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STABILITY AND COMPLEXITY: A REAPPRAISAL OF THE
 
COMPETITIVE EXCLUSION PRINCIPLE
 

CHAPTER 1
 

INTRODUCTION
 

Observations of nature led ecologists to the conclusion that nature was amazingly 

complex and at the same time extremely stable. This dogma went unquestioned for many 

years. In an important turn of events, economic models were introduced into ecology. 

This led to apparent mathematical incompatibility between complexity and stability of 

ecosystems that arose following the analysis of simplistic models that yielded quite 

different results. It was discovered that as an ecosystem becomes more complex, the 

mathematical stability of the system suffers. The incompatibility of complexity and 

stability led many ecologists to seek ways of incorporating the intuitive complexity of 

nature with the stability of simple models. In doing so, some ecologists have also 

managed to create models in violation of another very important tenet of biology, the 

competitive exclusion principle, which states that "complete competitors cannot coexist. 

This intriguing result served as fuel for continuing investigation into the competitive 

exclusion principle. 

Chapter 2 is a review of pertinent literature, exploring various attempts to 

overcome the problems presented by these theories. In some cases there have been efforts 

to unite these two biological conundrums. These solutions are examined and discussed in 

context to these two ideas. While the solutions presented by various authors are not 

wholly wrong, there are explanations that at first seemingly explain the issues. 
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Nevertheless, after further review, past studies only skirt or completely dodge the 

questions of importance. These issues of significance examined are the generality of the 

competitive exclusion principle and the negative association of stability and complexity. 

While making inquiry into the principle and whether it may be generalized to larger 

systems using theoretical qualitative analysis of simple models, it was found that the 

competitive exclusion principle holds true only in the situation where two species are 

competing for a single resource, and that coexistence is possible when a third competitor 

is present. Although in certain circumstances, the principle is accurate. While the 

complication of a simplistic, unstable system proved that the competitive exclusion 

principle has limited applications, the analysis also hinted that stability could result from 

complexity. Testing whether the confounding factor was in fact complexity and not the 

types of interactions involved meant the effects had to be separated. The best way to 

approach this problem was by applying the model that most precisely upholds the 

competitive exclusion principle. The examination began with a study of how increased 

complexity can bring stability to a series of models derived from an initially unstable 

model. The addition of a fourth species to the two competitor-one resource system 

increases the likelihood of coexistence irrelevant of interaction type. 
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CHAPTER 2
 

LITERATURE REVIEW
 

2.1 THE ELTONIAN BEGINNING 

Our understanding of ecosystems has grown slowly from humble beginnings. 

According to Elton (1927), nature, teleologically speaking, employed complexity to 

ameliorate 'weak' and simple ecosystems. 'Weak' was Elton's way of describing an 

ecosystem's tendency to lose species to extinction, to undergo wide population 

fluctuations, and to suffer invasions from exotic species. Elton (1927) throughout his 

classic book, Animal Ecology, stated that natural ecosystems were complex and hints at 

their stability versus simple ecosystems. 

Although Elton never defined stability, it is assumed by most modern ecologists to 

be the same kind of stability as applied in recent ecological studies. This view, that the 

complexity of a natural system leads to stability, is known as `Eltonian' From various 

observations of the natural world, Elton came to the conclusion that a complex ecosystem 

possessed extensive connectiveness and stability not found in simple ecosystems. Remote 

islands for example were supposed to be more vulnerable to invasions (Elton 1958; 

Pimentel 1961). Both Elton and Pimentel also used examples, as well as experiments and 

mathematical models, of one predator-one prey systems, showing that these simple 

systems usually crashed quickly. Examples of pest outbreaks in agricultural systems were 
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used to emphasize their contention. Monocultures were simple ecosystems and frequently 

had outbreaks of pests. They argued that these simple systems were 'unstable'. 

Comparisons of complex tropical rainforests, seemingly more stable, with simple arctic 

communities, with frequent fluctuations, were used to indicate that an ecosystem's 

complexity apparently led to stability. Observations of the vulnerability of islands to 

invasions were included as evidence of the superiority of the more complex and, therefore, 

more stable tropical biota. These arguments helped to bolster their view that, in fact, 

complexity and stability were positively related. The Eltonian view dominated for some 

time as a hypothesis of importance, eventually becoming an accepted tenet in ecology. 

MacArthur (1955) supported the positive relationship between complexity and 

stability. Using the Shannon-Weaver formula derived from the theory of information, he 

believed to have demonstrated that complexity and stability were consistent within trophic 

webs. When the number of energy pathways to a consumer was increased the failure of 

any one pathway would not be as devastating as when there were only one pathway. 

Thus, MacArthur suggested a correlation, however tenuous, between complexity and 

diversity, "The intuitive requirements seem to be that if each species has just one predator 

and one prey the stability should be minimum, say zero, and that as the number of links in 

the food web increases the stability should increase. (p. 534)". He concluded, just as 

Elton did, that arctic regions were less stable than tropical locales. 

Hutchinson (1959) determined, erroneously it turns out, that MacArthur had found 

an exact mathematical explanation of stability within diverse ecosystems. Goodman 

(1975) indicated later that MacArthur's formula was descriptive and not explanatory. 

Additionally, Hutchinson remarked on the evolutionary properties of the aforementioned 
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findings, such that stable ecosystems would endure longer than less stable ecosystems, and 

therefore diversity would increase through evolutionary time. 

For many years, the intuition of Elton and MacArthur led ecologists to assume that 

there was a vast complexity to nature. Not until the early 1970's was this Eltonian view 

challenged. Goodman (1975), and later Pimm (1984), summarized theoretical arguments 

of Gardner and Ashby (1970), May (1972) and subsequent workers that criticized the 

original conclusions and observations of Elton and others. These workers explained that 

the previous arguments in relation to the diversity-stability hypothesis were incomplete, 

that their criteria, tools and vocabulary were dubious, that recent models suggested just 

the opposite, and that stability (or instability) was a response of the population. They 

protested that the single predator-single prey systems were not compared to systems with 

many predator-prey interactions, which may or may not be more stable than simpler 

systems. 

One of Goodman's arguments against the Eltonian instability of agriculture was 

that while outbreaks do occur, the continual annual replanting never allows the system to 

equalize, and that given the chance to do so the system may stabilize. Disputing the claim 

that tropical locales are more stable than less complex regions such as island or arctic 

communities, he suggests that islands may be vulnerable to invasions because it is "simply 

a consequence of accidents of distribution or of islands, for some reason, accumulating 

species that are especially susceptible to competitive or exploitative displacement." The 

greater stability of tropical ecosystems could be an artifact of sampling. Samples may 

poorly and inaccurately represent species, resulting in undetected fluctuations. In fact, the 

absence of pest outbreaks Elton reports was based on the observations of three foresters. 
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He investigated MacArthur's study of diversity-stability and because MacArthur did not 

provide a clear argument for linking stability to trophic diversity, S, in his stability 

function, and that S is not readily translated biologically. Goodman stated "Clearly, the 

belief that more diverse communities are more stable is without support", a statement later 

echoed by Goh (1980). 

Pimm (1984) in his review of stability-complexity repeated the thoughts conveyed 

the different points that had been reproduced throughout various studies. When a 

community is highly connected, there should be fewer species in order to be stable. 

Within a highly connected community a loss of one species will tend to increase the 

chance of losing others, but overall, the ecosystem would be more persistent and resilient 

(speed of return to equilibrium). Conversely, an ecosystem with many species needs to be 

less connected and less resilient. 

2.2 THE POST-ELTONIAN VIEW 

The Eltonian view came under serious fire after ecologists began to apply Quirk 

and Ruppert's (1965) and Maybee and Quirk's (1969) economic models. Models of 

Liapunov stability conclude that stability does not arise from complexity; Routh-Hurwitz 

criteria are sufficient and necessary for mathematical stability. The criteria state that 

feedback at all levels of interaction must be negative, and interactions at the lower levels 

(those interactions between one or two variables) must be stronger than interactions 

involving many species. Thusly, models using Routh-Hurwitz criteria as a rigorous 

assessment of stability, were introduced in ecological theory. First, Gardner and Ashby 
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(1970) ran simulations and found that stability decreased with increasingly complex 

systems. Soon after, May (1972) argued that mathematical stability required simplicity in 

ecological systems, an argument pursued to an extreme by Pimm (1984). It was realized 

by the ecological community that the Routh-Hurwitz criteria could be used as a powerful 

mathematical description of biological systems. 

That complexity did not give rise to stability as suggested from earlier work was 

questioned and essentially negated when May in the early 1970's reached the conclusion 

that increased complexity is not mathematically stable, and in fact complexity leads to 

reduced stability. Possible confusion arose because most authors assumed that 

`mathematical stability' similar to Elton's concept of ecological stability. When large 

systems were examined by May (1972) he found that they exhibited a great tendency to 

become unstable as complexity increased, when a certain critical threshold was reached. 

Complexity is measured as connectance (probability that any pair of species will interact), 

as number of variables and as the mean interaction strength between variables. Therefore, 

any community with too much connectance, too many species or too high of an average 

interaction strength will be unstable. May found that an increase in any one of these three 

factors could lead to instability at a critical threshold. This critical threshold was lowered 

if the number of species increased in conjunction with either of the two other factors; to 

maximize complexity in systems of three or more species precludes quantitative stability. 

These results undermined the diversity-stability hypothesis and led to the diversity-stability 

paradox. 

May promoted the idea that within a community the maintenance of stability 

requires that a species that interacts with many other species should do so weakly, while 
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any species with strong interactions should interact with only a few species. This 

quantitative evidence was supported by Margalef (1968) "From empirical evidence it 

seems that species that interact feebly with others do so with a great number of other 

species. Conversely, species with strong interactions are often part of a system with a 

small number of species having strong fluctuations." Another point broached by May 

(1972) is that communities exhibit greater stability when large communities are separated 

into distinct blocks (in his work, roughly 35% of blocked communities are stable as 

compared to "essentially none" of the non-blocked versions). 

May (1973) also determined that mutualism and competition add instability (both 

have positive feedback and are in this sense mathematically identical); no closed loops 

could exist within the system, and the matrix determinant must be non-singular. Simple 

systems according to this work and contrary to earlier belief are more, not less stable, than 

complex systems. This is in direct disagreement with the Eltonian vision. 

In his conclusion of these papers and reiterated in Stability and Complexity in 

Model Ecosystems, May (1972, 1973, 1974) asserted that complexity and increased 

interactions is detrimental to qualitative stability. Workers became aware of this apparent 

paradox inherent in the mathematical and economic models as applied to biological 

systems. Namely, that for the sake of stability, complexity will not occur. Yet, the 

observations of the Eltonian view described complex and stable systems. These 

observations were in direct conflict with the mathematical models. Several workers tried 

to reconcile these differences. 
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2.3 EXPLAINING THE STABILITY-COMPLEXITY PARADOX 

Goh (1980) deduced that the size and structure of ecological systems were limited. 

To deal with this apparent paradox between diversity and stability several workers chose 

to describe ecosystems as singular similar simple systems connected in elementary and 

obvious predator-prey relationships. This is the idea of a "straight chain of straight 

chains" relationships (Jeffries 1974; McMurtrie 1975; Tansky 1978). Later, Pimm and 

Lawton (1978), Goh (1979), and Yodzis (1980, 1982) each rationalized that complex 

ecosystems could be broken down into several self-regulated compartmentalized 

subsystems. Perhaps, they conjectured, these compartmentalized subsystems are linked 

together through simple predator-prey relationships in a hierarchical fashion, as indicated 

by the work of Tansky (1978) and O'Neill et al. (1986). 

This idea of a straight chain of straight chains relationships was brought forth by 

Jeffries (1974) who revealed that these simple chains were indeed stable. Jeffries, in his 

study of qualitative stability, found that stability is dependent upon the existence of self-

regulating interactions and upon the location of these interactions, such that asymptotic 

stability arises with self-regulation. McMurtrie (1975) employed Monte Carlo studies in 

his investigation of the relationship between system size, connectance and the probability 

of stability. In randomly generated matrices, McMurtrie noticed a decrease in stability 

with a concurrent increase in complexity, but noted that 'real life' systems do not act in 

such a manner. Real life systems have complexity as well as stability. Therefore, he 

concluded real life ecosystems are not randomly associated. A mechanism is not given for 

this non-random organization in real life systems. Furthermore, he noted that random 
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systems with well-developed hierarchical structures are able to maintain much greater 

connectance than systems without such organization. 

Pimm and Lawton (1978) investigated food webs involving omnivory, suggesting 

that some trophic patterns are more stable than others. As the 'rank' of omnivory 

increases, stability decreases. Rank describes the number of omnivorous links in the 

system, such that systems of rank 0 has no omnivores, while rank 1 has one omnivore, and 

rank 2 has either one omnivore feeding on two additional trophic levels or two omnivores, 

on up to the higher ranks. Results were broken down into unstable and stable systems, 

with stable food webs further broken down into those that returned to stability in less than 

100 generations and those that did not. They concluded that high ranking omnivory (large 

numbers of omnivores within a system) will be less common than low ranking omnivory 

(few or no omnivores in an ecosystem) in real world situations, with the exception of 

insect host-parasitoid systems. These conclusions were reached by using the criterion of 

local stability and the idea that a rapid return to equilibrium is stabilizing 

Yodzis (1980) suggested that within a community food web species richness and 

average interaction strength are inversely related. As one factor is increased the other 

must be reduced. If not, the systems become more susceptible to perturbations in the 

least, or unstable at most. However, these results were reached in part by assuming that 

non-trophic interactions were less usual than trophic interactions. 

Goh (1979) and Yodzis (1982) each rationalized that complex ecosystems could 

be broken down into several self-regulated compartmentalized subsystems (Figure 2.1). 

The compartments would be composed of the various 'guilds' within the ecosystem. 

These were the guilds described by Root (1967) as "a group of species that exploit the 
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same class of ecological resources in a similar way. This term groups together species, 

without regard to taxonomic position, that overlap significantly in their niche 

requirements." These compartments would be, according to their interpretation, sufficient 

to describe the food web. Nonetheless, complexity had been misrepresented, by taking 

apparent complexity for actual complexity. Although the systems contain many species, 

these species are grouped together as one unit and then the energy flows between units, no 

longer between the species within the units. This grouping not only fails to take into 

account interspecific competition, but also intraspecific competition, as well as those non­

trophic interactions. 

Figure 2.1 Compartmentalized subsystems. 

The work of Tansky (1978) and O'Neill et al. (1986) indicated that 

compartmentalized subsystems are linked together (Figure 2.2). This allows for greater 

overall complexity, even though each subsystem is simple they are linked to each other 
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through simple predator-prey relationships, resulting in a hierarchical structure. This 

brings the model to a closer representation of what is observed in natural ecosystems. The 

approach taken by Tilman (1996) combined the use of guilds and hierarchical structure 

into the concept of 'functional group' to allow for further complication of a system 

(Figure 2.3). In doing so, he found that beyond a certain point increased diversity was less 

stable than having a few dominant species. His work relates almost exclusively to plants. 

Figure 2.2 Hierarchical subsystems. 

Figure 2.3 Tilman's approach. 
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Pilette et al. (1989) and Lane (1986) used loop analysis to study community 

models based on a large natural community. They observed that with large systems there 

was almost no correlation between stability and complexity. Their conclusion was that the 

relationships within the system may be tempered by other factors. A higher degree of 

stable relationships occurred when individual entities were less connected to the overall 

system. Yet, at the population level the relationship between stability and complexity was 

negative for large systems, while subsystems had increased stability as size increased. 

However, as is the case for almost every worker to investigate the effects of 

complexity on stability the same method has been used. The models used for this aspect 

were stable to begin with, and in Gardner and Ashby's study (1970) and May's study 

(1972) complexity was more or less haphazardly added to the system. One result of such 

a casual increase in complexity was to increase the probability of violating conditions that 

would stabilize the ecosystem. At least a partial consequence of using initially stable 

models to study the diversity-stability hypothesis is that the procedure may have led to an 

exaggerated negative association between complexity and stability. 

2.4 OPPOSITION TO THE NEW VIEW 

The power of qualitative stability analysis is that the criteria are derived from a 

community matrix made up exclusively of Malthusian parameters and that the 

characteristic polynomial is intuitively interpretable as biological loops (Levins 1975). 

However, the approach has also brought the disturbing consequence that complexity and 

stability are virtually incompatible (Goh 1979; Goodman 1975). 



14 

Ecologists realized that rigorous models could be used to depict ecosystems and 

found that, contrary to the common notion, there was no direct theoretical relationship 

between complexity and diversity. In fact, the relationship, if it existed at all was inverse. 

The conflict between these this view and the Eltonian view was accounted for in several 

ways. Unfortunately, the findings that complexity led to instability were flawed in that 

they used simple systems that were already stable and all subsequent studies followed this 

basic pattern (Figure 2.4). To address this conflict many ecologists have attempted to use 

complexity, but only in an apparent manner. That is, although the system seems complex, 

it is broken down so that only a few interactions are present or individual species are 

grouped together. 

Stable Conditional Conditional Conditional 

Co) 

Unstable Unstable Conditional Conditional 

Figure 2.4 Stable vs. unstable starting point. 



15 

Lewontin (1969) gave a general warning that although Liapunov functions are the 

criteria with which many ecologists use to describe their systems of study, the functions 

may not be adequate to represent biological terms through these functions. Lewontin 

stated that Liapunov functions represent stability through minima, but asks whether this is 

appropriate for, or capable of, describing ecological stability. He went on to state that in 

order to fully understand how ecosystems evolve and transform through non-equilibrium 

properties, then studies of ecosystems that are not enjoying equilibrium must be studied 

further. 

2.5 CURRENT CONCEPTS 

A theoretical challenge to the stability-diversity paradox came when Haydon 

(1994) demonstrated that stability and complexity are not mutually exclusive. On the 

contrary, he found that connectance can contribute to stability. His study used simulation 

analysis of Gershgorin disks (a measure of Eigenvalue distribution) to reach his 

conclusions. He presented a quantitative (not qualitative) analysis which concluded that, 

under biologically reasonable conditions, complexity in the form of added links and 

widened range of interaction strength increased stability. 

A recent study of the food web of a tropical rain forest which, supposedly is the 

largest of its kind, refuted the claims of incompatibility between complexity and stability, 

and specifically those predictions proposed by the food web theory. Reagan et al. (1996) 

specifically tested the restrictive predictions of food web theory, which arise from Routh-

Hurwitz criteria. The predictions of food web theory (short trophic chains, few loops, low 



16 

predator-prey ratio, low species-to-link ratio) were all negated, sometimes in an extreme 

fashion. 

One consequence of the loss of the Eltonian view has been the proliferation of 

definitions of stability. Wissel and Grimm (1997) reviewed the literature and documented 

over "163 defmitions of 70 different stability concepts", which makes it difficult to equate 

one author's use of stability to another study. They point out that most confusion in the 

terminology comes from addressing the different properties of stability. They conjectured 

that stability concepts that arise from mathematics or physics are appropriate solely to 

describe the behavior of simple dynamic systems. The authors then stated that ecological 

systems are not simple dynamic systems, but rather may be described by many different 

variables. Therefore, pigeonholing ecological systems with a certain concept of stability is 

difficult at best and translating a particular concept of stability between studies is 

consequently that much more troublesome. They propose a series of questions that are 

designed to help avoid confusion and use the correct concept of stability in order to 

introduce some agreement between usage of stability concepts, and to increase viable 

comparability between literature. 

2.6 GAUSE'S PRINCIPLE
 

Theory and practice have focused on one particular system, yet with no clear 

conclusion. This classic system is referred to either as Gause's principle or the 

competitive exclusion principle. Gause (1934), through his experiments, legitimized the 

concept of competitive exclusion. He used populations of Paramecium caudatum and P. 
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aurelia to study the effects of competition and came to the conclusion that two species 

competing for a unique resource will not be able to coexist indefinitely. In order for two 

species to coexist there must be a partitioning of the resource, or niche partitioning. 

Otherwise, the inferior competitor will necessarily go extinct. In 1960, Hardin coined the 

expression "competitive exclusion principle", previously called Gause's principle or law, 

and restated it in a different manner, to wit "complete competitors cannot coexist". 

Hardin credited Gause with strengthening the idea of competitive exclusion which had 

been under consideration for several years, but claimed that Gause did not clearly state nor 

realize the full extent of "Gause's principle". Hardin made clear through his statement 

"complete competitors cannot coexist" that his intent was to explore the limits of the 

principle. He made the wording of the principle ambiguous to emphasize that it was novel 

and unexplored. He reviewed the historical beginnings of Gause's principle and associates 

it with the fields of economics and genetics. Furthermore, Hardin expressed a slight 

uneasiness, acknowledging that as of that point in time the principle was still in need of 

either verification or refutation, through fuller models. Paradoxically, his restatement is a 

negation; it cannot be directly refuted from a strict scientific perspective. 

Slobodkin (1961) used a mathematical model to demonstrate that the eventual 

exclusion of one species could be reversed to some extent and that competitors could 

coexist. The conclusion of Slobodkin was that over the long run, Gause's principle would 

still prove correct and exclusion of one species would occur. Based on a previous model 

used by MacArthur and Levins (1967), Roughgarden and Feldman (1975) advanced the 

idea that unequal predation pressure allows prey species to occupy niches that overlap. 

Using Lotka-Volterra equations, the authors found that the niche separation between 
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competing prey species is determined mutually by predation pressure and the degree of 

kurtosis of the competition function. Kurtosis is the characteristic of the competition 

function directly related to the niche utilization curve. A leptokurtic utilization curve has a 

sharp peak and broad tail, allowing for closer packing of species than if the curve 

contained broad peaks and a short tail. The sharp peak of a leptokurtic curve indicates a 

specialized organism. Niche separation distance is determined by predation pressure and 

kurtosis. Niches can become more closely packed as the predation pressure increases or 

the leptokursis of the competition function increases. 

2.7 DIFFERENCES BETWEEN INTERFERENCE AND COMPETITIVE 
EXCLUSION 

Confusion arose and still exists in the ecological literature about the term 

`competition'. There are two types, strictly speaking. One is exploitation, resource, or 

indirect competition, which is trophic and arises in the parsimonious interpretation of 

competitive exclusion. In exploitation competition there is no direct competition between 

the species. Indirectly, one species appropriates resources and those resources then 

become unavailable for use by any other competing species. The other type of 

competition is called interference, which is direct and usually non-trophic, involving 

competing species that directly clash. While Gause's model dealt with competition, it is 

important to note that in his studies of Paramecium, he was looking at exploitation 

competition and not at interference competition. As was the case with Gause's 
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Paramecium, there was no direct competition, just one species using the available 

resources more efficiently and quickly than the other. 

Other studies point out that interactions with additional species consequently allow 

for niche overlap and this has been suggested for interference (Levins 1975; Roughgarden 

& Feldman 1975; Vance 1978), but not exploitation competition. The studies indicate 

that the competitors do not compete for food resources. Conclusions concerning niche 

partitioning found in these studies cannot be utilized to make generalizations about 

exploitation competitors, since the disputed "dimension" (Pianka 1988) of the resource 

may be different for interference than for exploitation competition. 

Interference between two species is destabilizing, yet unlike resource competition 

is not necessarily unstable, and conditions for negative feedback are achievable under 

reasonable conditions (Strobeck 1973). However, workers have confused the two types 

of competition within the literature and applied conclusions from one to the other. Thus, 

apparent exceptions to competitive exclusion arose. 

Vance (1978) analyzed a one-predator-two-prey model community with the so-

called 'keystone' predator, and pointed out that an unstable competitive relationship can 

be stabilized through the introduction of a generalist predator. Note, however, that the 

unstable interference relationship is not inherently unstable but is assumed to be so only 

for the sake of argument. It was suggested from that study that predators bring stability 

to systems in general. Vance looked at how two competing prey species could be 

stabilized by adding a predator to the system. In effect, Vance went from an unstable 

system to a stable system by including a keystone predator. This was a unique way of 

attacking the problem, because the traditional way of adding complexity to a model began 
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by using a stable model as a framework for the analysis. Using simple predator-prey 

systems, Vance varied the number of predators and prey and concluded that the addition 

of a predator can lead to coexistence between two competing prey species. The 

competitive exclusion principle asserts that competing species can coexist if they utilize 

resources in a different manner. Vance revealed that circumstances existed under which 

competing species can coexist without differential resource utilization. With the addition 

of a single predator species, he demonstrated that the general stability of the system had 

increased, and no species went extinct. Vance discussed conditions that make these 

systems possible. Vance asserted that coexistence of competing prey species due to 

predation should be commonplace. He concluded, nonetheless, that Gause's principle still 

held. Although coexistence was the result, there was still resource partitioning between 

the competing prey species. Both mechanisms worked at varying degrees to allow 

coexistence of similar species in nature. Still, Vance contended, differences between prey 

were an important aspect of his investigation. Predation plays a crucial role in 

coexistence, but frequency-dependent predation was the main force behind the coexistence 

of the competing prey species. 

Vance's (1978) study reflected Paine's (1966) top carnivore field test removal. 

Pisaster was kept from a shoreline, and several months later the space was dominated by 

just a few species, and species diversity dropped from 15 to 8. Paine found that Balanus 

cariosus had occupied between 60-80% of the available space. He concluded that 

predation ameliorates competition allowing weaker competitors to coexist, and increased 

local diversity. 
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Bodini (1991) further investigated the role of predation on stability. He contended 

that predation was neither stabilizing nor destabilizing in general. In spite of that result, he 

stated that specialized predators are likely to stabilize a given ecosystem versus the 

destabilizing effects of a generalist predator. He suggested further work to be done that 

specifies the particulars of complex models and the relationship between predator and 

prey. In many cases, the positive response of the systems is due to the new variable acting 

as a keystone predator. The addition of a keystone predator is shown to have a stabilizing 

effect and has been under consideration for several years (Levins 1975; Vance 1978; 

Gilpin 1979; Levins & Vandermeer 1989). 

Other workers (Haig & Maynard Smith 1972; Armstrong & McGehee 1980; 

Chesson 1982, 1994; Vance 1984; Lavorel & Chesson 1995; Chesson & Hunt ly 1997) 

have also been able to construct systems apparently in violation of Gause's principle. Haig 

and Maynard Smith (1972) used systems with niche partitioning and exploitation 

competition. One example found in their study is that of two herbivores and one plant. In 

that case, one herbivore feeds on root tissue, while the other feeds on leaves (Figure 2.5). 
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Figure 2.5 Signed digraph of Haig and Maynard Smith's system, showing niche 
partitioning and exploitation competition. 

Armstrong and McGehee (1980) used a functional (Honing type II) response to 

introduce apparent stability to their system. The functional response results in neutral 

stability that permits the system to undergo perpetual oscillations, thereby creating a 

system that violates Gause's principle. It should be noted that without the functional 

response, the system still has neutral stability. Such oscillating systems had been 

previously investigated, all demonstrating similar results (Koch 1974; Armstrong & 

McGehee 1976; Hsu et al. 1978; Nitecki 1978; Waltman 1980). 

Tilman (1980, 1982) argued that many competitors could coexist given sufficient 

spatial heterogeneity of resource abundance. The patchiness of the resource effectively 

creates refugia for the competing species. He provided a biological example of resource 

partitioning. Vance (1984) found that two species can coexist at a globally stable 

equilibrium point. He used a mechanistic model in which two species compete for a 

single, non-accumulating resource. This study used intraspecific competition as a factor 

that, when greater than interspecific competition, diminishes one species' competitive 

advantage over the other, thereby allowing coexistence. 
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Chesson (1982, 1994) and Lavorel and Chesson (1995) used environmental factors 

to contribute to the stability of ecosystems and dampen the effects of competition. They 

argued that competitors can coexist when an environment is highly random because it 

causes niche partitioning. Later arguments developed by Chesson and Hunt ly (1997) 

included not only the environment as a factor allowing competitor coexistence, but also 

that environmental fluctuations themselves can cause spatial and temporal niches. 

While these are valid approaches to competitive exclusion, there are problems that 

can readily be seen. In Haig and Maynard Smith's (1972) study for example, there is 

partitioning of that resource, although both herbivores are using the plant as a resource. 

Furthermore, the species are not in direct competition for the resource. Rather, they are 

competing exploitatively. Armstrong and McGehee (1980) and Vance (1984) utilized an 

approach that involved self-limiting effects by the competitors. Although this approach 

allowed coexistence, there is less parsimony to these models than in those presented in 

subsequent chapters. Chesson's studies involving environmental factors as niche creators 

goes about solving the problem in a dubious manner. By using the environment to create 

niches the competitive exclusion principle is not being addressed at all. The principle 

states that "complete competitors cannot coexist" and species with different niches are not 

complete competitors. These approaches, therefore, are not parsimonious, and one could 

argue that some do not directly address the competitive exclusion principle. 

Hutchinson (1961) viewed the competitive exclusion principle as useful because he 

perceived the principle as a statement that is logically true and not subject to empirical 

falsification. In a classic article, he specifically discussed the problem presented by 

phytoplankton. Specifically, he reported that a number of species coexist in an 
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unorganized, homogeneous environment. The phytoplankton species compete for the 

same resources and at times, there are severe nutrient limitations. Hence, this seemingly 

violates Gause's principle. Hutchinson suggested that coexistence was due to failure of 

the system to reach equilibrium, or to a heretofore unrecorded environmental 

heterogeneity. He dismissed the idea that perhaps a light gradient or condition of the 

surface film was responsible for the stratification of the environment. 

2.8 LOOP ANALYSIS 

2.8.1 Historical 

The history of mathematical ecology as it relates to the stability-complexity 

paradox progressed as follows. Before 1970, the fields of mathematical stability and 

ecology were isolated. Mathematical theory of stability had progressed from late 19th 

century astronomy and led to Liapunov's contribution that the stability of a complex 

system could be assessed based on its qualitative properties alone. Its first application was 

in electrical engineering (Mason 1953). 

In the 1960's, a series of influential economically oriented papers were published 

that laid the foundation of ecological work in the next decade (Quirk & Ruppert 1965; 

Maybee & Quirk 1969). These rigorous studies demonstrate that Liapunov principles 

could be applied beyond engineering in order to elucidate complex systems. 

In parallel to this development, ecology was striving to explain the link between 

complexity and stability. Most notably, Elton conjectured on the stability of ecosystems 
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and as stated before, his thinking helped to define the ecological role of complexity and 

stability. 

In the 1970s, two papers shattered the Eltonian view. The first, by Gardner and 

Ashby (1970), demonstrated through simulations that mathematical stability rapidly 

decreases with increasing complexity. The second, by May (1972), further reinforced the 

idea by introducing to ecology the Q-R rules, as they were called. These rules 

theoretically demonstrate that stability and complexity are incompatible. These papers laid 

the foundation for further work, most notably by Pimm and by Levins, who both exploited 

the new theory to develop the food web theory and loop analysis, respectively. 
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2.8.2 Qualitative Analysis 

Levins (1974) examined the mathematical criteria for stability, the so-called Routh-

Hurwitz criteria, and demonstrated that their results could be interpreted in terms of 

`loops', that is, paths of links between populations. He also demonstrated that the matrix 

from which these results were obtained, which he coined a 'community matrix', consisted 

of Malthusian parameters. Both of these discoveries lent a very persuasive argument in 

favor of mathematical theory since it tied it directly to Darwinian principles and was very 

intuitive biologically. 

The specific techniques of loop analysis are as follows. First, a signed digraph of a 

community is drawn. Each link between the variables (populations) is entered directly into 

a matrix, from which a characteristic polynomial can be derived by assessing its 

determinant. The elements of the matrix are mathematically obtained from the partial 

derivatives of the system equations. The criteria for stability are that the coefficients of 

the polynomial be negative, which biologically means that feedback is 'thermostatic', and 

that the Hurwitz determinant be positive, which biologically means that feedback at 

`lower' levels must be stronger that that at higher levels. 

Variables are represented by circles and usually symbolize populations, although 

they may represent stable complex subsystems (Figure 2.6). The variables are connected 

through links which designate rates of transfer between variables, usually interpretable as 

birth and death rates. Links may be either positive or negative between variables, while no 

link indicates no interaction. A path is a series of links that never crosses the same 
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variable twice, while a loop is a path that returns to the same variable without crossing a 

variable twice. 

Figure 2.6 Signed digraph of a community, showing two species (2 & 3) utilizing a third 
species (1). 

The three types of relationships used are predation (+ -) which has negative 

pairwise feedback, while both competition (- -) and mutualism (+ +) have positive pairwise 

feedback. Negative self-effects, represented by a negative self-feeding arrow, refers to 

density-dependence or self-regulation (Figure 2.7). Feedback is either positive or 

negative, depending on the path or loop followed. To get the feedback of a loop or path 

simply multiply the signs of each link in the loop or path (Figure 2.8). For example, the 

product of two positive links (+ +) or two negative links (- -) is positive feedback, while a 

negative link and a positive link makes the path's overall feedback negative (Figure 2.9). 
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Interference Competition 

Mutualism 

Predator/Prey Relationship 

C. Negative Self-effect 

Figure 2.7 Pairwise links 

+ 
Positive 

Negative 

Figure 2.8 Feedback loops of length 2. The positive feedback loop is represented in a 
community matrix as a12*a21. The negative feedback loop would be -a34*a43. 
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Figure 2.9 Signed digraph showing a loop of length 3 exhibiting positive feedback. 

Within an absolutely unstable model, (model 1), a single variable (4) is added and 

connectiveness within the system is increased through links to the other variables (Figure 

2.10). Beginning with one variable the new variable is linked sequentially, cycling through 

all the possibilities, until finally, the introduced variable is linked to all other variables. 

That is, the models are broken down to a fourth variable linked pairwise with one other 

variable, two variables, and, finally, to all three variables. The interactions have previously 

been described as predator-prey, mutualistic, and competitive. 
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Figure 2.10 Loop model (signed digraph) 1 with a single variable (4) added. Solid lines 
represent relationships that are constant through the models. Links that are added in the 
models are denoted as dashed lines and indicates interference, mutualistic, or predator-
prey interactions. 

The analysis of loop models in this study was performed in Mathcad. The first step 

is to enter the model into a Jacobian or community matrix. For example, an ecosystem is 

first represented by a signed digraph (Figure 2.11), then as a community matrix. To assess 

equilibrium stability criteria the eigenvalues or roots of the equation, X, must be subtracted 

from each diagonal element. The determinant of the matrix is then calculated and the 

results checked against Routh-Hurwitz criteria. For mathematical stability to occur there 

are two conditions that must be met. The Hurwitz determinant must be >0 such that 

feedback at lower levels is stronger than the feedback at higher levels. The second 

criterion states that feedback at all levels must be negative, which is represented by all the 
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coefficients being of the same sign. In this analysis negative feedback is designated by 

positive sign at each feedback level. Feedback may also be hand calculated. Feedback at 

level 0 is always -1, at level 1 feedback is the sum of all loops of length 1. At level 2 the 

feedback consists of the sum of all loops of length 2 and the subtraction of the products of 

loops of length 1. Feedback levels higher than two become more difficult to calculate, but 

for level 3 the feedback is calculated as follows. Addition of all loops of length 3 and 

subtractions of all combinations of products of loops length 1 with loops of length 2 that 

are disjunct. Disjunct means that there are variables in common between the loops. 

Although dated, the text by Puccia and Levins (1985) is still a useful reference. 

-al la23a32-a21a13a32-a3lal2a23
 
-a23a32+a21a12+a31a13
 

al 1
 

1 

Figure 2.11 Signed digraph showing feedback at three levels. Variables are represented 
in the community matrix as aij and designate a link, and the term is interpreted as: 'link a 
to i from j'. The feedback, which are coefficients of the characteristic polynomial, are 
reproduced in descending order below the figure. Feedback level 3 contains two loops of 
length 3 and the product of one length 2 loop and a loop of length 1 (al 1 a23a32) that are 
disjunct. Feedback level two is the sum of all loops length 2, one positive and two 
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negative loops and feedback level 1 contains only the negative self-effect. In this example, 
negative feedback is represented by a negative sign. 

From this determination, it is then possible to obtain a 'table of predictions' to 

assess the direction of change in any variable following change in one of the links. This is 

obtained from the inverse matrix, by multiplying the community matrix by 1, inverting it 

and then transposing it. This procedure seems to have been 'discovered' a number of 

times in ecology (Riebesel 1974; Levins 1974; Bender 1984). This method is the basis for 

ecological 'PRESS' experiments (Stone 1990; Schmitz 1997). 

Bender et al. (1984) analyzed perturbation experiments of real and conceptual 

communities. Using an inverse matrix the authors scrutinized PRESS perturbation 

experiments. The application of inverse matrices to define interactions within 

communities was also used by Stone (1990) and Schmitz (1997). The authors claim that 

an inverse matrix offers up a more realistic look at community process than a community 

matrix. However, the use of an inverse matrix is mathematically the same as the 

qualitative analysis that was applied by Levins, and these authors have, essentially, 

reinvented the wheel. 

2.8.3 Applications of Qualitative Analysis 

The term loop analysis was coined by Levins, but actually refers to his 

interpretation of the procedures and not the procedures themselves. We therefore prefer 

the term qualitative analysis, which dates back to May's original work. A large number of 

studies have used this approach, and a partial bibliography is included (Table 8.1). Most 
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notable is the work of Levins's followers, such as Vandermeer, Lane, Bodini, Puccia, 

Pilette, and Roughgarden. Virtually any modern algebraic analysis of mathematical 

models in ecology will rely on these principles. The most popular current text in 

mathematical ecology (Edelstein-Keshet 1988) emphasizes a qualitative approach. 

Table 2.1 Partial catalog of refereed studies utilizing qualitative analysis. 

Author Journal/Book Year 

Bodini, A. BioSystems 1991 
Lane, P.A. Ecology 1986 

ESA Supp. Pub. Ser. Doc. No. ESPS 8525 1986 
Levins, R. and Vandermeer, J.H. Agroecology 1989 
Levins, R. Ann. NY Acad. Sc. 1974 

Ecology and Evolution of Communities 1975 
Pilette, R., Sigal R., and Blamire, J. Biosystems 1989 
Puccia, C.J. and Levins, R. Qualitative Modeling of Ecosystems 1985 
Roughgarden, J. and Feldman, M. Ecology 1975 
Edelstein-Keshet Mathematical Models in Biology 1988 

Loop models are discussed by Puccia and Levins (1985) as models helpful in the 

analysis of real world ecosystems. The model, or digraph, corresponds to a matrix of 

interactions and to equations. Loop analysis emphasizes qualitative predictions, and rather 

than knowing exactly how much change has occurred, the model shows whether change 

has occurred or not, and whether the change is positive or negative. 

Pilette et al. (1987) assessed the potential for the use of qualitative (loop) analysis 

in community evaluations, concluding that loop analysis is indeed a useful tool for 

evaluating communities, although underused. They present a computer simulation that 

accurately reproduces the results of Levins' (1975) calculations. Recently, perturbation 

experiments in ecology have used the inverse matrix. 
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3.1 INTRODUCTION 

The competitive exclusion principle has had a major impact on ecological theory 

ever since its introduction (Gause 1934). Although it was, and still is, occasionally called 

Gause's principle, the expression in current usage was coined by Hardin who stated the 

principle as an alliterative negation: "Complete competitors cannot coexist" (Hardin 

1960). The principle has a rich history of theoretical study (see Chesson & Hunt ly 1997). 

We found that a theoretical analysis of community matrices with linearizable 

responses that supports the principle in the case where only two competitors exploit a 

resource, with or without interference competition. Such a result has been known from 

previous studies (McGehee & Armstrong 1977). However, when the two species 

interfere with a third one, or when mutualism or omnivory occur, then conditions for a 

stable equilibrium can be met and niche overlap can occur. To account for the role of 

complexity, we investigated the impact of the number and type of interactions by adding 

another species to a two-competitor-one-resource system. We analytically evaluated the 

feedback levels of the 124 possible systems that can ensue from this addition. 

Unexpectedly, the likelihood of stability increases not so much with the nature of 

interactions but with their number. 

Recent simulations, using Gershgorin disk analysis of eigenvalue distribution 

(Haydon 1994), demonstrate that increased connectance can contribute to stability, while 

field observations of complete ecosystems suggest that food web theory predictions of 

simplicity are not even closely supported (Reagan et al., 1996). We similarly conclude 



41 

that the doctrine that stability and complexity are inversely related is not supported, at 

least in this particular situation. 

3.2 THE COMPETITIVE EXCLUSION PRINCIPLE 

Minimally, the competitive exclusion principle applies to a system where two 

species compete to exploit a single and unique resource, but without direct interaction 

(Figure 3.1). This system displays zero feedback, which mathematically, although not 

practically, speaking allows equilibrium to occur. The addition of interference links 

generates positive feedback and the system is qualitatively unstable, that is, cannot meet 

criteria for stability (Edelstein-Keshet, 1988) under any condition (Figure 3.2). In both 

cases, niche overlap is incompatible with coexistence. These model ecosystems alone 

support the principle, but in our opinion, are not sufficient for generalization. 
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Figure 3.1 System in which two species exploit a single resource, without direct 
competition. This system has zero feedback at the third level, and therefore allows 
equilibrium to occur, if only mathematically and not in any practical sense. 

\ /
 
al 1.a23.a32+ a21a13a32-f- a31a1a23 

a23a32 a21a12 a31a13 
al 1 

-1 

Figure 3.2 An interference link is added to the previous model, indicating direct interaction 
between species 2 and 3. The new link causes feedback at the highest level and the system 
is unstable. 
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3.3 GENERALIZING THE PRINCIPLE
 

We therefore addressed whether or not the principle can be generalized to more 

complex systems. The addition of another competitor without any interference again 

yields zero feedback (Figure 3.3). This result holds for any number of exploitation 

competitors. When one or two interference interactions are present, the addition of a third 

competitor gives rise to a system that cannot meet stability criteria under any condition 

(Figure 3.4, 3.5). However, when all three competitors interfere with each other (Figure 

3.6), negative feedback loops are present at all levels and Routh-Hurwitz criteria can be 

met conditionally, allowing for niche overlap. 

0
 

-a21.a12 a31a13 a41a14
 
-all
 
-1
 

Figure 3.3 A third competitor species (4) is added. As in Figure 3.1 this system has zero 
feedback. 
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a41. a32 al 4a23
 

al 1. a32.a23 a21a32a13 a31. a23
 

a32a23 a21a12 a31a13 a41a14
 
all
 
-1
 

Figure 3.4 Interference competition between species 2 and 3 produces a system that is 
unstable. Positive feedback at the two highest levels prevent this system from meeting 
stability criteria. 
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a21a1a34a43 a21a32a1a43 a41a12a23a34+ a41a32a14a23
 
al 1.a34.a43-i- al 1.a32.a23-1- a21a32a13 a31a12a23+ a31a14a43+ a41a13a34
 

a34a43+ a32-a23 a21a12 a31a13 a41a14
 
all
 
-1
 

Figure 3.5 With a second interference link added between species 3 and 4 the result is still 
unstable, and positive feedback is present. 
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-a41-a32.a13.a24+ a41.a32.a14.a23 a31.a12.a24a43 
+ a31.a42.a13.a24 a31a42a14a23 a41a12 a23a34 al 1.a32.a24.a43 al 1.a42.a23.a34 
+a21a12a34a43 a21a32a14a43 a21a42a13a34 

(a41a13a34+ a21a42a14+ a31a12a23-h a31a14a43-F a41a12a24-F alla34a43 
+ al 1a32a23+ all-a41a24 a32a24a43 a42a23a34+ a21a32a13 

-a41.a14+ a34a43+ a32a23+ a42a24 a21a12 a31a13 

all 

Figure 3.6 Interference among all three competitors creates a conditionally stable system.
 
The condition for satisfying Hurwitz determinant criterion:
 
al 1.a21.a12+ al 1.a31.a13+ alla41a14>
 
a41a12a24 a41a13a34 a21a42a14 a31a12a23 a31a14a43 a21a32a13± a32a24a43-1- a42a23a34 

From this analysis, interference competition would appear to introduce conditions 

that can satisfy the Routh-Hurwitz criteria when species are competing to exploit a 

resource. We therefore analyzed the effects of other types of interactions between the two 

exploitation competitors. The addition of either mutualism (Figure 3.7) or omnivory 

(Figure 3.8) introduces conditions under which stability is also possible and niche overlap 

can occur. Competitive exclusion occurs only in a restricted set of circumstances. 
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al 1.a23.a32 a21a13a32 a31a1a23
 

a23a32 a21a12 a31a13
 
-all
 
-1
 

Figure 3.7 The interference link is replaced by a mutualistic link. Conditions arise 
allowing stability. 

al 1.a23.a32 a21.a13.a32-1- a31.a1Ia23 

a23a32 a21a12 a31a13 
-all 

-1 

Figure 3.8 Conditions arise allowing stability when omnivory is substituted into the 
system. 
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3.4 ADDITION OF COMPLEXITY
 

A confounding factor is introduced in most of the systems above through increased 

complexity, manifested by the increased numbers of species and interactions. To isolate 

connectance from the type of interactions present, we chose the two-competitor-one­

resource unstable system (Figure 3.2) that most strictly supports the competitive exclusion 

principle, and assessed the effect of increasing the number of links to a fourth species on 

stability criteria. We determined whether or not complexity and conditions for stability are 

positively correlated. We analyzed all possible model ecosystems arising from this 

arrangement, for a total of 124 (there are 12 possible systems with one pair of added links, 

48 with two pairs and 64 with three pairs). Based on the coefficients of the characteristic 

polynomial of every system, we observed that the proportion of systems that can achieve 

conditional stability increases directly with the number of paired links (Figure 3.9). 

Overall, in 80% of 124 systems, a two-competitor-one-resource system can meet 

conditions for negative feedback when a fourth species is added. The new system 

therefore can violate the competitive exclusion principle and species can display complete 

niche overlap. In particular and notably, at maximum connectance 100% of 64 possible 

systems can meet such conditions irrelevant of the types of interactions introduced. We 

conclude that complexity emerges as a more important factor in introducing conditions for 

stability and niche overlap between competitors than the types of interaction. 
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Figure 3.9 Percentage of model ecosystems with conditions satisfying the Routh-Hurwitz 
criteria as a variable of the number of interactions present when a fourth species is added 
to the system in Figure 3.2 above. All links were paired, that is, predator-prey, mutualistic 
or interference competition. There are 12 possible systems with one pair, 48 with two 
pairs and 64 with three pairs of added links. Coefficients of the characteristic polynomial, 
that is, the values of feedback at the different levels, were calculated analytically on a PC-
based symbolic processor (Mathcad Plus 6.0, MathSoft, Cambridge, MA) according to 
procedures in Li et al. (1998). The complete analysis is available upon request. 

3.5 DISCUSSION 

Based on our analysis, we conclude that the competitive exclusion principle 

unambiguously applies only to particular cases resulting from a combination of 1) absence 

of interactions between exploitation competitors and of 2) extreme simplicity of a system. 
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Although counter-intuitive, when numerous competitors exploiting a single trophic 

resource also interact with each other, negative feedback interference loops can be 

introduced which allow the competitors to 'group self-damp', so to speak, their 

interactions. For example, in the case of Figure 3.6, one competitor cannot benefit or lose 

from resource exploitation without counteracting negative feedback from the three-species 

interference loop (species 2-3-4) and vice versa. 

Two main objections may be raised against our conclusion. First, our analysis is 

qualitative, and the quantitative requirements in practice may negate the reasonable 

possibility of equilibrium of systems in Figure 3.9. A recent study using simulation 

analysis of Gershgorin disks (a measure of eigenvalue distribution) concluded that under 

biologically reasonable conditions, complexity in the form of added links and widened 

range of interaction strength in fact increased stability (Haydon 1994), contrary to 

previous assertions. Our analysis applies the strictest equilibrium criteria. Were we to 

apply negative overall feedback as the sole criterion, as is sometimes suggested (Haydon 

1994; Pimm & Lawton 1978), our qualitative analysis indicating an increase in the 

likelihood of stability also would be supported quantitatively, since stability can increase 

with connectance (Haydon 1994). 

Second, it may be argued that field studies do not support the coexistence of 

complexity and stability. A long-term and extensive study of a tropical rain forest food 

web, claimed to be the largest such quantitative study, specifically testing the restrictive 

predictions (namely, short trophic chains, few loops, low predator-prey species ratio, low 

species to link ratio) of food web theory arising from the Routh-Hurwitz criteria found all 

these predictions negated, often in an extreme fashion (Reagan et al., 1996). We suggest 
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that one reason for the failure of food web theory is its bypassing of non-trophic links, 

thus underestimating true connectance. 

We do not identify specific field situations that correspond to each of our models, 

but at least some of the systems correspond to actual situations in nature. Thus, Figure 

3.8 corresponds to the extensively studied situation of omnivory (Pimm & Lawton 1978), 

while Figure 3.7 was derived from an interpretation (Rossignol, unpubl.) of fungus-conifer 

mutualism in mature forests (Perry et al., 1989). 

Another approach that has yielded coexistence between the two resource 

competitors comes from the addition of negative elements to these competitors in the 

diagonal of the community matrix. In essence, two non-interfering predators have access 

to another resource(s) (Haig & Maynard Smith 1972). However, competitive exclusion is 

defined as systems where the number of resource species are less than the number of 

competitors and the above work therefore falls outside the principle. Alternatively, by 

introducing a Honing type 2 (non-linearizable) functional response in a system of non-

interfering competitors (our Figure 3.1), a special case of neutral stability and coexistence 

is possible at non-constant densities (Armstrong & McGehee 1980). The reason for this 

coexistence arises from complication to the system, as we have also concluded. However, 

complication in the Armstrong and McGehee model arises from the non-linearity. Indeed, 

in a fluctuating system, a non-linearity acts as an input to the system. Changes in 

statistical descriptors, such as variance, will affect then the level of the species where the 

input is occurring and in essence become variables themselves (Puccia & Levins 1985 pp. 

226ff). That approach allows then for the coexistence of two non-interfering competitors 

which cannot occur in linearizable relationships except at neutral stability. However, it 
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can hardly be argued that this approach is parsimonious because, as we demonstrate 

above, when three consumers are present, coexistence is possible under standard 

assumptions of linearizability. The approach of Armstrong and McGehee need be invoked 

only when two consumers are involved or where interference does not occur. 

The concept that interactions with additional species allow for niche overlap has 

been suggested for interference competitors not sharing a trophic resource (Strobeck 

1973; Levins 1975; Roughgarden & Feldman 1975; Vance 1978) but not, to our 

knowledge, for exploitation competitors. In those studies of interference competitors, 

model equations clearly indicate that the competitors do not share a trophic resource in 

any. Some studies concluded that predation could further stabilize a system of 

competitors and allow for niche overlap (Levins 1975; Roughgarden & Feldman 1975; 

Vance 1978). Conclusions regarding niche partitioning based strictly on interference 

competition probably should not be generalized to resource competition. The contested 

"dimension" (Pianka 1988) of the niche may be different for interference than for 

exploitation competitors, for example space rather than food. 

A broad suggestion that emerges from our study is that complexity can increase 

proportionately the likelihood of stability in an initially unstable system. In the particular 

system of competitive exclusion that we studied, a species introduction will increase the 

likelihood of conditional stability from zero to the point that if the added species interacts 

in any way with all species present, conditions are always theoretically present. Although 

we cannot project this conclusion to all situations, a project that will require extensive 

simulation, we can conservatively assert that, from this perspective, stability and 

complexity are not always inversely related. We caution that the presence of conditions 
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for stability does not mean that these will necessarily be met. Mostly, it means that it is 

difficult to prove instability and that ambiguity has increased. 

Our somewhat reverse outlook, that is, of studying the impact of species addition 

on an unstable system, while still using a community matrix, bears review. It was 

concluded in similar studies (Levins 1975; Roughgarden & Feldman 1975; Vance 1978) 

that species interfering with each other, but not exploiting a common trophic resource, 

could be stabilized by the addition of a generalist predator. Those landmark studies 

formalized the concepts of the keystone species and of niche separation distance as well as 

the hypothesis that predation increases the likelihood of stability and narrows niche 

separation distance between the prey. We suggest that complexity may have been the 

principle that unwittingly was being addressed in those studies since the generality of the 

conclusion regarding predation has not been supported theoretically in later studies 

(Bodini 1991). 

As to more practical aspects, the competitive exclusion principle as worded by 

Hardin (1960) is strictly speaking not refutable since it is a negative statement. 

Sidestepping this semantic hurdle, we are still faced with the limitation that, for Hardin's 

definition to hold beyond two competitors, "complete competitors" would have to mean 

organisms that do not compete directly. Competitors would scramble for a single niche 

dimension, namely food, but not contest space or interact significantly with any other 

species in the system, which hardly seems "complete" or even likely to occur. Hardin's 

own comments however seem to indicate that he assumed that interference competition 

was also present (Hardin 1960). 
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Two possibilities therefore seem to exist for the coexistence of two resource 

competitors. They can coexist because of niche partitioning as classically proposed, and 

complete competition is only an appearance. Since partitioning can take very subtle forms 

and arise from unexpected sources, such as from a random environment (Chesson & 

Hunt ly 1997), the possibility of cryptic partitioning always looms large. Alternatively, 

coexistence exists because the system is regulated through complication, either through 

interactions with other species within the whole system as we propose or through non­

linearities (Armstrong & McGehee 1980), and complete competition is a reality. 

Many types of interactions that we introduce, specifically interference and 

mutualism, are often non-trophic and usually not documented in food webs (Hall & 

Raffaelli 1993). If one were to extract exploitation competitors from any complex system 

by relying exclusively on trophic relationships, the only model seemingly possible would 

be as in Figure 3.3. One might conclude erroneously that the principle is refuted even in 

its narrowest sense. This situation may have occurred in a classic refutation of the theory 

behind competitive exclusion wherein many similar species of plankton were shown to 

have essentially total niche overlap (Hutchinson 1961). In that study, non-trophic 

relationships which could have accounted for coexistence may not have been documented. 

In contrast to Hutchinson, we suggest that the principle need not be abandoned entirely, 

but only its general application to complex systems. Structure is a crucial aspect of 

community behavior. 

The societal impacts of the competitive exclusion principle and of the stability-

diversity paradox have been tremendous and we trust that policies arising from them will 

be re-examined. Both theoretical economists (Quirk & Ruppert 1965) and human 
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ecologists (Hardin 1960) have made influential and sometimes very specific conclusions or 

recommendations regarding competition that may not be valid in the context of 

complexity. Furthermore, conservation of biodiversity and management of ecosystems are 

currently global economic considerations of modern society. The extreme interpretation 

of theory that led to the stability-diversity paradox and the possibly ill advised 

management approach that we rely on (Holding & Meffe 1996) may not be suitable for 

systems where complexity is characteristic. 
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CHAPTER 4
 

SUMMARY
 

The popular view in ecology is that stability and complexity are incompatible. 

That is, with an increase in complexity, there is a loss of mathematical stability within any 

given system. Most previous studies (with few exceptions) that examined the link 

between complexity and stability began with model ecosystems that were stable to begin 

with. In these cases it has generally been shown that an increase in complexity causes a 

loss of stability and vice versa. Unlike those studies which were based on stable models 

and found that complexity causes instability, complicating an unstable model only serves 

to increase the stability. Understanding that complexity can add stability to unstable 

systems shows that the stability-complexity paradox may only be the result of how the 

system under investigation is perceived. 

These models, although simplistic (not simple), have shown to some extent that 

increasing complexity of the model does lead in the direction of conditional stability, even 

if it is not complete stability. Simply adding a variable can help stability, but additional 

links within this particular unstable system have a stabilizing effect. Investigation, of the 

stability-diversity hypothesis leads me to believe that it is complexity, rather than types of 

interaction that is the more significant factor allowing stability and niche overlap to occur. 

I analytically and parsimoniously, that is, using Routh-Hurwitz criteria, 

demonstrate that the competitive exclusion principle holds as an absolute generality only 
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when no more than two species are competing for a single resource, either with or without 

interference. The competitive exclusion principle explicitly pertains only to those 

particular cases that are both extremely simple and lack interference interactions. 

Therefore, the principle has limited applications even under the parsimonious assumption 

of equilibrium. I demonstrate that the principle may fail, that is, coexistence is possible, 

when a third competitor is present, depending on the number of interference links With 

the addition of a fourth species in the system, the likelihood of coexistence increases with 

connectance to the point that at maximum connectance conditions for niche overlap are 

always possible, irrelevant of the type of interactions.. When applied to larger systems the 

principle is not applicable due to the introduction of thermostatic loops into the system. 
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