
 05/23/2005 1 Li Li

Record-Based Access Control Mechanism for a Database

Li Li

Dept. of Computer Science
Oregon State University

Corvallis, Or 97331
lli@eecs.orst.edu

Abstract
Current database systems apply access control mostly on tables and columns.
However, many applications require access control on individual rows in database
tables. Therefore, we have implemented a row-based access control mechanism. In
our model for access control, object groups, in addition to user groups, are used to
reduce the number of access rights to be defined. In this report, we describe the
relational tables storing information for access control and explain how select,
update, delete and insert operations are performed under access control. We
also explain how access rights are managed.

 05/23/2005 2 Li Li

Acknowledgements

I would like to express my sincere appreciation to my major professor, Dr. Minoura, for his valuable ideas
and constructive criticism. I am grateful for his endless patience and continued faith shown in me
throughout the lifecycle of this project.

I also would like to thank my family, my husband, Rongkun Shen, my Mom and my sweet son, for their
love and support during the implementation of the project and writing of this report. The encouragement
of my family enables me to finish this project.

 05/23/2005 3 Li Li

Table of Contents

1. INTRODUCTION..4

2. ACCESS CONTROL MODEL ...4

3. RELATIONAL TABLES FOR ACCESS CONTROL ..6

4. ACCESS CONTROL FOR OPERATIONS ON DATA ..9

4.1. ACCESS CONTROL FOR A SELECT OPERATION ..9

4.2. ACCESS CONTROL FOR AN UPDATE OR DELETE OPERATION ..11

4.3. ACCESS CONTROL FOR AN INSERT OPERATION ..12

4.3.1. Inserting a Group Leader...13

4.3.2. Inserting a Group Member...14

5. ACCESS CONTROL FOR ACCESS RIGHTS ...15

6. ACCESS CONTROL FOR ADMINISTRATOR ..16

7. PROCEDURES FOR ACCESS CONTROL ...17

8. CONCLUSIONS...19

9. REFERENCES ...20

10. APPENDIX ...20

 05/23/2005 4 Li Li

1. Introduction

In many database applications, allowing every user to access all the data is not desirable. Therefore, an
access control mechanism restricts access to data by users. Traditional access control mechanisms [1] for
databases are table- and column-based, where each user is allowed to perform only certain operations,
such as insert, select, update, and delete operations, on certain tables and columns. However, in many
applications, a user should be limited to access only certain rows in tables. In this project, we have
implemented an access control mechanism applicable to individual rows in tables.

A simple way for protecting a row of data in a table is to specify for each row a set of users that can access
it. This approach works for a small database with a small group of users. However, when a database is
large and shared by many users, the table storing the access rights of the users on rows becomes too large
and cannot be maintained efficiently. One solution to this problem is to use user groups, as in the Unix
system [2], where access rights are assigned to user groups as well as to individual users. A user on a Unix
system can be a member of one or more user groups.

In addition to user groups, we introduce object groups. An object group can contain multiple objects. If a
user groups is granted access rights on an object group, every user in the user group inherits those access
rights on each object in the object group. When objects are grouped, we can manage access rights more
efficiently than when access rights are assigned to individual users.

In Section 2, we introduce our access-control model. Section 3 describes the design of the relational tables
used to store the data for access control. We will discuss in Section 4 how select, update, delete,
and insert operations are performed with access control. Section 5 and 6 explain how access rights are
managed. In Section 7, we explain the procedures used for access control. Section 6 concludes this report.

2. Access Control Model

In our access control mechanism, we use user groups and object groups to reduce the number of access
rights to be defined. A user group is a common idea used in operating systems such as Windows and Unix.

 05/23/2005 5 Li Li

In addition to user groups, we introduce object groups because we can manage access rights more
efficiently by granting them to groups of objects rather than by doing so to individual objects.

The schema diagram for our access control mechanism is shown in Figure 1. Entity types ac_user,
ac_object_group, ac_object, and ac_user_group represent users, user groups, objects, and
object groups, respectively. ac_user_group_membership represents the membership relationships
between users and user groups. ac_right is the relationship type associating ac_user_group and
ac_object_group. access permission, ownership, insert permission are attributes defined for
ac_right. access permission specifies read or write permission.

Figure 1: Schema diagram for access control.

We now state the rules for access control.
1. A user group is a set of users. A user may be a member of multiple user groups.
2. An object is a table or a row of a table.
3. An object group is a set of objects. An object can be a member of at most one object group.
4. If right r is provided for user group Ug on object group Og, then any user u in Ug has right r on any

 05/23/2005 6 Li Li

object o in Og. A right is a read permission, a write permission, insert permission, or an ownership.
When an ownership is defined between Ug and Og, we also say that each member of Ug owns Og.
The rights defined between Ug and Og can be represented by a 5-tuple (Ug, Og, a, i, os), where Ug is
a user group, Og is an object group, a is either read permission, write permission, or null, I is insert
permission, and os is ownership.

