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The United States is a global leader in agricultural productivity.  Much of its 

productivity growth can be attributed to public investments in agricultural research and 

development, starting in the 19th century and continuing until today.  Past studies have shown 

high returns to agricultural research investments, but publicly funded agricultural research is a 

common target for politicians hoping to cut spending. As private research investments have 

grown while public investment has stagnated, there is some question about whether publicly 

funded research projects still have a significant impact on productivity.  In order to answer this 

question, this study uses econometric models using Ordinary Least Squares (OLS) as an 

estimator to regress Total Factor Productivity (TFP) on total agricultural research spending as 

well as on the ratio of public spending to total spending, in conjunction with a set of other 

explanatory variables.  It was found that increases in both total research spending and in the 

share of public spending were significantly correlated with increases in agricultural 

productivity.  This adds to the evidence that overall agricultural research increases productivity 
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INTRODUCTION 

In August of 2018 the Trump administration proposed a plan to move the 

USDA’s Economic Research Service (ERS) and National Institute of Food and 

Agriculture (NIFA), two agencies tasked with food and agriculture research, out of the 

Washington, DC area.  The move was seen by many as an attempt to stifle research and 

comes on top of earlier proposed spending cuts to the agencies. This action evokes 

questions regarding the value of federally funded agricultural research, and if it is a 

justifiable use for taxpayer dollars. 

The farms and ranches of the United States are among the most productive in the 

world. In 2016, US agricultural output was the third highest globally, after India and 

China. In addition to providing food for its own people, the US is now the world’s 

largest exporter of agricultural products (FAO, 2018).  These high output levels can be 

explained in part by high levels of productivity.  Many attribute the US’s dominant 

position in agricultural productivity to public investment in research and development 

throughout the 19th and 20th centuries (Evenson, Waggoner, and Ruttan, 1979 and 

Alston et al., 2010).  Research is often considered to be a public good that produces 

positive externalities and is underproduced in a market equilibrium.  

Skeptics deem returns from agricultural research to have been overestimated 

(Alston et al., 2000 and Alston et al., 2011). Comin (2004) argues that across the entire 

economy, actual US R&D levels may be socially optimal, and that public R&D is not 

responsible for a large share of productivity growth in the US.  Agricultural research 

remains a low political priority among many state and federal legislators (Dewey, 

2018).  Some suspect that the value of agriculture R&D is lower than its opportunity 

cost, and that among industries, agriculture has received unfair special treatment.  
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Others say that public agriculture research spending is redundant, as private entities do 

research in many of the same areas as private researchers.  

I was inspired to work towards a better understanding of the value of publicly 

funded agricultural research as a result of two internships.  The first was spent at NIFA 

in Washington, DC in the summer of 2017, where I assisted with congressional and 

stakeholder affairs.  My primary duty was to support the education of congressional 

staff members on the impacts of research funded by the agency.  This position allowed 

me to work in the area where my interests in both science and public policy intersect.  

In order to gain more exposure to natural sciences and to learn even more about the US 

agricultural research and extension system, I worked at the Columbia Basin Agricultural 

Research Center over the summer of 2018. My interest in research and its impacts has 

culminated in this thesis, in which I will seek to explain the relation between 

agricultural research and U.S. farm productivity. 

Since 2000, US agricultural productivity growth has shown signs of slowing, 

and US public spending on agricultural research and development has stagnated. 

Meanwhile, in the same time period, private R&D spending has doubled (USDA, 2015). 

This study will work to better the understanding of what the role of publicly funded 

research and development has been in making gains in productivity since 1970. It will 

seek to understand if growing farm productivity comes as a result of this spending, and 

if there is any impact to changes in the ratio between public and private agricultural 

research spending.  
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1.1. MEASURING PRODUCTIVITY 

Productivity is a measure of how efficiently producers can convert inputs into 

outputs.  It is important to note the difference between production and productivity.  

Production is measured by the volume of output, whereas productivity measures the 

efficiency of production.  Production can be influenced both by input use levels and by 

changes in productivity, while productivity is only influenced by changes in efficiency.  

Productivity is commonly defined as a ratio of a volume measure of output to a volume 

measure of input use.  From this basic definition, there are several different measures of 

productivity used by economists. The Organisation for Economic Co-operation and 

Development (OECD) (2001) enumerates the five most commonly used measures of 

productivity as follows: 

1. Labor productivity based on gross output: 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑔𝑟𝑜𝑠𝑠	𝑜𝑢𝑡𝑝𝑢𝑡
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑙𝑎𝑏𝑜𝑟	𝑖𝑛𝑝𝑢𝑡  

2. Labor productivity based on value added: 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑣𝑎𝑙𝑢𝑒	𝑎𝑑𝑑𝑒𝑑
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑙𝑎𝑏𝑜𝑟	𝑖𝑛𝑝𝑢𝑡  

3. Capital-labor Multifactor Productivity based on value added: 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑣𝑎𝑙𝑢𝑒	𝑎𝑑𝑑𝑒𝑑
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑙𝑎𝑏𝑜𝑟	𝑎𝑛𝑑	𝑐𝑎𝑝𝑖𝑡𝑎𝑙	𝑖𝑛𝑝𝑢𝑡 

4. Capital productivity based on value added: 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑣𝑎𝑙𝑢𝑒	𝑎𝑑𝑑𝑒𝑑
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑐𝑎𝑝𝑖𝑎𝑙	𝑖𝑛𝑝𝑢𝑡 

5. Capital-labor-energy-materials (KLEMS) Multifactor Productivity: 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑔𝑟𝑜𝑠𝑠	𝑜𝑢𝑡𝑝𝑢𝑡
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑜𝑓	𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑖𝑛𝑝𝑢𝑡𝑠 
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This study uses the fifth measure listed, which is often referenced in economic 

literature as Total Factor Productivity (TFP).1 Total Factor Productivity, as defined by 

