
	
	

	
	

AN ABSTRACT OF THE DISSERTATION OF

Seyed Soroush Ghorashi for the degree of Doctor of Philosophy in Computer Science
presented on June 9, 2017

Title: Evaluating the Impact of Live Programming on Collaborative Software
Development.

Abstract approved:

Carlos Jensen

Collaboration is tricky, but often beneficial in the context of numerous software related

activities, from learning core concepts, to the design and implementation of large

software products. The growth of online classes, from small structured seminars to

massive open online courses (MOOCs), and the isolation and impoverished learning

experience some students report in these, points to an urgent need for tools that support

remote pair programming in a distributed educational setting. In “the real world”

software developers and designers work together to solve common problems, and

meaningful and effective designer-developer collaboration improves the user

experience. Supporting these with today’s often distributed work model presents

important challenges.

Two key techniques which are believed to be effective in promoting better coordination

and collaboration are collaborative coding and live programming. Collaborative coding

allows all the team members to get involved in the development process, and live

programming enables them to see what they are building effortlessly and in real time.

In this work, we first describe Jimbo, an integrated development environment (IDE)

based on collaborative and live programming techniques, and a set of user studies aimed

at evaluating whether these techniques are effective in promoting better coordination

and collaboration in two different settings; distance learning and design-focused

	
	

software development. Our results show that these techniques can improve the learning

experience through pair programming and a tight code-artifact feedback loop. We will

show how collaborative coding and live programming can help designers and

developers bridge their knowledge and language gaps and develop mutual

understanding, allowing designers to join the development process as first-class citizens

– not dependent on the coders to compile and share output – or being forced to become

coders.

	
	

©Copyright by Seyed Soroush Ghorashi

June 9, 2017
All Rights Reserved

	
	

Evaluating the Impact of Live Programming on Collaborative Software Development

by
Seyed Soroush Ghorashi

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 9, 2017
Commencement June 2017

	
	

Doctor of Philosophy dissertation of Seyed Soroush Ghorashi presented on June 9,
2017

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Seyed Soroush Ghorashi, Author

	
	

ACKNOWLEDGEMENTS

My thanks go to Dr. Carlos Jensen, my major adviser, for providing valuable feedback

and encouragement throughout my years at Oregon State University. Thanks to my

current and past committee, Dr. Ronald Metoyer, Dr. Cindy Grimm, Dr. Alex Groce,

Dr. Margaret Burnett, and Dr. Christopher Scaffidi for providing many insights into this

research. A special thanks to my former colleague, MingChieh Chang, who helped with

the design and development of the first version of the prototype I used in this research.

Thanks to the rest of the Human-Computer Interaction group for listening to countless

practice talks, participating in pilot studies patiently and helping me conduct my user

studies: Jennifer, Iftekhar, Kalin, Dedrie, Amir, Rahul, and Chad. Thanks to all my

friends in Corvallis with whom life was still enjoyable and fun while away from home:

Nourieh, MJ, Hossein, Meisam, Abbas, Chadwick, Alireza and Vahid.

Finally, and most importantly, sincere and heartfelt thanks to my wife Nahid, my parents

Abolhassan, Sorour, my sister Sally, my brother Soheil, my brother in law Hossein and

my lovely nephew Ryan, for their endless encouragement throughout my education.

Their unconditional love and support made my journey far from home possible, I feel

very lucky to have such an amazing and supportive family behind me.

	
	

CONTRIBUTION OF AUTHORS

The following authors contributed to chapter 2: Carlos Jensen

The following authors contributed to chapter 3: Carlos Jensen	

	
	

TABLE OF CONTENTS

 Page

1 Introduction .. 1	

1.1 Distance Learning Settings .. 1	

1.2 Designed-centered Software Development ... 2	

1.3 Contributions ... 2	

2 Supporting Learners in Online Courses Through Pair Programming and Live Coding

... 4	

2.1 Abstract ... 5	

2.2 Introduction ... 5	

2.3 Related Work .. 7	

2.4 Supporting Collaborative Learning ... 9	

2.4.1 Support both synchronous and asynchronous collaboration with remote

students and instructors. .. 10	

2.4.2 Integrate communication features, including text and audio to support

collaboration and enquiry. ... 11	

2.4.3 Support awareness of other’s activities in order to facilitate

collaboration and remote pair programming. .. 12	

2.4.4 Integrate live preview to close the code-artifact feedback loop and

support student-led live coding practices. ... 12	

2.5 Jimbo, A Collaborative Development Environment with Live Preview 13	

2.5.1 Main View .. 14	

2.5.2 Synchronous Collaboration .. 15	

2.5.3 Code Rewind .. 16	

	
	

TABLE OF CONTENTS (Continued)

 Page

2.5.4 Communication .. 16	

2.5.5 User Awareness .. 16	

2.5.6 Live Preview ... 18	

2.7 Evaluation ... 18	

2.7.1 Collocated User Study .. 19	

2.7.2 Online Setting Study .. 23	

2.8 Discussion ... 27	

2.9 Conclusion .. 29	

2.10 Acknowledgement .. 29	

2.11 References ... 30	

3 Improving Developer-Designer Collaboration Using Collaborative and Live

Programming ... 35	

3.1 Abstract ... 36	

3.2 Introduction ... 36	

3.3 Related Work .. 38	

3.4 Developer-Designer Collaboration ... 40	

3.4.1 Support both synchronous and asynchronous coding for collaboration

between multiple developers and designers .. 40	

3.4.2 Communication methods .. 41	

3.4.3 Integrated live preview to support designer involvement in the

development process ... 42	

	
	

TABLE OF CONTENTS (Continued)

 Page

3.4.4 Support awareness of the activities of other in order to facilitate

collaboration .. 42	

3.5 Jimbo Overview .. 43	

3.5.1 Main View .. 44	

3.5.2 Synchronous and Asynchronous Collaboration 47	

3.5.3 Code Rewind .. 48	

3.5.4 Communication .. 48	

3.5.6 Live Preview ... 50	

3.6 Evaluation ... 51	

3.6.1 Task .. 52	

3.6.2 Data Gathering ... 53	

3.7 Results ... 53	

3.8 Discussion ... 56	

3.9 Conclusion .. 58	

3.10 Acknowledgement .. 58	

3.11 References ... 58	

4 Conclusion ... 62	

5 Bibliography .. 63 	

	
	

LIST OF FIGURES

Figure Page

Figure 2.1 Jimbo's system architecture. .. 14	

Figure 2.2 (a) Online developers’ avatars with their names as tooltip. (b) Easy share
button. (c) Live preview toggle (d) Code editor area. (e) Number of active developers
in each editor, here both developers are active in the JavaScript editor. (f) Editor
viewport. (g) Real-time preview panel. (h) Code change notification for the case that
developers are in the same project but different viewports, here the change is
happening somewhere after line 71. (i) Instant messaging panel. 17	

Figure 3.1 Jimbo’s system architecture. ... 45	

Figure 3.2 (a) top menu. (b) Left sidebar panel that contains the following: file tree,
chat list, project settings and online deployment. (c) Current project file tree. (d) Inline
discussion with user tagging feature. (e) Breadcrumbs view showing current path. (f)
Editor viewport. (g) Live preview panel. (h) Live preview toggle and notification
center. (i) Group chat popup. (j) Console. .. 46	

Figure 3.3 Code rewind: (a) Playback button to view the evolution of the code. (b) List
of collaborators who contributed to the code; moussing over each will show the
percentage of their contribution. (c) Timeline for the life of code; users can go back in
time, undoing and redoing changes to the code using this slider. (d) Code overview.
(e) Actual code, the colors show who has developed which parts of the code. No
colors means that the code has been copy pasted form a resource out of the IDE. 49	

	

	
	

LIST OF TABLES
Table Page

Table 2.1 Collocated User Study. ... 20	

Table 2.2 Online Study. .. 20	

Table 3.1 Experience in years for web developer participants. 51	

Table 3.2 Experience in years for web designer participants. 51	

1
	

1 Introduction

One of the most important aspects of human nature is the drive to communicate and

collaborate with each other. Regardless of the activity that we are involved in, it’s

through collaboration that we often achieve our goals and satisfy our needs. In the

context of computer science, collaboration is tricky, but often beneficial for a variety of

software related activities, from learning core concepts, to the design and implementation of

large software products. In this work, our focus is on how we can improve the collaboration

between users working together in two different yet related settings: Distance Learning and

Design-centered Software Development.

1.1 Distance Learning Settings

One of the most popular and effective collaboration methods used in CS education is

pair programming, which has been shown to be a very beneficial technique for teaching

and engaging students with programming and new computing topics. The need for tools

that support remote pair programming is becoming pressing with the growing popularity

of massive open online courses (MOOC). While employing pair programming in a

collocated classroom setting is relatively straightforward, there is a dearth of good

options for distributed classroom settings. As students struggle to master concepts and

build confidence in their skills, a tight code-artifact feedback loop/mechanism that

allows students to verify that a change had the intended result is important.

In the second chapter, we start with a review of related work, explaining the design

requirements that needed for a tool to support collaborative learning. Then we describe

our tool, Jimbo – Educational Edition, and explain how it addresses various issues

students face in remote pair programming. Next, we explain the user studies that we

conducted to evaluate our tool and then present the results. We conclude with a

discussion of challenges to developing collaborative tools to be used in classroom

setting.

2
	

1.2 Designed-centered Software Development

The development of software systems is a collaborative process, where team members

work together to solve a problem by producing quality code. The designer-developer

relationship at the heart of many of these collaborations is the force that moves a

software project toward success. Unfortunately, in current software development

practices, designers have no direct engagement with developers in the development

process, although the products performance depends on both. If we want to improve this

relationship, and encourage better software products, we need to build development

tools that improve the collaboration and work-flow for designers and developers.

In chapter 3, first we explain how similar design goals as in chapter 2 can improve the

relationship between developer and designers. Then, we describe our tool, Jimbo –

Professional Edition, which is an upgrade to our educational edition with a different UI,

optimized for collaboration/coordination in professional software development. Finally,

we report the results of a user study that shows how collaborative coding and live

programming can help designers and developers bridge their knowledge and language

gaps and develop mutual understanding, allowing designers to join the development

process as first-class citizens – not dependent on the coders to compile and share output

– or being forced to become coders.

1.3 Contributions

Contributions of this research includes:

• Thorough survey on existing research about collaborative learning, methods
and tools developed to support pair programming (both traditional and remote
style) and live coding in education (both collocated and distance settings).

• Design and development of a novel IDE called Jimbo – Educational Edition; a
development tool that offers both remote pair programming and live coding for
teaching introductory web development courses to novice students.

• Conducting multiple user studies in both collocated and distance learning
settings to evaluate the effects of remote pair programming and live coding in
improving the active teaching/learning experience.

3
	

• Thorough survey on existing research about collaborative software
development and live programming, techniques, practices and tools designed
to support collaboration for software teams.

• Design and development of a novel IDE called Jimbo – Professional Edition; a
web-based collaborative IDE with live preview, optimized for collaboration
between web developers and designers.

• Conducting a user study to evaluate the effects of collaborative coding and live
programming in improving the relationship between the developers and
designers.

4
	

	

	

	

	

2 Supporting Learners in Online Courses Through Pair
Programming and Live Coding

Soroush Ghorashi, Carlos Jensen

School of EECS
Oregon State University
Corvallis, Oregon, 97331, USA
{ghorashs, carlos.jensen}@ oregonstate.edu

Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), Atlanta, GA, USA

5
	

2.1 Abstract
Pair programming has been shown to be a beneficial and popular technique for engaging

students and improving learning outcomes in programming and related classes. While

using pair programming in a collocated classroom setting is relatively straightforward,

there is a strong lack of good tools and options for distributed classroom settings. The

growth of such classes, from small structured seminars to massive open online courses

(MOOCs), and the isolation and impoverished learning experience some students report

in these, points to an urgent need for tools that support remote pair programming in a

distributed educational setting. This paper explores the requirements and needs of online

learners in Computer Science through a literature survey. To validate these

requirements, we implement a collaborative development environment aimed at

improving the learning experience through pair programming and a tight code-artifact

feedback loop. We conclude by presenting the results of a user study in both collocated

and distributed classroom settings.

2.2 Introduction
Collaborative learning is a social process in which students learn by working with

others. It is often used in conjunction with other methods aimed to make the learning an

active process in the classroom, particularly appropriate for computer science (CS) due

to the ever-increasing complexity and change [39]. The development of software is

usually a highly collaborative process, where programmers, designers, managers, and

other stakeholders work together to solve a problem through code. Vessey and

Sravanapudi [55] showed that about 70% of a typical software engineer’s time is spent

on collaborative activities. Thus, the use of collaborative learning in teaching computer

science is consistent with current practices in software development.

Pair programming is one of the more effective collaborative learning techniques, where

two students work to solve a common problem on the same computer. One programmer

is the “driver,” which means that he controls the keyboard and mouse, while the

6
	

“navigator” reviews the code that the driver is writing. Research has shown that pair

programming technique is very effective for teaching programming courses [2, 9, 36].

The importance of collaboration in CS education has been confirmed by numerous

studies in both lab and classroom settings. Academic achievement is enhanced when

students learn with others compared to when they learn alone [25, 41, 50]. Williams et

al. also found that not only are students who work collaboratively on programming tasks

40-50% faster than stand-alone learners, they also write software with fewer defects,

and the practice has a positive impact on the confidence of the students [60, 61].

McDowell et al. found that students who use pair programming not only produce better

code but also perform significantly better on final exams compared to those

programming alone [36].

Pair programming requires two programmers to work together on the same computer,

but the trend toward geographically distributed teams make long-distance adaptations

necessary. A modified model, sometimes called remote pair programming (RPP),

adopts looser roles than traditional pair programming. Developers swap roles

(driver/navigator) more frequently, and without coordination. Here, novice

programmers can learn by working as part of a programming pair, contributing code as

well as observing others and performing code reviews, without necessarily being part

of an explicit role-pair. Collaboration is instead done more informally through IRC or

other communication channels. It has already been shown that RPP has the same

benefits of the collocated pair programming mentioning better communication and

cooperation within the group [3].

