hydride under argon. All solvents used for routine isolation of products and chromatography were reagent grade. Moisture and air sensitive reactions were carried out under an atmosphere of argon. Reaction flasks were flame dried under stream of argon gas, and glass syringes were oven dried at $120^{\circ} \mathrm{C}$ and cooled in a desicator over anhydrous calcium sulfate prior to use. Unless otherwise stated, concentration under reduced pressure refers to a rotary evaporator at water aspirator pressure.

Analytical thin layer chromatography (TLC) was performed using precoated aluminum E. Merck TLC plates (0.2 mm layer thickness of silica gel 60 F-254). Compounds were visualized by ultraviolet light, and/or by heating the plate after dipping in a solution of 14% ammonium molybdate tetrahydrate and 1.4% cerium(IV) sulfate in 1.6 M sulfuric acid in water or 1% solution of vanillin in 0.1 M sulfuric acid in ethanol or 1% solution of potasium permanganate in $2 \% 1$ N sodium hydroxide in water. Flash chromatography was carried out using E . Merck silica gel 60 (230-400 mesh ASTM). Radial chromatography was carried
out on individual prepared rotors with layer thickness of 1 , 2, or 4 mm using a Chromatotron manufactured by Harrison Research, Palo Alto, California.

Melting points were measured using a Büchi melting point apparatus, and are uncorrected. Infrared (IR) spectra were recorded with a Nicolet 5DXB FT-IR spectrometer using a thin film supported between NaCl plates or KBr discs. Specific optical rotations were measured at ambient temperature $\left(23^{\circ} \mathrm{C}\right)$ from CHCl_{3} solutions on a Perkin-Elmer 243 polarimeter using a 1 mL cell with 1 dm path length. Proton and carbon nuclear magnetic resonance (NMR) spectra obtained using either a Bruker AC-300 or a Bruker AM-400 spectrometer. All chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane using the δ scale. ${ }^{1}$ H NMR spectra data are reported in the order: chemical shift, multiplicity $(s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, m $=$ multiplet and $\mathrm{br}=$ broad $)$, coupling constant (J) in Hertz (Hz) and number of protons.

Chemical ionization (Cl) high and low resolution mass spectroscopy (HRMS and MS) were obtained using a Kratos MS-50 spectrometer with a source temperature of $120^{\circ} \mathrm{C}$ and methane gas as the ionizing source. Perfluorokerosene was used as a reference. Electron impact (EI) mass spectra (HRMS and MS) were obtained using a Varian MAT311 or a Finnegan 4000 spectrometer. X-ray crystallographic data were collected on a Siemens P4 instrument and these data were interpreted using the direct methods program contained in the SHELXTL (Silicon Graphics/Unix) software package.

Experimental Section

(1S,4R,4aS,5S,8aR)-1,4,4a,5,8,8a-Hexahydro-5,7-dimethyInaphthalene-1,4diol (71) and (4S,4aR,8S,8aS)-4a,5,8,8a-Tetrahydro-4-hydroxy-6,8-dimethylnaphthalen-1-(4H)-one (72). To a solution of $\mathrm{BINOL}^{(-T i C l}{ }_{2}$ complex (1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{~mL}$) and 1,4-benzoquinone ($108 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ at room temperature was added a solution of trans-2-methyl-1,3pentadiene ($121 \mathrm{mg}, 1.47 \mathrm{mmol}$) in toluene (2 mL), and the mixture was stirred for 30 min at room temperature. The resultant solution was diluted with MeOH (5 mL), cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NaBH}_{4}(38 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(373 \mathrm{mg}, 1$ mmol) were added. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:3) gave 138 mg (71% from benzoquinone) of a mixture of 71 and 72 as a colorless oil.

Data for 71: Rf 0.05 (EtOAc-hexanes, 1:3); $\alpha]_{\mathrm{D}}^{23}-164.5$ (c 1.0, CHCl_{3}); IR (neat) 3405, 2960, 2875, 1437, 1378, 1061, 998, $774 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.77($ brs, 1 H$), 1.82-1.89(\mathrm{~m}, 1 \mathrm{H})$, 2.00-2.07 (m, 2H), 2.26-2.40 (m, 2H), 2.51-2.64 (m, 1H), 4.15-4.22 (m, 1H), 4.39$4.47(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{ddd}, \mathrm{J}=2.3,4.4,10.2$ Hz); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.4,24.0,27.7,34.1,37.6,39.0,64.9,70.7$,
128.9, 129.3, 130.7, 135.4; MS (CI) m/z 193 ($\mathrm{M}^{+}+\mathrm{H}$), 176, 159, 147, 143, 131, 119, 109, 98, 86; HRMS (CI) $\mathrm{m} / \mathrm{z} 194.1306$ (calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}: 194.1307$).

Data for 72: $\mathrm{R}_{\mathrm{f}} 0.05$ (EtOAc-hexanes, $1: 3$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.93-2.06(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.62(\mathrm{~m}$, $2 \mathrm{H})$, 2.67-2.78 (m, 1H), 4.84-4.89 (m, 1H), 5.27-5.31 (m, 1H), 5.77-5.85 (m, 1H), 6.56 (dt, $J=2.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2,23.7,26.9$, $34.4,44.5,50.3,70.9,127.0,130.1,131.3,147.9,200.8$.
(R)-O-Methylmandelate 74: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.24\left(\mathrm{H}_{\mathrm{a}}\right)$. (S)-OMethyl mandelate 75: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.42\left(\mathrm{H}_{\mathrm{a}}\right)$.

(1S,4R,4aR,5S,8aR)-1,4,4a,5,8,8a-Hexahydronaphthalen-1,4,5-triol (78). To a solution of $\mathrm{BINOL}-\mathrm{TiCl} I_{2}$ complex (1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.2 \mathrm{~mL}$) and 1,4benzoquinone ($216 \mathrm{mg}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature was added a solution of 76 ($426 \mathrm{mg}, 3.0 \mathrm{mmol}$) in toluene (2 mL), and the mixture was stirred for 30 min at room temperature. The solution was diluted with MeOH (5 mL), cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NaBH}_{4}(114 \mathrm{mg}, 3.0 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.12 \mathrm{~g}$, 3.0 mmol), were added. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to give a crude diol. To a stirred solution of this diol ($325 \mathrm{mg}, 1.3 \mathrm{mmol}$) in MeOH $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added p-toluenesulfonic acid (2 mg), and the mixture was
stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was concentrated under reduced pressure, and the residue was chromatographed on silica gel (EtOAc-hexanes, 1:3, then $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15$) to afford 237 mg (65% from benzoquinone) of 78 as a colorless oil. $R_{f} 0.05$ (EtOAc-hexanes, 1:3); IR (neat) 3345, 3025, 2886, 1406, 1248, 1088, 1039, $1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.13-2.23(\mathrm{~m}, 2 \mathrm{H})$, 2.29-2.34 (m, 1H), 2.34-2.41 (m, 1H), 3.93(s,3H), 3.96-3.99(m, 1H), $4.43(\mathrm{t}, \mathrm{J}=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.84(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{dt}, J=3.6,10.0$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 28.1,32.9,39.3,63.5,67.3,67.9,127.9$, 130.4, 130.8, 133.3; MS (CI) m/z $183(\mathrm{M}+\mathrm{H})^{+}, 165,147,130,129,119,105,91$, 86; HRMS (CI) $m / z 183.1021$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3}$: 183.1021).

(3aR,6S,6aR,9aS,9bR)-3a,6,6a,7,9a,9b-Hexahydro-2,2-dimethyInaphtho[1,8de] [1,3]dioxin-6-ol (79). To a stirred solution of $78(132 \mathrm{mg}, 0.73 \mathrm{mmol})$ in DMF (2 mL) at room temperature was added 2,2-dimethoxypropane $(0.2 \mathrm{~mL}$, $1.64 \mathrm{mmol})$ and p-toluenesulfonic acid $(2 \mathrm{mg})$, and the mixture was stirred for 16 h. The mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:3) gave 140 mg (87%) of 79 as a colorless oil. $R_{f} 0.13$ (EtOAc-hexanes, $1: 3$); $[\alpha]_{D}^{23}+17.7$ (c $1.39, \mathrm{CHCl}_{3}$); IR (neat) $3423,3024,2985,2903,1378,1223,1104,1062 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.52-2.60(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.55(\mathrm{~m}$, 1 H), $5.72-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.84$ (ddd, $J=0.7,3.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (ddd, $J=1.6$, $3.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-6.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.4,25.7$, 29.7, 35.2, 64.3, 65.5, 102.2, 127.5, 129.6, 131.6, 133.0; MS (CI) m/z 223 $(\mathrm{M}+\mathrm{H})^{+}, 207,165,147,129,117,91 ;$ HRMS (CI) $m / z 223.1342$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3}: 223.1334$).

(3aR,6aR,9aS,9bR)-6a,7,9a,9b-Tetrahydro-2,2-dimethyInaphtho[1,8-de]

[1.3]dioxin-6-(3aH)-one (80). To a stirred suspension of Dess-Martin periodinane ($80 \mathrm{mg}, 0.19 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature was added a solution of $79(28 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred for 30 min at room temperature. The reaction was quenched by the simultaneous addition of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. This mixture was stirred for 30 min , the layers were separated, and the organic layer was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:3) gave 24 mg (88%) of 80 as a white solid: $R_{f} 0.3$ (EtOAc-hexanes, $1: 3$); $\mathrm{mp} 80-81^{\circ} \mathrm{C}$; The ee was measured by HPLC (Diacel Chiralpak OD, hexane/'PrOH 99:1, flow rate $1.05 \mathrm{ml} / \mathrm{min}$): $\mathrm{t}_{\text {minor }}$ 21.8, $\mathrm{t}_{\text {maior }} 24.8 ;[\alpha]_{D}^{23}+110.2\left(c 0.64, \mathrm{CHCl}_{3}\right)$; IR (neat) 3033, 2987, 2891, 1681,

1379, 1226, $1084 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H})$, 1.87 (dddd, $J=2.6,5.2,5.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=3.4,5.1,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.85 (dddt, $J=0.9,3.3,6.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{ddd}, J=7.6,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.36-4.43 (m, 1H), 4.86 (dt, $J=2.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~m}, 1 \mathrm{H}), 5.99-6.05(\mathrm{~m}, 1 \mathrm{H})$, 6.06 (dd, $J=2.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{ddd}, J=0.8,3.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.1,25.1,30.5,40.3,42.0,62.1,67.3,102.4,126.6,129.8$, 130.5, 150.0, 198.8; MS (CI) m/z 221 (M+H)+, 205, 162, 149, 134, 133, 117, 105, 85; HRMS (CI) $m / z 221.1179$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}$: 221.1178).

Data for (R)-O-Methylmandelate (81): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39$ $(\mathrm{s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{dt}, J=5.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (dddd, $J=3.1,4.9$, $11.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddt}, J=1.3,5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.56(\mathrm{~m}, 1 \mathrm{H}), 3.47$ $(\mathrm{s}, 3 \mathrm{H}), 4.22-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 5.32-5.36(\mathrm{~m}, 1 \mathrm{H})$, 5.51 (ddd, $J=1.6,1.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{ddd}, J=2.5,3.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (dt, $J=2.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7,25.3,30.0,33.7$, $34.8,57.8,60.9,68.7,73.1,83.0,101.7,127.4,128.7,128.9,129.1,129.2$, 129.7, 130.6, 136.5, 170.6.

Data for (S)-O-Methylmandelate (82): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24$ (dt, $J=5.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.29$ $(\mathrm{m}, 1 \mathrm{H}), 2.35-2.45(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 4.17-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.59(\mathrm{~m}, 1 \mathrm{H})$,
$4.80(\mathrm{~s}, 1 \mathrm{H}), 5.33-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.73(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.1,25.3,29.9,33.5,34.7,57.7,60.9,68.7,72.9,82.9,101.6,127.7,128.8$, 129.1, 129.3, 129.7, 130.3, 136.6, 170.5.

(1S,4R,4aR,5S,8R,8aR)-5-\{[(tert-Butyl)dimethyIsilyl]oxy\}-1,4,4a,5,8,8a-hexahydro-8-methylnaphthalene-1,4-diol (85). To a solution of $\mathrm{BINOL}^{2}-\mathrm{TiCl}_{2}$ complex (1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{~mL}$) and 1,4-benzoquinone ($107 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature was added a solution of 83 (754 $\mathrm{mg}, 3.81 \mathrm{mmol})$ in toluene (2 mL), and the mixture was stirred for 30 min at room temperature. The mixture was diluted with $\mathrm{MeOH}(5 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NaBH}_{4}(68 \mathrm{mg}, 1.79 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(671 \mathrm{mg}, 1.80 \mathrm{mmol})$ were added. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:5) gave 203 mg (73%, from benzoquinone) of 85 as a white solid: $R_{f} 0.16$ (EtOAc-hexanes, 1:5); mp 148-149 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}+246.4$ (c 1.26, CHCl_{3}); IR (KBr) 3412, 3325, 2957, 2929, 2854, 1469, 1248, 1086, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.18(\mathrm{~s}, 3 \mathrm{H})$, $0.19(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.17$ $(\mathrm{m}, 1 \mathrm{H}), 2.38(\mathrm{dt}, J=4.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.53(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.97(\mathrm{~m}, 1 \mathrm{H})$, 3.98-4.06 ($\mathrm{m}, 1 \mathrm{H}$), 4.44-4.54 (m, 2H), 5.66 (ddd, $J=2.9,4.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.71-$
$5.80(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{ddd}, \mathrm{J}=2.4,4.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-4.4,-3.1,16.6,18.3,26.2,34.0,37.9,41.6,63.4,64.6,69.4,125.6,130.4,133.1$, 138.2; MS (CI) $m / z 253$ (M-tBu) $^{+}, 235,217,199,179,161,143,128,105,86 ;$ HRMS (CI) $m / z 311.2049$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}: 311.2043$).

(1S,4R,4aR,5S,8R,8aR)-1,4,4a,5,8,8a-Hexahydro-8-methylnaphthalene-1,4,5triol (86). To a stirred solution of $85(105 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ at room temperature was added p-toluenesulfonic acid (1 mg), and the mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$. The mixture was concentrated under reduced pressure and the residue was chromatographed on silica gel (EtOAc-hexanes, 1:3, then $\left.\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15\right)$ to yield $56 \mathrm{mg}(85 \%)$ of 86 as a colorless oil: $R_{f} 0.05$ (EtOAc-hexanes, $1: 3)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.97$ (dt, $J=4.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dt}, J=4.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.57(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, J=$ $4.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.76(\mathrm{~m}, 1 \mathrm{H})$, 5.80 (ddd, $J=2.7,4.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.84-5.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 17.1,33.6,37.7,40.8,63.2,63.4,68.8,127.6,129.9,134.5,136.8$.

(3aR,6S,6aR,7R,9aS,9bR)-3a,6,6a,7,9a,9b-Hexahydro-2,2,7-trimethyl-naphtho[1,8-de][1,3]dioxin-6-ol (87). To a stirred solution of 86 ($24 \mathrm{mg}, 0.12$ mmol) in DMF (1 mL) at room temperature was added 2,2-dimethoxypropane ($0.1 \mathrm{~mL}, 0.82 \mathrm{mmol}$) and p-toluenesulfonic acid (1 mg), and the mixture was stirred for 16 h . The mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:5) gave $26 \mathrm{mg}(91 \%)$ of 87 as a colorless oil: $R_{f} 0.23$ (EtOAc-hexanes, $\left.1: 5\right) ;\left[\alpha_{D}^{23}+\right.$ 150.7 (c 1.9, CHCl_{3}); IR (neat) 3474, 2984, 2936, 2903, 2878, 1373, 1221, 1068, 1031, $978 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.40 (s, 3 H), 1.50 (s, 3H), 1.95 (ddd, $J=3.8,6.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34-2.46 (m, 1H), 2.69 (ddd, $J=6.0,10.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.89(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (ddd, $J=3.6$, $6.0,12.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.32-4.39 (m, 1H), 4.72 (ddt, $J=1.2,3.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.62 (ddd, $J=3.1,4.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.87-5.92$ (m, 2H), 6.11 (ddd, $J=1.6,6.0,10.0$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.5,26.3,29.2,32.5,36.6,38.2,61.2$, 62.9, 68.7, 103.0, 123.2, 132.3, 139.5; MS (CI) m/z $237(\mathrm{M}+\mathrm{H})^{+}, 221,179,161$, 144, 143, 123, 117, 106, 91, 86; HRMS (CI) $\mathrm{m} / \mathrm{z} 237.1491$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3}$: 237.1491).

(3aR,6aR,7R,9aS,9bR)-6a,7,9a,9b-Tetrahydro-2,2,7-trimethyInaphtho[1,8-de] [1.3]dioxin-6-(3aH)-one (88). To a stirred suspension of Dess-Martin periodinane ($46 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature was added a solution of $87(17 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred for 1 h at room temperature. The reaction was quenched by the simultaneous addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$, and the mixture was stirred for 1 h . The layers were separated, and the organic layer was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:5) gave $15 \mathrm{mg}(89 \%)$ of 88 as a white solid: $R_{f} 0.14$ (EtOAc-hexanes, $1: 5$); mp $73-74^{\circ} \mathrm{C}$; The ee was measured by HPLC (Diacel Chiralpak OD, hexane/ $/ \mathrm{PrOH} 97: 3$, flow rate $0.9 \mathrm{ml} / \mathrm{min}$): $\mathrm{t}_{\text {minor }}$ 13.3, $\mathrm{t}_{\text {maior }} 14.8 ;[\alpha]_{D}^{23}+52.6\left(c 0.94, \mathrm{CHCl}_{3}\right)$; IR (neat) 2988, 2936, 2876, 1686, 1375, 1225, $1087 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=0.8,4.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.11 (ddd, $J=7.5,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.43 (ddd, $J=2.6,5.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (dt, $J=2.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dt}, J=2.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddt}, J=0.9,2.5,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=2.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{ddd}, J=0.8,3.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.7,25.1,30.4,32.9,42.9,47.5,62.4,67.6,102.3$,
125.7, 131.7, 136.7, 148.3, 199.8; MS (CI) m/z $235(\mathrm{M}+\mathrm{H})^{+}, 219.177,159,148$, 131, 121, 105, 94, 91; HRMS (CI) $m / z 235.1333$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}: 235.1334$).

Methyl (1R,4S,4aS,8aR)-4-\{[(tert-Butyl)dimethylsilyl]oxy\}-4,5,8,8a-tetrahydro -1-methyl-5,8-dioxonaphthalene-4a(1H)-carboxylate (89). To a stirred solution of methyl gentisate ($168 \mathrm{mg}, 1.0 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was added silver(I) oxide (464 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in one portion. The mixture was warmed to room temperature and was stirred for 4 h . To a 0.1 M solution of $\mathrm{BINOL}^{2} \mathrm{TiCl}_{2}$ complex (1 mL in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 0.1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added the solution obtained above, and the mixture was stirred for 5 min at room temperature. A solution of $83(713 \mathrm{mg}, 3.6$ mmol) in toluene (1 mL) was added, and the mixture was stirred for 30 min at room temperature. The mixture was concentrated under reduced pressure and the residue was chromatographed on silica gel (EtOAc-hexanes, 1:10) to yield $186 \mathrm{mg}(51 \%)$ of 89 as a colorless oil: $R_{f} 0.13$ (EtOAc-hexanes, $1: 10$); The ee was measured by HPLC (Diacel Chiralpak OD, hexane/'PrOH 98:2, flow rate 1.0 $\mathrm{ml} / \mathrm{min}$): $\mathrm{t}_{\text {major }} 7.4, \mathrm{t}_{\text {minor }} 19.0 ;[\alpha]_{\mathrm{D}}^{23}-67.7$ ($с 1.18, \mathrm{CHCl}_{3}$); IR (neat) 1749, 1710, 1686, 1253, 1227, 1089, 1058, 1037, $842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.13-2.22(\mathrm{~m}$, $1 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.77-4.79(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.70(\mathrm{~m}, 2 \mathrm{H})$, $6.58(d, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$
$4.9,-4.8,17.5,18.2,26.0,30.1,50.8,53.4,66.6,67.5,126.3,133.1,133.8$, 144.7, 169.5, 196.4; MS (CI) m/z 365 (M+H) ${ }^{+}$, 349, 307, 275, 267, 247, 225, 201, 195, 173, 141, 91; HRMS (CI) $m / z 365.1782$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{Si}: 365.1784$).

2-\{\{[(tert-Butyl)dimethylsilyl]oxy\}methyl\}hexa-1,3-diene (93). Into a flamedried pressure bottle cooled $-78^{\circ} \mathrm{C}$ was condensed 1 -butyne ($3.25 \mathrm{~g}, 60.1$ mmol) under argon. A 1 M solution of catecholborane-THF complex (60 mL in THF, 60 mmol) was injected into the stirred mixture, and the solution was heated at $70^{\circ} \mathrm{C}$ for 24 h . After the solution had cooled to room temperature, it was distilled under reduced pressure to give $8.57 \mathrm{~g}(82 \%)$ of $(E)-1$-butenyl-1,3,2benzodioxaborole 94 as a colorless oil: bp $77-78^{\circ} \mathrm{C}$ (2.5 Torr); IR (neat) 3199, 2959, 1643, 1246, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.11(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, CH_{3}), 2.33 (ddq, $J=1.7,7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.83(\mathrm{dt}, J=1.7,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-$ $7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.2,28.8,106.1,112.2,122.5,148.2$, 159.2; $\mathrm{MS}(\mathrm{CI}) m / z 174\left(\mathrm{M}^{+}\right), 159,146,134,120,115,101,93,69 ;$ HRMS (CI) $m / z 174.0852$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{11} \mathrm{~B}: 174.0852$). To a solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.04$ $\mathrm{g}, 0.9 \mathrm{mmol})$ in THF (80 mL) was added a solution of $95(7.53 \mathrm{~g}, 30.0 \mathrm{mmol})$ in THF (10 mL), and the mixture was stirred for 1 h at room temperature. To this mixture was added a solution of $94(5.80 \mathrm{~g}, 33.3 \mathrm{mmol})$ in THF (10 mL) followed by $\mathrm{NaOEt}(66.6 \mathrm{mmol})$, and the resultant mixture was heated under reflux for 7 h . The mixture was allowed to cool to room temperature during 1 h and was treated with an aqueous solution of $\mathrm{NaOH}(3 \mathrm{M}, 1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 1 \mathrm{~mL})$ for 1 h at
room temperature. The mixture was extracted with hexane ($3 \times 30 \mathrm{~mL}$), and the extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel (ether-pentane, $1: 30$) gave $4.96 \mathrm{~g}(73 \%)$ of 93 as a colorless oil: $R_{f} 0.4$ (hexanes); IR (neat) 2957, 2883, 2359, 2337, 1253, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.02\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.11(\mathrm{~m}, 2 \mathrm{H})$, $4.32(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=6.5,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J$ $=16.1, \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.4(2 \mathrm{C}), 13.5,18.3,25.9$ (3C), 26.1, 63.0, 112.1, 128.7, 131.4, 144.8; MS (CI) $m / z 227\left(\mathrm{M}^{+}+\mathrm{H}\right), 211,195,193$, 169, 139, 137, 95, 83, 75; HRMS (CI) $m / z 227.1815$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{OSi}$: 227.1831).

(4aS,5S,8aR)-7-\{\{[(tert-Butyl)dimethylsilyl]oxy\}methyl\}-5-ethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (96). To a solution of $\mathrm{BINOL}-\mathrm{TiCl}_{2}$ complex (1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.7 \mathrm{~mL}$) and 1,4-benzoquinone ($603 \mathrm{mg}, 5.58 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature was added a solution of $93(1.47 \mathrm{~g}, 6.49$ mmol) in toluene (2 mL), and the mixture was stirred for 30 min at room temperature. The mixture was concentrated under reduced pressure, and the crude 96 was used immediately for the next reaction due to its facile oxidation to 97.

Data for 97: IR (neat) 2951, 2926, 2847, 1664, $838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.72(\mathrm{~m}$, 2 H), 2.85 (dd, $J=2.4,6.3,23.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (dd, $J=4.7,23.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.47-$ $3.53(\mathrm{~m}, 1 \mathrm{H}), 4.22($ brs, 1 H$), 5.77(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.4(2 \mathrm{C}), 9.9,18.4,25.0,25.9$ (3C), 28.2, 35.5, 66.1, 121.8, 134.9, 136.1, 136.6, 140.4, 143.2, 186.6, 186.9.

(4S,4aR,8S,8aS)-6-\{[\{(tert-Butyl)dimethylsilyl]oxy\}methyl\}-8-ethyl-4a,5,8,8a-tetrahydro-4-hydroxynaphthalen-1(4H)-one (100) and (5S)-7-\{\{[(tert-Butyl)dimethylsilyl]oxy\}methyl\}-5-ethyl-5,8-dihydronaphthalene-1,4-diol (101). To a solution of 96 obtained above in $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(211 \mathrm{mg}, 5.58 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(2.08 \mathrm{~g}, 5.58 \mathrm{mmol})$, and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:3) gave 100 ($1.23 \mathrm{~g}, 65 \%$ from benzoquinone): $R_{f} 0.34$ (EtOAc-hexanes, $1: 3$); $[\alpha]_{D}^{23}-35.3$ (c $1.45, \mathrm{CHCl}_{3}$); IR (neat) 3370, 2953, 2926, 2853, 1685, 1673, 1254, 1073, 836, $777 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-2.27(\mathrm{~m}, 5 \mathrm{H})$, $2.73(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{dd}, \mathrm{J}=2.0,7.0,10.3$ $\mathrm{Hz}), 6.57$ (ddd, $J=2.0,3.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,-5.2$,
$12.5,18.4,22.2,25.6,25.9$ (3C), 41.3, 43.7, 48.2, 67.0, 70.7, 125.7, 129.6, 134.1, 147.4, 199.7 ; MS (CI) $m / z 335\left(\mathrm{M}^{+}-\mathrm{H}\right), 321,279,261,205,187,159,75$; HRMS (CI) $m / z 335.2047$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$: 335.2043). There was also obtained $130 \mathrm{mg}(7 \%)$ of 101: IR (neat) 3363, 2930, 2958, 2858, 1487, 1463, 1256, 1071, 836, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.62-1.75(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{dt}, J=3.1 .21 .0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (dd, $J=2.7,21.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.64(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.86(\mathrm{~m}$, $2 \mathrm{H}), 5.87-5.92(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8$, $10.5,18.9,25.6,26.4,29.0,36.2,67.3,112.8,113.4,123.7,123.8,127.5,135.1$, 147.0; MS (CI) m/z 334 (M) ${ }^{+}, 319,305,277,259,247,231,189,173,145,131$, 115, 86; HRMS (CI) $m / z 334.1968$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}: 334.1964$).

(1S,4aS,5S,8aR)-7-\{\{[(tert-Butyl)dimethylsilyl]oxy\}methyl\}-5-ethyl-1,4,4a,5,8, 8a-hexahydro-4-oxonaphthalen-1-yI (R)-O-MethyImandelate (104). To a solution of 100 ($45 \mathrm{mg}, 0.13 \mathrm{mmol}$), (R) -O-methylmandelic acid ($24 \mathrm{mg}, 0.15$ mmol), and $\mathrm{DCC}(30 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at room temperature was added DMAP ($8 \mathrm{mg}, 0.07 \mathrm{mmol}$). After 30 min , the mixture was passed through a plug of cotton which was rinsed with hexanes. The eluant was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, washed with saturated aqueous NaCl , dried over MgSO_{4}, filtered, and concentrated under reduced pressure.

Chromatography of the residue on silica gel (EtOAc-hexanes, 1:7) afforded 53 $\mathrm{mg}(82 \%)$ of 104 as a colorless oil: $R_{f} 0.25$ (EtOAc-hexanes, 1:7), $[\alpha]_{\mathrm{D}}^{23}-67.1$ (c 1.2, CHCl_{3}). Integrations were performed in two regions of the crude ${ }^{1} \mathrm{H}$ NMR spectrum; they are labeled a and b in the following NMR data: IR (neat) 2950, 2920, 2852, 1751, 1689, 1252, $1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 6$ $H), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{t}$, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.88-4.01^{\mathrm{a}}(\mathrm{m}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 5.58$ $(\mathrm{m}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=2.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dt}, J=2.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.24^{\mathrm{b}}(\mathrm{ddd}$, $J=2.1,4.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.52(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3,-$ 5.2, 12.4, 18.4, 22.8, 25.5, 25.9 (3C), 40.9, 41.0, 47.9, 57.4, 66.9, 73.3, 82.4, $125.5,127.0(2 \mathrm{C}), 128.9,131.0,133.9,135.8,142.4,170.0,198.7 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ $483\left(\mathrm{M}^{+}-\mathrm{H}\right), 469,427,353,319,261,187,121 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 483\left(\mathrm{M}^{+}-\mathrm{H}\right), 469$, 427, 353, 319, 261, 187, 121; HRMS (CI) $m / z 483.2567$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{Si}$: 483.2559).

(1S,4aS,5S,8aR)-7-\{\{[(tert-Butyl)dimethylsilyl]oxy\}methyl\}-5-ethyl-1,4,4a,5,8, 8a-hexahydro-4-oxonaphthalen-1-yl (S)-O-Methylmandelate (105). To a solution of $\mathbf{1 0 0}$ (14 mg, 0.04 mmol$)$, (S)-O-methylmandelic acid ($11 \mathrm{mg}, 0.06$ mmol), and DCC ($13 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature was added DMAP ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$). After 30 min , the mixture was passed through a
plug of cotton which was rinsed with hexanes. The mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, washed with saturated aqueous NaCl , dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:5) gave 17 mg (82\%) of 105 as a colorless oil: $R_{f} 0.22$ (EtOAc-hexanes, 1:5); $\left.\alpha\right]_{\mathrm{D}}^{23}-29.0$ (c 1.53, CHCl_{3}); ' H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.97(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.78(\mathrm{~m}, 2 \mathrm{H}), 3.42$ (s, 3H), $3.70(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~m}$, $1 \mathrm{H}), 5.87$ (dd, $J=2.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dt}, J=2.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (ddd, $J=$ $1.7,3.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.49(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.3(2 \mathrm{C})$, 12.4, 18.3, 22.4, 25.5, 25.9 (3C), 40.7, 40.9, 47.9, 57.3, 66.4, 73.2, 82.3, 124.5, 127.2 (2C), 128.8 (2C), 129.0, 131.1, 133.7, 136.0, 142.5, 169.9, 198.6.

(1S,4R,4aS,5S,8aR)-7-\{\{[(tert-Butyl)dimethylsilyl]oxy\}methyl\}-5-ethyl-1,4,4a,5,8,8a-hexahydronaphthalene-1,4-diol (106). To a solution of 96 , obtained from 93 in $\mathrm{MeOH}(15 \mathrm{~mL})$ at room temperature was added $\mathrm{NaBH}_{4}(633$ $\mathrm{mg}, 16.7 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(6.24 \mathrm{~g}, 16.7 \mathrm{mmol})$, and the mixture was stirred for 8 h at room temperature. Work-up as for $\mathbf{1 0 0}$ gave diol $\mathbf{1 0 6 (1 . 1 8 \mathrm { g } , 6 2 \% \text { from }}$ benzoquinone) as a white solid: $R_{f} 0.33$ (EtOAc-hexanes, $1: 3$); mp $105-106^{\circ} \mathrm{C}$; $[\alpha]_{D}^{23}-129.7$ (c 1.95, CHCl_{3}); IR (neat) 3387, 2956, 2928, 2881, 2858, 1254, 1005, $834,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}$
$=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.89-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-$ $2.35(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.76-5.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3(2 \mathrm{C}) 12.4,18.3,23.1,24.2$, 25.9 (3C), 37.0, 37.3, 40.9, 64.4, 66.7, 70.3, 127.2, 128.4, 130.3, 137.5; MS (CI) $\mathrm{m} / \mathrm{z} 337\left(\mathrm{M}^{+}-\mathrm{H}\right), 321,303,262,205,189,171,161$; HRMS (CI) m/z 337.2202 (calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}$: 337.2199).

(1R,2S,4R,8R,9S,10R)-2-Bromo-2-\{\{[(tert-butyl)dimethylsilyl]oxy\}methyl\}-10-ethyl-11-oxatricyclo[6.2.1.0,9, $]$ undec-6-en-5-one (109) and (1R, 3R,7R,8R,9R, 10S)-10-Bromo-1-\{\{[(tert-butyl)dimethylsilyl]oxy\}methyl\}-9-ethyl-11-oxatricyclo[5.3.1.0 ${ }^{3,8}$] undec-5-en-4-one (110). To a solution of $106(28 \mathrm{mg}, 0.08$ mmol) in THF (4 mL) was added N -bromosuccinimide ($16 \mathrm{mg}, 0.09 \mathrm{mmol}$), and the mixture was stirred for 1 h at room temperature. The mixture was passed through a short pad of silica gel, with EtOAc-hexanes (1:5) as an eluent, and the concentrated eluent was purified by column chromatography (EtOAc-hexanes, $1: 5)$ to give $31 \mathrm{mg}(91 \%)$ of a mixture of 107 and 108 as a colorless oil. The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and the solution was added dropwise to a suspension of PDC ($68 \mathrm{mg}, 0.18 \mathrm{mmol}$) and $\mathrm{NaOAc}(15 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The resulting mixture was stirred for 2 h at room temperature, then filtered through Florisil, and the filtrate was concentrated under reduced pressure. Chromatography (EtOAc:hexanes, 1:20 to 1:10) of the residue afforded
$22 \mathrm{mg}(73 \%)$ of a mixture of 109 and 110. A pure sample of 109 was obtained as a white solid by repeated chromatography: $R_{f} 0.24$ (EtOAc-hexanes, 1:5), mp $106-107^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}-29.2\left(c 0.36, \mathrm{CHCl}_{3}\right)$; IR (neat) $1689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.62(\mathrm{~m}, 2 \mathrm{H})$, $1.99(\mathrm{dd}, J=10.3,16.1,1 \mathrm{H}), 2.25(\mathrm{dd}, J=8.1,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=3.8,8.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.96(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=5.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-5.4,11.4,18.3,22.6,25.8,35.6,43.1,44.5,46.5,69.9,70.8,71.6,82.9,128.8$, 141.5, 201.6; MS (CI) $m / z 415\left(\mathrm{M}^{+}\right), 359,335,277,259,203,175,161,105$. HRMS (CI) $m / z 413.1142$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiBr}$: 413.1148). The data for 110 was determined from the mixture of 109: $R_{f} 0.22$ (EtOAc-hexanes, 1:5); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}$, $1 \mathrm{H}), 2.13-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{dd}, J=12.1,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}$, 2H), $3.93(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=5.7,9.9$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3(2 \mathrm{C}), 11.7,23.7,25.9(3 \mathrm{C}), 36.1,42.1$, $49.5,51.4,63.5,66.9,106,0,127.2,147.0,201.6$.