Diego Comin (2006), is “the portion of output not explained by the amount of inputs 

used in production. As such, its level is determined by how efficiently and intensely the 

inputs are utilized in production.”  Fuglie et al. (2012) define TFP as “the ratio of total 

output to total inputs in a production process. Let total output be given by Y and total 

inputs by X”.  This can be shown as: 

      𝑇𝐹𝑃 = ;<=>?	<@=A@=
;<=>?	BCA@=D

= 𝑌/𝑋 

TFP was originally theorized by Solow as rising output with constant capital and 

labor input.  Echevarria (1998) adapts Solow’s (1957) method using the following 

equation to represent the relationship between outputs, inputs, and TFP: 

𝑌= = 𝐴=𝑓(𝐾=, 𝐿=, 𝑁=) 

Where 𝑌= represents value added in the agricultural sector in year t, and  𝐴=, 𝐾=, 

𝐿=, and 𝑁= denote TFP, capital, labor, and land, respectively.  It is assumed that the 

production function is constant returns to scale.  In the same model, TFP growth is 

estimated as: 

dA
dt
1
A =

dY
dt
1
Y − α

dK
dt
1
K − β

dL
dt
1
L − γ

dN
dt
1
N 

Echevarria (1998) then goes on to find values for a, b, and g in order to 

calculate total factor productivity growth.   

                                                
1 In the OECD manual referenced, Multifactor productivity (MFP) is used as a synonym for Total Factor 
Productivity.  While these terms are not exact synonyms, they largely refer to the same idea. The manual 
uses the MFP acronym to “signal a certain modesty with respect to the capacity of capturing all factors’ 
contribution to output growth” (OECD 2001). 
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The USDA Economic Research Service has developed an index measuring TFP 

in US agriculture (ERS, 2017).  In this data series, there are indices of inputs and 

outputs.  Components of inputs include labor, capital, and intermediate goods.  

Breaking it down further, capital consists of durable equipment, service buildings, land, 

and inventories, while intermediate goods includes feed and seed, energy, fertilizer and 

lime, pesticides, purchased services, and “other intermediate.”  The output index is a 

combined total of all agricultural outputs, divided into categories of livestock and 

products, and crops.  In this index, TFP is measured as the total output index divided by 

the total input index. 

All factors that affect output that are not measurable inputs are represented by 

TFP.  These may include human capital, weather, technology, knowledge, management, 

and land or soil productivity. Fuglie, Macdonald, and Ball (2007) noted that “Analysts 

have attributed growth in TFP to factors such as innovation (new technology), but TFP 

is also affected by economies of scale, measurement error, the educational attainment of 

the labor force, the regulatory environment, and managerial ability.”  In the same paper, 

they assert that “In the long run, growth in TFP is the primary source of new wealth 

creation in the economy.”  

 

1.2. PRODUCTIVITY GROWTH IN AMERICAN AGRICULTURE 

For much of the history of the United States, the majority of Americans worked 

as farmers.  In the colonial era, 90 percent of the population were farmers.  By 1870, 

this proportion had fallen to 53 percent, and today it rests at 2 percent.   In the same 

period, the population of the US has increased from 3.9 million to 308.7 million in 2010 

(Spielmaker, 2018).  In response to market demand, agricultural output has increased 
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rapidly in spite of a declining share of farmers.  Much of this increase in output can be 

attributed to increases in productivity (Wang et al. 2015). Looking at recent data, we see 

that between 1948 and 2011 output more than doubled, increasing at an average annual 

rate of 1.49 percent.  In that same time, aggregate input use increased by only 0.07 

percent annually.  Of the major input categories, capital and intermediate goods have 

increased, while land and labor input decreased. Due to overall stability in input levels, 

productivity growth has likely been the main driver of output growth. 

 

Figure 1. Input, Output, and Total Factor Productivity Indices, 1948-2015 (2005=1) 

 
Source: ERS 2017.  Indices of farm output, input, and total factor productivity for the 
United States, 1948-2015 
 
 

US productivity growth may be slowing. Between 1948 and 1999, productivity 

on average grew at a yearly rate of 1.71%, whereas since 2000 it has grown at an 

average rate of 0.77% (ERS, 2017). Fuglie (2012 and 2018) shows that fears of slowing 

productivity growth overall internationally are unfounded, but that there is evidence that 

agricultural output and productivity growth has slowed in industrialized countries. 

However, Wang et al. (2015) caution that comparing growth averages between decades 
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may be misleading due to year-to-year changes in the frequency of shocks from policy 

changes and weather events. For example, in 1983, drought and the Federal Payment-

In-Kind (PIK) program caused a significant drop in output. The expensive PIK program 

offered farmers surplus grain and cotton out of government stockpiles in exchange for 

planting less of the same commodities.  This took 82 million acres out of production 

(Sinclair, 1984). High temperatures in 1988, 1993, and 1995 also caused drops in output 

(Wang et al., 2015)(figure 2).   

 

Figure 2. Yearly change in Total Factor Productivity, 1948-2015 

 
Source: ERS 2017.  Indices of farm output, input, and total factor productivity for the 
United States, 1948-2015 
 
 

Growth is more variable in crop productivity than in animal productivity (figure 

3).  This is likely because crop output is more variable year to year; the standard 

deviation in annual crop output growth from 1948-2015 was 7.7 percent, while the 

standard deviation of annual livestock output growth was 1.8 percent over the same 
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can be seen that on average crop productivity grew more quickly during both periods, 

but have grown more slowly since the beginning of the twenty-first century. 