5. A user with a read permission on an object can read the object. If the object is a table, the user can
read any rows in the table.

6. A user with a write permission on a row of a table can read, update, and delete it. If a write permission
is on a table, the user can read, update, and delete any rows in the table.

7. A user with an insert permission on a table can insert new rows into the table.
8. An owner of an object group can add new rights on that object group and delete existing rights on that

object group. Those rights may be defined for any user groups.
9. By default, every user belongs to user group PUBLIC.

According to rule 8, if a user with an ownership of an object group grants the ownership to another user,
that user also becomes an owner of the object group. There can be multiple owners for each object group.
One of the objects in an object group acts as a group leader that representing the object group. The other
objects in this object group are group members.

There are two steps in the access control mechanism. The first step is authentication. We use the ID and
the password of a user to check the identity of the user. The second step is authorization, where the access
control mechanism decides whether or not a validated user is allowed to perform a requested action.

3. Relational Tables for Access Control

We now describe the design of the relational tables that store the information for access control. The
information for each user is stored in table ac_user as shown in Figure 2, where we have four users u1,
u2, u3, and u4. Each user has a default user group, which initially contains only that user at the time when
the user create a user account in database.

 05/23/2005 7 Li Li

ac_user_id ac_user_name password first_name last_name state city addressline1

1 u1 12345 aa bb OR AAl Some place 1

2 u2 12345 cc dd OR BB Some place 1

3 u3 12345 ee ff Some place 1

4 u4 12345 dd gg Some place 1

addressline2 zip telephone fax email default_ac_user_group_id

Some place 2 97330 1234567 1234567 lli@cs.orst.edu 1

Some place 2 97330 7654321 7654321 u2@cs.orst.edu 4

Some place 2 97330 1111111 1111111 u3@cs.orst.edu 5

Some place 2 97330 2222222 2222222 u4@cs.orst.edu 6

Figure 2: A simple example of table ac_user.

The information for each user group is stored in table ac_user_group as shown in Figure 3, where we
have three user groups Ug1, Ug2, and Ug3.

ac_user_group_id ac_user_group_name

1 Ug1

2 Ug2

3 Ug3

Figure 3: A simple example of table ac_user_group.

We use table ac_user_group_membership to maintain information on user group memberships as
shown in Figure 4, where u1 and u2 are in user group 1, u1 and u3 in user group 2, and u4 in user group 3.

ac_group_membership_id ac_user_id ac_user_name ac_user_group_id

1 1 u1 1

2 2 u2 1

3 1 u1 2

 05/23/2005 8 Li Li

4 3 u3 2

5 4 u4 3

Figure 4: A simple example of table ac_user_group_membership.

The information for each object is stored in table ac_object as shown in Figure 5. The column
ac_object_type stores the types of objects, value “r” for a row and value “t” for a table. The column
table_name stores the table name. The column row_name indicates the column that contains the primary
keys of the row objects. The column row_id stores the primary key value of each row object. Only row
objects need row_name and row_id. In this example, object 1 is the first row in table crop whose primary
key value in column crop_id is 1. Each object group is identified by the ID of its group leader. Therefore,
Object 1 and object 2 are rows in table crop, belonging to object group designated by object 1. Object 3 is
the table crop in object group designated by its group leader, object 3.

ac_object_id ac_object_type table_name row_name row_id ac_object_group_leader_id

1 r crop crop_id 1 1

2 r crop crop_id 2 1

3 t crop 3

Figure 5: A simple example of table ac_object.

Table ac_right stores information on access rights defined between user groups and object groups as
shown in Figure 6. A value of column access_permission can be r for read permission, w for write
permission or null. A value of column ac_insert is true or false indicating whether insert
permission is granted or not. A value of the column is_owner is true or false.

Ac_permission_id ac_user_group_id ac_object_group_leader_id ac_permission ac_insert is_owner

1 1 1 r false true

2 2 3 null false false

3 3 3 w true true

 05/23/2005 9 Li Li

Figure 6: A simple example of table ac_right.

According to table ac_right shown in Figure 6, user group 1 owns object group 1 and has read
permission on it. From table ac_user_group_membership, both u1 and u2 are in user group 1, and from
table ac_object, object group 1 contains objects with ac_object_id 1 and 2, which we call object 1
and object 2. Therefore, we infer that u1 owns object 1 and object 2 and has read permission on them,
but does not own or have any access permission on object 3. We now summarize that the access rights in
our example as the permission matrix shown in Figure 7:

User
Object Object 1 Object 2 Object3

u1 r/o r/o null

u2 r/o r/o

u3 null

u4 w/i/o

Figure 7: Permission matrix.