(4S,4aR,6S,7R,8R,8aR)-6-Bromo-6-\{\{[(tert-butyl)dimethylsilyl]oxy\}methyl\}-8-ethyl-4a,5,6,7,8,8a-hexahydro-4,7-dihydroxynaphthalen-1-(4H)-one (112). To a solution of $100(28 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature was
added N -bromosuccinimide ($16 \mathrm{mg}, 0.09 \mathrm{mmol}$), and the mixture was stirred for 1 h. The mixture was passed through a short pad of silica gel, with EtOAc-hexanes (1:3) as eluent, and the concentrated eluent was purified by column chromatography (EtOAc-hexanes, 1:3) to give $\mathbf{2 5} \mathrm{mg}$ of $\mathbf{1 1 2}$ (71%) as a colorless oil: $R_{f} 0.16$ (EtOAc-hexanes, 1:3); IR (neat) 3445, 2953, 2853, 1663, $1248 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~m}$, $1 \mathrm{H}), 2.64(\mathrm{dt}, J=1.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.01(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (brs, 1 H$), 4.91(\mathrm{~m}, 1 \mathrm{H}), 5.94$ (dd, $J=2.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.70 (ddd, $J=1.8,3.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.4(2 \mathrm{C}), 12.3,18.3,23.3,25.8(3 \mathrm{C}), 26.7,42.4,42.8,46.5,69.2$, 70.7, 74.4, 75.2, 129.7, 149.4, 202.1; HRMS (CI) $m / z 435.1391$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SiBr}: 435.1389$).

(1S,4R,4aS,5S,7R,8aR)-7-\{\{[(tert-Butyl)dimethylsilyl]oxy\}methyl\}-5-ethyl-decahydronaphthalene-1,4-diol (113). To a solution of 106 ($913 \mathrm{mg}, 2.70$ $\mathrm{mmol})$ in $\mathrm{EtOAc}(10 \mathrm{~mL})$ was added $5 \% \mathrm{Rh}$ on $\mathrm{Al}_{2} \mathrm{O}_{3}(1.40 \mathrm{~g})$, and the mixture was placed under a balloon filled with H_{2}. After 24 h , the mixture was filtered through a pad of Celite, with EtOAc (10 mL) as an eluent, and the filtrate was concentrated under reduced pressure. Chromatography (EtOAc-hexanes, 1:3) of the residue on silica gel gave 113 ($871 \mathrm{mg}, 94 \%$) as a colorless oil: $R_{f} 0.22$ (EtOAc-hexanes, $1: 3$); mp $123-124{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}-3.4$ (c 2.3, CHCl_{3}); IR (neat) 3439,

2952, 2928, 2856, 1500, 1462, 1254, 1104, 1079, $836 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.23-$ $1.91(\mathrm{~m}, 15 \mathrm{H}), 3.44(\mathrm{dd}, J=6.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=4.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (ddd, $J=4.5,9.4,11.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3$ (2C), 12.3, 18.4, 24.3, 24.7, 26.0 (3C), 26.5, 32.9, 33.3, 39.9, 41.3, 41.9, 43.1, 66.7, 69.0, 73.2.; MS (CI) m/z 343 (${ }^{+}+\mathrm{H}$), 325, 283, 267, 209, 193, 175; HRMS (CI) $m / z 343.2674$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}: 343.2669$).

(4aS,5S,7R,8aR)-7-\{\{[(tert-Butyl)dimethylsilyl]oxy\}methyl\}-5-ethyloctahydro-naphthalene-1,4-dione (114). To a solution of pyridinium dichromate (1.20 g, 3.20 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added a solution of $113(730 \mathrm{mg}, 2.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), and the mixture was stirred for 4 h at room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the solution was filtered through a Celite pad. The filtrate was concentrated, and the residue was chromatographed on silica gel (EtOAc-hexanes, 1:3) to yield $635 \mathrm{mg}(88 \%)$ of 114 as a colorless oil: $R_{f} 0.16$ (EtOAc-hexanes, 1:5); $\alpha_{1}^{23}+88.5$ (c 1.42, CHCl_{3}); IR (neat) 2959, 2925, 2852, 1713, 1250, 1098, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02$ (s, 6 H), $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.87$ (overlapping $\mathrm{m}, 1 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.35$ $(\mathrm{m}, 2 \mathrm{H}), 1.53-1.76(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dt}, J=4.5$, $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=6.4,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43$ (dd, $J=5.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.5(2 \mathrm{C})$,
12.3, 18.2, 25.8 (3C), 26.2, 29.6, 30.6, 37.0 (2C), 40.4, 40.6, 49.3, 51.8, 67.7, 208.9, 210.9; MS (CI) m/z $339\left(\mathrm{M}^{+}+\mathrm{H}\right), 323,281,263,207,189,147,75$; HRMS (CI) $m / z 339.2352$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}: 339.2356$).

(4aR,6R,8S,8aS)-8-Ethyl-3,4,4a,5,6,7,8,8a-octahydro-4,4-dimethoxy-6-

 (hydroxymethyl)naphthalen-1(2H)-one (117). A solution of 114 ($570 \mathrm{mg}, 1.68$ mmol) and pyridinium p-toluensulfonate ($43 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL}$) was heated at $55^{\circ} \mathrm{C}$ for 3 h , after which the mixture was allowed to cool to room temperature. The solution was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:2) gave $404 \mathrm{mg}(89 \%)$ of 117 as a colorless oil: $R_{f} 0.16$ (EtOAc-hexanes, $1: 2$); $[\alpha]_{D}^{23}$ +15.7 (c 0.21, CHCl_{3}); IR (neat) 3419, 2923, 2867, 2831, 1712, 1461, 1123, $1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.66$ (ddd, $J=12.7,12.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}$), $0.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{ddd}, J=12.3,12.3,12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.49-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dt}, J=5.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, OH), 2.08 (ddd, $J=2.1,5.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{ddt}, J=2.5,9.0,14.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.22 (ddt, $J=2.6,4.6,13.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 (dt, $6.8,14.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.91(\mathrm{~m}, 1 \mathrm{H})$, 3.19 (s, 3H), 3.29 (s, 3H), 3.44 (dd, $J=6.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 ($\mathrm{dd}, J=6.4,10.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.4,26.3,28.1,28.2,30.1,38.6,40.5$,41.7, 45.7, 47.2, 47.9, 48.2, 68.1, 100.5, 211.6; MS (CI) m/z $270\left(\mathrm{M}^{+}\right)$, 253, 239, 221, 207, 189, 125, 101, 84; HRMS (CI) $m / z 270.1830$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$: 270.1831).

(4aR,6R,8S,8aS)-8-Ethyl-3,4,4a,5,6,7,8,8a-octahydro-4,4-dimethoxy-6-

 \{[(triisopropylsilyl)oxy]methyl\}-naphthalen-1(2H)-one (92). To a solution of TIPSCI ($332 \mathrm{mg}, 1.72 \mathrm{mmol}$) and imidazole ($117 \mathrm{mg}, 1.72 \mathrm{mmol}$) in DMF (5 mL) at room temperature was added a solution of 117 ($310 \mathrm{mg}, 1.15 \mathrm{mmol}$) in DMF (1 $\mathrm{mL}, 1.15 \mathrm{mmol}$), and the mixture was stirred for 2 h at room temperature. The mixture was diluted with pentane (20 mL), and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$ ($3 \times 10 \mathrm{~mL}$) and saturated NaCl , dried over MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:5) furnished 456 mg (93%) of 92 as a colorless oil: $R_{f} 0.23$ (EtOAc-hexanes, 1:10); $[\alpha]_{D}^{23}+6.6$ (c 1.16, CHCl_{3}); IR (neat) 2956, 2942, 2864, 2361, 1719, 1116, 1097, $1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.64$ (ddd, $J=13.1,13.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}$), $0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.07(\mathrm{~m}, 21 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{ddd}, J=12.0$, $12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.73 .1 .87(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{ddd}, J=2.1,4.8$, $11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21 (ddt, $J=2.8,5.3,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=6.1,13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.92(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J=6.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J$ $=5.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.9,12.4,17.9,26.3,28.0,28.4$, $30.3,38.6,41.0,41.8,45.9,47.7,47.8,48.4,68.5,100.6,211.5 ;$ MS (CI) m/z 426$\left(\mathrm{M}^{+}\right), 409,383,351,221,184,171,147,101$; HRMS (CI) $m / z 426.3162$ (calcd for $\left.\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}: 426.3165\right)$.

(4aR,6R,8S,8aS)-8-Ethyl-3,4,4a,5,6,7,8,8a-octahydro-4,4-dimethoxy-6-\{[(triisopropylsilyl)oxy]methyl\}-naphthalen-1(2H)-one Oxime (118). A suspension of 92 ($312 \mathrm{mg}, 0.73 \mathrm{mmol}$), hydroxylamine hydrochloride (508 mg , $2.31 \mathrm{mmol})$, and $\mathrm{NaOAc}(600 \mathrm{mg}, 7.31 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was heated gently at reflux for 3 h . After cooling to room temperature, the mixture was concentrated under reduced pressure. Chromatography of the residue on silica gel (MeOH $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 60$) gave $261 \mathrm{mg}(81 \%)$ of 118 as a colorless oil: $R_{f} 0.21$ (EtOAchexanes, 1:5); $[\alpha]_{\mathrm{D}}^{23}+20.1$ (c 1.05, CHCl_{3}); IR (neat) 3404, 2956, 2941, 2864, 1462, 1120, 1099, 1056, $881 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~m}, 21 \mathrm{H}), 1.3-1.7(\mathrm{~m}, 9 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H})$, $2.77(\mathrm{t}, \mathrm{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.57(\mathrm{~m}$, 2 H), 7.06 (brs, 1 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.9,12.5,17.9,20.1,26.6$, $26.7,26.8,30.2,41.4,41.7,43.1,45.5,47.3,47.5,68.7,101.2,158.2$.

(5aR, 7R, 9S, 9aS)-9-Ethyldecahydro-5,5-dimethoxy-7-\{[(triisopropylsilyl) oxy]methyl\}-2H-benz[b]azepin-2-one (119). To a mixture of p-toluenesulfonyl chloride ($203 \mathrm{mg}, 1.07 \mathrm{mmol}$), triethylamine ($0.15 \mathrm{~mL}, 1.07 \mathrm{mmol}$), and a catalytic amount of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added a solution of $118(186 \mathrm{mg}, 0.43$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the mixture was stirred for 3 h at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:3, then $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15$) afforded $138 \mathrm{mg}(74 \%)$ of 119 as a colorless oil: $R_{f} 0.12$ (EtOAc-hexanes, 1:3); $[\alpha]_{D}^{23}-8.4$ (c 2.38, CHCl_{3}); IR (neat) 2956, 2941, 2864, 1663, 1461, 1106, 1055, $882 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83$ (ddd, $\left.J=12.8,12.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 0.96-1.13 (m, 22H), $1.31(\mathrm{dq}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.83(\mathrm{~m}, 6 \mathrm{H}) 1 \mathrm{H}, 1.91$ (ddt, $J=1.7,7.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19-2.28 (m, 1H), $2.47(\mathrm{dt}, J=1.2,13.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.15(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.50(b r d, J=6.0,2 \mathrm{H}), 3.79(b r s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.4,11.8,17.9,23.3,25.3,25.8,29.65,29.70,40.6,42.8,46.8$, 47.2, 47.3, 49.6, 68.2, 102.0, 176.5; MS (CI) m/z 442 ($\mathrm{M}^{+}+\mathrm{H}$), 410, 398, 378, 366; HRMS (CI) $\mathrm{m} / \mathrm{z} 442.3353$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}: 442.3353$).

(5aR,7R,9S,9aS)-9-Ethyldecahydro-5,5-dimthoxy-7-\{[(triisopropyIsilyI)oxy] methyl\}-2H-benz[b]azepin (121). To a solution of 119 ($43 \mathrm{mg}, 0.1 \mathrm{mmol}$) in benzene (3 mL) at room temperature was added a solution of Red-AI (3.4 M solution in toluene, 0.3 mL), and the mixture was refluxed at $80^{\circ} \mathrm{C}$ for 1 h . After the solution had cooled to room temperature, EtOAc (5 mL) was added. The mixture was concentrated, and the residue was chromatographed on silica gel ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 30$ to $1: 15$) to yield $39 \mathrm{mg}(92 \%)$ of 121 as a colorless oil: R_{f} 0.16 ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, ~ 1: 15$); IR (neat) 3441, 2941, 2892, 2863, 2827, 1469, 1462, 1455, 1260, 1108, $1065 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83-0.91(\mathrm{~m}, 1 \mathrm{H})$, $0.90(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.04-1.10 (m, 21H), 1.23-1.41 (m, 4H), 1.54-1.68 (m, $6 \mathrm{H}), 1.75-1.82(\mathrm{~m}, 3 \mathrm{H}), 2.81-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{dt}, J=7.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}$, $3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{brd}, 5.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.8,11.9$, 18.0, 21.9, 24.7, 26.1, 27.5, 30.1, 40.6, 43.7, 46.8, 47.3, 47.7, 47.9, 55.5, 68.7, 104.1; HRMS (CI) $m / z 427.3482$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{49} \mathrm{NO}_{3} \mathrm{Si}: 427.3482$).

(5aR,7R,9S,9aS)-9-Ethyldecahydro-7-(hydroxymethyl)-5,5-dimethoxy-2H-benz[b]azepin-2-one (124). To a solution of 119 ($125 \mathrm{mg}, 0.28 \mathrm{mmol}$) in THF (3 mL) at room temperature under argon was added a 1 M solution of TBAF $(0.4 \mathrm{~mL}$, 0.4 mmol), and the mixture was stirred for 1 h at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the solution was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel $\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15\right)$ gave $79 \mathrm{mg}(99 \%)$ of 124 as a colorless oil: $R_{f} 0.1\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15\right)$; $\left.\alpha\right]_{\mathrm{D}}^{23}-31.7$ (c 1.1, CHCl_{3}); IR (neat) $3385,2956,2929,2872,1655,1452,1104,1054 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{ddd}, J=12.3,12.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.09$ (ddd, $J=12.4,12.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dq}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.51-1.87(\mathrm{~m}, 7 \mathrm{H}), 1.93(\mathrm{ddt}, J=2.3,7.6,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J$ $=1.4,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 5.25$ (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.4,23.2,25.3,25.7,29.4,29.7,40.0$, 42.8, 46.6, 47.3, 47.4, 49.6, 67.7, 101.9, 176.8; MS (CI) m/z (M+ 286, 268, 254, 222, 204, 146, 114, 101; HRMS (CI) m/z 286.2013 (calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{4}$: 286.2019).

(5aR,7R,9S,9aS)-9-EthyIdecahydro-5,5-dimethoxy-7-\{\{[(4-methylphenyl) sulfonyl]oxy\}methyl\}-2H-benz[b]-azepin-2-one (91). To a mixture of p toluenesulfonyl chloride ($21 \mathrm{mg}, 0.11 \mathrm{mmol}$), triethylamine ($31 \mathrm{uL}, 0.23 \mathrm{mmol}$), and a catalytic amount of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $124(21 \mathrm{mg}, 0.08$ $\mathrm{mmol})$, and the mixture was stirred for 3 h at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15$) produced 33 mg (100%) of 91 as a colorless oil: $R_{f} 0.29\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15\right)$; $[\alpha]_{D}^{23}-27.2$ (c 1.2, CHCl_{3}); IR (neat) 2956, 1660, 1456, 1357, 1188, 1176, 1104, $1052 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.74$ (ddd, $J=12.8,12.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}$), $0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ (ddd, $J=12.7,12.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{dq}, J=7.3$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.41-1.58 (m, 3H), $1.68(\mathrm{dt}, J=3.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.95(\mathrm{~m}, 3 \mathrm{H})$, 2.15-2.27 (m, 1H), 2.37-2.49 (m, 1H), $2.47(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$, 3.72-3.80 (m, 2H), 3.82 (dd, $J=6.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (br s, 1H); 7.36 (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.4,21.6,22.9$, 25.3, 25.6, 29.0, 29.7, 37.0, 42.5, 46.3, 47.36, 47.44, 49.1, 74.2, 101.7, 127.9, 129.9, 132.7, 144.9, 176.6; MS (CI) m/z ($\mathrm{M}^{+}-\mathrm{OMe}$) 408, 376, 285, 204, 173; HRMS (CI) $m / z 439.2029$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}: 439.2028$).

(5aR,7R,9S,9aS)-9-Ethyl-4,5,5a,6,7,8,9,9a-octahydro-5,5-dimethoxy-1,7-methano-1 H-benz[b]azepin-2(3H)-one (90). To a solution of $\mathrm{NaH}(3 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ in $\mathrm{THF}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added a solution of $91(16 \mathrm{mg}, 0.04$ mmol) in THF (1 mL), and the mixture was stirred for 30 min at room temperature and then refluxed for 1 h . The mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (0.5 mL), and the solution was extracted with dichloromethane. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15$) yielded $6.6 \mathrm{mg}(71 \%)$ of 90 as a colorless oil: $R_{f} 0.1$ ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15$); $[\alpha]_{\mathrm{D}}^{23}-21.2$ (c 1.1, CHCl_{3}); IR (neat) 2930, 2358, 1658, 1634, 1454, 1404, 1102, 1064, $1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{ddt}, \mathrm{J}=2.4,9.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.81(\mathrm{~m}, 7 \mathrm{H}), 1.92-2.13$ ($\mathrm{m}, 3 \mathrm{H}$), 2.27 (ddd, $J=1.0,7.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (dt, $J=0.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.09(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{brd}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (ddd, $J=$ 2.6, 4.3, $11.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.2,25.8,27.2,27.4,28.3$, $30.0,31.4,40.5,42.8,47.7(2 \mathrm{C}), 50.1,50.7,103.1,179.2 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right) 267$, 252, 236, 220, 204, 138, 101; HRMS (CI) $m / z 267.1835$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3}$: 267.1834).

(5aR,7R,9S,9aS)-9-Ethyl-3,4,5a,6,7,8,9,9a-octahydro-1,7-methano-1H-benz [b]azepin-2,5-dione (125). To a solution of p-toluenesulfonic acid monohydrate ($11 \mathrm{mg}, 0.06 \mathrm{mmol}$) in acetone (3 mL) at $0{ }^{\circ} \mathrm{C}$ under argon was added a solution of $90(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ in acetone $(1 \mathrm{~mL})$, and the mixture was stirred for 12 h at room temperature. The mixture was diluted with saturated aqueous NaHCO_{3} (0.5 mL) and was extracted with CHCl_{3}. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to give 11 mg of $125(86 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.97\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.87(\mathrm{~m}, 2 \mathrm{H})$, 1.89-2.06 (m, 2H), 2.54 (ddd, $J=4.9,9.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62-2.74 (m, 3H), 3.02 (ddd, $J=7.4,10.1,13.6 \mathrm{~Hz}, 1 \mathrm{H}) 3.17(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.97(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.0,26.0,27.1,28.6,30.2,31.5,37.1,38.4,49.6,49.9$, 52.1, 175.8, 210.5.

(+)-Ibogamine-7-one (126). To a solution of 125 ($7 \mathrm{mg}, 0.03 \mathrm{mmol}$) in AcOH (1 mL) at room temperature was added a solution of phenylhydrazine ($5 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ in $\mathrm{AcOH}(1 \mathrm{~mL})$, and the mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$. The mixture was allowed to cool to room temperature during 1 h , after which boron trifluoride
etherate ($9 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added. The resulting yellow solution was stirred for 12 h at $80^{\circ} \mathrm{C}$. After the mixture had cooled to room temperature, it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel $\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 30\right)$ gave 7 mg (77%) of 126 as a pale yellow solid: $R_{f} 0.23\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 30\right)$; mp 230-232 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}+27.9$ (c 0.7, CHCl_{3}); IR (neat) $3429,1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-2.19(\mathrm{~m}, 8 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=1.7,15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}) 7.06-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.1,27.5,28.6,30.7,32.1,32.8,35.9,38.9,49.3$, $51.5,102.6,110.3,118.2,119.7,121.7,127.8,135.0,138.8,175.8 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 295,279,135,122,91,73$; HRMS (CI) $m / z 294.1731$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: 294.1732$).

(-)-Ibogamine (1). To a solution of $126(4.2 \mathrm{mg}, 0.014 \mathrm{mmol})$ in dry THF (3 mL) was added $\mathrm{NaBH}_{4}(28 \mathrm{mg}, 0.74 \mathrm{mmol})$ in one portion. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(160 \mathrm{mg}, 1.13 \mathrm{mmol})$ was syringed into the mixture dropwise. The resulting yellow suspension was stirred at room temperature for 3 h under argon. The solvent was evaporated, and $\mathrm{MeOH}(2 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$, and 10% $\mathrm{HCl}(0.2 \mathrm{~mL})$ were added. This solution was stirred at room temperature for 4 h ,
after which the MeOH was evaporated and the residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. The mixture was neutralized with saturated aqueous NaHCO_{3}, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over MgSO_{4} and was concentrated to give a yellow solid. Column chromatography of this material $\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 30\right)$ afforded $3.1 \mathrm{mg}(78 \%)$ of 1 as a pale yellow crystalline solid; $R_{f} \quad 0.23\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15\right)$; $\mathrm{mp} 156-157^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}-45.8$ (c $0.2, \mathrm{EtOH}$); IR (neat) $3400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.66(\mathrm{ddd}, J=3.4,6.4,13.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=1.6,3.8$, $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=4.4,12.3,16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.9,20.5,26.3,27.7,31.9,34.0,41.1,41.9,49.9,54.3$, $57.7,109.1,110.1,117.9,119.2,121.1,129.6,134.7,141.5 ; \mathrm{MS}(\mathrm{Cl}) m / z\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 281, 195, 149, 136, 97, 69; HRMS (CI) $m / z 280.1938$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2}$: 280.1940).

References

1. Henry, T. A. In The Plant Alkaloids, Churchill, J. A. Ltd., London, 1949.
2. Popik, P.; Glick, S. D. Drugs Future 1996, 21, 1109.
3. Popik, P.; Skolnick, P. In The Alkaloids: Chemistry and Biology', Ed. Cordell,G. A., Academic Press, San Diego, 1999, Vol. 52, P.197.
4. (a) Taylor, W. I. J. Am. Chem Soc. 1957, 79, 3298. (b) Dickel, D. F.; Holden, C. L.; Maxfield, R. C.; Paszek, L. E.; Taylor, W. I. J. Am. Chem. Soc. 1958, 80, 123. (c) Bartlett, M. F.; Dickel, D. F.; Taylor, W. I. J. Am. Chem. Soc. 1958, 80, 126.
5. Bláha, K.; Koblicová, Z.; Trojánek, J. Collect. Czech. Chem. Commun., 1974, 39, 2258.
6. McCormack, J. J. In The Alkaloids Brossi, A.; Suffness, M., Eds.; Academic Press, San Diego, 1990, Vol. 37, p. 205.
7. (a) Büchi, G.; Coffen, D. L.; Kocsis, K.; Sonnet, P. E.; Ziegler, F. E. J. Am. Chem. Soc. 1965, 87, 2073. (b) Büchi, G.; Coffen, D. L.; Kocsis, K.; Sonnet, P. E.; Ziegler, F. E. J. Am. Chem. Soc. 1966, 88, 3099.
8. (a) Sallay, S. I. J. Am. Chem. Soc. 1967,89, 6762. (b) Nagata, W.; Hirai, S.; Okumura, T.; Kawata, K. J. Am. Chem. Soc. 1968, 90, 1650. (c) Ikezaki, M.; Wakamatsu, T.; Ban, Y. J. Chem. Soc., Chem. Commun. 1969, 88. (d) Rosenmund, P.; Haase, W. H.; Bauer, J.; Frische, R. Chem. Ber. 1975, 108, 1871. (e) Atta-ur-Rahman; Beisler, J. A.; Harley-Mason, J. Tetrahedron 1980, 36, 1063. (f) Imanishi, T.; Yagi, N.; Hanaoka, M. Chem. Pharm. Bull. 1985, 33, 4202. (g) Kuehne, M. E.; Reider, P. J. J. Org. Chem. 1985, 50, 1464. (h) Huffman, J. W.; Shanmugasundaram, G.; Sawdaye, R.; Raveendranath, P. C.; Desai, R. C. J. Org. Chem. 1985, 50, 1460. (i) Herdeis, C.; Hartke-Karger, C. Justus Liebigs Ann. Chem. 1991, 99. (j) Henry, Jr., K. J.; Grieco, P. A.; Dubay, W. J. Tetrahedron Lett. 1996, 37,
9. (k) Trost, B. M.; Godleski, S. A.; Genêt, J. P. J. Am. Chem. Soc. 1978, 100, 3930.
10. Carruthers, W. Cycloaddition Reactions in Organic Synthesis, Pergamon,Oxford, 1990.
11. For recent reviews, see: (a) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007. (b) Diaz, L. C. J. Braz. Chem. Soc. 1997, 8, 289. (c) Evans, D. A.; Johnson, J. S. In Comprehensive Asymmetric Catalysis, Eds. Jacobsen, E. N.; Pfaltz, Yamamoto, A. H., Springer, New York, 1999, Vol 3, p.1177. (d) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650. (e) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668.
12. Hawkins, J. M.; Loren, S. J. Am. Chem. Soc. 1991, 113, 7794.
13. Corey, E. J.; Matsumura, Y. Tetrahedron Lett. 1991, 32, 6289.
14. (a) Mikami, K.; Terada, M.; Motoyama, Y.; Nakai, T. Tetrahedron: Asymmetry 1991, 2, 643. (b) Mikami, K.; Motoyama, Y.; Terada, M. J. Am. Chem. Soc. 1994, 116, 2812.
15. Breuning, M.; Corey, E. J. Org. Lett. 2001, 3, 1559.
16. (a) Nicolaou, K. C.; Vassilikogiannakis, G.; Mägerlein, W.; Kranich, R. Angew. Chem 2001, 113, 2543; Angew. Chem. Int. Ed. 2001, 40, 2482. (b) Nicolaou, K. C.; Vassilikogiannakis, G.; Magerlein, W.; Kranich, R. Chem. Eur. J. 2001, 7, 5359.
17. Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 2458.
18. (a) Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima, M.; Sugimori, J. J. Am. Chem. Soc. 1989, 111, 5340. (b) Engler, T. A.; Letavic, M. A.; Takusagawa, F. Tetrahedron Lett. 1992, 33, 6731. (c) Engler, T. A.; Letavic, M. A.; Lynch Jr., K. O.; Takusagawa, F. J. Org. Chem. 1994, 59, 1179. (e) Seebach, D.; Dahinden, R.; Marti, R. E.; Beck, A. K.; Plattner, D.
A.; Kühnle, F. N. M. J. Org. Chem. 1995, 60, 1788. (f) Haase, C.; Sarko, C. R.; Dimare, M. J. Org. Chem. 1995, 60, 1777.
19. (a) White, J. D.; Choi, Y. Org. Lett. 2000, 2, 2373. (b) White, J. D.; Choi, Y. Helv. Chim. Acta. 2002, 85, 4306.
20. Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.
21. Dale, J. A. Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
22. Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370.
23. Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.
24. (a) White, J. D.; Cutshall, N. S.; Kim, T. S.; Shin, H. J. Am. Chem. Soc. 1995, 117, 9780. (b) White, J. D.; Shin, H.; Kim, T. S.; Cutshall, N. S. J. Am. Chem. Soc. 1997, 119, 2404.
25. (a) Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1972, 94, 4370. (b) Björkling, F.; Norin, T.; Unelius, C. R. J. Org. Chem. 1987, 52, 292.
26. Beswick, P. J.; Widdowson, D. A. Synthesis 1985, 492.
27. Corey, E. J.; Matsumura, Y. Tetrahedron Lett. 1991, 32, 6289.
28. (a) Gawley, R. E. Org. React. 1998, 35, 1. (b) For a contemporary view of the Beckmann rearrangement, see: Nguyen, M. T.; Raspoet, G.; Vanquickenborne, L. G. J. Am. Chem. Soc. 1997, 119, 2552.
29. White, J. D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1999, 64, 7871.
30. Simon, Cs.; Hosztafi, S.; Makleit, S. J. Heterocycl. Chem. 1997, 34, 349.
31. Atarashi, S.; Choi, J. K.; Ha, D. C.; Hart, D. J.; Kuzmich, D.; Lee, C. S.; Ramesh, S.; Wu, S. C. J. Am. Chem. Soc. 1997, 119, 6226.
32. Robinson, B. 'The Fischer Indole Synthesis', Wiley, New York: 1982.
33. Sundberg, R. J.; Hong, J.; Smith, S. Q.; Sabat, M. Tetrahedron 1998, 54, 6259.

PART II. AN APPROACH TOWARD THE SYNTHESIS OF KOUMINE.

Chapter III. AN APPROACH TOWARD THE SYNTHESIS OF KOUMINE

History and Background

The plant genus Gelsemium (Loganiaceae) is a rich source of indole alkaloids with remarkably diverse and complex structures. ${ }^{1}$ The Gelsemium alkaloids can be classified into five groups based on their skeletons, of which koumine (1), gelsemine (2), koumidine (3), gelsedine (4), and humanthenine (5) are representative members (Figure 2.1).

(-)-Koumine (1)

(+)-Gelsemine (2)

(-)-Koumidine (3)

(-)-Gelsedine (4)

(-)-Humanthenine (5)

Figure 2.1 Some alkaloids from the plant genus Gelsemium.

Koumine (1) is the principal alkaloid of the Chinese medicinal plant KouWen, later identified as Gelsemium elegans Bentham. The constitution of
koumine (1) resisted elucidation by chemical degradation and spectroscopic analysis, and it was single crystal X-ray crystallography which eventually solved this structural problem. ${ }^{2}$ The absolute configuration of natural (-)-koumine (1) was determined by its partial synthesis from the alkaloid vobasine. ${ }^{3}$ While the plant Gelsemium elegans has been used in China for severe pain release, the pharmacological properties of koumine (1) have not been systematically investigated outside of China. However, recent clinical evaluation of koumine has shown promising results, especially for the treatment of malignant tumors. ${ }^{4}$ Good analgesic activity has also been reported for this compound. ${ }^{4}$
$(+)$-Gelsemine (2), bearing some structural resemblance to (-)-koumine (1), was first isolated from Gelsemium sempervirens in 1870. ${ }^{1}$ Like koumine, the exact constitution of (+)-gelsemine (2) remained elusive, until in 1959 independent reports of its structure appeared by Conroy and Wilson. ${ }^{5,6}$ Gelsemine (2) has long been known for its strong central nervous system stimulant properties in western medicinal history. The alkaloid also shows analgesic as well as antihypertensive activities, and its pharmacological properties have been thoroughly investigated. ${ }^{1}$

Koumine (1) and gelsemine (2) have been the target of numerous synthetic investigations because of their intriguing structures and interesting biological activities. In 1990, Magnus and co-workers reported the first and so far only total synthesis of koumine leading to the unnatural (+)-enantiomer. ${ }^{7}$ Their synthesis began with the natural amino acid $(S)-(-)$-tryptophan (6) which bears the same absolute configuration at $\mathrm{C}-5$ as that found in natural $(-)$-koumine (Scheme 1). A four-step transformation of 6 provided the N, N^{\prime} -
dibenzyltryptophan methyl ester 7 which underwent Pictet-Spengler condensation with 2-ketoglutaric acid to give a 2:1 mixture of diastereomeric esters 8 and 9 after methanolysis.

NaH -toluene-MeOH
$\Delta, 15 \mathrm{~h}$

$\xrightarrow[\text { 2. } \mathrm{Pd} / \mathrm{C}, \mathrm{HCO}_{2} \mathrm{H}, 88 \%]{\substack{\text { 1. } \mathrm{AcOH}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O} \\ \Delta, 95 \%}}$
10

11

Scheme 1. Magnus' synthesis of (+)-koumine

It was found that the C-5 stereocenter of 8 was epimerized in the course of its Dieckmann condensation, thus leading to nonnatural (+)-koumine (1). The tetracyclic intermediate $\mathbf{1 0}$, arising from base treatment of $\mathbf{8}$, was
decarbomethoxylated and subsequently debenzylated to yield the ketone 11. The next phase of the synthesis was construction of the quinuclidine moiety using an intramolecular Michael addition of 12, which was readily available from 11 in a straightforward manner (Scheme 2). In the event, intramolecular Michael reaction of 12 was effected with pyrrolidine and trifluoroacetic acid; this was followed by olefination with Tebbe's reagent and hydroboration to give the alcohol 13.