While pair programming is relatively easy to implement in a collocated class, it is a

social protocol after all, it is more challenging for online classes due to lack of tools and

infrastructure. In most classrooms, students easily collaborate with each other and their

instructor. In an online setting, the mechanisms for interaction are limited – either due

to the remote nature of the class, or because the scale of programs such as the more

popular MOOCs – which can have thousands of students per session across different

7
	

time zones, make it difficult for an instructor or students to coordinate. Thus, while

online courses improve the availability of education, the learning experience is

sometimes impoverished compared to collocated classes. Design and implementation

of tools that support remote pair programming has its own challenges.

Another barrier to collaboration, or even hands-on learning in online/distributed settings

is setting up and troubleshooting tools and development/application environments with

limited support. This can be an insurmountable hurdle for students, and often leads

instructors to settle for a lowest-common-denominator approach to technology adoption

in the class. This is a problem that should not be ignored, as it can even consume an

inordinate amount of time in collocated classrooms. To better support learners in online

classes we need better tools.

To better support learning in online CS classes we need tools that allow instructors to

easily track students’ progress and intervene to address issues as they emerge rather than

wait for students to fail. Because of the scale of some of these classes, and the diversity

of contexts and technology available to students, a 0-set-up learning environment would

be desirable. This means an environment that works reliably on every modern personal

machine, brought to the students through for instance a web-browser. This allows

students and instructors to focus on the material at hand rather than the supporting

technology.

The rest of this document is organized as follows: We start with a review of related

work, explaining the design requirements that needed for a tool to support collaborative

learning. Then we describe our tool, and explain how it addresses various issues students

face in remote pair programming. Next, we explain the user studies that we conducted

to evaluate our tool and then present the results. We conclude with a discussion of

challenges to developing collaborative tools to be used in classroom setting.

2.3 Related Work
Online classes have grown in popularity, and have come to occupy an important role in

secondary education, and especially in CS education, where students and instructors are

8
	

perhaps more comfortable with the required technologies. Within online classes there is

of course great diversity in how these are organized, what technology is used to teach

them, whom they target, and how they fit into a greater educational context.

On one end of the spectrum, in terms of size and popularity, MOOCs deliver learning

content online often at no cost and no limit on attendance. In this model, course

materials are presented using recorded lectures, problem sets, readings and quizzes.

However most of these providers also offer interactive ways of communication between

students and professors, such as discussion forums. MOOCs initially gained prominence

in the summer of 2011 when 160,000 people from around the world enrolled in a free

online artificial-intelligence course offered by Stanford University, with 23,000

completing it [56].

The MOOC model is not the only online education model. On the other end of the scale,

many universities are looking at using online classes as a way of offering courses which

otherwise would not see sufficient local demand, or which cannot be fit into a regular

teaching schedule. These classes are often taught with an instructor and TAs, at regular

intervals, in much the same way as regular university classes, but with the advantage of

increased flexibility and reach. One such program is run by <major US university>,

through their e-campus program, open to both online and on-campus students. Over the

last two years, enrollment in such CS classes has gone from one to two hundred students

to over two thousand.

While on-campus students are easily able to interact with their professors and teaching

assistants to resolve problems, for MOOC students the opportunities for these kinds of

interactions are more limited, which may limit academic success and learning in these

courses. Wouters et al. [62] suggest that learning improves through collaborative

learning and instructional support. Warren et al. [57] suggest that the current major

problem with MOOCs is that they are unable to offer the social experience of on campus

courses.

9
	

Researchers have studied why collaborative programming is more effective than

individual programming in an education setting. Williams et al. found that peer-pressure

helps students concentrate and learn, which helps them to do better compared to the

students who work individually [61]. Werner et al. suggest using pair programming to

engage women in computer science, as this approach tends to lower social barriers that

often limits their participation [58]. Collaborative learning also teaches students

leadership, coordination and conflict management, essential for success in their future

professional lives [45].

Another popular practice is “live coding,” where an instructor writes code in front of

students, exposing their thought process. While this is more effective than just showing

the final solution to students, it is a passive learning technique. Gaspar and Langevin

[17] successfully used a student-led version of this approach to engage students in active

learning and expose their thought process to the instructor for more in-depth feedback.

Here, the thought process is what matters, not the final product.

To better support student-led live coding and engage all students during a class session,

having a tight code-artifact feedback loop that allows students to verify that a change

had the intended result is important. Current software development workflows require

developers to write code “blindly,” only determining if their changes had the desired

effect after they compile and run their program. If a learner wants to further change the

program, they have to go back to the code, edit, compile and run the program again.

This process is even more painful when working with partners, or on a UI-heavy

application.

In the next section, we discuss key features that educational tools must incorporate in

order to support classes that follow this collaborative learning model in either collocated

or online settings.

2.4 Supporting Collaborative Learning
To better understand current practices that support pair programming and learning in

both collocated and remote settings, we did a survey of tools described in the literature.

10
	

We started our search with the following conferences: CSCW, CHI, SIGCSE and

keywords: pair programming, remote pair programming, collaborative learning, active

learning, live coding/live programming, etc. After filtering for false positives, this

identified more than 50 papers. From there we refined our list by looking up cited works.

From this literature review we identify a set of key practices that should improve the

learning experience of novice CS students in both collocated and remote classroom

settings. These include on the social side:

2.4.1 Support both synchronous and asynchronous collaboration with remote
students and instructors.

Supporting both synchronous and asynchronous collaboration is important, especially

in the case of distributed classrooms, where students and instructors can be in different

time-zones, and often combine classes with other commitments. However,

asynchronous collaboration is also important in the case of collocated learning, as it

captures more context.

A major characteristic of tools that allow synchronous coding is that they follow the

WYSIWIS (What You See Is What I See) [51] metaphor, meaning that all users see the

exact same document. GROVE [15], ShrEdit [37], DistEdit [29] and Flesce [8] are all

examples. One of their key challenges is making sure the code is always error-free, as

any coder may compile and run the code at any time, regardless of what the others are

doing. Research tools such as Collabode [18] have been developed to address this issue,

only sharing modifications that result in an error-free code, acting as an automatic safety

buffer.

In terms of asynchronous tools, these often build on a shared code repository and

mechanisms for automatic merging and conflict resolution. Subversion, Git and CVS

[3] allow multiple coders to check out the same file as long as any changes are later

synchronized in the repository. These tools allow coders greater freedom, but require

the team to work harder to coordinate, and can lead to problems when work has to be

merged, especially if developers delay such actions [5].

11
	

Several tools have been developed to provide real-time awareness of code changes in

order to facilitate coordination and identify conflicts early. FASTDash [4] and

ProjectWatcher [49] provide visualizations of data directly gathered from developers’

workspace. Palantír [1, 47, 48] shows who is modifying what part of the code and alerts

developers to emerging conflicts. Syde [21] follows the same approach, but reduces

false positives through abstract syntax tree (AST) analysis. Crystal [5] proactively

watches the code and precisely identifies and reports conflicts.		

2.4.2 Integrate communication features, including text and audio to support
collaboration and enquiry.

The integration of communication features into the IDE could help students discuss and

learn from each other without losing focus on the code. One key factor to team success

is the flow of communication between team members [6, 28]. The most common type

of communications in coding teams is the face-to-face meeting. However, as classes get

geographically distributed in remote learning systems, collaboration gets more

challenging [14, 23]. Researchers have tried to overcome this by mimicking physical

meetings in video conferencing systems [22, 25, 33], or more lightweight systems such

as email, instant messaging [24], or even within the source control system itself [13].

Of these, email is by far the dominant mechanism due to its low learning curve and

flexibility. Most of these communication tools (Skype, IRC, email, etc.) are not directly

integrated with the IDE, which can lead to a disconnect between code and discussion,

or simply wasted effort by frequent context switching.

While it is important to facilitate both synchronous and asynchronous collaboration –

providing the most flexibility for students, synchronous collaboration is perhaps the

most important as it makes it possible for students to engage in RPP at any time and

from any location without worrying about syntactic consistency. A text-based chat

system is a must, as coders share code snippets and links to resources. An audio chat

system provides virtual presence and makes it easier to coordinate and collaborate.

12
	

2.4.3 Support awareness of other’s activities in order to facilitate collaboration
and remote pair programming.

Another fundamental requirement to supporting collaboration is awareness. Dourish

and Belloti define awareness as “an understanding of the activities of others that

provides a context for your own activity” [12]. Awareness is required to coordinate team

activities, but can be distracting if it interrupts or requires too much attention from

developers. It is not an easy thing to address in coding, as we juggle the need for

asynchronous editing for some developers, and the need for real-time preview of the

resulting code for others.

2.4.4 Integrate live preview to close the code-artifact feedback loop and support
student-led live coding practices.

Live programming is a technique where programmers can re-execute a program

continuously while editing [19]. Some recent live programming systems include

Superglue, Flogo II and Lively Wiki [20, 30, 34]. Khan academy recently deployed a

version of a live programming environment in an online course for students with no

programming experience successfully [44]. While live programming shows users a copy

of the final output, it does not provide a mapping between the output and the code, as

done by step-based debugging or tracing with print statements. Researchers are trying

to enhance live programming environments by focusing on debugging [35].

Live preview is a live programming technique that shows the code output immediately

upon any changes to the code and it best fits UI-heavy application development such as

websites. One advantage of combining a live preview component with pair

programming is that live preview supports a distributed and thus scalable way of

engaging in live coding. This would allow all students to benefit from this practice

during short class periods, whereas before only a handful of them would get the chance

to practice this technique.

On the code side, the key practices we identified include the following features, which

though not necessarily unique to the needs of students in online CS course nonetheless

simplify the process of programming and learning:

13
	

• A simple, web-based zero setup programming environment, which is easy to use

by novices. This includes support for code completion and other advanced tools.

• Supporting code rewinding and automatic back-ups to minimize the cost or fear

of mistakes and experimentation.

• A feature-rich code editor with state of the art support tools and scaffolding.

At the heart of any popular and successful IDE sits the code editor. Modern code editors

include several important features designed to scaffold the task of programming. This

includes features such as syntactical highlighting, function completion and inline

documentation, automatic indentation and even auto-correction and spell checking. All

of these features are aimed at helping the student focus on the logic of the program rather

than the minutia of syntax.

Many of the features described above have been implemented in previous tools but

never in a single IDE (most notably Plantír [48], Syde [21], CoRED [31], Eclipse JAZZ

[8], Collabode [18] and Brackets [5]), and their efficacy in supporting learners has never

been determined. It is conceivable that features which in theory sound helpful, or in

isolation work, end up working against each other or not actually supporting the needs

of learners. In order to determine whether this set of design considerations and

requirements really help learners, we implemented a new IDE, called Jimbo, and

performed an evaluation in both a collocated and remote learning setting.

2.5 Jimbo, A Collaborative Development Environment with Live
Preview
In order to determine whether the design requirements identified above really had a

positive effect on learners, we implemented an IDE which included all of them. Jimbo

is an IDE for HTML5 development that enables students to more easily collaborate on

a project. We have tried to make the user interface easy to learn and memorable, but

have also considered external consistency with other popular IDEs. Jimbo is a web-

based IDE, which means that students only need a standard web browser and there is no

setup. This is important, especially in a remote classroom setting. Next we describe the

14
	

core functionality and design decisions made in Jimbo. Figure 2.1 gives an overview of

our system architecture.

	

Figure 2.1 Jimbo's system architecture.

2.5.1 Main View

In Jimbo, any student can define a new project or go to an existing project linked to their

account, with each project having a unique URL. Each project consists of four different

stacks of “pages” (files): one for html code, one for JavaScript code, one for CSS and

15
	

one for JSON data. These are represented as a pile of paper, and the editor is overlaid

on top (Figure 2.2d). These editors are easily accessible through a standard tab view.

Jimbo’s code editor also provides a set of features commonly found in modern IDEs,

including code auto-completion, syntax highlighting, find/replace, linter, etc.

The left side of the screen is dedicated to the live preview. (Figure 2.2g) A list of

currently online users is on the top of the screen with avatars and names (Figure 2.2a).

Jimbo also has helper widgets for numerical and color values, which allows users to

modify values using sliders and pickers instead of typing. This allows users to modify

their code and quickly see the effects of their modifications in the live preview panel.

2.5.2 Synchronous Collaboration

The most important feature of Jimbo is synchronous collaboration. The number of

defects in code tends to rise with the amount of parallel work [43] and developers

sometimes avoid this kind of development to avoid having to resolve conflicts [19]. To

minimize problems, Jimbo acts such as a real-time Git tool using an Operational

Transformation (OT) algorithm [52].

OT is a technique that provides eventual consistency between multiple users working

on the same artifact without retries, errors, or data being overwritten using simple 	

insert/delete operations. In the basic form, the server keeps a state space per connected

client, which can be memory-intensive and can make the transformation algorithms

complicated. In Jimbo however, we made the process simpler and more efficient by

requiring the server to acknowledge clients’ operations before they can send new ones.

This means that any client can at most have one un-acknowledged operation in flight.

The client OT stores other users’ operations in the localStorage of the browser, only

sending the next when the last in-flight operation has been completed. Thus the server

only needs to keep one state space for all connected clients.	

The server also keeps different snapshots of each code file. If multiple collaborators try

to edit the same code at the same time, one of the edits will be received and applied first

and then the server transforms and applies the other edits using the state space. OT

16
	

algorithm makes sure that the commits and updates happen automatically and the code

file is consistent for everyone no matter the order in which operations are applied to the

shared file. This enables users to work offline and sync their edits with the server later;

the OT algorithm takes care of the conflicts.

2.5.3 Code Rewind

This feature enables students to see how others are contributing to the project, maintain

situational awareness, and identify whom they need to communicate with based on code

ownership. The content is color coded to show who edited what part of the code. This

also allows students to learn by example, and solves the concern of students getting a

“free ride” in the class by allowing an instructor to see everyone’s contribution to the

team. The system also tracks lines of code being copy/pasted, should this be necessary

in case of plagiarism. Another use of this feature is to determine the provenance of bugs

introduced into the code.

2.5.4 Communication

Jimbo explores novel ways of integrating both synchronous and asynchronous

communication. Jimbo implements discussion threads, a semi-synchronous

communication method. These threads are associated with specific lines of code as

inline comments. This allows developers to add and preserve contextual and design

information, often generated in discussions with collaborators. Instant

messaging/discussion system can be accessed through the chat icon on the right side of

the preview section. Here users can chat or join a video/audio session (Figure 2.2i).

2.5.5 User Awareness

The main purpose of an awareness system is to help coordinate tasks. We follow the

“continuous coordination” model introduced by van der Hoek et al. [54]. The primary

responsibility of such a system is to notify students of events relevant to them, such as

code changes, comments to discussion threads, user presence, etc.

17
	

 Fi
gu

re
 2

.2
 (a

) O
nl

in
e

de
ve

lo
pe

rs
’ a

va
ta

rs
 w

ith
 th

ei
r

na
m

es
 a

s t
oo

lti
p.

 (b
) E

as
y

sh
ar

e
bu

tt
on

. (
c)

 L
iv

e
pr

ev
ie

w
 to

gg
le

 (d
)

C
od

e
ed

ito
r

ar
ea

. (
e)

 N
um

be
r

of
 a

ct
iv

e
de

ve
lo

pe
rs

 in
 e

ac
h

ed
ito

r,
 h

er
e

bo
th

 d
ev

el
op

er
s a

re
 a

ct
iv

e
in

 th
e

Ja
va

Sc
ri

pt

ed
ito

r.
 (f

) E
di

to
r

vi
ew

po
rt

. (
g)

 R
ea

l-t
im

e
pr

ev
ie

w
 p

an
el

. (
h)

 C
od

e
ch

an
ge

 n
ot

ifi
ca

tio
n

fo
r

th
e

ca
se

 th
at

 d
ev

el
op

er
s a

re
 in

th

e
sa

m
e

pr
oj

ec
t b

ut
 d

iff
er

en
t v

ie
w

po
rt

s,
he

re
 th

e
ch

an
ge

 is
 h

ap
pe

ni
ng

 so
m

ew
he

re
 a

ft
er

 li
ne

 7
1.

 (i
) I

ns
ta

nt
 m

es
sa

gi
ng

pa

ne
l.

18
	

Jimbo has a channel based notification system [42, 53] using push notifications [7, 16].

The editors’ tab contains information about the developers currently working within

each view. If developers are in the same editor, they can see each other’s cursors.

Developers are notified about changes in the code that lead to a change in the preview

panel in one of two ways:

• Developers in the same editor: It highlights the line changing and the student

making the change.

• Developers in different editors: Jimbo highlights the editor name to let others

know what editor the change is coming from.

2.5.6 Live Preview

This feature provides an immediate connection between the code and the output so

students get feedback for changes to their code. This leads to fewer iterations, more

immediate feedback, which means faster coding and better learning. It also streamlines

collaboration between students in the same team. Using this feature with the

communication features already discussed, they can provide immediate feedback as

code is edited, in the pair programming tradition.

This feature only allows safe and error free code to be run in the live preview. In the

case of buggy code, the live preview panel will show the last error-free code. Students

can turn off the live preview feature to mitigate distractions at will. This is done to

accommodate different learning styles.

2.7 Evaluation
We sought to evaluate Jimbo’s effectiveness in improving learning in both collocated

and distributed classrooms. We chose to do this through two between-group user

studies, one in a collocated (classroom) setting and one in a distributed setting (online

class). Both user studies were conducted at Oregon State University, using Computer

Science students as subjects. Participation was voluntary, and all participants gave

informed consent prior to participation.

19
	

The focus of our evaluation was not to determine whether pair programming is better

than individual efforts. We wanted to determine whether we could streamline the use of

pair programming and live coding in a way that would lead to an improved learning

experience. Therefore, we structured our control groups as students working on

assignments individually (as they normally would in these classes), and our

experimental groups as pair programming groups. The measure of success would

therefore not be whether students who worked together did better (which we took as

given), but rather whether students could collaborate in a low-effort enough way to

make the experience worthwhile and attractive.

The reason for studying both an online and a collocated class was to better evaluate our

design goals. While online classes suffer from fewer opportunities for social interaction

and collaboration between students, and between students and their instructors, on

campus classes are less flexible in terms of time, and students have to be on task as

much as possible.

Both studies followed the same format: First participants in the experimental condition

received a short tutorial on how to use our tool. Next, both the control and experimental

groups were introduced to a new programming concept from the course curriculum and

asked to complete an in-class programming assignment designed by the course

instructor. The experiment took place in week 7 of 10 of the term to ensure students

were already familiar with the basics. In the control group, students could use any tool

they chose, and the experimental groups used Jimbo. In most cases students in the

control group used tools they had already installed and knew how to use.

2.7.1 Collocated User Study

The course we chose for this study was a small (16 students) graduate-level data

visualization class. Here students learn how to visualize different types of data using

d3.js library and other web technologies. This class requires students to master several

new concepts over a short period of time (10 weeks).

20
	

Setup and participants

All 16 students enrolled in the class agreed to participate in our study. Subjects were all

graduate students (4 female) with an undergraduate computer science background. We

randomly assigned participants into two groups of 8; A control group and an

experimental group. All but one participant had previous experience with pair

programming, but only one participant had used a real-time collaborative tool before.

We did not coach subjects on pair programming. Our control group worked on the

programming task as individuals, using their own favorite code editor in the classroom

with their instructor present (their preference).

Table 2.1 Collocated User Study.

Years of

Programming
experience

Years of Web
Dev experience

Self-rated
HTML

proficiency
(10=expert)

Self-rated
CSS

proficiency
(10=expert)

Self-rated JS
proficiency
(10=expert)

avg 7.43 3.37 5.63 4.94 4.69
st. dev 4.15 3.36 2.16 2.59 2.39

min 2 0 2 1 1
max 15 12 10 10 9
mode N/A N/A 3 4 4

Table 2.2 Online Study.

Years of

Programming
experience

Years of Web
Dev experience

Self-rated
HTML

proficiency
(10=expert)

Self-rated
CSS

proficiency
(10=expert)

Self-rated JS
proficiency
(10=expert)

avg 2.4 0.95 4.9 4.26 3.8
st. dev 2.25 0.85 2.23 2.02 1.81

min 0 0 1 1 1
max 8 3 8 8 7
mode N/A N/A 5 5 2

Our experimental group used Jimbo in teams of two. We had 8 participants randomly

assigned to 4 teams. Members of a team were seated next to each other, and we asked

21
	

them to use their own laptops rather than share a screen. An experimenter was assigned

to play instructor and help students remotely with problems using Jimbo.

The task for both groups was to use the d3.js library to create a bar chart to represent a

set of data. While all students in the experimental group finished the task in the given

time (40 minutes), none in the control group finished. Thus, for our analysis we focused

on our qualitative data. This includes observations and interviews to understand the

reasons for the experimental group’s success and the control group’s failure.

Results

In general, all participants agreed that it was more effective for them to learn new topics

by working on practical examples compared to the more passive lecture mode:

“[…] back in college […] they would give us the code and we’d compile it and then

they’d explain it to us […] while I thought I knew everything, when I wanted to do the

homework, I had no idea what the code was about […] but this was my own code, I

understand it better”

“I used to think I understood the concept from slides […] when it comes down to using

them in code, I have trouble converting it to code […]”

They also liked learning with pair programming, it really helped them to understand

concepts and details better. One participant explained that, “[..] when we have trouble

with our homework we go to each other for help anyways, pretty much a collaborative

thing […] it helps a lot to have someone work with you on the same project […] I get

less stressed”.

The overall experience of the experimental group was mainly positive. The most liked

feature was the live preview, which helped them finish their task quicker. One of the

participants compared Jimbo to jsfiddle.com and said, “I use that website a lot but there

you have to click run over and over to see the changes in action, less interruptions is

better”.

22
	

Next, we analyzed the interviews and our observations to better understand the issues

in the classroom setting that make it difficult to implement an interactive

teaching/learning experience for students. Then we show how the design goals and

principles we followed in Jimbo would address those issues.

Web-based Zero-setup Environment

All the teams in the experimental group finished the task, while participants in our

control group spent a large amount of time setting up or fiddling with their pre-installed

coding environment. This despite being allowed to use their own tools, presumably

installed and familiar to them. This shows that a zero-setup tool is essential. Only 3

participants from the control group finished part of the programming task.

Synchronous Communication & Collaboration

Participants indicated that the long wait for help is a major problem in CS classes with

programming tasks.

“I usually send them [instructor and TAs] my code in an email to get help […] it’s a

long process”

“Office hours are very busy; I’d rather solve it myself or get help from my friends […]”

We observed that in our control session the instructor was consistently walking around

the room to help students with, and while helping one student, some others were waiting

to get help from the instructor, and others again were getting help from other students.

Students in the experimental session were pleased that they could talk directly with the

instructor, ask questions, and that the instructor could join their code environment in

real-time to help them with their issues. One participant said,

“I asked a question in the chat box and I saw [the instructor] joining my code and

helping me, that was awesome!”

23
	

Given that they were all collocated, participants in the experimental group mostly

communicated verbally, except when they wanted to share a link or code snippet, or

they needed to interact with the instructor. They all agreed that voice chat would be a

must for them if they are not co-located.

Integrated Live Preview & User Awareness

All participants in the experimental group liked the live preview feature and found that

it reduced development time. They also mentioned that whenever they noticed changes

in the results they were able to see what line of code was being changed by their

teammate. This helped them to coordinate their tasks better and prevent any potential

code conflict.

“I could easily see the changes in the preview window and quickly look at the code to

see what line is being changed”

“It was not distracting at all, it was very helpful […] I could see what part of the code

he is working on […]”

On the other hand, in the control group, we found that most of the students modified the

instructor’s code while switching back and forth between editor and browser to check

the effects of their edits.

2.7.2 Online Setting Study

After our initial validation study, we picked an online course on web development as a

second case study. The course requires students to design and develop web sites, and is

part of an online post-bachelor course, meaning students have a bachelor’s degree in a

subject other than Computer Science. The course is offered as an early part of an

intensive 1-year program terminating in a second degree in Computer Science. Students

are predominantly U.S. based, but are otherwise geographically diverse.

The class follows a fixed term pattern (10 weeks), with regular evaluations. Instruction

is a mix of online PowerPoint and other written materials, and video clips prepared by

24
	

instructors doing live coding. Compared to most online classes, this course follows a

more structured pace, and students interact mostly with teaching assistants through

online chat and email when needed. Students pay tuition, and are therefore perhaps more

motivated than the average MOOC student, who often ends up dropping out before the

end of the course [38].

Our subjects had a wide variety of academic backgrounds, but most had limited

experience with programming. In our study, only 20% of participant had any Computer

Science background (other university-level coursework or work-related experience),

and none had ever used a real-time collaborative tool. Surprisingly, 63% had experience

with pair programming.

Setup and Participants

The experimental design was similar to our on-campus study. We recruited 16 students

(5 female) and randomly assigned half to an experimental group that would use Jimbo,

and a group that continued to work with their preferred tools.

We asked participants in the experimental group to participate in a Google Hangout

session where we instructed them in how to use Jimbo. An instructor taught a new

concept in web development using live coding. We then randomly assigned participants

in the experimental group into teams of two, who then used RPP to complete an

assignment using Jimbo. All communication between team members in the

experimental group happened inside the tool in order to allow us to track interactions.

Our control group with 8 subjects worked on the same task individually using their

favorite pre-installed tools.

The task assigned for both groups was to use the NYTimes RESTful api to create a web

application that allows users to search for articles based on a keyword and time period.

We collected code artifacts from both the experimental and control groups. After the

experiment concluded we interviewed all participants to learn more about their

experiences, perceptions, opinions, and attitudes.

25
	

Results

Two graders scored students’ code using a common grading rubric. According to this

rubric, 80% of the grade was for following task specifications and delivering the correct

program, the rest focused on code readability and organization. We used the interclass

correlation method (model: two-way, type: absolute agreement) to check that the

graders were consistent (Control group: icc = 0.873, experimental group: icc = 0.965).

The final grade for each student was the average of the grades given by the two graders.

Median grades in control and experimental groups were 81.75 and 92.5; the distributions

in the two groups differed significantly (Mann–Whitney U = 11, n1 = n2 = 8, P < 0.05

two-tailed).

We did the same analysis on qualitative data from our interviews and observations for

this study as well. In the rest of this section we discuss that how our design goals

addressed the issues students currently facing in online programming classes.

Web-based Zero-setup Environment

Several participants remarked that Jimbo was very similar to the tools they usually use,

such as Eclipse, Visual Studio and NotePad++, but they liked that they could start

coding without any initial configuration or setup work. Others disagreed and mentioned

that those configurations are “one time” and were for them not a big deal; "[…] once

you set it up […] at the beginning of the term you are good to go for the rest”

Synchronous Communication & Collaboration

When asked about current barriers in online classes, subjects unanimously pointed to a

lack of good support from instructors when doing programming tasks. One participant

explained: “We get the sample codes from [the] course web site […] we don’t know

how to run them […] it’s due date for the homework before I can get help from TAs or

instructor”. Others strongly agreed with this sentiment. Subjects liked the

“connectedness” of learning with Jimbo; “I pinged the instructor in Jimbo and boom,

he was there in my code helping me, awesome!”

26
	

Subjects in the experimental group all used audio chat for communication and shared

web resources or code snippets using the text chat. All the teams in the experimental

group spend some time at the beginning on coordination and making sure they

understand the task. Most participants mentioned that they preferred audio chat to text

chat, at least for these tasks.

Subjects reported that coordinating tasks and sharing code is the most difficult part of

team projects in their online classes. While some students said that they used version

control tools such as git, svn, etc., others reported having difficulties using such

technical tools and preferred using file-sharing tools such as Dropbox and Google drive.

The most liked feature of Jimbo was code editing in real-time. Interestingly we observed

different patterns of pair programming. Although all students contributed to the code

while coordinating their tasks with each other, one team followed a strict model of pair

programming where one student was writing the code and the other one was reviewing

and pointing out the issues.

Subjects in the experimental group found that situating the chat window next to the live

preview streamlined the collaboration process and made development quicker:

“I was surprised how we could finish a homework that I personally spend an entire

weekend [on …] in half an hour”

“[…] if I can find a fixed time with my teammate we can use Jimbo to finish the

homework much quicker”

One participant suggested adding a feature to switch between asynchronous and

synchronous editing mode.

Integrated Live Preview & User Awareness

While most of the participants like the idea of live preview, some found it distracting

and would rather run the code manually; “I was fixing something in JavaScript and the

view disappeared! […] pretty sure it wasn’t me […] but took a while to figure out it was

27
	

her changing the HTML code”. Some recommended adding a pause button for the live

preview.

Overall the feedback from students using Jimbo was overwhelmingly positive, though

some tweaks and improvements were suggested. We were pleased to hear that all

students except one wanted access to the tool for the rest of the term. More importantly,

the design requirements identified in section 3 were validated, in that all of them were

seen as valuable and contributing to improving the learning experience, especially for

the online students.

2.8 Discussion
The goal of our research was to validate a set of design requirements aimed at better

supporting students in online settings. Specifically, we wanted to see if we could support

remote pair programming and a tighter code-artifact feedback loop. Though most of

these concepts have been explored individually in tools or programming environments,

such as Syde [21], Collabode [18], CoRED [31], Brackets [5], and Plantír [48], our

Jimbo system combined all the necessary requirements, including: live coding,

synchronous collaboration, communication and user awareness. We hypothesized that

this would allow learners to work more closely together and write code better and faster.

The key question for us was whether these features could be combined in a way that

would be useful to learners, and whether students in real programming courses would

find these features as useful as we expected.

The results from our evaluation show that Jimbo, as an instantiation of these design

principles, can be an effective and useful tool in teaching new programming concepts

to students using the remote pair programming method. While students were generally

happy with the tool, to the point of requesting that the tool should be available after the

end of the experiment, we did get some feature and change request from participants.

Although our tool supports traditional pair programming through a shared view of code,

the instructors in the classes did not force students to observe traditional pair

programming roles. As a result, most students in our studies decided to adopt a looser

28
	

collaboration style. Participants simultaneously contributed to the project by writing

code, while coordinating their tasks through the provided communication channels such

as text and audio chat. Most of our participants stated that they wanted to get their hands

on the code when learning a new programming technique, perhaps ignorant of the

research showing the positive effects of pair programming. This could explain why they

preferred to adapt a looser version of pair programming, where pairs can be both driver

and navigator. That said, nothing would have prevented an instructor using our

prototype from following a traditional pair programming model of work, regardless of

the geographic distribution or size of the class (provided there is time overlap and the

class can be broken down in pairs).

We supported several different channels of communication in Jimbo, which enabled

collaborators a great deal of flexibility on how they worked together. We did not

however determine whether these channels were necessary, or which would be more

efficient. Our subjects showed a distinct preference for audio, with text-based chat being

a backup for exchanging code and links. Audio communication is of course more

bandwidth intensive, and may not always be a good option, especially if audio quality

cannot be maintained.

In Jimbo we tried to reduce the efforts of task coordination by notifying users about

changes in the project through a powerful push notification system. This system follows

the continuous coordination approach introduced by van der Hoek et al. [54] in which

users benefit from both formal and informal coordination. These notifications

manifested as visible marks in the code file, which would fade over time.

Our subjects embraced the synchronous collaboration and automatic conflict resolution

features, explaining that they find current source control systems confusing and hard to

use when there is a conflict and the manual merging is required. However, we learned

that having a private edit mode is essential to allow students to sync their codes only

whenever they feel confident.

29
	

The live preview feature provided an instant connection between code and the output

for students and allowed them to complete their work more quickly. However, some

students explained that the continuous live preview could get distracting. As team sizes

grow, this issue could potentially be exasperated, as more edits would mean more visual

jumps in the live preview. A simple fix to address this issue could be a lazy update

algorithm, which would set update intervals to limit the frequency of interruptions, or a

freeze function that users could toggle.

Overall, we found that these features, in combination, but also likely in isolation, are

likely to improve the learning experience of online CS students. We believe that the

design goals and the main features that we recognized and integrated into our prototype

are essential for any tool that wants to support remote pair programming. We also

observed the benefits of live coding next to pair programming and our data shows these

features play well with each other to enable students master the key programming

concepts in their classes.

2.9 Conclusion
In this paper, we explored some technologies and requirements for improving learning

in online settings. This includes synchronous communication and awareness features,

integrated change tracking and management, a zero-configuration environment, and live

preview. We implemented these features into a tool called Jimbo, a web-based

collaborative IDE for HTML5 application development.

Through the use of Jimbo in to experimental class settings; one collocated and one

online, we confirmed that students found the features we advocated for helpful,

engaging, and that it helped them not just engage in pair programming, but also more

easily interact with their instructors. As a result, students were able to complete their

assignments more successfully and faster, focusing more of their time and effort on the

key concepts being taught instead of on syntax and trivial software problems.

2.10 Acknowledgement
We thank our reviewers, participants, and members of HCI research group at Oregon

30
	

State University, family and friends for their help and support.

2.11 References
1 Al-Ani, B. Trainer, E. Ripley, R. Sarma, A. Hoek, A. and Redmiles, D. Continuous

coordination within the context of cooperative and human aspects of soft- ware
engineering. In CHASE, pages 1–4, Leipzig, Germany, May 2008.

2 Baheti, P., Gehringer, E. F., and Stotts, P. D. Exploring the efficacy of distributed
pair programming. In Proceedings of the Second XP Universe and First Agile
Universe Conference on Extreme Program- ming and Agile Methods - XP/Agile
Universe 2002 (London, UK, UK, 2002), Springer-Verlag, pp. 208–220.

3 Berliner, B. CVS ii: Parallelizing software development. In USENIX Winter 1990
Technical Conference, pages 341–352, 1990.

4 Biehl, J.T. Czerwinski, M. Smith, G. and Robertson, G.G. FASTDash: A visual
dashboard for fostering awareness in software teams. In CHI, pages 1313–1322,
SanJose, CA, USA, Apr. 2007.

5 Brun, Y. Holmes, R. Ernst, M. and Notkin, D. 2011. Proactive detection of
collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software
engineering (ESEC/FSE '11). Pp. 168-178.

6 Carmel, E. Global Software Teams: Collaborating Across Borders and Time
Zones. Prentice-Hall: Englewood Cliffs NJ, 1st edition edition, 1999.

7 Carzaniga, A. Rosenblum, D.S. and Wolf, A.L. Design and evaluation of a wide-
area event notification service. ACM Transactions on Computer Systems, 2001.

8 Cheng, L. Hupfer, S. Ross, S. and Patterson, J. Jazzing up eclipse with
collaborative tools. In 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications / Eclipse
Technology Exchange Workshop, pages 102–103, Anaheim, CA, 2003.

9 Cliburn, D., Experiences with pair programming at a small college, The Journal of
Computing in Small Colleges, 19, (10), 20-29, 2003.

10 DeClue, T., Pair programming and pair trading: effects on learning and motivation
in a CS2 course, The Journal of Computing in Small Colleges, 18 (5), 49-56, 2003.

11 Dewan, P. and Riedl, J. Toward computer-supported concurrent software
engineering. IEEE Computer, 26(1): 17–27, 1993.

31
	

12 Dourish, P. and Bellotti, V. Awareness and coordination in shared workspaces. In
ACM Conference on Computer-Supported Cooperative Work, pages 107–114,
Monterey, California, USA, 1992.

13 Ducheneaut, N. and Bellotti, V. E-mail as habitat: an exploration of embedded
personal information management. Interactions, Volume 8(Issue 5): 30 – 38, 2001.

14 Ebert, C. and De Neve, P. Surviving global software development. IEEE Software,
18(2): 62–69, 2001.

15 Ellis, C.A. Gibbs, S.J. and Rein, G.L. Design and use of a group editor. In
Engineering for Human Computer Interaction, pages 13–25, Amsterdam, 1990.

16 Fitzpatrick, G. Kaplan, S. Mansfield, T. Arnold, D. and Segall, B. Supporting
public availability and accessibility with elvin: Experiences and reflections.
Computer Supported Cooperative Work, 2002.

17 Gaspar, A. Langevin, S. Active learning in introductory programming courses
through student-led “live coding” and test-driven pair programming, EISTA 2007,
Education and Information Systems, Technologies and Applications, July 12-15,
Orlando, FL.

18 Goldman, M. 2011. Role-based interfaces for collaborative software development.
In Proceedings of the 24th annual ACM symposium adjunct on User interface
software and technology (UIST '11 Adjunct). ACM, New York, NY, USA, 23-26.

19 Grinter, R. Using a configuration management tool to coordinate software
development. In CoOCS, pages 168–177, Milpitas, CA, USA, Aug. 1995.

20 Hancock, C. M. Real-time programming and the big ideas of computational
literacy. PhD thesis, Massachusetts Institute of Technology, 2003.

21 Hattori, L. and Lanza, M. Syde: A tool for collaborative software development. In
ICSE Tool Demo, pages 235– 238, Cape Town, South Africa, May 2010.

22 Herbsleb, J. and Grinter, R.E. Splitting the organization and integrating the code:
Conway’s law revisited. In Proceedings of the 21st international conference on
Software engineering, pages 85–95, 1999.

23 Herbsleb, J. and Moitra, D. Global software development. IEEE Software, 18(2):
16–20, 2001.

24 Herbsleb, J. Atkins, D.L. Boyer, B.G., Handel, M. and Finholt, T. A. Introducing
instant messaging and chat in the workplace. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 171–178, Minneapolis,
Minnesota, USA, 2002.

32
	

25 Herbsleb, J.D. Mockus, A. Finholt, T.A. and Grinter, R.E. Distance, dependencies,
and delay in a global collaboration. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 319–328, Philadelphia, PA,
2000.

26 Horn, E. M., Collier, W. G., Oxford, J. A., Bond Jr, C. F., & Dansereau, D. F.
Individual differences in dyadic cooperative learning. In Journal of Educational
Psychology, 90(1), 153. (1998).

27 Kantor, M. and Redmiles, D. Creating an infrastructure for ubiquitous awareness.
In 8th IFIP TC 13 Conference on Human-Computer Interaction (INTERACT
2001), pages 431–438, Tokyo, Japan, 2001.

28 Karolak, D.W. Global software development: managing virtual teams and
environments. IEEE Computer Society, 1999.

29 Knister, M.J. and Prakash, A. Distedit: a distributed toolkit for supporting multiple
group editors. In Proceedings of the 1990 ACM conference on Computer-
supported cooperative work, Los Angeles, CA, 1990.

30 Krahn, R. Ingalls, D. Hirschfeld, R. Lincke, J. and Palacz, K. 2009. Lively Wiki a
development environment for creating and sharing active web content.
In Proceedings of the 5th International Symposium on Wiki and Open
Collaboration (WikiSym '09). ACM, New York, NY, USA.

31 Lautamäki, J. Nieminen, A. Koskinen, J. Aho, T. Mikkonen, T. and Englundm,
M. 2012. CoRED: browser-based Collaborative Real-time Editor for Java web
applications. In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work (CSCW '12). ACM, New York, NY, USA, 1307-1316.

32 Lvstrand, L. Being selectively aware with the khronika system. In Proceedings of
the European Conference on Computer Supported Cooperative Work, ECSCW
(91), pages 265–278, Amsterdam, NL, 1991.

33 Mark, G. Extreme collaboration. Communications of the ACM, 45(6): 89–93,
2002.

34 McDirmid, S. Living it up with a live programming language. In Proc. of OOPSLA
Onward pages 623–638, October 2007.

35 McDirmid, S. (2013, October). Usable live programming. In Proceedings of the
2013 ACM international symposium on new ideas, new paradigms, and reflections
on programming & software (pp. 53-62).

36 McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002, February). The
effects of pair programming on performance in an introductory programming
course. In ACM SIGCSE Bulletin (Vol. 34, No. 1, pp. 38-42).

33
	

37 McGuffin, L.J. and Olson, G. Shredit: A shared electronic workspace. Technical
Report 45, Cognitive Science and Machine Intelligence Laboratory, Tech reports:
45, University of Michigan, Ann Arbor, 1992.

38 MOOCs on the Move: How Coursera Is Disrupting the Traditional Classroom
(text and video). Knowledge @ Wharton. University of Pennsylvania. 7 November
2012. Retrieved 23 April 2013.

39 Murphy L., Blaha, K., VanDeGrift, T., Wolfman, S., Zander, C., Active and
cooperative learning techniques for the computer science classroom, The Journal
of Computing in Small Colleges, 18, (2), 92-94, 2002.

40 Nosek, J. T. ìThe case for collaborative programmingî, Communications of the
ACM 41:3, March 1998, p. 105-108.

41 O'Donnell, A. M. and Dansereu, D. F. “Scripted Cooperation in Student Dyads: A
Method for Analyzing and Enhancing Academic Learning and Performance,” in
R. Hartz-Lazarowitz and N. Miller (Eds.) Interactions in Cooperative Groups: The
Theoretical Anatomy of Group Learning, pp. 120-141, Cambridge University
Press, 1992.

42 OMG. CORBACos: Notification Service Specification v1.0.1. 2002.

43 Perry, D. Siy, H. and Votta, L. Parallel changes in large-scale software
development: an observational case study. ACM TOSEM, 10:308–337, July 2001.

44 Resig, J. Redefining the introduction to computer science.
http://ejohn.org/blog/introducing-khan-cs/, 2012.

45 Rugarcia, A., Felder, R. M., Woods, D. R., & Stice, J. E. (2000). The future of
engineering education. I. A vision for a new century. Chemical Engineering
Education, 34(1), 16–25.

46 Sarma, A. A survey of collaborative tools in software devel- opment. Technical
Report UCI-ISR-05-3, University of Cali- fornia, Irvine, Institute for Software
Research, 2005.

47 Sarma, A. Bortis, G. and van der Hoek, A. Towards supporting awareness of
indirect conflicts across software con- figuration management workspaces. In
ASE, pages 94–103, Atlanta, GA, USA, Nov. 2007.

48 Sarma, A. Noroozi, Z. and van der Hoek, A. Palantír: raising awareness among
configuration management workspaces. In ICSE, pages 444–454, May 2003.

49 Schneider, K.A. Gutwin, C. Penner, R. and Paquette, D. Mining a Software
Developer's Local Interaction History. MSR 2004, Edinburgh, 2004.

34
	

50 Slavin, R. E. “Research on Cooperative Learning and Achievement: When We
Know, What We Need to Know,” Contemporary Educational Psychology, 21,
pages 43-69, 1996.

51 Stefik, M. Bobrow, D.G. Foster, G. Lanning, S. and Tatar, D. 1987. WYSIWIS
revised: early experiences with multiuser interfaces. ACM Trans. Inf. Syst. 5, 2
(April 1987), 147-167.

52 Sun, C. and Ellis, C. Operational transformation in real-time group editors. In
Proc. Computer Supported Cooperative Work, pages 59–68, 1998.

53 SunMicrosystems. Java Message Service API. 2003.

54 Van der Hoek, A. and et al. Continuous coordination: A new paradigm for
collaborative software engineering tools. In Proceedings of Workshop on
WoDISEE, Scotland, 2004.

55 Vessey, I. and Sravanapudi, A. P. Case tools as collaborative support technologies.
Communications of the ACM, vol. 38:83–95, 1995.

56 Waldrop, M. Online learning: Campus 2.0 http://www.nature.com/news/online-
learning-campus-2-0-1.12590

57 Warren, J. Rixner S. Greiner, J. and Wong, S. 2014. Facilitating human interaction
in an online programming course. In Proceedings of the 45th ACM technical
symposium on Computer science education (SIGCSE '14). ACM, New York, NY,
USA, 665-670.

58 Werner, L. L. Hanks, B. and McDowell, C. 2004. Pair programming helps female
computer science students. J. Educ. Resour. Comput. 4, 1, Article 4 (March 2004).

59 Williams, L. A., ìThe Collaborative Software Process PhD Dissertationî,
Department of Computer Science, University of Utah. Salt Lake City, 2000.

60 Williams, L. and Kessler, R. R. “Experimenting with Industry’s ‘Pair-
Programming’ Model in the Computer Science Classroom,” Journal on SW
Engineering Education, Dec. 2000.

61 Williams, L. A. and Kessler, R. R. (2000, March). The effects of" pair-pressure"
and" pair-learning" on software engineering education. In Software Engineering
Education Training, 2000. Proceedings. 13th Conference on (pp. 59-65).

62 Wouters, P. van Nimwegen, C. van Oostendorp, H. and van der Spek, E. D. A
meta-analysis of the cognitive and motivational effects of serious games. Journal
of Educational Psychology, 105(2):249, 2013.

35
	

3 Improving Developer-Designer Collaboration Using Collaborative
and Live Programming

Soroush Ghorashi, Carlos Jensen

School of EECS
Oregon State University
Corvallis, Oregon, 97331, USA
{ghorashi, cjensen}@eecs.oregonstate.edu

Proceedings of the 2018 ACM Conference on Computer Supported Cooperative Work & Social
Computing (CSCW '18)
(to be submitted)

36
	

3.1 Abstract
Software development involves teamwork and a lot of communication. Traditional

software engineering processes are often implemented in an inflexible and change-

resistant manner. While these methods worked well in the past, they may not always be

the most efficient today. Methodologies such as collaborative programming have

emerged, where developers collaborate with other developers, designers, and end-users

to create software. Successful product development requires effective collaboration

between all three. This leads to an increased need for feedback and checking that the

project is progressing in the right direction. To address the needs of developers and

designers, we introduce Jimbo, a web-based HTML5 development environment that

integrates collaborative editing, live programming and communication features to close

the communication gap between designers and developers. Jimbo allows designers to

join the development process as first-class citizens – not dependent on the coders to

compile and share output – or being forced to become coders.

3.2 Introduction
The development of software systems is a highly collaborative process, bringing

together programmers, designers, managers, etc. to solve a problem by producing

quality code. Vessey and Sravanapudi [37] showed that about 70% of a typical software

engineer’s time is spent on collaborative activities. When working with non-developers,

collaboration is even more complicated, as cultural barriers must be negotiated. This

includes working with designers, end-users or other stakeholders, even developers from

other cultures. In addition to the usual face-to-face interactions, software engineers use

a variety of tools to streamline this process and decrease the effort involved. Most of

these tools are not directly integrated into their development environments (Skype, IRC,

email, etc.), which can lead to disconnection between code and design, or simply wasted

effort through frequent context switching.

37
	

Currently distributed collaborative software development revolves around working in

parallel on separate copies of the code, and integrating the resulting efforts using a

source code version control system such as Subversion [35] or Git [13]. Though this is

an effective strategy, there is a lack of real collaboration, as developers largely work

independently, only coordinating when synching code.

Better designer-developer collaboration usually leads to a better user experience in the

product [4]. One of the common challenges faced by mobile and web developers is the

need to bridge the gap between designers and developers. This applies to many UI or

interactive projects, where a tight integration of code and design are integral to the

products’ success. Current integrated development environments (IDE’s) do not offer

an effective mechanism for direct collaboration between designers and developers

involved in a common software project. Direct collaboration and effective

communication results in faster development, better user experience and eventually the

success of the software project.

Current software development workflow models require developers to write code

“blindly”, only seeing whether their changes have the desired outcome after they

compile and execute their programs. If they want to further change the code or tweak

their designs, they have to go back to the code, edit, compile and run the program again.

The problem is that coding is based on a mental image held by developers, which needs

to be translated to code.

Developers often spending significant amounts of time switching between code and the

build process. This disjointed process is even more painful when working with multiple

developers, or with designers on UI-heavy applications.

The rest of this paper is organized as follows: We start with a review of related work.

We then describe our tool and explain how it addresses various issues that developers

and designers face in collaborative environments. We then present the results of a user

study that we have conducted to evaluate our tool in professional development setting.

We conclude with a discussion of challenges to developing collaborative tools.

38
	

3.3 Related Work
One of the key factors impacting how successful a team can be, is the flow of

communication between team members [8, 22]. In a software team, communication

between designers and developers is critical. A reliable communication channel leads

to a successful project while lack of one can lead to more iteration, a bad user experience

and eventually failure. The most common type of communication is the face-to-face

meeting. However, as teams get larger and/or geographically distributed, collaboration

in software development gets more challenging [11, 18]. Researchers have tried to

overcome this by mimicking physical meetings in a virtual environment such as video

conferencing systems [18, 20, 24], or more lightweight communication and awareness

systems such as email, instant messaging (IM) [19], or even the source control system

itself [6, 12]. Of these, email is by far the dominant mechanism due to its low learning

curve and flexibility.

In the traditional model of software development, developers get design documents

from designers and try to bring these to life. This model breaks down into three discrete

activities: Coding in an IDE, compiling/testing the code, and execution to verify that it

functions and looks as envisioned in the design documents. As changes are made to the

code, developers have to repeat the compile-execute cycle to confirm the effect of code

changes as well as designers verifying that their vision is being fulfilled and the

development is on the right track. Because developers often need rapid feedback, these

cycles tend to come frequently, resulting in inefficiencies. Furthermore, the designer is

often out of the loop, providing input at the beginning, and then often depending on the

developers to keep them up to speed.

Researchers have recently started investigating the benefits of using live programming

in IDE’s, an old but increasingly popular technique in software development. As the

name suggests, live programming is an approach where programmers can re-execute a

program continuously while editing [15], immediately seeing the results of their efforts.

39
	

Tanimoto introduced live programming [34] for visual languages in 1992 by defining

four different levels of “liveness” which categorizes the immediacy of feedback that is

automatically provided during programming. At level 1 the user will not receive any

feedback. At level 2 no automatic feedback will be provided to the user, however they

can obtain feedback about a specific portion of their code manually. At level 3, the

system provides feedback automatically and incrementally upon any changes made to

the code. At level 4, the system updates the display to show the results of continuous

data processing. Level 4 responds to the user’s edits in a way similar to level 3, in

addition to responding to system events such as mouse events and system clock ticks.

Victor argues that live programming is promising because it reduces the temporal and

perceptual gap between program development and code execution, but is not a

replacement for traditional debugging techniques [38]. While live programming

provides users with a copy of the final output, it does not provide a mapping between

the output and code, as done by step-based debugging or tracing with print statements

[38]. Researchers are trying to enhance live programming environments by focusing on

debugging [25]. Some recent live programming systems include Superglue and Flogo

II [16, 26].

A number of tools have been developed to provide real-time awareness of code changes

to facilitate coordination and emerging conflicts. FASTDash [2] and ProjectWatcher

[32] provide various visualizations of data directly gathered from developers’

workspace. Palantír [1, 29, 30] shows who is modifying which part of the code and

alerts developers about emerging conflicts. Syde [17] follows the same approach to

provide change information for interested developers but reduces false positives through

abstract syntax tree (AST) analysis. Crystal [5] proactively watches developers’ code

and precisely identifies and reports conflicts.

Some efforts have been made to address some of these issues, most notably Plantír [30],

Syde [17], Collabode [14] and Brackets [3]. However, most of these tools have been

developed with a focus on developers without considering designers’ needs. Thus, we

40
	

feel that there is a need to explore this space in order to improve developer-designer

collaboration process. We therefore introduce our own tool, Jimbo.

3.4 Developer-Designer Collaboration
Behind every successful software project lies a good UI design that eventually leads to

a good user experience. Although having a good design is necessary for the success of

a software product, it is not enough, it must be successfully implemented. In order to

accomplish this, there needs to be effective communication of the design between

designers and developers. This collaboration sounds easy in theory, but is a major

challenge that software teams face today: how to foster effective developer-designer

collaboration?

To better understand what are currently seen as effective developer-designer

collaboration methods, we did a survey of tools and techniques described in the

literature. We started our search with the following conferences: CSCW, CHI, ICSE,

and keywords; live coding, design tools, developer designer collaboration, pair

programming, incremental model, and prototyping. After filtering false positives, we

identified 30 papers. From there we refined our list by looking up cited works. From

this literature review we identify a set of key practices and techniques that should lead

to more effective collaboration between developers and designers. In the rest of this

section we review these practices.

3.4.1 Support both synchronous and asynchronous coding for collaboration
between multiple developers and designers

Software teams usually have more than one developer and designer collaborating.

Instead of isolating designers from the development, we suggest including them in the

process and work with the developer while these work with the code. Many designers

nowadays have basic development skills, most notably HTML, CSS and JavaScript for

prototyping. They can collaborate directly through code instead of sitting outside of the

process, giving feedback when asked or showed output by developers. This way,

41
	

designers get to guard their designs themselves and developers are forced into the habit

of getting more immediate and meaningful feedback.

Having synchronous coding integrated into IDE tools enables designers to make

modifications directly, or work with the developers and direct their development efforts

without going through a long set of steps to deliver their ideas to the engineering team

effectively. This can facilitate a more design oriented process in which designers create

the main skeleton for the software product and then the developers fill in the gaps to

bring the design to the life.

However, asynchronous coding is also important the facilitate the trial and error efforts

often associated with prototyping before settling on a final design.

3.4.2 Communication methods

The integration of communication features into the IDE could help developers and

designers discuss and resolve the issues they may face without losing focus on the code.

We recommend the following different but equally effective means of communication

between developers and designers:

Audio chat

An audio chat system provides virtual presence and makes it easier to coordinate and

collaborate. Audio discussions are quick in nature and volatile. This type of

communication allows for quicker resolution in case of minor design misunderstanding

between developers and designers that if stay unresolved, it sometimes will lead to

major defects in the product and delay in the process and in worst case failure of the

project.

Text chat

A text-based chat or instant messaging is a complimentary system for audio chat and is

a must, as coders share code snippets and links to resources.

42
	

Inline discussions

It is important to recognize that any communication, formal or informal, requires

common knowledge in order to adequately interpret messages communicated. Inline

discussions are text-based semi-synchronous way of communication, in which users can

associate a short discussion with an artifact such as a portion of code or a design

document. Unlike transitory audio discussions, inline discussions are tied to people and

artifacts and tend to be permanent, having their own context that will not be lost over

time.

3.4.3 Integrated live preview to support designer involvement in the development
process

Live preview is a live programming technique that shows the code output immediately

upon a change to the code, and it best fits UI-heavy application development such as

websites. In an environment where designers and developers are collaborating with each

other, live preview is a powerful weapon for designers.

Using live preview, designers can instantly see what changes developers are making

and provide feedback and directions quickly, or warn the coding team if they are

deviating from the design vision. It also streamlines the flow of communication within

the team, and make it easier for developers to ask designers for input or help when

changes have to be made.

3.4.4 Support awareness of the activities of other in order to facilitate
collaboration

A very important aspect of collaboration is awareness. Dourish and Belloti define

awareness as “an understanding of the activities of others that provides a context for

your own activity” [9]. Awareness is required to coordinate teams, but can be distracting

if it interrupts or requires too much attention from members. It is not a very easy issue

to address in coding, as we juggle the need for asynchronous editing for some

developers, and the need for real-time preview of the resulting code for others.

43
	

A good awareness system in a collaborative environment will provide useful answers to

the questions that a user may have, for example:

• Who made what change in the code?
• Who should I contact if I have a question about this part of design/code?
• Who is currently available? What are they doing now?

We seek to integrate all these features into a single IDE tool. Our goal is to improve the

collaboration within software teams, groups of people with common goals, to help them

achieve a better user experience in their product by facilitating the involvement of

designers in the development process as the first-class. Our focus is on the development

of web applications that requires constant interaction between designers and developers

on the daily basis. This means that our focus is on the developer-designer collaboration,

communication and coordination not the extended team, which includes management

and support, nor the customers and marketing personnel. In the next section, we describe

our tool Jimbo, that combines all the key features mentioned above.

3.5 Jimbo Overview
Jimbo is an IDE that enables developers and designers to more easily collaborate around

a common project. We have tried to make the user interface easy to learn and

memorable, but have also considered external consistency with other popular IDEs.

Jimbo is a web-based IDE, which means that users only need a standard web browser

and the setup time is zero. Developers with different levels of experience, from novice

to expert, may use this tool to create web apps. Figure 3.1 gives an overview of our

system architecture. Jimbo follows standard client/server architecture.

Sarma provides a comprehensive classification of collaborative tools for software

development [31]; Jimbo could be considered a seamless tool at the top level as it

provides many novel features to automate the development workflow and minimize user

efforts. In the following sections, we describe these features.

44
	

3.5.1 Main View

In Jimbo, users open the IDE in the browser to select and open the project they want to

work on. Only a user with enough authority e.g. a manager, can add or remove users to

projects. Figure 3.2 shows the general structure of the Jimbo’s UI.

On the top left, there is a standard menu with many options available for customizing

different parts of the IDE. The left side of the screen is dedicated to a tab view that

contains project file structure, chat list, project settings and online deployment options.

On the right side, users can turn live preview on and off by clicking on the eye icon.

This option, if selected, will open a live preview panel where users can see the rendered

version of the current HTML file. A live preview of the entire web app is available

through the top menu. Next to that is the notification center where all the notification

sent to a user can be access through this option. Once a user opens a project, they can

access the project file structure represented as a file tree in the first tab. Anybody in the

project can add or remove files or folders to it by right clicking on the desired folder

and selecting the right option (add or remove) in that tree. Second tab shows who is

currently available in the project and what file they are currently working on if any. By

clicking on any name, they can start a text-based chat session with that person or they

can select an option to talk to everybody in the project. Jimbo keeps the chat history for

those people who are offline and enables them to access them later. Chat windows will

pop up on the bottom left corner and stack horizontally to the left in case of more than

one active sessions.

The code editor is located in the middle of the screen. Selecting any file will open that

file in the code editor and the breadcrumb navigation on the top of the editor, shows

where that file is located in the project. At the heart of any popular and successful IDE

sits the code editor. Modern code editors include a number of important features

designed to scaffold the task of programming. This includes features such as syntactical

highlighting, function completion and inline documentation, automatic indentation and

even auto-correction and spell checking.

45
	

Figure 3.1 Jimbo’s system architecture.

All of these features are aimed at helping the users focus on the logic of the program

rather than the minutia of syntax. Users can initiate a discussion about any portion of

the code by selecting that code and right clicking on it. Lines with an icon on their left

gutter indicate these discussions.

46
	

 Fi
gu

re
 3

.2
 (a

) t
op

 m
en

u.
 (b

) L
ef

t s
id

eb
ar

 p
an

el
 th

at
 c

on
ta

in
s t

he
 fo

llo
w

in
g:

 fi
le

 tr
ee

, c
ha

t l
ist

, p
ro

je
ct

 se
tt

in
gs

 a
nd

on

lin
e

de
pl

oy
m

en
t.

(c
) C

ur
re

nt
 p

ro
je

ct
 fi

le
 tr

ee
. (

d)
 In

lin
e

di
sc

us
sio

n
w

ith
 u

se
r

ta
gg

in
g

fe
at

ur
e.

 (e
) B

re
ad

cr
um

bs

vi
ew

 sh
ow

in
g

cu
rr

en
t p

at
h.

 (f
) E

di
to

r
vi

ew
po

rt
. (

g)
 L

iv
e

pr
ev

ie
w

 p
an

el
. (

h)
 L

iv
e

pr
ev

ie
w

 to
gg

le
 a

nd
 n

ot
ifi

ca
tio

n
ce

nt
er

. (
i)

G
ro

up
 c

ha
t p

op
up

. (
j)

C
on

so
le

.

47
	

Finally, on the bottom of the screen, users can access the console. It contains the error

and warning messages regarding the syntax issues in the code. Jimbo is equipped with

JavaScript, CSS and HTML linters that watch the code and update the console upon any

change to show the syntax issues for open files if there are any.

3.5.2 Synchronous and Asynchronous Collaboration

The most important feature of Jimbo is synchronous collaboration. The number of

defects in code tends to rise with the amount of parallel work [28] and users sometimes

avoid this kind of development to avoid having to resolve conflicts [15]. To minimize

problems, Jimbo acts such as a real-time Git tool using an Operational Transformation

(OT) algorithm [33].

OT is a technique that provides eventual consistency between multiple users working

on the same artifact without retries, errors, or data being overwritten. As the

collaborators edit their code files, the client OT component generates mini commits to

the code called operations that can be either insert or delete. These operations get

transmitted to the server sequentially to be applied to the shared document. In the basic

form, the server keeps a state space per connected client, which can be memory-

intensive and can make the transformation algorithms complicated.

In Jimbo however, we made the process simpler and more efficient by requiring the

server to acknowledge clients’ operations before they can send new ones. This means

that clients can have only one non-acknowledged operation in flight and the client OT

stores other users’ operations in the local storage of the browser, only sending the next

when the last in-flight operation has been completed. Thus, the server only needs to

keep one state space for all connected clients.

The server also keeps different snapshots of each code file. If multiple collaborators try

to edit the same code at the same time, one of the edits will be received and applied first

and then the server transforms and applies the other edits using the state space. Unlike

common revision control systems (e.g. Git), OT algorithm makes sure that the commits

and updates happen automatically and the code files are consistent for everyone in the

48
	

project no matter in what order the operations are applied to the shared code file. This

method enables developers to work offline and then sync their edits with server later;

the OT algorithm takes care of the conflicts.

3.5.3 Code Rewind

This feature enables users to see what changes were made since last time they

contributed to the project and step through them using incremental snapshots (Figure

3.3). Each snapshot contains all the source code written at any given timestamp.

The slider on the top of the view allows users to step back and forth in time. The

overview on the right side of the window provides users with a big picture view of the

snapshot they have requested. The content is color coded to show who edited what part

of the code.

Developers can use this feature to see how others are contributing to the project,

maintain situational awareness, and identify whom they need to communicate with

based on code ownership. Another use of this feature is to determine the provenance of

the bugs introduced into the code either by other developers or through copy/paste reuse.

3.5.4 Communication

Jimbo explores novel ways of integrating both synchronous and asynchronous

communication. Jimbo implements discussion threads, a semi-synchronous

communication method. These threads are associated with specific lines of code as

inline comments. This allows developers to add and preserve contextual and design

information, often generated in discussions with collaborators. Users can also tag who

they want to discuss a line of code with as a way of directing questions, and Jimbo lets

you know if others have contributed to the discussion thread.

49
	

Fi
gu

re
 3

.3
 C

od
e

re
w

in
d:

 (a
) P

la
yb

ac
k

bu
tto

n
to

 v
ie

w
 th

e
ev

ol
ut

io
n

of
 th

e
co

de
. (

b)
 L

ist
 o

f c
ol

la
bo

ra
to

rs
 w

ho

co
nt

ri
bu

te
d

to
 th

e
co

de
; m

ou
ss

in
g

ov
er

 e
ac

h
w

ill
 sh

ow
 th

e
pe

rc
en

ta
ge

 o
f t

he
ir

 c
on

tr
ib

ut
io

n.
 (c

) T
im

el
in

e
fo

r
th

e
lif

e
of

 c
od

e;
 u

se
rs

 c
an

 g
o

ba
ck

 in
 ti

m
e,

 u
nd

oi
ng

 a
nd

 r
ed

oi
ng

 c
ha

ng
es

 to
 th

e
co

de
 u

sin
g

th
is

sli
de

r.
 (d

) C
od

e
ov

er
vi

ew
. (

e)
 A

ct
ua

l c
od

e,
 th

e
co

lo
rs

 sh
ow

 w
ho

 h
as

 d
ev

el
op

ed
 w

hi
ch

 p
ar

ts
 o

f t
he

 c
od

e.
 N

o
co

lo
rs

 m
ea

ns
 th

at
 th

e
co

de
 h

as
 b

ee
n

co
py

 p
as

te
d

fo
rm

 a
 r

es
ou

rc
e

ou
t o

f t
he

 ID
E.

50
	

3.5.5 User Awareness

The main purpose of an awareness system is to help coordinate tasks. We follow the

“continuous coordination” model introduced by van der Hoek et al. [36]. The primary

responsibility of such a system is to notify collaborators of events relevant to them, such

as code changes, comments to discussion threads, user presence, etc.

Jimbo has a channel based notification system [27] using push notifications [7, 12].

These are persistent and stored on the server for future retrieval [21, 23]. To prevent

cognitive overload, developers can request to only receive notification about a specific

portion of the code, a feature we call “code watch”. Once someone puts a watch on a

portion of code, Jimbo only pushes notifications regarding changes to that section of

code. This allows developers to keep track of code they depend on, or code that they

have some ownership over.

Users editing the same file can see each other’s cursors. This way users are notified

about changes in the code that lead to a change in the preview panel.

3.5.6 Live Preview

This feature as we mentioned before will be the ultimate weapon for designers in their

closer collaboration with developers. It provides an immediate connection between the

code and the output, so the designers can provide feedback for the changes to the code.

This also streamlines collaboration between developers, designers, and end-users by

providing a better common knowledge in the communications between them and leads

to fewer iteration of the code, which means faster coding.

This feature, when enabled, only allows safe and error free code to be run in the live

preview. This means that as long as there are syntax errors in the code, Jimbo’s built in

linter won’t allow the code to be run. In this case, the live preview panel will show the

last correct code. Collaborators can turn off this feature to mitigate any distraction at

any time they want.

51
	

Jimbo also has some helper widgets for numerical and color values which allows users

to modify values using sliders and pickers instead of typing. This allows specially

designers to modify the code written by developers and quickly see and discuss the

continuous effects of their modifications in the preview panel.

3.6 Evaluation
In order to evaluate whether Jimbo’s design goals will be useful in practice, we

conducted a between-group user study in which pairs of web developers and designers

worked remotely for 60 minutes to complete a web design and development task.

Table 3.1 Experience in years for web developer participants.

Years of

Programming
experience

Years of Web
Dev experience

Self-rated
HTML

proficiency
(10=expert)

Self-rated
CSS

proficiency
(10=expert)

Self-rated JS
proficiency
(10=expert)

avg 6 3.64 6.93 5.14 7.21
st. dev 3.28 1.6 1.77 2.38 1.58

min 2 1 4 1 4
max 14 6 8 8 9
mode N/A N/A 8 6 7

Table 3.2 Experience in years for web designer participants.

Years of Design

experience
Years of Web

Dev experience

Self-rated
HTML5

proficiency
(10=expert)

Self-rated
CSS

proficiency
(10=expert)

Self-rated JS
proficiency
(10=expert)

avg 4.29 3.3 7.14 7.71 3.5
st. dev 1.7 1.27 1.92 1.33 1.45

min 2 2 1 5 2
max 8 6 10 10 9
mode N/A N/A 8 7 6

We recruited 28 professional developers and designers (6 females). Out of 28 subjects,

half identified themselves as web developers with the average experience of 6 years in

general programming and 3.64 years in web development. The other half, identified

52
	

themselves as web designers with the average experience of 4.29 years in web design

and an average of 3.3 years in web development. The average self-reported age of

participants was 29. All but one participant held a bachelor’s or higher degree, and all

but 4 majored in computer science. All participants indicated that they have prior

experience with remote collaboration, mostly using a distributed version control system

(e.g. git tools). Participants were asked to rate their proficiency in HTML5, CSS and

JavaScript on a scale of 1 to 10 (10 being the most proficient), their responses are listed

in Table 3.1 for the developers and Table 3.2 for the designers.

We randomly assigned participants into pairs so that each pair consisted of one web

developer and one web designer (14 pairs). Then, we randomly assigned each pair to be

in either the control or experimental group.

Pairs in the control group were asked to use their favorite pre-installed tools while the

experimental groups used the Jimbo IDE to complete the given programming task. All

participants were geographically distributed and had to collaborate and communicate

with each other remotely.

3.6.1 Task

Participants were explicitly told that they could use any web resources in order to

complete the task and that they could organize their work any way they liked. All

participants used Google to conduct searches.

The task for both treatments was to use HTML5, CSS and vanilla JavaScript to create a

web-based “To Do App” with the following requirements:

1. App should be viewable on any standard browser on a mobile device.
2. A fixed header on top with app name or logo on it.
3. Users must be able to add new tasks.
4. Each task has 4 fields: title (required), description (not required), creation date

(required) and status (new or done, required)
5. Users must be able to view task details.
6. Users must be able to edit their tasks.
7. Users must be able to delete a task.

53
	

8. Users must be able to filter their tasks based on the status.
9. Users must be able to do keyword search on their tasks.

Participants received the task description in an online document. We also included the

rubric that would be used to grade their code, so they could maximize their grade. To

makes sure that everyone understood the requirements, we briefly discussed these with

them.

Pairs in the experimental group received a tutorial on Jimbo alongside a warm-up task

before they started, lasting approximately 15 to 20 minutes. After that, pairs started

working on the programming task, which took 60 minutes.

3.6.2 Data Gathering

To facilitate our data analysis, we gathered multiple data sources from our participants

during the study session:

• Screen captures – recordings of participants’ screen
• Communications (audio and IM)
• Code files and design documents
• Questionnaires and interviews

3.7 Results

Code Quality

We started our analysis by measuring the task completion and the code quality. Two

graders scored each pairs’ code using a previously given grading rubric. This rubric,

defined a score for each requirement listed in the task based on the complexity of the

requirement. We used the interclass correlation method (model: two-way, type: absolute

agreement) to check that the graders were consistent (control group: icc = 0.989,

experimental group: icc = 0.944). The final grade for each pair was the average of the

grades given by the two graders. Median grades for the control and experimental groups

were 65 and 82.5 respectively (out of 100). Our analysis showed that the distribution in

the two treatments differed significantly (Mann-Whitney U = 1.5, p-value = 0.0041, z-

score = -2.875).

54
	

Number of Design Iteration

One of our initial hypothesis was that the integration of collaborative coding and live

preview would lead to a lower number of design iterations, and eventually faster

development. To validate this hypothesis, we analyzed the screen recordings of the pairs

working on their task. We used an open coding approach and two independent coders

to categorize participant pairs’ actions. This way we were able to count the number of

design iterations each team went through before the end of the study.

We used the interclass correlation method (model: two-way, type: absolute agreement)

to check the consistency between our coders (icc = 0.976). We used the average number

of design iterations observed by our coders for our analysis. The median number of

design iterations for the control group teams was 4, and 3.5 for the experimental group

teams. Our analysis showed that there is no significant difference in the number of

design iterations between the two treatments.

Any round of design iteration required the attention of both team members that could

have led to a possible interruption in their flow. Our coders recorded these interruption

during our screen recording analysis (icc = 0.933). The median number of interruptions

were 7.5 and 3 for control and experimental treatments respectively. Our analysis shows

that the distribution in the two treatments differed significantly (Mann-Whitney U = 4,

p-value = 0.01, z-score = -2.55).	

Collaboration Style

We did not coach the participant teams on how to collaborate. On the contrary, we

wanted to observe which collaboration style they would adopt given that the control

group teams had access to any tool they wished, while the experimental group teams

only had access to Jimbo. We used our screen recording analysis to categorize teams’

style (icc = 0.912).

All expect one team in our control treatment applied the traditional “individual

effort/merge later” approach. In this approach, pairs do an initial duty assignment at the

beginning, and merge their individual efforts periodically. They spent 57% of their time

55
	

on individual development and 20% on merging their efforts on average. One team

however, used the traditional pair programming approach in which they shared their

screen and worked on the task in the driver-navigator roles.

In the experimental treatment, all teams used the pair programming approach. However,

while one team deployed the traditional version, others deployed the remote pair

programming method in which both team members contributed to the code

simultaneously. They spent 70% of their time on collaborative tasks and only 12% their

time working individually on average. Their individual efforts included online search,

reading the task requirements and reviewing the design document.	

Communication

All the teams in the experimental group used the audio chat offered by Jimbo to

constantly communicate with each other. In fact, on average, they spent 83% of their

time talking to each other. They also occasionally used IM to share links to online

resources. On the other hand, teams in the control group on average spent only 37% of

their time communicating. They used a variety of communication channels including

IM, audio and video. IM was used constantly while other methods were only used if the

subjects felt it was required. For example, one group used the video channel to facilitate

traditional pair programming through screen sharing.

We were pleased to see that the participants in the experimental treatment gave Jimbo

an average rating of 4.64 using a 5-point Likert scale (min = 3, max = 5, 𝜎	=	0.6) when

asked to rate their overall experience with the tool. While the most liked feature was the

collaborative coding (7 votes), live preview came a close second (6 votes). On the other

hand, the least liked feature was the code editor itself. 10 subjects in the experimental

group mentioned that if they had to use Jimbo for their daily tasks, its code editor needs

to match the features offered by popular IDEs such as WebStorm, Sublime, Atom, etc.

One developer took it further and said: “[the] ideal solution would be implemented as a

plugin for existing IDEs (in our case Visual Studio, but it could be Eclipse as well). This

56
	

allows developers to continue using an IDE they are familiar with and leverage 3rdparty

IDE extensions too”.	

3.8 Discussion
The goal of our research was to determine if the identified design goals could improve

how developers and designers collaborate with each other in a designed-centered

software development setting. Our hypothesis was that the combination of synchronous

coding and live preview, supported by good communications and user awareness would

improve collaboration in a way that allowed designers to get more involved in the

development process. The main research question was whether professional developers

and designers would find these features useful and effective.

Although we did not coach subjects in our experimental treatment on remote pair

programming, all but one pair applied this approach to complete their task. As a result,

designers were more involved in the development process, where they mostly focused

on the CSS and HTML (UI) part of the app. Developers mentioned that having designers

contribute directly to the production code, allowed them to be more focused on the logic

of the app. One developer said: “Having my [designer] teammate taking care of the view

part of the app made it easier for both of us, we were focused on what we do the best”.

Our subjects were excited about the collaborative coding feature and how it might

decrease the number of merge conflicts: “Whenever someone makes a change, my

source is automatically updated in real-time and auto merge is performed. Under some

cases I may need to do manual conflict resolution. I’m thinking this would reduce the

number of conflicts overall since merges are happening much more frequently.”

However, some developers mentioned that sometimes they would like to contribute to

the code asynchronously, meaning that they would like to work individually and commit

their changes whenever appropriate: “For me I would personally prefer an optional

manual commit mode, where others do not see my changes until I manually commit […]

perhaps this is similar to Jimbo’s offline mode”

57
	

Designer participants in the experimental treatment found it much easier to use live

preview when communicating the design to the developers: “instead of discussing it

over the initial design doc we came up with, I explained it right there in the preview”.

Participants in the control group found the frequent context switches between the output

and the code annoying when collaborating in real-time: “we spent a lot of time jumping

between the [HTML] view and the code for our controllers and models”. Our study

shows that the live preview can provide a common language for designers and

developers to streamline their collaboration when they are discussing the app design.

Jimbo offers two communication channels for users to talk with each other: Audio and

IM. Teams in the experimental treatment used audio chat for constant communication

and coordination, however all the participants including control groups mentioned that

in real-world settings, they use IM for communication and face-to-face meetings or

phone calls for project planning and task coordination: “Team members meet or [use]

phone or skype to define a plan [...] In the event one developer needs help or feedback

it would typically happen over IM or screen sharing and phone”.

While participants in the control group reported some confusion over the status of the

other team member’s efforts, experimental group participants mentioned that they were

able to monitor each other’s status through the user awareness features offered by

Jimbo: “I could see some kind of visual indicator […] it helped me realize [that]

someone else is working on the same file as me and we could collaborate/chat as

necessary”. User awareness in Jimbo is done through push notifications and is

implemented based on the continuous coordination model described by van der Hoek

[36].

The focus of our experiment was on web platform, however with the growth of

smartphones and demand for phone apps in the past decade, we can see a use case for

Jimbo in that area, where the live preview can switch between different phone

simulators, and developers can test their apps on the many devices is in the market

before shipping their apps. We believe that Jimbo, or the approach explored in Jimbo,

58
	

can be used in other popular programming languages such as Java, python, etc. where

live preview can show the content of the data structures and variables at any point in

life time of the code running similar to probing concept discussed in [25].

3.9 Conclusion
Jimbo is a collaborative IDE tool for developing web applications. Jimbo streamlines

the traditional workflow of developing web-based application by providing a live

preview of the output of the code in which users can immediately see what they are

doing. This way, designers can be more involved in the development in a more

meaningful fashion. Jimbo allows multiple users to work on the same code

synchronously and it takes care of potential conflicts on the fly.

Through a user study evaluation, we were able to confirm that a development tool

similar to Jimbo, that offers an integration between the collaborative coding and live

preview supported by proper communications and user awareness features can close the

gaps between developers and designers in a way that they can collaborate closer than

ever to produce a higher quality web app in less amount of time.

3.10 Acknowledgement
We wish to thank our colleagues in the HCI group at the School of EECS, Oregon State

University for their support and help in preparing the paper. We would like to thank our

study participants.

3.11 References
1 Al-Ani, B. Trainer, E. Ripley, R. Sarma, A. Hoek, A. and Redmiles, D. Continuous

coordination within the context of cooperative and human aspects of soft- ware
engineering. In CHASE, pages 1–4, Leipzig, Germany, May 2008.

2 Biehl, J.T. Czerwinski, M. Smith, G. and Robertson, G.G. FASTDash: A visual
dashboard for fostering awareness in software teams. In CHI, pages 1313–1322,
SanJose, CA, USA, Apr. 2007.

3 Brackets, http://brackets.io.

4 Brown, J. Lindgaard, G. and Biddle, R. 2011. Collaborative Events and Shared
Artefacts: Agile Interaction Designers and Developers Working Toward Common

59
	

Aims. In Proceedings of the 2011 Agile Conference (AGILE '11). IEEE Computer
Society, Washington, DC, USA, 87-96.

5 Brun, Y. Holmes, R. Ernst, M. and Notkin, D. 2011. Proactive detection of
collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software
engineering (ESEC/FSE '11). ACM, New York, NY, USA, 168-178.

6 Bugzilla. https://www.bugzilla.org.

7 Carzaniga, A. Rosenblum, D.S. and Wolf, A.L. Design and evaluation of a wide-
area event notification service. ACM Transactions on Computer Systems, 2001.
ACM Trans. Comp. Sys.

8 Carmel, E. Global Software Teams: Collaborating Across Borders and Time
Zones. Prentice-Hall: Englewood Cliffs NJ, 1st edition edition, 1999.

9 Dourish, P. and Bellotti, V. Awareness and coordination in shared workspaces. In
ACM Conference on Computer-Supported Cooperative Work, pages 107–114,
Monterey, California, USA, 1992.

10 Ducheneaut, N. and Bellotti, V. E-mail as habitat: an exploration of embedded
personal information management. Interactions, Volume 8(Issue 5): 30 – 38, 2001.

11 Ebert, C. and De Neve, P. Surviving global software development. IEEE Software,
18(2): 62–69, 2001.

12 Fitzpatrick, G. Kaplan, S. Mansfield, T. Arnold, D. and Segall, B. Supporting
public availability and accessibility with elvin: Experiences and reflections.
Computer Supported Cooperative Work, 2002.

13 Git. https://git-scm.com.

14 Goldman, M. 2011. Role-based interfaces for collaborative software development.
In Proceedings of the 24th annual ACM symposium adjunct on User interface
software and technology (UIST '11 Adjunct). ACM, New York, NY, USA, 23-26.

15 Grinter, R. Using a configuration management tool to coordinate software
development. In CoOCS, pages 168–177, Milpitas, CA, USA, Aug. 1995.

16 Hancock, C. M. Real-time programming and the big ideas of computational
literacy. PhD thesis, Massachusetts Institute of Technology, 2003.

17 Hattori, L. and Lanza, M. Syde: A tool for collaborative software development. In
ICSE Tool Demo, pages 235– 238, Cape Town, South Africa, May 2010.

18 Herbsleb, J. and Moitra, D. Global software development. IEEE Software, 18(2):
16–20, 2001.

60
	

19 Herbsleb, J. Atkins, D.L. Boyer, B.G., Handel, M. and Finholt, T. A. Introducing
instant messaging and chat in the workplace. In Proceedings of the SIGCHI
conference on Human factors in computing systems: Changing our world,
changing ourselves, pages 171–178, Minneapolis, Minnesota, USA, 2002.

20 Herbsleb, J.D. Mockus, A. Finholt, T.A. and Grinter, R.E. Distance, dependencies,
and delay in a global collaboration. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 319–328, Philadelphia, PA,
2000.

21 Kantor, M. and Redmiles, D. Creating an infrastructure for ubiquitous awareness.
In Eighth IFIP TC 13 Conference on Human-Computer Interaction (INTERACT
2001), pages 431–438, Tokyo, Japan, 2001.

22 Karolak, D.W. Global software development: managing virtual teams and
environments. IEEE Computer Society, 1999.

23 Lvstrand, L. Being selectively aware with the khronika system. In Proceedings of
the European Conference on Computer Supported Cooperative Work, ECSCW
(91), pages 265–278, Amsterdam, NL, 1991. ACM Press, New York.

24 Mark, G. Extreme collaboration. Communications of the ACM, 45(6): 89–93,
2002.

25 McDirmid, S. (2013, October). Usable live programming. In Proceedings of the
2013 ACM international symposium on New ideas, new paradigms, and
reflections on programming & software (pp. 53-62). ACM.

26 McDirmid, S. Living it up with a live programming language. In Proc. of OOPSLA
Onward!, pages 623–638, October 2007.

27 OMG. CORBACos: Notification Service Specification v1.0.1. 2002.

28 Perry, D. Siy, H. and Votta, L. Parallel changes in large-scale software
development: an observational case study. ACM TOSEM, 10:308–337, July 2001.

29 Sarma, A. Bortis, G. and van der Hoek, A. Towards supporting awareness of
indirect conflicts across software con- figuration management workspaces. In
ASE, pages 94–103, Atlanta, GA, USA, Nov. 2007.

30 Sarma, A. Noroozi, Z. and van der Hoek, A. Palantír: raising awareness among
configuration management workspaces. In ICSE, pages 444–454, Portland, OR,
May 2003.

31 Sarma, A. A survey of collaborative tools in software devel- opment. Technical
Report UCI-ISR-05-3, University of Cali- fornia, Irvine, Institute for Software
Research, 2005.

61
	

32 Schneider, K.A. Gutwin, C. Penner, R. and Paquette, D. Mining a Software
Developer's Local Interaction History. MSR 2004, Edinburgh, 2004.

33 Stefik, M. Bobrow, D.G. Foster, G. Lanning, S. and Tatar, D. 1987. WYSIWIS
revised: early experiences with multiuser interfaces. ACM Trans. Inf. Syst. 5, 2
(April 1987), 147-167.