4. Access Control for Operations on Data

We now describe how the access control mechanism is enforced for the operations performed on a
database.
The access control mechanism for a select operation is implemented by query modification, in which an
additional condition that restricts the data to be retrieved is added to the where clause of the SQL select
statement. An update, or delete statement is performed only when the target object is updatable by the
current user. An insert statement is performed when the current user has an insert permission on the
target table.

4.1 Access Control for a Select Operation

Assume that an authenticated user issues an SQL select statement of the form

select select-list from from-list where condition;

 05/23/2005 10 Li Li

The query modification mechanism then adds to this query as the additional condition access restriction
for access control:

select select-list from from-list where condition and access-restriction;

For an example, consider the following SQL statement that retrieves crop records containing “Corn” in
crop names.

select *

from crop c

where c.name like '%Corn%';

If this query is issued by user u1, the SQL statement is modified as follows

select *

from crop c, ac_object o, ac_right r, ac_user_group_membership m, ac_user u

where c.name like '%Corn%'

and ((o.table_name='crop' and o.ac_object_type='t') or

(o.table_name='crop' and o.ac_object_type='r' and c.cropid = o.row_id))

and o.ac_object_group_leader_id = r.ac_object_group_leader_id

and (r.ac_permission ='w' or r.ac_permission ='r')

and r.ac_user_group_id = m.ac_user_group_id

and m.ac_user_id = u.ac_user_id and u.ac_user_name ='u1';

First, tables ac_object, ac_right, ac_user_group_membership, and ac_user, are added to the
from clause.

Second, the factors following c.name like '%Corn%' are for access control. The factor

((o.table_name='crop' and o.ac_object_type='t') or

 (o.table_name='crop' and o.ac_object_type='r' and c.cropid = o.row_id))

makes sure that current object is table crop or is a row in table crop. If the object is a table, u1 should
have a read or write permission to the table. On the other hand, if the object is a row, u1 should have read
or write permission to the row.

 05/23/2005 11 Li Li

Then the factors

1. and o.ac_object_group_leader_id = r.ac_object_group_leader_id
2. and (r.ac_permission ='w' or r.ac_permission ='r')
3. and r.ac_user_group_id = m.ac_user_group_id
4. and m.ac_user_id = u.ac_user_id and u.ac_user_name ='u1';

ensure that each combination of selected o, r, m, and u satisfies the following conditions.

1. Object o belongs to the current object group.
2. The access permission for the current user group on the current object group is ‘r’ (readable) or
‘w’ (writable).
3. The current user group is related to the current object group.
4. User u1 belongs to the current user group.

4.2 Access Control for an Update or Delete Operation

When a user wants to update a row, he must have a write permission to that row, or a write permission to
the table containing the row. User u1 has write permission to the target row in table crop if the following
SQL statement returns a result.

select *

from ac_user u, ac_user_group_membership m, ac_right r, ac_object o

where u.ac_user_name ='u1'

and u.ac_user_id = m.ac_user_id

and m.ac_user_group_id = r.ac_user_group_id

and r.ac_permission = ‘w’

and r.ac_object_group_leader_id = o.ac_object_group_leader_id

and ((o.table_name='crop' and o.ac_object_type='t') or

(o.table_name='crop' and o.ac_object_type='r' and o.row_id = $cropid)) ;

The access control mechanism for a delete operation is similar to an update operation, except that after
the deletion of a row, we should delete the entry for that row object from table ac_object as well. The
following delete SQL statement can be used for this purpose.

 05/23/2005 12 Li Li

delete from ac_object o

where o.table_name='crop' and o.ac_object_type='r' and o.row_id = $cropid

Furthermore, we need to check whether the object to be deleted is a group leader or not. If it is, the object
group it represents should be deleted as well. And all the members in this object group should be deleted
from both table ac_object and their resptively table storing detail data fro each member. The following
SQL statement is used to find out the ac_object_group_leader_id for the object group whose group
leader is the object to be deleted.

select o.ac_object_id, o.ac_object_group_leader_id

from ac_object o

where o.table_name='crop' and o.ac_object_type='r' and o.row_id = $cropid

and o.ac_object_id = o.ac_object_group_leader_id;

Then, we delete all the group members in this object group using the following SQL statement.
delete from ac_object o

where o.ac_object_group_leader_id = $ac_object_group_leader_id;

Finally, we need to delete all the access rights related to this object group.
delete from ac_right where ac_object_group_leader_id = (select

ac_object_group_leader_id from ac_object where row_id = $primary_key and

table_name = '".$table_name."')";

4.3 Access Control for an Insert Operation

When insertion of a row into a table is attempted, the access control mechanism must check first whether
the user has insert permission on that table or not. If the user has the permission, the insert operation can
be executed. If the object representing the new row is a group leader, a new object group should be created.
On the other hand, when the object is not a group leader, it should be added to the correct object group.
We represent the object groups using a tree structure. The root nodes of the tree stand for the object group
leaders and the nodes in the lower hierarchical levels stands for group members in the object groups
delegated by the group leaders.