$\mathrm{K}_{2} \mathrm{CO}_{3}$, EtOH
2. TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}$

11
$\xrightarrow[\substack{\text { 3. } n \text { - } \mathrm{BuLi}, \mathrm{ClCO}_{2} \mathrm{Me} \\ \text { 76\% } \\ \text { 4. } \mathrm{LiBF}_{4}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{THF}}]{82 \%}$

13

14

15

Scheme 2. Magnus' synthesis of (+)-koumine

Reduction of 13 with diisobutylaluminum hydride followed by removal of the remaining benzyl group, afforded a diol which fragmented in the presence of methyl chloroformate, presumably via the extended iminium ion 14, and then recyclized to form the pyran 15. Lastly, reduction of carbamate 15 with lithium aluminum hydride to a N -methylamine followed by $\mathrm{S}_{\mathrm{N}} 2$ cyclization in the presence of diethyl azodicarboxylate and triphenylphosphine completed the synthesis of (+)-koumine (1).

20

Scheme 3. Johnson's synthesis of (\pm)-gelsemine

In 1994, Johnson and coworkers described the first total synthesis of (\pm)gelsemine, which commenced with an intramolecular [2+2] photocycloaddition of the triene 16 (Scheme 3). ${ }^{8}$ Reduction of the photoadduct 17 and subsequent
pyran formation of the resultant diol with silver acetate and iodine afforded the acetoxy alcohol 18. After a four-step transformation to 19, cleavage of the tetrahydrofuran ring was accomplished with phenyltrimethylsilylselenide and zinc iodide; this was followed by oxidative deselenylation to provide the alkene 20.

The next phase of Johnson's synthesis required opening of the cyclobutane ring to construct the δ-lactam moiety. In the event, desilylation of $\mathbf{2 0}$ gave an unstable cyclobutanol which was immediately oxidized to the β-ketoester 21 (Scheme 4).

Scheme 4. Johnson's synthesis of (\pm)-gelsemine

Cleavage of the cyclobutane ring of $\mathbf{2 1}$ was effected in a retro Claisen fashion by treatment with methylamine, and the resultant amido ester was
converted to the corresponding aldehyde 22 in a two-step process. Epimerization of 22 brought the two reacting sites, the carbonyl group of the aldehyde and the amide nitrogen, within bonding distance to allow cyclization to occur. This gave initially a hydroxy lactam which was then dehydrated to provide the enamide 23. In order to construct the pivotal tetracyclic intermediate 25, a prerequisite is functionalization of the enamide double bond. This was accomplished by exposure of $\mathbf{2 3}$ to methanolic bromine, and desilylation followed by oxidation of the resultant alcohol furnished the ketone 24. Silyl enol ether formation then set the stage for the key intramolecular Mannich reaction. In practice, 5-endo-trig cyclization was effected in trifluoroacetic acid to construct the C5-C6 bond, and subsequent reductive debromination yielded the cage structure 25.

Scheme 5. Johnson's synthesis of (\pm)-gelsemine

With the tetracyclic intermediate 25 in hand, completion of the synthesis required only conversion of ketone $\mathbf{2 5}$ to a spiro-oxindole system. However, conventional methods to create the necessary quaternary center of gelsemine (2) proved unsuccessful. This led to the development of an interesting oxindole annelation based on Wender's indole synthesis (Scheme 5). ${ }^{9}$ Thus, the metallated species derived from $\mathbf{2 6}$ was added to ketone $\mathbf{2 5}$ to provide a mixture of Z and E alkenes 27 and 28. Photolysis of the mixture yielded the cyclized product 29 along with its diastereomer at C7. Finally, the minor isomer 29 was converted to (\pm)-gelsemine by a two-step sequence.

1. CrO_{3} 44% (three steps)
$\xrightarrow[\text { 3. LDA, } \mathrm{PhSeCH}]{2}$ CHO
2. $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$
70% (three steps)

$\mathrm{E}: \mathrm{Z}=3: 1$

33

1. TDSCl, imidazole DMF
2. CrO_{3} 45% (two steps)
3. L-selectride; $\mathrm{Tf}_{2} \mathrm{NPh}$ 65\%
4. $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{Et}_{3} \mathrm{~N}$ CO, 2-bromoaniline, 70%
5. SEMCl
6. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{Et}_{3} \mathrm{~N}$,toluene

35

36

Scheme 6. Speckamp's synthesis of (\pm)-gelsemine

Speckamp and coworkers utilized a Diels-Alder reaction between (E)-hexa-3,5-diene-1-ol (30) and N -methylmaleimide as the entry point for their synthesis of (\pm)-gelsemine (Scheme 6). ${ }^{10}$ Partial reduction of the resultant endo adduct with sodium borohydride, followed by ethanolysis furnished the ethoxy lactam 31. Oxidation of 31 and silyl enol ether formation of the resultant aldehyde provided a $3: 1$ mixture of geometrical isomers which was converted to the α-vinyl γ-lactam 32. Upon exposure of 32 to boron trifluoride diethyl etherate, a highly stereospecific N -acyliminium ion cyclization occurred to generate a tricyclic aldehyde which was reduced to the corresponding alcohol 33. To construct the spiro-oxindole moiety present in gelsemine, 33 was protected as its thexyldimethylsilyl (TDS) ether and then oxidized with a complex derived from chromium trioxide and 3,5 -dimethylpyrazole. The resulting enone was reduced in a 1,4 -selective manner with L-Selectride to generate a lithium enolate which was trapped with Comins reagent to furnish the enol triflate 34. Palladium catalyzed carbonylation of 34 with 2-bromoaniline, followed by protection of the resultant lactam as its trimethylsilylethoxymethyl (SEM) derivative set the stage for the pivotal Heck cyclization. The intramolecular Heck reaction was effected under Overman's conditions ${ }^{11}$ to give the desired spiro-oxindole 35. Desilylation of 35 and subsequent pyran formation was achieved by exposure of the generated free alcohol to a complex derived from mercury(II) triflate and N, N dimethylaniline. Reductive demercuration with sodium borohydride afforded SEM-protected 21-oxogelsemine 36. Finally, cleavage of the SEM group followed by selective lactam reduction completed the synthesis of (\pm)-gelsemine.

39

Scheme 7. Hart's synthesis of (\pm)-gelsemine

Hart and coworkers also employed a Diels-Alder reaction to construct a bicyclic compound as a starting point for their synthesis of gelsemine. (Scheme 7). ${ }^{12}$ Ketalization of the Diels-Alder adduct from 37 and N -methylmaleimide, followed by dehydration using Grieco's protocol provided the alkene 38. Stereoselective reduction of 38 with sodium borohydride gave a carbinol lactam which was advanced to 39 in a two-step sequence. Ozonolysis of 39 and homologation of the resultant aldehyde provided an α, β-unsaturated ester which underwent an ethoxy-thiophenoxy exchange to produce 40 . Intramolecular
radical cyclization of 40 was effected under standard conditions with tri-n-butyltin hydride and 2,2'-azobisisobutyronitrile (AIBN) to give a tricyclic ketallactam which was treated with phenylmagnesium bromide. The resultant tertiary alcohol was methylated with iodomethane, and subsequent deblocking of the ketal using p-toluenesulfonic acid in acetone yielded 41.

Scheme 8. Hart's synthesis of (\pm)-gelsemine

The next phase of Hart's synthesis involved construction of the quaternary center at C7 using a radical cyclization of 42. The latter was prepared from ketone 41 in a straightforward manner (Scheme 8). Thus, exposure of 42 to tri-n-butyltin hydride under photochemical conditions provided the desired oxindole 43 in 40% yield, along with 25% of 44 . At this point, the configuration at C 16 required inversion for the planned pyran formation, and this was accomplished by exposure of 43 to p-toluenesulfonic acid, followed by ozonolysis of the resultant alkene to give an aldehyde which was subsequently isomerized to afford a mixture of hemiacetals 45. Reduction of this hemiacetal with triethylsilane and trifluoroacetic acid furnished a pyran which was advanced to 21-oxogelsemine 46 in a three-step sequence. Completion of the synthesis was achieved by reduction of 46 with diisobutylaluminum hydride to give the racemic alkaloid.

Overman and coworkers employed an aza-Cope rearrangement of the readily available bicyclo[2.2.2]octene precursor 49 to construct the cishexahydroisoquinolinone 53 (Scheme 9). ${ }^{13}$ The preparation of 49 commenced with a Diels-Alder reaction between 1,3-cyclohexadiene 47 and methyl acrylate. The resulting endo adduct was oxidized and homologated to the diene 48 which was converted to 49 in four steps. Anionic aza-Cope rearrangement of 49 was effected via the alkoxide 50 to yield the imine enolate 51 which was quenched with methyl chloroformate and then hydrolyzed to afford 53. Upon exposure of 53 to bromine, the resultant dibromide underwent an intramolecular Mannich reaction in trifluoroacetic acid to generate the azatricyclodecanone 54.

49

[3.3]

53

2. TFA
67% (two steps)

54

Scheme 9. Overman's synthesis of (\pm)-gelsemine

The next stage of Overman's synthesis involved construction of the spirooxindole at C7 of 56 in such a way that C3 was substituted with an oxygen functionality which could be employed to form the pyran ring of gelsemine (Scheme 10). Thus, oxidation of the silyl enol ether derived from ketone 54 with iodosobenzene and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in the presence of methanol generated an α methoxy ketone which was converted to the enol triflate 55 with Comins' reagent.

Palladium-catalyzed carbonylation of 55 in methanol yielded a methyl ester which was subsequently condensed with 2-iodoaniline. After protection of the resulting amide, the pivotal intramolecular Heck reaction was effected in the presence of silver phosphate to give a 11:1 mixture of spirooxindole diastereoisomers 56. Unfortunately, the major product was found to have the opposite configuration at the spirooxindole to that required for gelsemine. After hydrolysis of enol ether 56, the resulting ketone was reduced to the equatorial alcohol which was protected as its ethoxyethyl ether 57.

Scheme 10. Overman's synthesis of (\pm)-gelsemine

Treatment of 57 with sodium cyanide in dimethyl sulfoxide delivered an aziridine which was opened regioselectively to give the nitrile 58 (Scheme 11). Removal of the ethoxyethyl protecting group and treatment of the resultant alcohol with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) provided the hexacyclic
lactone 62. This complex reorganization process was presumably initiated by a retro aldol cleavage to give an open intermediate 59 which underwent σ bond rotation, and reclosure to generate the axial alcohol 60 . Subsequent addition of the alcohol to the proximal nitrile generated hexacyclic imidate 61, which was followed by hydrolysis to yield the lactone 62. Completion of Overman's synthesis was accomplished by removal of the methoxymethyl protecting group, and a two-step reduction of the δ-lactone to the tetrahydropyran ring of gelsemine.

Scheme 11. Overman's synthesis of (\pm)-gelsemine

66

Scheme 12. Fukuyama's synthesis of (+)-gelsemine

Recently, Fukuyama and coworkers reported the first asymmetric synthesis of gelsemine leading to the (+)-enantiomer (Scheme 12). ${ }^{14}$ Their synthesis commenced with a chiral auxiliary-controlled Diels-Alder reaction between dienophile 63 and 5-dimethylsilylcyclopentadiene 64 in the presence of diethylaluminum chloride to give a single isomer which was converted to its methyl ester 65. Tamao-Fleming oxidation of 65 , followed by a directed epoxidation of the resultant homoallylic alcohol provided the epoxide 66. After protection of the secondary alcohol, dehydrochlorination by potassium t-butoxide furnished the α, β-unsaturated ester 67 . Rearrangement of 67 in the presence of
methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide), followed by condensation with 4-iodooxindole gave the (Z)-alkylidene 68.

70

1. $(\mathrm{EtO})_{2} \mathrm{POCH}_{2} \mathrm{CO}_{2} \mathrm{tBu}$ $n-\mathrm{BuLi}$
2. MOMCl, t-BuOK 72% (two steps)
3. n - $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN 75%

71

1. $\mathrm{MeNH}_{2}, \mathrm{MeOH}$ 100\%
2. AllocCl, pyridine DMAP, 94%
3. $\mathrm{LiBH}_{4}, \mathrm{LiBEt}_{3} \mathrm{H}$ 94\%

72

Scheme 13. Fukuyama's synthesis of (+)-gelsemine

After removal of the triethylsilyl group, the resultant alcohol was subjected to Jones' oxidation to give the enone 69 which spontaneously underwent divinylcyclopropane-cycloheptadiene rearrangement to provide the bicyclo[3.2.1]octadienone 70 (Scheme 13). With the bicyclic core of gelsemine established, Horner-Emmons reaction of $\mathbf{7 0}$, protection of the indolinone nitrogen, and subsequent reductive deiodination produced α, β-unsaturated ester
71. When 71 was exposed to methylamine, Michael addition took place from the less hindered exo face to give a trans-aminoester which was protected as its allyl carbamate. The ester moiety was then reduced to the corresponding alcohol 72.

1. $\mathrm{Hg}(\mathrm{OTf})_{2} \mathrm{PhNMe}$, $\mathrm{MeNO}_{2} ; \mathrm{NaCl}, 97 \%$
2. $\mathrm{NaBH}_{4}, \mathrm{NaOH}$, $\mathrm{BuNEt}_{3} \mathrm{Cl}, 63 \%$

73

1. PhCOCl, pyridine, DMAP, 92%
$\xrightarrow[\substack{\text { 3. } \\ 80 \%}]{\text { 2. } \mathrm{HCO}_{2} \mathrm{H}, 96 \%}$
2. $O-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SeCN}$, $\mathrm{PBu}_{3} ; m$ - $\mathrm{CPBA}, \mathrm{NEt}_{3}$ 97\%

$\xrightarrow[\substack{\text { 2. DIBAL } \\ 90 \%}]{\substack{\text { 1. } \mathrm{TMSCl}, \mathrm{NaI}}}(+)$-gelsemine

76

Scheme 14. Fukuyama's synthesis of (+)-gelsemine

At this stage, a cyanomethyl group was attached to the amine to perform the critical intramolecular Michael addition that would complete the pentacyclic skeleton (Scheme 14). Thus, removal of the Alloc group from 72 followed by cyanomethylation gave an aminonitrile which underwent intramolecular Michael addition with potassium bis(trimethylsilyl)amide to afford the pyrrolidine 73. After
protection of the alcohol 73 as its benzoate, the vinyl side chain of 74 was installed in a three-step sequence. Oxidation of 74 with m-chloroperbenzoic acid followed by treatment with triethylamine converted the pyrrolidine ring of 74 to a γ-lactam, and the benzoate was subjected to methanolysis to yield the alcohol 75. Intramolecular oxymercuration of 75 , followed by reductive demercuration gave the tetrahydropyran 76 which was successfully converted to (+)-gelsemine by a two-step process.

83

Scheme 15. Danishefsky's synthesis of (\pm)-gelsemine

Danishefsky's synthesis of racemic gelsemine commenced with epoxidation of 7-tert-butoxynorbornadiene (77), followed by an alumina-promoted rearrangement to give the aldehyde 78 (Scheme 15). ${ }^{15}$ Wadsworth-Emmons onitrobenzylidenation of 78 using the phosphonate $\mathbf{7 9}$, led to 81 presumably via rearrangement of divinylcyclopropane $\mathbf{8 0}$. Hydroboration of $\mathbf{8 1}$ followed by oxidative workup afforded a $11: 1$ mixture of alcohols at C5 relative to its regioisomer at C16, and subsequent oxidation yielded the pure ketone 82. α Methylenation of 82 was accomplished by a three-step sequence leading to 83 , and Luche reduction of 83 followed by hydroboration from the less hindered convex face furnished the diol 84 . The latter was converted to the oxetane 85 in a straightforward manner.

With the crucial oxetane 85 in hand, the next phase of Danishefsky's synthesis searched for a viable route for construction of the pyrrolidine unit (Scheme 16). Thus, cleavage of t-butyl ether 85 , followed by oxidation provided a ketone which underwent a Horner-Emmons reaction to give a $3: 2$ mixture of (Ξ) and $(Z) \alpha, \beta$-unsaturated esters $\mathbf{8 6}$. Upon reduction of $\mathbf{8 6}$, the resulting mixture of isomeric allylic alcohols converged to a single γ, δ-unsaturated ester 87 via a Johnson-Claisen rearrangement. Hydrolysis of the ester 87 followed by Curtius rearrangement afforded a urethane, after which the oxetane ring was opened with the aid of boron trifluoride diethyl etherate to give a primary alcohol. The latter was protected as its pivalate ester 88. Due to the highly hindered nature of the α-face of 88, allylic bromination and subsequent debromination proceeded with retention of stereochemistry to give a β alcohol which was converted to its
acetate 89 . Further transformation of 89 by a three-step sequence yielded the allylic alcohol 90.

86

87

1. $\mathrm{NaOH}-\mathrm{THF}-\mathrm{EtOH}$ 86\%
2. $(\mathrm{PhO})_{2} \mathrm{PON}_{3}, \mathrm{Et}_{3} \mathrm{~N}$; $\mathrm{MeOH}, 89 \%$
3. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 64 \%$
4. $\mathrm{PivCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$ 92%

89

Scheme 16. Danishefsky's synthesis of (\pm)-gelsemine

In practice, it was found that Eschenmoser-Claisen rearrangement of 90 took place in the desired sense to provide a δ-lactam which was converted to the enamide 91 (Scheme 17). Unfortunately, the synthetic route became
complicated at this point in that its continuation required excision of a carbon atom from 91 in order to complete the oxindole moiety. In the event, a ring contraction of 91 was initiated by oxidative cleavage of the dihydroquinoline nucleus to the dialdehyde 92 , which was subsequently cyclized to the spiroanilide 93. Finally, oxymercuration and demercuration using Fukuyama's protocol ${ }^{14}$ formed the tetrahydropyran of gelsemine and this substance which was successfully converted to the natural product.

91

1. $\mathrm{Hg}\left(\mathrm{OTf}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NMe}_{2}\right.$ 92\%
2. NaBH_{4}
3. $\mathrm{NaOH}, 67 \%$
4. LAH, 81%

Scheme 17. Danishefsky's synthesis of (\pm)-gelsemine

94

95

In summary, although several syntheses of gelsemine (2) have been published, Magnus has completed the only total synthesis of its close relative koumine (1) thus far. The most common strategy for the synthesis of gelsemine has been to first build the tetracyclic ketone 94 and then annulate the spirooxindole onto this platform; our goal became a novel entry to 95 , which is structurally related to 94 , as the focus of our approach to koumine (1). A detailed description of our synthetic efforts towards this goal is included in the chapter which follows.

Results and Discussion

Our retrosynthetic analysis of koumine is outlined in Scheme 18. We envisaged that an intermediate 96 would be transformed to the natural substance utilizing an intramolecular alkylation at $\mathrm{C}-3$ of the indole moiety. Fischer indolization of 97 would proceed in a regioselective manner to provide the pentacyclic 96. Thus, the initial effort was focused on the construction of hydroisoquinoline 97 which contains the five chiral centers found in koumine. The first attempt to assemble 97 was made via 98 using a hetero Diels-Alder reaction of the 1 -azadiene 99 .

(-)-Koumine (1)

96

97

Scheme 18

Ghosez reported the first example of a hetero Diels-Alder reaction of an α, β-unsaturated N, N-dimethylhydrazone in 1982, and this cycloaddition has been
successfully exploited in the building of numerous six-membered heterocycles. ${ }^{16}$ Recently, Ghosez has extended the utility of this ring construction to asymmetric Diels-Alder reactions using α, β-unsaturated hydrazones derived from Ender's chiral hydrazines. ${ }^{17}$ Ghosez's research demonstrates that 1 -azadienes engage in a normal $\left(\mathrm{HOMO}_{\text {diene }}\right.$ controlled) Diels-Alder reaction with electron deficient dienophiles, confirming that the tertiary amino group increases the nucleophilic character of the azadiene system and overcomes the electron-withdrawing effect of the $N-1$ atom by interaction of the nitrogen lone pair with the π-system. ${ }^{16}$

Scheme 19

We first decided to examine the cycloaddition of azadiene $\mathbf{1 0 2}$ which is readily available via condensation of 1 -formyl-1,4-cyclohexadiene 100^{18} with Ender's hydrazine 101 (Scheme 19). Disappointingly, Diels-Alder reaction of 102 with maleic anhydride or N -methylmaleimide did not provide the desired cycloadduct 103, and most of the starting diene and dienophile were recovered intact. The only new peaks observed in the crude 'H NMR spectrum of the mixture corresponded to the conjugated triene 104 arising from isomerization of a double bond into conjugation. The apparent lack of reactivity of the diene 102 was puzzling, but it was nevertheless decided to examine the reactivity of other 1-azadienes.

Scheme 20

The chiral diene 108 was chosen in order to avoid the isomerization seen with 102 (Scheme 20). It was also hoped that asymmetric induction from the Enders hydrazone would provide a route to enantio enriched cycloadducts. The preparation of 108 began with Birch reduction of p-anisyl alcohol, followed by ketalization of the resulting enol ether 105 to provide the ethylene ketal 106. ${ }^{19}$ Pyridinium dichromate (PDC) oxidation of allylic alcohol 106 furnished the corresponding α, β-unsaturated aldehyde 107 which was condensed with (S)-(-)-1-amino-2-(methoxymethyl)pyrrolidine to give the hydrazone 108. With the stage now set for a test of azadiene 108 as a Diels-Alder partner, this compound was exposed to maleic anhydride or N -methylmaleimide at a range of temperatures. Unfortunately, none of these reaction gave any trace of a cycloadduct. Lewis acid catalysis of the reaction with boron trifluoride diethyl etherate, indium(III) chloride and titanium dichloro diisopropoxide did not change the outcome.

110

111

Scheme 21

The significant difference in reactivity between our cyclic dienes such as 102 and 108 and the acyclic dienes used successfully by Ghosez was surprising and we therefore decided to verify Ghosez' results. ${ }^{16}$ The dimethylhydrazone 110 was prepared in nearly quantitative yield from trans-2-methyl-2-butenal (Scheme
21), and its Diels-Alder reaction with N -methylmaleimide was carried out in acetonitrile at ambient temperature to afford cycloadduct 111 in 70% yield. The assignment of structure to 111 is in accord with related work by Ghosez where the cycloaddition is highly stereoselective. ${ }^{17}$ The coupling constant $(J=6.3 \mathrm{~Hz})$ between the $\mathrm{H}-4$ and $\mathrm{H}-5$ protons of 111 indicates a cis relationship between these protons, thus establishing an endo transition state for the reaction.

116

Scheme 22

The azadiene 115 which has a longer carbon chain at C-4 was next examined to see whether there is a steric influence on the cycloaddition (Scheme 22). The preparation of 115 began with Wittig olefination of aldehyde 112 to give α, β-unsaturated ester 113. After reduction of 113 with
diisobutylaluminum hydride (DIBALH), the resulting allylic alcohol 114^{20} was oxidized with manganese(IV) oxide to provide an aldehyde which was condensed with 1,1-dimethylhydrazine to give hydrazone 115. Diels-Alder reaction of 115 with N-methylmaleimide was slower than with 110 and could only be effected at elevated temperature. Furthermore, cycloadduct 116 was obtained in only modest yield. This result indicates that an increase in bulkiness of the substituent at $\mathrm{C}-4$ of the azadiene causes steric resistance to its cycloaddition with N methylmaleimide.

118

1. TBSCl, imidazole DMF, 94%
2. $\mathrm{H}_{2} \mathrm{NNMe}_{2}, \mathrm{AcOH}$ $\mathrm{Et}_{2} \mathrm{O}, 86 \%$

119

$\xrightarrow[10 \%]{\mathrm{CH}_{3} \mathrm{CN}, \Delta, 24 \mathrm{~h}}$

120

Scheme 23

The more elaborate acyclic diene 119 was next prepared to determine whether a steric effect at C-3 as well as C-4 was responsible for the failed cycloaddition of 108 (Scheme 23). The synthesis of 119 commenced with an Arbuzov reaction ${ }^{21}$ of α-bromo- γ-valerolactone to yield a phosphonate which underwent Horner-Emmons condensation with aldehyde 112^{22} resulting in E alkylidene lactone $117 .{ }^{23}$ Reduction of 117 with diisobutylaluminum hydride (DIBALH), followed by oxidation with manganese(IV) oxide furnished the α, β unsaturated aldehyde 118. After protection of alcohol 118 as its t butyldimethylsilyl ether (TBS), formation of hydrazone 119 was effected under standard conditions. When diene 119 was subjected to a Diels-Alder reaction with N -methylmaleimide, cycloadduct 120 was formed in only 10% yield. Thus, it appears from these results that the Diels-Alder reaction of 1 -azadienes is highly dependent upon the steric bulk of substituents at both $\mathrm{C}-3$ and $\mathrm{C}-4$ of the diene. The absence of any cycloaddition product with the cyclic 1-azadienes 102 and 108 can be rationalized in this light and caused us to abandon this strategy.

121

$\mathrm{R}=\mathrm{H}, \mathrm{OMe}$

Scheme 24

Our second approach to the cis-hydroisoquinoline 97 was based on an anionic oxy-Cope rearrangement of an azabicyclo[2.2.2]octene system, and was
patterned on the carbocyclic analogy originally investigated by Evans ${ }^{24}$ and subsequently exploited in numerous synthetic applications. ${ }^{25}$ The anionic oxyCope rearrangement of $\mathbf{1 2 1}$, for example, shows great kinetic acceleration (10^{10} 10^{17}) which is believed to originate from alkoxide-induced weakening of the C3$\mathrm{C} 4 \sigma$ bond. Rearrangement takes place at $0^{\circ} \mathrm{C}$ and results in cis-decalin 122 (Scheme 24).

Scheme 25

We believed that the allylic alcohol $\mathbf{1 2 4}$ should behave in a fashion similar to its carbocyclic analogue 121 in an anionic oxy-Cope rearrangement and should therefore provide the cis-hydroisoguinoline 123 (Scheme 25). This octahydroisoquinolone would afford an entry into the pivotal intermediate 97 needed for our route to koumine.

The preparation of several possible substrates for our proposed anionic oxy-Cope rearrangement began with a Fowler reduction of pyridine (Scheme 26). ${ }^{26}$ The resultant N-(methoxycarbonyl)dihydropyridine 125 engaged in a DielsAlder reaction with the ketene equivalent 1-cyanovinyl acetate to give a 1:1 mixture of stereoisomeric isoquinuclidines 126 and 127 which were transformed as the mixture to ketone $\mathbf{1 2 8}$ by treatment with sodium methoxide. ${ }^{27}$

Scheme 26

Addition of vinylmagnesium bromide to the bicyclic ketone 128 afforded a 1:4 mixture of exo 129 and endo 130 alcohols which were either separated by radial chromatography or utilized directly in the subsequent step (Scheme 27). Stereochemical assignment to the alcohols 129 and 130 was initially carried out by a ${ }^{1} \mathrm{H}$ NMR analysis which shows the vinyl protons at the terminus of the allylic alcohol moiety of 129 at higher field ($0.1-0.3 \mathrm{ppm}$) than the corresponding protons of $\mathbf{1 3 0}$ due to diamagnetic shielding by the endocyclic double bond. ${ }^{28}$ More conclusive evidence for the stereochemistry came from a NOE experiment with the N-methylamine 132 which was obtained from 130 by a silylation, reduction and desilylation sequence. When $\mathrm{H}-1$ was irradiated, the observed 1% signal enhancement of $\mathrm{H}-3$ confirmed our assignment (Figure 2.2).

133

1. TESOTf, 2,6-lutidine 91\%
2. LAH, ether, rt 80\%

131

PTSA, MeOH 85\%

132
Scheme 27

Figure 2.2 NOE data for the N -methylamine 132

Scheme 28

When the exo alcohol 129 was subjected to potassium hydride and 18-crown-6, the expected anionic oxy-Cope rearrangement did not occur and only fragmentation of the starting material was observed (Scheme 28). The same behavior of this azabicyclo[2.2.2] system was also observed in case of the N methylamine 133, derived from 129 by lithium aluminum hydride reduction.

It has been shown that a heteroatom at either $\mathrm{C}-4$ or $\mathrm{C}-6$ of a substrate such as 129 or 133 affects not only the reaction rate of the oxy-Cope rearrangement but also changes the reaction mechanism. ${ }^{29}$ It seems that a nitrogen atom at C-4 disfavors a concerted pathway for the rearrangement and that a competing fragmentation of the C-C bond adjacent to the alkoxide substituent dominates.

In conjunction with the approach using an anionic oxy-Cope rearrangement, the Cope rearrangement ${ }^{30}$ of silyl enol ether 140 was also investigated (Scheme 29). A Diels-Alder reaction of N (methoxycarbonyl)dihydropyridine $\mathbf{1 2 5}^{26}$ with methyl vinyl ketone (MVK) gave 7acetylisoquinuclidines, endo 136 and exo 137, determined by ${ }^{1} \mathrm{H}$ NMR analysis to be a 2.5:1 mixture. ${ }^{31}$ Reduction of endo ketone 136 with sodium borohydride
followed by treatment of the resulting mixture of diastereomeric alcohols 138 with N-bromosuccinimide (NBS) provided stereoisomeric bromoethers 139, confirming the endo stereochemical assignment made to 136 . With the endo ketone 136 in hand, silyl enol ether 140 was prepared with lithium hexamethyldisilazide (LHMDS) and trimethylsilyl chloride at $-78^{\circ} \mathrm{C}$.

Scheme 29

Disappointingly, a solution of 140 heated at $230^{\circ} \mathrm{C}$ in solvents such as xylene and mesitylene did not provide the cis-hydroisoquinoline 141. Only the intact starting material was recovered under these conditions.

Scheme 30

As an alternative approach to the cis-hydroisoquinoline system, it was envisaged that the strained photoadduct $\mathbf{1 4 3}$ could be induced to fragment in the desired sense as shown to produce 142 (Scheme 30). The substrate 144 required for the intramolecular [2+2] photocycloaddition that would yield 143 would be available via a Diels-Alder route starting from the 1,6 -dihydropyridine 145.

Toward this end, reduction of methyl nicotinate 146 with sodium borohydride in the presence of methyl chloroformate resulted in a 2.8:1.4:1
mixture of dihydropyridines 147,148 , and 149 as determined by ${ }^{1} \mathrm{H}$ NMR analysis (Scheme 31). ${ }^{32}$ This mixture was subjected directly to a Diels-Alder reaction with methyl vinyl ketone. ${ }^{33}$ The desired 1,6-endo cycloadduct 152 (endo:exo $=5: 1$) could be separated from the mixture of the 1,2 -cycloadducts 150 and 151 via crystallization, and its relative configuration was unambiguously determined by X -ray analysis (Figure 2.3).

146
$\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{NaBH}_{4}$, $\mathrm{MeOH},-78^{\circ} \mathrm{C}$

147

$2.8: 1.4: 1$
148

149

$100^{\circ} \mathrm{C}, 3 \mathrm{~d}$

1:1

150, $R_{1}=A c, R_{2}=H$
151, $R_{1}=H, R_{2}=A c$
26% from 146
 $5: 1$

152, $R_{1}=A c, R_{2}=H, 21 \%$ from 146
153, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ac}, 4 \%$ from 146

Figure 2.3 ORTEP representation of X-ray structure of 152

Intramolecular [2+2] enone-olefin photocycloaddition has been recognized as a powerful tool for the construction of cyclobutanes. ${ }^{34}$ While a variety of mechanistic studies have been performed to shed light on the photocycloaddition process, the exact mechanistic details are still uncertain. The generally accepted pathway is shown in Scheme 32. ${ }^{35}$ Absorption of a photon by the ground state enone E° normally produces the short-lived excited singlet $E^{* 1}$ which can then decay back to the ground state or can undergo intersystem crossing (ISC) to a long-lived excited triplet state $\mathrm{E}^{* 3}$. The next step is usually considered to be complexation of the triplet state $\mathrm{E}^{\star 3}$ with a ground state alkene to generate a short-lived triplet exciplex $\left(E^{*}-A^{0}\right)^{3}$.

Scheme 32. The mechanism of [2+2] enone-olefin photocycloaddition

Although it has never been directly observed, this complex has been used to explain the regioselectivity of many intermolecular photocycloadditions and to rationalize the observation that the rates of photocycloaddition are much higher than those of normal radical additions to olefins. The exciplex leads to formation of a carbon-carbon bond and produces a triplet 1,4-biradical intermediate. This species must undergo spin inversion to the singlet biradical before ring closure to the cyclobutane can occur.

Our initial investigation of the intramolecular [2+2] photocycloaddition in the context of a route to $\mathbf{1 4 2}$ was performed with silyl enol ether $\mathbf{1 5 4}$ derived from the endo ketone 152 by reaction with lithium hexamethyldisilazide and chlorotrimethylsilane (Scheme 33). In the event, irradiation of 154 in cyclohexane through a Corex filter ($\lambda>250 \mathrm{~nm}$) proceeded with complete regioselectivity resulting in the intramolecular photoadduct 155. A conclusive structural determination of the photoadduct 155 was obtained by its conversion to
benzoate 157 by desilylation with tetrabutylammonium fluoride (TBAF) and subsequent benzoylation of the resultant alcohol 156 with p-bromobenzoyl chloride. X-ray analysis of the crystalline benzoate 157 established the structure of 155 and hence confirmed the regiochemical outcome in the photocycloaddition of 154 (Figure 2.4).

157

Figure 2.4 ORTEP representation of X-ray structure of 157

155
Scheme 34

The clean regioselectivity observed in the intramolecular photocycloaddiiton of 154 can be explained in terms of the Corey-de Mayo mechanism ${ }^{36}$ which includes two types of intermediates: an exciplex 158 and alternative triplet 1,4-biradicals 159 and 160 (Scheme 34). The exciplex 158 is believed to be a complex in which the excited enone and ground-state alkene are oriented in such a fashion that destabilizing polar interactions are minimized. It has been hypothesized that the dipole moment of the excited triplet enone results in an electronic charge redistribution in which electron density is higher at $C \beta$ than at $\mathrm{C} \alpha .{ }^{37}$ The orientation of this complex is then reflected in the regiochemistry of the cycloadduct 155.