 
 
Figure 3. Approximation of Total Factor Productivity split between livestock products 
and crops, 1948-2015 

 
Source: ERS 2017.  Indices of farm output, input, and total factor productivity for the 
United States, 1948-2015 
 

 

Table 1: Average annual growth rates in productivity 
 1948-1999 2000-2015 
Total Factor 
Productivity 

1.71%, 0.77% 

Animal Productivity 1.28% 0.58% 
Crop Productivity 2.21% 0.82% 

Source: ERS 2017.  Indices of farm output, input, and total factor productivity for the 
United States, 1948-2015 
 
 

Slowing rates of productivity growth are likely caused in part by low growth in 

domestic demand for food (Fuglie, 2018).  Alston, Beddow, and Pardey (2009) attribute 

this decline to reduced growth investment for agricultural R&D.  

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1948
1951

1954
1957

1960
1963

1966
1969

1972
1975

1978
1981

1984
1987

1990
1993

1996
1999

2002
2005

2008
2011

2014

To
ta

l F
ac

to
r P

ro
du

ct
iv

ity

Year

Livestock Crops



 17 

1.3. FUTURE THREATS TO PRODUCTIVITY MAINTENANCE AND GROWTH 
 

As a society, we will be challenged to not only prevent decreases in agriculture 

productivity, but also to continue increasing productivity levels.  As the global 

population increases to a projected 9.7 billion people by 2050 and 11.2 billion by 2100, 

(UN DESA, 2015), it is imperative that we find solutions to produce more food, both to 

battle current global food insecurity and to prevent future food insecurity while 

sustainably maintaining our natural resource supports and ecosystem.  Factors that may 

have contributed to a slowing in agricultural productivity growth, and that are likely to 

affect future growth include changes in climate, land degradation, shifts of the location 

of production, farmer responses to resource scarcity or higher prices of inputs, and 

evolving pests and diseases (Alston, Beddow, and Pardey, 2009).   

As weather patterns shift, areas will be impacted differently.  In some cases, 

farmers will benefit. One study suggests that US corn farmers have seen greater yields 

as a result of lengthening growing seasons and cooling of the hottest temperatures 

(Butler, Mueller, Huybers, 2018). However, US agriculture as a whole is expected to be 

negatively impacted by climate change, as increases in temperature coupled with more 

variable precipitation will reduce productivity of crops (Walthall et al., 2013).  Liang et 

al. (2017) found that projected climate changes could cause TFP to decrease by 2.84 to 

4.34 percent per year, causing TFP to fall to pre-1980 levels by 2050 even when 

accounting for present rates of innovation. 

Land degradation and loss to urbanization are also factors that will lead to 

reduced agricultural output. Unsustainable farming practices and climate change will 

reduce soil organic carbon and negatively impact soil health (van Gestel, 2018). Since 

2010 we have seen a steady decline in total US farm acreage (NASS, 2018), and 
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between 1992 and 2012 almost 31 million acres of farmland was converted for 

development, much of which was highly productive (Sorensen et al., 2018).  

In the face of these problems, it is vital that agricultural productivity continues 

to increase sustainably and that our natural resources are preserved. Many of the threats 

to productivity come as a result of ecologically unsustainable practices. As noted 

environmentalist Lester Brown (2011) points out, “No civilization has survived the 

ongoing destruction of its natural support system. Nor will ours.” Research may be an 

important tool in increasing productivity while mitigating impacts from environmental 

changes and preventing future ecological damage. 

 

1.4. US AGRICULTURE RESEARCH FUNDING 

The United States has one of the most robust agricultural research systems in the 

world, and many attribute investments in agriculture R&D to our significant gains in 

farm productivity. 

Agricultural research and extension were not uniquely American ideas.  They 

were first practiced in the ancient world in Chinese and Mesopotamian cultures. Our 

modern idea of extension dates back to the European Middle Ages and the Renaissance, 

with the earliest Renaissance text on agriculture being written in 1304. Through the 

1700s and into the 1800s, predominately aristocratic European agricultural societies 

worked through experiments, demonstrations, and information dissemination to make 

agricultural improvements.  By 1800, some of these agricultural societies had been 

founded in the United States and eastern Canada. The first modern extension services 

were put in place in Europe in the 1840s and 50s.  In this time, North American 

Delegations visited Europe and reported back on the progress in agricultural research 



 19 

and education. In 1862, passage of the Morrill Act amidst the civil war created the land 

grant colleges, which were to teach “agricultural and mechanical arts.” Land grant 

colleges were called such, as their establishment was funded by land granted to states 

from the federal government.  In most cases, the granted land was sold, and the 

resulting proceeds were used to establish the colleges.  The farmers institute movement 

also began in this era, in which farmers organized meetings between farmers and with 

speakers, who were largely professors at the state colleges of agriculture (Jones and 

Garforth, 1997). 

In 1887, the Hatch Act established funding for experiment stations, usually run 

by the land grant colleges. These stations were meant to provide for more localized 

research and information.   In 1890, a second Morrill Act passed.  Aimed at former 

Confederate states, it required each state either to show that race was not a factor in 

admissions, or to designate a separate land grant institution for persons of color (1890 

Universities, 2015).  In 1914, the Smith-Lever Act established the cooperative extension 

services, a cooperation between federal, state, and county governments, which meant to 

“aid in diffusing among the people of the United States useful and practical information 

on subjects relating to agriculture and home economics, and to encourage the 

application of the same.” (Jones and Garforth, 1997).  Between the land-grant colleges, 

Hatch Act experiment stations, and Smith-Lever extension services, the US possessed a 

robust system of agricultural research, education, and extension by the early 20th 

century that continues operating today. 

 As agriculture as an industry begins to make up a lower portion of the US 

economy as a whole, some question the value of maintaining such an extensive system 

focused primarily on agriculture.  In addition to USDA funding for research and 
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extension, agricultural research funding also comes from the National Science 

Foundation and other federal entities. At federal and state levels, some legislators have 

not made agricultural research spending a priority, as is reflected in the fact that from 

2000-2015, total federal and state spending on agricultural research decreased by 23 

percent. Meanwhile, in the same time period, private R&D spending has more than 

doubled (ERS, 2018) (figure 4).   With the agriculture sector shrinking as a part of the 

US economy as a whole, and with private entities providing more research funding than 

ever before, is public agricultural research a valuable use of taxpayer dollars? 

