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SOME RESULTS IN SINGLE-SCATTERING TOMOGRAPHY

1 INTRODUCTION

1.1 Single-scattering tomography and the Broken Ray transform

�v0

�v

U

 s0

 x 

s 

FIGURE 1.1: Bµt (x; ~v0, ~v) is
the line integral of µt over the
solid blue line.

In single-scattering tomography, we describe photon

transfer through a object with a model in which photons

are assumed to scatter at most once. Given an open set

U ⊆ Rn, we consider emitting a ballistic ray of photons

with initial intensity I0 into U at some point s0 ∈ ∂U , in

a direction ~v0 ∈ Sn−1 (so that s0+t~v0 ∈ U for sufficiently

small t > 0). Photons originating from this ballistic ray

are then scattered inside U and exit along a terminal ray.

We then measure the light intensity on ∂U . Moreover,

we assume that we can selectively measure the intensity

of photons exiting U in a single direction.

The Broken Ray transform was first investigated by Lucia Florescu, Vadim A. Markel, and

John C. Schotland, [2], in 2009. In the setting of U = (0, L) × R ⊆ R2, if µa and µs are

absorption and scattering coefficients, respectively, and µt is the sum of these two, then

the measured intensity of photons leaving U at a point s ∈ ∂U in the direction ~v is given

by

I (s, ~v) = I0C (s0, ~v0, s, ~v)µs (x)A (~v0, ~v) exp (−Bµt (x; ~v0, ~v)) , (1.1.1)



2

where x ∈ U is the location of scattering, and hence is the intersection of the ballistic and

terminal rays, A is the phase function used in the Radiative Transport Equation, C is a

function depending only on the choice of ballistic and terminal rays, and

Bµt (x; ~v1, ~v2) =

ˆ t1

0
µt (s1 + t~v1) dt+

ˆ t2

0
µt (s2 − t~v2) dt (1.1.2)

=

ˆ t1

0
µt (x− t~v1) dt+

ˆ t2

0
µt (x+ t~v2) dt,

is the Broken Ray transform of µt, where x = s1 + t1~v1 = s2 − t2~v2 ∈ G, s1, s2 ∈ ∂G,

and the line segments `1 = {s1 + t~v1 | 0 < t ≤ t1} and `2 = {s2 − t~v1 | 0 < t ≤ t2} are both

contained in G. As presented above, Bµt is defined on a manifold of dimension 3n − 2.

We will focus on restrictions of Bµt to submanifolds of dimension n.

In 2010, Florescu, Markel, and Schotland, [1], further investigated the Broken Ray trans-

form, holding as constants ~v1 = (1, 0) and ~v2 = (cos θ, sin θ) for some fixed angle θ ∈
(
0, π2

)
,

using the locations of ballistic and terminal rays as independent variables. In this setting,

B~v1,~v2
µt

def
= Bµt (·; ~v1, ~v2) is found to be invertible. If µs is known, then recovery of µt is

possible from one set of data. On the other hand, if µs is not known, recovery of µt and

µs is possible from two sets of data, both with fixed initial and terminal directions.

In 2013, Rim Gouia-Zarrad and Gaik Ambartsoumian, [3], revisit the Broken Ray trans-

form, though referred to as the V-line transform, in which they parametrize with ~v1 =

(cosβ,− sinβ) and ~v2 = (cosβ, sinβ). In addition, Gouia-Zarrad and Ambartsoumian

introduce a 3D Conical Radon transform in which the total attenuation coefficient, f , is

integrated over cones with a fixed opening angle, defining

g (xv, yv, zv) =

ˆ
C(xv,yv,zv)

f (x, y, z) ds,

where

C (xv, yv, zv) =
{(
xv + x, yv + y, zv +

√
x2 + y2 tanβ

) ∣∣∣x, y ∈ R
}
.
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The paper by Katsevich and Krylov, [6], goes beyond the case of fixed initial and terminal

directions, and includes settings which employ convex and concave detectors, in the shape

of circular arcs, in addition to flat detectors. With concave detectors, only terminal rays in

a direction away from a focal point are measured, whereas convex detectors detect terminal

rays in a direction towards a focal point. Furthermore, instead of reconstructing from one

set of data, Katsevich and Krylov provides reconstructions from two-detector and three-

detector settings in terms of differences between measurements, in effect, cancelling out

integration over the ballistic rays.

Hence, Katesvich and Krylov define

gij (x) =

ˆ ∞
0

f
(
x+ t~βi (x)

)
dt−

ˆ ∞
0

f
(
x+ t~βj (x)

)
dt, i 6= j, (1.1.3)

for f ∈ C∞0 (U) for some open set U ⊆ R2, i, j = 1, 2 or 1, 2, 3, where each of the

~βi ∈ C1
(
U ;S1

)
is one of the following:

~βi (x) =



~vi, if detector i is flat, detecting rays in direction ~vi,

x−xi
‖x−xi‖ , if detector i is concave, with focal point at xi,

− x−xi
‖x−xi‖ , if detector i is convex, with focal point at xi.

In the convex case, we must consider a focus xi placed outside the convex hull of U ,

unless we replace the upper limit on the corresponding integral with ‖x− xi‖. Katsevich

and Krylov go on to characterize a solution to (1.1.3) in terms of a first-order differential

equation.

We can observe that (1.1.1) also allows us to derive gij directly from the measured data.

Taking multiple measurements simultaneously, we have

Ij

(
sj , ~βj

)
= C

(
s0, ~v0, sj , ~βj

)
I0µs (x)A

(
~v0, ~βj

)
exp

(
−Bµt

(
x; ~v0, ~βj

))
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for j = 1, 2, 3, where sj = x + tj ~βj for some tj ≥ 0, and the dependence of ~βj on x is

implied, but omitted from notation. Division of Ii by Ij for i 6= j yields

Ij

(
sj , ~βj

)
Ii

(
si, ~βi

) =
C
(
s0, ~v0, sj , ~βj

)
A
(
~v0, ~βj

)
C
(
s0, ~v0, si, ~βi

)
A
(
~v0, ~βi

)
· exp

(
−Bµt

(
x; ~v0, ~βj

)
+ Bµt

(
x; ~v0, ~βi

))
=
C
(
s0, ~v0, sj , ~βj

)
A
(
~v0, ~βj

)
C
(
s0, ~v0, si, ~βi

)
A
(
~v0, ~βi

) exp (gij (x)) ,

and so

gij (x) = ln
Ij

(
sj , ~βj

)
Ii

(
si, ~βi

) − ln
C
(
s0, ~v0, sj , ~βj

)
A
(
~v0, ~βj

)
C
(
s0, ~v0, si, ~βi

)
A
(
~v0, ~βi

) .
In the three-detector case, Katesvich and Krylov also find an inversion given by a local

operator, and characterize the range.

1.2 The Polar Broken Ray transform

rmin rmax

x

rmin

rmax

y

�σ

A�σ

σ

φ

s�σ

FIGURE 1.2: Qf (s~σ) is the
line integral over the solid blue
line.

Another problem of interest comes from allowing the ini-

tial direction of a light beam to vary instead of the initial

position, while keeping the initial position fixed. This

problem is modelled by what we will call the Polar Bro-

ken Ray transform, and places the emitter at the origin

in R2. We parametrize a ray with s~σ being the location

of the single scattering event, where ~σ ∈ S1 is the initial

direction of the beam, and s > 0 the distance a beam

travels before a scattering event. We thus introduce the

Polar Broken Ray transform as follows:
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Definition 1.2.1 (Polar Broken Ray transform). Let

Ω =
{
r~θ
∣∣∣ rmin ≤ r ≤ rmax, ~θ ∈ S1

}
,

Ω̂ =
{
s~σ
∣∣ 0 < s ≤ rmax, ~σ ∈ S1

}
,

for some fixed rmax > rmin ≥ 0. Furthermore, let A be the following rotation matrix:

A =

cosφ − sinφ

sinφ cosφ

 ,
for some fixed parameter φ ∈

(
0, π2

)
. We then define the Polar Broken Ray transform in

terms of polar arguments as follows:

Qf (s~σ) =

ˆ s

0
f (t~σ) dt+

ˆ √r2max−s2 sin2 φ−s cosφ

0
f (s~σ + tA~σ) dt, s~σ ∈ Ω̂

for functions f supported Ω. For convenience, if we define f to be zero outside Ω, then we

can express this transform as

Qf (s~σ) =

ˆ s

0
f (t~σ) dt+

ˆ ∞
0

f (s~σ + tA~σ) dt. (1.2.1)

A quick observation is that Q commutes with rotations about the origin.

1.3 Propagation of singularities

The theory of wavefront sets is due to Lars Hörmander, [5], and extends the notion of

singular support of a distribution – points at which a distribution is not given by a C∞

function in any open neighborhood. The wavefront set of a distribution u is denoted by

WF (u), and describes not only the locations of singularities of u, but also the directions

of those singularities. For instance, if u is given by a piecewise-C∞ function, then WF (u)
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will contain a pair
(
x, ~ξ
)
if, at a point x, ~ξ is a normal vector to a surface across which u

(or one of its derivatives) is discontinuous.

It is through the use of wavefront sets that we describe propagation of singularities results

for an operator on a space of distributions. Moreover, propagation of singularities results

can account for some of the artifacts seen in reconstructed images.

1.4 Summary of results

We will define the Broken Ray transform and its variations in a distributional sense. The

motivation for doing so is due the inversion formulas requiring some order of differentiabil-

ity of the function we wish to recover in order to be valid in a classical sense. However, in

practice, we may wish to recover a function that is not continuous. Describing these trans-

forms and their inversion formulas in a distributional sense would overcome this technical

deficit.

We will then develop propagation of singularities results for each of these variations of

the Broken Ray transform. This follows Hörmander’s lead of developing the theory of

wavefront sets in the context of distributions.

In Chapter 3, we will give a distributional meaning to the directional antiderivative oper-

ator

J~vu (x) =

ˆ ∞
0

u (x− t~v) , u ∈ C0
0 (Rn) , x ∈ Rn, (1.4.1)

where ~v 6= 0 is a fixed parameter. This requires that we introduce the distribution

J~v (φ) =

ˆ ∞
0

φ (t~v) dt, φ ∈ C∞0 (Rn) , (1.4.2)
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which is a fundamental solution to the distributional derivative operator D~v. We then

define J~vu = J~v ? u, for u ∈ D ′ (Rn) with appropriate assumptions on the support of u,

to be determined later, that allows for the convolution to be defined.

Our primary goal is to establish that for distributions u for which J~vu is defined,

WF (J~vu) ⊆WF (u) ∪
{

(x+ t~v, ~η)
∣∣∣ (x, ~η) ∈WF (u) , ~η ∈ ~v⊥, t ≥ 0

}
. (1.4.3)

We will then generalize this result to an operator Jγ,υ defined by

Jγ,υu (x) =

ˆ ∞
0

u (x− γ (t)) υ (t) dt,

for some γ ∈ C∞ ([0,∞) ;Rn) and υ ∈ C∞ ([0,∞) ;R+) so that ‖γ (t)‖ → ∞ as t → ∞.

We extend Jγ,υ in a distributional sense by defining it as convolution with

Jγ,υ (φ) =

ˆ ∞
0

φ (γ (t)) υ (t) dt, φ ∈ C∞0 (Rn) , (1.4.4)

when such a convolution is possible, and then show that

WF (Jγ,υu) ⊆WF (u) ∪
{(
x, ~ξ
) ∣∣∣∃t ≥ 0 :

(
x− γ (t) , ~ξ

)
∈WF (u) , ~ξ ∈ γ′ (t)⊥

}
.

In Chapter 4, we will verify an inversion formula for the Broken Ray transform with fixed

initial and terminal directions. We then provide two alternate inversion formulas, one of

which is symmetric in nature, and is used as a basis for a numerical inversion.

We also investigate the various cases of Katsevich and Krylov’s two-detector setting, dis-

covering that if the detectors either both convex or both concave, then the mapping f 7→ gij

is not injective, and hence, recovery of f is not possible in the absence of an a priori support

restriction or known boundary data.

We also give a distributional meaning to B~v1,~v2
and gij , as well as use results from Chapter

3 to establish the relationships between distributions and their Broken Ray transforms.
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Furthermore, we discover support conditions necessary to give distributional meaning to

the inversion formulas in Katsevich and Krylov’s setting.

In Chapter 5, we will find the Polar Broken Ray transform to be injective for continuous

functions with compact support in R2\0, with an inversion given as an infinite series. We

will also define the transform in a distributional sense and derive a relationship between

the wavefront set of a distribution and that of its Polar Broken Ray transform. However,

our wavefront set result will be one-sided, since the solution is given as an infinite series.

1.5 Summary of notations

We will make use of the idea of the vector difference of two sets, analogous to the vector

sum of sets. As such, we will adopt the notation

S − T = {u− v |u ∈ S, v ∈ T} , S, T ⊆ Rn,

and use the notation S\T to refer to the usual notion of set difference. Furthermore,

Cartesian products will take precedence over set difference, unions, and intersections.

We also use the notation for lines, rays, and line segments and in Rn:

x+ I~v = {x+ t~v | t ∈ I} ,

for x ∈ Rn, ~v ∈ Sn−1, and I ⊆ R, where I is an interval, whether open, closed, or half-

open. We may also take I to be half-bounded to denote a ray, or all of R for an entire

line.

In a similar manner, we may refer to translates of subsets U ⊆ Rn by a vector ~v as follows:

U + ~v = {x+ ~v |x ∈ U} .
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We denote C0 (X;Y ) as the set of continuous functions defined on some open subset X of

a Banach space with values in Y .

In addition to the usual Leibniz notation for derivatives, we will make other use of derivative

notations. Given Banach spaces V andW , an open subset X ⊆ V , φ : V →W , and x ∈ X,

we take Dφ (x) as the Fréchet derivative of φ at x, and is defined as the continuous linear

operator from V to W satisfying

lim
~v→~0

‖φ (x+ ~v)− φ (x)−Dφ (x) ~v‖
‖~v‖

= 0,

provided the limit exists, in which case we say φ is differentiable at x. We define C1 (X;Y )

as the set of functions φ that are differentiable everywhere, with values in Y ⊆ W , and

moreover, Dφ ∈ C0 (X;L (V,W )). We denote the higher order Fréchet derivatives as

Dkφ (x), and are k-linear operators. Via recursion, we denote Ck (X;Y ) to be the set of

those φ ∈ Ck−1 (X;Y ) for which Dk−1φ is itself C1.

If D ⊆ Rn is closed, then Ck (D;Y ) is the set of those functions defined on D that can be

extended to a function in Ck (X;Y ) for some open neighborhood X of D.

We then denote the set of smooth functions with

C∞ (X;Y ) =
∞⋂
k=0

Ck (X;Y ) .

We then denote Ck0 (X;Y ) as the subset of Ck (X;Y ) of functions with compact support, for

0 ≤ k ≤ ∞. When Y is omitted from the notation, it shall be understood that Y = C. In

contrast to Ck (D;Y ), however, Ck0 (D;Y ) shall denote those functions in Ck (D;Y ) whose

support is compact and bounded away from ∂D.

We will consider multiple notions of differentiation in a direction ~0 6= ~v ∈ V . For

φ ∈ C1 (X;Y ), we will define D~vφ (x) = Dφ (x) ~v, which defines D~v as an operator from

C1 (X;Y ) to C0 (X;Y ). In the setting that V is a subspace of Rn, we will also speak
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weak derivatives, in which we say D~vf ∈ L1
loc (X) is a weak derivative of f ∈ L1

loc (X)

whenever ˆ
X
D~vf (x)φ (x) dx = −

ˆ
X
f (x)D~vφ (x) dx, φ ∈ C∞0 (X) .

Here, integration is done with respect to surface measure if V is a proper subspace.

We denote D ′ (X) as the space of distributions on X. When u ∈ D ′ (X), D~vu is the

distributional derivative of u in the direction ~v, and is defined by D~vu (φ) = −u (D~vφ),

for φ ∈ C∞0 .

With functions defined on or taking values in product spaces (or perhaps both), we will

generalize the notion of a Jacobian matrix by writing

Dφ =



∂V1φ1 ∂V2φ1 . . . ∂VMφ1

∂V1φ2 ∂V2φ2 . . . ∂VMφ2

...
...

. . .
...

∂V1φN ∂V2φN . . . ∂VMφN


to denote the derivative of a function φ = (φ1, φ2, . . . , φN ) ∈ C1 (U ;W ) for U an open

subset of V = V1 × V2 × · · · × VM , and W = W1 ×W2 × · · · ×WN . The entries, ∂Vjφk,

denote partial Fréchet derivatives, and at each point, are continuous linear operators from

Vj to Wk satisfying

lim
Vj3~v→~0

∥∥φk (x+ ~v)− φk (x)− ∂Vjφk (x) ~v
∥∥

‖~v‖
= 0.

We will also use multiindex notation that is used by Hörmander, [5]. A multiindex α =

(α1, α2, . . . , αn) is an n-tuple of nonnegative integers, used in two settings. For x =

(x1, x2, . . . , xn) ∈ Rn, we define xα by

xα = xα1
1 xα2

2 · · ·x
αn
n .
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Given the standard ordered basis {~e1,~e2, . . . ,~en} for Rn, we define

∂αf = (D~e1)α1 (D~e2)α2 · · · (D~en)αn f, |α| =
n∑
k=1

αk,

when such derivatives exist. This notation may also be used in the context of weak

derivatives of functions f defined on an open subset of Rn, or in a distributional sense.

Unless context requires otherwise, ∂αf will be assumed to be a strong derivative.

While distributions are formally functions of test functions, we will make use of both

notations u (φ) and u (Φ (x)), relying on context to differentiate between meanings. For

u ∈ D ′ (X) and φ ∈ C∞0 (X), u (φ) will refer to evaluation of u at the test function φ,

whereas if u ∈ D ′ (Y ), for some open Y ⊆ Rm and Φ ∈ C∞ (X;Y ), then u (Φ (x)) will refer

to the pullback Φ?u ∈ D ′ (X) (given by the composition u ◦ Φ, if u ∈ C∞ (Y )), whenever

such a pullback is possible. If Φ is a surjective local diffeomorphism, we may use Φ−?w to

refer to a distribution u for which w = Φ?u, if such a distribution exists.

If u ∈ D ′ (X) and φ is a function defined on a product space X × Y such that φ (·, y) is a

test function for each y ∈ Y , then ux (φ (x, y)) is interpreted as u acting on a test function

φ (·, y), where y is held as a fixed parameter, and hence, ux (φ (x, y)) itself is a function of

y.

Much as we may use the notation u (Φ (x)) to denote the pullback of a distribution u by

a smooth function Φ, we will also use the more familiar notations

ˆ ∞
0

u (x− t~v) dt,

ˆ ∞
0

u (x− γ (t)) υ (t) dt

to refer convolution of u with distributions J~v, (1.4.2), and Jγ,υ, (1.4.4), respectively.
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2 PRELIMINARIES

2.1 Volterra integral equation of the second kind

We begin with the treatment of the Volterra Integral Equation as given in Tricomi, [8],

and derive some variations. Given h > 0, U = {(x, y) | 0 ≤ y ≤ x ≤ h}, K ∈ L2 (U), λ 6= 0,

and f ∈ L2 ([0, h]), the problem of the Volterra integral equation of the second kind is to

find φ ∈ L2 ([0, h]) such that

φ (x)− λ
ˆ x

0
K (x, y)φ (y) dy = f (x) , 0 ≤ x ≤ h. (2.1.1)

Indeed, a solution exists, and is given by

φ (x) = f (x)− λ
ˆ x

0
H (x, y;λ) f (y) dy,

where H (x, y;λ) is called the resolvant kernel, and is given by

−H (x, y;λ) =
∞∑
ν=0

λνKν+1 (x, y) ,

where Kν is defined recursively by K1 = K, and

Kν+1 (x, y) =

ˆ x

y
Kν (x, u)K (u, y) du.

If we multiply by an arbitrary nonzero constant c and make the substitutions x = h − s,

y = h− t, (2.1.1) becomes

c · φ (h− s)− λc ·
ˆ h

s
K (h− s, h− t)φ (y − t) dt = c · f (h− s) , 0 ≤ s ≤ h,

and if we let ψ (s) = φ (x), Mν (s, t) = cνKν (x, y), G (s, t) = H (x, y), and g (s) = c · f (x),

then we obtain a variation on the Volterra integral equation:

c · ψ (s)− λ
ˆ h

s
M (s, t)ψ (t) dt = g (s) , 0 ≤ s ≤ h, (2.1.2)
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and the solution ψ is given by

ψ (s) = φ (h− s)

= f (h− s)− λ
ˆ h−s

0
H (h− s, y;λ) f (y) dy

= f (h− s)− λ
ˆ h

s
H (h− s, h− t;λ) f (h− t) dt

=
1

c
g (s)− λ

c

ˆ h

s
G (s, t;λ) g (t) dt, 0 ≤ s ≤ h, (2.1.3)

with

−G (s, t;λ) =
∞∑
ν=0

λνKν+1 (h− s, h− t)

=
∞∑
ν=0

λν

cν+1
Mν+1 (s, t) .

Furthermore, observe that

Mν+1 (s, t) = cν+1Kν+1 (h− s, h− t)

= cν+1

ˆ h−s

h−t
Kν (h− s, u)K (u, h− t) du

= cνc

ˆ t

s
Kν (h− s, h− v)K (h− v, h− t) dv

=

ˆ t

s
Mν (s, v)M (v, t) dv.

This leads to the following result:

Proposition 2.1.1. If g ∈ L2 (R+) is supported in [0, h], M ∈ L2 (R+) is supported in

[0, 1], and c and λ are nonzero constants, then there is a solution ψ ∈ L2
loc (R+), also

supported in [0, h], to the equation

c · ψ − λ ·M ? ψ = g, (2.1.4)

which is given by

ψ =
1

c

(
g +

∞∑
ν=1

(
λ

c

)ν
M?ν ? g

)
, (2.1.5)
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where M ? ψ here is understood as the convolution with respect to dilation, i.e.,

M ? ψ (s) =

ˆ ∞
0

M
(s
t

)
ψ (t)

dt

t
,

and M?ν denotes iterated convolution.

Proof. Let h > 0. Since M is supported in [0, 1], we can consider the following Volterra

Equation:

c · ψ (s)− λ
ˆ h

s
M
(s
t

)
ψ (t)

dt

t
= g (s) , 0 ≤ s ≤ h, (2.1.6)

which we know will have a solution provided that
ˆ ∞

0

ˆ ∞
0

∣∣∣∣1tM (s
t

)∣∣∣∣2 ds dt <∞.
Indeed:

ˆ h

0

ˆ h

0

∣∣∣∣1tM (s
t

)∣∣∣∣2 ds dt =

ˆ h

0

ˆ t

0

∣∣∣∣1tM (s
t

)∣∣∣∣2 ds dt
=

ˆ h

0

ˆ 1

0
|M (σ)|2 dσ dt

= h ‖M‖2L2(R+) .

Thus, a solution is given by

ψ (s) =
1

c
g (s)− λ

c

ˆ h

s
G (s, t;λ) g (t) dt, 0 ≤ s ≤ h,

where

−G (s, t;λ) =

∞∑
ν=0

λν

cν+1
Mν+1 (s, t) ,

and Mν is defined recursively by

M1 (s, t) =
1

t
M
(s
t

)
, Mν+1 (s, t) =

ˆ t

s
Mν (s, v) · 1

t
M
(v
t

)
dv.

Defining ψ (s) = 0 for s > h, and recalling that M is supported in [0, 1], (2.1.6) is in fact

the same equation as (2.1.4). Furthermore,

Mν (s, t) =
1

t
M?ν

(s
t

)
.
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Hence,

ψ (s) =
1

c
g (s) +

λ

c

ˆ h

s

∞∑
ν=0

λν

cν+1
· 1

t
M?(ν+1)

(s
t

)
g (t) dt

=
1

c
g (s) +

λ

c

∞∑
ν=0

λν

cν+1
·M?(ν+1) ? g (s)

=
1

c

(
g (s) +

∞∑
ν=1

(
λ

c

)ν
·M?ν ? g (s)

)
, 0 ≤ s ≤ h.

Another consideration we may wish to look at is the possibility that M itself might not

be in L2 (U), but perhaps its restriction to

Uε = {(s, t) | ε ≤ s ≤ t ≤ h}

is in L2 (Uε) for every ε ∈ (0, h). Then we can view (2.1.2) as being equivalent to solving

c · ψ (s)− λ
ˆ h

s
M (s, t)ψ (t) dt = g (s) , ε ≤ s ≤ h, (2.1.7)

which, by translation, is equivalent to solving

c · ψ (s+ ε)− λ
ˆ h−ε

s
M (s+ ε, t+ ε)ψ (t+ ε) dt = g (s+ ε) , 0 ≤ s ≤ h− ε, (2.1.8)

for ψ (s+ ε), for every ε > 0.

2.2 Distributions

In this section, we shall take X ⊆ Rn and Y ⊆ Rm, both open.

The theory of distributions is due to Laurent Schwartz [7]. The presentation we give here

follows that of Lars Hörmander [5]. The idea of distributions is to generalize the notion

of functions to permit analysis that is not possible in the classical setting. For instance,

differential operators are not defined on Lp (X), yet C∞ (X), the space of functions for
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which differential operators may be applied arbitrarily many times, is too small of a class

of functions. Even smaller is C∞0 (X), the space of functions in C∞ (X) with compact

support, and yet, C∞0 (X) offers enough flexibility to be used as a space of test functions

in that given any f ∈ L1
loc (X), then Tf , defined by

Tf (φ) =

ˆ
X
f (x)φ (x) dx, φ ∈ C∞0 (X) , (2.2.1)

defines a linear form on C∞0 (X). Furthermore, the mapping f 7→ Tf is one-to-one, modulo

functions that differ on a set of measure zero. Therefore, the algebraic dual C∞0 (X)?

contains an embedding of L1
loc (X), and therefore also contains an embedding of Lp (X),

for 1 ≤ p ≤ ∞. Furthermore, if f is itself differentiable in at least the weak sense, then

integration by parts tells us that

TD~vf (φ) = −Tf (D~vφ) ,

which inspires defining D~v as an operator on C∞0 (X)? by

D~vu (φ) = −u (D~vφ) , u ∈ C∞0 (X)? , φ ∈ C∞0 (X) . (2.2.2)

Unfortunately, C∞0 (X)? offers no topology, and in fact, is too large for analysis. We

will want to restrict to a subspace of C∞0 (X)? that has a topology in which C∞0 (X) is

embedded, and is dense, yet is not too small. Such a topology would not come from a

norm. Hörmander proposes the following:

Definition 2.2.1 (Hörmander 2.1.1). A distribution u in X is a linear form on C∞0 (X)

such that for every compact set K ⊆ X, there exist constants C and k such that

|u (φ)| ≤ C
∑
|α|≤k

sup
x∈K
|∂αφ (x)| , φ ∈ C∞0 (K) . (2.2.3)

The set of all distributions in X is denoted by D ′ (X). If the same integer k can be used in

(2.2.3) for every K, we say that u is of order ≤ k, and denote the set of such distributions

by D ′k (X). Their union D ′F (X) =
⋃∞
k=0 D ′k (X) is the space of distributions of finite

order.
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For 1 ≤ p ≤ ∞ and k ≥ 0, we define the Sobolev space Wk,p (X) to be the space of

functions f ∈ Lp (X) possessing all k-th order weak derivatives in Lp. In particular, for

each mutliindex α with |α| ≤ k, there is a function ∂αf ∈ Lp (X) for which

ˆ
X
f (x) ∂αφ (x) dx = (−1)|α|

ˆ
X
∂αf (x)φ (x) dx, φ ∈ C∞0 (X) .

One choice of norm on Wk,p (X) is then given by

‖f‖Wk,p =
∑
|α|≤k

‖∂αf‖Lp ,

and with this norm, Wk,p (X) is a Banach space that is continuously embedded in Lp (X).

In particular, u ∈ C∞0 (X)? is a distribution if for every compact subset K of X, u|C∞0 (K)

is a continuous linear form on C∞0 (K) under some Wk,∞ norm.

We use the weak-* topology on D ′ (X). That is, we say uk → u in D ′ (X) if uk (φ)→ u (φ)

for all φ ∈ C∞0 (X).

If u ∈ D ′ (Rn) additionally satisfies the estimate

|u (φ)| ≤ Cβ
∑
|α|≤k

sup
x∈Rn

∣∣∣xβ∂αφ (x)
∣∣∣ , φ ∈ C∞0 (Rn) , (2.2.4)

for all multi-indices β, then u extends continuously to S (Rn), the space of Schwartz

functions, defined as

S (Rn) =

{
φ ∈ C∞ (Rn)

∣∣∣∣ sup
x∈Rn

∣∣∣xβ∂αφ (x)
∣∣∣ <∞, ∀α, β} .

Continuous linear functionals on S (Rn) are called tempered distributions, and we

denote the space of such linear functionals as S ′ (Rn).

The utility of estimate (2.2.3) becomes clear in the proof of the following theorem from

Hörmander:
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Theorem 2.2.2 (Hörmander 2.1.3). If φ ∈ C∞ (X × Y ), where Y is an open set in Rm,

and if there is a compact set K ⊆ X such that φ (x, y) = 0 when x /∈ K, then

y 7→ u (φ (x, y))

is a C∞ function of y if u ∈ D ′ (X) and

∂αy u (φ (x, y)) = u
(
∂αy φ (x, y)

)
.

The proof of this result can be seen by treating φ as smooth function of y, taking values

in C∞0 (X). More specifically, if we let k be the order of u on K, we can identify φ with

an infinitely differentiable map, in the Fréchet sense, from Y into Wk,∞ (X), an argument

which requires verifying that for each y0 ∈ Y , ∂αφ (x, y) → ∂αφ (x, y0) uniformly in x as

y → y0 for each multiindex α. The result then follows via chain rule, using the continuity

requirement of u.

The notation used in the above theorem is due to Hörmander, however, we will hereafter

use the notation ux (φ (x, y)) in place of y 7→ u (φ (x, y)) to denote that u is acting on φ

as a function of x only, holding y as a parameter. Do notice that can slightly weaken the

support requirement on φ specified in Theorem 2.2.2 by only requiring that each y0 ∈ Y

has an open neighborhood to which the restriction of φ still satisfies the above support

requirement.

The usefulness of this result then becomes clear when we see that if φ is itself in C∞0 (X × Y ),

then ux (φ (x, y)) ∈ C∞0 (Y ). This gives meaning to the formula wy (ux (x, y)) when

w ∈ D ′ (Y ). In fact, in view of Theorem 5.1.1 of Hörmander, this very formula defines a

distribution on X×Y , which we call the tensor product of u and w, denoted by u⊗w; it

is furthermore equal to ux (wy (φ (x, y))). The equality of these two formulas is easily seen

as an application of Fubini-Tonelli when both u and w are identified with L1
loc functions.
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As it turns out, beyond the linear structure, we can carry over some ideas from classical

analysis over to the theory of distributions.

2.2.1 Support of a distribution

Motivated by the fact that
´
X f (x)φ (x) dx = 0 for every φ ∈ C∞0 (X\supp (f)), and

supp (f) is the smallest closed set satisfying such property, we can easily extend the defi-

nition of support to distributions. Hörmander first defines the restriction of a distribution

u to an open set Y ⊆ X as being the restriction (in the usual sense) to C∞0 (Y ), before the

definition of support as follows:

Definition 2.2.3 (Hörmander 2.2.2). If u ∈ D ′ (X), then the support of u, denoted

supp (u), is the set of points in X having no open neighborhood to which the restriction

of u is 0.

In other words, the complement of supp (u) is the largest open subset U ⊆ X for which

u (φ) = 0 for all φ ∈ C∞0 (U). We define E ′ (X) as being the set of compactly-supported

distributions on X. This notation is due to Schwartz defining E (X) as the space of C∞

functions with the topology defined by the family of seminorms

φ 7→
∑
|α|≤k

sup
x∈K
|∂αφ (x)| , k ≥ 0,K ⊂⊂ X.

Theorem 2.3.1 from Hörmander then states that the space of compactly-supported dis-

tributions is identical to the dual space of E (X). While in general, D ′ (X) cannot be

embedded in D ′ (Rn), we can embed E ′ (X) inside D ′ (Rn) in a natural way, and as such,

any operators on D ′ (Rn) can act via this embedding on E ′ (X).

The singular support of u, denoted as sing supp (u), is defined as the smallest closed set D

for which u is given by a C∞ function on X\D. That is, there exists f ∈ C∞ (X\D) such
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that

u (φ) =

ˆ
X\D

f (x)φ (x) dx, φ ∈ C∞0 (X\D) .

While distributions are defined as linear forms on C∞0 , distributions with support restric-

tions offer flexibility to be defined as a linear form on a larger space than C∞0 . For instance,

in the case that a distribution u is compactly-supported, it is nearly trivial to show that

u (φ) can be defined for any φ ∈ C∞ (X), by taking u (φ) = u (ψφ) for some ψ ∈ C∞0 (X)

that is equal to 1 on an open neighborhood of supp (u). Such an extension will be unique,

as an alternate choice for ψ can be shown to yield the same extension.

Even if u is not compactly supported, it will be similarly possible to define u (φ) from

only the condition that supp (φ) ∩ supp (u) is compact by defining u (φ) as above, but

instead taking ψ equal to 1 on an open neighborhood of supp (φ) ∩ supp (u). Conse-

quently, this allows us to give meaning to wy (ux (φ (x, y))) for φ ∈ C∞ (X × Y ), when

suppy (ux (φ (x, y))) ∩ supp (w) is compact, as is suppx (φ (x, y)) ∩ supp (u) for all y ∈ Y .

2.2.2 Multiplication

From formula (3.1.2) of Hörmander, one can multiply a distribution u ∈ D ′ (X) by a

smooth function ψ ∈ C∞ (X) by defining (ψu) (φ) = u (ψφ). It is easy to extend to the

case that ψ is only C∞ on an open neighborhood of suppu by replacing ψ with a function

in C∞ (X) that is equal to ψ on supp (u), which then allows us to define the quotient u
ψ

when ψ ∈ C∞ (X) is nonzero on supp (u).

In general, multiplication of two distributions is not defined. However, two distrubtions

may have a well-defined product under some conditions. For instance, if two distributions

have disjoint singular supports, then their product can be defined. Later, wavefront set

analysis will help us establish a weaker condition when the product of two distributions
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can indeed be defined, thereby extending multiplication of distributions past the case of

disjoint singular supports.

2.2.3 Composition with smooth functions

If Φ is a diffeomorphism from X to Y , then for f ∈ L1
loc (Y ), one has

ˆ
X
f (Φ (x))φ (x) dx =

ˆ
Y
f (y)φ

(
Φ−1 (y)

) ∣∣detDΦ−1 (y)
∣∣ dy, φ ∈ C∞0 (X) ,

and so for u ∈ D ′ (Y ), we define Φ?u ∈ D ′ (X) by

Φ?u (φ) = u
(∣∣detDΦ−1

∣∣ · Φ−?φ) , φ ∈ C∞0 (X) .

If we only require Φ be a local diffeomorphism, then we can similarly define Φ?u with

localization methods. Additionally, if Φ is a surjection onto Y , then Φ? is a one-to-one

map from D ′ (Y ) into D ′ (X). Thus, even if Φ is not globally invertible, we may define

Φ−?w for w ∈ D ′ (Y ) as being the distribution u ∈ D ′ (X) satisfying w = Φ?u, if such a

distribution exists. If a distribution w is in the range of Φ?, then one can verify that for

any pair of open sets U and V of X for which the restrictions Φ|U and Φ|V are injective,

and Φ (U) = Φ (V ), we have

w (φ) = w
(∣∣detDΨ−1

∣∣ ·Ψ−?φ) , φ ∈ C∞0 (U) ,

where Ψ = Φ|−1
V ◦Φ|U : U → V is the induced transition map. As it turns out, this condition

is also sufficient for w to be in the range of Φ?, and Φ−?w can also be constructed using

localization methods.

The usefulness of reversing a pullback comes when working in an alternate coordinate

system. For example, if a distribution w ∈ D ′ (X), where

X = {(r, θ) | r > 0, θ ∈ R} ,
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is 2π periodic in θ – that is, w(r,θ) (ψ (r, θ + 2π)) = w (ψ) for ψ ∈ C∞0 (X), then w can

be seen as a distribution in polar coordinates, and be pushed back to a distribution u =

Φ−?w ∈ D ′
(
R2\0

)
in Cartesian coordinates, where Φ (r, θ) = (r cos θ, r sin θ).

Hörmander takes composition further with Theorem 6.1.2 by defining Φ?u when DΦ (x)

is merely surjective for every x ∈ X. This, of course, requires n ≥ m. Such a construction

requires we find a smooth function Ψ : X → Rn−m so that Φ⊕Ψ is a local diffeomorphism,

and then we define

Φ?u = (Φ⊗Ψ)? (u⊗ 1) ,

where 1 is identified as the constant map defined on Rn−m.

In the case that m > n, Φ?u may be defined in some cases, but requires analysis of

wavefront sets.

2.2.4 Convolution

When f ∈ L1
loc (Rn) and φ ∈ C∞0 (Rn), the convolution f ? φ is defined by

f ? φ (x) =

ˆ
Rn
f (y)φ (x− y) dy,

and so in keeping with this formula, Hörmander defines the convolution u ? φ between

u ∈ D ′ (Rn) and φ ∈ C∞0 (Rn) in section 4.1 with

u ? φ (x) = uy (φ (x− y)) .

Theorem 4.1.1 from Hörmander establishes that this function is C∞ (Rn), with D~v (u ? φ) =

D~vu ? φ = u ?D~vφ, which follows immediately from Theorem 2.2.2. Furthermore, we also

have supp (u ? φ) ⊆ supp (u) + supp (φ). Theorem 4.1.2 also establishes that convolution

with a smooth function also satisfies an associative property, in the sense that if we also

have ψ ∈ C∞0 (Rn), then (u ? φ) ? ψ = u ? (φ ? ψ).
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In Theorem 4.2.1, Hörmander then establishes that for v, w ∈ E ′ (Rn), if either v or w has

compact support, a unique distribution u exists satisfying

u ? φ = v ? (w ? φ) , φ ∈ C∞0 (Rn) , (2.2.5)

which is then defined as the convolution of v and w, denoted by u = v ? w. In particu-

lar, by resolving u ? {φ (−x)}, we recover an explicit formula for the convolution of two

distributions:

u (φ) = vx (wy (φ (x+ y))) . (2.2.6)

This formula is found in Chapter 5 of Schwartz. Theorem 4.1.5 of Hörmander then es-

tablishes by construction through convolutions that C∞0 (X) is dense in D ′ (X) with the

weak-* topology.

The Dirac distribution, δ, is defined by δ (φ) = φ (0). It is a quick computation to verify

that δ ? w = w ? δ = w for all w ∈ D ′ (Rn).

While Hörmander requires either v or w to be compactly-supported to define v ? w,

Schwartz weakens the support restriction in Chapter 6, Section 5, to only require that

(K − supp (w)) ∩ supp (v) be compact for every compact set K. This weaker support

condition ensures that for any φ ∈ C∞0 (Rn),

suppx (wy (φ (x+ y))) ⊆ supp (φ)− supp (w) ,

has a compact intersection with supp (v).

It should be observed that it is not enough for ({x0} − supp (v)) ∩ supp (w) to be compact

for every x0 ∈ Rn, as the following example illustrates:

Example 2.2.4. Consider the distribution w on R2, defined by

w (φ) =

ˆ
R
φ (x, ex) dx, φ ∈ C∞0

(
R2
)
.
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If we were to convolve w with J~e1 , where ~e1 = (1, 0) in the xy plane, we would con-

sider that the support of ({x0} − supp (w)) ∩ supp (J~e1) is at most a single point, but

(K − supp (w)) ∩ supp (J~e1) fails to be compact if K contains some open set intersecting

the x-axis. The convolution, according to (2.2.6), would then be

w ? J~e1 (φ) = w(x,y)

(ˆ ∞
0

φ (x+ t, y) dt

)
=

ˆ
R

ˆ ∞
0

φ (x+ t, ex) dt dx

=

ˆ
R

ˆ ∞
x

φ (t, ex) dt dx

=

ˆ ∞
0

ˆ ∞
ln y

1

y
· φ (x, y) dx dy,

which fails to converge if φ does not identically vanish on the x-axis.

In view of composing a distribution with smooth functions, if we composed w with a

translation, e.g., Φ?w = w (x− x0), it is easy to verify that

Φ? (v ? w) = Φ?v ? w = v ? Φ?w.

2.2.5 The Fourier transform

The Fourier transform of a compactly-supported distribution u is defined as

û(~ξ) = ux

(
e−ix·

~ξ
)
. (2.2.7)

The right-hand side in fact is defined as an entire function of ~ξ ∈ Cn, and is known as the

Fourier-Laplace transform of u (Hörmander Theorem 7.1.14). If u is compactly-supported

with order k, then

∣∣∣û(~ξ)∣∣∣ ≤ C1

∥∥∥eix·~ξ∥∥∥
Wk,∞(Rn)

≤ C2

(
1 + ‖~ξ‖

)k
, (2.2.8)
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for some constants C1 and C2. This is quite a weakening of the Riemann-Lebesgue lemma

regarding the decay of Fourier transforms of L1 functions at infinity. As can be expected,

the Fourier transform of compactly-supported distributions satisfies many of the properties

of the Fourier transform operator on L2 (Rn), including the convolution theorem, as seen

by

û ? w
(
~ξ
)

= (u ? w)x

(
e−ix·

~ξ
)

= ux

(
wy

(
e−i(x+y)·~ξ

))
= ux

(
e−ix·

~ξwy

(
e−iy·

~ξ
))

= ux

(
e−ix·

~ξ
)
wy

(
e−iy·

~ξ
)

= û
(
~ξ
)
ŵ
(
~ξ
)
,

for u,w ∈ E ′ (Rn).

Inversion must be done in a distributional sense, however. Since the Fourier transform

maps S (Rn) to itself, we can define the Fourier transform on tempered distributions in a

distributional sense by

û (φ) = u(φ̂), u ∈ S ′ (Rn) , φ ∈ S (Rn) ,

which is compatible with (2.2.7) when u ∈ E ′ (Rn). The inverse Fourier transform is thusly

defined in a similar manner, and can be applied to û.

A feature of the Fourier transform which will prove useful later is the following symmetry

result:

Theorem 2.2.5. If w ∈ E ′ (Rn) has odd symmetry across a hyperplane {x · ~v = t0} for

some fixed ~v ∈ Sn−1 and t0 ∈ Rn, i.e.,

wx (φ (x̄+ (2t0 − t) ~v)) = −w (φ) , φ ∈ C∞0 (Rn) ,

where we write x = x̄+ t~v for x̄ ∈ ~v⊥ and t ∈ R, then ŵ vanishes on ~v⊥.



26

We will omit the proof of this result.

2.3 Wavefront Sets

The idea of the wavefront set is to not only describe the locations of singularities of

u ∈ D ′ (X), but also the directions of these singularities. If x0 /∈ sing supp (u), then

one can choose an open neighborhood U of x0 for which u is C∞ on U , and then choose

φ ∈ C∞0 (U) with φ (x0) 6= 0. It would then follow that φu ∈ C∞0 (Rn), and as such, φ̂u

rapidly decays on Rn – for each N ≥ 0, there is a CN ≥ 0 such that:∣∣∣φ̂u(~ξ)∣∣∣ ≤ CN (1 + ‖~ξ‖2
)−N/2

, ~ξ ∈ Rn. (2.3.1)

If x ∈ sing supp (u), then the above estimate fails for all choices of φ ∈ C∞0 (X) where

φ (x0) 6= 0. The wavefront set describes on which conic subset the estimate fails for at

least one value of N .

Definition 2.3.1 (Wavefront set). Let u ∈ D ′ (X). For x0 ∈ X and nonzero ~ξ0 ∈ Rn,

we say
(
x0, ~ξ0

)
/∈ WF (u) if there exists a φ ∈ C∞0 (Rn) with φ (x0) 6= 0 and open conic

(closed under positive scaling) neighborhood Γ of ~ξ0 such that the estimate (2.3.1) is valid

for ~ξ ∈ Γ, for all N .

This defines WF (u) as a subset of X ×Rn\0. Alternately,
(
x0, ~ξ0

)
∈WF (u) if for every

φ ∈ C∞0 (Rn) with φ (x0) 6= 0 and open conic neighborhood Γ of ~ξ0, the estimate (2.3.1)

fails on Γ for some N .

An alternate characterization of the wavefront set is that
(
x0, ~ξ0

)
∈ WF (u) if and only

if for every open neighborhood U of x0 and open conic neighborhood Γ of ~ξ0, there exists

φ ∈ C∞0 (U) such that (2.3.1) fails on Γ for some N .
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Some initial results following from this definition are that

WF (ψu) ⊆ suppψ × Rn ∩ WF (u) ,

WF (u± w) ⊆WF (u) ∪ WF (w) ,

whenever ψ ∈ C∞ (Rn), u,w ∈ D ′ (Rn). The estimate (2.2.8) is essential in proving the

latter of these two results.

Since the definition of conic is closure with respect to positive scaling, it follows from this

definition that wavefront set of a distribution is invariant under positive scaling of the

second component. However, if a distribution is real (in the sense of mapping real-valued

test functions into R), then we have invariance with respect to negative scaling as well.

Of greater interest is how partial differential operators and their inverses (when they exist)

alter wavefront sets. Indeed, when P is a linear partial differential operator with coeffi-

cients in C∞, then WF (Pu) ⊆WF (u), Hörmander formula (8.1.11), a corollary from the

following result:

Theorem 2.3.2. For u ∈ D ′ (X), WF (D~vu) ⊆WF (u).

Proof. Suppose
(
x0, ~ξ0

)
/∈ WF (u). Then there is an open neighborhood U of x0 such

that ψ̂u is rapidly decaying in some open conic neighborhood of ~ξ0 for all ψ ∈ C∞0 (U), In

particular, choose ψ to be equal to one on some smaller open neighborhood V of x0. Now

choose φ ∈ C∞0 (V ) with φ (x0) 6= 0. Then

φD~v (ψu) = φψD~vu,

and so we then have

F (φψD~vu) = φ̂ ?
{
i~v · ~ξ ψ̂u

}
.

Since ψ̂u rapidly decays on open conic neighborhood of ~ξ0, so must i~v · ~ξ ψ̂u, and likewise,

so must the convolution φ̂ ?
{
i~v · ~ξ ψ̂u

}
.
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While the above result indicates that linear partial differential operators do not add sin-

gularities, the following result describes their capacity to remove them:

Theorem 2.3.3 (Microlocal property [5]). If P is a differential operator of order m with

C∞ coefficients on a manifold X, then

WF (u) ⊆ CharP ∪ WF (Pu) , u ∈ D ′ (X) ,

where the characteristic set CharP is defined by

CharP =
{(
x, ~ξ
)
∈ T ? (X)

∣∣∣Pm (x, ~ξ) = 0
}
,

and Pm is the principal symbol of P .

If P is merely a directional derivative, i.e., P = D~v, then Pm
(
x, ~ξ
)

= i~ξ · ~v, and so

CharP = Rn × ~v⊥.

Hence, D~v may remove elements from the wavefront set of a distribution u whose second

components are orthogonal to the direction of differentiation.

As for antidifferentiation, we will want to make use of the following theorem:

Theorem 2.3.4 (Hörmander 8.1.5). Let V be a linear subspace of Rn and u = u0 dS,

where u0 ∈ C∞ (V ) and dS is Euclidean surface measure (on V ). That is,

u (φ) =

ˆ
V
u0 (x)φ (x) dS (x) .

Then

WF (u) ⊆ supp (u)×
(
V ⊥\0

)
.

Proof. If χ ∈ C∞0 (Rn) , then

FRn (χu)
(
~ξ + ~η

)
=

ˆ
V
χ (x)u0 (x) e−ix·(

~ξ+~η) dS (x)
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=

ˆ
V
χ (x)u0 (x) e−ix·

~ξ dS (x)

= FV (χu0)
(
~ξ
)
,

for ~ξ ∈ V , ~η ∈ V ⊥. Since χu0 ∈ C∞0 (V ), FV (χu0) decays rapidly in ~ξ. Thus, if Γ is an

open cone in Rn, χ|V 6= 0, and
´
V χu0 dS 6= 0, then FRn (χu) will rapidly decay on Γ if

and only if Γ ∩ V = ∅.

The consequence of this result is the following:

Theorem 2.3.5. The wavefront set of J~v is given by

WF (J~v) = {0} × (Rn\0) ∪ R+~v ×
(
~v⊥\0

)
. (2.3.2)

Proof. We note that J~v is equal to Euclidean line measure on V = R~v on the half-space

H = {x |x · ~v > 0}. Hence,

WF (J~v) ∩ H × Rn = R+~v ×
(
~v⊥\0

)
.

Meanwhile, since δ0 = D~vJ~v, {0} × (Rn\0) ⊆ WF (J~v), and since the only point of

supp (J~v) outside of H is at the origin, all of the elements of WF (J~v) thus accounted for,

and so

WF (J~v) = {0} × (Rn\0) ∪ R+~v ×
(
~v⊥\0

)
.

Since J~v is a fundamental solution to D~v, our interest in J~v is in use as a convolution

kernel, and so formula (8.2.16) from Hörmander will be necessary:

WF (k ? u) ⊆
{(
x+ y, ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (k) ,
(
y, ~ξ
)
∈WF (u)

}
. (2.3.3)

Applying this result to J~v, we obtain the following:
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Theorem 2.3.6. For u ∈ D ′ (Rn) for which supp (u) ∩ (K − R≥0~v) is compact for every

compact set K,

WF (J~vu) ⊆WF (u) ∪
{(
x+ t~v, ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (u) , ~ξ ∈ ~v⊥, t > 0
}
.

We will later give a demonstration of this result independent from Hörmander (8.2.16) in

Chapter 3.

It will become necessary to perform analysis in alternate coordinates in some circum-

stances. Recall that we define composition Φ?u when u ∈ D ′ (Y ), Φ ∈ C∞ (X;Y ), and

DΦ (x) is surjective for all x ∈ X. Using wavefront sets, it is possible to extend composi-

tion further. Suppose Γ ⊆ X × Rn\0 is closed, and conic in the second component. We

then define the space

D ′Γ (X) =
{
u ∈ D ′ (X)

∣∣WF (u) ⊆ Γ
}
,

with which we then assign a topology through application of the following result:

Proposition 2.3.7 (Hörmander 8.2.1). A distribution u ∈ D ′ (X) is in D ′Γ (X) if and

only if for every φ ∈ C∞0 (X) and closed cone V ⊆ Rn with

Γ ∩ supp (φ)× V = ∅ (2.3.4)

we have

sup
~ξ∈V

∥∥∥~ξ∥∥∥N ∣∣∣φ̂u(~ξ)∣∣∣ <∞, N = 1, 2, . . . .

We then define a topology on D ′Γ (X) in which we say

Definition 2.3.8 (Hörmander 8.2.2). For a sequence uj ∈ D ′Γ (X), we shall say that

uj → u in D ′Γ (X) if and only if

uj → u in D ′ (X) (weakly)
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lim
j→∞

sup
~ξ∈V

∥∥∥~ξ∥∥∥N ∣∣∣φ̂u(~ξ)− φ̂uj (~ξ)∣∣∣ = 0,

for N = 1, 2, . . . if φ ∈ C∞0 (X) and V is a closed cone in Rn such that (2.3.4) is valid.

Hormander Theorem 8.2.3 then implies that C∞0 (X) is dense in D ′Γ (X) with respect to

this topology. We may now define composition of a distribution with a smooth function

in a more general setting.

Theorem 2.3.9 (Hörmander 8.2.4). Let X and Y be open subsets of Rm and Rn respec-

tively and let f : X → Y be a C∞ map. Denote the set of normals of the map by

Nf =
{

(f (x) , ~η) ∈ Y × Rn
∣∣∣Df (x)T ~η = ~0

}
. (2.3.5)

Then the pullback f?u can be defined in one and only one way for all u ∈ D ′ (Y ) with

Nf ∩ WF (u) = ∅ (2.3.6)

so that f?u = u ◦ f when u ∈ C∞ and for any closed conic subset Γ of Y × Rn\0 with

Γ ∩ Nf = ∅ we have a continuous map f? : D ′Γ (Y )→ D ′f?Γ (X),

f?Γ =
{(
x,Df (x)T ~η

) ∣∣∣ (f (x) , ~η) ∈ Γ
}
. (2.3.7)

In particular we have for every u ∈ D ′ (Y ) satisfying (2.3.6)

WF (f?u) ⊆ f?WF (u) .

Note that if f is a diffeomorphism, then the above wavefront set inclusion can be replaced

with equality.
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3 DISTRIBUTIONAL ANTIDERIVATIVES AND CONVOLUTIONS
WITH DISTRIBUTIONS GIVEN BY LINE INTEGRALS

3.1 The distributional antiderivative

3.1.1 Definition

We may begin by extending the idea of directional antiderivatives to distributions, contin-

gent on a support restriction found in subsection 2.2.4. In particular, given ~v ∈ Sn−1, we

want to focus on the particular directional antiderivatives of the form

J~vf (x) =

ˆ ∞
0

f (x− t~v) dt, x ∈ Rn.

Definition 3.1.1 (Distributional antiderivative). Let u ∈ D ′ (Rn), and assume

supp (u) ∩ (K − R≥0~v) ⊂⊂ Rn, ∀K ⊂⊂ Rn. (3.1.1)

Then we define J~vu = J~v ? u. We may also denote J~vu with the more familiar notation

ˆ ∞
0

u (x− t~v) dt. (3.1.2)

Hence

J~vu (φ) = ux

(ˆ ∞
0

φ (x+ t~v) dt

)
= u (J−~vφ) .

We note that supp (J−~vφ) ⊆ supp (φ) − R≥0~v, and so u (J−~vφ) is defined in view of the

support hypothesis on w. Furthermore, we will make (3.1.1) an implicit assumption of

arbitrarily chosen distributions from D ′ (Rn) for the remainder of this section.
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3.1.2 Microlocal analysis of the distributional antiderivative operator

We now prove a series of results necessary to establish a relationship between WF (u) and

WF (J~vu).

Proposition 3.1.2. Let U ⊆ Rn be open and assume U is invariant under translation in

the direction −~v. That is, U − t~v ⊆ U for t ≥ 0. If u,w ∈ D ′ (Rn) are equal on U , then

J~vu = J~vw are equal on U .

Proof. Let φ ∈ C∞0 (U). Then by the assumed translation invariance of U , supp (J−~vφ) ⊆

U . Thus, u (J−~vφ) = w (J−~vφ), giving us our desired result.

Convention 3.1.3. For x ∈ Rn, we write x = x̄+ t~v for x̄ ∈ ~v⊥ and t ∈ R.

Proposition 3.1.4. Let t0 ∈ R, assume w ∈ D ′ (Rn) has odd symmetry across the hyper-

plane {t = t0}. Then J~vw has even symmetry across are hyperplane {t = t0}.

Proof. First, we note that due to symmetry, a stronger support restriction than (3.1.1)

holds in that we may replace t ≥ 0 with t ∈ R. Furthermore, given the odd symmetry, if φ

is any C∞ (Rn) function whose support projected onto ~v⊥ is compact, and D~vφ = 0, then

w (φ) = 0. Then for arbitrary φ ∈ C∞0 (Rn), we observe

J~vwx (φ (x̄+ (2t0 − t) ~v)) = wx (J−~v {φ (x̄+ (2t0 − t) ~v)})

= wx

(ˆ ∞
0

φ (x̄+ (2t0 − t− s) ~v) ds

)
= −wx

(ˆ ∞
0

φ (x̄+ (t− s) ~v) ds

)
= −wx

(
X~vφ (x̄)−

ˆ ∞
0

φ (x̄+ (t+ s) ~v) ds

)
= −wx

(
−
ˆ ∞

0
φ (x̄+ (t+ s) ~v) ds

)
= −w (−J−~vφ)
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= J~vw (φ) .

Here, X~vφ ∈ C∞0
(
~v⊥
)
denotes the X-ray transform of φ, defined by

X~vφ (x̄) =

ˆ
R
φ (x̄+ s~v) ds, x̄ ∈ ~v⊥.

We are now in a position to establish a simple relationship betweenWF (u) andWF (J~vu).

While Theorem 2.3.3 implies that J~v will extend the wavefront set of a distribution by

at most Rn ×
(
~v⊥\0

)
, the following result states that J~vu will not contain an element

(x0, ~η0) ∈ Rn ×
(
~v⊥\0

)
in its wavefront set if WF (w) omits Rn × {~η0} altogether.

Theorem 3.1.5. Let u ∈ D ′ (Rn), and ~η0 ∈ ~v⊥. If

WF (u) ∩ Rn × {~η0} = ∅,

then

WF (J~vu) ∩ Rn × {~η0} = ∅.

Proof. Let x0 = x̄0 + t0~v ∈ Rn, where x̄0 ∈ ~v⊥, and t0 ∈ R. Now let U be an open

neighborhood of x0 that is invariant under translation in the direction −~v, and ψ ∈

C∞ (Rn) be chosen so that ψ is equal to 1 on U . Furthermore, we may both choose U and

ψ so that supp (u) ∩ supp (ψ) is compact, and that supp (ψ) lies in some open half space

{t < t1} for some t1 > t0. We then construct a distibution w that is equal to u on U and

has odd symmetry across {t = t1} by

w (φ) = (ψu)x (φ (x)− φ (x̄+ (2t1 − t) ~v)) .

Then J~v (ψw) = J~vw = J~vu on X, and furthermore, both w and J~vw are compactly

supported, and

WF (w) ∩ Rn × {~η0} = ∅.
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Because of the odd symmetry of w across the plane {t = t1}, ŵ vanishes on ~v⊥, and in

fact, we have

iτ Ĵ~vw (~η + τ~v) = ŵ (~η + τ~v) , ~η ∈ ~v⊥, τ ∈ R.

Thus,

Ĵ~vw (~η + τ~v) =


ŵ(~η+τ~v)

iτ , if τ 6= 0,

−iD~vŵ (~η) , if τ = 0,

for ~η ∈ ~v⊥ and τ ∈ R. The case τ = 0 comes from an application of l’Hôpital’s rule.

However, −iD~vŵ = −t̂w, and:

WF (−tw) ⊆WF (w) ,

so −iD~vŵ
(
~ξ
)

decays rapidly in an open conic neighborhood Γ of ~η0. We may assume

without loss of generality that Γ is chosen to be convex in τ , i.e., if ~η + τk~v ∈ Γ for

k = 1, 2, and τ1 < τ2, then ~η + τ~v ∈ Γ for τ1 ≤ τ ≤ τ2. In particular, we can set

Γ =
{
σ~η0 + ~ξ + τ~v : σ, τ > 0, ~ξ ∈ {~η0, ~v}⊥ ,max

{∥∥∥~ξ∥∥∥ , |τ |} < εσ
}
,

for some ε > 0 sufficiently small. Then for each N ≥ 0, we can choose CN so that

|D~vŵ (~η + τ~v)| ≤ CN
(

1 + ‖~η‖2 + τ2
)−N/2

, ~η ∈ ~v⊥, τ ∈ R, ~η + τ~v ∈ Γ.

We then deduce a bound on ŵ, performing integration by parts along the way. For τ > 0,

consider:

|ŵ (~η + τ~v)| ≤ CN
ˆ τ

0

(
1 + ‖~η‖2 + t2

)−N/2
dt

= CN

ˆ τ

0

(
1 + ‖~η‖2 + t2

)−N/2
· ∂
∂t
{t} dt

= CN

(
τ
(

1 + ‖~η‖2 + τ2
)−N/2

−
ˆ τ

0

∂

∂t

{(
1 + ‖~η‖2 + t2

)−N/2}
· t dt

)
= CN

(
τ
(

1 + ‖~η‖2 + τ2
)−N/2

+N

ˆ τ

0
t2
(

1 + ‖~η‖2 + t2
)−N/2−1

dt

)
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≤ CN
(
τ
(

1 + ‖~η‖2 + τ2
)−N/2

+Nτ

ˆ τ

0
t
(

1 + ‖~η‖2 + t2
)−N/2−1

dt

)
= CN

(
2τ
(

1 + ‖~η‖2 + τ2
)−N/2

− τ
(

1 + ‖~η‖2
)−N/2)

≤ 2CNτ
(

1 + ‖~η‖2 + τ2
)−N/2

.

A similar estimate will be obtained in the case τ < 0, and will give us the following bound

on ŵ:

|ŵ (~η + τ~v)| ≤ 2CN |τ |
(

1 + ‖~η‖2 + τ2
)−N/2

, ~η ∈ ~v⊥, τ ∈ R, ~η + τ~v ∈ Γ.

It then follows immediately that∣∣∣Ĵ~vw (~η + τ~v)
∣∣∣ ≤ 2CN

(
1 + ‖~η‖2 + τ2

)−N/2
, ~η ∈ ~v⊥, τ ∈ R, ~η + τ~v ∈ Γ.

As this is true for arbitrary N ≥ 0, this proves that (x0, ~η0) /∈ WF (J~vw), therefore,

(x0, ~η0) /∈WF (J~vu). Since x0 was chosen arbitrarily, we have

WF (J~vu) ∩ (Rn × {~η0}) = ∅.

The above result implies that the only way J~vw can include an element (x0, ~η0) ∈ Rn×~v⊥

in its wavefront set is if WF (w) itself already contains some element of Rn × {~η0}. The

following result further refines the previous result by describing a necessary condition on x0

in order for J~vw to contain (x0, ~η0) in its wavefront set. Intuition tells us that (x0 − t~v, ~η0)

must already belong to the wavefront set of w for some t ≥ 0.

Proposition 3.1.6. Let U ⊆ Rn be open and assume U is invariant under translation in

the direction −~v, and ~η0 ∈ ~v⊥. If

WF (u) ∩ U × {~η0} = ∅, (3.1.3)

then

WF (J~vu) ∩ U × {~η0} = ∅.
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Proof. Let U? be an open subset of U whose closure is entirely contained in U , and is also

closed under translation in the direction −~v, and choose a ψ ∈ C∞ (U) that is equal to one

on U?. Then ψu = u on U?, so J~v (ψu) = J~vu, and in fact, we also have ψJ~vu = J~vu on

U?. Furthermore, (3.1.3) implies

WF (ψu) ∩ Rn × {~η0} = ∅,

and so

WF (J~v (ψu)) ∩ Rn × {~η0} = ∅.

We then have

WF (J~vu) ∩ U? × {~η0} = WF (J~v (ψu)) ∩ U? × {~η0}

⊆WF (J~v (ψu)) ∩ Rn × {~η0}

= ∅.

Since U? was arbitrary, and each x ∈ U has such an open neighborhood U?, we can deduce

that

WF (J~vu) ∩ U × {~η0} = ∅.

We now prove the primary result of this section.

Theorem 3.1.7 (Propagation of singularities of the distributional antiderivative). Let

u ∈ D ′ (Rn). Then

WF (J~vu) ⊆WF (u) ∪
{

(x+ t~v, ~η)
∣∣∣ (x, ~η) ∈WF (u) , ~η ∈ ~v⊥, t ≥ 0

}
. (3.1.4)

Proof. For each ~η ∈ ~v⊥, define

V~η =
⋃

(x,~η)∈WF (u)

(x+ R≥0~v) , U~η = V C
~η .
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Since D~vJ~vu = u, we can start with

WF (J~vu) ⊆WF (u) ∪ Rn ×
(
~v⊥\0

)
. (3.1.5)

For each fixed ~η0 ∈ ~v⊥, V~η0 is invariant under translations in the direction ~v, and further-

more is closed. To show that V~η0 is closed, choose a sequence {xk + tk~v}k∈N in V~η0 that

converges to some L ∈ Rn. We will show that L ∈ V~η0 . Setting

K = {xk + tk~v | k ≥ 0},

we obtain a compact set for which xk ∈ supp (u) ∩ (K − R≥0~v). The assumption made

in (3.1.1) requires this intersection to be compact, and as such, {xk}k∈N must have a

convergent subsequence, with limit x ∈ supp (u) ∩ (K − R≥0~v). The corresponding sub-

sequence of {tk}k∈N would then converge to a limit t ≥ 0 so that t~v = L−x. Furthermore,

(xk, ~η0) ∈ WF (u), and as WF (u) is closed, we must also have (x, ~η0) ∈ WF (u), and so

L = x+ t~v ∈ V~η0 .

Thus, U~η0 is open and invariant under translations in the direction −~v. Furthermore,

WF (u) ∩ U~η0 × {~η0} = ∅,

and so by Theorem 3.1.6,

WF (J~vu) ∩ U~η0 × {~η0} = ∅. (3.1.6)

Therefore, if (x0, ~η0) ∈ WF (J~vu) \WF (u), then ~η0 ∈ ~v⊥, and (3.1.6) requires x0 /∈ U~η0 ,

and so (x0, ~η0) ∈ V~η0 × {~η0}. Thus,

WF (J~vu) \WF (u) ⊆
⋃
~η∈~v⊥

V~η × {~η}

=
⋃
~η∈~v⊥

⋃
(x,~η)∈WF (u)

(x+ R≥0~v)× {~η}

=
{

(x+ t~v, ~η)
∣∣∣ (x, ~η) ∈WF (u) , ~η ∈ ~v⊥, t ≥ 0

}
.
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Hence, singularities are propagated along rays in the direction of ~v, starting at existing

singularities for which the direction component ~ξ0 is orthogonal to ~v. As an example, if we

consider a distribution u whose wavefront set consists of a smooth curve, along with some

of its normal vectors, singularities are propagated only from places where ~v is tangent to

the curve.

�v

FIGURE 3.1: Visualisation of
WF (u), and possible extent of
WF (J~vu) \WF (u).

Figure 3.1 illustrates the propagation of singularities

result for J~v. Showing WF (u) in blue, we see the

maximum possible extent of WF (J~vu) \WF (u) is

given in green. However, WF (J~vu) \WF (u) need

not be the maximum possible extent of propagation.

In fact, propagation may come to a halt along the

ray, and intuition would tell us that such termina-

tion would happen only at another point at which

u has a singularity corresponding to the direction

of integration. In other words, given a point x0

and ~η0 ∈ ~v⊥, WF (u) must contain the endpoints

of each connected component of the intersection of

WF (J~vu) with an embedding of the real line (x0 + R~v)× {~η0}.

Such a result would supplement our main result of this section. To show this result, we

begin with the following proposition:

Proposition 3.1.8. Let u ∈ D ′ (Rn), ~η0 ∈ ~v⊥, and U0 be a bounded open set, t1 > 0, and

Ut = U0 + t~v, t ∈ R,

U =
⋃

0≤t≤t1

Ut.

If

WF (J~vu) ∩ U0 × {~η0} = ∅, (3.1.7)
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and

WF (u) ∩ U × {~η0} = ∅, (3.1.8)

then

WF (J~vu) ∩ U × {~η0} = ∅. (3.1.9)

Proof. We may assume without loss of generality that U0 is convex, otherwise, we can

apply the following argument to every convex open subset of U0. Let U?0 be an open set

whose closure is contained in U0, then define U? in much the same way as U . Now let

ψ ∈ C∞0 (U) be equal to 1 on U?. Consider the distributional derivative

D~v (ψ · J~vu) = D~vψ · J~vu+ ψ · u.

Since J~vψ vanishes on U?, we have D~v (ψ · J~vu) = u on U?, and since

WF (u) ∩ U? × {~η0} ⊆WF (u) ∩ U × {~η0} = ∅,

we have

WF (D~v (ψ · J~vu)) ∩ U? × {~η0} = ∅.

Furthermore, since

WF (J~vu) ∩ U0 × {~η0} = ∅,

it must also follow that

WF (D~v (ψ · J~vu)) ∩ U0 × {~η0} = ∅,

and so

WF (D~v (ψ · J~vu)) ∩ (U0 ∪ U?)× {~η0} = ∅.

We can replace U0 ∪ U? with
⋃
t≤0 Ut ∪ U?, as that introduces no points that are inside

the support of ψ (hence the requirement that U0 be convex), and is also invariant under

translation in the direction −~v, and so we again apply (3.1.5) to obtain:

WF (ψ · J~vu) ∩ (U0 ∪ U?)× {~η0} = ∅.
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In particular,

WF (J~vu) ∩ U? × {~η0} = ∅,

and since U?0 was arbitrary, we can replace U? with U :

WF (J~vw) ∩ U × {~η0} = ∅.

We then go on to prove the following:

Theorem 3.1.9. Let (x0, ~η0) ∈ WF (u) with ~η0 ∈ ~v⊥, and assume (x0 + I~v)× {~η0} is a

connected component of WF (J~vu) ∩ (x0 + R~v) × {~η0}, where either I = [tmin, tmax] or

[tmin,∞). Then

(x0 + tmin~v, ~η0) ∈WF (u) ,

and in the bounded case,

(x0 + tmax~v, ~η0) ∈WF (u) .

Proof. We will focus efforts on proving the first inclusion. Choose sequence tk, increasing

to tmin, so that (x0 + tk~v, ~η0) /∈ WF (J~vu). For each k, we can place x0 + tk~v inside an

open neighborhood U0, with diameter less than 1
k , so that (3.1.7) holds. However, (3.1.9)

fails when we take

U =
⋃

0≤t≤tmin−tk

Ut,

and so WF (u) ∩ U × {~η0} is non-empty. In particular, we can find (xk, ~η0) ∈WF (u) ∩

Usk × {~η0} for some sk between 0 and tmin − tk. We then notice that

‖x0 + tmin~v − xk‖ ≤ tmin − tk + sk + ‖(x0 + (tk + sk) ~v)− xk‖

≤ tmin − tk + sk +
1

k
,

which converges to 0 as k → ∞. Hence, xk → x0 + tmin~v, and as WF (u) is a closed set,

we must conclude that (x0 + tmin~v, ~η0) ∈WF (u).
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To obtain the inclusion of (x0 + tmax~v, ~η0), we may repeat the above argument in terms

of J−~v, using a cutoff function as needed.

An implication of the above result is that if (x0, ~η0) ∈ WF (J~vu) \WF (u), which itself

requires that ~η0 ∈ ~v⊥, and WF (u) ∩ (x0 + I~v)× {~η0} is empty for some open interval I

containing 0 in R, then (x0 + I~v) × {~η0} ⊆ WF (J~vu). This result can be seen as a case

of Theorem 8.3.3’ from Hörmander.

3.2 Convolution of distributions with distributions given by (weighted)
curve integrals

3.2.1 Definition

Now that we have given meaning to the integral (3.1.2), we now wish to give meaning to

the following integral: ˆ ∞
0

u (x− γ (t)) υ (t) dt, (3.2.1)

given γ ∈ C∞ ([0,∞) ;Rn) and positive-valued υ ∈ C∞ ([0,∞) ,R), with γ (0) = 0, γ′ (t) 6=

0, and ‖γ (t)‖ → ∞ as t→∞. It is necessary to investigate such integrals in order to give

a distributional meaning to the Polar Broken Ray transform. In particular, it will help

to understand the meaning such integrals in order to give meaning to, and investigate the

wavefront set of

Q2f (s~σ) =

ˆ ∞
0

f (s~σ + tA~σ) dt.

We will then extend Theorem 3.1.7 to a more general result for (3.2.1).

Definition 3.2.1. The integral (3.2.1) is defined as the convolution of u with the distri-

bution Jγ,υ defined by

Jγ,υ (φ) =

ˆ ∞
0

φ (γ (t)) υ (t) dt,
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and denoted as Jγ,υu, subject to the support restriction

supp (u) ∩ (K − {γ (t) | t ≥ 0}) ⊂⊂ Rn, ∀K ⊂⊂ Rn. (3.2.2)

3.2.2 Microlocal analysis of Jγ,υ

We will employ the use of pullbacks so that we may use the wavefront set results from the

previous section. Extend γ and υ to C∞ maps defined on R, and supported in (−ε,∞) for

some ε > 0, then define the maps χ : Rn × R→ Rn and ψ0 : Rn → Rn × R by

χ (x, y) = x− γ (y) , ψ0 (x) = (x, 0) .

we will want to interpret Jγ,υu as the pullback

Jγ,υu = ψ?0J(~0,−1) (υ · χ?u) , (3.2.3)

where the multiplication by υ is with υ identified with a function in C∞ (Rn × R) whose

dependence lies only in y. We will prove (3.2.2) later.

First, we will interpret (3.2.3) with more familiar notation. Notice that we may use

u (x− γ (y)) to denote the pullback χ?u for u ∈ D ′ (Rn). Multiplication of a distribution

w ∈ D ′ (Rn × R) by υ is then denoted by w (x, y) υ (y). The operator J(0,−1) is integration

in the y-coordinate, and as such,

J(~0,−1)w =

ˆ ∞
0

w (x, y + t) dt.

Finally, since ψ0 simply embeds Rn inside Rn×R by setting y = 0, we may use the notation

w (x, y)|y=0 to denote the pullback ψ?0w.

Putting this notation together, we write

ψ?0J(~0,−1) (υ · χ?u) =

ˆ ∞
0

u (x− γ (y + t)) υ (y + t) dt

∣∣∣∣
y=0

.
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Theorem 3.2.2. If u ∈ D ′ (Rn) is a distribution satisfying the support restriction (3.2.2),

then

WF

{ˆ ∞
0

u (x− γ (t)) υ (t) dt

}
\WF (u)

⊆
{(
x, ~ξ
) ∣∣∣ ∃t ≥ 0 : ~ξ ⊥ γ′ (t) &

(
x− γ (t) , ~ξ

)
∈WF (u)

}
.

Proof. We may, without loss of generality, set υ = 1, as doing so will not alter the wavefront

sets involved in this proof. With

χ (x, y) = x− γ (y) ,

we observe that

Dχ (x, y) =

[
In −γ′ (y)

]
, Dχ (x, y)T =

 In

−γ′ (y)T

 ,
where In is the identity map on Rn, and so kerDχ (x, y)T is trivial, indicating that the

pullback u (x− ~γ (y)) is indeed well-defined, and

WF {u (x− γ (y))} ⊆ χ?WF (u) ,

where

χ?WF (u) =
{(

(x, y) ,
(
~ξ, γ′ (y) · ~ξ

)) ∣∣∣ (x− γ (y) , ~ξ
)
∈WF (u)

}
. (3.2.4)

We now wish to show that

WF {u (x− γ (y))} = χ?WF (u) .

Indeed, let y0 > −ε, and define

ψy0 (x) =

x+ γ (y0)

y0

 .
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Then

Dψy0 (x) =

In
0

 . Dψy0 (x)T =

[
In 0

]
,

and so

kerDψy0 (x)T = {0} × R.

Therefore, the set of normals for ψy0 satisfies

Nψy0
⊆ (Rn × (−ε,∞))× ({0} × (R\0)) ,

and so Nψy0
∩ WF {u (x− γ (y))} = ∅. Thus, the pullback ψ?y0 {u (x− γ (y))} is well-

defined, and is in fact equal to u. Then:

WF (u) = WF
(
ψ?y0 {u (x− γ (y))}

)
⊆ ψ?y0WF {u (x− γ (y))} , (3.2.5)

where

ψ?y0WF {u (x− γ (y))}

=
{(
x, ~ξ
) ∣∣∣ ((x+ γ (y0) , y0) ,

(
~ξ, η
))
∈WF {u (x− γ (y))}

}
. (3.2.6)

Thus, if we chose
(

(x, y0) ,
(
~ξ, γ′ (y0) · ~ξ

))
∈ χ?WF (u), this choice was based on choosing(

x− γ (y0) , ~ξ
)
∈WF (u). We then have by (3.2.5) that(

x− γ (y0) , ~ξ
)
∈ ψ?y0WF {u (x− γ (y))} .

That is,(
(x, y0) ,

(
~ξ, η
))

=
(

(x− γ (y0) + γ (y0) , y0) ,
(
~ξ, η
))
∈WF {u (x− γ (y))} ,

for some η. Of course, one only needs to choose η = γ′ (y0) · ~ξ, and this will yield the

desired set inclusion.

Next, we can use (3.1.7) to describe WF
{´∞

0 u (x− γ (y + t)) dt
}
as follows:

WF

{ˆ ∞
0

u (x− γ (y + t)) dt

}
\WF {u (x− γ (y))}
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⊆
{(

(x, y − t) ,
(
~ξ, η
)) ∣∣∣ (~ξ, η) ⊥ (~0,−1

)
,(

(x, y) ,
(
~ξ, η
))
∈WF {u (x− γ (y))} , t ≥ 0

}
=
{(

(x, y − t) ,
(
~ξ, 0
)) ∣∣∣ ((x, y) ,

(
~ξ, 0
))
∈ χ?WF (u) , t ≥ 0

}
=
{(

(x, y − t) ,
(
~ξ, 0
)) ∣∣∣ (x− γ (y) , ~ξ

)
∈WF (u) , ~ξ ⊥ γ′ (y) , t ≥ 0

}
.

Then we have

WF

{ˆ ∞
0

u (x− γ (y + t)) dt

∣∣∣∣
y=0

}

⊆ χ?0WF {u (x− γ (y))} ∪ χ?0

{(
(x, y − t) ,

(
~ξ, 0
))

:

ξ ∈ γ (y)⊥ ,
(
x− γ (y) , ~ξ

)
∈WF (u) , t ≥ 0

}
= WF (u)

∪
{(
x, ~ξ
) ∣∣∣ ∃t ≥ 0 :

(
x− γ (t) , ~ξ

)
∈WF (u) , ~ξ ∈ ~γ (t)⊥

}
.

Reintroducing the weight function υ, we write the above result as

WF

{ˆ ∞
0

u (x− γ (y + t)) υ (t) dt

∣∣∣∣
y=0

}

⊆WF (u) ∪
{(
x, ~ξ
) ∣∣∣ ∃t ≥ 0 :

(
x− γ (t) , ~ξ

)
∈WF (u) , ~ξ ∈ ~γ (t)⊥

}
. (3.2.7)

Finally, to show that Jγ,υu is in fact given by (3.2.3), let uk ∈ C∞0 (R) converge in distri-

bution to u. Then for φ ∈ C∞0 (Rn), we have

Jγ,υu (φ) = ux

(ˆ ∞
0

φ (x+ γ (t)) υ (t) dt

)
= lim

k→∞

ˆ
Rn
uk (x)

ˆ ∞
0

φ (x+ γ (t)) υ (t) dt dx

= lim
k→∞

ˆ ∞
0

ˆ
Rn
uk (x)φ (x+ γ (t)) υ (t) dx dt

= lim
k→∞

ˆ ∞
0

ˆ
Rn
uk (x− γ (t))φ (x) υ (t) dx dt
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= lim
k→∞

ˆ
Rn

ˆ ∞
0

uk (x− γ (t)) υ (t) dt φ (x) dx

= lim
k→∞

ˆ
Rn

ˆ ∞
0

uk (x− γ (y + t)) υ (y + t) dt

∣∣∣∣
y=0

φ (x) dx

= ψ?0J(0,−1) (υ · χ?u) (φ)

The last of these equalities follows from the proof of Theorem 8.2.4 from Hörmander which

defines the pullback of distributions in this manner.

The propagation result (3.2.7) may be reparametrized as

WF

{ˆ ∞
0

u (x− γ (t)) υ (t) dt

}
⊆WF (u) ∪

{(
x+ γ (t) , ~ξ

) ∣∣∣ t ≥ 0,
(
x, ~ξ
)
∈WF (u) , ~ξ ∈ ~γ (t)⊥

}
.

γ

FIGURE 3.2: Visualisation of
WF (u), and possible extent of
WF (Jγ,υu) \WF (u).

Figure 3.2 illustrates the propagation of singular-

ities result for Jγ,υ. Here, u is depicted as hav-

ing only three singularities. Again, WF (u) is de-

picted in blue, while the maximum possible extent of

WF (Jγ,υu) \WF (u) is shown in green. The curve

γ is shown in maroon, with its translates shown as

red dashed curves.

It should be noted that the integral (3.2.1) reduces

to the distributional antiderivative developed in the

previous section when γ parametrizes a ray:

γ (t) = t~v, t ≥ 0, ~v ∈ Sn−1.

Furthermore, the result obtained in Theorem 3.2.2 in this case is:

WF

{ˆ ∞
0

u (x− γ (t)) υ (t) dt

}
\WF (u)
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⊆
{(
x+ γ (t) , ~ξ

) ∣∣∣ t ≥ 0,
(
x, ~ξ
)
∈WF (u) , ~ξ ∈ γ′ (t)⊥

}
=
{(
x+ t~v, ~ξ

) ∣∣∣ t ≥ 0,
(
x, ~ξ
)
∈WF (u) , ~ξ ∈ ~v⊥

}
,

and so the above theorem agrees with (3.1.4) for this choice of γ.



49

4 THE BROKEN RAY TRANSFORM

4.1 Introduction

In this chapter, we will explore the various flavors of the Broken Ray transform previously

investigated by Florescu, Markel, and Schotland, [1], Gouia-Zarrad and Ambartsoumian,

[3], and Katsevich and Krylov, [6]. We start with verifying an inversion formula in the case

of fixed inital and terminal directions, and then perform microlocal analysis of the Broken

Ray transform, describing the scattering of singularities by both the transform itself, and

its inversion formulas (a so-called “two-sided” microlocal analysis). We then investigate the

setting of having two sets of simultaneous measurements with differing terminal directions,

and also perform microlocal analysis in this setting.

We will also find explicit inversion formulas for Katsevich and Krylov’s curved detector

settings, as well as determining restrictions on support necessary to guarantee injectivity

of these transforms, as well as restrictions required to give a distributional meaning to the

inversion formulas. We then follow up with a two-sided microlocal analysis of the curved

detector setting.

4.2 Broken Ray transform with fixed direction parameters

If ~v1 and ~v2 are distinct and held as fixed parameters, then for f ∈ C2
0 (Rn), one can easily

apply the Fundamental Theorem of Calculus to verify that an inversion formula for (1.1.2)

is given by:

f (x) =

ˆ ∞
0
D~v1
D~v2
Bf (x− s (~v2 − ~v1)) ds. (4.2.1)
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Indeed:
ˆ ∞

0
D~v1
D~v2
Bf (x− s (~v2 − ~v1)) ds

=

ˆ ∞
0
D~v1
D~v2

{ˆ ∞
0

(f (x− s (~v2 − ~v1)− t~v1)

+f (x− s (~v2 − ~v1) + t~v2))} dt ds

=

ˆ ∞
0

ˆ ∞
0
D~v1
D~v2

f (x− s (~v2 − ~v1)− t~v1) dt ds

+

ˆ ∞
0

ˆ ∞
0
D~v1
D~v2

f (x− s (~v2 − ~v1) + t~v2) dt ds

=

ˆ ∞
0
D~v2

f (x− s (~v2 − ~v1)) ds−
ˆ ∞

0
D~v1

f (x− s (~v2 − ~v1)) ds

=

ˆ ∞
0
D~v2−~v1

f (x− s (~v2 − ~v1)) ds

= f (x) .

Recall that the Fundamental Theorem of Calculus gives us the identity
ˆ ∞

0
D~vg (x± t~v) dt = ∓g (x) , ~0 6= ~v ∈ Rn, g ∈ C1

0 (Rn) .

which we have used three times in the above computation.

This is not the only possible inversion formula, as we can verify the following alternate

inversion in a similar manner:

f (x) = −
ˆ ∞

0
D~v1
D~v2
Bf (x+ s (~v2 − ~v1)) ds. (4.2.2)

Notice this alternate inversion formula differs from the first in that the integration occurs

in the reverse direction from the first. We can then combine these two inversion formulas

to arrive at a more symmetric inversion formula:

f (x) =
1

2

ˆ
R

sgn (s)D~v1
D~v2
Bf (x− s (~v2 − ~v1)) ds. (4.2.3)

For a numerical implementation of (4.2.3), see Appendix A.
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We can also reveal Gouia-Zarrad and Ambartsoumian’s inversion formula, [3], by replacing

D~v1
D~v2

in (4.2.2) with 1
4

(
D2
~v1+~v2

−D2
~v1−~v2

)
and performing the appropriate simplifca-

tion:

f (x) =
1

4
D~v1−~v2

Bf (x)− 1

4

ˆ ∞
0
D2
~v1+~v2

Bf (x+ s (~v2 − ~v1)) ds. (4.2.4)

Gouia-Zarrad and Ambartsoumian take ~v1 = (sinβ,− cosβ) and ~v2 = (sinβ, cosβ), with f

supported in [0, xmax]× [0, ymax], which of course gives D~v1−~v2
= −2 cosβ ∂

∂y and D2
~v1+~v2

=

4 sin2 β ∂2

∂x2
.

4.2.1 Microlocal analysis of the Broken Ray transform with fixed initial and
terminal directions

We can easily extend the Broken Ray transform in a distributional sense. In view of

(1.1.2), we define B~v1,~v2
, with two distinct direction parameters ~v1 and ~v2 in Sn−1, in a

distributional sense as

B~v1,~v2
u =

ˆ ∞
0

u (x− t~v1) dt+

ˆ ∞
0

u (x+ t~v2) dt

= J~v1
u+ J−~v2

u, u ∈ E ′ (Rn) . (4.2.5)

The inversions given in (4.2.1) and (4.2.2) also hold in a distributional sense, in that

u = J~v2−~v1
D~v1
D~v2
B~v1,~v2

u = −J~v1−~v2
D~v1
D~v2
B~v1,~v2

u, (4.2.6)

for u ∈ E ′ (Rn).

In view of (4.2.5) and (4.2.6), we can use Theorem 3.1.7 to describe the relationship

between WF (u) and WF
(
B~v1,~v2

u
)
, and note that Theorem 3.1.9 applies to all directions

of integration in both the Distributional Broken Ray transform and its inversion.

Proposition 4.2.1 (Propagation of singularities of the Distributional Broken Ray trans-

form). Let u ∈ E ′ (Rn). Then

WF
(
B~v1,~v2

u
)
⊆WF (u)
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∪
{(
x+ t~v1, ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (u) , ~ξ ∈ ~v⊥1 , t > 0
}

∪
{(
x− t~v2, ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (u) , ~ξ ∈ ~v⊥2 , t > 0
}
,

and

WF (u) ⊆WF
(
B~v1,~v2

u
)

∪
{(
x+ t (~v2 − ~v1) , ~ξ

) ∣∣∣ (x, ~ξ) ∈WF
(
B~v1,~v2

u
)
, ~ξ ∈ (~v2 − ~v1)⊥ , t > 0

}
,

(4.2.7)

WF (u) ⊆WF
(
B~v1,~v2

u
)

∪
{(
x+ t (~v1 − ~v2) , ~ξ

) ∣∣∣ (x, ~ξ) ∈WF
(
B~v1,~v2

u
)
, ~ξ ∈ (~v2 − ~v1)⊥ , t > 0

}
.

(4.2.8)

Moreover, in view of Theorem 3.1.9, if
(
x0, ~ξ0

)
∈ WF (u) \WF

(
B~v1,~v2

u
)
, then ~ξ0 ∈

(~v2 − ~v1)⊥, and x0 must lie on some line segment x0 + I~v for which (x0 + I~v)×
{
~ξ0

}
⊆

WF (u), and whose endpoints lie in WF
(
B~v1,~v2

u
)
.

The following example shows that WF (u) \WF
(
B~v1,~v2

u
)
can in fact be nonempty:

Example 4.2.2. A distribution u ∈ E ′ (Rn) exists such that

WF (u) *WF
(
B~v1,~v2

u
)
.

Proof. Let ~v1 = (cos θ,− sin θ) and ~v2 = (cos θ, sin θ). We now take u ∈ L1
(
R2
)
with

u (x, y) =



−1, if − 1 < x < 0, |y| < 1 + 2 tan θ,

1, if 0 < x < 1, |y| < 1 + 2 tan θ,

0, otherwise,

so thatWF (u) contains `×{~e1}, where ` is the portion of the y-axis where |y| ≤ 1+2 tan θ.

However, B~v1,~v2
u (x, y) = 0 whenever |y| < 1, and so WF

(
B~v1,~v2

u
)
omits that part of the

y-axis.
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�v1

�v2

FIGURE 4.1: Visualisation of
WF (u), and WF

(
B~v1,~v2

u
)
.

A numerical inversion of a similar function in shown

in Appendix A, Figure A.4.

Figure 4.1 depicts the wavefront of a distribution u

in blue, illustrating the maximum extent to which

B~v1,~v2
will extend (in green) and remove (in red)

singularities from u.

4.2.2 Inversion and microlocal analysis with
two sets of data with common incident beams

If we have two sets of data, B~v0,~v1
f and B~v0,~v2

f , and

we have

~v0 = a1~v1 + a2~v2, (4.2.9)

for some coefficients a1 and a2 subject to the condition a1 + a2 6= 1, and unit vectors ~v0,

~v1, and ~v2, then the inversion from both sets of data turns out to be far simpler than the

inversion from one set of data. Consider:

a1D~v1
B~v0,~v1

f + a2D~v2
B~v0,~v2

f = a1D~v1
(J~v0

+ J−~v1
) f + a2D~v2

(J~v0
+ J−~v2

) f

= a1D~v1
J~v0

f − a1f + a2D~v2
J~v0

f − a2f

= Da1~v1+a2~v2
J~v0

f − a1f − a2f

= f − a1f − a2f,

which then yields the following inversion:

f =
a1D~v1

B~v0,~v1
f + a2D~v2

B~v0,~v2
f

1− a1 − a2
. (4.2.10)

The inversion formula, of course, requires that a1 +a2 6= 1. If it were the case that equality

did hold, then

‖a1~v1 + a2~v2‖2 = a2
1 + 2a1a2~v1 · ~v2 + a2

2
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= a2
1 + 2a1a2~v1 · ~v2 + a2

2

= (a1 + a2)2 + 2a1a2~v1 · ~v2 − 2a1a2

= 1 + 2a1a2 (~v1 · ~v2 − 1) ,

which then would imply that either a1 or a2 would be zero, which would mean that ~v0

is either ~v1 or ~v2, or that ~v1 · ~v2 = 1, which would mean ~v1 = ~v2, all of which are

uninteresting degenerate cases.

It follows from this inversion formula that

WF (f) ⊆WF
(
B~v0,~v1

f
)
∪ WF

(
B~v0,~v2

f
)
,

and so whatever WF
(
B~v0,~v1

f
)
omits from WF (f), WF

(
B~v0,~v2

f
)
will not, and vice

versa. Also, since WF
(
B~v0,~v1

f
)
and WF

(
B~v0,~v2

f
)
add at most R ×

(
~v⊥0 ∪ ~v⊥1

)
and

R×
(
~v⊥0 ∪ ~v⊥2

)
, respectively, we can be certain that

(
WF

(
B~v0,~v1

f
)
∪ W1

)
∩
(
WF

(
B~v0,~v2

f
)
∪ W2

)
\V0

⊆WF (f)

⊆
(
WF

(
B~v0,~v1

f
)
\V1

)
∪
(
WF

(
B~v0,~v2

f
)
\V2

)
,

where

Vk = Rn ×
(
~v⊥k \0

)
, k = 0, 1, 2,

Wk = Rn ×
(

(~vk − ~v0)⊥ \0
)
, k = 1, 2.

The only degree of uncertainty lies in what portion of V0 that WF (f) will contain in

relation to WF
(
B~v0,~v1

f
)
and WF

(
B~v0,~v2

f
)
.
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4.3 Broken Ray transform with curved detectors

In Katsevich and Krylov’s two-detector setting, [6], inversion is given by the following

differential equation, in terms of pairwise differences between Broken Ray transforms:

(`j − `i) (1− cij) f +
(
D~βi −D~βj

)
f = D~βjD~βigij − (`icij + `j)D~βigij , (4.3.1)

where cij = ~βi · ~βj , and `i satisfies

D~β⊥i
~βi = −`i~β⊥i ,

and is in fact given by

`i (x) =



0, if detector i is flat,

−‖x− xi‖−1 , if detector i is concave, with focal point at xi,

‖x− xi‖−1 , if detector i is convex, with focal point at xi.

In the three-detector setting, an inversion is given directly as

f = −
s32D~β1g12 + s21D~β3g32

s32 + s21 + s13
,

where sjk = ~βj · ~β⊥k . If gi is chosen for i = 1, 2, 3 so that gjk = gj − gk, e.g., when gi are

three different measurements with a common initial beam for each scattering location x,

then we can arrive at a more symmetric inversion:

f = −
s32D~β1g1 + s13D~β2g2 + s21D~β3g3

s32 + s21 + s13
. (4.3.2)

Note that this inversion formula can also be used to verify (4.2.10) by using B~v0,~v0
f

as the third set of data, even though B~v0,~v0
is not invertible. Notice, of course, that

D~v0
B~v0,~v0

f = 0.
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4.3.1 Solutions to (4.3.1)

In this subsection, we shall use x as a coordinate variable instead of as a point in an open

set. Furthermore, we shall let

hij = D~βjD~βigij − (`icij + `j)D~βigij .

By reversing the roles of i and j in (4.3.1), and performing the appropriate simplifications,

we will find that

hij = D~βjD~βigij − (`jcij + `i)D~βjgij .

In the case that both detectors are flat in Katsevich and Krylov, then the `i vanish, and

the inversion is identical to that of B~v1,~v2
given in (4.2.1), with ~vi = ~βi. We will solve

(4.3.1) for f in the various cases where at least one detector is curved using the method

of characteristics.

Concave and flat detectors

−1 −1
2

1
2

1 3
2

1
2

1

3
2

2 Detector 1

Detector 2

FIGURE 4.2: Concave and flat de-
tectors with στ grid.

Suppose detector 1 is concave, detector 2 is flat, and

assume without loss of generaltiy that the focal point

of detector 1 is at the origin, and detector 2 detects

rays in the direction ~e1. This gives us ~β1 = z
‖z‖

and ~β2 = ~e1. Generalizations from this case is ob-

tained via translations, and rotations. Consider the

parabolic coordinate system, given by the change of

variables

z =

x
y

 = Φ (σ, τ)
def
=

1
2

(
σ2 − τ2

)
στ

 ,
σ ∈ R, τ > 0.
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This coordinate system is a variation on that given in Hazewinkel’s Encyclopedia of Math-

ematics, [4]. Note that in terms of complex variables, this is the same as z = w2 for

<w > 0. The coordinate grid consists of parabolas opening either to the right or left, with

focus at the origin. Notice that

~β2 − ~β1 = ~e1 −
z

‖z‖

= ~e1 −
2z√

(σ2 − τ2)2 + 4σ2τ2

=

(
σ2 + τ2

)
~e1 − 2z

σ2 + τ2

=
1

σ2 + τ2
·

(σ2 + τ2
)
−
(
σ2 − τ2

)
−2στ


=

1

σ2 + τ2
·

 2τ2

−2στ


= − 2τ

σ2 + τ2
· ∂Φ

∂τ
,

and soD~β2−D~β1 = − 2τ
σ2+τ2

· ∂∂τ . Thus, in this coordinate system, (4.3.1) with simplification,

and multiplication by the proper integrating factor becomes

2τ · f +
(
σ2 + τ2

)
· ∂
∂τ
f =

(
σ2 + τ2

)2
2τ

· h21, (4.3.3)

which has solution

f (x, y) =
σ2 + τ2

0

σ2 + τ2
· f |τ=τ0 +

1

σ2 + τ2

ˆ τ

τ0

(
σ2 + t2

)2
2t

Φ?h21 (σ, t) dt, (4.3.4)

where f |τ=τ0 is understood as Φ?f (σ, τ0). It should be noted that if f is at least C1

in a neighborhood of of τ = 0, then h21 will vanish at τ = 0, which would then imply

convergence of the above integral if we choose τ0 = 0.

If f is supported away from positive x-axis, then

f (x, y) =
1

σ2 + τ2

ˆ τ

0

(
σ2 + t2

)2
2t

Φ?h21 (σ, t) dt. (4.3.5)
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Viewing this inversion formula in a distributional sense, however, will require that the

support of h21 be bounded away from τ = 0, so that the division in the above integrand

by 2t, and also by σ2 + τ2 after the integration, are both valid. Notice that in this setting,

while we may require that the support of f is bounded away from τ = 0, gij will not

generally inherit this requirement. We note, however, that D~β1g21 = −f −D~β1J−~β2f , and

since J−~β2 spreads support only in the horizontal direction in the xy-plane, the desired

support condition on h21 is satisfied.

We then interpret integration from 0 to τ in a distributional sense by considering Φ?h21

as a distribution on the entire στ -plane whose support is contained in the open half-space

{τ > 0}. After multiplication of the integrand by (σ2+t2)
2

2t , we apply J(0,1), resulting in a

distribution also supported in the open half space {τ > 0}.

Convex and flat detectors

If instead, detector 1 was convex, we can still use the parabolic coordinates, but instead

imposing the domain restriction σ > 0, τ ∈ R on the formula given for Φ. We then have

~β1 = − z
‖z‖ , and find that

~β2 − ~β1 = ~e1 +
z

‖z‖

= ~e1 +
2z√

(σ2 − τ2)2 + 4σ2τ2

=

(
σ2 + τ2

)
~e1 + 2z

σ2 + τ2

=
1

τ2 + σ2
·

(σ2 − τ2
)

+
(
τ2 + σ2

)
2στ


=

1

τ2 + σ2
·

2σ2

2στ


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=
2σ

τ2 + σ2
· ∂Φ

∂σ
.

Thus, D~β2 −D~β1 = 2σ
σ2+τ2

· ∂∂σ , so we then write (4.3.1) as

2σ · f +
(
σ2 + τ2

)
· ∂
∂σ

f = −
(
σ2 + τ2

)2
2τ

· h21, (4.3.6)

which has solution

f (x, y) =
σ2

0 + τ2

σ2 + τ2
· f |σ=σ0 −

1

σ2 + τ2

ˆ σ

σ0

(
s2 + τ2

)2
2s

Φ?h21 (s, τ) ds, (4.3.7)

and if f is supported away from the negative x-axis, then

f (x, y) = − 1

σ2 + τ2

ˆ σ

0

(
s2 + τ2

)2
2s

Φ?h21 (s, τ) ds. (4.3.8)

In the same manner determined in the concave/flat setting, we impose a support restriction

on f , this time requiring the support be bounded away from σ = 0.

Two concave detectors

−3
2

−1 −1
2

1
2

1 3
2

1
2

1

3
2

2

Detector 1 Detector 2

FIGURE 4.3: Two concave detec-
tors with µν grid.

Now suppose both detectors are concave, and as-

sume without loss of generality that the focal points

are at e1 = (1, 0) and −e1 = (−1, 0), giving us

~β1 = z−e1
‖z−e1‖ and ~β2 = z+e1

‖z+e1‖ . Generalizing to an

arbitrary pair of focal points entails using transla-

tions, dialations, and rotations.

We consider use of the elliptical coordinate system,

[4], given by the change of variables

z =

x
y

 = Ψ (µ, ν)
def
=

coshµ cos ν

sinhµ sin ν

 , µ ≥ 0, 0 ≤ ν ≤ 2π. (4.3.9)
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In terms of complex variables, this is equivalent to z = coshw for 0 ≤ =w ≤ 2π. The

coordinate grid consists of ellipses and hyperbolas whose focal points are e1 and −e1.

After use of trigonometric and hyperbolic trigonometric identities, we find that ‖z ± e1‖ =

coshµ± cos ν. Thus, in the case that both detectors are concave, we compute

~β2 − ~β1 =
z + e1

‖z + e1‖
− z − e1

‖z − e1‖

=
z + e1

coshµ+ cos ν
− z − e1

coshµ− cos ν

=
(coshµ− cos ν) (z + e1)− (coshµ+ cos ν) (z − e1)

cosh2 µ− cos2 ν

= 2
e1 coshµ− z cos ν

cosh2 µ− cos2 ν

=
2

cosh2 µ− cos2 ν

coshµ− coshµ cos2 ν

− sinhµ sin ν cos ν


=

2

cosh2 µ− cos2 ν

 coshµ sin2 ν

− sinhµ sin ν cos ν


=

−2 sin ν

cosh2 µ− cos2 ν

− coshµ sin ν

sinhµ cos ν


=

−2 sin ν

cosh2 µ− cos2 ν
· ∂Ψ

∂ν
.

Hence, D~β2 − D~β1 = −2 sin ν
cosh2 µ−cos2 ν

· ∂∂ν , and the characteristic curves associated with the

differential equation (4.3.1) are in fact the aforementioned ellipses. We can therefore write

(4.3.1) in this case as

2 sin ν cos ν · f +
(
cosh2 µ− cos2 ν

)
· ∂
∂ν
f =

(
cosh2 µ− cos2 ν

)2
2 sin ν

· h21,

which has solution

f (x, y) =
cosh2 µ− cos2 ν0

cosh2 µ− cos2 ν
f |ν=ν0

+
1

cosh2 µ− cos2 ν

ˆ ν

ν0

1

sin t

(
cosh2 µ− cos2 t

)2
2

Ψ?h21 (µ, t) dt.
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Given that the characteristic curves are ellipses, this suggests that the mapping f 7→ gij

is not injective. Non-injectivity is verfied by choosing

f (x, y) =
cosh2 µ− 1

cosh2 µ− cos2 ν
f0 (µ) ,

where f0 is a choice of boundary conditions on η = 0. consider the following reparametriza-

tion of (1.1.3):

g21 (z0) =

ˆ ∞
p0

f
(
−e1 + p~β2

)
dp−

ˆ ∞
q0

f
(
e1 + q~β1

)
dq, (4.3.10)

where p0, q0, ~β1, and ~β2 are held to the constraint

z0 = Ψ (µ0, η0) = −e1 + p0
~β2 = e1 + q0

~β1.

With regards to the ray along which we integrate f in the first integral,

−e1 + p~β2 = Ψ (µ, ν)

defines both µ and ν implicitly as functions of p, and implicit differentiation with respect

to p yields

~β2 = DΨ (µ, ν) ·
[
∂µ
∂p

∂ν
∂p

]
,

and so
∂µ

∂p
= π1DΨ (µ, ν)−1 ~β2 =

sinhµ

cosh2 µ− cos2 ν
.

Hence, a substitution allows us to express the first integral in (4.3.10) as follows:

ˆ ∞
p0

f
(
−e1 + p~β2

)
dp =

ˆ ∞
p0

f (Ψ (µ, ν)) dp

=

ˆ ∞
p0

cosh2 µ− 1

cosh2 µ− cos2 ν
f0 (µ) dp

=

ˆ ∞
p0

sinhµf0 (µ)
∂µ

∂p
dp

=

ˆ ∞
µ0

sinhµf0 (µ) dµ.
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A similar substitution in the second integral in (4.3.10) will yield the same integral in µ,

and hence the two integrals will cancel. Hence, knowledge of boundary data independent

of knowledge of gij is necessary. Knowledge that f is supported away from ν = 0 or ν = π

will be sufficient. Notice that ν = 0 and ν = π are parts of the x-axis, the former being

where x > 1, and the latter corresponding to x < −1.

Thus, for f supported away from ν = 0, we write

f (x, y) =
1

cosh2 µ− cos2 ν

ˆ ν

0

1

sin t

(
cosh2 µ− cos2 t

)2
2

Ψ?h21 (µ, t) dt,

whereas for f supported away from ν = π, we write

f (x, y) = − 1

cosh2 µ− cos2 ν

ˆ π

ν

1

sin t

(
cosh2 µ− cos2 t

)2
2

Ψ?h21 (µ, t) dt.

Two convex detectors

Not surprisingly, the case of two convex detectors is not exceedingly different from two

convex detectors. With the focal points still kept at e1 and e2, we find that D~β2 −D~β1 is

merely the negation of that given in the concave case. Therefore, the characteristics remain

the same as those in the concave/concave case. Thus, the result is that the inversion instead

becomes

f (x, y) =
cosh2 µ− cos2 ν0

cosh2 µ− cos2 ν
f |ν=ν0

− 1

cosh2 µ− cos2 ν

ˆ ν

ν0

1

sin t

(
cosh2 µ− cos2 t

)2
2

Ψ?h21 (µ, t) dt.

This case still suffers from the same non-injectivity as the concave case in the absense of

known boundary data. A similar computation will verify that gij vanishes if f (x, y) =

cosh2 µ−cos2 ν0
cosh2 µ−cos2 ν

f0 (µ).
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In the case of the detectors being either both concave or both convex, requiring the support

of f to be compact and bounded away from the x-axis will guarantee that hij be supported

away from the x-axis as well, which makes multiplication in the distributional sense by

1
sin ν and 1

cosh2 µ−cos2 ν
possible.

Concave and convex detectors, different focal points

−1 −1
2

1
2

1 3
2

2

1
2

1

3
2

2 Detector 1

Detector 2

FIGURE 4.4: Concave and convex
detectors with µν grid.

While the unmixed concave/concave and con-

vex/convex cases presented above are strikingly sim-

ilar to each other, the mixed case presents a differ-

ent geometry, with the only commonality with the

unmix case being that we may continue to use the

elliptic coordinate system. In the mixed case, we

will let detector 1 be concave and detector 2 convex,

with focal points placed at e1 and −e1 as before. We

obtain through a similar computation that

~β2 − ~β1 =
z + e1

‖z + e1‖
+

z − e1

‖z − e1‖

=
z + e1

coshµ+ cos ν
+

z − e1

coshµ− cos ν

=
(coshµ− cos ν) (z + e1) + (coshµ+ cos ν) (z − e1)

cosh2 µ− cos2 ν

= 2
z coshµ− e1 cos ν

cosh2 µ− cos2 ν

=
2

cosh2 µ− cos2 ν

cosh2 µ cos ν − cos ν

sinhµ coshµ sin ν


=

2

cosh2 µ− cos2 ν

 sinh2 µ cos ν

sinhµ coshµ sin ν


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=
2 sinhµ

cosh2 µ− cos2 ν

sinhµ cos ν

coshµ sin ν


=

2 sinhµ

cosh2 µ− cos2 ν

∂Ψ

∂µ
.

Therefore, the characteristic curves are then the hyperbolas, and as a result, no boundary

data is necessary if f is known to have compact support.

In this coordinate system, (4.3.1) becomes

2 coshµ

cosh2 µ− cos2 ν
· 2 sinh2 µ

cosh2 µ− cos2 ν
· f +

2 sinhµ

cosh2 µ− cos2 ν
· ∂f
∂µ

= h21,

and multiplication by (cosh2 µ−cos2 ν)
2

2 sinhµ , we obtain

2 sinhµ coshµ · f +
(
cosh2 µ− cos2 ν

)
· ∂f
∂µ

= −
(
cosh2 µ− cos2 ν

)2
2 sinhµ

h21

and so a solution is

f =
cosh2 µ0 − cos2 ν

cosh2 µ− cos2 ν
f |µ=µ0

− 1

cosh2 µ− cos2 ν

ˆ µ

µ0

(
cosh2 t− cos2 ν

)2
2 sin t

Ψ?h21 (t, ν) dt.

Concave and convex detectors, common focal point

Finally, if the focal points are at the origin, then g21 is obtained by integrating f in the

radial direction as follows:

g21

(
r~θ
)

=

ˆ ∞
r

f
(
t~θ
)
dt−

ˆ r

0
f
(
t~θ
)
dt, r > 0, ~θ ∈ S1.

Hence, we can short circuit (4.3.1) and immediately see that

f = −1

2

∂

∂r
g21.
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4.3.2 Microlocal analysis of the Broken Ray transform with curved detectors

Define the following pair of transforms:

^
J f

(
r~θ
)

=

ˆ r

0
f
(
t~θ
)
dt,

_
J f

(
r~θ
)

=

ˆ ∞
r

f
(
t~θ
)
dt,

r > 0, ~θ ∈ S1, f ∈ C0
0

(
R2\0

)
.

We observe that
^
J models a convex detector, while

_
J models a concave detector, with

the origin serving as the focus for both. We can use an arbitrary point x0 in R2 as a focus

by conjugating these transforms with a translation, defining

^
J x0f

(
x0 + r~θ

)
=

ˆ r

0
f
(
x0 + t~θ

)
dt,

_
J x0f

(
x0 + r~θ

)
=

ˆ ∞
r

f
(
x0 + t~θ

)
dt,

for r > 0, ~θ ∈ S1, and f ∈ C0
0

(
R2\ {x0}

)
. We can then characterize each gij as the

difference between any pair of transforms of the form J~v,
^
J x0 , and

_
J x0 .

Since
^
J x0 and

_
J x0 differ from

^
J and

_
J by only conjugation with a translation, it will

suffice to examine
^
J and

_
J . If we pull back f ,

^
J f , and

_
J f by the map Ψ (ρ, θ) =

(eρ cos θ, eρ sin θ), and performing the proper substitutions, we obtain

Ψ?
^
J f (ρ, θ) =

ˆ ρ

−∞
eτΨ?f (τ, θ) dτ,

Ψ?
_
J f (ρ, θ) =

ˆ ∞
ρ

eτΨ?f (τ, θ) dτ.

This gives us a method of defining both
^
J and

_
J in a distributional sense when f ∈

E ′ (Rn\0):
^
J = Ψ−?J(1,0) (eτΨ?f) ,

_
J = Ψ−?J(−1,0) (eτΨ?f) .
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Hence, we can identify the following wavefront set relationships:

WF
(

Ψ?
^
J f
)
⊆WF (Ψ?f) ∪ {((ρ+ t, θ) , (0, η)) | ((ρ, θ) , (0, η)) ∈WF (Ψ?f) , t > 0} ,

WF
(

Ψ?
_
J f
)
⊆WF (Ψ?f) ∪ {((ρ− t, θ) , (0, η)) | ((ρ, θ) , (0, η)) ∈WF (Ψ?f) , t > 0} .

Undoing the pullback, we arrive at:

WF
(^
J f
)
⊆WF (f) ∪

{(
tx, ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (f) , t > 1, ~ξ ∈ x⊥
}
,

WF
(_
J f
)
⊆WF (f) ∪

{(
tx, ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (f) , 0 < t < 1, ~ξ ∈ x⊥
}
.

Then by pulling back by translation, we obtain the following:

WF
(^
J x0f

)
⊆WF (f)

∪
{(
t (x− x0) + x0, ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (f) , t > 1, ~ξ ∈ (x− x0)⊥
}
,

WF
(_
J x0f

)
⊆WF (f)

∪
{(
t (x− x0) + x0, ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (f) , 0 < t < 1, ~ξ ∈ (x− x0)⊥
}
.

Hence, with f and gij as given in (1.1.3), regardless of the curvature of the detectors, we

have

WF (gij) ⊆WF (f)

∪
{(
x− t~β1 (x) , ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (f) , ~ξ ∈ ~β⊥1 (x) , t ≥ 0
}

∪
{(
x− t~β2 (x) , ~ξ

) ∣∣∣ (x, ~ξ) ∈WF (f) , ~ξ ∈ ~β⊥2 (x) , t ≥ 0
}
.

In the case that a detector is convex, then one must include the restriction t < ‖x‖ in the

corresponding part of the formula above.

As much as inversion of B~v1,~v2
propagates singularities along rays in the direction ~v2−~v1,

inversion of (4.3.1) will propagate singularities along the parabolas, hyperbolas, and ellipses

over which the inversion formulas found in Section 4.3.1. Since the inversion formula for the

mixed convex-concave case with common origin is given only by differentiation, inversion

in that case propagates no singularities. We will omit the details of these results.
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5 THE POLAR BROKEN RAY TRANSFORM

Of particular interest is investigating conditions for which f can be recovered from Qf , as

defined in (1.2.1). An immediate observation that uniqueness of f is known if the support

in θ of f is sufficiently small, since this then the limited angle X-ray transform problem.

Specifically, if the support of f contained in the sector 0 ≤ θ ≤ θmax with θmax < φ, then

for 0 < θ < φ,

P~θf (p) = Qf
(
p cscφ ·A−1~θ

)
, ~θ = (cos θ, sin θ) .

However, reconstructions of f in the limited angle problem are unstable.

5.1 Mapping Properties

Our next few observations will be of mapping properties of Q.

Proposition 5.1.1. Let p ≥ 1, and ŵ : [0, rmax] → R be a nonnegative weight function,

and define

w (r) =
1

r

ˆ rmax

r
s2−1/pŵ (s) ds

+

ˆ r

0

s
(√

r2
max − s2 sin2 φ− s cosφ

)1−1/p
ŵ (s)√

r2 − s2 sin2 φ
ds, rmin ≤ r ≤ rmax.

Then Q continuously maps Lp (Ω, w) to Lp
(

Ω̂, ŵ
)
.

Proof. We let f ∈ Lp (Ω, w), set tmax =
√
r2

max − s2 sin2 φ− s cosφ and observe:

‖Qf‖p
Lp(Ω̂,ŵ)

ˆ
S1

ˆ rmax

0
s |Qf (s~σ)|p ŵ (s) ds d~σ
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=

ˆ
S1

ˆ rmax

0
s

∣∣∣∣ˆ s

0
f (t~σ) dt+

ˆ tmax

0
f (s~σ + tA~σ) dt

∣∣∣∣p ŵ (s) ds d~σ

≤ 2p−1

(ˆ
S1

ˆ rmax

0
s

∣∣∣∣ˆ s

0
f (t~σ) dt

∣∣∣∣p ŵ (s) ds d~σ

+

ˆ
S1

ˆ rmax

0
s

∣∣∣∣ˆ tmax

0
f (s~σ + tA~σ) dt

∣∣∣∣p ŵ (s) ds d~σ

)
≤ 2p−1

(ˆ
S1

ˆ rmax

0
s · s1−1/p

ˆ s

0
|f (t~σ)|p dtŵ (s) ds d~σ

+

ˆ
S1

ˆ rmax

0
st1−

1/p
max

ˆ ∞
0
|f (s~σ + tA~σ)|p dtŵ (s) ds d~σ

)
≤ 2p−1

(ˆ
S1

ˆ rmax

0

ˆ s

0
s2−1/p |f (t~σ)|p ŵ (s) dt ds d~σ

+

ˆ
S1

ˆ rmax

0

ˆ tmax

0
st1−

1/p
max |f (s~σ + tA~σ)|p ŵ (s) dt ds d~σ

)
= 2p−1

(ˆ rmax

0
sŵ (s)

ˆ
S1

ˆ s

0
|f (t~σ)|p dt d~σ ds

+

ˆ rmax

0
st1−

1/p
max ŵ (s)

ˆ
S1

ˆ tmax

0
|f (s~σ + tA~σ)|p dt d~σ ds

)
.

At this point, we shall relabel t and ~σ as r and ~θ in the first integral, and make the

multivariable substitution r~θ = s~σ+ tA~σ in the second integral, holding s as a parameter:

‖Qf‖p
Lp(Ω̂,ŵ)

≤ 2p−1

(ˆ rmax

0
s2−1/pŵ (s)

ˆ
S1

ˆ s

0

∣∣∣f (r~θ)∣∣∣p dr d~θ ds
+

ˆ rmax

0
st1−

1/p
max ŵ (s)

ˆ
S1

ˆ rmax

s

∣∣∣f (r~θ)∣∣∣p · r√
r2 − s2 sin2 φ

dr d~θ ds

)

= 2p−1

(ˆ
S1

ˆ rmax

0

∣∣∣f (r~θ)∣∣∣p ˆ rmax

r
s2−1/pŵ (s) ds dr d~θ

+

ˆ
S1

ˆ rmax

0

∣∣∣f (r~θ)∣∣∣p · ˆ r

0

rt
1−1/p
max√

r2 − s2 sin2 φ
sŵ (s) ds dr d~θ

)

= 2p−1

(ˆ
S1

ˆ rmax

0
r
∣∣∣f (r~θ)∣∣∣p · 1

r

ˆ rmax

r
s2−1/pŵ (s) ds dr d~θ

+

ˆ rmax

0

ˆ
S1
r
∣∣∣f (r~θ)∣∣∣p · ˆ r

0

st
1−1/p
max ŵ (s)√

r2 − s2 sin2 φ
ds dr d~θ

)

= 2p−1

ˆ
S1

ˆ rmax

0
r
∣∣∣f (r~θ)∣∣∣p(1

r

ˆ rmax

r
s2−1/pŵ (s) ds
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+

ˆ r

0

st
1−1/p
max ŵ (s)√

r2 − s2 sin2 φ
ds

)
dr d~θ

= 2p−1

ˆ
S1

ˆ rmax

0
r
∣∣∣f (r~θ)∣∣∣pw (r) dr d~θ

= 2p−1 ‖f‖pLp(Ω,w) .

Thus, ‖Qf‖Lp(Ω̂,ŵ) ≤ 21−1/p ‖f‖Lp(Ω,w). If rmin > 0, we may set ŵ (s) = 1, and find that

w is bounded on [rmin, rmax], and so we can drop the weight functions to describe Q as

mapping Lp (Ω) continuously into Lp
(

Ω̂
)
.

In view of the substitution in the second integral, we will take:

r~θ = s~σ + tA~σ

in the context of the second integral for the rest of this chapter, which defines r as a

function of s and t, and θ as a function of s, σ, and t.

Next, we will see how Q acts on Sobolev Spaces. First, we should see how Q interacts with

partial derivative operators. For convenience, we shall look at partial differentiation with

respect to polar variables. Since Q commutes with rotations, it is easy to see that Q also

commutes with differentiation with respect to the angular variable, i.e., ∂Qf
∂σ = Q

(
∂f
∂θ

)
,

whenever ∂f
∂θ also exists in Lp (Ω).

Proposition 5.1.2. Let f ∈ Lp (Ω, w), and suppose ∂f
∂θ exists. Then

∂Qf
∂σ

= Q
(
∂f

∂θ

)
.

Proof. This is a straightforward computation. Recall that ∂
∂σ~σ = ~σ⊥ and for any nonzero

vector ~v, ~v⊥ · ∇f (~v) = ∂f
∂θ (~v), where ~v⊥ denotes a counter-clockwise rotation of ~v by an

angle of π2 :

∂Qf
∂σ

=

ˆ s

0
t~σ⊥ · ∇f (t~σ) dt+

ˆ ∞
0

(
s~σ⊥ + tA~σ⊥

)
· ∇f (s~σ + tA~σ) dt
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=

ˆ s

0

∂f

∂θ
(t~σ) dt+

ˆ ∞
0

∂f

∂θ
(s~σ + tA~σ) dt

= Q
(
∂f

∂θ

)
.

Proposition 5.1.3. Let f ∈ Lp (Ω, w), and suppose f vanishes at the boundary r = rmax

and ∂f
∂r exists in Lp (Ω, w). Then:

s
∂Qf
∂s

= Q
(
∂

∂r
{rf}

)
.

Proof. Recall that D~vf (~v) = ‖~v‖ ∂f∂r (~v) for nonzero vectors ~v. Then

s
∂Qf
∂s

= sf (s~σ) +

ˆ ∞
0

sD~σf (s~σ + tA~σ) dt

=

ˆ s

0

∂

∂r

{
rf
(
r~θ
)}∣∣∣∣

r~θ=t~σ

dt+

ˆ ∞
0
Ds~σ+tA~σf (s~σ + tA~σ) dt

−
ˆ ∞

0
tDA~σ · ∇f (s~σ + tA~σ) dt

=

ˆ s

0

∂

∂r

{
rf
(
r~θ
)}∣∣∣∣

r~θ=t~σ

dt+

ˆ ∞
0
‖s~σ + tA~σ‖ ∂f

∂r
(s~σ + tA~σ) dt

−
ˆ ∞

0
t
∂

∂t
{f (s~σ + tA~σ)} dt

=

ˆ s

0

∂

∂r

{
rf
(
r~θ
)}∣∣∣∣

r~θ=t~σ

dt+

ˆ ∞
0
‖s~σ + tA~σ‖ ∂f

∂r
(s~σ + tA~σ) dt

− [tf (s~σ + tA~σ)]∞t=0 +

ˆ ∞
0

f (s~σ + tA~σ) dt

=

ˆ s

0

∂

∂r

{
rf
(
r~θ
)}∣∣∣∣

r~θ=t~σ

dt

+

ˆ ∞
0

(
‖s~σ + tA~σ‖ ∂f

∂r
(s~σ + tA~σ) + f (s~σ + tA~σ)

)
dt

=

ˆ s

0

∂

∂r

{
rf
(
r~θ
)}∣∣∣∣

r~θ=t~σ

dt+

ˆ ∞
0

∂

∂r

{
rf
(
r~θ
)}∣∣∣∣

r~θ=s~σ+tA~σ

dt

= Q
(
∂

∂r
{rf}

)
.

We next consider higher order derivatives. It is clear that ∂nQf
∂σn = Q

(
∂nf
∂θn

)
whenever ∂nf

∂θn

exists in Lp (Ω, ŵ). The real work is in resolving ∂nQf
∂sn .
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Proposition 5.1.4. Let f ∈ Lp (Ω, w) and suppose ∂nf
∂rn exists, and also that f vanishes

at the boundary r = R, along with each of ∂kf
∂rk

, for 1 ≤ k < n. Then:

sn
∂nQf
∂sn

= Q
(
∂

∂r

{
rn
∂n−1f

∂rn−1

})
.

Proof. We will use induction.

(Basis.) We observe the base case is:

s
∂Qf
∂s

= Q
(
∂

∂r
{rf}

)
,

which we have already proven in (5.1.3).

(Induction.) Now let n ≥ 1 and suppose:

sn
∂nQf
∂sn

= Q
(
∂

∂r

{
rn
∂n−1f

∂rn−1

})
.

We will now show:

sn+1∂
n+1Qf
∂sn+1

= Q
(
∂

∂r

{
rn+1∂

nf

∂rn

})
.

Indeed, we find that

sn+1∂
n+1Qf
∂sn+1

= sn+1 ∂

∂s

{
1

sn
· sn∂

nQf
∂sn

}
= sn+1

(
−n
sn+1

· sn∂
nQf
∂sn

+
1

sn
· ∂
∂s

{
sn
∂nQf
∂sn

})
= −nsn∂

nQf
∂sn

+ s
∂

∂s

{
sn
∂nQf
∂sn

}
= −nQ

(
∂

∂r

{
rn
∂n−1f

∂rn−1

})
+ s

∂

∂s

{
Q
(
∂

∂r

{
rn
∂n−1f

∂rn−1

})}
= −nQ

(
∂

∂r

{
rn
∂n−1f

∂rn−1

})
+Q

(
∂

∂r

{
r
∂

∂r

{
rn
∂n−1f

∂rn−1

}})
= −nQ

(
∂

∂r

{
rn
∂n−1f

∂rn−1

})
+Q

(
∂

∂r

{
nrn

∂n−1f

∂rn−1
+ rn+1∂

nf

∂rn

})
.

Then by exploiting linearity of Q and ∂
∂r , this reduces down to:

∂n+1Qf
∂sn+1

=
1

sn+1
Q
(
∂

∂r

{
rn+1∂

nf

∂rn

})
,

which is our desired result.
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We can now deduce Sobolev estimates on Q. We will define Wn,p (Ω, w) and Wn,p
(

Ω̂, ŵ
)

by:

Wn,p (Ω, w) =

{
f ∈ Lp (Ω, w)

∣∣∣∣ ∂kf

∂rj∂θk−j
∈ Lp

(
Ω, rpjw

)
, 0 ≤ j ≤ k ≤ n

}
,

Wn,p
(

Ω̂, ŵ
)

=

{
g ∈ Lp

(
Ω̂, ŵ

) ∣∣∣∣ ∂kg

∂sj∂σk−j
∈ Lp

(
Ω̂, spjŵ

)
, 0 ≤ j ≤ k ≤ n

}
,

with norms defined by:

‖f‖pWn,p(Ω;w) =
n∑
k=0

k∑
j=0

∥∥∥∥ ∂kf

∂rj∂θk−j

∥∥∥∥p
Lp(Ω,rpjw)

,

‖g‖p
Wn,p(Ω̂;ŵ)

=
n∑
k=0

k∑
j=0

∥∥∥∥ ∂kg

∂sj∂σk−j

∥∥∥∥p
Lp(Ω̂,spjŵ)

.

Then define:

Wn,p
0 (Ω, w) =

{
f ∈ Wn,p (Ω, w)

∣∣∣∣ ∂jf∂rj = 0 on ∂Ω, 0 ≤ j < n

}
.

First, we consider an estimate on seminorms.

Proposition 5.1.5. For f ∈ Wk,p
0 (Ω;w):∥∥∥∥∂kQf∂sk

∥∥∥∥p
Lp(Ω̂,spkŵ(s))

≤ 22p−2

(
kp
∥∥∥∥∂k−1f

∂rk−1

∥∥∥∥p
Lp(Ω,rp(k−1)w)

+

∥∥∥∥∂kf∂rk

∥∥∥∥p
Lp(Ω,rkpw)

)
.

Proof. Observe:∥∥∥∥∂kQf∂sk

∥∥∥∥p
Lp(Ω̂,spkŵ)

=

∥∥∥∥sk ∂kQf∂sk

∥∥∥∥p
Lp(Ω̂,ŵ)

=

∥∥∥∥Q(krk−1∂
k−1f

∂rk−1
+ rk

∂kf

∂rk

)∥∥∥∥p
Lp(Ω̂,ŵ)

≤ 2p−1

∥∥∥∥krk−1∂
k−1f

∂rk−1
+ rk

∂kf

∂rk

∥∥∥∥p
Lp(Ω,w)

≤ 22p−2

(∥∥∥∥krk−1∂
k−1f

∂rk−1

∥∥∥∥p
Lp(Ω,w)

+

∥∥∥∥rk ∂kf∂rk

∥∥∥∥p
Lp(Ω,w)

)

= 22p−2

(
kp
∥∥∥∥∂k−1f

∂rk−1

∥∥∥∥p
Lp(Ω,rp(k−1)w)

+

∥∥∥∥∂kf∂rk

∥∥∥∥p
Lp(Ω,rkpw)

)
.
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Theorem 5.1.6. For n ≥ 1 and f ∈ Wn,p
0 (Ω;w),

‖Qf‖p
Wn,p(Ω̂;ŵ)

≤ 22p−2 [(n− 1)p + 1] ‖f‖pWn,p(Ω,w) .

Proof. Observe:

‖Qf‖p
Wn,p(Ω̂;ŵ)

=

n∑
j=0

j∑
k=0

∥∥∥∥ ∂jQf
∂sk∂σj−k

∥∥∥∥p
Lp(Ω̂,spjŵ)

≤ 22p−2

 n∑
j=1

j∑
k=1

kp
∥∥∥∥ ∂j−1f

∂rk−1∂σj−k

∥∥∥∥p
Lp(Ω,rp(k−1)w)

+

n∑
j=0

j∑
k=0

∥∥∥∥ ∂jf

∂rk∂σj−k

∥∥∥∥p
Lp(Ω,rpkw)


= 22p−2

n−1∑
j=0

j−1∑
k=0

(k + 1)p
∥∥∥∥ ∂jf

∂rk∂σj−k

∥∥∥∥p
Lp(Ω,rpkw)

+
n∑
j=0

j∑
k=0

∥∥∥∥ ∂jf

∂rk∂σj−k

∥∥∥∥p
Lp(Ω,rpkw)


≤ 22p−2 [(n− 1)p + 1] ‖f‖pWn,p(Ω,w) .

5.2 Inversion via Fourier Series from one set of data

Because of the rotationally-invariant behavior of Q, we are motivated to look at how the

Fourier transform with respect to the angular variable interacts with Q. In this setting,

the partial Fourier transforms of f and Qf , with respect to ~θ and ~σ respectively, are as

follows:

f̃ (r, n) =
1√
2π

ˆ
S1
f
(
r~θ
)
e−inθ d~θ, Q̃f (s, n) =

1√
2π

ˆ
S1
Qf (s~σ) e−inσ d~σ,

where we identify a real number θ with the vector ~θ = 〈cos θ, sin θ〉, and similarly for σ

and ~σ. These integrals are well-defined for every r and s for which the restrictions f |rS1
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and Qf |sS1 are integrable. The inversions are given as

f
(
r~θ
)

=
1√
2π

∑
n∈Z

f̃ (r, n) einθ, Qf (s~σ) =
1√
2π

∑
n∈Z
Q̃f (s, n) einσ, (5.2.1)

for every r and s where f̃ (r, ·) , Q̃f (s, ·) ∈ `1.

These mappings then extend continuously to L2 isometries, from Ω and Ω̂ to [rmin, rmax]×Z

and [0, rmax]× Z respectively, where∥∥∥f̃∥∥∥2

L2
=
∑
n∈N

ˆ rmax

rmin

r
∣∣∣f̃ (r, n)

∣∣∣2w (r) dr,
∥∥∥Q̃f∥∥∥2

L2
=
∑
n∈N

ˆ rmax

0
s
∣∣∣Q̃f (s, n)

∣∣∣2 ŵ (s) ds.

We then compute the partial Fourier transform Q̃f as follows:

Q̃f (s, n) =
1√
2π

ˆ
S1

(ˆ s

0
f (t~σ) dt+

ˆ ∞
0

f (s~σ + tA~σ) dt

)
e−inσ d~σ

=
1√
2π

(ˆ s

0

ˆ
S1
f (t~σ) e−inσ d~σ dt+

ˆ ∞
0

ˆ
S1
f (s~σ + tA~σ) e−inσ d~σ dt

)
.

Much as we did in the proof of (5.1.1), we relabel t~σ = r~θ in the first integral, and perform

the multivariable substitution s~σ + tA~σ = r~θ in the second integral to obtain:

Q̃f (s, n) =
1√
2π

(ˆ s

0

ˆ
S1
f
(
r~θ
)
e−inθ d~θ dr

+

ˆ ∞
s

ˆ
S1
f
(
r~θ
)
e−in(θ−φ+arcsin( sr sinφ)) · 1√

1−
(
s
r

)2
sin2 φ

d~θ dr


=

ˆ s

0
f̃ (r, n) dr +

ˆ ∞
s

f̃ (r, n) ein(φ−arcsin( sr sinφ)) · 1√
1−

(
s
r

)2
sin2 φ

dr

(5.2.2)

=

ˆ ∞
0

f̃ (r, n)K
(s
r
, n
)
dr

= r̃f ? K (s, n) ,

where ? is convolution only in the first variable, and

K (q, n) =


1 if q > 1,

ein(φ−arcsin(q sinφ)) · 1√
1−q2 sin2 φ

if q ≤ 1.
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While the inversion formula given in (4.2.1) required f to be C2 in order to be valid

in a classical sense, we merely require f be continuous here. From this assumption, we

differentiate result (5.2.2) with respect to s, to obtain

∂Q̃f
∂s

(s, n) = f̃ (s, n) +

ˆ ∞
s

f̃ (r, n) · 1

r

∂K

∂q

(s
r
, n
)
dr − f̃ (s, n)K (1, n)

= (1− secφ) f̃ (s, n) + f̃ ?
∂K

∂q
(s, n) , (5.2.3)

which is a Volterra integral equation of the second kind in convolution form, (2.1.1), for

which a solution f̃ is given by

f̃ =
1

1− secφ

(
∂Q̃f
∂s

+

∞∑
ν=1

(
−1

1− secφ

)ν (∂K
∂q

)?ν
?
∂Q̃f
∂s

)
. (5.2.4)

Alternately, if we multiply both sides of (5.2.3) by s, we obtain

s
∂Q̃f
∂s

(s, n) = (1− secφ) sf̃ (s, n) +

ˆ ∞
s

f̃ (r, n) · s
r

∂K

∂q

(s
r
, n
)
dr

= (1− secφ) r̃f (s, n) + r̃f ?

(
q
∂K

∂q

)
(s, n) ,

and obtain yet another Volterra Integral Equation of the Second Kind, also in convolution

form, in which the solution r̃f is given by

r̃f =
1

1− secφ

(
s
∂Q̃f
∂s

+
∞∑
ν=1

(
−1

1− secφ

)ν (
q
∂K

∂q

)?ν
?

(
s
∂Q̃f
∂s

))
. (5.2.5)

One does notice, however, that reconstructing f (by way of reconstructing f̃) for r ≥ rmin

only requires knowledge of Qf for s ≥ rmin, and thus the problem of reconstructing f

when Qf is also known for s < rmin is in a sense overdetermined.
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5.3 Numerical Inversion of the Polar Broken Ray transform

We will assume Qf will be sampled on a polar grid, and wish to reconstruct f on the same

grid. If we let H > 0 and W > 0, ∆r = rmax−rmin
W−1 , and ∆θ = 2π

H , let

sk = rk = rmin + k∆r,

σk = θk = j∆θ,

f [j, k] = f
(
rk~θj

)
, 0 ≤ j < H, 0 ≤ k < W,

and

Qf [j, k] = Qf (sk~σj) , 0 ≤ j < H, 0 ≤ k < W.

Here, f and Qf represent sampled values of f and Qf .

Formula (5.2.4) indicates we would reconstruct f by reconstructing f̃ (·, n) from Q̃f (·, n)

for each n, a task which is easily parallelizable. However, since the inversion formula is

an infinite sum, it is impractical to devise a numerical implementation of the inversion

formula directly, and instead, we will model the forward transform (5.2.3) instead. For

n ∈ Z, define

Ang (s) = (1− secφ) g (s) +

ˆ rmax

s
g (r)Bn (r, s) dr, Bn (r, s) =

1

r

∂K

∂q

(s
r
, n
)
.

If Q̃f (s, n) is zero for |n| > H
2 then so will f̃ (r, n), and then f and Qf are uniquely

determined on each circle r = rk and s = sk, for 0 ≤ k < W . Furthermore, values of

f̃ (rk, n) and Q̃f (sk, n) are given exactly by the partial Discrete Fourier transforms f̃ and

Q̃f of f and Qf with respect to j.
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We then proceed with an a priori assumption that f is interpolated linearly in r between

sampled values, giving us

f
(
r~θj

)
=

W−1∑
k=0

f [j, k]κ (r − rk) ,

where

κ (r) =


1− |r|∆r if |r| ≤ ∆r,

0 if |r| > ∆r.

Then f̃ is interpolated in the same way:

f̃ (r, j) =

W−1∑
k=0

f̃ [j, k]κ (r − rk) ,

and

Anf̃ (sm, n) = (1− secφ) f̃ (sm, n) +

ˆ rmax

s
f̃ (r, n)Bn (r, sm) dr

= (1− secφ) f̃ [n,m] +

ˆ rmax

s

W−1∑
k=0

f̃ [n, k]κ (r − rk)Bn (r, sm) dr

= (1− secφ) f̃ [n,m] +
W−1∑
k=0

f̃ [n, k]

ˆ rmax

s
κ (r − rk)Bn (r, sm) dr

= (1− secφ) f̃ [n,m] +

W−1∑
k=0

f̃ [n, k] · κ ∗Bn (rk, sm) .

Thus, for each fixed n, g [n,m] = Vnf̃ (sm, n) is the result of a matrix multiplication

g [n] = An · f̃ [n], where

An [m, k] = κ ∗Bn (rk, sm) + (1− secφ) δm,k, (5.3.1)

where δm,k is the Kronecker delta. Notice that An is an upper triangular matrix, making

inversion feasible. Thus, the reconstruction scheme is to approximate g by applying an

appropriate numerical differentiation scheme to Q̃f , solving the upper triangular system

for f̃ [n], from which then recover f via inverse FFT.

For further details and Python scripts implementing this inversion, see Appendix B.
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5.4 Microlocal analysis of the distributional Polar Broken Ray trans-
form

Recall:

Qf (s~σ) =

ˆ s

0
f (t~σ) dt+

ˆ ∞
0

f (s~σ + tA~σ) dt.

Also recall that in the case of the second integral, we take

r~θ = s~σ + tA~σ, (5.4.1)

and so we rewrite our formula for Qf as

Qf (s~σ) =

ˆ s

0
f (t~σ) dt+

ˆ ∞
s

f
(
r~θ
)
· ∂t
∂r

dr,

where in the second integral, we view t and θ as implicitly being functions of r and s in

view of (5.4.1).

Pulling both f and Qf by the map

ω (`, σ) =
(
e` cosσ, e` sinσ

)
,

and making the subtitution t = e`−τ in the first integral, and r = e`+τ in the second

integral, we can find that

θ = σ + φ− arcsin
(
e−τ sinφ

)
.

This gives us the following:

ω?Qf (`, σ) =

ˆ ∞
0

e`−τω?f (`− τ, σ) dτ

+

ˆ ∞
0

e`+τω?f
(
`+ τ, σ + φ− arcsin

(
e−τ sinφ

))
· ∂t
∂r

∣∣∣∣
r
s

=eτ
dτ.

Definition 5.4.1 (The Distributional Polar Broken Ray transform). Let f ∈ E ′
(
R2\0

)
.

Then Qf is defined as the distribution satisfying

ω?Qf (`, σ) =

ˆ ∞
0

e`−τω?f (`− τ, σ) dτ
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+

ˆ ∞
0

e`+τω?f
(
`+ τ, σ + φ− arcsin

(
e−τ sinφ

))
· ∂t
∂r

∣∣∣∣
r
s

=eτ
dτ.

The first of these integrals is interpreted as the integral (3.1.2), with ~v = (1, 0), and the

second integral is interpreted as the integral (3.2.1) with:

γ (τ) =
(
−τ, arcsin

(
e−τ sinφ

)
− φ

)
, υ (τ) =

∂t

∂r

∣∣∣∣
r
s

=eτ
=

1√
1− e−2τ sin2 φ

.

In both of these integrals, we take u = e`ω?f . In setting s = e`, and making the substi-

tution r = e`+τ in the second integral, we observe that τ is implicitly a function of s and

t.

Since ω?Qf , as defined above, is obtained from convolving ω?f with some distribution,

ω?Qf inherits the necessary and sufficient condition for being in the range of ω? – namely

that ω?Qf is 2π-periodic in σ. Thus, the above is a valid definition of Qf .

Theorem 5.4.2 (Propagation of singularities of the Distributional Polar Broken Ray

transform). For f ∈ E ′
(
R2
)
with support bounded away from the origin:

WF (Qf) ⊆WF (f)

∪
{(
s~σ, ~ξ

) ∣∣∣ ∃t ≤ s :
(
t~σ, ~ξ

)
∈WF (f) , ~ξ ⊥ ~σ

}
∪
{(
s~σ, ρσ−θ~ξ

) ∣∣∣∃t ≥ 0 :
(
r~θ, ~ξ

)
∈WF (f) , ~ξ ⊥ A~σ

}
, (5.4.2)

where r~θ = s~σ+ tA~σ in (5.4.2), and ρσ−θ is counterclockwise rotation by an angle of σ−θ.

Proof. From Theorem 3.2.2, we observe that

WF

{ˆ ∞
0

e`−τω?f (`− τ, σ) dτ

}
\WF (ω?f)

⊆ {((`, σ) , ~η) | ∃τ ≥ 0 : ((`− τ, σ) , ~η) ∈WF (ω?f) , ~η ⊥ (−1, 0)} ,

and

WF

{ˆ ∞
0

e`+τω?f ((`, σ)− ~γ (τ)) · 1√
1− e−2τ sin2 φ

dτ

}
\WF (ω?f)



80

⊆
{

((`, σ) , ~η)
∣∣ ∃τ ≥ 0 : ~η ⊥ ~γ′ (τ) & ((`, σ)− ~γ (τ) , ~η) ∈WF (ω?f)

}
.

Hence:

WF (ω?Qf) ⊆WF (ω?f)

∪ {((`, σ) , ~η) | ∃τ ≥ 0 : ((`− τ, σ) , ~η) ∈WF (ω?f) , ~η ⊥ (−1, 0)} (5.4.3)

∪
{

((`, σ) , ~η)
∣∣ ∃τ ≥ 0 : ((`, σ)− ~γ (τ) , ~η) ∈WF (ω?f) , ~η ⊥ ~γ′ (τ)

}
. (5.4.4)

In applying ω−? to (5.4.3), we recall that

Dω (`, σ) = sρσ,

when we set s = e`. We also set t = e`−τ , and compute

ω−? {((`, σ) , ~η) | ∃τ ≥ 0 : ((`− τ, σ) , ~η) ∈WF (ω?f) , ~η ⊥ (−1, 0)}

=
{(
ω (`, σ) , (sρσ)−T ~η

) ∣∣∣
∃τ ≥ 0 :

(
ω (`− τ, σ) , (sρσ)−T ~η

)
∈WF (f) , ~η ⊥ (−1, 0)

}
= {(s~σ, ρσ~η) | ∃t ≤ s : (t~σ, ρσ~η) ∈WF (f) , ~η ⊥ (−1, 0)}

=
{(
s~σ, ~ξ

) ∣∣∣ ∃t ≤ s :
(
t~σ, ~ξ

)
∈WF (f) , ρ−σ~ξ ⊥ (−1, 0)

}
=
{(
s~σ, ~ξ

) ∣∣∣ ∃t ≤ s :
(
t~σ, ~ξ

)
∈WF (f) , ~ξ ⊥ ρσ (−1, 0)

}
=
{(
s~σ, ~ξ

) ∣∣∣ ∃t ≤ s :
(
t~σ, ~ξ

)
∈WF (f) , ~ξ ⊥ ~σ

}
.

Applying ω−? to (5.4.4), we recall that

ω ((`, σ)− ~γ (τ)) = r~θ,

and so

Dω ((`, σ)− ~γ (τ)) = rρθ.
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We also notice that t and τ are implicitly functions of each other, and so

ω−?
{

((`, σ) , ~η)
∣∣ ∃τ ≥ 0 : ((`, σ)− ~γ (τ) , ~η) ∈WF (ω?f) , ~η ⊥ ~γ′ (τ)

}
=
{(
ω (`, σ) , (sρσ)−T ~η

) ∣∣∣∃τ ≥ 0 :
(
r~θ, (rρθ)

−T ~η
)
∈WF (f) , ~η ⊥ ~γ′ (τ)

}
=
{

(s~σ, ρσ~η)
∣∣∣ ∃τ ≥ 0 :

(
r~θ, ρθ~η

)
∈WF (f) , ~η ⊥ ~γ′ (τ)

}
=
{(
s~σ, ρσ−θ~ξ

) ∣∣∣∃τ ≥ 0 :
(
r~θ, ~ξ

)
∈WF (f) , ρ−θ~ξ ⊥ ~γ′ (τ)

}
=
{(
s~σ, ρσ−θ~ξ

) ∣∣∣∃τ ≥ 0 :
(
r~θ, ~ξ

)
∈WF (f) , ~ξ ⊥ ρθ~γ′ (τ)

}
.

Fixing s~σ, and differentiating both sides of

r~θ = ω ((`, σ)− ~γ (τ)) ,

with respect to t, we obtain

A~σ = −Dω ((`, σ)− ~γ (τ))~γ′ (τ) · ∂τ
∂t

= −rρθ~γ′ (τ) · ∂τ
∂t
.

This indicates that we can replace ρθ~γ′ (τ) with A~σ. We can also replace τ ≥ 0 with t ≥ 0

to obtain

ω−?
{

((`, σ) , ~η)
∣∣ ∃τ ≥ 0 : ~η ⊥ ~γ′ (τ) & ((`+ τ, θ) , ~η) ∈WF (ω?f)

}
=
{(
s~σ, ρσ−θ~ξ

) ∣∣∣ ∃t ≥ 0 :
(
r~θ, ~ξ

)
∈WF (f) , ~ξ ⊥ A~σ

}
.

Therefore,

WF (Qf) ⊆ ω−?WF (ω?Qf)

⊆WF (f)

∪
{(
s~σ, ~ξ

) ∣∣∣ ∃t ≤ s :
(
t~σ, ~ξ

)
∈WF (f) , ~ξ ⊥ ~σ

}
∪
{(
s~σ, ρσ−θ~ξ

) ∣∣∣ ∃t ≥ 0 :
(
r~θ, ~ξ

)
∈WF (f) , ~ξ ⊥ A~σ

}
.

Unfortunately, since our inversion formula for the Polar Broken Ray transform is expressed

in terms of an infinite series, and also in terms of partial Fourier transforms, we are left
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with a one-sided microlocal analysis result as opposed to the two-sided results found in

Chapter 4 for the Florescu, et. al., and Katsevich and Krylov Broken Ray transforms.

Shown below are figures illustrating the propagation of singularities result obtained for the

Polar Broken Ray transform.

FIGURE 5.1: Wavefront sets of f
and Qf .

Using a scattering angle of φ = π
3 , figure 5.1 shows

the maximum extent of WF (Qf), where f is the

characteristic function of a disc. Here, WF (f) is

depicted by the circle, along with its normal vec-

tors. The green curve and its normal vectors are the

maximum extent of WF (Qf) \WF (f). The green

curves that meet at the origin are due to the sec-

ond integral in Qf , and correspond to points s~σ for

which the terminal ray, parametrized by s~σ + tA~σ,

t ≥ 0, is tangent to sing supp (f). Two broken rays of integration are shown to illustrate

this.

FIGURE 5.2: Wavefront sets of the characteristic function of a square and its Polar Broken
Ray transform.
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Figure 5.2 shows the propagation of singularities of the characteristic function of a square.

Each of the vertices propagate singularities both outward from the origin radially, and in-

ward along circular arcs connecting each vertex to the origin. The circular arcs correspond

to broken rays of integration for which the terminal ray passes through a vertex of the

square; such a broken ray of integration is shown in the figure.

Zooming in near the lower left corner of the square reveals a single point at which one of

the circular arcs intersects the left edge. This intersection corresponds with a broken ray

of integration for which the terminal ray coincides with much of the left side of the square.

As a result, singularities are propagated into an interval of directions at this point. This

behavior is also seen at a point on the right edge.

FIGURE 5.3: Propagation of singularities along an oscillatory curve by the Polar Broken
Ray transform.

The propagation of singularities by the Polar Broken Ray transform become more inter-

esting when we view how the Polar Broken Ray transform acts on distributions having a
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portion of its singular support fall along an oscillatory curve, as shown in Figure 5.3. The

resulting propagation in this case is given along a path that intersects with itself several

times, and furthermore, is bounded away from both the origin and the original curve.

Notice the amplification of the oscillations.

FIGURE 5.4: The effects of rotating the oscillatory curve on the propagation of singular-
ities.

Of further interest to seeing how the Polar Broken Ray transform propagates singularities

coming from an oscillatory curve is what would happen if the curve was rotated. The

effects are seen in Figure 5.4. On the left, we see singularities being propagated all the

way to the origin, as well as propagation in the radial direction being introduced. On the

right, we see propagation into multiple paths that terminate at the curve.
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6 DISCUSSION

We have investigated the variations of the Broken Ray transform introduced by Florescu,

et. al., and by Katsevich and Krylov, and furthermore introduced the Polar Broken Ray

transform. The results for the Florescu, et. al. and the Katsevich and Krylov Broken

Ray transforms are remarkably similar in that they and their inversions differ only in

multiplication by smooth functions and a change of coordinates. As such, the microlocal

analysis of these two transforms are essentially identical.

The Polar Broken Ray transform presented a peculiar geometry. To analyze this transform

in the distributional setting, we represented the transform as a composition of whose

factors we could analyze. This factorization required the introduction of the operator

Jγ,υ, which itself required further factorization in terms of pullbacks and integration to

perform microlocal analysis. In performing microlocal analysis on each of these factors,

we obtained a propagation of singularities result that presented a behavior not seen with

the Florescu, et. al. and Katsevich and Krylov Broken Ray transforms.

Upon discovery of the propagation of singularities result for the Polar Broken Ray trans-

form, (5.4.2), and viewing illustrations of this result, it was realized that an operator A

giving an inversion for the Polar Broken Ray must necessarily have the capacity to remove

the singularities of Qf that resulted from propagation. The case illustrated in Figure 5.2

indicates it is possible that an entire interval of directions at a single point be found in

WF (Qf) \WF (f). Nonvanishing partial differential operators with smooth coefficients

lack the capacity to cancel out an entire interval of directions at a single point in a wave-

front set, and as such, if a closed-form inversion for the Polar Broken Ray transform is to

be found, it will not be a composition of such a partial differential operator with an inte-

gration operator, as was the case with the Florescu, et. al., and by Katsevich and Krylov
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Broken Ray transforms.

In Chapter 5, the injectivity result of the Polar Broken Ray transform was established for

continuous functions f with compact support in R2\0. As such, an injectivity result for

distributions in general has yet to be established. A future area of investigation is to check

for injectivity of the Polar Broken Ray transform for distributions u ∈ E ′
(
R2\0

)
. In the

short term, however, one may pursue a result for distributions u whose Fourier coefficients

with respect to the angular variable are in L2 (R+), as such a result would prove injectivity

on L2
(
R2\0

)
.

Future work also includes continuing the search for a closed-form inversion formula for

the Polar Broken Ray transform. Such an inversion formula may also establish injectivity

result for the Polar Broken Ray transform defined on E ′
(
R2\0

)
. Additionally, alternate

sampling used in numerical inversion may also yield better results than those shown in

Appendix B. In particular, since the Polar Broken Ray transform is a two-dimensional

convolution when expressed in `σ-coordinates, we may wish to try logarithmic sampling

in the radial variable.

Since the propagation of singularities results presented in this thesis make no distinction

between a discontinuity of a function and a discontinuity on any of its derivatives, one may

also pursue Hs propagation of singularities results, in which we replace rapid decay of the

Fourier transform in the definition of wavefront set with decay on the order of ‖~ξ‖−s.
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A Numerical inversion of the Florescu, et. al. Broken Ray transform

A numerical implementation of formula (4.2.3) to recover f is performed by way of recon-

structing the approximation

φα ? f = B−1φα ? Bf =
(
κ ? B−1φα

)
∗Bf ,

where we view Bf as being obtained through bilinear interpolation of an array Bf sampling

on a mesh grid with the step sizes in x and y being given as ∆x and ∆y, respectively.

Here, φα is an approximation to the Dirac delta distribution on R2 with weak derivatives

to at least the second order, andκ is a bilinear interpolation kernel given by

κ (x, y) =


(

1− |x|∆x

)(
1− |y|∆y

)
|x| ≤ ∆x, |y| ≤ ∆y,

0 otherwise,

and ∗ denotes discrete convolution between the data Bf and an array sampling values of

κ ? B−1φα.

In our reconstructions here, we choose φα (x, y) = 1
α2φ

(
x
α ,

y
α

)
, where

φ (x, y) =


(

15
16

)2 (
1− x2

)2 (
1− y2

)2 if |x| ≤ 1 & |y| ≤ 1,

0 otherwise.

Reconstruction is carried out in two stages. In stage one, we use SAGE 6.9 to compute

Φ = Φ1 symbollically, where Φα satisfies the differential equation

∂4

∂x2∂y2
Φα = B−1φα.

It then follows that

κ ? B−1φα = ∆x ·∆y ·D2
yD

2
xΦα, (A.1)
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where second-order difference operator D2 with respect to a variable t is defined by

D2g (t) =
g (t+ ∆t) + g (t−∆t)− 2g (t)

∆t2
,

and is applied in both in x and y.

The direction of integration in the inversion formula is given in the direction (a, b), where

a = cos θ − 1, and b = sin θ. We will chose Φα to be obtained from integrating over right

triangles with a hypotenuse along the line bx− ay = 0. Notice that

Φα (x, y) =

ˆ y

b
a
x

ˆ x

a
b
v

(x− u) (y − v)B−1φα (u, v) du dv

=
1

2

ˆ y

b
a
x

ˆ x

a
b
v

(x− u) (y − v)

ˆ
R

sgn (s)D~v1
D~v2

φα (u− sa, v − sb) ds du dv

=
1

2

ˆ
R

ˆ y−sb

b
a
x−sb

ˆ x−sa

a
b
v

sgn (s) (x− u− sa) (y − v − sb)D~v1
D~v2

φα (u, v) du dv ds

=
α

2

ˆ
R

ˆ y
α
−sb

b
a
x
α
−sb

ˆ x
α
−sa

a
b
v

sgn (s)
(x
α
− u− sa

)( y
α
− v − sb

)
· D~v1

D~v2
φ (u, v) du dv ds

= αΦ
(x
α
,
y

α

)
.

Thus, we can compute Φα from Φ, using

Φ (x, y) =

ˆ
R

ˆ y−sb

b
a
x−sb

ˆ x−sa

a
b
v

sgn (s) Ψ (x, y;u, v, s) du dv ds

Ψ (x, y;u, v, s) =
1

2
(x− u− sa) (y − v − sb)D~v1

D~v2
φ (u, v) .

We find that Φ is a piecewise-defined function on the plane, and we will then convert

the constituent formulas for Φ into RPN code, and exported for use inside a Python

environment independent of SAGE.

Stage two is where the actual inversion occurs, importing the RPN code obtained in stage

one to generate the convolution kernel according to (A.1), and performing extension and

cropping of arrays as needed.



91

A.1 Kernel-generating functions (Stage 1)

The code presented in this section is written for a SAGE environment. As of this writ-

ing, updates to the SAGE worksheet file containing the following code will be found at

http://github.com/shersonb/brokenray/. Two modules, rpncalc and sageextras, are re-

quired by the worksheet. The rpncalcmodule, and successive versions, can be downloaded

from http://github.com/shersonb/python-rpncalc/, whereas sageextras is packaged with

brokenray. Both rpncalc and sageextras should be placed in $SAGE_ROOT/local/lib/

python/site-packages/.

Additionally, the array2im.py file provides functionality to convert two-dimensional

NumPy arrays into graphic files, and can be imported as a module, and be invoked as

a command line utility. As of this writing, successive versions of array2im.py can be

found at http://github.com/shersonb/python-array2im/,

Here, we define our choice of φ, and set up initial assumptions for use in the symbolic

computation of Φ.

1 # Initialization of required modules and variables.

2 import rpncalc

3 import bz2

4 from sageextras import *

5 from itertools import product

6

7 # Φ will be given as a piecewise-defined function, where the pieces are

8 # obtained by dividing xy-plane across the lines x = −1, x = 1, x = −a/b,

9 # x = a/b, y = −1, y = 1, p = a− b, p = −2a, p = −a− b, p = a+ b, p = 2a,
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10 # p = b− a, and p = 0, where p = bx− ay.

11

12 var("x, y, p, q, s, u, v, a, b")

13 phi(x, y) = (15/16)^2*(1 - x^2)^2*(1 - y^2)^2

14

15 # Case 0 < θ < arctan
(

3
4

)
(b > −3a):

16 case1 = [a < 0, b > 0, -a < b, b > -3*a]

17

18 # Case arctan
(

3
4

)
< θ < π

2 (b < −3a):

19 case2 = [a < 0, b > 0, -a < b, b < -3*a]

20

21 # Boundary cases - Not for use with ’Phi_symbolic’. Here, "equal" will

22 # mean "close enough" to get around floating point error.

23

24 # Case θ = π
2

25 bdcase1 = [abs(a+1) < 1e-14, abs(b-1) < 1e-14]

26 bdsubs1 = dict(a=-1, b=1)

27

28 # Case θ = arctan
(

3
4

)
29 bdcase2 = [abs(a+0.2) < 1e-14, abs(b-0.6) < 1e-14]

30 bdsubs2 = dict(a=-1/5, b=3/5)

Here, for a scattering angle 0 < θ ≤ π
2 , it is always the case that a < 0 and b > 0.

However, the computation of Φ depends on knowledge of the ordering of {−a, b,−3a}.

The boundary cases θ = π
2 (a = −1, b = 1) and θ = 2 arctan

(
1
3

)
(a = −1

5 , b = 3
5), are

done with fewer cases, and may be obtained by making the proper substitutions into the

formulas obtained from the second case.
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uvs_integral function

This function evaluates a single instance of the integral

ˆ smax

smin

ˆ vmax

vmin

ˆ umax

umin

sgn (s) Ψ (x, y;u, v, s) du dv ds,

where the limits on the two inner integrals are determined from smin and smax.

1 def uvs_integral(integrand, smin, smax):

2 # Evaluates
´ smax

smin

´ y−sb
b
a
x−sb

´ x−sa
a
b
v sgn (s) Ψ (x, y;u, v, s) du dv ds for

3 # the given smin and smax.

4

5 u_limits = {x - s*a, -1, 1}

6 v_limits_lower = {b/a*x - s*b, -1, 1}

7 v_limits_upper = {y - s*b, -1, 1}

8

9 u_limits = sorted(u_limits, cmp=cmp_symbolic)

10 v_limits_lower = sorted(v_limits_lower, cmp=cmp_symbolic)

11 v_limits_upper = sorted(v_limits_upper, cmp=cmp_symbolic)

12

13 # Since φ is supported in the square [−1, 1]2,

14 # we must choose the u and v limits accordingly.

15

16 umin = a/b*v

17

18 umax = min([x-s*a, 1], key=u_limits.index)

19 umax = max([-1, umax], key=u_limits.index)
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20

21 vmin = min([b/a*x - s*b, 1], key=v_limits_lower.index)

22 vmin = max([-1, vmin], key=v_limits_lower.index)

23

24 vmax = min([y - s*b, 1], key=v_limits_upper.index)

25 vmax = max([-1, vmax], key=v_limits_upper.index)

26

27 uvs_limits = (u, umin, umax), (v, vmin, vmax), (s, smin, smax)

28

29 s_integral = multivar_integral(integrand, *uvs_limits)

30

31 return sgn(s).simplify()*s_integral

Phi_symbolic_part function

This function evaluates

Φ (x, y) =
∑
k

ˆ s
(k)
max

s
(k)
min

ˆ v
(k)
max

v
(k)
min

ˆ u
(k)
max

u
(k)
min

sgn (s) Ψ (x, y;u, v, s) du dv ds,

given the case xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, and pmin ≤ p ≤ pmax, The limits on

x, y, and p, along with additional assumptions on x, y, and p = bx − ay put in place as

needed, allows us to determine the order of ’s_limits’, after which, we integrate over each

s interval
[
s

(k)
min, s

(k)
max

]
separately.

1 def Phi_symbolic_part(phi, xmin, xmax, ymin, ymax, pmin, pmax):

2 # Evaluates Φ (x, y) symbolically for xmin < x < xmax,

3 # ymin < y < ymax, and pmin < p < pmax.
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4

5 psi = phi.diff(x, x)*(a + 1) + phi.diff(x, y)*b

6 Psi = (x - u - s*a)*(y - v - s*b)*psi(x=u, y=v)/2

7

8 s_limits = {0, (y - 1)/b, (y + 1)/b, (x - 1)/a, (x + 1)/a, \

9 1/b + x/a, -1/b + x/a}

10

11 s_limits = sorted(s_limits, cmp=cmp_symbolic)

12

13 s_intervals = intervals(s_limits, unbounded=True)

14

15 integrals = []

16 for (smin, smax) in s_intervals:

17 s_assumptions = []

18

19 if smin is not -infinity:

20 for sk in s_limits[:s_limits.index(smin)+1]:

21 s_assumptions.append(sk<s)

22

23 if smax is not infinity:

24 for sk in s_limits[s_limits.index(smax):]:

25 s_assumptions.append(s<sk)

26

27 s_assumptions = assume2(*s_assumptions)

28

29 try:

30 uvs_integ = uvs_integral(Psi, smin, smax)
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31 finally:

32 if s_assumptions:

33 forget(*s_assumptions)

34

35 integrals.append(uvs_integ)

36

37 return sum(integrals)

Phi_symbolic function

This function, given cases, iterates over all possible cases of x, y, and p which produce

different orderings of s_limits in Phi_symbolic_part.

1 def Phi_symbolic(phi, case):

2 # We generate Φ by specifying a function φ defined by formula on the

3 # square [−1, 1]2. The returned value will be in the format accepted by

4 # the function ’rpncalc.piecewise_to_rpn’:

5 # [(case1, formula1), (case2, formula2), ... ]

6

7 # We first initialize all limits on x, y, p, s, u, and v.

8 x_limits = {-1, 1, -a/b, a/b}

9 y_limits = {-1, 1}

10 p_limits = {a - b, -2*a, -a - b, a + b, 2*a, b - a, 0*x}

11

12 formulas = [ ]

13 case = assume2(*case)
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14

15 # Sort the x, y, and p limits in ascending order.

16 x_limits = sorted(x_limits, cmp=cmp_symbolic)

17 y_limits = sorted(y_limits, cmp=cmp_symbolic)

18 p_limits = sorted(p_limits, cmp=cmp_symbolic)

19

20 x_intervals = intervals(x_limits, unbounded=True)

21 y_intervals = intervals(y_limits, unbounded=True)

22 p_intervals = intervals(p_limits, unbounded=True)

23

24 # We iterate over the x, y, p intervals.

25

26 for (xmin, xmax), (ymin, ymax), (pmin, pmax) in \

27 product(x_intervals, y_intervals, p_intervals):

28

29 # Determine if this is an empty case

30

31 max_ay = a*ymin if ymin is not -infinity else infinity

32 min_ay = a*ymax if ymax is not infinity else -infinity

33

34 max_bx = b*xmax if xmax is not infinity else infinity

35 min_bx = b*xmin if xmin is not -infinity else -infinity

36

37 if bool(pmax <= min_bx - max_ay) or bool(pmin >= max_bx - min_ay):

38 continue

39

40 conditions = [ ]
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41

42 if xmin is not -infinity:

43 conditions.append(xmin <= x)

44 if xmax is not infinity:

45 conditions.append(x <= xmax)

46 if ymin is not -infinity:

47 conditions.append(ymin <= y)

48 if ymax is not infinity:

49 conditions.append(y <= ymax)

50 if pmin is not -infinity:

51 conditions.append(pmin <= p)

52 if pmax is not infinity:

53 conditions.append(p <= pmax)

54

55 k1 = x_intervals.index((xmin, xmax))

56 k2 = y_intervals.index((ymin, ymax))

57 k3 = p_intervals.index((pmin, pmax))

58

59 xyp_assumptions = [ ]

60 if xmin is not -infinity:

61 for xk in x_limits[:k1]:

62 xyp_assumptions.append(xk < x)

63 if ymin is not -infinity:

64 for yk in y_limits[:k2]:

65 xyp_assumptions.append(yk < y)

66 if pmin is not -infinity:

67 for pk in p_limits[:k3]:



99

68 xyp_assumptions.append(pk < b*x - a*y)

69 if xmax is not infinity:

70 for xk in x_limits[k1:]:

71 xyp_assumptions.append(x < xk)

72 if ymax is not infinity:

73 for yk in y_limits[k2:]:

74 xyp_assumptions.append(y < yk)

75 if pmax is not infinity:

76 for pk in p_limits[k3:]:

77 xyp_assumptions.append(b*x - a*y < pk)

78

79 xyp_assumptions = assume2(*xyp_assumptions)

80

81 try:

82 formula = Phi_symbolic_part(phi, xmin, xmax, \

83 ymin, ymax, pmin, pmax)

84 finally:

85 if xyp_assumptions:

86 forget(*xyp_assumptions)

87

88 if pmin is not -infinity and pmax is not infinity \

89 and (xmin is -infinity or xmax is infinity) \

90 and (ymin is -infinity or ymax is infinity):

91 formula = formula(x=(b*p+a*q)/(a^2+b^2), \

92 y=(-a*p+b*q)/(a^2+b^2))

93
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94 formulas.append((conditions, formula))

95

96 forget(*case)

97 return formulas

reduce_formulas function

This function is used to simplify the formulas obtained from the Phi_symbolic function.

This is particularly useful in computing the aforementioned boundary cases.

1 def reduce_formulas(formulas, case, **subs):

2 # Reduces formulas to a simpler form given substitutions.

3 # Useful in computing boundary cases.

4

5 formula_dict = {tuple(case): formula for (case, formula) in formulas}

6

7 x_limits = {-1, 1, -a/b, a/b}

8 y_limits = {-1, 1}

9 p_limits = {a - b, -2*a, -a - b, a + b, 2*a, b - a, 0*x}

10

11 formulas = [ ]

12 case = assume2(*case)

13

14 # Sort the x, y, and p limits in ascending order.

15 x_limits = sorted(x_limits, cmp=cmp_symbolic)

16 y_limits = sorted(y_limits, cmp=cmp_symbolic)
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17 p_limits = sorted(p_limits, cmp=cmp_symbolic)

18

19 x_intervals = intervals(x_limits, unbounded=True)

20 y_intervals = intervals(y_limits, unbounded=True)

21 p_intervals = intervals(p_limits, unbounded=True)

22

23 # We iterate over the x, y, p intervals.

24

25 for (xmin, xmax), (ymin, ymax), (pmin, pmax) in \

26 product(x_intervals, y_intervals, p_intervals):

27

28 # Determine if this is an empty case.

29

30 max_ay = a*ymin if ymin is not -infinity else infinity

31 min_ay = a*ymax if ymax is not infinity else -infinity

32

33 max_bx = b*xmax if xmax is not infinity else infinity

34 min_bx = b*xmin if xmin is not -infinity else -infinity

35

36 if bool(pmax <= min_bx - max_ay) or bool(pmin >= max_bx - min_ay):

37 continue

38

39 # And also check if this is a degenerate case.

40 xmin_sub = xmin(**subs) if type(xmin) \

41 is sage.symbolic.expression.Expression \

42 else xmin
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43 xmax_sub = xmax(**subs) if type(xmax) \

44 is sage.symbolic.expression.Expression \

45 else xmax

46 ymin_sub = ymin(**subs) if type(ymin) \

47 is sage.symbolic.expression.Expression \

48 else ymin

49 ymax_sub = ymax(**subs) if type(ymax) \

50 is sage.symbolic.expression.Expression \

51 else ymax

52 pmin_sub = pmin(**subs) if type(pmin) \

53 is sage.symbolic.expression.Expression \

54 else pmin

55 pmax_sub = pmax(**subs) if type(pmax) \

56 is sage.symbolic.expression.Expression \

57 else pmax

58

59 if bool(xmin_sub == xmax_sub) or \

60 bool(ymin_sub == ymax_sub) or \

61 bool(pmin_sub == pmax_sub):

62 continue

63

64 conditions = [ ]

65 conditions_sub = [ ]

66

67 if xmin is not -infinity:

68 conditions.append(xmin <= x)
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69 conditions_sub.append(xmin_sub <= x)

70 if xmax is not infinity:

71 conditions.append(x <= xmax)

72 conditions_sub.append(x <= xmax_sub)

73 if ymin is not -infinity:

74 conditions.append(ymin <= y)

75 conditions_sub.append(ymin_sub <= y)

76 if ymax is not infinity:

77 conditions.append(y <= ymax)

78 conditions_sub.append(y <= ymax_sub)

79 if pmin is not -infinity:

80 conditions.append(pmin <= p)

81 conditions_sub.append(pmin_sub <= p)

82 if pmax is not infinity:

83 conditions.append(p <= pmax)

84 conditions_sub.append(p <= pmax_sub)

85

86 formula = formula_dict[tuple(conditions)](**subs)

87 formulas.append((conditions_sub, formula))

88

89 forget(*case)

90 return formulas

Generation and export of RPN code

The following generate formulas for all the cases of θ, and writes to files for use by the

brokenray module.
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1 kernel = rpncalc.PW_Function()

2

3 for case in (case1, case2):

4 formulas = Phi_symbolic(phi, case)

5 formulas = [(subcase, hornerrational(formula, x, y, p, a, b))

6 for (subcase, formula) in formulas]

7

8 kernel_part = rpncalc.piecewise_to_rpn(formulas)

9 case_rpn = rpncalc.conditions_to_rpn(*case)

10 kernel.append((case_rpn, kernel_part))

11

12 # Compute the boundary cases

13 if case is case2:

14 for bdcase, subs in ((bdcase1, subs1), (bdcase2, subs2)):

15 reduced = reduce_formulas(formulas, case, **subs)

16 reduced = [(subcase,

17 hornerrational(formula, x, y, p, a, b))

18 for (subcase, formula) in reduced]

19

20 case_rpn = rpncalc.conditions_to_rpn(*bdcase)

21 kernel_part = rpncalc.piecewise_to_rpn(reduced)

22 kernel.insert(0, (case_rpn, kernel_part))

23

24 f = bz2.BZ2File("fmsbrt-inv-kernel.rpn.bz2", "w")

25 print >>f, kernel.encode().encode("utf8")

26 f.close()
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27

28 placeholder = rpncalc.PW_Function()

29

30 # To separate each case into its own file.

31 for k, (case_rpn, kernel_part) in enumerate(kernel):

32 f = bz2.BZ2File("fmsbrt-inv-kernel-%d.rpn.bz2" % (k+1), "w")

33 print >>f, kernel_part.encode().encode("utf8")

34 f.close()

35

36 placeholder.append((case_rpn, rpncalc.RPNProgram()))

37

38 f = bz2.BZ2File("fbrt-inv-kernel-placeholder.rpn.bz2", "w")

39 print >>f, placeholder.encode().encode("utf8")

40 f.close()

A.2 Reconstruction

FMSBrokenRayInversion class

This is the Python class used to generate a convolution kernel and perform inversion. This

class depends on the existence of all the files generated in the previous section. The code

is contained in brokenray/florescu.py, part of the brokenray module. The module can

either be imported directly into Python, or be used as command line utility to perform the

inversions. This module requires the numpy, scipy, and rpncalc modules, as well as the

fmsbrt-inv-kernel.*.rpn.bz2 files generated in stage 1. This module does not require

SAGE.
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1 #!/usr/bin/python

2 # -*- coding: utf-8 -*-

3

4 from numpy import array, zeros, linspace, meshgrid, ndarray

5 from numpy import float64, float128, complex128, complex256

6 from numpy import exp, sin, cos, tan, arcsin, arctan

7 from numpy import floor, ceil

8 from numpy.fft import fft, ifft

9 from numpy import pi

10 from numpy import concatenate as concat

11 from scipy.signal import fftconvolve as conv

12

13 import os

14 import bz2

15 import rpncalc

16

17

18 class FMSBrokenRayInversion(object):

19

20 # This class defines a series of methods used in the reconstruction

21 # of a function µt from its Florescu, et. al. Broken Ray transform

22 # given as an H×W array, sampling values on

23 # ROI = [xmin, xmax]× [ymin, ymax].

24 # It will be assumed that 0 < θ ≤ π
2. Scattering angles greater than π

2

25 # are not supported.

26
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27 # Initialize ’kernel_generator’. Currently a placeholder that does

28 # not actually hold the RPN code needed. This class will load the

29 # proper RPN code from an external file as it is needed.

30

31 dirname, fname = os.path.split(__file__)

32 src = "fbrt-inv-kernel-placeholder.rpn.bz2"

33

34 f = bz2.BZ2File(os.path.join(dirname, src), "r")

35 rpn = f.read().decode("utf8")

36 f.close()

37

38 kernel_generator = rpncalc.decode(rpn)

39 del dirname, fname, src, f, rpn

40

41 def __init__(self, H, W, xmin, xmax, ymin, ymax, theta):

42

43 # Creates an instance of FMSBrokenRayInversion,

44 # with the following parameters:

45

46 # H, W -- The shape of the data.

47 # xmin, xmax -- The x bounds on the data.

48 # ymin, ymax -- The y bounds on the data.

49 # theta -- The fixed scattering angle.

50

51 self.H = H

52 self.W = W

53 self.xmin = xmin
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54 self.xmax = xmax

55 self.ymin = ymin

56 self.ymax = ymax

57 self.theta = theta

58 if not (0 < self.theta <= pi / 2):

59 raise ValueError, \

60 "Values of theta outside of (0, pi/2) not supported."

61

62 @property

63 def dx(self):

64 return float128(self.xmax - self.xmin) / (self.W - 1)

65

66 @property

67 def dy(self):

68 return float128(self.ymax - self.ymin) / (self.H - 1)

69

70 def _extend(self, data, alpha):

71 # Extend data to a larger array needed to perform

72 # inversion. With an a priori assumption that a function

73 # µt to be reconstructed is supported in ROI, then

74 # knowledge of Bµt on ROI is sufficient, given that Bµt

75 # is then uniquely determined by its values on ∂ROI.

76

77 # Since an approximation to µt is obtained via convolution

78 # of Bµt with B−1φα, it is necessary to extend the data

79 # to a rectangle R so that supp
(
B−1φα (z − ·)Bµt

)
⊆ R
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80 # for each z ∈ ROI.

81

82 # To reduce the amount of self.* in the code below...

83 dx, dy = self.dx, self.dy

84 xmin, xmax = self.xmin, self.xmax

85 ymin, ymax = self.ymin, self.ymax

86 theta = self.theta

87 H, W = self.H, self.W

88

89 # A very quick validation test, that ’data’ is an

90 # H × W array.

91 if data.shape != (H, W):

92 raise ValueError, \

93 "data.shape must be (%d, %d)." % (H, W)

94

95 # At a minimium, we take R = [x1, x2]× [y1, ymax], where:

96 # -- x1 = xmin −
(
(α− h) tan θ

2 − α
)

cos θ

97 # -- x2 = xmax + (α+ h) tan θ
2 + α

98 # -- y1 = ymin −
(
α tan θ

2 − α− w
)

sin (θ)

99 # -- w = xmax − xmin

100 # -- h = ymax − ymin

101 # It is not necessary to extend above the existing ROI.

102

103 ext_left = ((ymax - ymin - alpha)

104 * tan(theta / 2) - alpha) * cos(theta)

105 ext_right = (alpha + ymax - ymin)*tan(theta / 2)
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106 ext_down = (alpha * tan(theta / 2) + alpha

107 + xmax - xmin) * sin(theta)

108

109 # If this module is running inside an instance of SAGE,

110 # coerce these variables into float128, because numpy

111 # does not play well with SAGE data types.

112

113 xmin_ext = float128(xmin - ext_left)

114 xmax_ext = float128(xmax + ext_right)

115 ymin_ext = float128(ymin - ext_down)

116

117 W_ext = W + int(ceil(ext_left / dx)

118 + ceil(ext_right / dx))

119

120 H_ext = H + int(ceil(ext_down / dy))

121

122 # Extending to the right is easy.

123 # Repeat the boundary data at the right.

124 # But we will do that later.

125

126 # Extending to the left and downard takes more effort.

127 # We must take boundary data and translate it as it is

128 # extended. We use a Fourier multiplier in both

129 # extensions to perform the job.

130

131 # Extract left boundary data, pad it in the y direction
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132 # by extleft · tan θ, then repeat it in the x direction by

133 # extleft.

134

135 pad_up = int(ceil(

136 (-(alpha - ymax + ymin) * tan(theta / 2) - alpha) *

137 sin(theta) / dy))

138 pad_left = int(ceil(ext_left / dx))

139

140 # Left boundary data, padded upward so that we may later

141 # throw away the garbage data that will appear when we

142 # perform the translation needed to repeat the data

143 # in the direction of −~v2...

144 left = concat((data[::, 0], zeros(pad_up)))

145

146 # ... then repeated to have width ’pad_left’.

147 left = array((left,) * pad_left).transpose()

148

149 # We now prepare the Fourier multiplier.

150 # Initialize the xη-grid.

151

152 X = float128(linspace(xmin_ext, xmin - dx,

153 pad_left))

154

155 H_up = H + pad_up

156 eta_max = float128(2 * pi * (1 - 1.0 / H_up) / dy)

157
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158 Eta = float128(linspace(0, eta_max, H_up))

159 Eta[H_up / 2:] -= float128(2 * pi / dy)

160

161 X, Eta = meshgrid(X, Eta)

162

163 # ’translation’ - array giving amount of translation

164 # to be performed in the vertical direction.

165 translation = float128(tan(theta)) * (X - xmin)

166

167 # The Fourier multiplier used to perform the translation.

168 multiplier = exp(-1j * Eta * translation)

169

170 # Note the ’axis=0’ keyword argument.

171 left_fft = fft(complex128(left), axis=0)

172 left = ifft(left_fft * multiplier, axis=0)

173

174 # Concatenate ’left’ to ’data’, after discarding

175 # garbage data.

176 data_ext = concat((left[:-pad_up], data), axis=1)

177

178 # We now do the same in extending the data downward.

179 pad_right = int(ceil(ext_down * cos(theta) / sin(theta) / dx))

180 pad_down = int(ceil(ext_down / dy))

181

182 # Start with the bottom row of the data...

183 bottom = concat((data_ext[0], zeros(pad_right)))
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184 # ...repeated to have height ’pad_down’.

185 bottom = array((bottom,) * pad_down)

186

187 # Initialize the ξy-grid to prepare the

188 # Fourier multiplier.

189 Y = float128(linspace(ymin_ext, ymin - dy,

190 pad_down))

191

192 W += pad_right + pad_left

193 xi_max = float128(2 * pi * (1 - 1.0 / W) / dx)

194

195 Xi = float128(linspace(0, xi_max, W))

196 Xi[W / 2:] -= float128(2 * pi / dx)

197

198 Xi, Y = meshgrid(Xi, Y)

199

200 translation = float128(cos(theta) / sin(theta)) * (Y - ymin)

201 multiplier = exp(-1j * Xi * translation)

202

203 bottom_fft = fft(complex128(bottom), axis=1)

204 bottom = ifft(bottom_fft * multiplier, axis=1)

205

206 data_ext = concat((bottom[:, :-pad_right], data_ext),

207 axis=0)

208

209 # Now we extend to the right and return the result.
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210 pad_right = int(ceil(ext_right / dx))

211 data_ext = concat((data_ext,) +

212 (data_ext[:, -1:],) * pad_right, axis=1)

213

214 return data_ext

215

216 def make_kernel(self, alpha):

217 """Prepares a convolution kernel for use to perform numerical

218 inversion of the Florescu Broken Ray transform."""

219

220 # We now make a convolution kernel B−1φα.

221 # We must determine a rectangle S needed so that

222 # supp
(
Bµt (z − ·)B−1φα

)
⊆ S for each z ∈ ROI.

223 # This time, we take S = [x1, x2]× [y1, y2], where:

224 # -- x1 =
(
− (α+ h) tan θ

2 − α+ w
)

cos θ − w

225 # -- x2 = α+ (α+ h) tan θ
2

226 # -- y1 = −h

227 # -- y2 =
(
(α− h) tan θ

2 + α+ w
)

sin θ + h

228 # -- w = xmax − xmin

229 # -- h = ymax − ymin

230

231 dx, dy = self.dx, self.dy

232 xmin, xmax = self.xmin, self.xmax

233 ymin, ymax = self.ymin, self.ymax

234 theta = self.theta

235
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236 # Determine the bounds on the convolution kernel array.

237 xmin_ker = (-(alpha + ymax - ymin)

238 * tan(theta / 2)

239 - alpha + xmax - xmin) \

240 * cos(theta) \

241 - xmax + xmin

242 xmax_ker = alpha + (alpha + ymax - ymin) \

243 * tan(theta / 2)

244 ymin_ker = ymin - ymax

245 ymax_ker = ((alpha - ymax + ymin)

246 * tan(theta / 2)

247 + alpha + xmax - xmin) \

248 * sin(theta) \

249 + ymax - ymin

250

251 # Adjust these bounds to be integer multiples of ∆x

252 # and ∆y as needed. Also pad around the edge

253 # by a single pixel.

254

255 xmin_ker = floor(xmin_ker / dx) * dx

256 xmax_ker = ceil(xmax_ker / dx) * dx

257 ymin_ker = floor(ymin_ker / dy) * dy

258 ymax_ker = ceil(ymax_ker / dy) * dx

259

260 W = int(ceil(xmax_ker / dx) - floor(xmin_ker / dx)) + 1

261 H = int(ceil(ymax_ker / dy) - floor(ymin_ker / dy)) + 1

262
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263 # Prepare xy grid, with an extra pixel border

264 # around the edge.

265

266 X = float128(linspace(xmin_ker - dx, xmax_ker + dx, W + 2))

267 Y = float128(linspace(ymin_ker - dy, ymax_ker + dy, H + 2))

268 X, Y = meshgrid(X, Y)

269

270 A = cos(float128(theta)) - 1

271 B = sin(float128(theta))

272

273 # Prepare pq grid.

274

275 P = B * X - A * Y

276 Q = A * X + B * Y

277

278 alpha = float128(alpha)

279

280 case_num = self.kernel_generator.findcase(a=A, b=B)

281 case, formula = self.kernel_generator[case_num]

282

283 if len(formula) == 0:

284 dirname, fname = os.path.split(__file__)

285 src = "fbrt-inv-kernel-%d.rpn.bz2" % (case_num + 1)

286

287 f = bz2.BZ2File(os.path.join(dirname, src), "r")

288 rpn = f.read().decode("utf8")

289 f.close()
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290

291 self.kernel_generator[case_num] = (case,

292 rpncalc.decode(rpn))

293

294 Phi = alpha * self.kernel_generator(a=A, b=B,

295 x=X / alpha, y=Y / alpha,

296 p=P / alpha, q=Q / alpha)

297

298 Ker = (Phi[2:] + Phi[:-2] - 2 * Phi[1:-1]) / dx

299 Ker = (Ker[:, 2:] + Ker[:, :-2] - 2 * Ker[:, 1:-1]) / dy

300

301 return Ker

302

303 def reconstruct(self, data, kernel, alpha):

304 # This is where the reconstruction finally happens.

305

306 # Apparently, scipy’s fftconvolve does not support

307 # float128. But that is okay. The purpose of using

308 # 128-bit precision was for computation of ’Ker’

309 # in the above method.

310 data_ext = self._extend(data, alpha)

311 result = conv(kernel, data_ext)

312

313 # Need to determine how ’data_ext’ is to be cropped.

314

315 dx, dy = self.dx, self.dy

316 xmin, xmax = self.xmin, self.xmax
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317 ymin, ymax = self.ymin, self.ymax

318 theta = self.theta

319

320 # Determine the bounds on the convolution kernel array.

321 xmin_ker = (-(alpha + ymax - ymin)

322 * tan(theta / 2)

323 - alpha + xmax - xmin) \

324 * cos(theta) \

325 - xmax + xmin

326 xmax_ker = alpha + (alpha + ymax - ymin) \

327 * tan(theta / 2)

328 ymin_ker = ymin - ymax

329 ymax_ker = ((alpha - ymax + ymin)

330 * tan(theta / 2)

331 + alpha + xmax - xmin) \

332 * sin(theta) \

333 + ymax - ymin

334

335 # How much the data was extended

336 ext_left = ((ymax - ymin - alpha)

337 * tan(theta / 2) - alpha) * cos(theta)

338 ext_right = (alpha + ymax - self.ymin)\

339 * tan(theta / 2)

340 ext_down = (alpha * tan(theta / 2) + alpha

341 + xmax - xmin) * sin(theta)

342
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343 crop_bottom = int(ceil(ext_down / dy) - floor(ymin_ker / dy))

344 crop_top = int(ceil(ymax_ker / dy))

345 crop_left = int(ceil(ext_left / dx) - floor(xmin_ker / dx))

346 crop_right = int(ceil(xmax_ker / dx) + ceil(ext_right / dx))

347

348 return result[crop_bottom:-crop_top, crop_left:-crop_right]

To run a reconstruction from the Python prompt, given an array Qf , along with xmin,

xmax, ymin, ymax, and θ, one executes the following, choosing a reconstruction parameter

α:

1 >>> H, W = Qf.shape

2 >>> brinv = FMSBrokenRayInversion(H, W, xmin, xmax, ymin, ymax, theta)

3 >>> alpha = 3*sqrt(brinv.dx*brinv.dy)

4 >>> kernel = brinv.generate_kernel(alpha)

5 >>> reconstructed = brinv.reconstruct(Qf, kernel, alpha)

The file array2im.py provides the ability to convert a 2-dimensional NumPy array into

an image file through the Python Imaging Library (the PIL module). This file can also

be used as both a Python module and as a command line utility. At the time of this

writing, array2im.py generates images with red corresponding to positive values, and

blue to negative values, with brightness corresponding to absolute value. The imaginary

parts of complex-valued arrays are ignored.
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A.3 Results

Reconstructions of images are from simulated data. Of note is the visible error in the

reconstruction of a square whose sides are not parallel to the coordinate axes, but instead

having a pair of its sides parallel to the terminal beam. Each of these reconstructions were

done on a 1025× 1025 grid, with regions of interest [−6, 6]× [−6, 6].

FIGURE A.1: Recovery of the characteristic function of a square from its Broken Ray
transform, with scattering angle θ = π

3 . Two of the edges are parallel to the initial beam
direction.

A reconstruction of a square in Figure A.1, whose sides are parallel to the coordinate axes,

is shown to have almost no error, save for some lines corresponding to the direction of

integration, passing through the vertices of the square. The error towards the lower left is

due to the manner in which the data is repeated.

The square in Figure A.2, on the other hand, is tilted so that two of its sides correspond

to the terminal direction is reconstructed with visible noise. Error was highly abundant

when taking α = 0.05. The reconstruction shown is given with α = 0.15, which reduced

the error, but at the cost of blurring the image.

This can be remedied by reconstructing from data sampled on an alternate grid that lines

up with both the initial and terminal directions. This would be equivalent, up to scalar
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FIGURE A.2: Recovery of the characteristic function of a tilted square from its Broken
Ray transform, with scattering angle θ = π

3 . Two of the edges are parallel to the terminal
beam direction.

FIGURE A.3: Recovery of the characteristic function of a square from its Broken Ray
transform, with scattering angle θ = π

2 .

multiple, to reconstructing with a scattering angle of π2 . In this setting, a = −1 and b = 1,

and so we would be able to simplify the symbolic expression for κ ? B−1φ, and therefore

cut down on the computation time. Indeed, the reconstruction in this setting appears to

be a perfect reconstruction with almost no perceptible error, as shown in Figure A.3. Also

notice that the repetition of the boundary data at the bottom becomes trivial.

Figure A.4 depicts a reconstruction of a function f where WF (f) \WF (Bf) is nonempty,
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FIGURE A.4: Recovery of a piecewise-constant function (taking values 1 and −1 on its
support) having singularities vanish in its Broken Ray transform.

and in particular, consists of three line segments. This is similar to what was shown in

Example 4.2.2. Here, the scattering angle of π3 .

FIGURE A.5: Recovery of a piecewise-quadratic function.

In Figure A.5, we reconstruct the function f , defined by

f (x, y) =


sgn (u)

(
v2 − 9

)
, if |u| < 1, |v| < 3,

0, otherwise,

where the uv-plane is a counter-clockwise rotation of the xy-plane by π
6 . As with the

function shown in Figure A.4, notice that Bf here vanishes along the v-axis, and this time,
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the size of the jump discontinuity in f along the v-axis varies between v = −3 and v = 3.

B Numerical inversion of the Polar Broken Ray transform

The code in this section is found in brokenray/polar.py of the brokenray package. We

first import the necessary modules and RPN functions that were originally generated in

SAGE. Inversion requires modules iqueue, which is derived from Python’s queue mod-

ule, as well as the rpncalc and parallel modules. At the time of this writing, these

modules, and successive versions, can be downloaded from their respective repositories at

http://github.com/shersonb/.

Also, the file polar-to-cartesian.py is a standalone Python script used to filter and re-

sample data given on a polar grid onto a Cartesian grid, and is included with the brokenray

module.

As with the reconstructions of the Florescu, et. al. Broken Ray transform, the array2im

module can also be used to convert the NumPy arrays resulting from the following inversion

code into graphic files, and is found at http://github.com/shersonb/python-array2im/.

We first import some required tools:

1 from numpy import array, zeros, linspace, meshgrid, ndarray, diag

2 from numpy import uint8, float64, int8, int0, float128, complex128

3 from numpy import exp, sqrt, cos, tan, arctan

4 from numpy import minimum, maximum

5 from numpy import ceil, floor
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6 from numpy import matrix as npmatrix

7 from numpy.fft import fft, ifft

8 from numpy import pi

9 from scipy.linalg import solve_triangular as solve

10 from scipy.signal import fftconvolve as conv

11 from scipy.ndimage import geometric_transform as transform

12

13 # We will make use of *reentrant* locks.

14 from threading import RLock as Lock

15 from threading import Condition, Thread

16

17 # This module is a modification on python’s queue module,

18 # which allows one to interrupt a queue.

19 import iqueue

20

21 # This is a module written to execute code in parallel.

22 # While python is limited by the Global Interpreter Lock,

23 # numerical operations on NumPy arrays are generally not

24 # limited by the GIL.

25 import parallel

26

27 # This module allows the conversion of SAGE symbolic expressions

28 # to RPN code through the symbolic_to_rpn. RPNProgram is a subclass

29 # of list that comes equipped with a __call__ method that implements

30 # execution of the RPN code.

31 import rpncalc
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Much of the effort to numerically invert the Polar Broken Ray transform goes into com-

putation and inversion of the matrix given in (5.3.1). Computation of κ ∗ Bn is done via

approximation with power series, giving us

κ ∗Bn (rj , sk) =


2
∑

m∈2N
1

(m+2)! ·
∂mBn
∂rm (rj , sk) ·∆rm+1 j < k,∑

m∈N
1

(m+2)! ·
∂mBn
∂rm (rj , sk) ·∆rm+1 j = k.

B.1 Utility functions

We introduce variables as follows:

q =
s

r
, u = arcsin (q sinφ) ,

w = ei(φ−u), v = r · ∂u
∂r

= −q · ∂u
∂q
,

so that

Kn = K (·, n)

= wn · ∂u
∂q

cscφ

= −r
s
wnv cscφ.

Notice that
∂w

∂r
= − iwv

r
,

∂v

∂r
= −

v
(
1 + v2

)
r

,

and so

Bn (r, s) =
1

r

∂Kn

∂q

= − r

s2
wnv2 (v + in) cscφ.

Furthermore, recursively defining

cm
(
x, n2

)
= n2dm−1

(
x, n2

)
− (1 + 3x+m) cm−1

(
x, n2

)
− 2x (1 + x)

∂cm−1

∂x

(
x, n2

)
,
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dm
(
x, n2

)
= −xcm−1

(
x, n2

)
− (2x+m) dm−1

(
x, n2

)
− 2x (1 + x)

∂dm−1

∂x

(
x, n2

)
,

for m ≥ 1, subject to initial values

c0

(
x, n2

)
= d0

(
x, n2

)
= −1,

we find that

∂mBn
∂rm

=
wnv2r1−m cscφ

s2

(
vcm

(
v2, n2

)
+ ndm

(
v2, n2

)
i
)
, m ≥ 0,

and hence,

κ ∗Bn (rj , sk) =
wnv2r cscφ∆r

s2
·


2
∑

m∈2N
1

(m+2)! · (vcm + ndmi)
(

∆r
r

)m
j < k,∑

m∈N
1

(m+2)! · (vcm + ndmi)
(

∆r
r

)m
j = k.

In the interests of time, we will forego use of SAGE’s symbolic computational capabilities

to compute the polynomials cm and dm, and instead generate the coefficients using NumPy

matrix multiplication.

Assume C(m) and D(m) are matrices representing the coefficients of cm and dm:

cm
(
x, n2

)
=
∑
j,k≥0

C
(m)
j,k x

jn2k,

dm
(
x, n2

)
=
∑
j,k≥0

D
(m)
j,k x

jn2k.

Then by the recursions given above, C(m) and D(m) are (m+ 1)×
(⌈

m
2

⌉
+ 1
)
and (m+ 1)×(⌊

m
2

⌋
+ 1
)
, respectively, and are given by

C(m) = EmD
(m−1)XT

m+1
2

− ((1 +m)Em + 3Xm + 2 (EmXm−1 +XmXm−1) ∆m)C(m−1)ETm+1
2

∈ R(m+1)×m+3
2 ,
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D(m) = XmC
(m−1) − (mEm + 2Xm + 2 (EmXm−1 +XmXm−1) ∆m)D(m−1)

∈ R(m+1)×m+1
2 ,

for m odd, and

C(m) = EmD
(m−1)XT

m
2

− ((1 +m)Em + 3Xm + 2 (EmXm−1 +XmXm−1) ∆m)C(m−1)

∈ R(m+1)×(m2 +1),

D(m) = XmC
(m−1) − (mEm + 2Xm + 2 (EmXm−1 +XmXm−1) ∆m)D(m−1)ETm

2

∈ R(m+1)×(m2 +1),

for m even, where

∆m =



0 1 0 . . . 0

0 0 2 . . . 0

...
...

...
. . .

...

0 0 0 . . . m− 1


∈ R(m−1)×m,

Xm =



0 0 . . . 0

1 0 . . . 0

0 1 . . . 0

...
...

. . . 0

0 0 . . . 1


∈ R(m+1)×m, Em =



1 0 . . . 0

0 1 . . . 0

...
...

. . . 0

0 0 . . . 1

0 0 . . . 0


∈ R(m+1)×m.

Computation of C(m) and D(m) are done through the getcoeffs method of an instance

of _CD_RPN, while the RPN code is generated by invoking __getitem__.
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1 # Some utility functions used by PolarBrokenRayInversion

2 def _E(m):

3 return int0(npmatrix(diag((1,) * int(m + 1), k=0)[:, :-1]))

4

5

6 def _X(m):

7 return int0(npmatrix(diag((1,) * int(m), k=-1)[:, :-1]))

8

9 def _Del(m):

10 return int0(npmatrix(diag(xrange(1, int(m)), k=1)[:-1]))

11

12 class _CD_RPN:

13

14 def __init__(self):

15 self.coeffs = [(npmatrix((-1,)), npmatrix((-1,)))]

16 self.rpn = [(rpncalc.RPNProgram([-1]), rpncalc.RPNProgram([-1]))]

17

18 # In case this class is utilized by multiple threads.

19 self.lock = Lock()

20

21 def getcoeffs(self, m):

22 # Returns coefficients for cm and dm.

23 # If they already exist in cache, just return what is there.

24 with self.lock:

25 if len(self.coeffs) <= m:

26 # Need to generate coefficients for cm and dm.
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27 # Fetch the coefficients for cm−1 and dm−1.

28 C, D = self.getcoeffs(m - 1)

29

30 if m % 2: # m is odd

31 C_new = _E(m)*D*_X((m + 1)/2).transpose() \

32 - ((1 + m)*_E(m) + 3*_X(m)

33 + 2*(_E(m) + _X(m))*_X(m - 1)*_Del(m))*C \

34 *_E((m + 1)/2).transpose()

35 D_new = _X(m)*C - (m*_E(m) + 2*_X(m)

36 + 2 * (_E(m) + _X(m))*_X(m - 1)*_Del(m))*D

37

38 else: # m is even

39 C_new = _E(m)*D*_X(m/2).transpose() \

40 - ((1 + m)*_E(m) + 3*_X(m)

41 + 2*(_E(m) + _X(m))*_X(m - 1)*_Del(m))*C

42

43 D_new = _X(m)*C - (m*_E(m) + 2*_X(m)

44 + 2*(_E(m) + _X(m))*_X(m - 1)*_Del(m))*D \

45 *_E(m / 2).transpose()

46

47 self.coeffs.append((C_new, D_new))

48

49 return self.coeffs[m]

50

51 def __getitem__(self, m):

52 n2 = rpncalc.wild("n2")
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53 v2 = rpncalc.wild("v2")

54 mul = rpncalc.rpn_funcs["*"]

55 add = rpncalc.rpn_funcs["+"]

56 # Returns RPN code for cj and dj. Generate on the fly if needed.

57 with self.lock:

58 while len(self.rpn) <= m:

59 cm_rpn = []

60 dm_rpn = []

61

62 C, D = self.getcoeffs(len(self.rpn))

63

64 # Generate RPN code for cj and dj.

65 for row in array(C[::-1]):

66 npoly_rpn = []

67 for coeff in row[::-1]:

68 if coeff:

69 if len(npoly_rpn):

70 npoly_rpn.extend([n2, mul])

71 npoly_rpn.extend([coeff, add])

72 else:

73 npoly_rpn.append(coeff)

74 elif len(npoly_rpn):

75 npoly_rpn.extend([n2, mul])

76 if len(cm_rpn):

77 cm_rpn.extend([v2, mul])

78 cm_rpn.extend(npoly_rpn)
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79 cm_rpn.append(add)

80 else:

81 cm_rpn.extend(npoly_rpn)

82

83 for row in array(D[::-1]):

84 npoly_rpn = []

85 for coeff in row[::-1]:

86 if coeff:

87 if len(npoly_rpn):

88 npoly_rpn.extend([n2, mul])

89 npoly_rpn.extend([coeff, add])

90 else:

91 npoly_rpn.append(coeff)

92 elif len(npoly_rpn):

93 npoly_rpn.extend([n2, mul])

94 if len(dm_rpn):

95 dm_rpn.extend([v2, mul])

96 dm_rpn.extend(npoly_rpn)

97 dm_rpn.append(add)

98 else:

99 dm_rpn.extend(npoly_rpn)

100 self.rpn.append(

101 (rpncalc.RPNProgram(cm_rpn),

102 rpncalc.RPNProgram(dm_rpn)))

103 return self.rpn[m]
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The following is a numerical implementation of ∂
∂s , based on approximating

∂f

∂s
= ψ′α ? f,

where ψα → δ in distribution as α → 0. We only require ψα to have a first-order weak

derivative.

1 class Sderiv:

2

3 def __init__(self, alpha):

4 self.alpha = alpha

5

6 def __call__(self, A, ds):

7 H, W = A.shape

8 psi = rpncalc.decode(u"\xab x 3 ^ 4 / +/- 3 x * 4 / + \xbb")

9 N = ceil(self.alpha / ds)

10 X = linspace(-N * ds - ds, N * ds + ds, 2 * N + 3)

11

12 Psi = psi(x=X / self.alpha)

13 Psi[X > self.alpha] = psi(x=1)

14 Psi[X < -self.alpha] = psi(x=-1)

15

16 stencil = (Psi[:-2] + Psi[2:] - 2 * Psi[1:-1]) / ds

17

18 diff = conv([stencil], A)

19

20 return N, N, diff[:, 2 * N:-2 * N]
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B.2 Reconstruction

PolarBrokenRayInversion class

This task is parallelizable, and so we will write our code as such, using the parallel

module.

1 class PolarBrokenRayInversion(parallel.BaseTaskClass):

2 _cd = _CD_RPN()

3 _u = rpncalc.decode(u"\xab q phi sin * arcsin \xbb")

4 _v = rpncalc.decode(u"\xab q phi sin * +/- \

5 1 q 2 ^ phi sin 2 ^ * - sqrt / \xbb")

6 _w = rpncalc.decode(u"\xab i phi u - * exp \xbb")

7 _tm = rpncalc.decode(u"\xab i dm * n * cm v * + dlnr m ^ * \

8 m 2 + ! / \xbb")

9 _cf = rpncalc.decode(u"\xab dr r * v 2 ^ * phi csc * s 2 ^ / \xbb")

10 _invlock = Lock()

11

12 def __init__(self, Qf, Phi, smin, smax, alpha, nmax=200):

13 # Parameters:

14 # Qf -- Qf, sampled on an rθ grid.

15 # Phi (φ) -- Scattering angle

16 # rmin -- rmin, defaults to 1.

17 # rmax -- rmax, defaults to 6.

18 # D -- Numerical implemenation of ∂
∂ r.

19 # nmax -- nmax, reconstructs f̃ (r, n)

20 # for |n| ≤ nmax. Defaults to 200.
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21

22 # This reconstruction will assume that Qf is real and exploit

23 # conjugate symmetry in the Fourier series.

24

25 # Initialize variables.

26 self.Qf = Qf

27 self.Phi = Phi

28 self.smin = smin

29 self.smax = smax

30

31 H, W = Qf.shape

32

33 self.thetamin = thetamin = -pi

34 self.thetamax = thetamax = pi*(1-2.0/H)

35 self.nmax = nmax

36

37 self.F = None

38 self.F_cartesian = None

39

40 self.lock = Lock()

41 self.status = Condition(self.lock)

42 self.jobsdone = 0

43 self.jobcount = nmax + 1

44 self.running = False

45 self.projectioncount = 0

46 self.projecting = False

47
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48 self.dr = dr = ds = (smax - smin) / float(W - 1)

49 self.dtheta = dtheta = (thetamax - thetamin) / float(H)

50

51 # Compute Q̃f.

52 self.FQf = FQf = fft(Qf, axis=0)

53

54 # Perform differentiation of Q̃f.

55 D = Sderiv(alpha)

56 try:

57 clip_left, clip_right, self.DFQf = D(FQf, ds)

58 except:

59 clip_left, clip_right, self.DFQf = D(float64(FQf), ds)

60

61 # Initialize array that will store f̃.

62 self.Ff = zeros(self.DFQf.shape, dtype=complex128)

63

64 # Initialize rs grid.

65 self.rmin = self.smin + clip_left * ds

66 self.rmax = self.smax - clip_right * ds

67 R = linspace(self.rmin, self.rmax, W - clip_left - clip_right)

68 self.R, self.S = meshgrid(R, R)

69

70 # Compute q, u, v, w, and v2r ∗ csc(φ) ∗∆r/s2.

71 self.Q = self.S / self.R

72

73 args = dict(q=self.Q, r=self.R, s=self.S, phi=self.Phi, dr=dr)
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74 args["u"] = self.U = self._u(**args)

75 args["v"] = self.V = self._v(**args)

76 self.W = self._w(**args)

77 self.Factor = self._cf(**args)

78

79 def A(self, n, eps=0.0000001, p=16):

80 # Compute matrix An.

81

82 H, W = self.DFQf.shape

83

84 # Initialize the An matrix (as an array for now).

85 An = zeros(self.R.shape, dtype=complex128)

86

87 # First compute a partial sum for the upper triangular part.

88 # Start with m = 0

89

90 mask = self.S < self.R

91

92 Sum = zeros(self.R.shape, dtype=complex128)

93

94 for m in xrange(0, p + 1, 2):

95 cm_rpn, dm_rpn = self._cd[m]

96 Term = self._tm(v=self.V[mask], v2=self.V[mask] ** 2,

97 dlnr=self.dr / self.R[mask],

98 n=n, n2=n ** 2, m=m, cm=cm_rpn, dm=dm_rpn)

99

100 Sum[mask] += Term
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101 mask[mask] *= abs(Term) >= eps

102 if not mask.any():

103 break

104

105 mask = self.S < self.R

106

107 An[mask] = 2 * self.W[mask] ** n * self.Factor[mask] * Sum[mask]

108

109 # Now to do the diagonal.

110 # Since r = s here, we have q = 1, u = φ, v = − tanφ,

111 # and w = 1.

112

113 mask = self.S == self.R

114

115 Sum = zeros(self.R.shape, dtype=complex128)

116

117 for m in xrange(0, p + 1):

118 cm_rpn, dm_rpn = self._cd[m]

119

120 Term = self._tm(v=-tan(self.Phi), v2=tan(self.Phi) ** 2,

121 dlnr=self.dr / self.R[mask],

122 n=n, n2=n ** 2, m=m, cm=cm_rpn, dm=dm_rpn)

123

124 Sum[mask] += Term

125 mask[mask] *= abs(Term) >= eps

126 if not mask.any():

127 break
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128

129 mask = self.S == self.R

130 An[mask] = self.Factor[mask] * Sum[mask] + \

131 array([1 - 1 / cos(self.Phi)] * W)

132

133 return npmatrix(An)

134

135 def f(self, n):

136 # This is the function that is run in parallel.

137 An = self.A(n, eps=10 ** -9, p=24)

138

139 DFQf = self.DFQf[n]

140

141 #AnInv = inv(An).transpose()

142 #Ff = array(DFQf*AnInv)[0]

143 Ff = solve(An, DFQf)

144 return Ff

145

146 def populatequeue(self, queue):

147 for n in xrange(self.nmax + 1):

148 queue.put(n)

149

150 def postproc(self, (n, Ff)):

151 with self.status:

152 self.Ff[n] = Ff

153 if n > 0:

154 self.Ff[-n] = Ff.conjugate()
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155

156 self.jobsdone += 1

157 self.status.notifyAll()

158

159 def reconstruct(self):

160 with self.lock:

161 self.F = ifft(self.Ff, axis=0)

162 return self.F

Given Qf , φ, smin, smax, a parameter α used in a numeric implementation of ∂
∂s , and nmax,

inversion to reconstruct f̃ (·, n) for |n| ≤ nmax is started with:

1 >>> H, W = Qf.shape

2 >>> ds = (smax - smin)/(W - 1)

3 >>> alpha = 4*ds

4 >>> qinv = PolarBrokenRayInversion(Qf, phi, smin, smax, alpha, nmax)

5 >>> jm = parallel.JobManager()

6 >>> jm.jobqueue.put(qinv)

At the SAGE prompt, one may choose to render the reconstruction on a polar grid as it

is running:

1 >>> reconstructed = qinv.reconstruct()
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Since reconstruction done is on a polar grid, one may use polar-to-cartesian.py to

resample the reconstruction to a Cartesian grid.

It should be observed that reconstruction of f̃ (r, n) becomes unstable for |n| large as r

approaches rmin. Filtering in the form of smoothing in the angular direction will help

mitigate this instability. This filtering is implemented in the polar-to-cartesian.py

script.

B.3 Results

We present reconstructions of images are from simulated data. While the reconstructions

are done on polar grids, the image shown here are reprojected onto Cartesian grids.

FIGURE B.1: Recovery of the characteristic function of a square from its Polar Broken
Ray transform, with scattering angle φ = π

3 .

Figure B.1 shows the reconstruction of the characteristic function of the square [2, 4]×[1, 3],

with the scattering angle φ = π
3 . Notice the error increases as r approaches rmin.

Figure B.2 shows the reconstruction of the characteristic function of the disc of radius 1,

centered at (3, 2), with the scattering angle φ = π
3 . In both reconstructions, the circle

r = rmin shown in the reconstruction as an abrupt termination of error.
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FIGURE B.2: Recovery of the characteristic function of a disc from its Polar Broken Ray
transform, with scattering angle φ = π

3 .

The next three reconstructions, Figures B.3, B.4, and B.5, show reconstructions of a checker

board residing in the square [2, 4] × [1, 3], but with differing scattering angles, φ = π
6 ,

π
4 ,

and π
3 . Interestingly, smaller values of φ appear to yield better reconstructions.

FIGURE B.3: Recovery of the checker board from its Polar Broken Ray transform, with
scattering angle θ = π

6 .

Whereas in the case of the Florescu, et. al. Broken Ray transform, inversions can be made

equivalent to inversion from a scattering angle of θ = π
2 , our injectivity result for the Polar

Broken Ray transform did not include the case φ = π
2 , let alone discover that inversions

from arbitary scattering angles can be made equivalent to the case φ = π
2 . Indeed, an
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FIGURE B.4: Recovery of the checker board from its Polar Broken Ray transform, with
scattering angle φ = π

4 .

FIGURE B.5: Recovery of the checker board from its Polar Broken Ray transform, with
scattering angle φ = π

3 .

avenue of future work with the Polar Broken Ray transform may include discovering a

dependence of stability of reconstruction on the the scattering angle that is not seen with

the Florescu, et. al. Broken Ray transform.