In an attempt to investigate the regioselectivity of this intramolecular photocycloaddition more broadly, the olefin 161 was prepared from endo ketone 152 by a Wittig reaction with methyltriphenylphosphonium bromide in the presence of n-butyllithium (Scheme 35). It was found that the intramolecular photocycloaddition process was markedly dependent on the substituent attached to the pendant alkene. Irradiation of photosubstrate 161 in cyclohexane (450-W Hanovia mercury lamp) through a Corex filter ($\lambda>250 \mathrm{~nm}$) led to the formation of a mixture of three products 162, 163, and 164 in a 57% combined yield. The two major products, "crossed" adduct 162 and "straight" adduct 163, could be distinguished by means of extensive 2D NMR experiments which identified the presence or absence of the proton-proton correlation between $\mathrm{H}-1$ and $\mathrm{H}-2$.

It has been shown that, as the electron-donating ability of the substituent on the alkene decreases, regiochemical control by that substituent through an exciplex intermediate is less dominant and hence regioselectivity is less predictable. ${ }^{35}$ The regiochemical outcome from photocycloaddition of $\mathbf{1 6 1}$ must arise from a combination of several factors because the electron-donating effect of the methyl group on the alkene would be expected to favor the "straight" adduct 163. For example, irradiation of the three-atom tethered photosubstrate 165 leads exclusively to formation of the "straight" adduct 166 with none of the "crossed" adduct 167 observed (Scheme 36). ${ }^{38}$ Since five-membered ring formation is kinetically preferred over the formation of four- and six-membered rings, a "rule of five" has been postulated to explain the regioselectivity of the intramolecular photocycloaddition in general. ${ }^{39}$

Scheme 36

164

162

163

Scheme 37

However, the formation of "crossed" product 162 as the major product from irradiation of 161 constitutes a violation of the "rule of five", and hence an
alternative explanation should be considered to rationalize this result. For this purpose, the relative efficiencies with which the isomeric biradicals 168-171 are converted to their cyclobutane products in competition with fragmentation to the ground state starting material must be taken into account (Scheme 37). It has been demonstrated that simple molecular mechanics calculations may be used to analyze the geometry of intermediate biradical species and inter-radical distances (IRD) shorter than $3 \AA$ are considered as the upper limit for effective orbital interaction leading to bond closure. ${ }^{40}$ We used the semi-empirical AM1 model to calculate the relative stability and geometry of the four possible intermediate biradicals 168-171, and the results are summarized in Table 2.1.

Biradical	Relative energy (Kcal/mol)	Inter-radical distance (\AA)
$\mathbf{1 6 8}$	7.3	2.7
169	49.4	3.0
$\mathbf{1 7 0}$	60.5	2.9
$\mathbf{1 7 1}$	0.0	3.2

Table 2.1 Interatomic separation of radical centers (IRD) for the minimum energy conformation of biradicals 168-171

Of the two biradicals 168 and 169 which lead to the "crossed" adduct 162, 168 is lower in energy than 169; however both would have inter-radical distances (IRD) sufficiently short for fast ring closure. In the case of biradicals 170 and 171 which lead to the "straight" adduct 163, 171 turned out to be the most stable of the four whereas 170 was the least stable biradical. However, the calculated IRD
value of $\mathbf{1 7 1}$ is too large to allow collapse to a cyclobutane, and reversion to the ground state therefore occurs. Thus, the lower energy of 171 in relation to 168 is overridden by the shorter IRD of 168, in agreement with the experimentally observed regioselectivity in favor of "crossed" adduct 162. The generation of a small portion of 164 from 161 is believed to be due to disproportionation of the biradical 168.

Scheme 38

The markedly different photochemical behavior of 154 and 161 prompted us to examine a case where there was a heteroatom substituent at C-3 in the photosubstrate. Toward that end, allylic oxidation of 161 using Sharpless conditions ${ }^{41}$ with dichloromethane as solvent led to the formation of a $1: 1$ mixture of diols 172 and 173, epimeric at C-3 (Scheme 38). On the other hand,
oxidation in a heterogeneous medium gave a $2: 1$ mixture of alcohols 174 and 175, respectively.

174

hv, pyrex ether, 2 h

179

Scheme 39

After silylation of the alcohol 174 with trimethylsilyl trifluoromethanesulfonate (TMSOTf) and 2,6-lutidine, the resulting silyl ether 176 was subjected to irradiation to give a mixture of the "crossed" adduct 177 and the cis-octahydroisoquinoline 178 (Scheme 39). These compounds were readily separable by column chromatography. For the structure assignment, cis-
octahydroisoquinoline 178 was treated with N-bromosuccinimide (NBS) to furnish the α-bromoketone 179, which produced a cleaner ${ }^{1} \mathrm{H}$ NMR spectrum.

180

181

182

184

Scheme 40

It is noteworthy that the yield of cis-octahydroisoquinoline 178 increased significantly whereas generation of the "straight" adduct 184 was suppressed completely with incorporation of the TMS ether at C-3 of the photosubstrate 176 (Scheme 40). Once again, the relative efficiencies with which the isomeric biradicals 180-183 are converted to their cyclobutane products in competition with fragmentation to the ground state starting material could be estimated by
using simple molecular mechanics calculations (Table 2.2). The biradicals 180 and 183 are believed to be the predominant intermediates formed upon irradiation of 176. The inter-radical distance (IRD) of the more stable biradical 183 is too large to generate the "straight" adduct 184, and this species therefore reverts to the ground state of $\mathbf{1 7 6}$. However, the enery difference between biradicals 180 and 183 is small enough for the photocycloaddition of 176 to proceed through 180 to 177 and 178.

Biradical	Relative energy (Kcal/mol)	Inter-radical distance (\AA)
180	4.1	2.7
181	47.1	3.0
182	52.1	2.9
183	0.0	3.2

Table 2.2 Interatomic separation of radical centers (IRD) for the minimum energy conformation of biradicals 180-183

In a further extension of this intramolecular photoaddition, deprotonation of ketone 152 with potassium hexamethyldisilazide (KHMDS) followed by addition of N-phenyltrifluoromethanesulfonimide ($\mathrm{Tt}_{2} \mathrm{NPh}$) furnished the enol triflate 185 which proved to be a useful precursor for the preparation of several additional photosubstrates (Scheme 41). ${ }^{42}$ Palladium-catalyzed alkoxy-carbonylation of 185 produced the α, β-unsaturated ester $186 .{ }^{43}$

A combination of triethylamine and formic acid together with catalytic amounts of palladium acetate and triphenylphosphine were used to hydrogenate 185 which gave the alkene $187 .{ }^{44}$ Stille coupling of 185 with ($\alpha-$ ethoxyvinyl)tributylstannane ${ }^{45}$ was effected in the presence of tris(dibenzylideneacetonyl)bispalladium $(0)\left(\mathrm{Pd}_{2} \mathrm{dba}_{3}\right)$ and tris(2-furyl)phosphine and furnished the enone $\mathbf{1 8 8}$ after acidic hydrolysis. ${ }^{46}$

KHMDS, TMSCl
$-78^{\circ} \mathrm{C}$
82%

Scheme 41

$186\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$
$187(\mathrm{R}=\mathrm{H})$
$188(\mathrm{R}=\mathrm{Ac})$
hv, cyclohexane

189a $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$
189b ($\mathrm{R}=\mathrm{H}$)
189c ($\mathrm{R}=\mathrm{Ac}$)

190a $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$
$190 b(\mathrm{R}=\mathrm{H})$
190c ($\mathrm{R}=\mathrm{Ac}$)

191a $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$
191b ($\mathrm{R}=\mathrm{H}$)
191c ($\mathrm{R}=\mathrm{Ac}$)

Scheme 42

Run	Substrate	Filter	Time	Ratio of 189 and 190	Yields of 189 and 190	Yield of 191
1	186	Corex	5 h	$1.1: 1$	55%	3%
2	186	Pyrex	5 h	$1: 1$	57%	2%
3	187	Corex	20 h	$1: 1.5$	54%	3%
4	188	Pyrex	8 h	$1: 8$	47%	0%

Table 2.3 Photocycloaddition of alkenes 186-188

With these photosubstrates in hand, their photochemistry was studied in detail (Scheme 42). Irradiation of $\mathbf{1 8 6}$ in cyclohexane (450-W Hanovia mercury lamp) through a Corex filter ($\lambda>250 \mathrm{~nm}$) gave a separable mixture of two photoadducts, 189a and 190a, in a 1.1:1 ratio, along with a trace amount of the cis-octahydroisoquinoline 191a (run 1, Table 2.3). The regioselectivity of this photocycloaddition did not seem to be affected significantly by the irradiation conditions (run 2, Table 2.3).

Structural determination of the individual isomers was carried out using extensive 2D NMR experiments. In particular, a NOE experiment of the "crossed" adduct 189a indicated the vicinal relationship of $\mathrm{H}-6$ with $\mathrm{H}-7$ and $\mathrm{H}-8$ (Figure 2.5). In the same way, a NOE experiment with the "straight" adduct 190a showed a 2% signal enhancement of $\mathrm{H}-6$ when $\mathrm{H}-7$ was irradiated; the same enhancement of $\mathrm{H}-2$ occurred when $\mathrm{H}-8$ was irradiated. This confirms the structure assignments made to 189a and 190a.

189a

190a

Figure 2.5 NOE data for the photoadducts 189a and 190a

Recently, many examples have appeared in the literature in which intramolecular photocycloaddition is not regioselective or the regiochemistry is the reverse of that predicted by the Corey-de Mayo model. This is especially true when the alkenes are substituted by electron withdrawing group. ${ }^{47}$

$$
\begin{aligned}
& 186\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right) \\
& 187(\mathrm{R}=\mathrm{H}) \\
& 188(\mathrm{R}=\mathrm{Ac})
\end{aligned}
$$

191a ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$)
191b ($\mathrm{R}=\mathrm{H}$)
191c ($\mathrm{R}=\mathrm{Ac}$)

189a $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$
$189 \mathrm{~b}(\mathrm{R}=\mathrm{H})$
189c ($R=A c$)

190a(R $\left.=\mathrm{CO}_{2} \mathrm{Me}\right)$
190b ($\mathrm{R}=\mathrm{H}$)
190c ($\mathrm{R}=\mathrm{Ac}$)

Biradical	Relative energy (Kcal/mol)	Inter-radical distance (Å)
$\mathbf{1 9 2 a}$	9.1	2.7
$193 a$	45.6	3.0
$194 a$	58.5	2.9
$195 a$	0.0	3.1
192b	8.0	2.7
193b	40.5	3.1
194b	43.7	2.9
195b	0.0	3.2
192c	10.2	2.7
193c	51.0	3.0
194c	60.8	2.9
195c	0.0	3.1

Table 2.4 Interatomic separation of radical centers (IRD) for the minimum energy conformation of biradicals 192-195

Again, molecular mechanics calculations indicate that the regiochemical outcome from irradiation of 186 appears to be affected by the relative energy and the inter-radical distance (IRD) of the biradicals 192a and 195a (Scheme 43, Table 2.4). The presence of a carbomethoxy group confers a little higher energy on the biradical 192a, and the contribution of 192a towards generating the "crossed" adduct 189a should thus be diminished (Table 2.3). The photocycloaddition of $\mathbf{1 8 7}$ proceeded more slowly than $\mathbf{1 8 6}$ and afforded a 1:1.5 mixture of the photoadducts 189b and 190b, along with a small quantity of 191b (run 3, Table 2.3). The reversed regiochemistry with 187 is explained by the
contribution of intermediate biradical 194b in the photocycloaddition. In the case of the enone 188, the photocycloaddition yielded the "straight" adduct 190c as the major product (run 4, Table 2.3). This regiochemical outcome is unexpected here because the enone 188 should behave similarly to the corresponding α, β unsaturated ester 186. A possible explanation for this result is the higher energy of the biradical 192c. Thus, although it has an appropriate inter-radical distance (IRD), the relatively high energy of 192c makes it a less important contributor to the photocycloaddition of 186.

Scheme 44

The concept of a $[2+2]$ photocycloaddition-cycloreversion strategy has been recognized as a powerful tool for the synthesis of medium-ring structures. ${ }^{48}$ For example, irradiation of dimethyl cyclobutene-1,2-dicarboxylate and 3-methyl2 -cyclohexenone resulted in the formation of the cycloadduct 196 which was
heated to produce the 1,5 -cyclodecadiene 197 (Scheme 44). ${ }^{49}$ Evidently, two fused cyclobutanes impart a sufficiently large degree of strain that fragmentation of the interior cyclobutane bond and subsequent cycloreversion become a relatively facile process.

$162(\mathrm{R}=\mathrm{Me})$
189a ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$)

$164(\mathrm{R}=\mathrm{Me})$
191a ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$)

Scheme 45

The strained photoadduct 162, which also has a bicyclo[2.2.0]hexane moiety embedded in its framework, was subjected to thermolysis at temperature up to $250^{\circ} \mathrm{C}$ (Scheme 45), but this substance turned out to be completely inert to these reaction conditions. Since it has been demonstrated that an electronwithdrawing substituent at C-1 or C-4 facilitates cycloreversion by stabilizing the diradical intermediate which is presumably formed under thermolytic condition, ${ }^{50}$ the photoadduct 189a was also subjected to thermolysis. Once again, there was no indication of a cycloreversion and the starting material was recovered intact.

The lack of thermal reactivity of 162 and 189 a is surprising, in part because a substructure search using the Cambridge Crystallographic Data Base shows that the average C1-C4 bond length of a bicyclo[2.2.0]hexane system is $1.59 \AA$, making this undoubtedly a weak bond and therefore one which should be
cleaved under thermal conditions. Unfortunately, no crystallographic data on any of our "crossed" photoadducts is available for a direct comparison of bond lengths with literature values.

In summary, three different routes for the synthesis of hexahydroisoquinoline 98 met obstacles which defeated our approach to koumine. The Diels-Alder reaction of cyclic 1-azadienes was abandoned due to the lack of reactivity of the dienes. An anionic oxy-Cope rearrangement of the azabicyclo[2.2.2]octane system caused mainly decomposition of the starting materials. Finally, although an intramolecular [2+2] photocycloaddition generated "crossed", "straight" and hydroisoquinoline products in varing ratios, depending on the substituent pattern of the substrate, this approach was not synthetically useful. The results from this last study may be valuable for predicting the regiochemical outcome of certain intramolecular photocycloadditions, but it appears that a new strategy must be developed if a viable route to (-)-koumine is to be found.

Experimental Section

Cyclohexa-1,4-dienecarbaldehyde (100). To a solution of propiolaldehyde (101 $\mathrm{mg}, 1.87 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added a solution of boron trifluoride etherate ($0.21 \mathrm{~mL}, 1.68 \mathrm{mmol}$), and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. A solution of 1,3 -butadiene ($360 \mathrm{mg}, 6.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added, and the mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. The mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:5) gave $89 \mathrm{mg}(44 \%)$ of 100 as a colorless: $R_{f} 0.15$ (EtOAc-hexanes, 1:10); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.81(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~m}, 2 \mathrm{H})$, $5.66(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.5,27.4,122.3,124.0,138.7,147.5,193.6$.

Cyclohexa-1,4-dienylmethylene-(2-methoxymethyl-pyrrolidin-1-yl)-amine (102). To a solution of (S)-(-)-1-amino-2-(methoxymethyl)pyrrolidine (SAMP) 101 $(38 \mathrm{mg}, 0.29 \mathrm{mmol})$ in acetic acid $(0.5 \mathrm{~mL})$ at room temperature was added a
solution of $\mathbf{1 0 0}(21 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, and the mixture was heated at reflux for 30 min . The reaction mixture was concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:5) gave 31 $\mathrm{mg}(73 \%)$ of 102 as a yellow oil: $R_{f} 0.51$ (EtOAc-hexanes, $1: 5$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.79-2.06 (m, 4H), 2.79-3.12 (m,5H), $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.64(\mathrm{~m}$, $4 \mathrm{H}), 6.66-6.83(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.1,25.0$, 26.7, 26.9 49.2, 59.2, 63.2, 74.6, 123.3, 124.8, 125.0, 134.0, 137.4.

(1,4-Dioxa-spiro[4.5]dec-7-en-8-ylmethylene)-(2-methoxymethyl-pyrrolidin-1-yl)-amine (108). To a solution of (S)-(-)-1-amino-2-(methoxymethyl)pyrrolidine (SAMP) 101 ($187 \mathrm{mg}, 1.43 \mathrm{mmol}$) in acetic acid $(0.5 \mathrm{~mL})$ at room temperature was added a solution of $107(185 \mathrm{mg}, 1.10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, and the mixture was stirred at room temperature for 30 min . The reaction mixture was concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:3) gave 253 mg (82%) of 108 as a yellow oil: $R_{f} 0.24$ (EtOAc-hexanes, 1:3); $\left[\alpha_{1}^{23}-95.9\right.$ (c 3.0, CHCl_{3}); IR(neat) 2946, 2922, 2878, 1339, 1198, 1115, $1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.81(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.95-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$, $3.31-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=3.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 4 \mathrm{H}), 5.65(\mathrm{t}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.5,23.4,27.1,31.2,36.5,49.6$, 59.6, 63.5, $64.8(2 \mathrm{C}), 75.0,108.8,124.7,136.7,137.0 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 280\left(\mathrm{M}^{+}\right)$,
$235,168,149,119,84,69$.

1-Dimethylamino-3,4,6-trimethyl-1,4,4a,7a-tetrahydro-pyrrolo[3,4-b]pyridine-5,7-dione (111). To a solution of N -methylmaleimide ($555 \mathrm{mg}, 5 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at room temperature under argon was added a solution of 100 ($630 \mathrm{mg}, 5 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$, and the mixture was stirred for 24 h at room temperature. The reaction mixture was concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:1) gave 830 mg (70\%) of 111 as a yellow solid: IR (neat) 2962, 1710, 1456, 1432, 1381, 1293, $1275 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.70(\mathrm{~s}, 3 \mathrm{H})$, $2.55(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 6 \mathrm{H}), 2.91(\mathrm{dd}, J=6.3,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 6 \mathrm{H}) ; 4.05(\mathrm{~d}, J=9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.6,19.1,24.3,32.7,42.2$, 42.9 (2C), 57.0, 110.5, 124.4, 177.5, 177.7; MS (Cl) m/z 237 (M^{+}), 220, 215, 201, 193, 179, 173, 161, 149, 135, 126, 111, 109; HRMS (CI) m/z 237.1480 (calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: 237.1477).

N^{\prime}-[5-(tert-Butyl-dimethyl-silanyloxy)-2-methyl-pent-2-enylidene]- N - N -dimethyl-hydrazine (115). To a solution of 114 ($41 \mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3
mL) at room temperature under argon was added manganese (IV) oxide (78 mg , 0.90 mmol), and the mixture was stirred for 4 h at room temperature. The mixture was filtered through a pad of Celite with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the filtrate was concentrated under reduced pressure. To a solution of obtained above was added a solution of N, N-dimethylhydrazine ($16 \mathrm{mg}, 0.26 \mathrm{mmol}$) in acetic acid $(0.5 \mathrm{~mL})$ at room temperature, and the mixture was stirred for 1 h at room temperature. The reaction mixture was concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:5) gave 35 mg (71\%) of 115 as a yellow oil: IR(neat) 2954, 2929, 2857, 1472, 1256, 1103, 1024, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.84(\mathrm{~s}$, $3 \mathrm{H}), 2.43(\mathrm{dt}, J=7.1,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H}), 3.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.9(2 \mathrm{C}), 12.2,18.8$, 26.4 (3C), 32.5, 43.5 (2C), 63.1, 129.2, 136.3, 140.5; MS (CI) $m / z 270\left(\mathrm{M}^{+}\right), 255$, $213,171,168,141,137,125,102,86,84 ;$ HRMS (CI) $m / z 270.2126$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OSi}: 270.2127$).

4-[2-(tert-Butyl-dimethyl-silanyloxy)-ethyl]-1-dimethylamino-3,6-dimethyl-

 1,4,4a,7a-tetrahydro-pyrrolo[3.4-b]pyridine-5,7-dione (116). To a solution of N-methylmaleimide ($15 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ at room temperature under argon was added a solution of $115(30 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$,and the mixture was heated at reflux for 24 h . The reaction mixture was concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, $1: 10$ to $1: 1$) gave $22 \mathrm{mg}(52 \%)$ of 116 as a yellow solid: IR(neat) 2930, 2856, 1716, 1684, 1457, 1436, 1100, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.21-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}$, $6 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=5.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~m}, 2 \mathrm{H}), 3.98$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.0,-4.9,18.6$, $20.7,24.5,26.3,31.9,35.0,43.0,43.3,58.6,61.3,110.6,125.0,177.3,177.5 ;$ MS (CI) m/z $381\left(\mathrm{M}^{+}\right), 277,270,203,177,125,88,84$; HRMS (CI) m / z 381.2449 (calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$: 381.2448).

3-[3-(tert-Butyl-dimethyl-silanyloxy)-propylidene]-dihydro-furan-2-one (117). To a solution of α-bromo- γ-butyrolactone $(5.78 \mathrm{~g}, 35.0 \mathrm{mmol}$) at room temperature under argon was added triethyl phosphite ($4.85 \mathrm{~g}, 29.2 \mathrm{mmol}$), and the mixture was heated at reflux for 4 h . The mixture was allowed to cool to room temperaure during for 30 min , and concentrated under reduced pressure. Distillation of the residue gave $4.79 \mathrm{~g}(71 \%)$ of α-diethoxyphosphinyl- γ butyrolactone as a colorless oil. B.p. 120-122 \% $\% .05$ Torr. To a solution of the phosphonate (993 mg, 4.47 mmol), 18-crown-6 ($6.2 \mathrm{~g}, 23.5 \mathrm{mmol}$) in THF (60 mL) at $-78^{\circ} \mathrm{C}$ under argon was added a solution of potassium hexamethyldisilazide (0.5 M in toluene, $10 \mathrm{~mL}, 5.0 \mathrm{mmol}$), and the mixture was

30 min at $-78^{\circ} \mathrm{C}$. A soluiton of $112(885 \mathrm{mg}, 4.71 \mathrm{mmol})$ in THF (5 mL) was added dropwise, and the mixture was allowed to warm to room temperature during 1 h . The mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and was extracted with ether (30 mL). The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:10) gave $835 \mathrm{mg}(73 \%)$ of 117 as a colorless oil. IR(neat) 2929, 2955, 2857, 1756, 1256, 1185, 1096, $1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 2.85-2.99 (m, 4H), $3.71(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,18.7,26.3,29.5,31.4,62.5,65.7,125.0,141.3,170.5$; MS (CI) $m / z 212\left(\mathrm{M}^{+}\right), 197,151,139,125,111,109,87,84$; HRMS (CI) m / z 212.1529 (calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: 212.1525).

5-(tert-Butyl-dimethyl-silanyloxy)-2-(2-hydroxy-ethyl)-pent-2-enal (118). To a solution of $117(80 \mathrm{mg}, 0.31 \mathrm{mmol})$ in $\mathrm{THF}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added a solution of diisobutylaluminium hydride ($0.12 \mathrm{~mL}, 0.68 \mathrm{mmol}$), and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. The mixture was diluted with Rochelle's solution (5 mL) and was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAchexanes, $1: 1$) gave $77 \mathrm{mg}(94 \%)$ of diol as a colorless oil: IR (neat) 3336, 2929,
$2857 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 2.29-2.40(\mathrm{~m}$, $4 \mathrm{H}), 2.74-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}$, $2 \mathrm{H}), 5.43(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.1,18.9,26.4,31.5$, 41.1, 60.3, 62.6, 62.7, 128.7, 140.3; MS (CI) $m / z 261(\mathrm{M}+\mathrm{H})^{+}, 243,225,197$, 185, 155, 111, 93, 89, 75; HRMS (CI) $m / z 261.1891$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$: 261.1886). To a solution of diol ($17 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature under argon was added manganese (IV) oxide ($56 \mathrm{mg}, 0.64 \mathrm{mmol}$), and the mixture was stirred for 3 h at room temperature. The mixture was filtered through a pad of Celite with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the filtrate was concentrated under reduced pressure to give $14.3 \mathrm{mg}(87 \%)$ of 118 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{dt}, J$ $=6.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H})$.

2-Methoxycarbonyl-2-azabicyclo[2.2.2]oct-5-ene-7-one (128). To a solution of pyridine ($1 \mathrm{~mL}, 12.6 \mathrm{mmol}$) and sodium borohydride ($490 \mathrm{mg}, 13.0 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon was added a solution of methyl chloroformate ($1 \mathrm{~mL}, 12.6 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, and the mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$. The mixture was diluted with ice water and was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to give 125 as a yellow oil. To a solution of $\mathbf{1 2 5}$ at room temperature under argon was added a
solution of 1-cyanovinyl acetate ($2.10 \mathrm{~g}, 18.9 \mathrm{mmol}$), and the mixture was heated at $110^{\circ} \mathrm{C}$ for 36 h . Chromatography of the residue on silica (EtOAc-hexanes, 1:2 to 1:1) gave $937 \mathrm{mg}(36 \%)$ of 126 and 127 as a $1: 1$ inseparable mixture. To a solution of 126 and $127(937 \mathrm{mg}, 3.75 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon was added a 1 M solution of $\mathrm{NaOMe}(7.5 \mathrm{~mL}, 7.5 \mathrm{mmol})$, and the mixture was stirred for 1 h at room temperature. The mixture was diluted with ice water and was extracted with ether (30 mL). The extract was washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:1) gave 638 mg (94\%) of 128 as a colorless oil: $R_{f} 0.28$ (EtOAc-hexanes, 1:1); IR(neat) 2956, 1735, 1699, 1448, 1387, 1283, 1186, 1112, $713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.62-1.66(\mathrm{~m}, 1 \mathrm{H})$, 2.20-2.24 (m, 2H), 3.12-3.26 (m, 2H), 3.42-3.56 (m, 1H), 3.73(s, 3H), 4.80-4.90 $(\mathrm{m}, 0.5 \mathrm{H}), 4.99-5.06(\mathrm{~m}, 0.5 \mathrm{H}), 6.37-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.5,32.7,36.9,46.6,46.9,53.3,57.8,58.3,128.3,128.9$, 139.6, 140.1, 155.7, 203.3; MS (CI) $m / z 181\left(M^{+}\right), 150,139,124,108,102,94$, 84, 80, 67; HRMS (CI) $m / z 181.0740$ (calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}: 181.0739$).

2-Methoxycarbonyl-7-endo-vinyl-7-exo-hydroxy-2-azabicyclo[2.2.2]oct-5ene (129), 2-Methoxycarbonyl-7-endo-hydroxy-7-exo-vinyl-2-azabicyclo [2.2.2]oct-5-ene (130).

To a solution of $128(395 \mathrm{mg}, 2.18 \mathrm{mmol})$ in $\mathrm{THF}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added a 1 M solution of vinylmagnesium bromide in THF ($2.3 \mathrm{~mL}, 2.3 \mathrm{mmol}$), and the mixture was stirred for 30 min at room temperature. The mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and was extracted with ether (20 mL). The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:3 to 1:2) gave $333 \mathrm{mg}(73 \%)$ of 129 and 130 as a colorless oil.

Data for 129: $R_{f} 0.19$ (EtOAc-hexanes, 1:1); IR(neat) 3421, 1684, 1457, 1397, 1340, 1279, 1121, $997995 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54-1.84$ $(\mathrm{m}, 2 \mathrm{H}), 2.27-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $2.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 0.5 \mathrm{H}), 4.46-4.52(\mathrm{~m}, 0.5 \mathrm{H}), 5.06(\mathrm{~d}$, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=10.7,17.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.33-6.45 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.7,31.7,31.9,39.0,39.3,46.9$, $47.3,53.0,55.9,56.7,113.4,113.7,131.1,131.5,135.2,142.9,143.4,157.2$, 158.0; MS (CI) m/z $210(\mathrm{M}+\mathrm{H})^{+}, 192,178,139,124,105,94,81,67$; HRMS (CI) $\mathrm{m} / \mathrm{z} 209.1052$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$: 209.1052).

Data for 130: $R_{f} 0.2$ (EtOAc-hexanes, 1:1); IR(neat) 3446, 1699, 1684, 1653, 1456, 1395, 1338, 1296, 1119, $995 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.47$ (dt, $J=2.9,3.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), $1.52(\mathrm{dt}, J=2.9,3.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.84-1.89(\mathrm{~m}, 1 \mathrm{H})$, 1.89 (dd, $J=2.2,6.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.93(\mathrm{dd}, J=2.2,6.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.80-2.99(\mathrm{~m}$, 2 H), 3.14 (dd, $J=2.0,6.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.17 ($\mathrm{dd}, J=2.0,6.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.62 (s, $3 \mathrm{H}), 4.45(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.63(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.12(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, 0.5 H), $5.14(\mathrm{~d}, J=, 10.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.31(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.37(\mathrm{~d}, J=17.4$
$\mathrm{Hz}, 0.5 \mathrm{H}), 6.00(\mathrm{dd}, J=10.9,17.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.04(\mathrm{dd}, J=10.9,17.4 \mathrm{~Hz}, 0.5 \mathrm{H})$, 6.39-6.50 (m, 1H), 6.51-6.62 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.7,31.9$, $41.0,41.2,46.5,46.7,52.9,54.2,54.9,76.0,113.6,113.7,131.1,131.6,135.8$, $136.4,142.4,156.2,156.7 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 210(\mathrm{M}+\mathrm{H})^{+}, 192,178,150,139,124$, 105, 94, 84, 80, 67; HRMS (CI) $m / z 210.1129$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{3}: 210.1130$).

2-Methyl-7-endo-vinyl-7-exo-hydroxy-2-azabicyclo[2.2.2]oct-5-ene (133). To a solution of $\mathrm{LiAlH}_{4}(16 \mathrm{mg}, 0.41 \mathrm{mmol})$ in THF (5 mL) at $0^{\circ} \mathrm{C}$ under argon was added a soluiton of $129(17 \mathrm{mg}, 0.08 \mathrm{mmol})$ in THF (0.5 mL), and the mixture was stirred for 5 h at room temperature. The mixture was diluted with aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The extract was dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to give 10 mg (76\%) of 133 as a yellow oil: $R_{f} 0.05\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10\right)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{dd}, J=2.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dt}, J=2.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}$, $J=2.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dt}, J=1.3,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.21(\mathrm{dd}, J=2.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=1.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{ddd}, J=$ $0.4,1.8,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=10.7,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{ddd}, J=1.4,5.6$, 8.1 Hz, 1H), 6.41-6.48(m, 1H).

2-Methyl-7-endo-triethylsilyloxy-7-exo-vinyl-2-azabicyclo[2.2.2]oct-5-ene (131). To a solution of triethylsilyl trifluoromethanesulfonate ($635 \mathrm{mg}, 2.40 \mathrm{mmol}$) and 2,6-lutidine ($0.37 \mathrm{~mL}, 3.23 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added a solution of $130(335 \mathrm{mg}, 1.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred for 30 min at room temperature. The mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, $1: 3$ to $1: 1$) gave $471 \mathrm{mg}(91 \%)$ of silylether as a colorless oil: $R_{f} 0.4$ (EtOAc-hexanes, 1:3); IR(neat) 2954, 2913, 2876, 1706, $1448,1393,1336,1101,1078,1017,741,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.52(q, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4.5 \mathrm{H}), 0.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4.5 \mathrm{H})$, $1.52(\mathrm{dt}, J=3.0,13.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.54(\mathrm{dt}, J=3.0,13.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.01(\mathrm{dd}, J=$ $2.5,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=2.5,10.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.91(\mathrm{dt}, J=$ $2.5,10.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.07 (ddd, $J=2.2,10.3,11.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.65(\mathrm{~s}, 1.5 \mathrm{H}$), $3.66(\mathrm{~s}$, $1.5 \mathrm{H}), 4.37(\mathrm{dd}, J=1.4,5.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.58(\mathrm{dd}, J=3.5,3.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.08(\mathrm{dd}$, $J=0.7,10.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.11(\mathrm{dd}, J=0.8,10.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.22(\mathrm{dd}, J=0.7,17.4$ $\mathrm{Hz}, 0.5 \mathrm{H}), 5.24(\mathrm{dd}, J=0.7,17.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.94$ (dd, $J=10.8,17.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 6.02 (dd, $J=10.8,17.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.31-6.45(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.2,6.8,7.2,7.3,31.7,31.9,39.4,39.5,46.2,46.4,52.7,54.7,55.4,78.4$,
114.2, 132.0, 132.4, 133.4, 133.9, 144.0, 144.2, 156.2, 156.6; MS (CI) m/z 324 $(\mathrm{M}+\mathrm{H})^{+}, 294,219,185,157,139,124,103,83,69$; HRMS (CI) $\mathrm{m} / \mathrm{z} 324.1996$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}: 324.1995$). To a solution of LiAlH_{4} ($140 \mathrm{mg}, 3.70 \mathrm{mmol}$) in ether $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added a solution of silylether ($240 \mathrm{mg}, 0.74 \mathrm{mmol}$) in ether (1 mL), and the mixture was stirred for 10 h at room temperature. The mixture was diluted with aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The extract was dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to give $165 \mathrm{mg}(80 \%)$ of 131 as a colorless oil: $R_{f} 0.25$ (EtOAc-hexanes, 1:1); IR(neat) 2952, 2875, 2842, 1237, 1155, 1078, 1008, 738, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.52(\mathrm{q}, J=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.41(\mathrm{dt}, J=2.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dt}, J=$ $2.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=2.4,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.91$ (dd, $J=2.2,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=1.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=1.4,10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=1.5,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=10.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ ($\mathrm{m}, 1 \mathrm{H}$), 6.39 (ddd, $J=1.3,6.6,8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.1,7.5$, 32.5, 39.4, 45.1, 54.7, 65.8, 78.8, 112.7, 131.2, 132.8, 146.7; MS (CI) m/z 279 $\left(\mathrm{M}^{+}\right), 250,155,127,103,95,75$; HRMS (CI) $\mathrm{m} / \mathrm{z} 279.2014$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{29}$ NOSi: 279.2018).