 

Figure 4. Public and Private Agriculture R&D Spending, 1970-2015 

 
Source: USDA Economic Research Service. 2018. “Agricultural Research Funding in 
the Public and Private Sectors, 1970-2015”. 
 
 

Several studies support the idea that agricultural research is a valuable public 
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suggest rates of return in the range of 40-60 percent per year. Fuglie and Heisey (2007) 

reviewed 35 studies published over 1965-2005 and found that the median estimate of 

the social rate of return to agricultural research was 45 percent per year. Per their 

findings, “As a rough approximation, this implies that each dollar spent on agricultural 

research returned about $10 worth of benefits to the economy.” 

Alston, Beddow, and Pardey (2009) attribute slowed productivity growth to 

reduced growth rates in agricultural R&D spending and a changing balance in public 

and private research funding.  They point out that funds have been directed away from 

farm productivity and toward other concerns, including environmental effects of 

agriculture, food safety, and alternative uses of agricultural commodities. They also 

note that another impact of research spending is the spillover of knowledge and 

technology to other countries, and therefore reduced levels of spending are likely to 

impact productivity in both developed and developing countries. 

There is little research focused on understanding the impact of the changing 

public and private structure in agricultural research, and there is a possibility that 

growing private research spending could make up for stagnating public research 

spending. Fuglie and Heisey (2007) found that there do appear to be significant social 

returns to private agricultural research.  There is also the chance that public R&D 

crowds out private R&D. Alfranca and Huffman (2001) found that this was the case in 

Europe, implying that public entities may be discouraging private investment through 

focusing too much on applied research rather than basic sciences.  At the same time, 

Wang et al. (2015) write that “public R&D has an irreplaceable role in developing 

fundamental science that does not have short-term reward and hence receives less 

attention from the private sector, but provides much of the foundation for long run 
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progress.” It can be argued that this public research is a public good that is 

undersupplied by the free market. 

The structure of agricultural R&D has changed in part because federal science 

policy changes have encouraged greater public-private partnerships, but mostly because 

private research as a whole has accelerated.  One cause of this is the application of 

biotechnology to crops2, as before 1980 private research focused on providing improved 

machinery and chemical inputs to farmers.  Seven studies have found evidence 

supporting complementarity between public and private agricultural research, while two 

other studies have found evidence of crowding out between public and private 

agricultural R&D.  This body of evidence is too small and varied to draw credible 

conclusions (Fuglie and Toole, 2014). Fuglie and Toole further assert that “To date, 

changes in the institutional structure of public and private agricultural research have 

outpaced systematic investigation, and new theoretical and empirical research is needed 

to help guide policy and address key societal challenges, such as climate change, clean 

energy, water scarcity, food safety, and health.” 

 

  

                                                
2 Biotechnology research allowed private entities an avenue to produce a highly excludable product, as 
the efficacy of most biotech crops depends on annual private production of hybrid seed, as compared to 
traditional non-hybrid seed.  Non-hybrid seed is self-pollinated and can be saved by farmers after harvest 
in order to plant subsequent crops without significant losses in productivity.   
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2.  ECONOMETRIC ANALYSIS 

To evaluate the economic impact of agricultural research, economists have 

traditionally used either econometric analysis or economic surplus methods.  This study 

uses the former method in order to assess the impact of public spending on agricultural 

R&D, as well as the impact of R&D spending from both public and private sources.  

Econometric models are able to account for a variety of changes and to analyze data at 

the aggregate level.  Econometric models are also able to isolate the effect of research 

from other influences. (Heisey et al., 2010).    

In this study, five econometric models were developed (see table 4).  Using 

Ordinary Least Squares (OLS) as an estimator, TFP was regressed on a variety of 

explanatory variables outlined in table 2 and section 2.1.   

OLS works to minimize the differences between collected observations in a dataset 

and its approximated responses. This principle says that to fit a line to the data values, 

the sum of the squares of the vertical distances from each point to the line should be as 

small as possible. In the simple regression model, OLS can be represented as: 

𝑦 = 𝛽\ + 𝛽^𝑥 + 𝑒. 

 𝛽\ and 𝛽^ represent the intercept and slope of the regression function, respectively, 

while y and x represent the dependent and explanatory variables.  e is the error term and 

is measured by the sum of deviations within the regression line.  It represents all factors 

affecting y that are not accounted for by x. 

OLS is considered to be a Best Linear Unbiased Estimator (BLUE), meaning that it 

satisfies the conditions of the Gauss-Markov Theorem.  An estimator is unbiased if its 

expected value is equal to its actual value.  For the multiple regression model, the 
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conditions of the Gauss-Markov Theorem are as follows, with 𝛽 representing 

coefficients, x representing explanatory variables, and e representing the error term:  

 

MR1. There is linear causality. The value of y, depends on the values of the 

explanatory variables and the unknown parameters: 𝑦B = 𝛽\ + 𝛽^𝑥B^ + ⋯+

𝛽`𝑥B` + 𝑒B, 𝑖 = 1,… ,𝑁 

 

MR2.  There are no bias intercept problems. Each random error has a probability 

distribution with zero mean. Some errors will be positive, some will be negative; 

over a large number of observations, they will average out to zero: 

𝐸(𝑦B) = 𝛽\ + 𝛽^𝑥B^ + ⋯+ 𝛽`𝑥B` ⟺ 𝐸(𝑒B) = 0 

 

MR3. Homoskedasticity is present. The variance of the probability distribution 

of y does not change with each observation. Some observations on y are not 

more likely to be further from the regression function than others:  𝑣𝑎𝑟(𝑦B) =

𝑣𝑎𝑟(𝑒B) = 𝜎^ 

 

MR4. Serial correlations are not present. Any two observations on the dependent 

variable are uncorrelated. For example, if one observation is above E(y), a 

subsequent observation is not more or less likely to be above E(y): 

𝑐𝑜𝑣f𝑦B, 𝑦gh = 𝑐𝑜𝑣f𝑒B, 𝑒gh = 0	(𝑖 ≠ 𝑗) 

 



 25 

MR5. There is no presence of multicollinearity. The variables of each 𝑥B` are 

not random and are not exact linear functions of the other explanatory variables. 

