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1. Model parameters for the flow simulation. 
 
The particle tracking simulation presented in this work is based upon a flow simulation detailed 
in [Maxwell et al. 2015]. While the complete details and analysis of that work appear there, we 
provide a summary of some of the parameters here.  Table S1 lists the hydraulic conductivity 
values used in Maxwell et al. [2015]. The domain is constructed using a terrain-following grid 
[Maxwell 2013] that extends to a total depth of 102 m below the ground surface across five 
vertical layers of 0.1, 0.3, 0.6, 1.0, and 100 m. Properties obtained from a national soil survey 
geographic database (SSURGO) were applied to the top two meters of the model domain. 
SSURGO has two sets of soil categories, the upper and lower soil horizons, which were applied 
to the top meter (the first three soil layers) and the meter below it (the fourth soil layer), 
respectively. Other soil properties such as van Genuchten parameters and porosity were obtained 
from Schaap and Leij [1998]. They applied pedotransfer functions to predict soil hydraulic 
properties from soil texture information and estimated the uncertainty in these predictions. 
 Hydraulic parameter distribution and values for the bottom 100 m of the model were 
derived from [Gleeson et al. 2011].  These values were adjusted using the empirically-derived 
relationships described in [Fan et al. 2007].  In this adjustment we assumed that the single 100m 
thick layer was comprised of the higher permeability material and lower permeability bedrock, 

with a bedrock thickness related to the local slope.  For this analysis, we use the factor	
  𝛼 = 𝑒!
!"
! , 

where 𝑓 = !

!!! !!!!!!!
,	
  to adjust hydraulic conductivity values. We chose	
  𝑎 = 20,	
  𝑏 = 125,	
  and a 

depth of 50 m to best represent the midpoint of the model’s deepest geologic layer. We used 
discrete geometries in ParFlow (shown in Table 1) and facies in the subsurface indicator file 
were categorically reassigned based on 𝛼, with larger values of 𝛼 corresponding to lower 
hydraulic conductivity. Thus, steeper slopes, which are assumed to demonstrate thinner regolith, 
will have comparatively lower conductivity than subdued terrain of the same lithology. Note that 
the variance and mean of the [Gleeson et al. 2011] values were shifted based upon a regional 
analysis [Condon and Maxwell 2014], in order to reflect a bulk conductivity value representative 
of coarse columnar discretization of the deeper subsurface. This process assumed that as 
hydraulic conductivity values were upscaled from point observations to the 1x1x0.1 km3 
volumes, small-scale, conductive flowpaths would dominate flow, pushing the effective values 
upward.  In their regional analysis [Condon and Maxwell 2014] found that simulations conducted 
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using the unaltered permeability values generated unrealistic surface flow.  The resulting 
adjusted hydraulic conductivity values are shown in Table S1. 
 We recognize that our dataset for subsurface properties is not perfect. While many robust 
regional studies may provide excellent subsurface properties locally, as of yet no comprehensive 
large-scale parameter inputs exist.  The current understanding of the full impact of weathered 
and fractured bedrock on hydraulic conductivity is limited at continental scales, and certainly our 
102-m model thickness lacks the ability to represent confined aquifer systems and flow paths 
deeper than the extent of our model domain. These shortcomings in hydrogeological information 
will likely influence computation of travel times, and thus the datasets should be continuously 
improved as new information becomes available. 
	
  
2. Comparison of ages for two steady-state models at varying resolution over a small, 
headwaters basin. 
 
 Computation of early travel times is dependent upon spatial discretization fine enough to 
describe local hydrogeologic properties. Because our model does not capture topography, 
hydraulic parameters and river channel geometry below the 1-km grid spacing, we have 
conducted a focused comparison of our results with those of a high-resolution simulation of a 
small, (25 km2) headwaters basin that uses same flow and particle tracking framework. This 
comparison should serve as a grid convergence test to understand how travel-time distributions 
are altered with a coarser resolution model. The residence time distribution of the East Inlet 
watershed, in Colorado, USA, simulated by the current study (subsampled directly from the 
results shown in Figure 1) and a higher-resolution (20m laterally) integrated hydrologic model 
with a much more detailed geological model [Engdahl and Maxwell 2015] were compared.  Note 
that both models are steady-state flow simulations with transient particle tracking.  Figure S1 
plots the results of this comparison.  In this figure, we see that the capture of early residence 
times is likely associated with shorter flow paths not resolved by a 1-km spatial resolution. 
However, transit times less than one year comprise less than 4% of all ages in the 20m-resolution 
simulation, suggesting that these early times do not significantly contribute to the residence time 
distributions of major river basins.  This figure also shows broad agreement between the two 
models, something that is somewhat surprising given that East Inlet only comprises 25 cells of 
the coarse resolution of CONUS simulation.  Nevertheless, given the conclusions drawn from the 
CONUS simulation at very large spatial scales, comprising hundreds of thousands to millions of 
square kilometers, we feel this comparison serves to provide additional confidence in our large-
scale residence time simulations. 
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Table	
  S1.	
  Indicators	
  and	
  hydraulic	
  conductivity	
  values	
  used	
  for	
  the	
  flow	
  simulation,	
  used	
  as	
  
the	
  basis	
  for	
  the	
  particle	
  tracking	
  simulation.	
  

	
  
	
  

Unit%Indicator Classification Ks
m/h

1 SAND 2.69E+01
2 LOAMY1SAND 4.36E+02
3 SANDY1LOAM 1.58E+02
4 SILT1LOAM 7.58E+03
5 SILT 1.82E+02
6 LOAM 5.01E+03
7 SANDY1CLAY1LOAM 5.49E+03
8 SILTY1CLAY1LOAM 4.68E+03
9 CLAY1LOAM 3.39E+03
10 SANDY1CLAY 4.78E+03
11 SILTY1CLAY 3.98E+03
12 CLAY 6.16E+03
13 ORGANIC1MATERIAL 5.01E+03

21 f.g.1sil.1Sedimentary 2.00E+02
22 sil.1Sedementary 3.00E+02
23 crystalline 4.00E+02
24 f.g.1unconsolidated 5.00E+02
25 unconsolidated 6.00E+02
26 c.g.1sil1sedimentary 8.00E+02
26 volcanic 8.00E+02
27 carbonate 1.00E+01
28 c.g.1unconsolidated 2.00E+01

19 Bedrock11 5.00E+03
20 Bedrock12 1.00E+02

SURGO&Classifications

Gleeson&et&al.

Bedrock
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Figure S1. Comparison of Engdahl and Maxwell 2015 with the results of the current study over 
the East Inlet Watershed in Colorado, USA. 
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