2-Methyl-7-endo-hydroxy-7-exo-vinyl-2-azabicyclo[2.2.2]oct-5-ene (132). To a solution of 131 ($83 \mathrm{mg}, 0.29 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added p -
toluenesulfonic acid monohydrate ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$) at room temperature, and the mixture was stirred for 10 h at room temperature. The reaction mixture was concentrated under reduced pressure. The mixture was diluted with CHCl_{3} (5 mL) and was washed with saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$) gave $41 \mathrm{mg}(85 \%)$ of 132 as a colorless oil: $R_{f} 0.05$ ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$); IR(neat) 3436, 2939, 2842, 2787, 1309, 1179, $1149,968,703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33(\mathrm{dt}, J=3.1,13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.63(\mathrm{brs}, 1 \mathrm{H}), 1.71(\mathrm{dt}, J=2.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=2.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ $(\mathrm{s}, 3 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, \mathrm{J}=2.4, \quad 9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=1.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=1.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}$, $J=1.6,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{ddd}, J=1.3,5.2,8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=10.8,17.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.61 (ddd, $J=1.3,6.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.4$, $40.9,45.0,55.1,65.1,76.4,112.0,129.9,136.2,144.6$; MS (CI) $m / z 166(\mathrm{M}+\mathrm{H})^{+}$, $165,164,150,148,139,133,123,110,105,94,91,79,69,67$; HRMS (CI) m / z 116.1154 (calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}: 165.1154$).

7-endo-Acetyl-2-aza-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid methyl ester (136) and 7-exo-Acetyl-2-aza-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid methyl ester (137). To a solution of 125 ($2.01 \mathrm{~g}, 14.5 \mathrm{mmol}$) at room temperature under argon was added methyl vinyl ketone ($3.37 \mathrm{~g}, 48.0 \mathrm{mmol}$),
and the mixture was heated at $60^{\circ} \mathrm{C}$ for 72 h . Chromatography of the residue on silica (EtOAc-hexanes, 1:2 to 1:1) gave $1.30 \mathrm{~g}(43 \%)$ of 136 and 137 as a 2.5:1 mixture of colorless oil.

Data for 136: $R_{f} 0.23$ (EtOAc-hexanes, 1:1); IR(neat) 2955, 2878, 1699, 1449, 1393, 1345, 1302, 1280, 1116, $768 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.65-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 1.5 \mathrm{H}), 2.15(\mathrm{~s}, 1.5 \mathrm{H}), 2.77-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dt}, J$ $=2.6,10.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.96(\mathrm{dt}, J=2.6,10.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.02-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.22-$ $3.29(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 1.8 \mathrm{H}), 3.70(\mathrm{~s}, 1.2 \mathrm{H}), 4.92-4.98(\mathrm{~m}, 0.5 \mathrm{H}), 5.10-5.17(\mathrm{~m}$, $0.5 \mathrm{H}), 6.26(\mathrm{dd}, J=1.6,6 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.28(\mathrm{dd}, J=1.6,6 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.36(\mathrm{dd}, J=$ $1.2,6.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), $6.39(\mathrm{dd}, \mathrm{J}=1.2,6.7 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.0,25.6,28.6,28.8,30.9,31.2,47.1,47.2,47.3,47.6,52.8,53.2,130.4$, 130.5, 135.4, 135.5, 155.6, 156.2, 206.8, 207.1; MS (CI) $m / z 209\left(\mathrm{M}^{+}\right), 151,139$, 124, 94, 84; HRMS (CI) $m / z 209.1053$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$: 209.1052).

Data for 137: $R_{f} 0.25$ (EtOAc-hexanes, 1:1); IR(neat) 2956, 2878, 1699, 1449, 1393, 1339, 1302, 1193, 1115, $767 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.23-1.39(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{ddd}, J=$ $2.1,4.1,10.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.64 (ddd, $J=2.1,4.1,10.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.67-2.77 (m, 1 H), $2.85(\mathrm{dt}, J=2.7,10.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.92(\mathrm{dt}, J=2.7,10.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.22(\mathrm{dd}, J$ $=2.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 4.88-4.92(\mathrm{~m}, 0.5 \mathrm{H}), 5.08(\mathrm{dt}, J=$ $1.8,5.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.37-6.49(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.6,28.9$, $29.2,30.4,30.6,47.5,47.8,48.0,48.2,52.7,52.9,131.9,132.3,135.9,136.1$, 155.7, 156.7, 207.2, 207.8; MS (CI) $m / z 209\left(\mathrm{M}^{+}\right), 178,168,151,139,135,124$, 102, 94, 84, 79; HRMS (CI) $m / z 209.1051$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$: 209.1052).

7-endo-[(1-Hydroxy)-1-ethyl]-2-azabicyclo[2.2.2]oct-5-ene-2-carboxylic acid

 methyl ester (138). To a solution of $136(222 \mathrm{mg}, 1.06 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaBH}_{4}(81 \mathrm{mg}, 2.12 \mathrm{mmol})$, and the mixture was stirred for 30 min at room temperature. The mixture was diluted with ice water and was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:1) gave $201 \mathrm{mg}(90 \%)$ of 138 as a 1.7:1 mixture of colorless oil.Data for major diastereomer: $R_{f} 0.22$ (EtOAc-hexanes, 1:1); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.78-0.89(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.10(\mathrm{~d}, J=6 \mathrm{~Hz}$, 1.5 H), 1.70 (dd, $J=2.7,9.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.75(\mathrm{dd}, J=2.7,9.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.92-2.06$ ($\mathrm{m}, 1 \mathrm{H}$), 2.27 (brs, 1H), 2.67-2.75 (m, 1H), 2.87-2.99 (m, 1H), 3.00-3.13 (m, 1H), 3.17-3.24 (m, 1H), $3.65(\mathrm{~s}, 1.5 \mathrm{H}), 3.66(\mathrm{~s}, 1.5 \mathrm{H}), 4.87-4.93(\mathrm{~m}, 0.5 \mathrm{H}), 4.99-5.05$ $(\mathrm{m}, 0.5 \mathrm{H}), 6.29-6.43(\mathrm{~m}, 2 \mathrm{H})$.

Data for minor diastereomer: $R_{f} 0.20$ (EtOAc-hexanes, 1:1); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.32-1.45$ ($\mathrm{m}, 1 \mathrm{H}$), 1.57 (brs, 1H), 1.72-1.84 (m, 1H), 2.02-2.14 (m, 1H), 2.74-2.85 (m, 1H), 2.91 (dt, $J=2.5,10.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.97(\mathrm{dt}, \mathrm{J}=2.5,10.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.17-3.26(\mathrm{~m}$, $1 \mathrm{H}), 3.27-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1.5 \mathrm{H}), 3.69(\mathrm{~s}, 1.5 \mathrm{H}), 4.49-4.55(\mathrm{~m}, 0.5 \mathrm{H}), 4.66-$ $4.72(m, 0.5 H), 6.27-6.36(m, 1 H), ~ 6.39-6.48(m, 1 H)$.

2-Bromo-5-methyl-4-oxa-8-aza-tricyclo[4.3.1.0 ${ }^{3,7}$]decane-8-carboxylic acid methyl ester (139). To a solution of N -bromosuccinimide ($42 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature under argon was added a solution of 138 (33 $\mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred for 1 h at room temperature. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:3) gave 39 mg (84%) of 139 as a colorless oil.

Data for major diastereomer: $R_{f} 0.25$ (EtOAc-hexanes, 1:3); IR(neat) 2955, 1701, 1450, 1407, 1355, 1314, 1119, 1044, 1013, $766 \mathrm{~cm}^{-1}$ ' $^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.66(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.28(\mathrm{~m}, 3 \mathrm{H})$, 3.09-3.18 (m, 1H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.89(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (d, $J=5.5 \mathrm{~Hz}, 0.5 \mathrm{H}$) $4.37(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.43(\mathrm{t}, J=4.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.63(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.1,22.2,31.1,31.3,33.6,39.3$, $39.5,45.3,49.5,49.9,53.2,54.8,55.2,81.0,81.2,83.4,83.5,156.3,156.9 ; \mathrm{MS}$ (CI) $\mathrm{m} / \mathrm{z} 290\left(\mathrm{M}^{+}\right), 274,260,258,231,228,210,178,166,150,135,126,107$, 91; HRMS (CI) m/z 290.0385 (calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Br}$: 290.0392).

Data for minor diastereomer: $R_{f} 0.24$ (EtOAc-hexanes, 1:3); IR(neat) 2953, 2881, 1701, 1450, 1387, 1362, 1317, 1120, $1005 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.36$ $(\mathrm{m}, 1 \mathrm{H}), 3.13-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.00-$ $4.10(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.31(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 0.5 \mathrm{H}) 4.44(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 0.5 \mathrm{H}), 4.62(\mathrm{t}, J=4.9 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.5,16.6$, $23.6,30.2,30.4,37.6,37.7,45.7,52.2,52.8,53.1,53.2,55.1,55.4,76.0,80.7$, 80.8, 156.1, 156.7; MS (CI) m/z $290\left(\mathrm{M}^{+}\right), 274,258,246,231,210,178,149$, 135, 126, 107, 91; HRMS (CI) $m / z 290.0383$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Br}: 290.0392$).

7-endo-Acetyl-2-aza-bicyclo[2.2.2]oct-5-ene-2,6-dicarboxylic acid dimethyl ester (152) and 7-exo-Acetyl-2-aza-bicyclo[2.2.2]oct-5-ene-2,6-dicarboxylic acid dimethyl ester (153). To a suspension of methyl nicotinate 146 (15.1 g, $0.11 \mathrm{~mol})$ and sodium borohydride ($4.2 \mathrm{~g}, 0.11 \mathrm{~mol}$) in $\mathrm{MeOH}(250 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon was added a solution of methyl chloroformate ($10.4 \mathrm{~g}, 0.11 \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$. The mixture was poured into ice water (100 mL) and was extracted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to give yellow oils. The ${ }^{1} \mathrm{H}$ NMR shows a 2.8:1.4:1 mixture of 147,148 and 149. To a mixture of 147,148 and 149 at room temperature under argon was added a solution of methyl vinyl ketone (22 $\mathrm{mL}, 0.26 \mathrm{~mol}$), and the mixture was heated at $100^{\circ} \mathrm{C}$ for 72 h . Chromatography
of the residue on silica (EtOAc-hexanes, 1:3 to $1: 1$) followed by recrystallization gave $7.34 \mathrm{~g}(21 \%)$ of 152 and $1.47 \mathrm{~g}(4 \%)$ of 153 as a crystalline solid:

Data for 152: $R_{f} 0.13$ (EtOAc-hexanes, 1:1); mp $130-131^{\circ} \mathrm{C}$; IR(neat) 1715, 1448, 1394, 1271, 1252, 1121, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.54-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 1.5 \mathrm{H}), 2.16(\mathrm{~s}, 1.5 \mathrm{H}), 2.82-3.01$ $(\mathrm{m}, 2 \mathrm{H}), 3.10-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.23(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, 0.5 H), 3.60-3.68(m,3H), 5.48 (brs, 0.5 H), 5.64 (brs, 0.5 H), $7.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $0.5 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.7,24.1,28.9$, $31.6,31.9,46.3,46.7,47.2,47.3,52.2,52.6,52.9,53.1,134.3,134.4,145.0$, 155.4, 155.9, 163.9, 164.1, 206.0; MS (CI) $m / z 268(\mathrm{M}+\mathrm{H})^{+}, 252,236,226,197$, 182, 161, 141, 123, 99, 84, 71; HRMS (Cl) $m / z 267.1101$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}$: 267.1107).

Data for 153: $R_{f} 0.14$ (EtOAc-hexanes, 1:1); mp $137-138^{\circ} \mathrm{C}$; IR(neat) 1716, 1448, 1392, 1242, 1120, $\left.1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(300} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27-1.43$ $(\mathrm{m}, 1 \mathrm{H}), 2.26-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.60-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.86-3.03(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.35(\mathrm{~m}$, 1 H), $3.61(\mathrm{~s}, 1.5 \mathrm{H}), 3.65(\mathrm{~s}, 1.5 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.53($ brs, 0.5 H$), 5.71$ (brs, 0.5 H$)$, $7.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.5,29.0,29.3,31.6,31.8$, $46.4,46.9,47.7,48.0,52.4,52.6,53.0,136.7,137.2,145.9,146.0,155.6,156.4$, 163.9, 206.4, 207.1; MS (CI) m/z $268(\mathrm{M}+\mathrm{H})^{+}, 252,236,209,197,182,161$, 151, 138, 99, 88; HRMS (CI) $\mathrm{m} / \mathrm{z} 267.1100$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}$: 267.1107).

1,3-Dimethoxycarbonyl-8-trimethylsilyloxy-3-azatetracyclo[6.1.1.0 ${ }^{2,7} .0^{5,9}$] decane (155). To a solution of $152(942 \mathrm{mg}, 3.53 \mathrm{mmol})$ in THF (20 mL) at -78 ${ }^{\circ} \mathrm{C}$ was added a solution of lithium bis(trimethylsilyl)amide (1 M in THF, 5.3 mL , 5.3 mmol), and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. A solution of chlorotrimethylsilane ($770 \mathrm{mg}, 7.06 \mathrm{mmol}$) was added, and the mixture was allowed to warm to room temperature during 1 h . Then triethylamine ($1.07 \mathrm{~g}, 10.6$ mmol) was added at $0^{\circ} \mathrm{C}$. The mixture was diluted with aqueous phosphate buffer (5 mL) and was extracted with ether. The extracted was washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes-Et $\mathrm{E}_{3} \mathrm{~N}$, 1:3:0.01) gave $1.08 \mathrm{~g}(90 \%)$ of 154 as a colorless oil. A solution of $154(125 \mathrm{mg}$, 0.35 mmol) in cyclohexane (65 mL) in a photoreaction vessel was purged with argon for 1 h and was irradiated with a 450-W Hanovia medium pressure mercury lamp using a Corex filter for 3 h at room temperature. The solvent was evaporated under reduced pressure and chromatography of the residue on silica (EtOAc-hexanes, 1:3) gave $65 \mathrm{mg}(51 \%)$ of 155 as a colorless oil. $R_{f} 0.23$ (EtOAc-hexanes, 1:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.1-0.2 (m, 9H), 1.50-1.56 $(\mathrm{m}, 1 \mathrm{H}), 2.03-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{dt}, J=1.8,6.4 \mathrm{~Hz}, 0.5 \mathrm{H})$, 2.37 (dt, $J=1.8,6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.72(\mathrm{dt}, J=2.0,5.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.76(\mathrm{dt}, J=2.0$, $5.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.98 (brd, $J=11.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.07 (brd, $J=10.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.46 (dd, $J=3.9,10.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.54(\mathrm{dd}, J=3.9,11.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.69$
(s, 1.5H), 3.72 (s, 1.5H), 4.38 (dd, $J=1.9,6.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), $4.53(\mathrm{dd}, J=2.0,6.6$ $\mathrm{Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.1,31.2,34.6,34.8,40.7,40.9,46.5$, 46.7, 47.5, 47.8, 48.15, 48.22, 52.3, 52.4, 52.9, 55.1, 55.4, 56.9, 57.1, 82.3, 157.4, 157.5, 172.5, 172.6.

1,3-Dimethoxycarbonyl-3-azatetracyclo[6.1.1.0 $0^{2,7} .0^{5,9}$]decane-8-ol (156).

To a solution of $155(22 \mathrm{mg}, 0.06 \mathrm{mmol})$ in THF (3 mL) at room temperature under argon was added a 1 M solution of TBAF in THF ($0.09 \mathrm{~mL}, 0.09 \mathrm{mmmol}$), and the mixture was stirred for 30 min at room temperature. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:1) gave $16 \mathrm{mg}(91 \%)$ of 156 as a colorless oil: $R_{f} 0.11$ (EtOAc-hexanes, 1:1); IR(neat) 3395, 2956, 1733, 1702, 1675, 1456, 1402, 1340, 1285, 1252, 1196, $1112 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.65(\mathrm{~m}, 1 \mathrm{H})$, 2.04-2.14 (m, 2H), 2.18-2.35 (m, 3H), 2.37-2.44 (m, 1H), 2.70 (dt, $J=2.0,5.5 \mathrm{~Hz}$, 0.5 H), $2.74(\mathrm{dt}, J=2.0,5.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.00(\mathrm{brd}, J=11.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.08(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.48 (dd, $J=3.9,10.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.56 (dd, $J=4.0,11.2 \mathrm{~Hz}$, 0.5 H), $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 1.5 \mathrm{H}), 3.72(\mathrm{~s}, 1.5 \mathrm{H}), 4.45(\mathrm{dd}, J=1.9,6.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), 4.59 (dd, $J=2.0,6.5 \mathrm{~Hz}, 0.5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.0,31.1,34.8$, $35.0,40.4,40.6,46.5,46.6,46.9,47.1,47.8,52.4,52.5,52.9,55.6,56.0,57.2$,
57.3, 81.9, 157.3, 157.4, 172.1, 172.2; MS (CI) m/z $267\left(\mathrm{M}^{+}\right), 252,235,219$, 208, 197, 182, 169, 152, 138, 126, 116, 102, 91; HRMS (CI) m/z 267.1108 (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}: 267.1107$).

1,3-Dimethoxycarbonyl-8-oxo-3-azatetracyclo[6.1.1.0 $0^{2,7} .0^{5,9}$]decanyl-p-

 bromobenzoate (157). To a solution of p-bromobenzoyl chloride ($10 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature under argon was added triethylamine ($15 \mathrm{mg}, 0.14 \mathrm{mmol}$), $156(6 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred for 1 h at room temperature. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAchexanes, 1:1) gave 7 mg (82%) of 157 as a white crystalline. $\mathrm{mp} 115-117^{\circ} \mathrm{C}$; IR(neat) 1728, 1704, 1449, 1399, 1288, 1270, 1254, 1199, 1105, $1086 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.58-1.66(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.55(\mathrm{~m}$, $3 \mathrm{H}), 2.89-2.96(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.15(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 0.5 \mathrm{H})$, 3.23-3.29 (m, 1H), $3.52(\mathrm{dd}, J=3.9,10.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.61(\mathrm{dd}, J=3.8,11.2 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 1.5 \mathrm{H}), 3.74(\mathrm{~s}, 1.5 \mathrm{H}), 4.62(\mathrm{dd}, J=1.8,6.4 \mathrm{~Hz}, 0.5 \mathrm{H})$, 4.71 (dd, $J=2.0,6.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$;${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.0,31.1,34.5,34.7,38.7,39.0,45.45,45.52,46.3$, $46.4,52.5,52.6,53.0,55.1,55.3,55.5,84.6,128.9,129.2,131.6$ (2C), 132.2 (2C), 157.3, 157.5, 165.2, 171.7; MS (CI) m/z 449 (M-H), 420, 392, 372, 340, 312, 266, 249, 206, 183, 157, 131, 105; HRMS (CI) m/z 449.0475 (calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{NBr}: 449.0474$).

7-endo-Isopropenyl-2-aza-bicyclo[2.2.2]oct-5-ene-2,6-dicarboxylic acid dimethyl ester (161). To a suspension of dry ($90^{\circ} \mathrm{C}, 1 \mathrm{~mm} \mathrm{Hg}, 18 \mathrm{~h}$) methyltriphenylphosphonium bromide ($467 \mathrm{mg}, 1.31 \mathrm{mmol}$) in THF (10 mL) at $0^{\circ} \mathrm{C}$ under argon was added $n-\mathrm{BuLi}(0.7 \mathrm{~mL}, 1.05 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexane) dropwise, and the mixture was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. The yellow solution was recooled to $-78^{\circ} \mathrm{C}$, treated with a solution of $152(148 \mathrm{mg}, 0.55 \mathrm{mmol})$ in THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h , and the mixture was allowed to warm to room temperature during 1 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:3) gave 127 mg (87%) of 161 as a white solid: $R_{f} 0.21$ (EtOAc-hexanes, $1: 3$); mp $59-61^{\circ} \mathrm{C}$; IR(neat) 1717, 1449, 1393, 1276, 1251, 1120, $1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.33-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.84(\mathrm{~m}$, 1 H), 2.89-3.03 (m, 2H), 3.23-3.34(m, 1H), 3.67 (s, 1.5H), $3.71(\mathrm{~s}, 1.5 \mathrm{H}), 3.74(\mathrm{~s}$,
$3 \mathrm{H}), 4.47-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.72(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.29(\mathrm{~m}, 0.5 \mathrm{H}), 5.40-5.45(\mathrm{~m}$, $0.5 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.8,22.9,28.3,32.1$, $32.4,45.4,45.6,46.1,46.4,48.6,48.9,52.2,52.8,53.1,111.3,135.4,135.9$, 144.1, 144.5, 145.6, 155.7, 155.9, 164.7; MS (CI) m/z 265 (M) ${ }^{+}, 234,206,197$, 182, 166, 152, 138, 121, 119, 106, 86; HRMS (CI) $m / z 265.1312$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}: 265.1314$).

2,10-Dimethoxycarbonyl-7-methyl-2-azatetracyclo[4.4.0.0 $0^{4,9} .0^{7,10}$]decane (162), 1,3-Dimethoxycarbonyl-8-methyl-3-azatetracyclo[6.1.1.0 $\left.0^{2,7} \cdot 0^{5,9}\right]$ decane (163) and 6-methyl-4a,5,8,8a-tetrahydro-1 H-isoquinoline-2,4-dicarboxylic acid dimethyl ester(164). A solution of 161 ($186 \mathrm{mg}, 0.72 \mathrm{mmol}$) in cyclohexane $(65 \mathrm{~mL})$ in a photoreaction vessel was purged with argon for 1 h and was irradiated with a 450-W Hanovia medium pressure mercury lamp using a Corex filter for 3 h at room temperature. The solvent was evaporated under reduced pressure and chromatography of the residue on silica (EtOAc-hexanes, 1:5 to 1:3) gave $7 \mathrm{mg}(4 \%)$ of 164 and $96 \mathrm{mg}(53 \%)$ of 162 and 163 in a $2.5: 1$ mixture as a colorless oil.

Data for 162: $R_{f} 0.32$ (EtOAc-hexanes, 1:1); IR(neat) 2952, 1702, 1449, 1401, 1341, 1289, 1235, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{~s}, 1.5 \mathrm{H})$, $1.12(\mathrm{~s}, 1.5 \mathrm{H}), 1.58-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{brd}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{brd}, J=7 \mathrm{~Hz}$,

1 H), 2.25 (brd, $J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.06-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1.5 \mathrm{H}), 3.69(\mathrm{~s}, 1.5 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 4.68(\mathrm{~d}, J=8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.84(\mathrm{~d}, J=8 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 20.1,24.3,24.4,29.8,33.7,33.8,35.9,36.0,42.7,42.9,44.5,47.0$, 47.2, 48.2, 52.0, 52.8, 56.0, 156.4, 171.7; MS (CI) $m / z 265(\mathrm{M})^{+}, 250,234,197$, 183, 182, 169, 152, 138, 131, 106, 102, 91; HRMS (CI) m/z 265.1311 (calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}: 265.1314$).

Data for 163: $R_{f} 0.32$ (EtOAc-hexanes, 1:1); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{dd}, J=1.7,12 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.53(\mathrm{dd}, J=1.5,12 \mathrm{~Hz}, 0.5 \mathrm{H})$, 1.70-1.75 (m, 2H), 1.86-1.93 (m, 1H), 2.11-2.21 (m, 1H), 2.23-2.32 (m, 1H), 2.50 (dt, $J=2,5 \mathrm{~Hz}, 0.5 \mathrm{H}$), $2.53(\mathrm{dt}, J=2,5 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.00 (brd, $J=11 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.10(\mathrm{brd}, J=11 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.44(\mathrm{~d}, J=4,11 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.53(\mathrm{~d}, J=4,11 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 1.5 \mathrm{H}), 3.73(\mathrm{~s}, 1.5 \mathrm{H}), 4.49(\mathrm{dd}, J=2,6 \mathrm{~Hz}, 0.5 \mathrm{H})$, $4.64(\mathrm{dd}, \mathrm{J}=2,6 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.5,17.6,31.3,31.4$, 34.9, 35.1, 38.2, 38.4, 46.9, 47.0, 47.8, 48.1, 51.2, 51.4, 52.2, 52.8, 53.9, 54.0, $55.0,55.2,57.0,57.4,156.4,171.7$.

Data for 164: $R_{f} 0.51$ (EtOAc-hexanes, 1:1); IR(neat) 1733, 1700, 1635, $1445,1437,1252,1211 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.65-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.82-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.86$ $(\mathrm{m}, 1 \mathrm{H}), 3.13-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.31$ (brs, 1H), 7.91-8.10 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 23.7, 28.0, 28.6, 29.6, 33.3, 43.9, 51.7, 54.1, 118.0, 130.8, 134.7, 168.0; MS (CI) m/z $265(\mathrm{M})^{+}, 234$, 197, 182, 164, 152, 138, 101, 94; HRMS (CI) $m / z 265.1316$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}$: 265.1314).

7-exo-Hydroxy-7-endo-isopropenyl-2-azabicyclo[2.2.2]oct-5-ene-2,6dicarboxylic acid dimethyl ester (174) and 7-endo-Hydroxy-7-exo-isopropenyl-2-azabicyclo[2.2.2]oct-5-ene-2,6-dicarboxylic acid dimethyl ester (175). To a solution of selenium dioxide ($64 \mathrm{mg}, 0.57 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) at $0^{\circ} \mathrm{C}$ under argon was added a solution of tert-hydoperoxide (70\%, 0.2 $\mathrm{mL}, 1.56 \mathrm{mmol}$), and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. A solution of 161 (152 $\mathrm{mg}, 0.57 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added, and the mixture was stirred for 18 h at room temperature. The reaction mixture was concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:1 to $\left.\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 15\right)$ gave $98 \mathrm{mg}(61 \%)$ of 174 and 175 in a $2: 1$ mixture as a colorless oil.

Data for 174: $R_{f} 0.17$ (EtOAc-hexanes, 1:1); IR (neat) 3434, 2955, 1717, $1455,1397,1251,1236,1128 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64$ (dd, $J=$ $2.5,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$, 1.83-1.98(m, 1H), 2.26-2.45 (m, 1H), 2.95-3.10 $(\mathrm{m}, 2 \mathrm{H}), 3.47(\mathrm{dd}, \mathrm{J}=1.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.76($ brs, 1 H$)$, 4.82 (brs, 1H), 5.21 (brs, 0.5 H), 5.36 (brs, 0.5 H), 7.32 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2,32.0,36.7,45.7,46.2,52.3,53.2,54.0,54.5,78.5$, $78.9,113.2,136.6,144.6,147.7,157.0,157.9,164.3 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 282(\mathrm{M}+\mathrm{H})^{+}$, 264, 250, 197, 181, 166, 152, 138, 105, 88; HRMS (CI) $m / z 281.1261$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}: 281.1263$).

Data for 175: $R_{f} 0.17$ (EtOAc-hexanes, 1:1); IR (neat) 3450, 2951, 1717, 1451, 1394, 1274, 1253, 1126, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.43-1.52 ($\mathrm{m}, 1 \mathrm{H}$), 1.63-1.74 (m, 1H), $1.90(\mathrm{~s}, 1.5 \mathrm{H}), 1.92(\mathrm{~s}, 1.5 \mathrm{H}), 2.10(\mathrm{dd}, J=2.1,14$ $\mathrm{Hz}, 0.5 \mathrm{H}$), 2.19 (dd, $J=2.2,14 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.92 (dt, $J=2.4,10.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.95 (dt, $J=2.4,10.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.99-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=2.1,10.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.20 (dd, $J=2.0,10.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.64 (s, 1.5 H), 3.68 (s, 1.5 H), 3.79 (s, 1.5 H), $3.80(\mathrm{~s}, 1.5 \mathrm{H}), 4.93-4.98(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 0.5 \mathrm{H}), 5.15(\mathrm{~s}, 0.5 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=1.2$ $\mathrm{Hz}, 0.5 \mathrm{H}$), $5.42(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 19.4,19.5,32.1,32.3,37.8,37.9,45.5,45.7,52.1,52.4,52.6,53.0$, $77.8,78.2,112.5,112.9,135.9,136.6,143.4,144.0,146.7,146.8,156.0,156.2$, 165.0, 165.1; MS (CI) m/z 282 (M+H)+, 280, 264, 250, 219, 197, 177, 149, 88; HRMS (CI) m/z 282.1346 (calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}: 282.1342$).

7-endo-Isopropenyl-7-exo-trimethylsilyloxy-2-azabicyclo[2.2.2]oct-5-ene-

 2,6-dicarboxylic acid dimethyl ester (176). To a solution of trimethylsilyl trifluoromethanesulfonate ($46 \mathrm{mg}, 0.21 \mathrm{mmol}$) and 2,6 -lutidine ($30 \mathrm{mg}, 0.28$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added a solution of $174(39 \mathrm{mg}$, $0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred for 1 h at room temperature. The mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:1)gave 46 mg (93\%) of 176 as a white solid: $R_{f} 0.55$ (EtOAc-hexanes, 1:1); IR (neat) 2956, 1712, 1440, 1394, 1284, 1251, 1070, $845 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.08(\mathrm{~s}, 4.5 \mathrm{H}), 0.09(\mathrm{~s}, 4.5 \mathrm{H}), 1.63(\mathrm{t}, J=3.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.67(\mathrm{t}, J=3.1$ $\mathrm{Hz}, 0.5 \mathrm{H}), 1.80-1.83(\mathrm{~m}, 3 \mathrm{H}), 2.01(\mathrm{dt}, J=2.9,13.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.06(\mathrm{dt}, J=3$, $13.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.94-2.99(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{t}, J=2.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.03(\mathrm{t}, J=2.5 \mathrm{~Hz}$, 0.5 H), 3.41 (dd, $J=1.8,10 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.48 (dd, $J=1.9,10.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.69 (m , $1.5 \mathrm{~Hz}), 3.72(\mathrm{~m}, 1.5 \mathrm{H}), 3.74(\mathrm{~m}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 0.5 \mathrm{H}), 4.71(\mathrm{~s}, 0.5 \mathrm{H}), 4.82-4.85$ ($\mathrm{m}, 1 \mathrm{H}$) , $5.20(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.39(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.7,32.5,32.7,36.2,36.9,45.7,46.3,52.2,52.7$, $52.8,54.3,54.8,81.0,113.9,114.2,136.1,137.0,144.0,144.5,147.9,148.0$, 156.8, 157.1, 164.3, 164.4; MS (CI) $m / z 353\left(\mathrm{M}^{+}\right), 337,322,264,198,196,157$, 138, 105, 88; HRMS (CI) $m / z 353.1665$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{NSi} 353.1659$).

2,10-Dimethoxycarbonyl-6-trimethylsilyloxy-7-methyl-2-azatetracyclo

 [4.4.0.0 $0^{4,9} .0^{7,10}$]decane (177) and 6-methyl-7-trimethylsilyloxy-4a,5,8,8a-tetrahydro-1 H-isoquinoline-2,4-dicarboxylic acid dimethyl ester (178). A solution of $176(29 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(65 \mathrm{~mL})$ in a photoreaction vessel was purged with argon for 1 h and was irradiated with a 450-W Hanovia medium pressure mercury lamp using a Pyrex filter for 3 h at room temperature. The solvent was evaporated under reduced pressure and chromatography of theresidue on silica (EtOAc-hexanes, 1:7) gave $5.2 \mathrm{mg}(18 \%)$ of 177 and 7.3 mg (25\%) of 178 as a colorless oil.

Data for 177: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.08(9 \mathrm{H}), 1.06(3 \mathrm{H}), 1.61-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.92-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.82(\mathrm{~m}$, $7 \mathrm{H}), 4.62(\mathrm{~s}, 0.5 \mathrm{H}), 4.79(\mathrm{~s}, 0.5 \mathrm{H})$.

Data for 178: $R_{f} 0.43$ (EtOAc-hexanes, 1:3); IR (neat) 1733, 1700, 1445, 1370, 1252, 1209, $871,844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.18(\mathrm{~s}, 9 \mathrm{H}), 1.56$ $(\mathrm{s}, 3 \mathrm{H}), 1.68-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.39(\mathrm{~m}, 1 \mathrm{H})$, 2.49-2.62 (m, $1 \mathrm{H})$, 2.77-2.85 (m, 1H), 3.14-3.26(m, 1H), 3.75-3.80(m, 1H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 7.92-$ $8,11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.1,16.4,29.6,30.9,32.7,33.8,43.9$, 51.8, 54.1, 108.7, 134.7, 140.4, 167.9; MS (CI) m/z 353 (M) ${ }^{+}$, 281, 250, 197, 152, 119, 91; HRMS (CI) $m / z 353.1656$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{SiN}: 353.1659$).