The tree view given in Figure 9 contains three kinds of nodes, which are nodes for hillslope, nodes for
rotation, and nodes for crop. On a field, a farmer may have his rotation of crops. So crops are associated
with a rotation, and rotations are associated with a field. A farmer should be allowed to access the records

 05/23/2005 13 Li Li

for his fields, rotations and crops. In this case, a field node can be used as a group leader representing the
farmer’s fields, rotations, and crops. A hillslope is often a farm field. Therefore, among the three kinds of
nodes, hillslope nodes are root nodes and group leaders.

In Figure 9, the node Yolo Farm, is a hillslope and acts as a group leader. The object group representing
by this node contains other group members, rotation node yolo tomato-tomato-corn, and crop nodes
yolo processing tomatoes, yolo processing tomatoes, and yolo corn 150 bu.

Figure 9: Group leaders and group members.

4.3.1 Inserting a Group Leader

When a group leader node is inserted, a new object group should be created to contain this newly
inserted object. Suppose we want to insert a row into table hillslope, which is a table storing hillslop
data entries.
There are four steps involved in executing an insert operation for a group leader object.

1. The access control mechanism checks whether a user has an insert permission to the target table or not.
Notice that an insert permission can only be applied on a table object. If the query result is non-empty
with the following SQL statement, user u1 has an insert permission on the target table.
select *

from ac_user u, ac_user_group_membership m, ac_right r, ac_object o,

where u.ac_user_name ='u1'

 05/23/2005 14 Li Li

and u.ac_user_id = m.ac_user_id

and m.ac_user_group_id = r.ac_user_group_id

and r.ac_insert = 1

and r.ac_object_group_leader_id = o.ac_object_group_leader_id

and o.table_name='hillslope' and o.ac_object_type='t';

2. After u1 passes the insert permission check-up, he can insert a new hillslope into table hillslope

using the following insert SQL statement:
insert into hillslope values (nextval(‘hillslope_id’_seq), 20, 20, ‘field1’,

‘OR’, 20, ‘some shape’, 20, 20);

where $next_hillslope_id = nextval(‘hillslope_id’_seq);

3. Since the new object is a group leader node in the data tree, we should add it into table ac_object,
setting it as a group leader for a new object group.
insert into ac_object values ($next_ac_object_id, ‘r’, $next_ac_object_id ,

$next_hillslope_id, ‘hillslope’, ‘hillslopeid’);

where $next_ac_object_id = nextval(‘ac_object_id’_seq)

4. In the last step, the access rights are defined between the default user group for u1 and the new object

group. Each user has a default user group when his account is created in the database. The default user
group initially contains only that user as a member. By default, write permission, insert permission and
ownership are granted initially. The access rights can be redefined later by the owner of the object
group.
insert into ac_right values ($next_ac_object_id , (select

default_ac_user_group_id from ac_user where ac_user_name = ‘u1’) , ‘w’,1, 1);

4.3.2 Inserting a Group Member

Suppose we want to insert a row into table crop. This is a group member node. Its group leader node is a
a hillslope the crop associates with. There are three steps involved in executing the insert operation.

1. We check whether user u1 has insert permission to the target table or not by using the following SQL

 05/23/2005 15 Li Li

statement.
select *

from ac_user u, ac_user_group_membership m, ac_right r, ac_object o

where u.ac_user_name ='u1'

and u.ac_user_id = m.ac_user_id

and m.ac_user_group_id = r.ac_user_group_id

and r.ac_insert = ‘i’

and r.ac_object_group_leader_id = o.ac_object_group_leader_id

and o.table_name='crop' and o.ac_object_type='t';

2. u1 inserts a new crop into table crop as follows.

insert into crop values ($next_crop_id, 20, 20, 2,‘new wheat’, ‘test’)

where $next_crop_id = nextval(‘crop_id’_seq);

3. After the new row is inserted, we should add it to the object group containing the current group leader.

But in the implementation, the group leader hillslope is in the same object group with its children
node rotation, who again is the new node crop’s parent node. It is easier for us to retrieve from
roation, the parent node of the new crop, the information about the current
ac_object_group_leader_id. We use the following SQL statement to store the corresponding
information such as object_type, table_name, row_id, and row_name of new crop into table
ac_object.
insert into ac_object values (nextval(‘ac_object_id’_seq), ‘r’, $cropid,

(select o.ac_object_group_leader_id

from ac_object o

where o.table_name='rotation' and o.ac_object_type='r' and o.row_id =

$crop_rotationid),

 ‘crop’, ‘cropid’);

5. Access Control for Access Rights

Ownership can be passed on from one user to another user. With the ownership, a user can redefine the
access right to an object group for the current user group he belongs to.

 05/23/2005 16 Li Li

Assume that user u1 wants to grant the ownership on the target object group Og1 to another user u2.
The access control mechanism checks whether he is in a user group that owns Og1 or not. If so, u1 can add
u2 into the user group that owns Og1. In the following SQL statement, if the query result is non-empty, u1
is in the user group which owns the target object group.

select *

from ac_user u, ac_user_group_membership m, ac_right r

where u.ac_user_name ='u1'

and u.ac_user_id = m.ac_user_id

and m.ac_user_group_id = r.ac_user_group_id

and r.is_owner = 1

and r.ac_object_group_leader_id =$object_group_leader_id;

To grant another user the ownership on the current object group, we use the following SQL statement.
insert into ac_user_group_membership values

(nextval(‘ac_user_group_membership_id’_seq), 2,

select ac_user_group_id from ac_user_group where ac_user_name =

$user_group_name);

To add new rights or delete existing rights on the current object group, we use the following SQL
statement.

update ac_right

set ac_permission = 'r'

where ac_object_group_leader_id = $object_group_leader_id

and ac_user_group_id in (select m.ac_user_group_id

from ac_user_group_membership m, ac_user u

where u.ac_user_name ='u1'

and u.ac_user_id = m.ac_user_id));

6. Access Control for Administrator

An administrator has full access control defined for ordinary users, in addition, an administrator can create
a new user account in table ac_user, and create a new user group in table ac_user_group.

 05/23/2005 17 Li Li

7. Procedures for Access Control

To modularize our implementation of the access control mechanism, we implemented a PHP script called
security.phtml containing procedures that perform operations needed for access control. In the
following list, we list the name and the parameters of each procedure. We then give a brief explanation of
each procedure.

Method: check_write_permission_on_row(user_name, table_name, primary_key)
Returns true if the user with user_name has write permission on the target row specified by
table_name and primary_key. table_name is the name of the table containing the row, and
primary_key is the primary key value of that row.

Method: check_insert_permission(user_name, table_name)

Returns true if the user with user_name has insert permission on the table specified by
table_name.

Method: check_ownership(user_name, group_leader_id)

Returns true if the user with user_name owns the object group designated by
group_leader_id.

Method: insert_ac_object(object_type, table_name, primary_key_column, primary_key,

group_leader_id)

Inserts the new object designated by table_name, primary_key_column, and primary_key
into table ac_object. object_type specifies the type of the object, either r for a row or t for
a table. If the new object is a table object, table_name specifies the name of the table, and
primary_key_column and primary_key are nulls. If the new object is a row object,
table_name specifies the name of the table containing the row. primary_key_column is the
name of the column containing the primary key of the row, whose primary key value is passed by
primary_key. The new object belongs to the object group whose group leader is specified by
group_leader_id. If the object to be inserted is a group leader, group_leader_id is null.

Method: delete_all_group_members(group_leader_id)

 05/23/2005 18 Li Li

Deletes all the objects whose group leader is group_leader_id.

Method: delete_ac_object(table_name, primary_key_column, primary_key)

Deletes the object specified by the table_name, primary_key_column, and primary_key. If
object is a table, primary_key_column, and primary_key are null.

Method: is_group_leader(table_name, primary_key_column, primary_key)

Returns true if the object specified by the table_name, primary_key_column, and
primary_key is a group leader, otherwise, false.

Method: update_ac_right(user_name, user_group_name, group_leader_id, access_right,

ownership, insert_permission)

Updates the access rights for the user group specified by user_group_name on the object group
whose group leader is designated by the group_leader_id. The user specified by user_name
must own the object group. access_right, ownership, and insert_permission specify the
rights to be updated.

Method: insert_ac_right(user_name, user_group_name, group_leader_id, access_right,
ownership, insert_permission)

Inserts the access rights for the user group specified by user_group_name on the object group
whose group leader is designated by the group_leader_id. The user specified by user_name
must own the object group. access_right, ownership, and insert_permission specify the
rights to be inserted.

Method: delete_ac_right(user_name, user_group_name, group_leader_id,)
Deletes the access rights for the user group specified by user_group_name on the object group
whose group leader is designated by the group_leader_id. The user specified by user_name
must own the object group.

The following procedures can be performed only by the administrator.
Method: create_user(ac_user_name, password, first_name, last_name, state, city,

addressline1, addressline2, zip, telephone, fax, email,

 05/23/2005 19 Li Li

default_ac_user_group_id)

Creates a new user with the parameters such as ac_user_name, password, first_name,
last_name, state, city, addressline1, addressline2, zip, telephone, fax, email.
Initially, the new user belongs to the default user group specified by
default_ac_user_group_id.

Method: create_user_group(ac_user_group_name)

Creates a new user group with user group name specified by ac_user_group_name.

Method: add_user_to_group(user_name, ac_user_group_id)

Associates the user with user_name with user group specified by ac_user_group_id.

Method: remove_user_from_group (user_name, ac_user_group_id)

Deletes the user with user_name from the user group specified by ac_user_group_id.

8. Conclusions

The table- and column-based access control is supported by current database management systems.
However, row-based access control is needed for many applications. A row-based access control can
restrict a user to access only those rows that she is authorized to do so. We implemented a row-based
access control subsystem in this project.

The main features in our access control model are user groups and object groups. User groups are
commonly used in operating systems, such as Windows and Unix. A user may be a member of multiple
user groups. An object is a table or a row of a table. An object group, which is a set of objects, is a new
concept introduced by our model in order to manage access rights more efficiently.

Access rights are assigned between a user group and an object group, so that every user in the user group
inherits those access rights on every object in the object group. One of the objects in an object group acts
as a group leader that represents the object group. A user with an ownership of an object group can
redefine the access rights on the object group for any user group. User groups and object groups can

 05/23/2005 20 Li Li

reduce the number of access rights to be defined and hence the storage space for storing access rights.

More future work can be adding a relational table between User and Object group, so that access rights
on object groups can be defined directly for individual users. For insert or delete operation on an
object, after it is inserted or deleted, we should perform maintenance for access right, such as creating a
new object group for the new object or adding the newly inserted object into the correct object group.

9. References

[1] Ramakrishnan, Raghu and Johannes Gehrke, Database Management Systems, 2nd edition.

McGraw-Hill, 2000
[2] Mark G Sobell, A practical Guide to the Unix System, 3rd edtion. ADDISON-WESLEY
[3] M. Stonebraker and E.Wong, Access control in a relational database management system by query

miodification. In proceedings of the 1974 annual conferences, pages 180-186. ACM Press, 1974
[4] http://www.microsoft.com/sql/default.asp
[5] http://www.oracle.com/solutions/security/Privacy9i.pdf.

10. Appendix

Codes will be appended.

 05/23/2005 21 Li Li

<?php
include_once("common.phtml");

function build_part_SQL_for_selection($user_name, $table_name, $primary_key_column){
global $db;

$sSQL = ", ac_object o, ac_right r, ac_user_group_membership m, ac_user u ".
 "where o.table_name='"
 .$table_name.
 "' and(o.ac_object_type='t' or (o.ac_object_type='r' and o.row_id = "
 .$table_name
 .".".$primary_key_column."))
 and o.ac_object_group_leader_id = r.ac_object_group_leader_id
and (r.ac_permission ='w' or r.ac_permission ='r')
and r.ac_user_group_id = m.ac_user_group_id
and m.ac_user_id = u.ac_user_id and u.ac_user_name ='".$user_name."'";

return $sSQL;
}
function check_write_permission_on_row($user_name, $table_name, $primary_key){
global $db;

$sSQL = "select *
 from ac_user u, ac_user_group_membership m, ac_right r, ac_object o
 where u.ac_user_name ='".$user_name."'
 and u.ac_user_id = m.ac_user_id
 and m.ac_user_group_id = r.ac_user_group_id
 and r.ac_permission = 'w'
 and r.ac_object_group_leader_id = o.ac_object_group_leader_id
 and o.table_name='".$table_name."' and(o.ac_object_type='t' or
(o.ac_object_type='r' and o.row_id = ". $primary_key."))" ;
 $db->query($sSQL);
 $nrows = $db->num_rows();
 if ($nrows < 1)
 return false;
 else
 return true;

}
function check_insert_permission($user_name, $table_name){
global $db;

 $sSQL = "select *
 from ac_user u, ac_user_group_membership m, ac_right r, ac_object o
 where u.ac_user_name ='".$user_name."'
 and u.ac_user_id = m.ac_user_id
 and m.ac_user_group_id = r.ac_user_group_id
 and r.insert_permission = 1
 and r.ac_object_group_leader_id = o.ac_object_group_leader_id
 and o.table_name='".$table_name."'and o.ac_object_type='t'" ;

 05/23/2005 22 Li Li

 $db->query($sSQL);
 $nrows = $db->num_rows();
 if ($nrows < 1)
 return false;
 else
 return true;
}

function check_ownership($user_name, $group_leader_id){
global $db;

 $sSQL = "select *
 from ac_user u, ac_user_group_membership m, ac_right r
 where u.ac_user_name ='".$user_name."'
 and u.ac_user_id = m.ac_user_id
 and m.ac_user_group_id = r.ac_user_group_id
 and r.is_owner = 1
 and r.ac_object_group_leader_id = ".$group_leader_id ;

 $db->query($sSQL);
 $nrows = $db->num_rows();
 if ($nrows < 1)
 return false;
 else
 return true;
}

function insert_ac_object($object_type, $primary_key, $parent_table_name, $parent_primary_key,
$table_name, $primary_key_column){
global $db;
if ($parent_primary_key == "") //insert a group leader
{/* 1.find out the current user
2. query its default user-group
3. object group leader is nextval('ac_object_id_seq')
4. use default access rights initially
*/
 $sql_query = "SELECT nextval('ac_object_id_seq');";
 $next_value = $db->query($sql_query);
 $ac_object_id = pg_fetch_result($next_value, 0, 0);

 $sql_query = "SELECT default_ac_user_group_id from ac_user where ac_user_name =
'{$_SESSION['user_name']}';";
 $next_value = $db->query($sql_query);
 $default_ac_user_group_id = pg_fetch_result($next_value, 0, 0);

 $sSQL = "insert into ac_object values ($ac_object_id, '"
 . $object_type. "', $primary_key, $ac_object_id, '".$table_name."', '"
 . $primary_key_column."')" ;
 $db->query($sSQL);

 05/23/2005 23 Li Li

 $sSQL = "insert into ac_right values(nextval('ac_right_id_seq'),
$ac_object_id ,$default_ac_user_group_id,'w', 1, 1)";
 $db->query($sSQL);
 //insert_right($default_ac_user_group_id, $ac_object_id, "w", 1 , 1);
}
else // insert a group member
{$sSQL = "insert into ac_object values (nextval('ac_object_id_seq'), '"
 . $object_type. "',". $primary_key.", (select ac_object_group_leader_id from ac_object where
table_name = '".$parent_table_name."' and row_id = '". $parent_primary_key."'), '".$table_name."',
'"
 . $primary_key_column."')" ;
 $db->query($sSQL);
 }
}

function delete_ac_object ($table_name, $primary_key)
{
 if(is_group_leader($table_name, $primary_key)){
 // is a group leader
 delete_right_for_object_group_leader($table_name, $primary_key);
 delete_all_group_members ($table_name, $primary_key);
 delete_row_object_from_ac_object ($table_name, $primary_key);

 }else{// is a group member

 delete_row_object_from_ac_object ($table_name, $primary_key);

 }
}

function is_group_leader ($table_name, $primary_key){
global $db;

 $sSQL = "select * from ac_object where row_id =". $primary_key. " and table_name = '".
$table_name. "' and ac_object_id = ac_object_group_leader_id";
 $db->query($sSQL);
 $nrows = $db->num_rows();
 if ($nrows < 1)
 return false;
 else
 return true;

}

function delete_all_group_members ($table_name, $primary_key){
global $db;

 $sSQL = "select * from ac_object where ac_object_group_leader_id = (select
ac_object_group_leader_id from ac_object where row_id = $primary_key and table_name =
'".$table_name."')";

 05/23/2005 24 Li Li

 $db->query($sSQL);
 $nrows = $db->num_rows();
 for ($i =0; $i <$nrows; $i++) {
 $db->next_record();
 $delete_fields[$i]['table_name'] = trim($db->f("table_name"));
 $delete_fields[$i]['row_id'] = trim($db->f("row_id"));
 $delete_fields[$i]['row_name'] = trim($db->f("row_name"));
 }
 for ($i =0; $i <$nrows; $i++) {
 $sSQL = "delete from ". $delete_fields[$i]['table_name']." where ".
$delete_fields[$i]['row_name']." = ".$delete_fields[$i]['row_id'];
 $db->query($sSQL);
 }

 $sSQL = "delete from ac_object where ac_object_group_leader_id = (select
ac_object_group_leader_id from ac_object where row_id = $primary_key and table_name =
'".$table_name."')";
 $db->query($sSQL);

}

function delete_row_object_from_ac_object ($table_name, $primary_key){
global $db;

 $sSQL = "delete from ac_object where table_name = '".$table_name."' and ac_object_type = 'r'
and row_id = ". $primary_key;
 $db->query($sSQL);

}

function delete_right_for_object_group_leader($table_name, $primary_key){
global $db;

 $sSQL = "delete from ac_right where ac_object_group_leader_id = (select
ac_object_group_leader_id from ac_object where row_id = $primary_key and table_name =
'".$table_name."')";

 $db->query($sSQL);
}

function update_ac_right($user_name, $user_group_name, $group_leader_id, $access_right,
$ownership, $insert_permission){
if (check_ownership($user_name, $group_leader_id)){
 update_right($user_group_name, $group_leader_id, $access_right, $ownership,
$insert_permission);
 return 1;
 }
 return 0;
}

 05/23/2005 25 Li Li

function update_right($user_group_name, $group_leader_id, $access_right, $ownership,
$insert_permission){
global $db;

 $sSQL = "update ac_right set";
 if ($access_right != null)
 { if ($sSet != "")
 $sSet .=", ";
 $sSet = $sSet."ac_permission = ".$access_right;
 }
 if ($is_owner != null)
 { if ($sSet != "")
 $sSet .=", ";
 $sSet = $sSet."is_owner = ".$ownership;
 }
 if ($insert_permission != null)
 { if ($sSet != "")
 $sSet .=", ";
 $sSet = $sSet."insert_permission = ".$insert_permission;
 }
 if ($sSet != "") {
 $sSet = " set (" . $sSet. ")";
 }
 $sWhere = "where ac_object_group_leader_id = ".$group_leader_id." and ac_user_group_id = ".
$user_group_name;

 $sSQL = $sSQL.$sSet.$sWhere;
 $db->query($sSQL);

}

function insert_ac_right($user_name, $user_group_name, $group_leader_id, $access_right,
$ownership, $insert_permission){
if (check_ownership($user_name, $group_leader_id)){
 insert_right($user_group_name, $group_leader_id, $access_right, $ownership,
$insert_permission);
 return 1;
 }
 return 0;
}

function insert_right($user_group_name, $group_leader_id, $access_right, $ownership,
$insert_permission){
global $db;

 $sSQL = "insert into ac_right values (nextval('ac_right_id_seq'), $group_leader_id ,(select
ac_user_group_id from ac_user_group where ac_user_group_name ='".$user_group_name."'), '".
 $access_right . "',$ownership, $insert_permission)";

 05/23/2005 26 Li Li

 $db->query($sSQL);
}

function delete_ac_right($user_name, $user_group_name, $group_leader_id){
if (check_ownership($user_name, $group_leader_id)){
 delete_right($user_name, $user_group_name, $group_leader_id);
 return 1;
 }
 return 0;
}

function delete_right($user_group_name, $group_leader_id){
global $db;

 $sSQL = "delete from ac_right where ac_user_group_id = (select ac_user_group_id from
ac_user_group where ac_user_group_name =".$ac_user_group_name.") and ac_object_group_leader_id
= ".$group_leader_id;

 $db->query($sSQL);
}

function add_user_to_user_group($user_name, $user_group_name){
global $db;

 $sSQL = "insert into ac_user_group_membership values
(nextval('ac_user_group_membership_id_seq'), (select ac_user_group_id from ac_user_group where
ac_user_group_name = '". $user_group_name ."'), (select ac_user_id from ac_user where ac_user_name
= '". $user_name."'))";

 $db->query($sSQL);
}

function remove_user_from_user_group($user_name, $user_group_name){//may be deleted later
global $db;

 $sSQL = "delete from ac_user_group_membership where ac_user_id = (select ac_user_id from
ac_user where ac_user_name = '". $user_name ."') and ac_user_group_id = (select ac_user_group_id
from ac_user_group where ac_user_group_name = '". $user_group_name."'))";

 $db->query($sSQL);
}

function remove_user_group($user_group_id){
global $db;

 $sSQL = "delete from ac_user_group_membership where ac_user_group_id = $user_group_id";

 $result = $db->query($sSQL);

 05/23/2005 27 Li Li

 $sSQL = "delete from ac_user where default_ac_user_group_id = $user_group_id";

 $result =$db->query($sSQL);

 $sSQL = "delete from ac_user_group where ac_user_group_id = $user_group_id";

 $result =$db->query($sSQL);
 return $result;
}

function create_user($ac_user_name, $password, $first_name, $last_name, $state, $city,
$addressline1, $addressline2, $zip, $telephone, $fax, $email, $default_ac_user_group_name){
global $db;

 $sSQL = "insert into ac_user values (nextval('ac_user_id_seq'), '".$ac_user_name. "', '".
 $password."', '". $first_name."', '". $last_name."', '". $state."', '".$city."',
'".$addressline1."', '".
 $addressline2."', '". $zip."', '". $telephone."', '". $fax."', '". $email."',
 (select ac_user_group_id from ac_user_group where ac_user_group_name = '".
 $default_ac_user_group_id."'))";
 $db->query($sSQL);
}

function create_user_group($ac_user_group_name){
global $db;
echo $ac_user_group_name;
 $sSQL = "insert into ac_user_group values (nextval('ac_user_group_id_seq'),
'".$ac_user_group_name."')";
 $db->query($sSQL);
}

function delete_user_group($ac_user_group_name){
global $db;

 $sSQL = "delete from ac_user_group where ac_user_group_name = '".$ac_user_group_name."'";
 $db->query($sSQL);
}

function delete_user($ac_user_name){
global $db;

 $sSQL = "delete from ac_user where ac_user_name = '".$ac_user_name."'";
 $db->query($sSQL);
}
?>

