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This work is concerned with the analysis of the first and second-

order statistics of received irradiance of a single mode laser beam

after scattering from the diffuse target. The technique is based upon

the extended Huygens-Fresnel formulation and includes the effects of

the turbulent atmosphere on the laser beam as it propagates back to the

receiver. Formulation have been developed for both the focused and

collimated cases. It is first assumed in the analysis that phase per-

turbation of spherical wave is the dominant effect due to the atmosphere.

Utilizing this assumption, it is shown that the fields at the receiver

are Gaussian and that the space-averaged, spatial power spectral den-

sity at the receiver is "white." Based on these results, it is assumed

that the field statistics at the receiver arejointly Gaussian. This

appears to be a reasonable assumption and allows a closed-fo..u, solution

for the variance and covariance to be derived. For a point detector,

it is found that the normalized variance is unity and independent of

the turbulence strength, Cn2, and that the transverse correlation

length becomes proportional to o
o
as Cn2 increases. The time delayed
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covariance function for the received intensity is formulated using

the joint Gaussian assumption and invoking Taylor's Hypothesis. From

this, the slope of the time delayed covariance function and the temp-

oral frequency spectra are evaluated. An additional formulation is

developed in which the amplitude perturbation term is included and

its effect on the probability distribution and the covariance of

irradiance is examined. The conditions for validity of the jointly

Gaussian assumption are discussed and an analysis of the near received

irradiance in the presence of "glints" (specular reflector) is pre-

sented using the phase dominance assumption.
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I. BACKGROUND AND INTRODUCTION

It is well known that the scattering from the rough surface or

a random diffuser for all types of wave-motion produces a pattern of

light and dark patches, called speckle, which are the result of

spatial interference effects.

Work in the area of speckle statistics by other researchers has

primarily been concentrated on the nature and statistics of the tar-

get surface,
1-6

propagation of the speckle field without turbulence
7-18

and the effects of speckle on image quality
.19-28

The only work that

appears to have been done on speckle propagation through the turbu-

lent atmosphere involves a vertical path.
29

In that analysis, the

assumption is made that the entire target lies within a single iso-

planatic patch and consequently the work applies only to space objects

as a target. Some analytic work on propagation of fields from a dif-

fuse source through the turbulent atmosphere has been done by NOAA.
30

In that analysis, the source is assumed to also be temporally incoherent.

This effectively neglects the speckle and makes the work not strictly

applicable to the case of a laser illuminated, diffuse target as a

source. When EM wave propagates through the turbulent atmosphere,

it is distorted by the result of variations in the refractive index,

which is mainly caused by temperature fluctuations in the atmosphere.

In order to understand the effect of turbulence on the propagation of

the speckle field, an analysis has been made of the first and the

second order statistics of the received intensity after scattering

from a diffuse target. The treatment is based on the extended Huygens-

Fresnel formulation and includes the effects of the turbulent atmosphere
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on the single mode laser beam as it propagates to the target and on

the speckle as it propagates back to the receiver. Formulations have

been developed for the illuminating laser beam focused on the target

and also for the collimated case. A general formulation for the co-

variance is developed which when reduced to its simplest form is rep-

resented by a threefold integral. Under certain conditions, phase

perturbation of the waves is the dominant effect due to the atmosphere.

Utilizing this as an assumption, it is shown that the fields at the

receiver are Gaussian distributed, and that the space averaged, spatial

power spectral density is "white." Based on this result, it is assumed

that the field statistics at the receiver are jointly Gaussian. This

appears to be a reasonable assumption and has the advantage of allowing

a closed form solution for the second order statistics of the irradiance

to be derived. By considering the general formulations for the co-

variance, it can be shown that this assumption is valid at least for

weak turbulence and saturated turbulence conditions. The relationship

between the statistics of received intensity and the crosswind compo-

nents has been formulated from the covariance by utilizing Taylor's

Hypothesis. From this, the slope of the time lagged, covariance function

and the temporal frequency spectra have been evaluated using the joint

Gaussian assumption at the receiver.

The application of interest for the above work is to aid in the

understanding of the performance of coherent adaptive optical systems

in the presence of target and turbulence-induced speckle and to pro-

vide a theoretical basis for remote crosswind sensing using a pulsed

laser in conjunction with a diffuse target.



II. THEORETICAL DESCRIPTION

Significant progress has been made in the physical and analytical

understanding of turbulence effects on the dynamics of target-reflected

radiation. The important quantities are the variance of irradiance (a2)

covariance of irradiance [C
I
(p)], mutual coherence function (r(p)],

probability distribution function of irradiance, and spatial and temporal

power spectrum. These quantities are of interest in the plane of the

active laser transceiver, and include turbulence effects on both the

illuminating radiation from the transmitter to the target and on the

scattered radiation over the return path (Fig. 1).

The treatment to be given below utilizes primarily the extended

Huygens-Fresnel principle as applied to a turbulent path.3
1,32

Until

otherwise stated, the laser is assumed to be a coherent (TEM
00

) source,

collimated or focused, with a perfectly diffuse target. In all cases,

we attempt to show clearly the assumptions and approximations that are

made and to discuss their implications. An important feature is the

definition of distinct (asymptotic) parameter conditions applying to

any given configuration; there are generally six such conditions, repre-

senting the possible permutations of inequalities between the three

pertinent parameters: Fresnel zone size (L/k)2, coherence radius (p
o
)

and speckle size in the absence of turbulence. Each such condition

will in general carry a distinct physical and analytical interpretation.

It will be seen that cases of strong scintillations ("saturation" or

multiple scattering) are included in these conditions, so that the

treatment is general.

We first consider (Sec. II.A) the most common situation, i.e.,
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that in which the primary effect of the turbulence on the reflected

radiation arises through the perturbation of the phase term in the

associated Green's function. The implications of this assumption in

terms of the field statistics are also explained.

We then generalize the development (Sec. II.B) to include the

effects of the amplitude perturbation term in the Green's function.

The implications are again explored in detail. In Sec. II.C, we treat

the first-order statistics of irradiance for a target containing one

or more glints.
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II.A. BASIC IRRADIANCE STATISTICS AND MUTUAL COHERENCE FUNCTION

Previous work on speckle statistics has primarily been concen-

trated on the nature and statistics of the target surface, propagation

of the speckle field without turbulence, and effects of speckle on

image quality. Speckle propagation through turbulence has been con-

sidered over a vertical path for the purposes of speckle interferometry.
34

In the present section an analysis is given of the first and second

order statistics of the received intensity (irradiance) after scattering

from a diffuse target. The treatment is based on the extended Huygens-

Fresnel formulation and includes the effects of the turbulent atmosphere

on the laser beam as it propagates to the target and on the speckle as

it propagates back to the receiver. Formulations are given for both

the focused and collimated cases. The analysis also includes the

mutual coherence function (MCF).