6-Bromo-6-methyl-7-oxo-4a,5,6,7,8,8a-hexahydro-1 \boldsymbol{H}-isoquinoline-2,4-

 dicarboxylic acid dimethyl ester (179). To a solution of 178 ($4 \mathrm{mg}, 0.011$ mmol) in THF (2 mL) was added N -bromosuccinimide ($3 \mathrm{mg}, 0.017 \mathrm{mmol}$) at room temperature in one portion, and the mixture was stirred for 30 min at room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and was washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, $1: 3)$ gave $3 \mathrm{mg}(75 \%)$ of 179 as a colorless oil: IR (neat) 1716, 1635, 1444, 1257, $1208 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.58(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.63$$(\mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.63$ (dd, $J=1.6,4.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.69(\mathrm{dd}, J=1.7,4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.89-3.00(\mathrm{~m}, 1 \mathrm{H})$, 3.53-3.62 (m, 1H), 4.79 (s, 3H), 4.78-4.82 (m, 2H), 4.83(s, 3H); MS (CI) m/z 361 $(\mathrm{M}+\mathrm{H})^{+}, 328,300,280,264,248,220,196,182,172,152 ;$ HRMS (CI) m / z 359.0369 (calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{NBr}$: 359.0368).

7-endo-\{(1-Trifluoromethanesulfonyloxy)-1-vinyl)-2-azabicyclo[2.2.2]oct-5-ene-2,6-dicarboxylic acid dimethyl ester (185). To a solution of 152 (1.23 g, $4.61 \mathrm{mmol})$ in THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$ was added a solution of potassium bis(trimethylsilyl)amide (0.5 M in toluene, $10.2 \mathrm{~mL}, 5.10 \mathrm{mmol}$), and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. A solution of N-phenyltrifluoromethanesulfonimide ($1.97 \mathrm{~g}, 5.53 \mathrm{mmol}$) in THF (5 mL) was added, and the mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. The mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:2) gave 1.51 g (82%) of 185 as a colorless oil: IR(neat) $1720,1450,1417,1395,1250,1212$, 1131, $928 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64-1.71(\mathrm{~m}, 1 \mathrm{H})$, 1.82-1.92 (m, $1 \mathrm{H}), 2.52-2.64(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 1.5 \mathrm{H}), 3.74$ $(\mathrm{s}, 1.5 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 5.24(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.26(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.32$ $(\mathrm{d}, J=4.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.43(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.43$ (brs, 0.5 H), 5.54 (brs,
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.6,31.5,31.6,43.5,43.7,47.5,47.9,52.5,53.1$, 105.3, 116.7, 120.9, 137.3, 138.0, 144.0, 144.3, 156.2, 156.7, 163.6; MS (CI) $m / z 399(M)^{+}, 368,281,266,250,218,197,182,152,138,106,86 ;$ HRMS (CI) $\mathrm{m} / \mathrm{z} 400.0663$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{7} \mathrm{NF}_{3} \mathrm{~S}: 400.0678$).

7-endo-[(1-Methoxycarbonyl)-1-vinyl]-2-azabicyclo[2.2.2]oct-5-ene-2,6-

 dicarboxylic acid dimethyl ester (186). To a solution of 185 (197 mg, 0.49 $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ at room temperature was added palladium acetate (11 $\mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(26 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(100 \mathrm{mg}, 0.99 \mathrm{mmol})$ and MeOH (1 mL), and the mixture was kept for 1 h at room temperature under CO balloon. The solvent was evaporated under reduced pressure and chromatography of the residue on silica (EtOAc-hexanes, 1:1) gave $113 \mathrm{mg}(74 \%)$ of 186 as a colorless oil: IR(neat) 1716, 1630, 1449, 1394, 1352, 1276, 1192, 1093, 967, $767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19-1.33(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.04(\mathrm{~m}$, $2 \mathrm{H}), 3.30-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.81(\mathrm{~m}, 9 \mathrm{H}), 5.27-5.46(\mathrm{~m}, 2 \mathrm{H}), 6.08-6.15(\mathrm{~m}, 1 \mathrm{H})$, 7.38-7.43 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.4,29.6,32.0,32.3,39.6,45.8$, $46.3,48.4,48.9,52.2,52.4,52.8,53.1,124.8,125.1,135.1,135.7,141.6,141.8$, 144.8, 144.9, 155.7, 164.5, 167.4; MS (CI) $m / z 309\left(\mathrm{M}^{+}, 277,249,246,203\right.$, 197, 152, 138, 119, 86; HRMS (CI) $m / z 309.1205$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}$: 309.1212).

7-endo-Vinyl-2-azabicyclo[2.2.2]oct-5-ene-2,6-dicarboxylic acid dimethyl ester (187). To a solution of $185(190 \mathrm{mg}, 0.48 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ at room temperature was added palladium acetate $(2.1 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{Ph}{ }_{3} \mathrm{P}(5 \mathrm{mg}, 0.02$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(144 \mathrm{mg}, 1.43 \mathrm{mmol})$ at room temperature, and the mixture was stirred for 5 min . To the reaction mixture was added formic acid ($0.05 \mathrm{~mL}, 0.10$ mmol) dropwise, and the mixture was heated at $60^{\circ} \mathrm{C}$ for 1 h . The mixture was diluted with $10 \% \mathrm{HCl}(0.15 \mathrm{~mL})$ and extracted with ether $(20 \mathrm{~mL})$. The extract was washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:2) gave 72 mg (60%) of 187 as a colorless oil: IR(neat) 2953, 1716, 1449, 1393, 1351, 1276, 1252, 1224, 1191, 1120, 1090, $767 \mathrm{~cm}^{-1}$; 'H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19$ (ddd, $J=3,4.5,5.9 \mathrm{~Hz}$, 0.5 H), 1.22 (ddd, $J=3,4.6,5.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.87-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.98(\mathrm{~m}, 3 \mathrm{H})$, 3.22-3.29 (m, 1H), 3.64-3.76 (m, 6H), $4.90(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=2.1$, $17.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 5.08 (brs, 0.5 H), 5.24 (brs, 0.5 H), 5.31 (ddd, $J=7,10.3,17.3 \mathrm{~Hz}$, 0.5 H), 5.36 (ddd, $J=6.6,10.3,17.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 7.36 (d, $J=1.5 \mathrm{~Hz}, 0.5 \mathrm{H}$), 7.38 (d, $J=1.5 \mathrm{~Hz}, 0.5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.08,29.13,31.9,32.2,42.7$, $43.0,46.1,46.5,49.6,50.0,52.2,52.8,52.9,115.8,115.9,135.2,135.8,139.8$, 144.6, 144.9, 155.6, 155.9, 164.5; MS (CI) m/z 251 (M) ${ }^{+}$, 220, 197, 169, 152, 138, 119, 106, 86; HRMS (CI) m/z 251.1148 (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}$: 251.1158).

7-endo-[(1-Acetyl)-1-vinyl]-2-azabicyclo[2.2.2]oct-5-ene-2,6-dicarboxylic

 acid dimethyl ester (188). To a solution of 185 ($187 \mathrm{mg}, 0.47 \mathrm{mmol}$) in dry degassed THF (10 mL) at room temperature under argon was added tri(2furyl)phosphine ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(22 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{LiCl}(99$ $\mathrm{mg}, 2.35 \mathrm{mmol}$), and the mixture was stirred for 20 min at room temperature. A solution of (α-ethoxyvinyl)tributyltin ($185 \mathrm{mg}, 0.51 \mathrm{mmol}$) in THF (2 mL) was added, and the mixture was heated at reflux for 3 h . After hydrolysis of the reaction mixture with $10 \% \mathrm{HCl}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The extract was washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:1) gave $89 \mathrm{mg}(65 \%)$ of 188 as a colorless oil: IR(neat) 1715, 1449, 1394, 1276, 1251, 1120, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.09-1.28$ $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.91-3.03(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.37(\mathrm{~m}, 1 \mathrm{H})$, $3.43-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.75(\mathrm{~m}, 6 \mathrm{H}), 5.13(\mathrm{~s}, 0.5 \mathrm{H}), 5.32(\mathrm{~s}, 0.5 \mathrm{H}), 5.51(\mathrm{~s}$, $0.5 \mathrm{H}), 5.57(\mathrm{~s}, 0.5 \mathrm{H}), 5.94(\mathrm{~s}, 0.5 \mathrm{H}), 5.96(\mathrm{~s}, 0.5 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.5,29.4,30.0,32.1,32.4,38.0,38.3,45.7,46.3,48.3,48.9$, 52.3, 52.9, 53.1, 124.7, 125.3, 135.3, 135.8, 145.0, 150.0, 150.4, 155.7, 164.7, 199.5; MS (CI) m/z $293\left(\mathrm{M}^{+}, 261,230,218,197,182,175,152,138,106,92 ;\right.$ HRMS (CI) m/z 293.1262 (calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}$: 293.1263).

2,7,10-Trimethoxycarbonyl-2-azatetracyclo[4.4.0.0 $\left.0^{4,9} \cdot 0^{7,10}\right]$ decane (189a), 1,3,8-Trimethoxycarbonyl-3-azatetracyclo[6.1.1.0 $0^{2,7} .0^{5,9}$] decane (190a) and 4a,5,8,8a-tetrahydro-1H-isoquinoline-2,4,6-tricarboxylic acid trimethyl ester(191a). A solution of $\mathbf{1 8 6}(123 \mathrm{mg}, 0.40 \mathrm{mmol})$ in cyclohexane $(60 \mathrm{~mL})$ in a photoreaction vessel was purged with argon for 1 h and was irradiated with a 450-W Hanovia medium pressure mercury lamp using a Corex filter for 5 h at room temperature. The solvent was evaporated under reduced pressure and chromatography of the residue on silica (EtOAc-hexanes, $1: 2$) gave $4 \mathrm{mg}(3 \%)$ of 191a and $68 \mathrm{mg}(55 \%)$ of 189a and 190a in a 1.1:1 mixture as a colorless oil.

Data for 189a: IR(neat) 1728, 1704, 1450, 1401, 1286, 1258, 1236, 1125 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.74(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 0.5 \mathrm{H}$), $1.78(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $0.5 \mathrm{H}), 2.10(\mathrm{~d}, J=3 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.13(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.30-2.37(\mathrm{~m}, 1 \mathrm{H})$, 2.38-2.48 (m, 1H), 2.57-2.64 (m, 1H), 2.82 (dd, $J=4.9,7.1 \mathrm{~Hz}, 0.5 \mathrm{H}$), $2.84(\mathrm{dd}, J$ $=5,7.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.11-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.79(\mathrm{~m}, 10 \mathrm{H}), 4.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 0.5 H), 5.06 ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 0.5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1,24.2$, 28.6, $29.5,36.3,36.4,40.1,40.4,47.0,47.6,48.4,48.6,52.4,52.5,52.9,58.4,156.3$, 156.5, 170.7, 172.2; MS (CI) m/z 309 (M) ${ }^{\dagger}, 277,250,218,198,197,182,152$, 138, 119, 103, 86; HRMS (CI) m/z 309.1216 (calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}$: 309.1212).

Data for 190a: IR(neat) 1731, 1704, 1450, 1399, 1256, $1203 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.96(\mathrm{~d}$,
$J=7.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.02$ (ddd, $J=1.7,3.4,7.1 \mathrm{~Hz}$, 0.5 H), 2.05 (ddd, $J=1.6,3.4,7.1 \mathrm{~Hz}, 0.5 \mathrm{H}$), $2.19(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), $2.21(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.28-2.38 (m, 1H), 2.87 (ddd, $J=1.6,3.4,6.1 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.90 (ddd, $J=1.6,3.4,6.1 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.90 (ddd, $J=1.6,3.4,6.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.06 (d, $11.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.16(\mathrm{~d}, 11.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.16-3.18(\mathrm{~m}, 0.5 \mathrm{H}), 3.20(\mathrm{ddd}, J=1.9$, $3.7,5.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.51 (dd, $J=3.9,10.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.60(\mathrm{dd}, J=4.0,10.3 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.64-3.94(\mathrm{~m}, 9 \mathrm{H}), 4.59(\mathrm{dd}, J=1.9,6.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.74(\mathrm{dd}, J=1.9,6.3$ $\mathrm{Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.37,31.43,35.5,35.7,35.9,36.1,46.4$, $46.5,52.25,52.33,52.4,53.0,53.55,53.63,55.6,55.8,56.06,56.17,56.24$, $56.4,157.4,157.7,171.8,172.0,172.2 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 310(\mathrm{M}+\mathrm{H})^{+}, 309,278,277$, 250, 234, 218, 196, 190, 169, 152, 131, 126, 103, 86; HRMS (CI) m/z 309.1219 (calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}: 309.1212$).

Data for 191a: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$) 1.81-1.91 ($\mathrm{m}, 1 \mathrm{H}$), 2.12-2.30 $(\mathrm{m}, 2 \mathrm{H}), 2.64-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.91(\mathrm{~m}$, $10 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 8.01-8.17(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.3,28.3$, 28.6, 29.1, 43.7, 51.9, 52.1, 54.2, 113.4, 127.4, 130.0, 135.0, 136.6, 158.7, 167.6.

2,10-Dimethoxycarbonyl-2-azatetracyclo[4.4.0.0 $0^{4,9} .0^{7,10}$] decane (189b), 1,3-Dimethoxycarbonyl-3-azatetracyclo[6.1.1.0 $0^{2,7} .0^{5,9}$]decane (190b) and 4a,5,8,8a-tetrahydro-1 H -isoquinoline-2,4-dicarboxylic acid dimethyl
ester(191b). A solution of $187(120 \mathrm{mg}, 0.48 \mathrm{mmol})$ in cyclohexane $(60 \mathrm{~mL})$ in a photoreaction vessel was purged with argon for 1 h and was irradiated with a 450-W Hanovia medium pressure mercury lamp using a Corex filter for 20 h at room temperature. The solvent was evaporated under reduced pressure and chromatography of the residue on silica (EtOAc-hexanes, $1: 3$) gave $3.6 \mathrm{mg}(3 \%)$ of 191 b and $65 \mathrm{mg}(54 \%)$ of 189 b and 190b in a $1: 1.5$ mixture as a colorless oil.

Data for 189b: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.92(\mathrm{~m}, 1 \mathrm{H}), 3.07-$ $3.15(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.62(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.64(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.7,23.8$, $27.6,27.7,30.4,36.2,36.4,36.5,37.9,38.7,47.7,48.5,48.7,52.8,55.1,157.6$, 157.8, 172.6.

Data for 190b: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCI}_{3}\right) \delta 1.55-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.93$ $(\mathrm{m}, 1 \mathrm{H}), 2.09-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.92(\mathrm{~m}$, 1 H), 3.02 (brd, $J=11.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.12$ (brd, $J=10.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $3.9,10.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.52(\mathrm{dd}, J=3.9,11.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.66-3.77(\mathrm{~m}, 6 \mathrm{H}), 4.46$ (dd, $J=1.9,6.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.60(\mathrm{dd}, J=2.0,6.4 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 31.46,31.52,33.0,33.2,37.6,37.8,43.5,43.7,44.9,45.0,46.7,46.9$, 52.1, 52.2, 52.4, 52.8, 52.9, 55.4, 55.7, 56.8, 56.9, 157.6, 157.8, 172.8, 173.2.

Data for 191b: ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 1.79-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.55$ $(\mathrm{m}, 2 \mathrm{H}), 2.79-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.80(\mathrm{~m}, 7 \mathrm{H}), 4.87-5.05(\mathrm{~m}$, $1 \mathrm{H}), 5.52-5.65(\mathrm{~m}, 2 \mathrm{H}), 7.89-8.10(\mathrm{~m}, 1 \mathrm{H})$.

8-Acetyl-1,3-dimethoxycarbonyl-3-azatetracyclo[6.1.1.0 $\left.0^{2,7} .0^{5,9}\right]$ decane (190c).

 A solution of $188(40 \mathrm{mg}, 0.14 \mathrm{mmol})$ in cyclohexane $(60 \mathrm{~mL})$ in a photoreaction vessel was purged with argon for 1 h and was irradiated with a 450-W Hanovia medium pressure mercury lamp using a Pyrex filter for 8 h at room temperature. The solvent was evaporated under reduced pressure and chromatography of the residue on silica (EtOAc-hexanes, 1:3 to 1:2) gave $19 \mathrm{mg}(47 \%)$ of 190 c as a colorless oil.Data for 190c: IR(neat) 1731, 1699, 1449, 1399, 1253, 1197, $1124 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.06(\mathrm{~m}$, $1 \mathrm{H})$, 2.09-2.16 (m, 1H), 2.13 ($\mathrm{s}, 3 \mathrm{H}), ~ 2.23-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.01-$ $3.16(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{dd}, J=4,11 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.57(\mathrm{dd}, J=4,11.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.77-$ $3.85(\mathrm{~m}, 6 \mathrm{H}), 4.60(\mathrm{dd}, J=2,6.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.75(\mathrm{dd}, J=2,6.3 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.3,27.4,31.3,35.6,35.7,36.0,36.2,46.2,46.3,46.4$, 46.6, 52.4, 52.5, 53.0, 53.2, 54.3, 54.4, 56.3, 56.7, 63.36, 63.43; MS (Cl) m/z 293 $(M)^{+}, 263,261,234,218,206,190,182,158,152,138,117,103,91 ;$ HRMS (CI) $\mathrm{m} / \mathrm{z} 293.1258$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}: 293.1263$).

References

1. For reviews on Gelsemium alkaloids, see: (a) Saxton, J. E. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1965; Vol. 8, pp 93-117. (b) Liu, Z. J.; Lu, R. R. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1988; Vol. 33, pp 83-140. (c) Takayama, H.; Sakai, S. In Studies in Natural Products Chemistry, Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1995; Vol. 15, pp 465-518.
2. (a) Khuong-Luu, F.; Chiaroni, A.; Riche, C. Tetrahedron Lett. 1981, 22, 733.
(b) Liu, C.; Wang, Q.; Wang, C. J. Am. Chem. Soc. 1981, 103, 4634.
3. (a) Zhujin, L.; Qianshong, Y. Youji Huaxu 1986, 1, 36. (b) Büchi, G.; Manning, R. E.; Monti, S. A. J. Am. Chem. Soc. 1964, 86, 4631.
4. (a) Shi-Chen, L.; Porter-Smith, F.; Stuart, G. A. Chinese Medicinal Herbs, Georgetown Press: San Francisco, CA, 1973. (b) Duke, J. A.; Ayensu, E. S. Medicinal Plants of China; Reference Publications Inc.: Algonae, MI, 1985; p 411.
5. Conroy, H.; Chakrabarti, J. K. Tetrahedron Lett. 1959, 6.
6. Lovell, F. M.; Pepinsky, R.; Wilson, A. J. C. Tetrahedron Lett. 1959, 1.
7. Magnus, P.; Mugrage, B.; DeLuca, M. R.; Cain, G. A. J. Am. Chem. Soc. 1990, 112, 5220.
8. (a) Sheikh, Z.; Steel, R.; Tasker, A. S.; Johnson, A. P. J. Chem. Soc., Chem. Commun. 1994, 763. (b) Dutton, J. K.; Steel, R. W.; Tasker, A. S.; Popsavin, V.; Johnson, A. P. J. Chem. Soc., Chem. Commun. 1994, 765.
9. Wender, P. A.; Cooper, C. B. Tetrahedron 1986, 42, 2985.
10. Newcombe, N. J.; Ya, F.; Vijn, R. J.; Hiemstra, H.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 767.
11. Madin, A.; Overman, L. E. Tetrahedron Lett. 1992, 33, 4859.
12. (a) Kuzmich, D.; Wu, S. C.; Ha, D. C.; Lee, C. S.; Ramesh, S.; Atarashi, S.; Choi, J. K.; Hart, D. J. J. Am. Chem. Soc. 1994, 116, 6943. (b) Atarashi, S.; Choi, J. K.; Ha, D. C.; Hart, D. J.; Kuzmich, D.; Lee, C. S.; Ramesh, S.; Wu, S. C. J. Am. Chem. Soc. 1997, 119, 6226.
13. Madin, A.; O'Donnell, C. J.; Oh, T.; Old, D. W.; Overman, L. E.; Sharp, M. J. Angew. Chem 1999, 111, 3110; Angew. Chem., Int. Ed. Engl. 1999, 38, 2934.
14. (a) Fukuyama, T.; Liu, G. J. Am. Chem. Soc. 1996, 118, 7426. (b) Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Angew. Chem., Int. Ed. Engl. 2000, 39, 4073.
15. (a) Ng, F. W.; Lin, H.; Tan, Q.; Danishefsky, S. J. Tetrahedron Lett. 2002, 43, 545. (b) Lin, H.; Ng, F. W.; Danishefsky, S. J. Tetrahedron Lett. 2002, 43, 549. (c) Ng, F. W.; Lin, H.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 9812.
16. (a) Serckx-Poncin, B.; Hesbain-Frisque, A. M.; Ghosez, L. Tetrahedron Lett. 1982, 23, 3261. (b) Ghosez, L.; Serckx-Poncin, B.; Rivera, M.; Bayard, P.; Sainte, F.; Demoulin, A.; Hesbain-Frisque, A. M.; Mockel, A.; Munoz, L.; Bernard-Henriet, C. Lect. Heterocycl. Chem., 1985, 8, 69. (c) Pautet, F.; Nebois, P.; Bouaziz, Z.; Fillion, H. Heterocycles, 2001, 54, 1095.
17. Beaudegnies, R.; Ghosez, L. Tetrahedron: Asymmetry 1994, 5, 557.
18. (a) Petrov, A. A. Zh. Obshch. Khim. 1955, 24, 2136. (b) Ressler, C.; Goodman, F. J.; Tsutsui, R.; Tsutsumi, M. J. Org. Chem. 1979, 44, 2027.
19. (a) Birch, A. J. J. Proc. Roy. Soc. N. S. Wales 1949, 83, 245. (b) lio, H.; Isobe, M.; Kawai, T.; Goto, T. Tetrahedron 1979, 35, 941.
20. Baldwin, J. E.; Bulger, P. G.; Marquez, R. Tetrahedron 2002, 58, 5441.
21. Jackson, J. A.; Hammond, G. B.; Wiemer, D. F. J. Org. Chem. 1989, 54, 4750.
22. Hall, D. G.; Caillé, A-S.; Drouin, M.; Lamothe, S.; Müller, R.; Deslongchamps, P. Synthesis 1995, 1081.
23. Lee, K.; Jackson, J. A.; Wiemer, D. F. J. Org. Chem. 1993, 58, 5967.
24. (a) Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765. (b) Evans, D. A.; Baillargeon, D. J.; Nelson, J. V. J. Am. Chem. Soc. 1978, 100, 2242. (c) Steigerwald, M. L.; Goddard, W. A., III; Evans, D. A. J. Am. Chem. Soc. 1979, 101, 1994.
25. (a) Paquette, L. A. Angew. Chem., Int. Ed. Engl. 1990, 29, 609. (b) Paquette, L. A. Synlett 1990, 67. (c) Paquette, L. A. Chem. Soc. Rev. 1995, 24, 9. (d) Wilson, S. R. Org. React. 1993, 43, 93. (e) Paquette, L. A. Tetrahedron 1997, 53, 13971.
26. Fowler, F. W. J. Org. Chem. 1972, 37, 1321.
27. Baxter, E. W.; Labaree, D.; Chao, S.; Mariano, P. S. J. Org. Chem. 1989, 54, 2893.
28. (a) Martin, S. F.; White, J. B.; Wagner, R. J. Org. Chem. 1982, 47, 3190. (b) Paquette, L. A.; Wei, H.; Rogers, R. D. J. Org. Chem. 1989, 54, 2291.
29. (a) Haeffner, F.; Houk, K. N.; Reddy, Y. R.; Paquette, L. A. J. Am. Chem. Soc. 1999, 121, 11880. (b) Paquette, L. A.; Reddy, Y. R.; Haeffner, F.; Houk, K. N. J. Am. Chem. Soc. 2000, 122, 740.
30. (a) Berson, J. A.; Walsh, E. J. J. Am. Chem. Soc. 1968, 90, 4730. (b) Hsu, P-Y.; Lee, Y-C.; Liao, C-C. Tetrahedron Lett. 1998, 39, 659.
31. (a) Mariano, P. S.; Dunaway-Mariano, D.; Huesmann, P. L. J. Org. Chem. 1979, 44, 124. (b) Krow, G. R.; Shaw, D. A.; Lynch, B.; Lester, W.;

Szczepanski, S. W.; Raghavachari, R. Derome, A. E. J. Org. Chem. 1988, 53, 2258.
32. Sundberg, R. J.; Hamilton, G.; Trindle, C. J. Org. Chem. 1986, 51, 3672.
33. Kunng, F-A.; Gu, J-M.; Chao, S.; Chen, Y.; Mariano, P. S. J. Org. Chem. 1983, 48, 4262.
34. (a) de Mayo, P. Acc. Chem. Res. 1971, 4, 41. (b) Weedon, A. C. In Synthetic Organic Photochemistry, Horspool, W. M., Ed.; Plenum Press: New York, 1984; pp 61-144. (c) Crimmins, M. T. Chem. Rev. 1988, 88, 1453. (d) Crimmins, M. T. Reinhold, T. L. Org. React. 1993, 44, 297.
35. (a) Schuster, D. I.; Lem, G.; Kaprinidis, N. A. Chem. Rev. 1993, 93, 3. (b) Andrew, D.; Hastings, D. J.; Weedon, A. C. J. Am. Chem. Soc. 1994, 116, 10870. (c) Maradyn, D. J. Weedon, A. C. Tetrahedron Lett. 1994, 35, 8107. (d) Maradyn, D. J. Weedon, A. C. J. Am. Chem. Soc. 1995, 117, 5359.
36. (a) Corey, E. J.; Bass, J. D.; LeMahieu, R.; Mitra, R. B. J. Am. Chem. Soc. 1964, 86, 5570. (b) Loutfy, R. O.; de Mayo, P. J. Am. Chem. Soc. 1977, 99, 3559.
37. Zimmerman, H. E.; Swenton, J. S. J. Am. Chem. Soc. 1964, 86, 1436.
38. Agosta, W. C.; George, C. F.; Matlin, A. R.; Wolff, S. J. Am. Chem. Soc. 1986, 108, 3385.
39. (a) Hammond, G. S.; Liu, R. S.; J. Am. Chem. Soc. 1967, 89, 4930. (b) Carlough, K. H.; Srinivasan, R. J. Am. Chem. Soc. 1967, 89, 4932.
40. (a) Audley, M.; Geraphty, N. W. A. Tetrahedron Lett. 1996, 37, 1641.
(b) Busque, F.; de March, P.; Figueredo, M.; Font, J.; Margaretha, P.; Raya, J. Synthesis 2001, 1143.
41. Umbreit, M. A. Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 5526.
42. Ritter, K. Synthesis 1993, 735.
43. (a) Scott, W. J.; Crisp, G. T.; Stille, J. K.; J. Am. Chem. Soc. 1984, 106, 4630. (b) Cacci, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1985, 26,1109.
44. Cacci, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1984, 25, 4821.
45. Soderquist, J. A.; Hsu, G. J. Organometallics, 1982, 1, 830.
46. (a) Kwon, H. B.; McKee, B. H.; Stille, J. K. J. Org. Chem. 1990, 55, 3114.
(b) Farina, V.; Baker, S. R.; Benigni, D. A.; Hauck, S. I.; Sapino, Jr., C.
47. Andrew, D.; Weedon, A. C. J. Am. Chem. Soc. 1995, 117, 5647.
48. (a) Schaumann, E.; Ketcham, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 225. (b) Wender, P. A.; Lechleiter, J. C.; J. Am. Chem. Soc. 1977,99, 267. (c) Wender, P. A.; Hubbs, J. C. J. Org. Chem. 1980, 45, 365. (d) Wender, P. A.; Letendre, L. J. Org. Chem. 1980, 45, 367. (e) Wilson, S. R.; Phillips, L. R.; Pelister, Y.; Huffman, J. C. J. Am. Chem. Soc. 1979, 101, 7373. (f) Williams, J. R.; Callahan, J. F. J. Chem. Soc. Chem. Commun. 1979, 405. (g) Williams, J. R.; Callahan, J. F. J. Org. Chem. 1980, 45, 4475, 4479. (h) Randall, M. L.; Lo, P. C-K.; Bonitatebus, Jr., P. J.; Snapper, M. L. J. Am. Chem. Soc. 1999, 121, 4534.
49. (a) Lange, G. L.; Huggins, M. A.; Neidert, E. Tetrahedron Lett. 1976, 4409. (b) Lange, G. L.; McCarthy, F. C. Tetrahedron Lett. 1978, 4749.
50. Zupan, M.; Walters, W. D.; J. Am. Chem. Soc. 1964, 86, 173.

Chapter IV. GENERAL CONCLUSION

The research described in this dissertation presents results on the synthesis of two biologically active indole alkaloids, (-)-ibogamine and koumine.

The synthesis of $(-)$-ibogamine has accomplished in fourteen steps from 1,4-benzoquinone and in a 10% overall yield. The two titanium derived catalysts, TADDOL-Ti and BINOL-Ti, were employed for the pivotal asymmetric Diels-Alder reaction of 1,4-benzoquinone with various dienes, and the latter turned out to be a superior catalyst for the high enantiomeric excess. A transition state which would provide a glimpse of the reaction mechanism was proposed based on the absolute configuration of the Diels-Alder adducts.

Three different routes have been investigated as an entry for the synthesis of koumine. The Diels-Alder reaction of cyclic 1-azadienes and an anionic oxyCope rearrangement of the azabicyclo[2.2.2]octane system did not provide any desired product. An intramolecular [2+2] photocycloaddition generated the unique "crossed", "straight", and hydroisoquinoline products in varing ratio, depending on the substituent pattern of the substrate. Although this approach was not synthetically useful, the knowledge from this last study may be useful for predicting the regiochemical outcome of the intramolecular photocycloaddition.

Bibliography

Agosta, W. C.; George, C. F.; Matlin, A. R.; Wolff, S. J. Am. Chem. Soc. 1986, 108, 3385.

Andrew, D.; Hastings, D. J.; Weedon, A. C. J. Am. Chem. Soc. 1994, 116, 10870.

Andrew, D.; Weedon, A. C. J. Am. Chem. Soc. 1995, 117, 5647.

Atarashi, S.; Choi, J. K.; Ha, D. C.; Hart, D. J.; Kuzmich, D.; Lee, C. S.; Ramesh, S.; Wu, S. C. J. Am. Chem. Soc. 1997, 119, 6226.

Atta-ur-Rahman; Beisler, J. A.; Harley-Mason, J. Tetrahedron 1980, 36, 1063.

Audley, M.; Geraphty, N. W. A. Tetrahedron Lett. 1996, 37, 1641.

Baldwin, J. E.; Bulger, P. G.; Marquez, R. Tetrahedron 2002, 58, 5441.

Bartlett, M. F.; Dickel, D. F.; Taylor, W. I. J. Am. Chem. Soc. 1958, 80, 126.
Baxter, E. W.; Labaree, D.; Chao, S.; Mariano, P. S. J. Org. Chem. 1989, 54, 2893.

Beaudegnies, R.; Ghosez, L. Tetrahedron: Asymmetry 1994, 5, 557.

Berson, J. A.; Walsh, E. J. J. Am. Chem. Soc. 1968, 90, 4730.

Beswick, P. J.; Widdowson, D. A. Synthesis 1985, 492.

Björkling, F.; Norin, T.; Unelius, C. R. J. Org. Chem. 1987, 52, 292.

Birch, A. J. J. Proc. Roy. Soc. N. S. Wales 1949, 83, 245.

Bláha, K.; Koblicová, Z.; Trojánek, J. Collect. Czech. Chem. Commun., 1974, 39, 2258.

Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1972, 94, 4370.
Breuning, M.; Corey, E. J. Org. Lett. 2001, 3, 1559.
Büchi, G.; Manning, R. E.; Monti, S. A. J. Am. Chem. Soc. 1964, 86, 4631.
Büchi, G.; Coffen, D. L.; Kocsis, K.; Sonnet, P. E.; Ziegler, F. E. J. Am. Chem. Soc. 1965, 87, 2073.

Büchi, G.; Coffen, D. L.; Kocsis, K.; Sonnet, P. E.; Ziegler, F. E. J. Am. Chem. Soc. 1966, 88, 3099.

Busque, F.; de March, P.; Figueredo, M.; Font, J.; Margaretha, P.; Raya, J. Synthesis 2001, 1143.

Cacci, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1984, 25, 4821.

Cacci, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1985, 26,1109.
Carlough, K. H.; Srinivasan, R. J. Am. Chem. Soc. 1967, 89, 4932.
Carruthers, W. Cycloaddition Reactions in Organic Synthesis, Pergamon,Oxford, 1990.

Conroy, H.; Chakrabarti, J. K. Tetrahedron Lett. 1959, 6.

Corey, E. J.; Bass, J. D.; LeMahieu, R.; Mitra, R. B. J. Am. Chem. Soc. 1964, 86, 5570.

Corey, E. J.; Matsumura, Y. Tetrahedron Lett. 1991, 32, 6289.

Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650.

Crimmins, M. T. Chem. Rev. 1988, 88, 1453.
Crimmins, M. T. Reinhold, T. L. Org. React. 1993, 44, 297.

Dale, J. A. Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
de Mayo, P. Acc. Chem. Res. 1971, 4, 41.

Diaz, L. C. J. Braz. Chem. Soc. 1997, 8, 289.

Dickel, D. F.; Holden, C. L.; Maxfield, R. C.; Paszek, L. E.; Taylor, W. I. J. Am. Chem. Soc. 1958, 80, 123.

Duke, J. A.; Ayensu, E. S. Medicinal Plants of China; Reference Publications Inc.: Algonae, MI, 1985; p 411.

Dutton, J. K.; Steel, R. W.; Tasker, A. S.; Popsavin, V.; Johnson, A. P. J. Chem. Soc., Chem. Commun. 1994, 765.

Engler, T. A.; Letavic, M. A.; Takusagawa, F. Tetrahedron Lett. 1992, 33, 6731.
Engler, T. A.; Letavic, M. A.; Lynch J., K. O.; Takusagawa, F. J. Org. Chem. 1994, 59, 1179.

Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765.
Evans, D. A.; Baillargeon, D. J.; Nelson, J. V. J. Am. Chem. Soc. 1978, 100, 2242.