34 Tanimoto, S. VIVA: A visual language for image processing, J. Vis. Languages
Computing, 127-139, June 1990.

35 Tigris.org. Subversion.

36 Van der Hoek, A. and et al. Continuous coordination: A new paradigm for
collaborative software engineering tools. In Proceedings of Workshop on
WoDISEE, Scotland, 2004.

37 Vessey, I. and Sravanapudi, A. P. Case tools as collaborative support technologies.
Communications of the ACM, vol. 38:83–95, 1995.

38 Victor, B. Learnable programming. http://worrydream.com, Sept. 2012.

	

62
	

4 Conclusion

The purpose of our research was to improve collaboration and coordination in the

context of numerous software related activities, from learning core concepts, to the

design and implementation of large software products. We discussed how integrating

collaborative coding and live programming supported by appropriate communication

and user awareness can improve the quality of collaboration in two settings: Distance

Learning and Design-centered Software Development.

We presented our tool Jimbo, a collaborative IDE with live preview. Then, we described

two different editions of Jimbo: (1) Educational and (2) Professional. The former can

be used to offer an active learning experience through remote pair programming and

live coding to the students in the distance education, while the latter can improve the

developer-designer relationship by offering synchronous collaboration and live

programming, which allows designers to join the development process as first-class

citizens. We then evaluated our claims in the both settings through multiple user studies.

First, we conducted a user study to show how remote pair programming can be as

efficient as the traditional version in collocated settings. Then, we showed how the same

ideas can be transferred to distance learning settings. Our results show that the

integration of remote pair programming and live coding is beneficial and improves the

quality of learning by bringing the students closer to their instructor as well as offering

a fun and active learning experience.

Finally, we presented the results from a study in a design-centered software

development setting and explained how the integration of collaborative coding; both

synchronous and asynchronous; and live programming, supported by proper

communication improved the collaboration and coordination between the designers and

developers, enabling the designers to be more involved in the development process

which led to a higher quality code and quicker development with less interruptions.	

63
	

5 Bibliography

Al-Ani, B. Trainer, E. Ripley, R. Sarma, A. Hoek, A. and Redmiles, D. Continuous
coordination within the context of cooperative and human aspects of soft- ware
engineering. In CHASE, pages 1–4, Leipzig, Germany, May 2008.

Baheti, P., Gehringer, E. F., and Stotts, P. D. Exploring the efficacy of distributed pair
programming. In Proceedings of the Second XP Universe and First Agile Universe
Conference on Extreme Program- ming and Agile Methods - XP/Agile Universe 2002
(London, UK, UK, 2002), Springer-Verlag, pp. 208–220.

Berliner, B. CVS ii: Parallelizing software development. In USENIX Winter 1990
Technical Conference, pages 341–352, 1990.

Biehl, J.T. Czerwinski, M. Smith, G. and Robertson, G.G. FASTDash: A visual
dashboard for fostering awareness in software teams. In CHI, pages 1313–1322,
SanJose, CA, USA, Apr. 2007.

Brackets, http://brackets.io.

Brown, J. Lindgaard, G. and Biddle, R. 2011. Collaborative Events and Shared
Artefacts: Agile Interaction Designers and Developers Working Toward Common
Aims. In Proceedings of the 2011 Agile Conference (AGILE '11). IEEE Computer
Society, Washington, DC, USA, 87-96.

Brun, Y. Holmes, R. Ernst, M. and Notkin, D. 2011. Proactive detection of collaboration
conflicts. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering (ESEC/FSE '11). ACM, New York,
NY, USA, 168-178.

Bugzilla. https://www.bugzilla.org.

Carmel, E. Global Software Teams: Collaborating Across Borders and Time Zones.
Prentice-Hall: Englewood Cliffs NJ, 1st edition edition, 1999.

Carzaniga, A. Rosenblum, D.S. and Wolf, A.L. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 2001.

Cheng, L. Hupfer, S. Ross, S. and Patterson, J. Jazzing up eclipse with collaborative
tools. In 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications / Eclipse Technology Exchange Workshop,
pages 102–103, Anaheim, CA, 2003.

64
	

Cliburn, D., Experiences with pair programming at a small college, The Journal of
Computing in Small Colleges, 19, (10), 20-29, 2003.

DeClue, T., Pair programming and pair trading: effects on learning and motivation in a
CS2 course, The Journal of Computing in Small Colleges, 18 (5), 49-56, 2003.

Dewan, P. and Riedl, J. Toward computer-supported concurrent software engineering.
IEEE Computer, 26(1): 17–27, 1993.

Dourish, P. and Bellotti, V. Awareness and coordination in shared workspaces. In ACM
Conference on Computer-Supported Cooperative Work, pages 107–114, Monterey,
California, USA, 1992.

Ducheneaut, N. and Bellotti, V. E-mail as habitat: an exploration of embedded personal
information management. Interactions, Volume 8(Issue 5): 30 – 38, 2001.

Ebert, C. and De Neve, P. Surviving global software development. IEEE Software,
18(2): 62–69, 2001.

Ellis, C.A. Gibbs, S.J. and Rein, G.L. Design and use of a group editor. In Engineering
for Human Computer Interaction, pages 13–25, Amsterdam, 1990.

Fitzpatrick, G. Kaplan, S. Mansfield, T. Arnold, D. and Segall, B. Supporting public
availability and accessibility with elvin: Experiences and reflections. Computer
Supported Cooperative Work, 2002.

Gaspar, A. Langevin, S. Active learning in introductory programming courses through
student-led “live coding” and test-driven pair programming, EISTA 2007, Education
and Information Systems, Technologies and Applications, July 12-15, Orlando, FL.

Git. https://git-scm.com.

Goldman, M. 2011. Role-based interfaces for collaborative software development. In
Proceedings of the 24th annual ACM symposium adjunct on User interface software
and technology (UIST '11 Adjunct). ACM, New York, NY, USA, 23-26.

Grinter, R. Using a configuration management tool to coordinate software development.
In CoOCS, pages 168–177, Milpitas, CA, USA, Aug. 1995.

Hancock, C. M. Real-time programming and the big ideas of computational literacy.
PhD thesis, Massachusetts Institute of Technology, 2003.

Hattori, L. and Lanza, M. Syde: A tool for collaborative software development. In ICSE
Tool Demo, pages 235– 238, Cape Town, South Africa, May 2010.

65
	

Herbsleb, J. and Grinter, R.E. Splitting the organization and integrating the code:
Conway’s law revisited. In Proceedings of the 21st international conference on Software
engineering, pages 85–95, 1999.

Herbsleb, J. and Moitra, D. Global software development. IEEE Software, 18(2): 16–
20, 2001.

Herbsleb, J. Atkins, D.L. Boyer, B.G., Handel, M. and Finholt, T. A. Introducing instant
messaging and chat in the workplace. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 171–178, Minneapolis, Minnesota, USA,
2002.

Herbsleb, J.D. Mockus, A. Finholt, T.A. and Grinter, R.E. Distance, dependencies, and
delay in a global collaboration. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pages 319–328, Philadelphia, PA, 2000.

Horn, E. M., Collier, W. G., Oxford, J. A., Bond Jr, C. F., & Dansereau, D. F. Individual
differences in dyadic cooperative learning. In Journal of Educational Psychology, 90(1),
153. (1998).

Kantor, M. and Redmiles, D. Creating an infrastructure for ubiquitous awareness. In
Eighth IFIP TC 13 Conference on Human-Computer Interaction (INTERACT 2001),
pages 431–438, Tokyo, Japan, 2001.

Karolak, D.W. Global software development: managing virtual teams and
environments. IEEE Computer Society, 1999.

Knister, M.J. and Prakash, A. Distedit: a distributed toolkit for supporting multiple
group editors. In Proceedings of the 1990 ACM conference on Computer-supported
cooperative work, Los Angeles, CA, 1990.

Krahn, R. Ingalls, D. Hirschfeld, R. Lincke, J. and Palacz, K. 2009. Lively Wiki a
development environment for creating and sharing active web content. In Proceedings
of the 5th International Symposium on Wiki and Open Collaboration (WikiSym '09).
ACM, New York, NY, USA.

Lautamäki, J. Nieminen, A. Koskinen, J. Aho, T. Mikkonen, T. and Englundm, M. 2012.
CoRED: browser-based Collaborative Real-time Editor for Java web applications. In
Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work
(CSCW '12). ACM, New York, NY, USA, 1307-1316.

66
	

Lvstrand, L. Being selectively aware with the khronika system. In Proceedings of the
European Conference on Computer Supported Cooperative Work, ECSCW (91), pages
265–278, Amsterdam, NL, 1991.

Mark, G. Extreme collaboration. Communications of the ACM, 45(6): 89–93, 2002.

McDirmid, S. Living it up with a live programming language. In Proc. of OOPSLA
Onward pages 623–638, October 2007.

McDirmid, S. (2013, October). Usable live programming. In Proceedings of the 2013
ACM international symposium on new ideas, new paradigms, and reflections on
programming & software (pp. 53-62).

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002, February). The effects of
pair programming on performance in an introductory programming course. In ACM
SIGCSE Bulletin (Vol. 34, No. 1, pp. 38-42).

McGuffin, L.J. and Olson, G. Shredit: A shared electronic workspace. Technical Report
45, Cognitive Science and Machine Intelligence Laboratory, Tech reports: 45,
University of Michigan, Ann Arbor, 1992.

MOOCs on the Move: How Coursera Is Disrupting the Traditional Classroom (text and
video). Knowledge @ Wharton. University of Pennsylvania. 7 November 2012.
Retrieved 23 April 2013.

Murphy L., Blaha, K., VanDeGrift, T., Wolfman, S., Zander, C., Active and cooperative
learning techniques for the computer science classroom, The Journal of Computing in
Small Colleges, 18, (2), 92-94, 2002.

Nosek, J. T. ìThe case for collaborative programmingî, Communications of the ACM
41:3, March 1998, p. 105-108.

O'Donnell, A. M. and Dansereu, D. F. “Scripted Cooperation in Student Dyads: A
Method for Analyzing and Enhancing Academic Learning and Performance,” in R.
Hartz-Lazarowitz and N. Miller (Eds.) Interactions in Cooperative Groups: The
Theoretical Anatomy of Group Learning, pp. 120-141, Cambridge University Press,
1992.

OMG. CORBACos: Notification Service Specification v1.0.1. 2002.

Perry, D. Siy, H. and Votta, L. Parallel changes in large-scale software development: an
observational case study. ACM TOSEM, 10:308–337, July 2001.

67
	

Resig, J. Redefining the introduction to computer science.
http://ejohn.org/blog/introducing-khan-cs/, 2012.

Rugarcia, A., Felder, R. M., Woods, D. R., & Stice, J. E. (2000). The future of
engineering education. I. A vision for a new century. Chemical Engineering Education,
34(1), 16–25.

Sarma, A. A survey of collaborative tools in software devel- opment. Technical Report
UCI-ISR-05-3, University of Cali- fornia, Irvine, Institute for Software Research, 2005.

Sarma, A. Bortis, G. and van der Hoek, A. Towards supporting awareness of indirect
conflicts across software con- figuration management workspaces. In ASE, pages 94–
103, Atlanta, GA, USA, Nov. 2007.

Sarma, A. Noroozi, Z. and van der Hoek, A. Palantír: raising awareness among
configuration management workspaces. In ICSE, pages 444–454, May 2003.

Schneider, K.A. Gutwin, C. Penner, R. and Paquette, D. Mining a Software Developer's
Local Interaction History. MSR 2004, Edinburgh, 2004.

Slavin, R. E. “Research on Cooperative Learning and Achievement: When We Know,
What We Need to Know,” Contemporary Educational Psychology, 21, pages 43-69,
1996.

Stefik, M. Bobrow, D.G. Foster, G. Lanning, S. and Tatar, D. 1987. WYSIWIS revised:
early experiences with multiuser interfaces. ACM Trans. Inf. Syst. 5, 2 (April 1987),
147-167.

Sun, C. and Ellis, C. Operational transformation in real-time group editors. In Proc.
Computer Supported Cooperative Work, pages 59–68, 1998.

SunMicrosystems. Java Message Service API. 2003.

Tanimoto, S. VIVA: A visual language for image processing, J. Vis. Languages
Computing, 127-139, June 1990.

Tigris.org. Subversion.

Van der Hoek, A. and et al. Continuous coordination: A new paradigm for collaborative
software engineering tools. In Proceedings of Workshop on WoDISEE, Scotland, 2004.

Vessey, I. and Sravanapudi, A. P. Case tools as collaborative support technologies.
Communications of the ACM, vol. 38:83–95, 1995.

68
	

Victor, B. Learnable programming. http://worrydream.com/LearnableProgramming,
Sept. 2012.

Waldrop, M. Online learning: Campus 2.0 http://www.nature.com/news/online-
learning-campus-2-0-1.12590

Warren, J. Rixner S. Greiner, J. and Wong, S. 2014. Facilitating human interaction in
an online programming course. In Proceedings of the 45th ACM technical symposium
on Computer science education (SIGCSE '14). ACM, New York, NY, USA, 665-670.

Werner, L. L. Hanks, B. and McDowell, C. 2004. Pair programming helps female
computer science students. J. Educ. Resour. Comput. 4, 1, Article 4 (March 2004).

Williams, L. A., ìThe Collaborative Software Process PhD Dissertationî, Department of
Computer Science, University of Utah. Salt Lake City, 2000.

Williams, L. and Kessler, R. R. “Experimenting with Industry’s ‘Pair-Programming’
Model in the Computer Science Classroom,” Journal on SW Engineering Education,
Dec. 2000.

Williams, L. A. and Kessler, R. R. (2000, March). The effects of" pair-pressure" and"
pair-learning" on software engineering education. In Software Engineering Education
Training, 2000. Proceedings. 13th Conference on (pp. 59-65).

Wouters, P. van Nimwegen, C. van Oostendorp, H. and van der Spek, E. D. A meta-
analysis of the cognitive and motivational effects of serious games. Journal of
Educational Psychology, 105(2):249, 2013.

69
	

	