 

MR6. We sometimes will assume that the values of y are normally distributed 

about their mean: 𝑦B~𝑁[(𝛽\ + 𝛽^𝑥B^ + ⋯+ 𝛽`𝑥B`), 𝜎^] ⟺ 𝑒B~𝑁(0, 𝜎^) 

 

These assumptions require that explanatory variables are exogenous, or determined 

outside of the system. When these assumptions are violated, bias can be introduced to 

the model, making it no longer BLUE, or the significance of the model can be 

decreased.  
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2.1. DATA DESCRIPTION 

The econometric model consists of data from variables listed in table 2.  Summary 

statistics for the variables are listed in table 3. 

 

Table 2: Variable Description 
Abbreviation Description Source 

TFP Total Factor Productivity index 
USDA Economic Research 

Service. 2017. “Productivity in 
the United States data product” 

RD Total research spending, real 
billion 2013 dollars. USDA Economic Research 

Service. 2018. “Agricultural 
Research Funding in the Public 

and Private Sectors, 1970-2015”. RDRAT 

Public Research Ratio: public 
research spending divided by 
total research spending for a 

given year. 

FARMCRIS Farm Crisis year (1982-1983) 
(Dummy variable) 

Calomiris et al., “The Farm Debt 
Crisis and Public Policy” 

RECESS 

Recession year, by quarter (i.e. 
recession for one quarter in a 

year is equal to 0.25, two 
quarters as 0.5, etc.). 

Federal Reserve Economic Data. 
2018. “Dates of U.S. recessions as 
inferred by GDP-based recession 
indicator, +1 or 0, Quarterly, Not 

Seasonally Adjusted”. 

INC Returns to Farm Operators, real 
billion 2018 dollars. 

USDA Economic Research 
Service. 2018. “U.S. and State-
Level Farm Income and Wealth 

Statistics”. 

CRP CRP Acreage, millions of acres 
USDA Farm Service Agency. 

2018. “CRP Enrollment by Fiscal 
Year”. 

EDUC 
Share of US Adults over 25 

having completed four or more 
years of college. 

U.S. Census Bureau, Education 
and Social Stratification Branch. 

2017. “Years of School 
Completed by People 25 Years 

and Over, by Age and Sex:  
Selected Years 1940 to 2017”. 

PDSI Palmer Drought Severity Index 
NOAA, National Climatic Data 

Center. 2018. “US Climate Data, 
1948-2015”. 

TMIN National Average yearly 
Minimum Temperature 

TMAX National Average yearly 
Maximum Temperature 
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The focus of this study is to understand how overall research spending affects 

TFP, as well as to understand how public research spending specifically impacts TFP. 

In each model, TFP is the dependent variable, as I am measuring how productivity is 

impacted by each variable. TFP was regressed on a variety of variables in order to 

create a total of fifteen models. 

It is well established that both public and private research spending impact 

productivity (Fuglie and Heisey, 2007) and therefore total spending is included in 

almost every model.  This variable is expected to carry a positive coefficient. 

I encountered multicollinearity when using both variables in multiple regression.  

In order to isolate effects on TFP from public research in the model, the variable 

RDRAT (R&D Ratio) was created by dividing yearly public research spending by total 

research spending.  This gives us an approximation of how the mix of public and private 

spending will affect TFP.  It was unclear if this variable would be positive or negative, 

as it is still unclear how the structure of research spending affects TFP, or if it would 

have any impact. 

 There is mixed evidence on the effects of recessions on aggregate productivity.  

This relationship is difficult to model, as there are several complex and conflicting 

influences that the business cycle has on productivity.  However, one theory that is 

reasonably well supported is that recessions have “cleansing effects” on economies, as 

they lead to more efficient job allocation of workers, and lead firms to engage in 

productivity-enhancing activities because of temporarily low opportunity costs in 

foregone profits (Aghion and Saint-Paul, 1991). Recessions also may hasten the exit of 

less productive firms from the market, leaving more resources available for more 

profitable firms (Caballero and Hammour, 1994). There is little available literature in 
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this area, but Van den Bosch and Vanormelingen (2017) did find that recessions did 

have a cleansing effect on the small, open, developed economy of Belgium.   The 

variables RECESS, representing US recession years, and FARMCRIS, representing 

years of the 1980s farm crisis, were included in models in order to incorporate this 

theory.  In multiple regression, it is common to use indicator variables, also called 

dummy variables.  These variables indicate the present or absence of a characteristic or 

indicate whether a condition is true or false. Both RECESS and FARMCRIS are 

dummy variables. 

Following the theory outlined in the previous paragraph, in general, years with 

less overall farm income should also lead to a “cleansing” affect, in which the least 

efficient producers leave the market, and average productivity increases.  To reflect this, 

the variable INC, representing yearly returns to farm operators, was included in some 

models.  It is expected to have a negative coefficient. 

Weather is an important consideration in understanding farm productivity. The 

local nature of weather favors low spatial studies (Powell & Reinhard, 2016).  However, 

Liang et al. (2017) successfully studied the impact of regionally aggregated climate data 

on TFP. They found that temperature and precipitation in distinct agricultural regions 

and seasons explained around 70 percent of variations in TFP growth during 1981–

2010. This data is likely to be less significant when aggregated at the national level, but 

at a low level, widespread events should be reflected in nationally aggregated weather 

data.  For this reason, variables PDSI, TMIN, and TMAX are included. 

Producers decide which land to put into production based off of its marginal 

productivity. One of the goals of the Conservation Reserve Program (CRP), in which 

farmers are paid to retire land from agriculture, is the long-term improvement of the 
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country’s agricultural productivity as a result of CRP treatments (Jacobson, 2010).  CRP 

introduced an incentive for farmers to take their least productive land out of production, 

which should theoretically increase average land productivity, leading to increased 

productivity for grain and feed crops, which make up a significant portion of TFP. 

Boisvert and Chang (2005) found that levels of CRP participation are higher in areas 

where land quality is relatively low.  As a result of this, I expect that mostly 

unproductive land is enrolled in CRP, leaving behind more fertile land and increasing 

average productivity.  Therefore, this variable should have a positive coefficient.  Note 

that data from this set is organized by fiscal year. 

EDU is used as an approximation for the human capital of farm producers.  

While there is little existing research showing the impact of post-secondary research 

levels on agricultural productivity, there is significant evidence showing that higher 

shares of persons with post-secondary degrees increase overall economic productivity 

(Moretti, 2002).  Although rural education rates tend to be only 60-65 percent as high as 

all US adults, rural education has increased proportionally with the increase of national 

education shares (ERS, 2018 and US Census Bureau, 2017). Because of this, and 

because of limited available data on rural or farmer post-secondary education rates, 

national post-secondary educational attainment shares are used as an approximation.  It 

should be noted that this variable is likely to be monotonic, as is TFP, and they are 

highly correlated. 
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Table 3: Summary Statistics 1970-2014 

Variable Mean Std. 
Dev. Min Max 

Total Factor Productivity 0.80 0.18 0.52 1.10 

Total Research Spending 
(Billion 2013 Dollars) 11.38 2.3 7.06 16.47 

Public Research Spending 
(Billion 2013 Dollars) 5.08 0.63 3.53 6.04 

Ratio of Public Research 
Spending to Total 

Research Spending 
0.46 0.06 0.26 0.54 

Private Research 
Spending (Billion 2013 

Dollars) 
6.30 2.06 3.42 12.18 

Palmer Drought Severity 
Index 0.82 2.32 -4.44 5.01 

CRP Land Enrollment 
(Million Acres) 19.78 15.89 0.00 36.77 

National Average Yearly 
Maximum Temperature 64.46 1.09 62.68 67.69 

National Average Yearly 
Minimum Temperature 40.74 0.93 38.87 42.88 

Returns to Farm 
Operators (Billion 2018 

Dollars) 
71.27 22.52 18.02 143.76 

Share of US Adults over 
25 with a 4-year 
secondary degree 

0.22 0.06 0.11 0.32 
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2.2. ECONOMETRIC MODEL 

Five econometric models were developed, each containing RD and RDRAT 

variables.3  Each was then regressed with three time offsets to RD and RDRAT, leading 

to a total of 15 models.  Each model was regressed using Stata v. 14.2.  Models were 

developed to use a variety of variables, but each with a different emphasis.  For 

example, model II focuses on weather data.  In order to avoid multicollinearity within 

the models, a correlation table was used to find right side data variables with correlation 

coefficients higher than 0.6 or lower than -0.6.  Highly correlated explanatory variables 

were not included in the same model. Each model is listed in table 4. 

 In this study, the null hypothesis, H0 is that TFP is not correlated with RD nor 

with RDRAT, meaning that increases in research spending or in the relative amount of 

public research spending will have no impact on productivity.  The alternative 

hypothesis, Ha is that RD is positively correlated with TFP, and that RDRAT is either 

positively or negatively correlated with TFP. 

Time offsets were included, as benefits from research are unlikely to be realized 

within the same year that spending for it has been allocated.   This commonly 

recognized to be special problem in this area of research and is difficult to estimate. 

Kuehne et al. (2017) evaluated adoption of several different specific technologies and 

practices among Australian farmers and found that time until peak adoption ranged 

from 6-22 years.  Alston, Norton, and Pardey (1995) and Fuglie and Heisey (2007) 

estimate that on average, new technology will be developed and farmers will begin to 

adopt it about 7 years after the original investment by a public or private institution.  

                                                
3 Except for model V, which excludes the variable RD, as it is is highly correlated with 
EDUC. 



 32 

From that point, the technology takes about an additional 8 years to be fully adopted 

and benefits maximized.  This implies that maximum benefits are not realized until 

about 15 years after the original research investment. Eventually, technology goes out 

of use because something better replaces it or because it loses its effectiveness. 

In models developed for this study, in order to test the significance of greater 

time lags, each regression was repeated with time offsets in RD and RDRAT of 0 years, 

5 years, and 10 years.  Greater time lags were not applied due to limitations in historical 

data availability.  The equation for each model can be found in table 4. 

 

Table 4: Econometric Models 

I 
𝑇𝐹𝑃= = 𝛽n + 𝛽\𝑅𝐷=,=qr,=q\n + 𝛽^𝑅𝐷𝑅𝐴𝑇=,=qr,=q\n

+ 𝛽s𝐹𝐴𝑅𝑀𝐶𝑅𝐼𝑆=	+	𝛽x𝑅𝐸𝐶𝐸𝑆𝑆= + 𝛽r𝑃𝐷𝑆𝐼= + 𝑒= 
 

II 
𝑇𝐹𝑃= = 𝛽n + 𝛽\𝑅𝐷=,=qr,=q\n + 𝛽^𝑅𝐷𝑅𝐴𝑇=,=qr,=q\n

+ 𝛽s𝑃𝐷𝑆𝐼= + 𝛽x𝑇𝑀𝐼𝑁= + 𝛽s𝑇𝑀𝐴𝑋= + 𝑒= 
 

III 
𝑇𝐹𝑃= = 𝛽n + 𝛽\𝑅𝐷=,=qr,=q\n + 𝛽^𝑅𝐷𝑅𝐴𝑇=,=qr,=q\n

+ 𝛽s𝐼𝑁𝐶= + 𝛽x𝑇𝑀𝐼𝑁= + 𝛽x𝑇𝑀𝐴𝑋= + 𝑒= 
 

IV 
𝑇𝐹𝑃= = 𝛽n + 𝛽\𝑅𝐷=,=qr,=q\n + 𝛽^𝑅𝐷𝑅𝐴𝑇=,=qr,=q\n

+ 𝛽s𝐼𝑁𝐶= + 𝛽x𝐶𝑅𝑃= + 𝑒= 
 

V 𝑇𝐹𝑃= = 𝛽n + 𝛽\𝑅𝐷𝑅𝐴𝑇=,=qr,=q\n + 𝛽^𝐼𝑁𝐶= + 𝛽s𝐸𝐷𝑈= + 𝑒= 
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3. RESULTS 

The results from the different estimation procedures and expected coefficients 

are shown in tables 5, 6, and 7.   Most variables were shown to be statistically 

significant at the one percent level, with the notable exceptions of RECESS, PDSI, 

TMIN, and TMAX.  This means that for significant variables, we can reject the null 

hypothesis that they are not correlated with TFP. 

Across the fifteen models, the average coefficient on RD was approximately 0.1. 

This indicates that for every increase in RD of one billion dollars, the TFP index 

increases by 0.1.  The average coefficient for RDRAT was 2.17, which means that a one 

percentage point increase in the ratio of public research spending to total spending 

would lead to a 0.02 increase in the TFP index. 

Overall, RD and RDRAT were found to be positive and statistically significant, 

and in almost every instance coefficients for each variable increased as the timeframe of 

RD and RDRAT was shifted back, which aligns with previous research, and shows that 

R&D spending happening at an earlier time is more significantly correlated with 

productivity. This consistency suggests that the results are robust to alternative 

specifications (table 8).   

Collectively, the models are shown to explain a high proportion of the variance 

in the dependent variable, TFP, with an overall average r-squared of 0.885, and an 

adjusted r-squared of 0.876.  Each model is also collectively significant, with each 

having F-values of less than 0.001 (table 9).   
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Table 5. Regression Results, no time offset (1980-2014). 
Variable Expected Sign I II III IV V 

R-squared  0.847 0.834 0.898 0.935 0.965 
Adj. R-squared  0.828 0.813 0.884 0.928 0.963 
       
Total Research Spending + 0.10*** 0.09*** 0.10*** 0.06*** -- 
 (t) 

 
(0.00) (0.00) (0.00) (0.00) 

 

Public Research Ratio ± 1.40*** 1.22*** 1.75*** 0.49 0.31*** 
 (t)  

 
(0.00) (0.00) (0.00) (0.19) (0.01) 

Farm Crisis Year + -0.15** -- -- -- -- 
  
 

 (0.01)     

Recession Year + -0.01 -- -- -- -- 
  
 

 (0.79)     

Returns to Farm Operators ± -- -- 0.002*** 0.001*** 0.001*** 
        (0.00) (0.00) (0.00) 

CRP Acreage + -- -- -- 0.004*** -- 
  
 

    (0.00)  

4-year degree share + -- -- -- -- 3.03*** 
  
 

     (0.00) 

Drought Severity Index + 0.00 0.00 -- -- -- 
  
 

 (0.89) (0.78)    

Minimum Temperature + -- 0.00 0.00 -- -- 
 
 
 

  (0.88) (0.84)   

Maximum Temperature - -- 0.03 0.02 -- -- 
  
 

  (0.41) (0.31)   

Notes: All variables deflated. p-value is in parentheses. The asterisks ***,**, and * 
denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
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Table 6. Regression Results, 5-year time offset (1980-2014). 
Variable Expected Sign I II III IV V 

R-squared  0.840 0.830 0.894 0.895 0.959 
Adj. R-squared  0.817 0.805 0.878 0.883 0.955 
       
Total Research Spending + 0.11*** 0.11*** 0.10*** 0.09*** --  
 (t-5) 

 
(0.00) (0.00) (0.00) (0.00)   

Public Research Ratio ± 2.70*** 2.62*** 2.50*** 2.37*** 0.44** 
 (t-5)  

 
(0.00) (0.00) (0.00) (0.00) (0.04) 

Farm Crisis Year ± -0.09 -- -- -- --  
   

 
(0.13) 

   
  

Recession Year + -0.01 -- -- -- --  
  
 

 (0.86)      

Returns to Farm Operators ± -- -- 0.002*** 0.002*** 0.001*** 
        (0.00) (0.00) (0.00) 

CRP Acreage + -- -- -- 0.002 --  
  
 

    (0.12)   

4-year degree share + -- -- --  2.98*** 
  
 

     (0.00) 

Drought Severity Index + 0.00 -0.01 -- -- --  
  
 

 (0.54) (0.53)     

Minimum Temperature + -- 0.01 0.01 -- --  
 
 
 

  (0.74) (0.47)    

Maximum Temperature - -- 0.00 0.00 -- --  
  
 

  (0.94) (0.82)    

Notes: All variables deflated. p-value is in parentheses. The asterisks ***,**, and * 
denote statistical significance at the 1%, 5%, and 10% levels, respectively.  
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Table 7. Regression Results, 10 year offset (1980-2014). 
Variable Expected Sign I II III IV V 

R-squared  0.869 0.861 0.862 0.862 0.943 
Adj. R-squared  0.846 0.837 0.838 0.843 0.938 
       
Total Research Spending + 0.11*** 0.11*** 0.11*** 0.12*** --  
 (t-10) 

 
(0.00) (0.00) (0.00) (0.00)   

Public Research Ratio ± 3.09*** 2.69*** 2.57*** 2.64*** -0.36 
 (t-10)  

 
(0.00) (0.00) (0.00) (0.00) (0.16) 

Farm Crisis Year + -0.05 -- -- -- --  
   

 
(0.37) 

   
  

Recession Year + 0.04 -- -- -- --  
  
 

 (0.23)      

Returns to Farm Operators ± -- -- 0.000 0.000 0.001** 
        (0.64) (0.80) (0.01) 

CRP Acreage + -- -- -- -0.001 -- 
  
 

    (0.52)  

4-year degree share + -- -- -- -- 2.73*** 
  
 

     (0.00) 

Drought Severity Index + 0.00 0.00 -- -- --  
  
 

 (0.47) (0.77)     

Minimum Temperature + -- 0.02 0.01 -- --  
 
 
 

  (0.55) (0.54)    

Maximum Temperature - -- -0.02 -0.01 -- --  
  
 

  (0.62) (0.61)    

Notes: All variables deflated. p-value is in parentheses. The asterisks ***,**, and * 
denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
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Table 8. Summary of Total Research Spending and Public Research Ratio Variables 
across time offsets 

Variable Time 
Offset I II III IV V Average 

(I-IV) 

 
Total 

Research 
Spending  

t 0.10 0.09 0.10 0.06 -- 0.08 

t-5 0.11 0.11 0.10 0.09 -- 0.10 

t-10 0.11 0.11 0.11 0.12 -- 0.11 
 

Public 
Research 

Ratio  

t 1.40 1.22 1.75 0.49 0.31 1.22 

t-5 2.70 2.62 2.50 2.37 0.44† 2.55 
t-10 3.09 2.69 2.57 2.64 -0.36† 2.75 

Notes: All variables deflated.  All coefficients are statistically significant at the 1% level 
except those marked with crosses. 
 

Table 9. Summary of explanatory power of the models 

 Avg. R-squared Avg. Adjusted 
R-squared 

Avg. Prob(f) 
statistic 

t 0.896 0.883 <0.001 

t-5 0.884 0.868 <0.001 

t-10 0.879 0.860 <0.001 
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5. CONCLUSIONS 

In this thesis I econometrically estimated impacts from R&D spending (RD) and 

the ratio of public R&D spending to total spending (RDRAT). Results showed that both 

of these measures are significantly correlated with Total Factor Productivity (TFP).   

From this analysis, there is evidence that higher proportions of public research 

spending in overall spending have an effect on farm productivity.  This result 

contradicts earlier research findings that higher public research spending leads to 

crowding out of private research spending (Fuglie and Toole, 2014). If this were the 

case, RDRAT should not be significantly positive.  One possible implication of this 

result is that public research boosts the return to private investment, and that private 

research is more impactful when paired with higher levels of public spending.  

 Other variables with consistent significant correlations to TFP in each time 

division include returns to operators (INC) and 4-year degree share of US adults over 25 

(EDU). Though these measures are significantly correlated with TFP, we should be 

wary of drawing conclusions from these variables.  INC as a righthand side variable 

may be partially endogenous to the model, as productivity gains or losses are likely to 

impact farm income.  EDU is highly correlated with TFP, but it may not be a significant 

explanatory variable independently, as both it and TFP consistently increase over time, 

making it difficult to prove a causal relationship between these variables. Aside from 

these cautions, INC and EDU are valuable additions to the models, as help to account 

for more variation in TFP. 

 Variables that were not significant throughout the three time offsets include 

farm crisis year (FARMCRIS), recession year (RECESS), CRP acreage (CRP), Palmer 

Drought Severity Index (PDSI), Maximum Temperature (TMAX), and Minimum 
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Temperature (TMIN). Although these variables individually are not significant, 

literature implies that they each may have an impact. They each add to overall 

significance of the model. 

This study has several limitations.   Because public spending data is only available 

since 1970, in order to allow for time offsets in the model, only data occurring since 

1980 could be analyzed.  Some explanatory variables, INC and CRP, have limited 

evidence in prior research implying that they should significantly impact productivity.  

There is slightly more evidence supporting that FARMCRIS and RECESS might be 

significant, but it is still relatively inconclusive.  FARMCRIS is also weakened as an 

explanatory variable by the fact that in one of the years of the farm crisis, 1983, policy 

changes and a major drought that were not accounted for in the model likely had a 

significant impact on TFP.  Weather data is very significantly impactful at local levels, 

but it is questionable that nationally aggregated weather data should have an impact on 

TFP. Finally, some variables on the right-hand side of the regression were assumed to 

be exogenous but could be endogenous.   

 In future research, these limitations should be accounted for.  Climate data 

should be adjusted to reflect more local weather conditions, with modeling based off of 

previous studies, including a 2017 study done by Liang et al. in which the impact of 

weather on national productivity was analyzed at regional levels. More variables 

reflecting the imposition of government policies, such as the 1983 PIK program, should 

be added to the models in order to account for their impact on productivity.  A better 

variable than INC measuring farm financial stress should be found that is unlikely to be 

endogenous to the model.  Lastly, human capital should be accounted for in a measure 

more directly related to agricultural producers and workers than the measure used.  In 
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spite of these limitations, this thesis adds to the evidence that overall R&D spending 

impacts farm productivity. Furthermore, it adds to the body of knowledge regarding the 

impact of the changing mix of public and private research spending.  

As the structure of the agricultural research system changes, it is necessary to 

understand the differing impacts between public and private agricultural research.  This 

will allow for better policy decisions and will help us understand how to allocate 

resources in order to most efficiently work towards maintaining and increasing 

agricultural productivity.  This study’s results have implications for legislators and other 

stakeholders as we work towards sustainably maintaining and increasing agricultural 

production in the wake of a rising global population and environmental changes.   
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