Evans, D. A.; Johnson, J. S. In Comprehensive Asymmetric Catalysis, Eds. Jacobsen, E. N.; Pfaltz, Yamamoto, A. H., Springer, New York, 1999, Vol 3, p. 1177.

Farina, V.; Baker, S. R.; Benigni, D. A.; Hauck, S. I.; Sapino, Jr., C.
Fowler, F. W. J. Org. Chem. 1972, 37, 1321.

Fukuyama, T.; Liu, G. J. Am. Chem. Soc. 1996, 118, 7426.
Gawley, R. E. Org. React. 1998, 35, 1.
Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.
Ghosez, L.; Serckx-Poncin, B.; Rivera, M.; Bayard, P.; Sainte, F.; Demoulin, A.; Hesbain-Frisque, A. M.; Mockel, A.; Munoz, L.; Bernard-Henriet, C. Lect. Heterocycl. Chem., 1985, 8, 69.

Haase, C.; Sarko, C. R.; Dimare, M. J. Org. Chem. 1995, 60, 1777.
Haeffner, F.; Houk, K. N.; Reddy, Y. R.; Paquette, L. A. J. Am. Chem. Soc. 1999, 121, 11880.

Hall, D. G.; Caillé, A-S.; Drouin, M.; Lamothe, S.; Müller, R.; Deslongchamps, P. Synthesis 1995, 1081.

Hammond, G. S.; Liu, R. S.; J. Am. Chem. Soc. 1967, 89, 4930.
Hawkins, J. M.; Loren, S. J. Am. Chem. Soc. 1991, 113, 7794.
Henry, J., K. J.; Grieco, P. A.; Dubay, W. J. Tetrahedron Lett. 1996, 37, 8289.
Henry, T. A. In The Plant Alkaloids, Churchill, J. A. Ltd., London, 1949.
Herdeis, C.; Hartke-Karger, C. Justus Liebigs Ann. Chem. 1991, 99.
Hsu, P-Y.; Lee, Y-C.; Liao, C-C. Tetrahedron Lett. 1998, 39, 659.
Huffman, J. W.; Shanmugasundaram, G.; Sawdaye, R.; Raveendranath, P. C.; Desai, R. C. J. Org. Chem. 1985, 50, 1460.
lio, H.; Isobe, M.; Kawai, T.; Goto, T. Tetrahedron 1979, 35, 941.
Ikezaki, M.; Wakamatsu, T.; Ban, Y. J. Chem. Soc., Chem. Commun. 1969, 88.

Imanishi, T.; Yagi, N.; Hanaoka, M. Chem. Pharm. Bull. 1985, 33, 4202.
Jackson, J. A.; Hammond, G. B.; Wiemer, D. F. J. Org. Chem. 1989, 54, 4750.
Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007.
Khuong-Luu, F.; Chiaroni, A.; Riche, C. Tetrahedron Lett. 1981, 22, 733.

Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.
Krow, G. R.; Shaw, D. A.; Lynch, B.; Lester, W.; Szczepanski, S. W.; Raghavachari, R. Derome, A. E. J. Org. Chem. 1988, 53, 2258.

Kuehne, M. E.; Reider, P. J. J. Org. Chem. 1985, 50, 1464.
Kunng, F-A.; Gu, J-M.; Chao, S.; Chen, Y.; Mariano, P. S. J. Org. Chem. 1983, 48, 4262.

Kuzmich, D.; Wu, S. C.; Ha, D. C.; Lee, C. S.; Ramesh, S.; Atarashi, S.; Choi, J. K.; Hart, D. J. J. Am. Chem. Soc. 1994, 116, 6943.

Kwon, H. B.; McKee, B. H.; Stille, J. K. J. Org. Chem. 1990, 55, 3114.
Lange, G. L.; Huggins, M. A.; Neidert, E. Tetrahedron Lett. 1976, 4409.
Lange, G. L.; McCarthy, F. C. Tetrahedron Lett. 1978, 4749.
Lee, K.; Jackson, J. A.; Wiemer, D. F. J. Org. Chem. 1993, 58, 5967.
Lin, H.; Ng, F. W.; Danishefsky, S. J. Tetrahedron Lett. 2002, 43, 549.
Liu, C.; Wang, Q.; Wang, C. J. Am. Chem. Soc. 1981, 103, 4634.
Liu, Z. J.; Lu, R. R. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1988; Vol. 33, pp 83-140.

Loutfy, R. O.; de Mayo, P. J. Am. Chem. Soc. 1977,99, 3559.

Lovell, F. M.; Pepinsky, R.; Wilson, A. J. C. Tetrahedron Lett. 1959, 1.

Madin, A.; Overman, L. E. Tetrahedron Lett. 1992, 33, 4859.

Madin, A.; O'Donnell, C. J.; Oh, T.; Old, D. W.; Overman, L. E.; Sharp, M. J. Angew. Chem 1999, 111, 3110; Angew. Chem., Int. Ed. Engl. 1999, 38, 2934.

Magnus, P.; Mugrage, B.; DeLuca, M. R.; Cain, G. A. J. Am. Chem. Soc. 1990, 112, 5220.

Maradyn, D. J. Weedon, A. C. Tetrahedron Lett. 1994, 35, 8107.

Maradyn, D. J. Weedon, A. C. J. Am. Chem. Soc. 1995, 117, 5359.
Mariano, P. S.; Dunaway-Mariano, D.; Huesmann, P. L. J. Org. Chem. 1979, 44, 124.

Martin, S. F.; White, J. B.; Wagner, R. J. Org. Chem. 1982, 47, 3190.
McCormack, J. J. In The Alkaloids Brossi, A.; Suffness, M., Eds.; Academic Press, San Diego, 1990, Vol. 37, p. 205.

Mikami, K.; Terada, M.; Motoyama, Y.; Nakai, T. Tetrahedron: Asymmetry 1991, 2, 643.

Mikami, K.; Motoyama, Y.; Terada, M. J. Am. Chem. Soc. 1994, 116, 2812.

Nagata, W.; Hirai, S.; Okumura, T.; Kawata, K. J. Am. Chem. Soc. 1968, 90, 1650.

Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima, M.; Sugimori, J. J. Am. Chem. Soc. 1989, 111, 5340.

Newcombe, N. J.; Ya, F.; Vijn, R. J.; Hiemstra, H.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 767.

Ng, F. W.; Lin, H.; Tan, Q.; Danishefsky, S. J. Tetrahedron Lett. 2002, 43, 545.
Ng, F. W.; Lin, H.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 9812.
Nguyen, M. T.; Raspoet, G.; Vanquickenborne, L. G. J. Am. Chem. Soc. 1997, 119, 2552.

Nicolaou, K. C.; Vassilikogiannakis, G.; Mägerlein, W.; Kranich, R. Angew. Chem 2001, 113, 2543; Angew. Chem. Int. Ed. 2001, 40, 2482.

Nicolaou, K. C.; Vassilikogiannakis, G.; Magerlein, W.; Kranich, R. Chem. Eur. J. 2001, 7, 5359.

Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668.

Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 2458.

Paquette, L. A.; Wei, H.; Rogers, R. D. J. Org. Chem. 1989, 54, 2291.

Paquette, L. A. Angew. Chem., Int. Ed. Engl. 1990, 29, 609.

Paquette, L. A. Synlett 1990, 67.

Paquette, L. A. Chem. Soc. Rev. 1995, 24, 9.

Paquette, L. A. Tetrahedron 1997, 53, 13971.

Paquette, L. A.; Reddy, Y. R.; Haeffner, F.; Houk, K. N. J. Am. Chem. Soc. 2000, 122, 740.

Pautet, F.; Nebois, P.; Bouaziz, Z.; Fillion, H. Heterocycles, 2001, 54, 1095.

Petrov, A. A. Zh. Obshch. Khim. 1955, 24, 2136.

Popik, P.; Glick, S. D. Drugs Future 1996, 21, 1109.
Popik, P.; Skolnick, P. In The Alkaloids: Chemistry and Biology', Ed. Cordell,G. A., Academic Press, San Diego, 1999, Vol. 52, P. 197.

Randall, M. L.; Lo, P. C-K.; Bonitatebus, Jr., P. J.; Snapper, M. L. J. Am. Chem. Soc. 1999, 121, 4534.

Ressler, C.; Goodman, F. J.; Tsutsui, R.; Tsutsumi, M. J. Org. Chem. 1979, 44, 2027.

Ritter, K. Synthesis 1993, 735.

Robinson, B. 'The Fischer Indole Synthesis', Wiley, New York: 1982.

Rosenmund, P.; Haase, W. H.; Bauer, J.; Frische, R. Chem. Ber. 1975, 108, 1871.

Sallay, S. I. J. Am. Chem. Soc. 1967,89, 6762.
Saxton, J. E. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1965; Vol. 8, pp 93-117.

Schaumann, E.; Ketcham, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 225.
Schuster, D. I.; Lem, G.; Kaprinidis, N. A. Chem. Rev. 1993, 93, 3.
Scott, W. J.; Crisp, G. T.; Stille, J. K.; J. Am. Chem. Soc. 1984, 106, 4630.
Seebach, D.; Dahinden, R.; Marti, R. E.; Beck, A. K.; Plattner, D. A.; Kühnle, F. N. M. J. Org. Chem. 1995, 60, 1788.

Serckx-Poncin, B.; Hesbain-Frisque, A. M.; Ghosez, L. Tetrahedron Lett. 1982,

23, 3261.

Sheikh, Z.; Steel, R.; Tasker, A. S.; Johnson, A. P. J. Chem. Soc., Chem. Commun. 1994, 763.

Shi-Chen, L.; Porter-Smith, F.; Stuart, G. A. Chinese Medicinal Herbs, Georgetown Press: San Francisco, CA, 1973.

Simon, Cs.; Hosztafi, S.; Makleit, S. J. Heterocycl. Chem. 1997, 34, 349.

Soderquist, J. A.; Hsu, G. J. Organometallics, 1982, 1, 830.

Steigerwald, M. L.; Goddard, W. A., III; Evans, D. A. J. Am. Chem. Soc. 1979, 101, 1994.

Sundberg, R. J.; Hamilton, G.; Trindle, C. J. Org. Chem. 1986, 51, 3672.

Sundberg, R. J.; Hong, J.; Smith, S. Q.; Sabat, M. Tetrahedron 1998, 54, 6259.

Takayama, H.; Sakai, S. In Studies in Natural Products Chemistry, Atta-urRahman, Ed.; Elsevier: Amsterdam, 1995; Vol. 15, pp 465-518.

Taylor, W. I. J. Am. Chem Soc. 1957, 79, 3298.

Trost, B. M.; Godleski, S. A.; Genêt, J. P. J. Am. Chem. Soc. 1978, 100, 3930.

Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370.

Umbreit, M. A. Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 5526.

Weedon, A. C. In Synthetic Organic Photochemistry; Horspool, W. M., Ed.; Plenum Press: New York, 1984; pp 61-144.

Wender, P. A.; Lechleiter, J. C.; J. Am. Chem. Soc. 1977,99, 267.

Wender, P. A.; Hubbs, J. C. J. Org. Chem. 1980, 45, 365.

Wender, P. A.; Letendre, L. J. Org. Chem. 1980, 45, 367.

Wender, P. A.; Cooper, C. B. Tetrahedron 1986, 42, 2985.

White, J. D.; Cutshall, N. S.; Kim, T. S.; Shin, H. J. Am. Chem. Soc. 1995, 117, 9780.

White, J. D.; Shin, H.; Kim, T. S.; Cutshall, N. S. J. Am. Chem. Soc. 1997, 119, 2404.

White, J. D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1999, 64, 7871.

White, J. D.; Choi, Y. Org. Lett. 2000, 2, 2373.

White, J. D.; Choi, Y. Helv. Chim. Acta. 2002, 85, 4306.

Williams, J. R.; Callahan, J. F. J. Chem. Soc. Chem. Commun. 1979, 405.

Williams, J. R.; Callahan, J. F. J. Org. Chem. 1980, 45, 4475, 4479.

Wilson, S. R.; Phillips, L. R.; Pelister, Y.; Huffman, J. C. J. Am. Chem. Soc. 1979, 101, 7373.

Wilson, S. R. Org. React. 1993, 43, 93.

Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Angew. Chem., Int. Ed. Engl. 2000, 39, 4073.

Zhujin, L.; Qianshong, Y. Youji Huaxu 1986, 1, 36.

Zimmerman, H. E.; Swenton, J. S. J. Am. Chem. Soc. 1964, 86, 1436.

Zupan, M.; Walters, W. D.; J. Am. Chem. Soc. 1964, 86, 173.

Appendices

APPENDIX A

SUPPLEMENTARY CRYSTALLOGRAPHIC INFORMATION ON

 DIOL 85

Table A. 1 Crystal data and structure refinement for 85

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$
Formula weight	310.50
Temperature	290(2) K
Wavelength	1.54178 A
Crystal system	Orthorhombic
Space group	P2, $2_{1} 2_{1}$ (\#19)
Unit cell dimensions	$a=10.7230(10) \AA \quad \alpha=90^{\circ}$.
	$b=12.579(2) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=13.737(2) \AA \quad \gamma=90^{\circ}$.
Volume	1852.9(4) \AA^{3}
Z	4
Density (calculated)	$1.113 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.172 \mathrm{~mm}^{-1}$
F(000)	680
Crystal size	$0.20 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	4.77 to 67.49°.
Index ranges	-6<=h<=6, -15<=k<=13, -16<=k<=16
Reflections collected	2289
Independent reflections	1965 [R(int) $=0.0220$]
Completeness to theta $=67.49^{\circ}$	64.1 \%
Max. and min. transmission	0.8918 and 0.7994
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1965 / 0 / 192
Goodness-of-fit on F^{2}	1.081
Final R indices [$1>2$ sigma(l] $]$	$\mathrm{R} 1=0.0439, \mathrm{wR} 2=0.1031$
R indices (all data)	$\mathrm{R} 1=0.0646, \mathrm{wR} 2=0.1233$
Absolute structure parameter	-0.05(6)
Largest diff. peak and hole	0.147 and -0.166 e. $\AA^{\text {A }}$ -

Table A. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 85.
$U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x		y	z
		$\mathrm{U}(\mathrm{eq})$		
$\mathrm{Si}(1)$	$7766(2)$	$8640(1)$	$6765(1)$	$76(1)$
$\mathrm{O}(1)$	$6483(3)$	$8635(2)$	$7440(2)$	$58(1)$
$\mathrm{O}(3)$	$5158(4)$	$7142(2)$	$5903(2)$	$83(1)$
$\mathrm{O}(6)$	$4891(3)$	$10125(2)$	$8187(2)$	$70(1)$
$\mathrm{C}(1)$	$5815(6)$	$7753(3)$	$7866(3)$	$61(2)$
$\mathrm{C}(2)$	$4481(6)$	$7677(3)$	$7544(3)$	$63(2)$
$\mathrm{C}(3)$	$4254(6)$	$7718(4)$	$6451(3)$	$75(2)$
$\mathrm{C}(4)$	$4213(6)$	$8828(4)$	$6081(4)$	$86(2)$
$\mathrm{C}(5)$	$3990(5)$	$9670(4)$	$6642(4)$	$86(2)$
$\mathrm{C}(6)$	$3858(6)$	$9615(4)$	$7711(4)$	$75(2)$
$\mathrm{C}(7)$	$3624(5)$	$8469(3)$	$8063(3)$	$70(2)$
$\mathrm{C}(8)$	$3674(7)$	$8295(4)$	$9170(4)$	$83(2)$
$\mathrm{C}(9)$	$4973(8)$	$8103(4)$	$9506(4)$	$80(2)$
$\mathrm{C}(10)$	$5924(6)$	$7844(4)$	$8953(4)$	$75(2)$
$\mathrm{C}(11)$	$3000(6)$	$9164(4)$	$9754(4)$	$114(2)$
$\mathrm{C}(21)$	$7394(7)$	$9276(6)$	$5575(4)$	$132(3)$
$\mathrm{C}(22)$	$8371(6)$	$7283(4)$	$6553(5)$	$116(2)$
$\mathrm{C}(23)$	$8944(6)$	$9468(5)$	$7413(5)$	$89(2)$
$\mathrm{C}(24)$	$8414(7)$	$10587(5)$	$7602(6)$	$151(3)$
$\mathrm{C}(25)$	$9259(7)$	$8943(7)$	$8402(5)$	$166(4)$
$\mathrm{C}(26)$	$10149(7)$	$9560(6)$	$6811(6)$	$130(3)$

Table A. 3 Bond lengths [\AA] and angles [${ }^{\circ}$] for 85.

$\mathrm{Si}(1)-\mathrm{O}(1)$	$1.659(3)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Si}(1)$	$129.8(3)$
$\mathrm{Si}(1)-\mathrm{C}(22)$	$1.850(5)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$113.7(4)$
$\mathrm{Si}(1)-\mathrm{C}(21)$	$1.863(5)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	$107.7(4)$
$\mathrm{Si}(1)-\mathrm{C}(23)$	$1.863(6)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$111.8(4)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.444(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$116.2(4)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.425(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$113.2(4)$
$\mathrm{O}(6)-\mathrm{C}(6)$	$1.437(6)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$109.9(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.500(7)$	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$108.6(4)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.503(6)$	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	$113.3(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.522(6)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$111.9(4)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.532(6)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$123.7(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.487(6)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$123.8(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.331(7)$	$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	$110.9(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.477(7)$	$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(7)$	$113.6(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.540(6)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$111.8(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.537(7)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$110.3(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.487(8)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$111.4(4)$
$\mathrm{C}(8)-\mathrm{C}(11)$	$1.537(7)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$115.9(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.312(7)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(11)$	$113.2(5)$
$\mathrm{C}(23)-\mathrm{C}(26)$	$1.538(8)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$111.3(5)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.540(8)$	$\mathrm{C}(11)-\mathrm{C}(8)-\mathrm{C}(7)$	$113.5(5)$
$\mathrm{C}(23)-\mathrm{C}(25)$	$1.548(8)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$126.1(5)$
		$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	$122.3(6)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(22)$	$112.0(2)$	$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{C}(24)$	$109.4(6)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(21)$	$108.3(3)$	$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{C}(25)$	$108.7(6)$
$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(21)$	$109.5(3)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(25)$	$108.8(6)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(23)$	$107.3(2)$	$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{Si}(1)$	$110.8(4)$
$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(23)$	$110.7(3)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{Si}(1)$	$109.9(5)$
$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(23)$	$108.9(3)$	$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{Si}(1)$	$109.2(4)$

[^0]Table A. 4 Anisotropic displacement parameters ($\AA^{2} \mathbf{x} 10^{3}$) for 85.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\right.$ $\ldots+2 h k a^{*} b^{*} U^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Si}(1)$	$75(1)$	$76(1)$	$77(1)$	$1(1)$	$9(1)$	$0(1)$
$\mathrm{O}(1)$	$48(3)$	$60(2)$	$66(2)$	$5(1)$	$13(2)$	$0(2)$
$\mathrm{O}(3)$	$111(3)$	$64(2)$	$74(2)$	$-8(2)$	$2(2)$	$6(2)$
$\mathrm{O}(6)$	$62(3)$	$55(2)$	$92(2)$	$-9(2)$	$-4(2)$	$-2(2)$
$\mathrm{C}(1)$	$64(6)$	$47(2)$	$72(3)$	$6(2)$	$9(3)$	$3(3)$
$\mathrm{C}(2)$	$62(5)$	$50(2)$	$77(3)$	$-2(2)$	$0(3)$	$-4(3)$
$\mathrm{C}(3)$	$80(5)$	$63(3)$	$81(3)$	$-9(2)$	$-8(3)$	$-3(3)$
$\mathrm{C}(4)$	$111(5)$	$69(3)$	$78(3)$	$7(3)$	$-22(3)$	$3(3)$
$\mathrm{C}(5)$	$93(6)$	$62(3)$	$102(4)$	$3(3)$	$-33(4)$	$8(3)$
$\mathrm{C}(6)$	$65(5)$	$61(3)$	$99(4)$	$-6(3)$	$-10(3)$	$6(3)$
$\mathrm{C}(7)$	$50(4)$	$61(3)$	$99(3)$	$-11(3)$	$2(3)$	$-7(3)$
$\mathrm{C}(8)$	$84(7)$	$75(3)$	$91(4)$	$-12(3)$	$33(4)$	$-7(4)$
$\mathrm{C}(9)$	$88(7)$	$82(3)$	$72(3)$	$8(2)$	$14(4)$	$2(4)$
$\mathrm{C}(10)$	$75(6)$	$77(3)$	$71(3)$	$13(3)$	$-1(3)$	$8(3)$
$\mathrm{C}(11)$	$104(6)$	$111(4)$	$125(5)$	$-48(4)$	$40(4)$	$-9(4)$
$\mathrm{C}(21)$	$129(7)$	$184(6)$	$83(3)$	$42(4)$	$10(4)$	$3(6)$
$\mathrm{C}(22)$	$100(6)$	$101(4)$	$148(5)$	$-34(4)$	$45(5)$	$12(4)$
$\mathrm{C}(23)$	$47(6)$	$106(4)$	$114(4)$	$-13(4)$	$6(4)$	$-6(3)$
$\mathrm{C}(24)$	$106(7)$	$102(5)$	$246(9)$	$-56(5)$	$2(7)$	$-13(5)$
$\mathrm{C}(25)$	$120(8)$	$253(10)$	$124(6)$	$13(6)$	$-43(5)$	$-45(6)$
$\mathrm{C}(26)$	$65(7)$	$154(6)$	$172(6)$	$-18(5)$	$33(6)$	$-20(5)$

Table A. 5 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 85.

	x	y	z	U(eq)
HO3	5243	6546	6137	125
H06	5545	9852	8004	104
H(1)	6238	7096	7667	73
H(2)	4198	6972	7751	75
H(3)	3439	7394	6325	90
H(4)	4350	8941	5421	103
H(5)	3913	10330	6344	103
H(6)	3112	10026	7879	90
H(7)	2772	8290	7862	84
H(8)	3217	7635	9295	100
H(9)	5126	8173	10169	96
$\mathrm{H}(10)$	6691	7713	9245	89
H(11A)	2166	9246	9512	170
H(11B)	3441	9824	9687	170
H(11C)	2973	8965	10429	170
H(21A)	7084	9982	5684	198
H(21B)	6771	8864	5243	198
H(21C)	8134	9309	5183	198
H(22A)	8565	6956	7166	174
H(22B)	9110	7319	6160	174
H(22C)	7750	6868	6222	174
H(24A)	8227	10924	6992	227
H(24B)	9018	11004	7948	227
H(24C)	7666	10531	7982	227
H(25A)	9622	8256	8291	248
H(25B)	8511	8866	8778	248
H(25C)	9841	9382	8749	248
H(26A)	9970	9908	6205	196
H(26B)	10474	8862	6686	196
H(26C)	10753	9967	7167	196

Table A. 6 Torsion angles [${ }^{\circ}$] for 85.

$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$0.3(5)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$43.7(6)$
$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$121.1(4)$	$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$44.4(7)$
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$-121.4(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$170.9(5)$
$\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-121.6(4)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$42.0(5)$
$\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	$113.9(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-85.7(6)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$50.5(5)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(11)$	$171.1(5)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$172.8(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(11)$	$43.3(8)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$-78.2(4)$	$\mathrm{C}(11)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-145.5(5)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$44.1(6)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-16.3(7)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$39.6(6)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	$2.7(8)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$169.8(4)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$109.3(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-83.5(6)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$-16.4(7)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$46.7(6)$	$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(26)$	$-177.3(4)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-146.2(6)$	$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(26)$	$60.2(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-20.5(8)$	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(26)$	$-60.2(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$5.1(9)$	$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$-56.3(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	$111.2(6)$	$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$-178.8(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-16.7(8)$	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$60.8(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$-58.3(5)$	$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(25)$	$63.0(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$169.9(5)$	$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(25)$	$-59.5(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$71.9(5)$	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(25)$	$-179.9(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$-59.9(6)$		
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)-82.8(5) \mathrm{C}(5)-$			

Symmetry transformations used to generate equivalent atoms:

APPENDIX B

SUPPLEMENTARY CRYSTALLOGRAPHIC INFORMATION ON BROMOKETONE 109

Table B. 1 Crystal data and structure refinement for bromoketone 109

Identification code	STR 32
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{Br} \mathrm{O}_{3} \mathrm{Si}$
Formula weight	415.44
Temperature	298(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P2 ${ }_{1}$ (\#4)
Unit cell dimensions	$a=12.019(3) \AA \quad \alpha=90^{\circ}$.
	$b=6.524(5) \AA \quad \beta=105.64(2)^{\circ}$.
	$c=14.017(5) \AA \quad \gamma=90^{\circ}$.
Volume	1058.4(9) \AA^{3}
Z	2
Density (calculated)	$1.304 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.290 \mathrm{~mm}^{-1}$
F(000)	436
Crystal size	$0.30 \times 0.30 \times 0.30 \mathrm{~mm}^{3}$
Theta range for data collection	3.27 to $57.74{ }^{\circ}$.
Index ranges	$-13<=h<=13,-7<=k<=6,-15<=1<=15$
Reflections collected	3185
Independent reflections	2747 [R(int) $=0.0779]$
Completeness to theta $=57.74{ }^{\circ}$	97.2 \%
Max. and min. transmission	0.4386 and 0.4386
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2747 / 1/219
Goodness-of-fit on F2	2.565
Final R indices [l>2sigma(I)]	$\mathrm{R} 1=0.0876, w R 2=0.2660$
R indices (all data)	$R 1=0.0894, w R 2=0.2694$
Absolute structure parameter	0.05(5)
Extinction coefficient	0.0030(17)
Largest diff. peak and hole	1.183 and -1.632 e. \AA^{-3}

Table B. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for bromoketone 109.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x			y
		z	$\mathrm{U}(\mathrm{eq})$	
Br	$1796(1)$	$2110(1)$	$3558(1)$	$67(1)$
$\mathrm{O}(1)$	$5032(7)$	$1144(11)$	$1287(5)$	$68(2)$
$\mathrm{O}(2)$	$2691(4)$	$6952(11)$	$2011(4)$	$48(1)$
$\mathrm{O}(3)$	$55(5)$	$4969(16)$	$2279(4)$	$74(2)$
$\mathrm{C}(11)$	$3640(9)$	$7520(20)$	$5022(7)$	$76(3)$
$\mathrm{C}(12)$	$4152(7)$	$7396(19)$	$4173(7)$	$61(2)$
$\mathrm{C}(13)$	$3740(6)$	$5554(14)$	$3535(5)$	$41(2)$
$\mathrm{C}(14)$	$4360(6)$	$5009(14)$	$2745(5)$	$43(2)$
$\mathrm{C}(15)$	$3909(6)$	$6751(14)$	$2005(6)$	$46(2)$
$\mathrm{C}(16)$	$3993(8)$	$6170(20)$	$969(7)$	$65(3)$
$\mathrm{C}(17)$	$4356(8)$	$4497(18)$	$742(6)$	$56(2)$
$\mathrm{C}(18)$	$4540(7)$	$2724(17)$	$1413(6)$	$57(2)$
$\mathrm{C}(19)$	$4040(7)$	$3069(15)$	$2308(5)$	$46(2)$
$\mathrm{C}(110)$	$2715(6)$	$2628(14)$	$1896(6)$	$46(2)$
$\mathrm{C}(111)$	$1968(7)$	$3816(13)$	$2448(5)$	$41(2)$
$\mathrm{C}(112)$	$2522(6)$	$5779(16)$	$2853(5)$	$44(2)$
$\mathrm{C}(113)$	$786(7)$	$4060(20)$	$1756(6)$	$64(3)$
Si	$-1104(2)$	$6356(5)$	$1854(2)$	$63(1)$
$\mathrm{C}(21)$	$-694(19)$	$8480(40)$	$1238(12)$	$130(7)$
$\mathrm{C}(22)$	$-2180(10)$	$4810(40)$	$936(9)$	$113(6)$
$\mathrm{C}(23)$	$-1609(8)$	$7080(20)$	$2947(10)$	$84(4)$
$\mathrm{C}(24)$	$-656(14)$	$8180(40)$	$3758(10)$	$124(7)$
$\mathrm{C}(25)$	$-1885(14)$	$4940(30)$	$3408(15)$	$115(5)$
$\mathrm{C}(26)$	$-2709(13)$	$8360(40)$	$2671(19)$	$143(8)$

Table B. 3 Bond lengths [Å] and angles [${ }^{\circ}$] for bromoketone 109.

$\mathrm{Br}-\mathrm{C}(111)$	1.968(8)	C(19)-C(14)-C(15)	111.4(6)
$\mathrm{O}(1)-\mathrm{C}(18)$	1.224(13)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	99.5(6)
$\mathrm{O}(2)-\mathrm{C}(112)$	1.466(10)	$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	110.3(6)
$\mathrm{O}(2)-\mathrm{C}(15)$	1.472(9)	$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	103.4(6)
$\mathrm{O}(3)-\mathrm{C}(113)$	1.417(12)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	111.0(8)
$\mathrm{O}(3)-\mathrm{Si}$	$1.633(7)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	125.0(9)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.482(15)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	121.9(8)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.500(13)	$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	124.5(8)
$\mathrm{C}(13)-\mathrm{C}(112)$	1.525(10)	$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	123.2(9)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.534(11)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	112.3(8)
C(14)-C(19)	1.413(14)	C(14)-C(19)-C(18)	111.2(7)
C(14)-C(15)	1.536(12)	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(110)$	117.1(7)
C(15)-C(16)	1.529(13)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(110)$	104.7(6)
C(16)-C(17)	1.251(17)	$\mathrm{C}(111)-\mathrm{C}(110)-\mathrm{C}(19)$	113.2(6)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.469(16)	C(112)-C(111)-C(113)	114.0(8)
C(18)-C(19)	1.547(10)	$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{C}(110)$	111.3(6)
C(19)-C(110)	1.567(10)	$\mathrm{C}(113)-\mathrm{C}(111)-\mathrm{C}(110)$	107.9(6)
$\mathrm{C}(110)-\mathrm{C}(111)$	1.543(11)	$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{Br}$	108.5(5)
$\mathrm{C}(111)-\mathrm{C}(112)$	1.484(13)	$\mathrm{C}(113)-\mathrm{C}(111)-\mathrm{Br}$	106.8(6)
C(111)-C(113)	1.497(12)	$\mathrm{C}(110)-\mathrm{C}(111)-\mathrm{Br}$	108.2(6)
Si C(21)	1.77(2)	$\mathrm{O}(2)-\mathrm{C}(112)-\mathrm{C}(111)$	106.8(6)
$\mathrm{Si}-\mathrm{C}(23)$	1.856(12)	$\mathrm{O}(2)-\mathrm{C}(112)-\mathrm{C}(13)$	103.7(6)
$\mathrm{Si} \mathrm{C}(22)$	1.859(16)	$\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{C}(13)$	114.4(8)
C(23)-C(26)	1.52(2)	$\mathrm{O}(3)-\mathrm{C}(113)-\mathrm{C}(111)$	108.7(6)
C(23)-C(24)	1.55(2)	$\mathrm{O}(3)-\mathrm{Si}-\mathrm{C}(21)$	106.8(9)
C(23)-C(25)	1.61(2)	$\mathrm{O}(3)-\mathrm{Si}-\mathrm{C}(23)$	106.1(5)
		$\mathrm{C}(21)-\mathrm{Si}-\mathrm{C}(23)$	113.5(9)
$\mathrm{C}(112)-\mathrm{O}(2)-\mathrm{C}(15)$	108.2(6)	$\mathrm{O}(3)-\mathrm{Si}-\mathrm{C}(22)$	108.5(8)
$\mathrm{C}(113)-\mathrm{O}(3)-\mathrm{Si}$	129.1(5)	$\mathrm{C}(21)-\mathrm{Si}-\mathrm{C}(22)$	108.7(8)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	112.3(9)	$\mathrm{C}(23)-\mathrm{Si}-\mathrm{C}(22)$	112.9(6)
$C(12)-C(13)-C(112)$	113.8(7)	C(26)-C(23)-C(24)	110.8(15)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	118.0(7)	$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{C}(25)$	108.4(12)
$\mathrm{C}(112)-\mathrm{C}(13)-\mathrm{C}(14)$	98.1(6)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(25)$	107.2(16)
C(19)-C(14)-C(13)	113.1(7)	$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{Si}$	112.7(13)

Symmetry transformations used to generate equivalent atoms:

Table B. 4 Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for bromoketone 109.