The source, target, and receiver configuration is shown in Figure

I. The present analysis is confined to the case of a TEM
00

laser

illuminator. The source and target are assumed to be much smaller

than the path length (L), and the distance between the receiver and

source is greater than the source size and much smaller than the path

length. These geometric conditions confine the problem to small angles

and ensure that the outgoing and returning radiation experience inde-

pendent turbulence regions; the latter limitation is thought to be

inessential owing to the diffuse target characteristics.

I. Mean Irradiance at Receiver

To find the mean irradiance, we need no assumptions other

than that of a diffuse target.



We write the source amplitude distribution as

U (r) = U exp
r2

0 0
2a

0
2

ikr2
2F

)
(1)

where a
o
and F are the Characteristic beam radius and focal length

respectively. The field at the target is written from the extended

Huygens-Fresnel principle
1,2

as

ikL
[ik p r r2

U(P) 6
2

) = e
iL
f U

o
exp

2L 1 (P,r)
(2)

7

where *I describes the effects of the random medium on the propagation

of a spherical wave. Combining Eqs. (1) and (2), we have

21

okeik [L + 11-21,J u
U (p) exp

r2 ik L r2 i

2a
2 2L

k

2niL F

+ P1 (p,r) dr (3)

In particular, this applies to the special cases of a focused (L = F)

or collimated (F co) beam respectively.

The field at the receiver is written by reapplying the Huygens-

Fresnel principle to the field at the target:

ik L + p2

VC0 =
ke 2L ik

2niL U1(p) exp (Pr- 213.*P) 11)26-,-f;)] dP

(4)

where W(p) is the field solution after reflection from the target,

and 4)2 represents the turbulence effect from the target to the receiver.



The mean intensity at the receiver is then

2

<I(p)> = <IU(P) 12> = k
21rL dP1dP2 <U' (P1)1P*(P2)>

exp
[ik & 2

2L 031
2

P2) 213-(P1-P2))]

< exp [1,2(p,P1) 1P2*(P,P2)]

8

(5)

Through the assumption of a diffuse target, the reflected beam

suffers a random phase delay from point-to-point over the target, so

that

4v(pou- '*(p2)> = 6(p1 -P2)

Using this in Eq. (5), the mean intensity becomes

(6)

2

(p)> = (2r d PI <11(P1)12> < exP P2(1),P1) 1112*(P,P1d>

(7)

where the mean exponential term is unity from considerations of energy

conservation
32

The resultant mean intensity at the receiver is then

simply

2

<1(0- > = (2uLk ) dP <IU(P) 12> (8)

To complete the solution, we use Eq. (3) with Eq. (8). We note

that the structure function gives us (r =

5/3
r

< exp (p,r1) + ip1 *(p,r2)J > = e

For the focused beam, we then have

(9)



<IU(3)
2> = (y171(T)

2

1110 I2 drldr2 exp

5/!]

r

2a
0
2

ik /-
p(ri-r2)

(10)

Carrying out the integration indicated in Eq. (8), involving the Fourier-

Bessel integral, we have finally

1 (k) 21U 12 aO<1 (p) > =
2-

The result for the collimated beam is identical, and in fact could

be deduced for an arbitrary beam focus (Eq. (1)) through conservation

of energy:

2<I(p)> (
2711,
)f dT <lump>

co.
2

_r2/a2 a

= 21T I 12f re
2 0

(12)
\2114 0

dr = -2-

Thus the mean intensity at the receiver (illuminator) plane is uniform

and independent of turbulence level.

2. Correlation Function of Irradiance

In order to calculate the correlation function or covariance

of irradiance, we assume for the present section that the perturbation

Green's function (wave structure function) is dominated by the phase

,

perturbation (phase structure function).
35

This will be true for many

cases of interest and will be relaxed in subsequent sections, where the

actual implications of the assumption are pointed out.



The correlation function of the intensity at receiver points

pl and P2 is given by

B1 (P1,132) = <II (I) 1) I2 (1)2)- > = <H(pi)U*(131)U(P2)U*(132)>

Utilizing the extended Huygens-Fresnel principle, the correlation

function can be expressed as

(13)

ypi,P2)
(2711,

k rrjr
j dp1dp2dp3dp4 <U(p1- )U*(P2)11(P3)U*60>

exp[ik(R1 - R2 + R3 R4)] H(P1,P2,P304;P1,P2)

where H is the fourth order mutual coherence function given by

H = < exPWP),P1- ) + e(P2,1,1) + gP3,132) + e(P4,P2)]

and

Ri = 1P1 121

R2 = 17;1 P21

R3 = 1P2 P3I

R4 = IP2 1;41

Under the assumption of dominant phase perturbations,

(14)

(15)

H < exp[WP1,P1) i4(P2,P1) + WP3,P2) WP4,P2)) > (16)

After reflection from the diffuse target, the fields are

Gaussian and spatially incoherent. Therefore, the fields at the tar-

get can be expressed as



(p1)11*(p2)u (p )u* (P ) = (p )u* (P 2 )> (p 3)u* (P )>

+ <U(p1)U*(T)4)> <U*(P2)U(P3)>

'00> <1.(103) 6(P1 -P2) 6(P3-P4)

N+ <16)0- > <I0 Xi
3)- 6(P1-P4) ukP3-P21

11

(17)

Utilizing (17) and (14) the correlation function can be expressed as

B1(P1,F2) dp2 do4 <I(p2)> <I(pid>

4

(2icirL) ff clP2 dP4 <I (P2)>
<I(P4)>

H(p2,P2,p4,P4;p1 ,P2)

where use has been made of

R1-R2 = 1
P1

2
P2

2
2(P1-P2).P1

R3-R,. 1
4 P3

2
P4

3 1
P4)131

ilc(P2-P4)* (P1 -P2)]

(18)

The fourth order mutual coherence function (see Appendix A) in Eq. (18)

is given by
32,36,37

11(P2,P2,P4,04;PI,P2) = H(P1,P2,P3,P4;P1,P2,P3,P4)

PI = P2

= P4

P3 = PI
P4 = P2



(D12 D13 + D14 + D23 D24 + D34)
e

PI = P2

P3 = P4

P3 =P1

P4 = P2

wherethewavePhasestructureflulctionD..13 are given by

16 1
1

,5/3
D. =

3 dtit(p.-p.) + (1-0
1

(p.-o.)1ij
P

3 15/3

o

12

(20)

-3/5
where p

o
= (0.545 C

n
2Lk2) is the turbulence-induced coherence

-2/3
scale and C

n2 = Structure constant of index of refraction (m ).

Using this in (18) and making the change of variables

P = P2 P4, P = P1 P2

and

2R= P2 "1" P4

and recognizing that the first term in (18) equals <I60><I(P2)>, the

covariance for the focused case is given by

4 4 4

(a o2)CICP1,P2)
) I Ijo \

ff dp

5/3
2 2 (--P-p

e o)

il) (13_ r2 I RJo

ik
L P

e
P



ffrir2dr dr2 exp [I

[ 5/3 8
1

2p - +
3

5/3 5/3
1 r22) (r1 r2 . ) 1

4a
o
2

5/3
(1 -t)TI -

P
5/3

P
5/3

o o

1 _5/11
8
3

dtli.01 - (1-t)pl
o

(21)

13

The covariance for the collimated case is obtained from (21) by replac-

ing the dridr2 integration by

firrir2dridr2 exp (r12 + r22)

2 2 5/3 5/3

1
ka

o
r1 + r2

( )
(2a

o
(2L 5/3

0

1 [ 5/3 8
1

2p -
3

dtrpt + (1-0-
5/3

p-1

5/3
-

Po

1

fdtlpt -
0

5/3
(1-t)p

(22)

In order to further reduce the number of integrations, the

zero order Bessel functions must be expanded to functionally separ-

ate the 11 and p dependence. This can be accomplished by utilizing

the following identities:

1J
o L
(1r

1

± +

2
/72-1) = E E

m=0

where

= OR - Op

co = 1

m
(+1) J

m CL
r11) Jm

/k pN
r12) cos 111 (1)

(23)



and

e
m

= 2 for m 0 0

The 0
R
integration is then given by

27T

jr J
o L 2

ri + I)J
o

(LIS r

0

co

= 2.1r E (-1) e J 1 riR r2R)
/k

m mm=0

J (-L 1rR) J (h. 20m 2/ m Lrz

Using the Fourier-Bessel Integral,

co CO

2f ridrif(ri) f RdR J
m L

riR) J
m L
(k r2R) (-1L-c-)

f (r2)

14

and the covariance for the focused case becomes

C

3

(17) = G.Tr)

6 4

(E) luol

2

- 2T

exp

5/3
r2 2 2r2

2a 2
p
o

5/3
0

I
dpj0 k

r2p)

(0 5/131:

exp

(24)

(25)

r2dr2

1
P

5/3

1 1
5/3 8[2p -5/ 3 f - (1 -t)ol3 j

dt + (1-071
o

(26)

(Focused)



where use has been made of

m
E (-1) e m Jm

2 (x) = Jo (2x)

m=0

The variance then is given by

\20..\4

27r) kE)

2
2

4

2

and the normalized variance

0 2
a 2 I

IN
<I>

2

(27)

(28)

is unity.

The same technique yields the covarance for the collimated

case. It is given by

3 6

CI(P) (;1-T) (T) IU

2

2

o ) exp [1.2
P
o

r2dr2

5/3
2r2

exp -2r22
2L

° -
2a0

2'

P
o
5/3

1 5/3 8
1

2p - dtr5t +
5/3 3

O

_ 5/3
(1 -t)p

J

0

exp

15

ik
P P

1

8 5/1
- 0- (1--p-]

3

collimated) (29)

and the normalized variance is again unity.

The above results are based on the assumptions of a diffuse target

and phase perturbations dominating the turbulence effects. Unfortunately
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the expressions that result, reduced to their simplest form, involve

threefold integrations and except for showing that the normalized

variance is unity, allow little physical insight into the nature of

the problem. Physical interpretation is not difficult but will be

clarified in the discussion of further simplifications below. It

suffices to point out here that the covariance fundamentally involves

two scales: the turbulence-induced coherence scale (p o) and the

speckle scale in the absence of turbulence (ao and L/kao for the

focused and collimated case respectively).

Also, we note that within the present assumptions, the

normalized variance of intensity is always unity independent of turbu-

lence strength. This agrees with a physical model of identical-

frequency, randomly phased oscillators summed to represent any given

point in the receiver field: the model applies regardless of whether

target speckle (ao or L/kao) or "atmospheric speckle" (po) dominates.

3. Mutual Coherence Function

The mutual coherence function (MCF) may be very important

in analyzing the operation of a coherent optical adaptive system, and

can be readily derived given the assumption of a diffuse target but

without assuming dominance of the phase perturbation term. We write

2

,-- s__,-- ,-- ,(r '31,1)2) = (
2TrI,

if 4142 < UlPi)u'c(P2) > exp lik[R5w1,PI,

- R (p2,P4 < exp [4,2(131,1a1) + 42*(P29P2).1>
(30)



where R5(P1,P1), R6(P202)

p2 respectively.

17

are the distances from pi to pi and p2 to

By the Fresnel approximation

Pi
2

P2 P P1 P1 P2 P2
.R5(PI,P1) R6(P2,P2)

Finally, from (30) and (31),

2L
(31)

2._._
r(p1,p2)

(21 2L:L)
exp dp1dp2 <U(P1)U*(P2)>

P1'P1 -P2.P2
exp illc < exp [IP26-1,-13-1) + IP2*C-P2,P2d >2L L

(32)

Since the wave is incoherent after reflection from the diffuse

target, the coherence function at that plane can again be repre-

sented by the Dirac delta function as given in (6). Using this

in (32), r(PI,P2) can be simplified to

)2
I q)1 'P2) (21T1

exp

(Po)

5/3

[a(Pi-P2)

2L
dp <I(p)> exp {- (P17132)*17}

(33)

In the absence of turbulence, this equation is entirely identical

to the Van Cittert-Zernike theorem of coherence theor
39

y, which is

identical to a result obtained by Goodman for the mutual coherence

function of a pulsed optical radar
40
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To complete the solution, we utilize the mean intensity at the

target. For the focused case:

<1 (p)>

2 2

(k) iu 12 ao

I ol 2

we thus have

r(pl,P2)

2 2

(21TcrL) (t)

fo

5/3
r2 r

r dr J
o L

4a02 0

2 a
2

IU01 I
CO

do jr r dr J

.

exp

5/3
r2 r

exp
4a

o
2 (Po

)

(p )
P p

o

2L

e

co cc

pdp f rdr Jo (L Pr) Jo

5/3 5/3
r2 (r ik 2

+ PI-Pi)
4a

o
2

P
o

P
o

(focused)

(34)

where p = 1131-521. From the Fourier-Bessel integral formula,

/02 1
j(Pjo Jo L PP dP Vc) /-;; 6(r-p)

(35)



Equation (34) can then be simplified and it becomes

5/3

2(9 + ik
2L

r(P11132)

2

(

1 k a2
= iT I- ,- 1 u. 1 3 e

5/3

2
_

4a02

- --P-- 2 (2--
ik2

P
o

2L
4

o
<I(p)> e (focused)

pi-p3)

(36)

19

Using <I(p)> for the collimated case in (33) and simplifying yields

2

2L 1 P
o

o
2 (2--)

5/3
ikp2 g_40.)
2L

r(131,P2) = <I6)

(collimated) (37)

These results for the MCF will be used further below.

Now let

P2 = P1 P

in (36), divide by <I(p)> and integrate over dp1 to obtain the space

averaged, normalized mutual intensity

r
N
(P) = dPl rN(P151 + 1)

= e

P2
5/3

2 (1-9
ik 2

o

P
o

2L P
4a 2

ik
.._ PPl
dpi e



2

= 2 (2702()

5/3

_p2 2 /E_\ ik
P

2

2L
4a 2 Po)

0
6(p) (focused)

The space averaged, power spectral density then becomes

srNrN
(1)

(38)

(focused)

(39)

20

A similar result is obtained for the collimated case and it is con-

cluded that at least on the average (spatial), the fields at the

receiver are incoherent.

It may be noted that the MCF's of Eq.(36) and (37) imply a

"white" or constant spatial power spectrum for the (complex) ampli-

tude. This is of course an idealization resulting from assuming

delta-function rather than wavelength-sized phase correlation for

the field upon reflection off the target. The more interesting

spectrum, however, is that of the irradiance, as discussed below.

4. Probability Distribution

In order to formulate the probability distribution for the

scintillating energy at the receiver, we evaluate the n
th

moment of

the intensity in terms of <I(p)>. We again assume that the phase

perturbations are the dominant turbulence effect, and write the

second moment as



<I2(;)> kiL) fiff d f7,14;2436-4

<U(POU*(P2)U(P3)U *(P4)- exp
[if, V

+ 1)3 P4 2(PI-p2)
.

p -2(P3-P4)
.

<expkgPi,p) (1)02,0 + 4(73.3,i) +04,P)) > (40)
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Since the fields after reflection from the diffuse target are jointly

Gaussian and uncorrelated,

<U(101)U*(P2)U(T3)U*6-10> = <U601J*(2) <U601J*(74)>

+ <u(p1)1)*(P4)> <1J* (P2)u (P3)>

= '(P1)6(P1-P2)1(P3)6(P3-P4) 1(p1)6(P1-P4)1(p3)6(p3-P2)

(41)

Using (40) in (41) yields

4

<I2Gj> = 2 (__L) if
27L ff

Since

-7
dP2dP4 <1,(P2) <I(P4)

2

(
r _

21,L) dP2 <IO2- )

the second moment becomes

<I2(P)> = 2<1(P)>2

(42)

(43)



22

The nth moment of the intensity can be expressed as

2N

<I
N
(P)> = (1a) dp1 dp2N

<U(POU*(p2)
.... U(P2N: 1)1j*(P2N)

[exp -iit (PT-pi .... + p2N-lpN 2(P1
-P2

-2(P2N-1-2N) 11

P

\\

<exp [1(5(---P1 'P) 4)(P2'P) (P2N'P))j>

(44)

Because of the jointly Gaussian and incoherent nature of the

source, and the occurrence of only paired difference terms in the

integrand, when

<u(pOu*(132) u (02N)>

is expanded and the integrations involving the delta functions are

performed, the n
th

moment reduces to

2N

<1

N
(P) NI( 2.71.L) Jr Jr "1 dPN

<1(p1)> (p
N
)> = N! <I(5 )>

N
(45)

The probability density function for the intensity therefore is

exponential and



a

<I>

PI
(a) = <I>

(46)
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where a is greater than or equal to zero. It is thus concluded that

the field and amplitude at the receiver are normally and Rayleigh

distributed respectively, given the assumption that phase perturba-

tions dominate the turbulence effects.

5. Simplification for Weak and Strong Turbulence

Since, as shown above, the fields at the receiver are

Gaussian and spatially "white," it is tempting to assume that the

receiver fields are also jointly Gaussian. This turns out to be a

good approximation in many situations, and in this section the impli-

cations and conditions for validity of this added assumption are

explored. This leads to a simple, straightforward interpretation of

the terms in the covariance of intensity.

The jointly Gaussian assumption yields

= <u(p1)u*C00><u(p2)u*(p2)> + <u(i1)u*(52)><u*(50u(P2)>

,2

= <IG'0><I(52) + 11'01,1)2)1

It follows that the covariance of intensity is given by

C (pl,p2) = B
I '
(pi 139) <I(50

2

><I(P2) = Ir(515-2)1

(47)

(48)

Finally, utilizing the mutual coherence result (Eq.(36))

the normalized covariance function of irradiance for the focused case
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can thus be written:

- 22-- 4 (2)
5/3

CI (p) 2a
o
2 P

o

GIN (p) =
0 2

= e (focused) (49)

I

where the normalized variance is unity as before.

For the collimated case, the same variance is obtained, and the nor-

malized covariance is

CI (p) = e

5/3 2 ka 2

-4
(P 1 1 o 2

0 2 ao P

(collimated) (50)

The covariance scale lengths are obvious from these results.

Either the "atmospheric speckle" (po) or the "target speckle" (speckle

in the absence of turbulence) will predominate, depending upon which

is smaller (strong and weak turbulence respectively). We point out in

passing that a third covariance scale (L/k)2 may also enter, but this

scale is lost within the present assumption of dominant phase perturba-

tions. Figures 2-6 show the correlation scale for various cases.

We note that the spatial power spectrum of irradiance may be

readily obtained by transforming Eqs.(49,50). However, a more important

quantity in the operation of e.g. an adaptive optical system may be the

temporal spectrum. This spectrum, which will be derived in a later

section, depends only on the atmospheric speckle term; the target

speckle field will not translate with the transverse wind.
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We now explore the conditions for validity of the jointly

Gaussian assumption. The simple multiplicative terms for the co-

variance scales in Eqs.(49,50) are replaced by a more complicated

interrelationship in Eqs.(26,29). It may therefore be surmised that

the jointly Gaussian assumption is valid under conditions of weak

and strong turbulence, when target and atmospheric speckle terms

respectively predominate, but that the jointly Gaussian description

is not correct in the range of intermediate turbulence effects when

both scales are important and interact. We now show that this is

indeed the case.

Weak Turbulence

For the weak turbulence case, po >> Ii7Ti and the term

J
o

1 5/3 8 fl 5/3

p 5/3
-3- (1-"0171

L rp) e

1

8 5/3,1
- dtWt - (1 -0731-1

3 0

L
rp) (51)

in (26) and (29). The covariances then become identical to those

derived using the jointly Gaussian assumption.



26

10-13 10-12 1crs
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Strong Turbulence

In the strong turbulence case, po << 1171-C-, which corresponds to

multiple scattering, or "saturation of scintillations" for a point

source. Let us consider Eq.(26) with po 0. The only interesting

range of the argument (p) is 0 < p < po. The Bessel term (' pJ0 in

polar coordinates) is appreciable only for p 0, i.e. p >> p
o
or

p >> p; and because of the latter condition the final bracket in

the equation is zero. Hence the condition (51) is again obtained,

and the covariances again become identical to those derived using

the jointly Gaussian assumption. The atmosphere has "decoherentized"

the field in a manner similar to that of the diffuse reflector itself.

6. Time-Lagged Covariance and Temporal Spectrum of Scintillations

In order to obtain the relationship between the statistics

of the received intensity and the cross wind, the time delayed co-

variance function must first be formulated. Then the slope of the

time delayed, covariance function and the temporal frequency spectra

can be evaluated.

For this development we assume that the fields are jointly

Gaussian at the receiver and consequently

ci(TI:I2,T) (F152,T)12

Using the extended Huygens-Fresnel principle

(52)



ik(P12-1)22)

2

(

2L
k

Itpi,-p2,T) = i,T, e
fj. dpidp2

<IT (p1,0 ) U * p20)>. exp [11
2L

.

P2
2

P1 P1

2p2 P2] <ex+2(pl,P1,c) + 1P2*(p2,p2,T) >

Due to the diffuse target

<U (P1,0)U *(P2,T)> = <U(P1,0)U*(P2,T)>6(P)

Using (54) in (53) and utilizing the extended Huygens-Fresnel

(53)

(54)

principle to express the fields incident on the target, the time

delayed mutual coherence function at the receiver becomes for the

focused case

ik 2

r(5i,P2,1) = 2nL e

( -P29. flidridr2dol

2(r1 r2) ik
)

2
r22exP[-tc. 1CP-1-P2) (r12

ik _7l ik

2a
o
2

<exp
2L 1 L 2L (P2

+ *1* (T1,12,1) <exP[2(FII,P116)-1- P2* (P2,P1,1 >

31

(55)

The first ensemble average in (55) corresponds to the time delayed

mutual coherence function for spherical waves originating at two

points r1 and r2 in the transmitter plane and propagating to a
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single point pi in the target plane. The second ensemble average

corresponds to the time delayed mutual coherence function for a

spherical wave originating at the point pi in the target plane and

propagating to two points 51 and 52 in the receiver plane. Perform-

ing the integrations in (55) it becomes

2 2
(1

2
k () 2 0

2
rdr J

0
(
L

pr)
nL

0

2
exp

r

b
pp F(r,O,T)F(0,p,t)

24a
o

1 tk\
' u

2 ao
22

ki/ 2

2_p__ It 2 2

o
4a 2

2L (P1-P22

F(13,0, T)F (O,p, T)

(56)

where the time delayed mutual coherence functions F(p,O,T) and

F(0,p,T) can be obtained from the mutual coherence function for a

spherical wave by invoking Taylor's Hypothesis.
35

This mutual coherence function is given by
32

1

__ 5/3

F(r,5) = exp 2.91 Lk2fC n2 (w) + (1-w
2

dw (57)

0

where r is the transmitter aperture vector ri - r2, p is the target

aperture vector p1 p2 and w is the distance from the source to the

field point normalized by the total path length L. For the uniform

-5/3
turbulence case, we note that k2LC

n
2 p

o
. The time delayed

mutual coherence function
41

can be obtained from (57) by replacing



wp by wp

F(7,p,T)

and consequently

F6300,T)

and

F(0,p,T)

V(w)T, where V(w) is

1

= exp [2.91 Lk2 f

the transverse wind:

5
3

, 5/3
C n2 (w) I (1-w)p - V (w)T dw]

5/3
C
n
2 (1-z)14; - V(1-z)TI dz

<58)

(59)

(60)

2

1

exp [- 2.91 Lk2 f
2

0

exp 2.91 Lk2[
2

o

where z is the normalized distance from the target to the field

point.

The normalized, time delayed covariance function for the

focused case and an arbitrary distribution of Cn
2

thus given by

2CIN (p,t) = e 2cto

1

along the path is

exp [- 5.82Lk2 jr c
n

2(w)I(1-w)5 -V(w)r1 dw

0

5/3

(focused) (61)

33
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The slope at zero time delay can now be found from (61).

acI

a T

T 0

1

IN
6 .) = 9.7 Lk2p jr c 2(w)(1-.) V(0.15

M
dw

2/3[ 2/3

CI (P)

N

(62)

It is found that the slope is linearly related to the component of

wind along p and is proportional to a weighted average of the cross-

wind along the propagation path. The crosswind weighting function can

be found from (62) by letting

V(w) ="-. 13 6(w wo)

This yields

W07(3) = 9.7 Lk2p
2/3

C11.4 (Two) (1-wo)
2/3

CI(P) (63)

The wind weighting function is zero at the target and at least for

uniform turbulence varies as (1 w
o
)2/3 along the path with the

maximum weighting occurring at the receiver. This result is similar

to the result for the cw system
33

in that the weighting is zero at

the target (source) and peaked up toward the receiver due to the

source size being large with respect to a Fresnel zone and to the

receiver size. But in the cw system the weighting is zero at the

receiver which is not the same as the result obtained for the pulsed

system.
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The normalized covariance of the intensity is equivalent to

the normalized covariance of the log-amplitude for a plane or spherical

wave in the case of weak turbulence. In that case, the wind weighting

function should be zero at the receiver. However, in the beam wave

case or diffuse source case, the normalized covariance of the intensity

does not bear a simple relationship to the normalized log-amplitude co-

variance and the wind weighting function may indeed, as predicted by

the theory, not be zero at the receiver. This result is consistent

with the theory developed for the passive system.
30

If the turbulence and crosswind are uniform, then the slope

at zero time delay and the component of the crosswind along p are

related by

=
1

MI
65.82 Lk2p2/3 C

n
2 C -,0) N

(,0)

N

(64)

The factor multiplying the slope in (64) is the calibration factor

that relates the measured slope of the time delayed covariance function

to the path averaged crosswind. It should be noted that it is a function

of turbulence level. The proper relationships for the collimated case

can be obtained from (61) and (62) by including the factor

2

[I 1 2
XP p - -2p

The power spectral density can be obtained from (61). Letting



p = 0 and assuming uniform turbulence and crosswind, (61) becomes

11
5/3 5/3

5/3

- 5.82 Lk2Cn2 IVI 1 0 . 6 7 I

CT (0,T ) =e e
P
o

"11 (65)
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Taking the Fourier transformation of (65) yields the power spectral

density.

-10.67

5/3 _,_

Si(w) =
l 1 T5/3

2 Jr e Cos(wT) d T

0

P
o

X 2

5
I I (10.67)3

5
r(3/5)

(10.67)
6/5

+

where

wp
0

x =

n-1 x2(n-1) r 1 (n-1))

2(n-1)!
(10.67)6(1171)//5

(66)

The normalized power spectral density is plotted versus the parameter

X in Figure 6.

Summary of the above work: under the assumption that the

wave structure function is approximately equal to the phase structure

function, a general formulation for the normalized covariance of the

intensity was developed for the focused and collimated cases that

involved a threefold integration. Also, the normalized variance was
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found to be unity and the probability density function for the field at

the receiver was found to be Gaussian and, on a space averaged basis,

incoherent. In the case of weak or saturated turbulence, a closed

form solution was found for the normalized covariance of the intensity;

under the assumption that the fields at the receiver are jointly nor-

mal, a closed form solution was developed for the normalized covariance

of the intensity that is identical to that derived from the general

formulation under weak or saturated turbulence conditions. In addition,

formulations were developed for the time delayed covariance function and

its slope, the wind weighting function and the temporal power spectral

density. The following work remains to be completed: extension of the

work to the case of a finite receiving aperture, development of a

general formulation that is free of the phase domination assumption

and experimental conformation of the theoretical results.
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7. Higher Order Modes

The analysis of the previous section assumed the source to

be a single mode (TEM
0

) laser beam. The same techniques may be applied

to higher order modes. In the following, a TEM10 beam is selected as

the source. Then

...

2 2
U10(r) = U0(TT1

ik )
2

r o

o

(
2F r

2

The mean intensity at receiver can be described as,

2<I6-)> = (
27rL

) <I6)>

IU I k 2 (102

20 (L) 2
(67)

this is identical to the TEM
00

mode case. In order to calculate the co-

variance function, the assumption of joint Gaussian fields at the re-

ceiver is applied. The mutual coherence function is calculated using

Eq. (33)

ik(p12 -p12)
5/3

2 ik
PP

r(51,P2) = (2k)
2L

jrcIP <I(P)>10 e
P )

(68)

The mean intensity at target can be defined,

<I

x exp

>10 - (2.nL)

ik
1., p -[

2

dr]. dr2 U10 (r1) U10 (r2)

5/T

ik 2 2 (69)(r1-r2) + (ri -r2 )
Po



The next work is concerned with the mathetical manipulation of ex-

pressions necessary to get the integration into a form in which

satisfactory closed formulation can be made. The integration is

divided each term for convenience and evaluated separately. The

variables ri,r2 are transformed r and R defined

r = r1 r2 2R = r1 + r2

<I6)>10
(27rL) j

\2
r2 + 4R2 1 (R2 -

4 4
2a

o
2 a

o

[ r2 + 4R2 ilk
- - ik _ r dr dRL P

4a
o
2

x exp

= <I(P) >A + <I(P) >B + <I(p)>c + <I(P) >D (70)

Each term can be computed as

40

)r2 + 4R2

2 4a 2 Po

) iu
o

fir RrJ r(1 L/F)RdJ
o L

1=p1)e °
k dRdr

o 0
2 5/3

o k2 r2 r
2 co 4 a (1 L/F)2r2

_ o (,) iu 1

2 L I o I

I, 2 2

J (ipr) e
o L

4a
o
2 P 6

rdr

0
5/3 (71)

r2 (r)
2 w

2

<I(p)>B = (L)k 2 luol
Jo ( lor) e

4a
o
2 Po

rdr

2a 2
0 0

R2

a

x f R(r2 + 4R2)J
o

L/F)Rr] e ° dR

2

0

(72)

5/3



2I? a fr2
2

j 0 Pr) 4a
o
2 [ - ---2-- '-:=-- (1 - L/F)2 2Jo \L 4 L2

2 \ 5/3
r2

_
4
o 2 TL1 L/F)2r2 (

rdr4a
o
2 L2 Po

)

x e

=

co

2
2 1 o0,0

I) U0 I -----) i J
o

(1-L 5.- pr) e
4a

o
2

p

rdr

a o2 o

5/3
(r2 r

R2
co

R3r2 Rr4)
x f (R + J - L/F)111-1

2

e
2 + 16 o L dR

0

41

(73)

5/3 2

r2 (rp ) o
co

k2 (1 L/F)2r2

= (1921U0 1

1
4 i 4a 2

J (k pr) F (r) e °Jo
\L c

o
4

L2
rdr

a o
0

where

Fc(r) =

2

1 k2o

2clk
L/F)2r2(1

2 2
L2

8

o
a 2

0 k2
a

(1 L/F)2r2 r2 + °2+ 4 [1 4
L2

32

and

2
2

(1422) if
5/3

ik r dR
Po

I R r

r4

expE
r2

4a 2

+ 4R2 ik
L

0

(74)

(1 - L/F)



(k2 ao2 k2
= - )1U0 (1 L/F)2r2J

4 8
L
2

0

r2 (r ao
2

k2

r2J (elpr)
o L

4a 2 P )
(1 L/F)2r2

L2 rdr
0

42

(75)

The mean irradiance at target can be written without repeating the

arithmetic calculation.

<1(p)> =

1a 2 2 2
(1( iu jr

,
k2 r2-

2 2
(1 - L/F)2 +

2 \Lj I 01
L2

0 2 o 2]

2

x J
o

(-7-pr) exp

5/3
2 (r ) o k2

(1 L/F)2r2
P
o

4 L 24a
o
2 rdr

(76)

By using this formula, the mutual coherence function is calculated.

ik(p12_13,22)

2 2a 2

r(1311P2) = 02 (11) IU01 e

1 Lo2 k2
1

2 2
L
2

(1 - L/F)2 +
1

2a 2
o

x exp

5/3
a

2

P
2 () o k2

4a 2 0
4

L
2

0

2

P2
2

(1 - L/F)2p2 (77)

The covariance of irradiance is calculated by the Gaussian Assumption
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C
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(p) = Ir
N (P1,102)1 = { [.°21 1
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5/3 2a , 2

x exp - --P-2 4 (-2-)
o K L/F)2p2

P
o2a 2

2
L
2
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The focused case

4 (P--
Po

)

CIN(P) = 1
P
2

2 2a
o
2

4a 2
0

The collimated case

e

I
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[
C
IN
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I ' 1

P
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2
L
2

2a
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5/3
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(78)

(79)

5/3 2
a 1,2

P
2

4
P )

2

o P2

2a 2
0

(80)
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II.B. THE GENERAL COVARIANCE FUNCTION

In a previous section, the mean irradiance and mutual coherence

function werederived for the case of a diffuse target. However, the

analysis of the intensity covariance was based on the assumption of

neglecting the amplitude term in the. perturbation Green's function.

This latter assumption is not always valid, as can be seen by consider-

ing the case where the illuminated target spot is small: the scin-

tillations at the receiver should then approximate those of a point

source, with log normal statistics and a covariance scale on the order

(L/k) 2.

In this section we include the amplitude perturbation term and

examine the effect on the probability distribution of the irradiance.

We then derive the general covariance function.

1. Moments and Probability Distribution of Irradiance

The second moment of irradiance can be written from Eqs.(14)

and (17) and the mutual coherence function (15). We now generalize the

latter to include amplitude perturbation terms (Appendix A), resulting

in

--
lc

<12 (5) , 2
4

dr;2414 <I6-2)><I6-4) e4CX (IPz-P41)
27rL (81)

where C is the point-source log amplitude covariance function given in
X

the first-order theory
35,42,43

by

co L

C
x
(1P2-P41 u J) = 47r2 k2 lido( ) F2--P-T/4 1

. us 22kL--Sint [ u s(L s)
] dsduL

0 0 (82)



and (I) is the Kolmogorov spectrum
35

-11/3
(1)(u) = 0.033 C

n
411

45

(83)

We assume for the present that C <<1, which will be true
35

for both
X

weak and saturated scintillations (weak and strong turbulence scatter-

ing respectively). It will not be true for the intermediate case, how-

ever, and we will lift the restriction in calculating the covariance

below. Also, we point out that the function C
X
has been derived

phenomenologically for the saturated or strong scattering case by Yura

and Clifford
44-46 so that in principle we are not limited to the first-

order expression (82).

We generalize (81) to the nth moment:

2n
CP)> ( 270 f dr-5-1 .dc5; [

<In
<I(F1)>] exp [2 E C

i=1 i #j Xij

We write this as

<Ina> = n!<Ia>nFn

where

F1 = 1

F2 =ff4zaT4 <I(P2)><I(p4)

[Sdp2<I(P2)>]

(162,;41)

2

p1dji.if n[ <I(p.)> ]exp [2 E

ill

[SclP<I(P)>]

(84)

(85)

(86)



Our assumption on C
X
yields

e

,

4C
X
(1r72-P41) = 1+4C

x
(IP2-P41)

We thus simplify F2 to

4.gdP2drT/4<I62)><I(p4)>C
F2 = 1+ X

[S dP2<I(P2)>] 2

For the denominator for the focused case, we write from Eq.(10):

<I(P)> = ( " 1 U 12

a 2

(
2

rdrJ
o L

1-3-pr) e

9

which integrates to

S<I(p)>d7 = 2 IU I

o

r2

4a 2
0

46

(87)

(88)

(89)

(90)

The integral in the numerator of (88) is straightforward but laborious,

we state here the result for F2:

00 L

F2 = 1+(41-02k2 f uduj ds e

0 0

2 2u s 5/3

o

( us )
2

2k2 kpo/
[u2S(L-s)1

(u) sing
2kL J

where the approximation relates to the assumption (87) on C
X

have the second moment from Eq.(85):

(91)

We then

<I2(P)> = 2<I(P)>2F2 (92)

and the n
th

moment is



<I
n
> = n!<I>

n
11

n (n.,1)

2 (F2 )

47

(93)

Hence nonunity F2 represents the departure from an exponential intensity

distribution.

We finally derive the probability distribution using

-sI
s e > = 1-s<I>+

s

2!

3<13>
+

3!

We let <I> E I
o
and find the probability as

I

I
o 1

12

PPI(I)

I

e
1 + (F2-1) [ 1-

I + 21 2j
O

so that we have a first-order correction to the exponential distribution.

(94)

(95)

We note that F2 (and Fn) will be unity for weak turbulence and

for very strong turbulence (p0÷0). Also, F2 will be unity for a small

focused source (a
o
), which physically relates to a large target spot.

Conversely, F2 will depart from unity and therefore show the effect of

the amplitude perturbation term for the case of intermediate turbulence

and a large source (small target spot). Physically this is the case of

a quasi-point-source attempting to scintillate in the usual manner for

a point source in the first-order theory,
35

but nevertheless interacting

with the speckles created by the diffuse target.

The exponential distribution applies for the weak turbulence

case simply because the behavior is that of a diffuse source in a vacuum

(speckles). It applies to a large target-spot, implying that the phase-

perturbation-dominance assumption of Section II.A is then applicable, i.e.
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that the target (vacuum) speckle mechanism dominates. It applies for

strong turbulence because the field again has the nature of that from

a diffuse source (atmospheric specklepo). These considerations will be

clarified below.

2. Covariance and Variance of Intensity

We now derive the general covariance function, dropping the

requirement that C <<1.
X

The covariance is the second term of Eq.(18):

/ k
yp1,p2) dp,dp, <1(P2)><I(P4

ik
1(P1-P2VP1-P2)

e p)

4c (p,p) _ _
e - 1 where p = P2-104, P = P1-P2 (96)

The full coherence function replacing Eq.(19) is (Appendix A)

5/3 1

1 [ 5/3 8 ,513
{- 2 (PT-) 2p -

3
f dtrp-t + (1-0-P-I

'-'0 P
o

0
11(F;5) = e

1

- fo dtlpt (1 -t)-P-1 71- 2Cx(-5
8

)+ }

where

1 co

_8 3
C
X
(05) = 0.1327r2k2C

n
2L t du u sin'

0

.J (1-0FA
0

Fu2Lt(l-t)
L 2k

(97)

(98)
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The latter expression (98) assumes that multiple scattering (satu-

ration) does not apply but can be modified for such a case.4
5

The

irradiance at the target <1(p)> is given by (89) for the focused case

and with an additional (ka
o
/2L)2 term in the exponent for the colli-

mated case as before.

We again omit tedious algebra and integrations and state the

result for the focused case:

(P)
(1-) 3(116 IU02R L

ir
o

r p)
L 2 e

r2 -
,
2

5 /3

ci2 2 2a
o
2 -2 -----p 513

0fr2dr2 e

0

ik

P P
H(P ,11)

2
,2

2

o 2 2R -,+ GO (11-5 IU 14 (1°1 1 (ITI

4C
x
(P,P)

xfd-pJ0 (11:-, r2p) e - 1

The variance is given by

C
I
(o) 2 1 \

2
tic \6

2ir / / U0 I

pdpJ r
0 L

r2p)

0

CO

r2dr2 e

5/3
r22

2

o )-2a 2 Po

a2)2

o( 2 r2dr2 e

r22

2

(99)

2r25/3

2a p 5/3

0

4C (p)
2e X - 1 (100)
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These general results involve five-fold integrals (more in the saturated

case
45

) and have not been numerically evaluated. A comparison with

Eqs.(26) and (28) show that the amplitude perturbation term simply

introduces the C terms in Eq.(99), i.e. the log amplitude covariance
X

for a point source. A qualitative interpretation will be given below.

In order to compare these results with those of Section II.B.l,

we again let C
X
<<1, and we find that (80) and (63) yield

o2
- Ia2 7. ---

I
N

1 co

1 u
= 1 -I- 1.0561-2k2C2L dt du u-8 3 exp f- k

L(1-t)
za

0
0 0

2 u2Lt (1_0]
To5/3 [k MOI-P/3} sin2 L 2k (101)

This is consistent with Eq.(92), and again shows the departure from

the unity normalized variance obtained when C cannot be taken as zero.
X

The general formulations of variance, covariance, higher order moments

and probability density function of irradiance have been analyzed in-

cluding log-amplitude perturbation effects. In addition, in case of

small log-amplitude perturbations, these statistical properties are

reduced to close expressions that can be compared with those of pre-

vious sections.
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lI.C. TARGET GLINTS

As a preliminary examination of the effects of target structure,

we present in this section an analysis of the mean receiver irradiance

in the presence of "glints" (specular reflectors). We assume that the

target is otherwise diffuse, and that phase perturbations predominate.

The transmitter is again a TEN() focused or collimated source.

We again start with the field at the receiver as described by

Eqs.(1,2). The field reflected at the target is represented as

(P) + U (P)= Ud(04- CP)U(p) = U
diffuse glint

where

p)2
U
glint

= E

m =1

U
incident

(D) a
m
exp

p
m = position of m

th
glint

Lp
m

= width of m
th

glint

a
m

= complex strength of mth glint

Then the irradiance is

Ap 2
in

I(p) = UO2.(E(P1)+U (Pi)] A[ U ti (p)+U*(P2

(102)

exP p 1) 1P2 (P2 0+11)2* -P2,P. / dP1 pdP2

= , )] [u*62)-4-u,(p2)]2xL d-gld
r -1exp{ LPI2-P2

2
-.401-P2)P j )2 (P2 :5)+4 CP2,P)} dP1 dP2

(103)



We then simplify the field at the target:

][U()+U*d(P1)+Ug(P1) P2 g(P2) >

* * *
<ud(p1)Ud(p2)> + <Ud(pI)Ug(p2)>'+ <Ug(p1)Ud(p2)>

+ <U (POU (P2)

Since

*
<1J

d
(pOU (P2)> = <TJ

d g
(P1)><U (p2)> = 0

<Ug(p1- )Ud(p2)> = <Ug(p1)><Ud(p2)> = 0

<U
d
(P1)U*(P2) = 1(p-11) (D1,p2)

(1.F171)5/3
4'2(P1,1 A+4(P2,13) \ p

o
/

<e
>= e

we have

<I(p)> = <I(p) >d + <I(p)- >
g
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(104)

(105)

(106)

where <I(5)>d is the diffuse term analyzed in Section II.A and <I(p)>g

is the glint term:

1r .2 re
<16;)> = 33 6-16-2 <U (cTOU(p2)>

g 2rL g g

5 /3
iPa-P2 Iik r 2 1

(107)
. exp LPi-P2-4k-Pi-P2)-P 0 573

o

We now describe the complex correlation of the glint field at the target:



* lo-f-p-2.1,1+2)+2pri
<U (pOU (p2)> = E la 12 <la- )> exp -

z P

M=1 M Ap2

.exp

M
ma a <UIp )U*(p )>

i mi m2 ml m2

p2 1-2p .i-p
1111ml

pl2

Ap
2

ml

where the focused case

2
P22 -2P

m2
.P2-4)

m2

Ap
m22

1U012
2

rdr J
1, 2 2a

(
0 L

I-(L p
m
r) e

4ao2
o

(109)

The corresponding expression for the collimated case has an additional

3
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(108)

(ka
o
/2L)2 term in the exponent. The coherence function can be readily

shown to be

a
...2 4_0 1

pm -1 tic)2 lu 12 `lo i 1: i Pm2<U(p )U*(p )> =
ml m2 2TrkL/

' ol 2 e'

r2 ik i'. 6- -ip )
it-,02 mi m2

Sal P F(r,pm- -p )

l m2

<tr (p )U*(p )>
ml m2 2n

r2 rao k
a 2 4a2 E I r- (Pm

ml m2

ik
2L

(
2 -p

2 )

\ M1 M2 1

(110a)

fdr e

ik ik(p \

2L r Vini m2) 2L mi m2)
F(r,p

m 2
(110b)



where the mutual coherence function F is

F(r,p 7.1) )

ml m2
= = e
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0

8 jr dt I pt (1-t 511
P
o

Finally, the mean receiver irradiance (diffraction pattern) due to

glints is expressed from (107,108) as

k 14
<I(P) >g = E E a a* <II (p )U*(p ) >

m2 =1 ml m2 1111 1112
_L

exp ik
-24,

Lr

2 2 (pr_prni)2(p2_p
1119 5/3P1-p2-2(pi-rop

Ap 2 Ap 2 p
ml m2 0

(112)

where <U(p
ml

)U*(p
m2

)> is given by Eqs.(93). We now show specific cases.

1. Single glint (M = 1)

From Eq.(112) we have

<I(P) >g = (
2
k )2 <I(17111) lam12
71.L

2 2

r 2 2 _1 P14-02-20m 41-1-TD2)+2pm2
exp

2L LPI-P2-201-P2)Pj Ap 2
0

With the following change of variables:

P1P1-P2 = P

P1+1P2 = 2R

2 2

Pi+P2 1 2=
2
-(f) +4R 2 )

5/3

(113)

(114)



we have

<I(P) >g

-2(pm )
Apmk 12

27rLi m m'

ik 2R2

dR e P R Apm2 APm'L

ik p2 o \5 /3

dp P P 2APra2 po

2

The first integration yields

i4p -2 (Om

R Jo FE p e dR
A
P

2
in

Apm2
= 211.

4

(

2

m

4p
m

8 kL p/
-

ik
dp + 17 Pm. P

which with (115) gives

2<I(P) >g = (-fic) <I(P.APm2m)lam12
4

Ap 2

Ap
m2

+
2 m /10)2 ] 2 5/3

p J [1-(-
o L P-PmIP dp

This may be usefully normalized by setting p = pm
.
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(115)

(116)

(117)

The result (117) may be interpreted as follows. The maximum occurs

at p = p
m

, as expected. The scale of the diffraction pattern

is seen from the Bessel term to be L/kp
'

where p is determined
maxmax
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from the exponential as the smallest of Ap LikAp
m

, and p
o

respectively.

The corresponding I(p) scales are L/kAp
m

(diffraction from the glint),

Ap
m

(geometric reflection term), and p
o

(effective coherent glint size

in strong turbulence); the largest will predominate in each case.

2. Arbitrary Number of Glints (M)

This involves lengthy but straightforward calculation. The

result is

M<i(i)>
g

= E <I(p)>
g.

+ 1
E F._ (I)

i=1 1,J

where

F
1-

(I) = (1-(-)2 Re <U(p )IJA(p )>a a* (Ap 2 )
,i L Tn. m m. m ii+

1 J i j

wpm

}

i mi, exp
Ap 24-Ap 2
m m .
1 3

.j[pdp Jo(lylp) exp

and

1 1 1

Ap
ij±

2 Ap 12 Ap
j
2

(118)

A
Ap 2

L Opij+
k i )2] 2

Op

1

ij+ ij-

(119)



k ( m4 mi) mzI.
P -P AP 2

.

ir- = E P Pm: +
3-

4p_2 + Ap 2

J

+i 2 Pmi

(T
j

m.)
Ap 2 + Ap 2m

1
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(120)

Each pair of glints results in a cross-term bright spot in the receiver

irradiance field, located a

1
P.1j m . Ap 2 4. Ap 2

m. m.
1

(121)

This is illustrated in Figure 7.

The analysis of the diffraction pattern in the presence of one or

more glints has been made using the assumption of jointly Gaussian

fields for single mode laser beam source. The locations of single and

cross-term bright spots have been calculated from the properties of

Bessel functions and the corresponding geometrical figures were

presented. These results can be interpreted as reasonable optical

phenomena.
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