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Abstract 

 

RNA secondary structure prediction maps a RNA sequence to its secondary structure 

(set of AU, CG, and GU pairs). It is an important problem in computational biology be-

cause such structures reveals crucial information about the RNAs function, which is use-

ful in many applications ranging from noncoding RNA detection to folding dynamics 

simulation.  

Traditionally, RNA structure prediction is often accomplished computationally by the 

cubic-time CKY parsing algorithm borrowed from computational linguistics, with the 

energy parameters either estimated physically or learned from data. With the advent of 

deep learning, we propose a brand-new way of looking at this problem, and cast it as a 

machine translation problem where the RNA sequence is the source language and the 

dot-parenthesis structure is the target language. Using a state-of-the-art open source neu-

ral machine translation package, we are able to build an RNA structure predictor without 

any hand-designed features. 
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Chapter 1  

Introduction 

1.1 RNA Structure 

 RNA (Ribonucleic acid), along with DNA (deoxyribonucleic acid) and proteins, is 

one of the three major biological macromolecules that are essential for all known forms 

of life.  It plays an important role in various biological processes, such as coding, decod-

ing, regulation, and expression of genes.  In recent years, researchers have found that 

RNA can also act as enzymes to speed chemical reactions.   

RNA is a polymeric molecule assembled as a chain of nucleotides. Each nucleotide is 

made up of a base, a ribose sugar, and a phosphate.  There are four types of nitrogenous 

bases, called cytosine (C), guanine (G), aenine (A), and uracil (U).  The primary structure 

of RNA refers to the sequence of bases.  Figure 1.1 shows the structure of RNA and 

DNA.  Unlike DNA which is usually found in a paired double-stranded form in cells, 

RNA is a single-stranded molecule.  However, owing to the hydrogen bonding between 

complementary bases on the same strand, most biologically active RNAs will partly pair 

and folded onto themselves
[1]

 , forming the secondary structure of RNA.
[2]

  In other 

words, the secondary structure of RNA can be represented as a list of bases which are 

paired in the molecule.  Figure 1.2 shows an example of RNA secondary structure, which 

can be divided into helical regions composed of canonical base pairs (A-U, G-C, G-U), as 

well as single-stranded regions such as hairpin loops, internal loops, and junctions. 
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Figure 1.1: Structures of RNA and DNA 

 

Figure 1.2: RNA molecule secondary structure motifs 

  single-strand regions, double-strand base pairs, hairpins, bulges, internal loops, 

junctions.  
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1.2 RNA Secondary Structure Prediction 

RNA serves various roles in biological processes from modulating gene expression 
[3, 

4]
 to catalyzing reactions

[5, 6]
.  To understand RNAs’ mechanism of action, the secondary 

structure must be known.  The prediction of RNA structures has attracted increasing in-

terest over the last decade. An efficient secondary structure prediction gives essential 

directions for experimental investigations.   

There are two general approaches to predict the RNA secondary structure.  One is to 

use experimental method such as NMR spectroscopy to identify the base pairing infor-

mation.
[7, 8]

  But these methods are difficult and expensive, which limit the high through-

put applications.  Therefore, computational method provides an alternative way to effec-

tively predict the secondary structure of RNA.
[9]

  In the following, several representative 

computational approaches are briefly reviewed.  

 

1.2.1 Prediction Accuracy Evaluation  

There are different ways to represent a RNA secondary structure.  If we treat the 

RNA sequence as a string over the alphabet A, C, G, U, the primary structure of an RNA 

B can be written as b1,...,b n. Then, the secondary structure can be associated with each 

sequence B as a string S over the alphabet "(", "." ,")", where parentheses in S must be 

properly nested, and B and S must be compatible: If (s i , s j ) are matching parentheses, 

then (b i , b j ) must be a legal base-pair.
[9]

   This notation is illustrated in figure 1.3(a). 

Secondary structure prediction can be benchmarked for accuracy evaluation using 
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sensitivity and specificity.  Sensitivity is the percentage of known pairs predicted correct-

ly (similar as the concept of recall in binary classification problem), and specificity is the 

percentage of correctly predict pairs in all predicted pairs (similar as precision).  These 

two statistics are calculated as:  

 

F-score is equal to the harmonic mean of sensitivity and specificity, which is used to 

assess balanced prediction quality on sensitivity and specificity.  Figure 1.3 (b) gives an 

example to show the concept.    

1.2.2 Computational Approaches 

Traditionally, the most successful computational techniques for single sequence sec-

ondary structure prediction are based on physics models of RNA structure.  The method 

Figure 1.3: evaluation of RNA secondary structure prediction 

(a) Representation of RNA sequence secondary structures with dot and parenthe-

ses.  (b) Sample RNA sequence secondary structure prediction with gold and test 

results.  Sensitivity (recall) = (red) / (red + blue) = 1/3, specificity (precision) = 

(red) / (red + purple) = 1/2,  F-score = 2*(1/3)*(1/2) / (1/3 + 1/2) = 2/5. 

 

(a)  

(b)  



5 

 

relies on approximations of sequence-dependent stability for various motifs in RNA.  The 

parameters used for computation typically come from empirical studies of RNA structur-

al energetics.  For a target RNA sequence, dynamic programming is used to identify can-

didate structures by free energy minimization.
[10-12]

  The prediction accuracy of this 

method is generally high for short RNA sequences.  With fewer than 700 nucleotides, the 

prediction accuracy can reach about 73%.
[13]

 Despite the great success using thermody-

namic rules, there are still some drawbacks that limit the improvement of prediction accu-

racy.  The main reason is that the current algorithms are incomplete and could not charac-

terize the whole complicated process of folding.  For example, the effect of folding kinet-

ics on RNA secondary structure was not taken into account.   

1.2.3 Modeling Secondary Structure with SCFGs 

Besides the computational method of RNA secondary structure prediction by free en-

ergy minimization, another type of computational approach is widely used, which is 

probabilistic modeling.  Rather than conducting experiments to determine the thermody-

namic parameters, probabilistic method uses model parameters that are directly derived 

from frequencies of different features learned from the set of known secondary struc-

tures.
[14]

 Given an RNA sequence x, the goal is to output the most likely secondary struc-

ture y to maximize the conditional probability P(y|x).  In most of these models, stochastic 

context free grammars (SCFGs) are used.
[15]

  

To predict the structure of an RNA sequence, the basic idea is to construct a SCFG 

parse tree with production rules and corresponding probability parameters.  The resulted 

most probable parsing tree determined by CKY parsing algorithm represents the most 
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likely secondary structure of RNA.  For example, consider the following simple unam-

biguous transformation rules:
[16]

 

S → aSu | uSa | cSg | gSc | gSu | uSg | aS | cS | gS | uS | ɛ 

For a sequence x = agucu with secondary structure1 y = ((.)), the unique parse σ cor-

responding to y is S → aSu → agScu → aguScu → agucu.  The SCFG models the joint 

probability of generating the parse σ and the sequence x as P(x, σ) = P(S → aSu) · P(S → 

gSc) · P (S → uS) · P (S → ɛ).  

1.2.4 CONTRAfold Model 

A new RNA secondary structure prediction method is called CONTRAfold model, 

which is based on conditional random fields (CRF) and generalized upon SCFGs by us-

ing discriminative training and feature-rich scoring.
[16]

  The features in CONTRAfold 

include base pairs, helix closing base pairs, hairpin lengths, helix lengths and so on, 

which closely mirror the features employed in traditional thermodynamic models.  Figure 

1.4 shows a list of those features. 

CONTRAfold has a parameter γ to control the tradeoff between sensitivity and speci-

ficity.  By adjusting the γ value, one can optimize for either higher sensitivity or higher 

Figure 1.4: List of all potentials used in CONTRAfold model 
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specificity with the use of maximum expected accuracy (MEA) algorithm for parsing.   

Figure 1.5 demonstrates the accuracy performance comparison of CONTRAfold method 

with other methods.
[16]

  When γ is 6, sensitivity is 0.7377 and specificity is 0.6686. The 

prediction accuracy (f-score) reaches about 70%, which is higher than other probabilistic 

methods for modeling RNA structures.   

Although these results are already very good, there is still space for improvement.  

Since all the previous works are based on the features from thermodynamic models 

which are not complete to represent the whole RNA folding process, we are curious 

whether there is a method to overcome this limitation.  In recent years, deep learning 

achieves great success in many research fields and real applications.  It can extract better 

features automatically.  In this study, we will apply deep learning to learn the structures 

automatically. 

 

Figure 1.5: Comparison of sensitivity and specificity for several RNA secondary 

structure prediction methods 
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1.3 Neural Machine Translation 

Neural machine translation (NMT) is a new approach to statistical  machine transla-

tion.
[17, 18]

  Most of the proposed neural machine translation models often consist of an 

encoder and a decoder.
[19, 20]

  As figure 1.6 shows, an encoder neural network reads and 

encodes a variable-length source sentence into a fixed-length vector.  A decoder then 

outputs a translation from the encoded vector.  The whole system is jointly trained to 

maximize the probability of a correct translation given a source sentence. 

 

The encoders and decoders are often realized by recurrent neural network (RNN).  

Figure 1.7 is an example of two layers of RNN for English-to-French translation from a 

source sentence “I am a student” into a target sentence “Je suis étudiant”. 
[21, 22]

  Here, “_” 

marks the end of a sentence. 

The original neural machine translation model with fixed-length vector performs rela-

tively well on short sentences without unknown words, but its performance degrades rap-

idly as the length of the sentence and the number of unknown words increase.  This is 

mainly due to the word order divergence between different languages.  Therefore, the 

attention mechanism which would be discussed in the following is introduced into NMT. 

Figure 1.6: neural machine translation encoder-decoder architecture 
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Figure 1.7: Neural machine translation: example of a deep recurrent architecture 

am a student _ Je suis étudiant

Je suis étudiant _

I

Source sentence 

Translation generated 
Sentence meaning 

is built up 

Figure 1.8: RNA folding prediction as a neural machine translation problem 

am a student _ Je suis étudiant

Je suis étudiant _

IA G U C _ . 

. ( 

( 

. ) 

. 

RNA sequence 

Base pairing 
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1.3.1 RNA folding as Neural Machine Translation 

In our task, we want to predict the RNA secondary structure given the RNA primary 

structure of base sequence.  This is similar to the machine translation problem where the 

source sentence is a RNA sequence, and the translated sentence is the corresponding 

RNA base pairing.  Therefore, the RNA secondary structure prediction is cast as a neural 

machine translation task and can be solved by this model using deep learning.  Figure 1.8 

illustrated this concept.  The RNN models trained on RNA sequences with known struc-

tures can be applied to calculate the most likely base pairing for an unknown structure 

sequence without using any hand-designing features.   

1.3.2 Attention Mechanism 

Attention mechanism in neural networks is previously used for tasks like image cap-

tioning and recognition.
[23-25]

 With the attention mechanism, the image is firstly divided 

into several parts, and a representation for each part is computed by a Convolutional Neu-

ral Network (CNN).  When the RNN is trying to generate a new word or label from the 

image, the attention mechanism will focus on the relevant part of that image, and the de-

coder will only use the specific part of information. 

To address the problem in previous neural machine translation model, the attention 

mechanism is applied to allow a model to automatically (soft-)search for parts of a source 

sentence that are relevant to predicting a target word.
[22]

  This is also called soft-

alignments.  In figure 1.9, to generate the target word from the source sentence, a global 

context vector is computed as the weighted average according to an align weights vector 

based on the current target state and all the source state.  
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1.3.3 Encoding and Decoding Strategies 

In this study, we adopt the encoder-decoder structure proposed in Bahdanau et al. 

2014 work. 
[17]

  The encoder is a bidirectional RNN with soft alignment as figure 1.10 

shows.  The forward and backward RNN contain the information of both the preceding 

words and the following words. 

In the decoder, we use beam search algorithm instead of greedy.  In figure 1.11, 

beam-search finds a translation that maximizes the conditional probability given by a 

specific model.  At each time step of the decoder, we keep the top beam-width translation 

candidates with the decreasing probability.  

 

Figure 1.9: NMT model with attention mechanism 



12 

 

 

Figure 1.10: The graphical illustration of using bidirectional RNN for encoding 

Figure 1.11: Beam search algorithm to select the candidate RNA structures 

Here, beam size is 4. Candidate structures are sorted by probability scores. 
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Chapter 2  

Experiment Setup 

2.1 Dataset and Code Source 

The RNA dataset we used is from Rfam database and has 151 files.  Each file con-

tains one RNA base sequence and corresponding secondary structure.  Among these 151 

sequences, the average nucleic acid length is 136, and the maximum length is 568.  The 

data is pre-selected to ensure that the RNA secondary structures like pseudo-knots are not 

present in those sequences.  This one set of data is randomly selected and divided into 

three sets: 80% for training, 10% for validation, and 10% for testing. 

We built our model based on the state-of-the-art neural machine translation open 

source package.
[26]

 

 

2.2 Modification on Encoder and Decoder 

Although the task of machine translation of a sentence from one language to another 

is similar to the RNA secondary structure prediction, there are still some differences that 

require modifications on the training and testing process.  One major difference is that the 

input and output sentence length in machine translation has not to be the same.  In most 

cases, the source and target length are different.  For RNA structure prediction, the input 

is a base sequence and the output is the dot-parenthesis base pairings, which must hold 
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the same length.   In the encoder part, for the original design, there is an <EOS> tag to 

mark the end of input source sentence.  In our code, we developed a modified version of 

encoder which removed the <EOS> tag in the input.  In the decoder part, we force the 

output length to be the same as input sequence.    

On the other hand, RNA base pairing rules also need to be taken into account since in 

our cases, only C-G, A-U, G-U pairs are allowed.  To make sure the output RNA second-

ary structures will follow these rules, in the decoder, we add a stack to keep track of the 

left parenthesizes and their corresponding base types.  Whenever the model is going to 

predict a right parenthesis, it will locate the left pairing parenthesis and check whether the 

left and right bases obey the three pairing rules.  If not, the prediction of that right paren-

thesis will not be allowed.  Also, if there is no left parenthesis in the stack, the right pa-

renthesis prediction is also forbidden.  In this way, the output secondary structures are 

guaranteed to follow the base pairing rules. 

 

2.3 Three Encoder Decoder Systems 

2.3.1 System No.1: Naïve Model 

The first system is a baseline for performance comparison.  In this naïve model, the 

<EOS> tag is kept, and the generation of <EOS> marks the completion of input.  The 

maximum output length allowed is set to be 600.  There is no stack in the decoder to con-

trol the output pairing as well.  This is the original model adapted from the NMT package. 
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2.3.2 System No.2: Add Length Control 

The second system is a modified version based on the Naïve model.  It removed the 

<EOS> tag in the encoder. We force the translated output dot-parenthesis sequence 

length to be the same as the input RNA bases length.   However, there is no stack in the 

decoder to enforce the pairing rule. 

2.3.3 System No.3: Add Pairing Rule Control 

The third system takes one step further from the second one. On top of system 2, we 

add the stack in the decoder to ensure the base pairing rules are followed.  Figure 2.1 

shows the relationship of these three systems.  

 

 

 

 

 

Figure 2.1: Three systems  

Naïve modelSystem 1

Naïve model     + output length control =  System 2

Original NMT   +  setting changes =

Length constraint

Length constraint    +  stack in decoder =  System 3 Pairing Rule 
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Chapter 3  

Results and Discussions 

3.1 Evaluation Metrics 

Beside specificity, sensitivity and f-score, for this RNA secondary structure predic-

tion task, we further introduced four performance evaluation metrics: position accuracy, 

left parenthesis recall, right parenthesis recall and dot recall.  The definitions of these 

parameters are shown below in figure 3.1.   These parameters only consider the true label 

and the predicted label for one base and don’t compare the whole pairs.  The position 

accuracy is a composite ratio of left, right and dot recall.  This number must stays be-

tween these three recalls.  Since RNA sequences have different lengths, all the correct 

predicted A (A= “(”, “.”, “)”) labels in each sequence are added together and be divided 

by the sum of the true A labels in those sequences during the evaluation. 

Figure 3.1: Definition of evaluation metrics  
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3.2 Performance of Three Systems 

The preliminary results show that the naïve model has very low sensitivity and speci-

ficity, and the f-score is below 2%.  This is reasonable since the first system doesn’t have 

any constraint on encoding and decoding.  We will briefly go over the results from sys-

tem 2 and put most focus on system 3.  

Figure 3.2 is the performance of system 2 models tested on validation set with in-

creasing training epochs and sparse sampling.  In figure (a), the M-shape curves indicate 

that in the beginning of training, the model does not learn the features and the perfor-

mance is poor.   When it starts to learn the features, performance rises quickly and reach-

es the optimal value.   With more training epochs, the model is over fit and performance 

degrades.   During all training epochs, sensitivity is always higher than specificity.  This 

means there are a lot of wrong predicted pairs.   In figure (b), dot recall > left recall > 

right recall, and the position accuracy sits in between.  With more training epochs, dot 

recall drops while left and right recall rise, which means that models output mostly dot 

sequences at the beginning and later on starts to output parenthesis.   The right recall is 

lower than the left recall because the output sequences usually contain more left paren-

thesis than the right ones.  Comparing the results of (a) and (b), we can see that sensitivi-

ty and specificity are much lower than position accuracy and dot-parenthesis recalls.  

While sensitivity and specificity are more task-based evaluation metrics, the parenthesis-

dot recalls are more model-based evaluation metrics.  Both specificity and sensitivity 

require a correct prediction of a pair.  But position recall only looks at one position at a 

time and check whether it is correct.   
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Figure 3.2: Accuracy change on training epochs tested on validation set with system 

2 

 

(a)  

(b)  
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It is much more difficult to predict a correct pair, since any wrong prediction between 

the left and right parenthesis may ruin the sequence and cause wrong pairing for the fol-

lowing bases.  In other words, the pair prediction process is very sensitive and vulnerable 

to wrong prediction.  Therefore, the position accuracy is much higher than sensitivity and 

specificity. 

Figure 3.3 is the position accuracy and recalls of dot-parenthesis on validation set 

with more training epochs.  The four curves fluctuate in a large range which indicates that 

the model is not converging through the training epochs.   This is a sign that the training 

process doesn’t learn the features well.   

 

Figure 3.3: Accuracy change on more training epochs tested on validation set with 

system 2 
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Figure 3.4 is the prediction accuracy of system 3 on training set with increasing train-

ing epochs.  From the results in panel (a), we see that sensitivity is still higher than speci-

ficity and both parameters increase slowly with training epochs.   The f-score is around 

0.1 for training epochs around 1200.  In panel (b), the four curve shapes are similar as 

system 2.  But in system 3, right recall is much lower than that in system 2.  It is expected 

since system 3 adds the stack for pairing rule control.  A large percent of right parenthesis 

prediction is greatly suppressed by the controlling rule in the decoder.   Therefore, the 

right recall only reaches less than half of the previous value.   

Figure 3.5 is the performance of trained models on validation set.  In panel (a), sensi-

tivity, specificity and f-score demonstrate a reversed V shape and the peak value is 

around 750 epochs.  After that, the performance starts to decrease.   This indicates that 

the models might have been over fitted after 750 epochs.    In panel (b), the shape of four 

curves is similar as in figure 3.4 with a slight drop.   

 Comparing the results from figure 3.2 and 3.5, which are both tested on validation set, 

we can tell that performance of system 3 is better than system 2 as expected.   
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Figure 3.4: Accuracy change on training epochs tested on training set with system 3 

 

 

(a)  

(b)  
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Figure 3.5: Accuracy change on training epochs tested on validation set with system 

3 

 

(a)  

(b)  
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From the comparison of results of three systems, we can see that adding the length 

and pairing rule control improve the prediction performance.  The best results of sensitiv-

ity and specificity is achieved by system 3.  Comparing our model with the CONTRAfold 

model in table 3.1, the accuracy is lower than expected.  The possible reasons will be 

discussed in section 3.4. 

 

3.3 Beam Search Size Tuning 

Based on the previous results on different systems, we used the third system to test 

the effect of tuning beam search size.  The prediction accuracy with different beam 

widths (1, 2, 4, 8, 16) is shown in figure 3.6.  The x axis is the beam size and the y axis is 

the accuracy.  From the two images, we can see that there are dips in front part of the 

curves, indicating that increasing beam search size does not guarantee accuracy im-

provement at the beginning of beam width tuning.  A possible reason is that in the first 

few steps of prediction, the score of the top candidates are very close and one good can-

didate may turn out to be bad in the future, which causes fluctuation in the curve.  When 

beam search size increased to 8, the performance is almost stable and reaches the optimal 

value.  Further increasing beam width doesn’t help to improve the prediction accuracy. 

Table 3.1: Prediction Accuracy Comparison   

 
Methods Sensitivity Specificity F-score

CONTRAfold 0.738 0.669 0.701

Our Model 0.061 0.127 0.083
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Figure 3.6: Accuracy change on training epochs tested on validation set with system 

3 

 

(a)  

(b)  
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3.4 Results Analysis 

This work is the first work that applies deep learning with neural machine translation 

model for RNA structure prediction.  Although the performance is not as good as the 

previous traditional computation method, it gives us some insights in studying.  There are 

several facts that limit the prediction accuracy of this method.  The first one is that the 

dataset used in this study is relatively small compared to other tasks using deep learning.  

With this small data size, it is tricky to train a fine model.       

Another important reason is that the machine translation model is not specified for 

this task and there are some key differences.  For machine translation, the vocabulary size 

is very large, and each word has some meanings, where word embedding is used to repre-

sent it in a vector, while in this task, the vocabulary size is only three: the left parenthesis, 

the right parenthesis and the dot.  This is too small and does not contain much infor-

mation.  On the other hand, for machine translation from one language to another, typi-

cally the input sentences are not too long (with less than 50-60 words).  However, in our 

task, the input sequences have an average length of 136, which is a very long sentence for 

machine translation.   It adds the difficulty for the model training.  Our test on another 

dataset with even longer RNA sequences is not successful and very time consuming, im-

plying that long input sequences with small vocabulary size is not suitable in this model. 

Furthermore, the architecture of our system separates encoding and decoding process.  

Training and testing have different goals and behaviors: training is local and greedy, 

which optimizes local probability, and assuming correct prediction history; testing wants 

to improve the f-score, but produces mistakes along the way.  Therefore, a good model in 
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the training process may not be a good one in the testing.  From the accuracy results, it 

seems that the model trained does not learn the pairing behavior of RNA bases and inter-

prets it during prediction.     

 

 

3.5 Conclusions 

In conclusion, we conducted the RNA sequence secondary structure prediction using 

neural machine translation method for the first time.  Our NMT model is based on a bidi-

rectional RNN encoder and decoder system.  Unlike the previous methods which need 

pre-designed features in the model, our approaches apply deep learning and do the feature 

extraction automatically.   We add length control and pairing rule constraint to the origi-

nal model to improve the prediction accuracy and the performance from three systems are 

compared.   The results show that system with length control and pairing rule control is 

better than the other two.   
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