The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\right.$ $\ldots+2 h k a^{*} b^{*} U^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Br	$65(1)$	$88(1)$	$61(1)$	$13(1)$	$36(1)$	$-12(1)$
$\mathrm{O}(1)$	$82(4)$	$61(4)$	$77(4)$	$-18(3)$	$52(4)$	$12(4)$
$\mathrm{O}(2)$	$37(2)$	$58(3)$	$52(3)$	$12(3)$	$19(2)$	$3(3)$
$\mathrm{O}(3)$	$41(3)$	$136(7)$	$49(3)$	$11(4)$	$17(2)$	$25(4)$
$\mathrm{C}(11)$	$67(5)$	$105(9)$	$52(4)$	$-28(6)$	$9(4)$	$-7(6)$
$\mathrm{C}(12)$	$50(4)$	$78(7)$	$53(4)$	$-24(5)$	$7(3)$	$6(5)$
$\mathrm{C}(13)$	$33(3)$	$54(4)$	$37(3)$	$1(3)$	$10(3)$	$0(3)$
$\mathrm{C}(14)$	$30(3)$	$60(5)$	$39(4)$	$1(4)$	$12(3)$	$1(4)$
$\mathrm{C}(15)$	$34(3)$	$58(5)$	$48(4)$	$3(4)$	$16(3)$	$-7(3)$
$\mathrm{C}(16)$	$51(5)$	$99(8)$	$49(4)$	$31(5)$	$21(4)$	$2(5)$
$\mathrm{C}(17)$	$51(4)$	$81(7)$	$45(5)$	$-13(5)$	$28(4)$	$-6(5)$
$\mathrm{C}(18)$	$44(4)$	$89(7)$	$44(4)$	$3(4)$	$24(3)$	$-5(5)$
$\mathrm{C}(19)$	$43(4)$	$69(5)$	$35(3)$	$2(4)$	$28(3)$	$-1(4)$
$\mathrm{C}(110)$	$46(4)$	$56(5)$	$43(4)$	$0(3)$	$24(3)$	$-1(4)$
$\mathrm{C}(111)$	$48(4)$	$46(4)$	$38(4)$	$-16(3)$	$26(3)$	$-27(3)$
$\mathrm{C}(112)$	$37(3)$	$65(5)$	$36(3)$	$-3(4)$	$19(3)$	$3(4)$
$\mathrm{C}(113)$	$38(4)$	$111(8)$	$42(4)$	$-4(5)$	$11(3)$	$-6(5)$
Si	$38(1)$	$93(2)$	$55(1)$	$6(1)$	$9(1)$	$-9(1)$
$\mathrm{C}(21)$	$149(15)$	$156(16)$	$89(9)$	$-20(11)$	$39(9)$	$-70(14)$
$\mathrm{C}(22)$	$51(6)$	$190(17)$	$83(8)$	$6(11)$	$-6(6)$	$-8(9)$
$\mathrm{C}(23)$	$58(5)$	$85(7)$	$119(9)$	$-51(8)$	$43(6)$	$-19(6)$
$\mathrm{C}(24)$	$108(10)$	$200(20)$	$72(7)$	$-25(11)$	$36(7)$	$-29(13)$
$\mathrm{C}(25)$	$120(11)$	$100(10)$	$161(14)$	$22(10)$	$100(11)$	$-3(9)$
$\mathrm{C}(26)$	$79(9)$	$131(15)$	$230(20)$	$-45(16)$	$61(13)$	$9(10)$

Table B. 5 Hydrogen coordinates ($x{ }^{104}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right.$) for bromoketone 109.

	x	y	z	U(eq)
$\mathrm{H}(11 \mathrm{~A})$	2813	7475	4783	113
$\mathrm{H}(11 \mathrm{~B})$	3873	8773	5375	113
$\mathrm{H}(11 \mathrm{C})$	3903	6377	5458	113
H(12A)	4987	7342	4421	74
$\mathrm{H}(12 \mathrm{~B})$	3953	8625	3774	74
H(13)	3760	4360	3964	49
H(14)	5200	5102	3016	51
$\mathrm{H}(15)$	4331	8024	2229	55
H(16)	3756	7146	470	78
$\mathrm{H}(17)$	4513	4367	131	67
H(19)	4367	2020	2805	55
H(11D)	2474	2993	1200	55
H(11E)	2582	1171	1947	55
H(112)	2030	6538	3185	53
H(11F)	822	4916	1201	76
H(11G)	483	2729	1502	76
$\mathrm{H}(21 \mathrm{~A})$	-31	9129	1668	195
H (21B)	-1321	9437	1062	195
$\mathrm{H}(21 \mathrm{C})$	-508	8013	649	195
$\mathrm{H}(22 \mathrm{~A})$	-1837	4309	436	169
H (22B)	-2837	5643	633	169
H (22C)	-2422	3667	1264	169
H(24A)	-435	9424	3495	186
H(24B)	5	7294	3965	186
H(24C)	-947	8486	4315	186
H(25A)	-1942	5163	4070	172
H(25B)	-1274	3984	3422	172
H(25C)	-2602	4401	3008	172
H(26A)	-2968	8600	3252	214
H(26B)	-3296	7631	2189	214

APPENDIX C

SUPPLEMENTARY CRYSTALLOGRAPHIC INFORMATION ON

 KETONE 152

Table C. 1 Crystal data and structure refinement for 152.

Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{5}$
Formula weight	267.28
Temperature	290(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	$\mathrm{P} 2 / 1 \mathrm{c}$
Unit cell dimensions	$a=10.236(1) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=6.463(1) \AA \quad \beta=93.19(1)^{\circ}$.
	$\mathrm{c}=19.977(2) \AA$ 成 $\quad \gamma=90^{\circ}$.
Volume	1319.5(3) A 3
Z	4
Density (calculated)	$1.345 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.871 \mathrm{~mm}^{-1}$
F(000)	568
Crystal size	$0.3 \times 0.3 \times 0.2 \mathrm{~mm}^{3}$
Theta range for data collection	4.33 to 67.21°.
Index ranges	$-12<=h<=0,-7<=k<=1,-23<=1<=23$
Reflections collected	2637
Independent reflections	$2180[R($ int $)=0.0372]$
Completeness to theta $=67.21^{\circ}$	91.9 \%
Absorption correction	Empirical
Max. and min. transmission	0.8152 and 0.4417
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2180 / 0/177
Goodness-of-fit on F^{2}	1.075
Final R indices [l>2sigma(I)]	$\mathrm{R} 1=0.0409, w R 2=0.1100$
R indices (all data)	$R 1=0.0507, w R 2=0.1223$
Extinction coefficient	0
Largest diff. peak and hole	0.150 and -0.144 e. \AA^{-3}

Table C. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times{ }^{10}$) for 152.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x			y
		z	$\mathrm{U}(\mathrm{eq})$	
$\mathrm{O}(1)$	$1196(2)$	$3598(2)$	$947(1)$	$66(1)$
$\mathrm{O}(2)$	$-367(1)$	$1235(2)$	$741(1)$	$57(1)$
$\mathrm{O}(3)$	$3265(2)$	$3495(2)$	$3097(1)$	$62(1)$
$\mathrm{O}(4)$	$2423(1)$	$1161(2)$	$3795(1)$	$59(1)$
$\mathrm{O}(5)$	$3749(2)$	$-1029(3)$	$643(1)$	$87(1)$
N	$2198(2)$	$624(2)$	$2699(1)$	$46(1)$
$\mathrm{C}(1)$	$4755(2)$	$2041(4)$	$1039(1)$	$73(1)$
$\mathrm{C}(2)$	$4019(2)$	$88(4)$	$1117(1)$	$56(1)$
$\mathrm{C}(3)$	$3589(2)$	$-420(3)$	$1814(1)$	$47(1)$
$\mathrm{C}(4)$	$3100(2)$	$-2649(3)$	$1905(1)$	$56(1)$
$\mathrm{C}(5)$	$1701(2)$	$-2632(3)$	$2156(1)$	$49(1)$
$\mathrm{C}(6)$	$866(2)$	$-1450(3)$	$1653(1)$	$47(1)$
$\mathrm{C}(7)$	$1261(2)$	$492(3)$	$1565(1)$	$40(1)$
$\mathrm{C}(8)$	$2465(2)$	$1061(3)$	$1995(1)$	$41(1)$
$\mathrm{C}(9)$	$1718(2)$	$-1469(3)$	$2823(1)$	$52(1)$
$\mathrm{C}(10)$	$716(2)$	$1953(3)$	$1063(1)$	$44(1)$
$\mathrm{C}(11)$	$-958(2)$	$2562(4)$	$228(1)$	$69(1)$
$\mathrm{C}(12)$	$2684(2)$	$1894(3)$	$3185(1)$	$45(1)$
$\mathrm{C}(13)$	$2922(3)$			

Table C. 3 Bond lengths [\AA] and angles [${ }^{\circ}$] for 152.

$\mathrm{O}(1)-\mathrm{C}(10)$	$1.199(2)$
$\mathrm{O}(2)-\mathrm{C}(10)$	$1.334(2)$
$\mathrm{O}(2)-\mathrm{C}(11)$	$1.444(2)$
$\mathrm{O}(3)-\mathrm{C}(12)$	$1.211(2)$
$\mathrm{O}(4)-\mathrm{C}(12)$	$1.349(2)$
$\mathrm{O}(4)-\mathrm{C}(13)$	$1.436(2)$
$\mathrm{O}(5)-\mathrm{C}(2)$	$1.210(2)$
$\mathrm{N}-\mathrm{C}(12)$	$1.345(2)$
$\mathrm{N}-\mathrm{C}(9)$	$1.464(2)$
$\mathrm{N}-\mathrm{C}(8)$	$1.474(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.482(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.520(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.538(3)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.555(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.544(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.492(3)$
$\mathrm{C}(5)-\mathrm{C}(9)$	$1.529(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.333(3)$
$\mathrm{C}(7)-\mathrm{C}(10)$	$1.464(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.508(2)$
C	
$\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{C}(11)$	$116.13(16)$
$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(13)$	$115.62(16)$
$\mathrm{C}(12)-\mathrm{N}-\mathrm{C}(9)$	$123.80(14)$
$\mathrm{C}(12)-\mathrm{N}-\mathrm{C}(8)$	$119.33(14)$
$\mathrm{C}(9)-\mathrm{N}-\mathrm{C}(8)$	$114.80(14)$
$\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{C}(1)$	$121.4(2)-\mathrm{C}(3)$
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(4)$	$108.71(16)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$113.88(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	$126.24(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$113.44(15)$
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.06(15)$
$121.5(2)$	
18$)$	

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$115.00(17)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$109.66(15)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$107.43(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.20(15)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	$108.22(16)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$106.95(15)$
$\mathrm{N}-\mathrm{C}(8)-\mathrm{C}(7)$	$107.96(13)$
$\mathrm{N}-\mathrm{C}(8)-\mathrm{C}(3)$	$106.43(14)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$107.97(14)$
$\mathrm{N}-\mathrm{C}(9)-\mathrm{C}(5)$	$107.16(14)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{O}(2)$	$123.56(17)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(7)$	$124.07(16)$
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(7)$	$112.36(16)$
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{N}$	$125.60(16)$
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{O}(4)$	$123.70(16)$
$\mathrm{N}-\mathrm{C}(12)-\mathrm{O}(4)$	$110.69(16)$

[^1]Table C. 4 Anisotropic displacement parameters ($\AA^{2} \mathbf{x} 10^{3}$) for 152.
The anisotropicdisplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\right.$ $\ldots+2 h k a^{*} b^{*} U^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$O(1)$	$72(1)$	$62(1)$	$63(1)$	$16(1)$	$-13(1)$	$-7(1)$
$O(2)$	$52(1)$	$63(1)$	$55(1)$	$2(1)$	$-13(1)$	$5(1)$
$O(3)$	$72(1)$	$66(1)$	$49(1)$	$-2(1)$	$2(1)$	$-22(1)$
$O(4)$	$65(1)$	$78(1)$	$35(1)$	$-2(1)$	$3(1)$	$-21(1)$
$O(5)$	$69(1)$	$137(2)$	$54(1)$	$-24(1)$	$13(1)$	$-19(1)$
N	$53(1)$	$50(1)$	$34(1)$	$1(1)$	$4(1)$	$-9(1)$
$C(1)$	$65(1)$	$92(2)$	$64(1)$	$15(1)$	$16(1)$	$-3(1)$
$C(2)$	$35(1)$	$86(2)$	$48(1)$	$-1(1)$	$4(1)$	$6(1)$
$C(3)$	$37(1)$	$61(1)$	$42(1)$	$2(1)$	$-1(1)$	$3(1)$
$C(4)$	$54(1)$	$54(1)$	$59(1)$	$1(1)$	$1(1)$	$13(1)$
$C(5)$	$55(1)$	$43(1)$	$48(1)$	$3(1)$	$-2(1)$	$-6(1)$
$C(6)$	$42(1)$	$55(1)$	$43(1)$	$-3(1)$	$-1(1)$	$-3(1)$
$C(7)$	$36(1)$	$47(1)$	$37(1)$	$1(1)$	$4(1)$	$1(1)$
$C(8)$	$42(1)$	$47(1)$	$34(1)$	$2(1)$	$3(1)$	$-4(1)$
$C(9)$	$58(1)$	$55(1)$	$43(1)$	$7(1)$	$3(1)$	$-9(1)$
$C(10)$	$42(1)$	$52(1)$	$38(1)$	$-4(1)$	$3(1)$	$4(1)$
$C(11)$	$74(1)$	$76(2)$	$55(1)$	$0(1)$	$-19(1)$	$21(1)$
$C(12)$	$39(1)$	$56(1)$	$39(1)$	$1(1)$	$4(1)$	$-4(1)$
$C(13)$	$89(2)$	$109(2)$	$39(1)$	$-13(1)$	$4(1)$	$-34(2)$

Table C. 5 Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters ($\AA^{2} \mathbf{x} 10^{3}$) for 152.

	x	y	z	$U(e q)$
$H(1 A)$	5200	1999	629	$121(4)$
$H(1 B)$	5383	2201	1410	$121(4)$
$H(1 C)$	4158	3187	1028	$121(4)$
$H(3)$	4333	-189	2135	$63(2)$
$H(4 A)$	3683	-3370	2225	$63(2)$
$H(4 B)$	3103	-3378	1480	$63(2)$
$H(5)$	1371	-4044	2206	$63(2)$
$H(6)$	136	-2015	1423	$63(2)$
$H(8)$	2706	2513	1933	$63(2)$
$H(9 A)$	845	-1413	2987	$63(2)$
$H(9 B)$	2290	-2162	3155	$63(2)$
$H(11 A)$	-1156	3880	419	$121(4)$
$H(11 B)$	-1750	1937	44	$121(4)$
$H(11 C)$	-362	2752	-121	$121(4)$
$H(13 A)$	3859	2281	4390	$121(4)$
$H(13 B)$	2574	1857	4759	$121(4)$
$H(13 C)$	2665	3791	4290	$121(4)$

APPENDIX D

SUPPLEMENTARY CRYSTALLOGRAPHIC INFORMATION ON BENZOATE 157

Table D. 1 Crystal data and structure refinement for 157.

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrNO}_{6}$
Formula weight	450.28
Temperature	290(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	12/a (\#15)
Unit cell dimensions	$a=13.358(1) \AA \quad \alpha=90^{\circ}$.
	$b=9.281(1) \AA$ 成 $\quad \beta=91.95(1)^{\circ}$.
	$c=31.128(2) \AA \quad \gamma=90^{\circ}$.
Volume	3856.9(6) \AA^{3}
Z	8
Density (calculated)	$1.443 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.012 \mathrm{~mm}^{-1}$
F(000)	1840
Crystal size	$0.20 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	2.84 to $67.23{ }^{\circ}$.
Index ranges	$-14<=h<=12,-11<=k<=1,-37<=k<=15$
Reflections collected	3848
Independent reflections	$3234[\mathrm{R}(\mathrm{int})=0.0435]$
Completeness to theta $=67.23^{\circ}$	87.1 \%
Absorption correction	Empirical
Max. and min. transmission	0.3880 and 0.0227
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3234 / 8 / 282
Goodness-of-fit on F^{2}	1.066
Final R indices [l>2sigma(l)]	$\mathrm{R} 1=0.0409, w R 2=0.1079$
R indices (all data)	$\mathrm{R} 1=0.0439, w R 2=0.1109$
Largest diff. peak and hole	0.298 and -0.505 e. ${ }^{\text {a }}$-3

Table D. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2}{ }^{2} \times 10^{3}$) for 157.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x		y	z
		$\mathrm{U}(\mathrm{eq})$		
$\mathrm{C}(1)$	$-338(2)$	$10519(2)$	$6284(1)$	$46(1)$
$\mathrm{C}(2)$	$-50(2)$	$10571(2)$	$6763(1)$	$43(1)$
$\mathrm{C}(3)$	$36(2)$	$8989(2)$	$6922(1)$	$47(1)$
$\mathrm{C}(4)$	$-1057(2)$	$8711(2)$	$7020(1)$	$40(1)$
$\mathrm{C}(5)$	$-1722(2)$	$9259(2)$	$6624(1)$	$38(1)$
$\mathrm{C}(6)$	$-1992(2)$	$10750(2)$	$6802(1)$	$38(1)$
$\mathrm{C}(7)$	$-2359(2)$	$10389(2)$	$7258(1)$	$43(1)$
$\mathrm{C}(8)$	$-1274(2)$	$9959(2)$	$7330(1)$	$40(1)$
$\mathrm{C}(9)$	$-940(2)$	$11139(2)$	$7017(1)$	$41(1)$
$\mathrm{C}(10)$	$-2554(2)$	$11851(2)$	$6537(1)$	$43(1)$
$\mathrm{C}(11)$	$-3439(2)$	$12338(3)$	$5885(1)$	$73(1)$
$\mathrm{C}(12)$	$-1454(2)$	$8896(3)$	$5859(1)$	$51(1)$
$\mathrm{C}(131)$	$-962(17)$	$8580(20)$	$5139(4)$	$86(5)$
$\mathrm{C}(132)$	$-1310(30)$	$9100(40)$	$5109(3)$	$103(6)$
$\mathrm{C}(14)$	$-1185(2)$	$9198(2)$	$8059(1)$	$43(1)$
$\mathrm{C}(15)$	$-582(2)$	$9322(2)$	$8467(1)$	$41(1)$
$\mathrm{C}(16)$	$372(2)$	$9901(3)$	$8487(1)$	$50(1)$
$\mathrm{C}(17)$	$917(2)$	$9936(3)$	$8872(1)$	$57(1)$
$\mathrm{C}(18)$	$498(2)$	$9385(3)$	$9233(1)$	$54(1)$
$\mathrm{C}(19)$	$-460(2)$	$8822(3)$	$9224(1)$	$54(1)$
$\mathrm{C}(20)$	$-996(2)$	$8778(2)$	$8838(1)$	$46(1)$
Br	$1272(1)$	$9340(1)$	$9757(1)$	$90(1)$
N	$-1130(1)$	$9431(2)$	$6239(1)$	$43(1)$
O(1)	$-2678(2)$	$13072(2)$	$6654(1)$	$68(1)$
O(2)	$-2910(1)$	$11327(2)$	$6166(1)$	$60(1)$
O(3)	$-2153(2)$	$8082(2)$	$5800(1)$	$71(1)$
O(4)	$-873(2)$	$9363(2)$	$5540(1)$	$70(1)$
O(5)	$-762(1)$	$9945(2)$	$7739(1)$	$48(1)$
O(6)	$-1936(1)$	$8509(2)$	$8009(1)$	$64(1)$

Table D. 3 Bond lengths [\AA] and angles [${ }^{\circ}$] for 157.

C(1)-N	1.523(3)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	106.67(17)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.534(3)	$C(1)-C(2)-C(3)$	107.12(18)
C(2)-C(3)	1.552(3)	C(1)-C(2)-C(9)	107.2(2)
C(2)-C(9)	1.614(3)	$C(3)-C(2)-C(9)$	102.13(17)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.630(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	98.18(18)
$\mathrm{C}(4)-\mathrm{C}(8)$	1.546(3)	C(8)-C(4)-C(5)	96.46(16)
C(4)-C(5)	1.615(3)	$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(3)$	102.37(17)
$\mathrm{C}(5)-\mathrm{N}$	1.503(3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	110.77(17)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.545(3)	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)$	110.32(15)
C(6)-C(10)	1.527(3)	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(4)$	107.88(18)
$C(6)-C(7)$	1.566(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	99.08(16)
$C(6)-C(9)$	1.670(3)	$C(10)-C(6)-C(5)$	122.68(19)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.615(4)	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)$	116.42(18)
$\mathrm{C}(8)-\mathrm{O}(5)$	1.450 (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	103.27(15)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.551(3)	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(9)$	121.71(17)
$\mathrm{C}(10)-\mathrm{O}(1)$	1.204(3)	C(5)-C(6)-C(9)	95.91(17)
$\mathrm{C}(10)-\mathrm{O}(2)$	1.339(3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)$	90.63(17)
$\mathrm{C}(11)-\mathrm{O}(2)$	1.476(3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	79.92(16)
$\mathrm{C}(12)-\mathrm{O}(3)$	1.264(3)	$\mathrm{O}(5)-\mathrm{C}(8)-\mathrm{C}(4)$	115.74(18)
$\mathrm{C}(12)$ - N	1.351(3)	$\mathrm{O}(5)-\mathrm{C}(8)-\mathrm{C}(9)$	113.51(17)
$\mathrm{C}(12)-\mathrm{O}(4)$	1.389(3)	$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	93.76(16)
$\mathrm{C}(131)-\mathrm{O}(4)$	1.446(7)	$\mathrm{O}(5)-\mathrm{C}(8)-\mathrm{C}(7)$	125.50(18)
$\mathrm{C}(132)-\mathrm{O}(4)$	1.479(13)	$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	108.26(18)
$\mathrm{C}(14)-\mathrm{O}(6)$	1.258(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	93.26(16)
$\mathrm{C}(14)-\mathrm{O}(5)$	1.372(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(2)$	110.06(17)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.517(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(6)$	78.66(15)
$\mathrm{C}(15)-\mathrm{C}(20)$	1.409(3)	$C(2)-C(9)-C(6)$	116.95(17)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.471(4)	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{O}(2)$	123.0(2)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.407(4)	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(6)$	123.3(2)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.393(4)	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(6)$	113.74(18)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.471(4)	$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{N}$	126.5(2)
$\mathrm{C}(18)-\mathrm{Br}$	1.942(3)	$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{O}(4)$	125.2(2)
$\mathrm{C}(19)$-C(20)	1.405(4)	$\mathrm{N}-\mathrm{C}(12)-\mathrm{O}(4)$	108.2(2)
		$\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{O}(5)$	124.4(2)

$\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{C}(15)$	$127.2(2)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$120.8(2)$
$\mathrm{O}(5)-\mathrm{C}(14)-\mathrm{C}(15)$	$108.36(19)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$117.2(2)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.9(2)$	$\mathrm{C}(12)-\mathrm{N}-\mathrm{C}(5)$	$118.2(2)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(14)$	$114.5(2)$	$\mathrm{C}(12)-\mathrm{N}-\mathrm{C}(1)$	$124.04(19)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$124.6(2)$	$\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(1)$	$115.87(17)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$122.3(2)$	$\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{C}(11)$	$117.0(2)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$115.8(3)$	$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(131)$	$114.9(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$123.0(2)$	$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(132)$	$110.5(10)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{Br}$	$115.8(2)$	$\mathrm{C}(131)-\mathrm{O}(4)-\mathrm{C}(132)$	$27.4(11)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{Br}$	$121.16(19)$	$\mathrm{C}(14)-\mathrm{O}(5)-\mathrm{C}(8)$	$114.76(18)$

Symmetry transformations used to generate equivalent atoms:

Table D. 4 Anisotropic displacement parameters ($\AA^{2} \mathbf{x} \mathbf{1 0}^{3}$) for 157.
The anisotropicdisplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\right.$ $\ldots+2 h k a^{*} b^{*} U^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	$U 12$
$\mathrm{C}(1)$	$49(2)$	$35(1)$	$54(1)$	$2(1)$	$19(1)$	$-8(1)$
$\mathrm{C}(2)$	$42(2)$	$34(1)$	$54(1)$	$3(1)$	$10(1)$	$-7(1)$
$\mathrm{C}(3)$	$46(2)$	$33(1)$	$61(1)$	$5(1)$	$12(1)$	$3(1)$
$\mathrm{C}(4)$	$50(1)$	$24(1)$	$48(1)$	$4(1)$	$13(1)$	$-2(1)$
$\mathrm{C}(5)$	$45(1)$	$26(1)$	$44(1)$	$-1(1)$	$14(1)$	$-6(1)$
$\mathrm{C}(6)$	$45(1)$	$26(1)$	$44(1)$	$1(1)$	$12(1)$	$1(1)$
$\mathrm{C}(7)$	$50(2)$	$36(1)$	$44(1)$	$-1(1)$	$14(1)$	$1(1)$
$\mathrm{C}(8)$	$47(1)$	$31(1)$	$42(1)$	$0(1)$	$7(1)$	$-4(1)$
$\mathrm{C}(9)$	$51(2)$	$23(1)$	$49(1)$	$-1(1)$	$8(1)$	$-4(1)$
$\mathrm{C}(10)$	$45(1)$	$36(1)$	$50(1)$	$5(1)$	$13(1)$	$1(1)$
$\mathrm{C}(11)$	$90(2)$	$65(2)$	$63(2)$	$20(1)$	$-4(2)$	$10(2)$
$\mathrm{C}(12)$	$68(2)$	$39(1)$	$47(1)$	$-2(1)$	$18(1)$	$-8(1)$
$\mathrm{C}(131)$	$103(9)$	$111(9)$	$46(3)$	$-23(4)$	$28(4)$	$-40(7)$
$\mathrm{C}(132)$	$147(16)$	$112(13)$	$52(5)$	$-6(6)$	$28(7)$	$-37(10)$
$\mathrm{C}(14)$	$56(2)$	$26(1)$	$48(1)$	$3(1)$	$9(1)$	$-4(1)$
$\mathrm{C}(15)$	$53(2)$	$25(1)$	$45(1)$	$0(1)$	$9(1)$	$1(1)$
$\mathrm{C}(16)$	$59(2)$	$40(1)$	$51(1)$	$2(1)$	$11(1)$	$-6(1)$
$\mathrm{C}(17)$	$54(2)$	$55(2)$	$63(2)$	$-9(1)$	$2(1)$	$-3(1)$
$\mathrm{C}(18)$	$64(2)$	$49(1)$	$47(1)$	$-8(1)$	$0(1)$	$18(1)$
$\mathrm{C}(19)$	$72(2)$	$46(1)$	$45(1)$	$3(1)$	$15(1)$	$11(1)$
$\mathrm{C}(20)$	$56(2)$	$32(1)$	$50(1)$	$2(1)$	$13(1)$	$2(1)$
Br	$89(1)$	$125(1)$	$54(1)$	$-14(1)$	$-12(1)$	$30(1)$
N	$53(1)$	$32(1)$	$45(1)$	$-2(1)$	$18(1)$	$-8(1)$
$\mathrm{O}(1)$	$93(2)$	$35(1)$	$77(1)$	$-3(1)$	$0(1)$	$19(1)$
$\mathrm{O}(2)$	$79(1)$	$46(1)$	$55(1)$	$5(1)$	$-4(1)$	$10(1)$
$\mathrm{O}(3)$	$95(2)$	$65(1)$	$53(1)$	$-11(1)$	$17(1)$	$-37(1)$
$\mathrm{O}(4)$	$94(2)$	$70(1)$	$47(1)$	$-6(1)$	$25(1)$	$-28(1)$
$\mathrm{O}(5)$	$55(1)$	$47(1)$	$43(1)$	$5(1)$	$6(1)$	$-11(1)$
$\mathrm{O}(6)$	$78(1)$	$54(1)$	$60(1)$	$14(1)$	$-6(1)$	$-32(1)$

Table D. 5 Hydrogen coordinates ($x{ }^{104}$) and isotropic displacement parameters ($\AA^{2} \mathbf{x} 10^{3}$) for 157.

	x	y	z	U(eq)
H(1A)	-553(5)	11500(20)	6182(2)	58(2)
H(1B)	205(11)	10209(6)	6109(4)	58(2)
$\mathrm{H}(2)$	523(18)	11150(18)	6824(2)	58(2)
H(3A)	436(9)	8904(3)	7179(5)	58(2)
H(3B)	258(5)	8348(14)	6699(5)	58(2)
H(4)	-1198(5)	7760(30)	7126(3)	58(2)
$\mathrm{H}(5)$	-2284(17)	8610(20)	6567(2)	58(2)
H(7A)	-2803(10)	9576(17)	7268(1)	58(2)
H(7B)	-2565(5)	11228(17)	7426(4)	58(2)
$\mathrm{H}(9)$	-875(3)	12120(30)	7143(4)	58(2)
H(11A)	-3613(17)	11861(14)	5615(7)	120(7)
H(11B)	-3055(11)	13180(20)	5827(7)	120(7)
H(11C)	-4001(16)	12640(20)	6027(5)	120(7)
H(13A)	-360(40)	8590(50)	4994(10)	120(7)
H(13B)	-1450(30)	9030(40)	4952(11)	120(7)
H(13C)	-1140(40)	7570(70)	5199(6)	120(7)
H(13D)	-820(40)	9200(80)	4882(16)	120(7)
H(13E)	-1830(60)	9820(90)	5051(11)	120(7)
H(13F)	-1570(60)	8080(80)	5098(8)	120(7)
H(16)	629(8)	10263(12)	8233(8)	58(2)
$\mathrm{H}(17)$	1590(20)	10348(13)	8885(1)	58(2)
H(19)	-719(9)	8485(11)	9481(8)	58(2)
H(20)	-1680(20)	8356(13)	8826(1)	58(2)

Table D. 6 Torsion angles [${ }^{\circ}$] for 157.

$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$46.5(2)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	$-62.5(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-84.4(2)$
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$28.1(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$-54.8(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$47.1(2)$
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}$	$123.02(16)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}$	$17.1(2)$
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$8.12(18)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-97.76(19)$
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)$	$60.6(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)$	$173.61(19)$
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-165.40(19)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-52.4(2)$
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	$-73.4(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	$39.65(17)$
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-156.18(19)$	
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$66.37(18)$
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-29.85(13)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{O}(5)$	$-176.73(17)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{O}(5)$	$-63.8(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	$-58.33(17)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	$54.64(19)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	$36.36(19)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	$149.32(17)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(5)$	$154.57(19)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(4)$	$-62.58(17)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$32.46(15)$
$\mathrm{O}(5)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(2)$	$83.6(2)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(2)$	$-36.6(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(2)$	$-145.12(18)$
$\mathrm{O}(5)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(6)$	$-161.59(18)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(6)$	$78.19(15)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(6)$	$-30.36(14)$

$\left.\begin{array}{lc}\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(8) & 116.95(19) \\ \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(8) & 4.5(2) \\ \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(6) & 29.8(2) \\ \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(6) & -82.7(2) \\ \mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(8) & 153.4(2) \\ \mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(8) & -72.05(15) \\ \mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(8) & 31.36(14) \\ \mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(2) & -99.8(2) \\ \mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(2) & 34.8(2) \\ \mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(2) & 138.25(17) \\ \mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(1) & -171.3(2) \\ \mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(1) & 60.2(3) \\ \mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(1) & -48.6(3) \\ \mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(2) & 9.8(3) \\ \mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(2) & -118.8(2) \\ \mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(2) & 132.5(2) \\ \mathrm{O}(6)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20) & -10.1(3) \\ \mathrm{O}(5)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20) & 171.43(18) \\ \mathrm{O}(6)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16) & 167.5(2) \\ \mathrm{O}(5)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16) & -10.9(3) \\ \mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17) & 0.3(3) \\ \mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17) & -177.2(2) \\ \mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18) & 0.1(4) \\ \mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19) & -1.1(4) \\ \mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{Br} & 176.90(18) \\ \mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20) & 1.8(4) \\ \mathrm{Br}-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20) & -176.09(17) \\ \mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15) & -1.3(3) \\ \mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19) & 0.3(3) \\ \mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19) & 178.07(19) \\ \mathrm{O}(3)-\mathrm{C}(12)-\mathrm{N}-\mathrm{C}(5) & -10.4(4) \\ \mathrm{O}(4)-\mathrm{C}(12)-\mathrm{N}-\mathrm{C}(5) & -\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(12) \\ \mathrm{O}(3)-\mathrm{C}(12)-\mathrm{N}-\mathrm{C}(12) & 1713.7(2) \\ \mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(1) & 134.1(2) \\ \mathrm{C}(4) & \\ \hline\end{array}\right)$

$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(1)$	$46.3(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(1)$	$-60.9(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(12)$	$-167.5(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	$28.5(3)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{C}(11)$	$2.8(4)$
$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{C}(11)$	$-178.2(2)$
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(131)$	$-15.0(15)$
$\mathrm{N}-\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(131)$	$163.5(14)$
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(132)$	$14(2)$
$\mathrm{N}-\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(132)$	$-167.1(19)$
$\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{O}(5)-\mathrm{C}(8)$	$3.2(3)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{O}(5)-\mathrm{C}(8) 178.28(17)$	
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{O}(5)-\mathrm{C}(14)$	$-89.7(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(5)-\mathrm{C}(14)$	$163.53(18)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(5)-\mathrm{C}(14)$	$50.8(3)$

Symmetry transformations used to generate equivalent atoms:

Table D. 7 Hydrogen bonds for 157 [\AA and ${ }^{\circ}$].

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$O(6)-H O 6 \ldots O(1)$	0.82	1.99	$2.735(4)$	150.9
$\mathrm{O}(3)-\mathrm{HO} \ldots \ldots(6) \# 1$	0.82	2.02	$2.829(4)$	168.7

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,y-1/2,-z+3/2

${ }^{13} \mathrm{C}$ NMR 100 MHz CDCl_{3}

${ }^{13} \mathrm{C}$ NMR 100 MHz
CDCl_{3}

89

90
${ }^{13} \mathrm{C}$ NMR 75 MHz CDCl_{3}

180	160	140	120	100	80	60	1	1	10	20

${ }^{13} \mathrm{C}$ NMR 75 MHz

${ }^{13} \mathrm{C}$ NMR 75 MHz CDCl_{3}

${ }^{13} \mathrm{C}$ NMR 75 MHz CDCl_{3}

$\begin{array}{lllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 220 & 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & \mathrm{ppm}\end{array}$

${ }^{13} \mathrm{C}$ NMR 75 MHz
CDCl_{3}

1	1	1	1	1	1	1	1	1	1	1
200	180	160	140	120	100	80	60	40	20	ppm

${ }^{13} \mathrm{C}$ NMR 75 MHz CDCl_{3}

${ }^{13} \mathrm{C}$ NMR 75 MHz

190c
${ }^{13} \mathrm{C}$ NMR 75 MHz CDCl_{3}

[^0]: Symmetry transformations used to generate equivalent atoms:

[^1]: Symmetry transformations used to generate equivalent atoms:

