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Requirements for indirect computation of geostrophic surface

Abstract approved:

currents over large ocean areas are discussed. These requirements
point to a need to simplify standard geostrophic computations, and to
separate the first order thermal and haline contributions to geo-
strophic flow.

The equations of motion for geostrophic flow are reviewed and
the standard geostrophic computations discussed. Errors and limi-
tations in the geostrophic method are reviewed. Previous attempts
to simplify geostrophic computations are discussed and shown to be
inadequate for synoptic computation over hemispheric ocean areas.

It is shown that the Helland-Hansen equation can be rewritten
such that the geostrophic velocity is composed of a temperature
structure term and a salinity structure term. In order to apply this
modified equation to hemispheric synoptic geostrophic computations,

simple expressions are required for the dependence of specific



volume on temperature at constant salinity and pressure, (aa/aT)S, p’
and on salinity at constant temperature and pressure, (8a/ SS)T’ P
Two approaches are explored to derive these expressions, using:

1) Experimental P-V-T-S data collected in the laboratory.

2) P-V-T-S data derived from an equation of state for sea

water.

Numerical fitting of the experimental P-V-T-S data shows that
the dependence of specific volume on temperature, O'(T)S, pr can be
expressed by a quadratic equation and the dependence of specific

volume on salinity, a(S) can be expressed by a linear equation.

T, P’
The coefficients in the temperature dependence equation are a func-
tion of salinity and pressure, and the coefficient in the salinity de-
pendence is a function of temperature and pressure. However, it is
shown that the lack of experimental data and the presence of small
errors in the data lead to inconsistencies in the values of the coef-
ficients derived. This difficulty is corrected using Ekman's equation
of state for sea water to generate P-V-T-S data.

Using derived expressions for (8a/8 T)S, p and (8a/ BS)T’ p
an equation is derived from the Helland-Hansen relationship and is
called the Temperature-Salinity Gradient scheme for computing geo-
strophic currents, or simply T-S Gradient scheme. This scheme

gives equivalent results to the standard geostrophic computations,

yet is computationally much simpler and faster than the standard



scheme. Other advantages are (1) the variables observed in the
ocean temperature and salinity structure are used directly in the
computations, (2) no other quantities such as cro and crt need be
computed, and (3) thermal and haline contributions to the geostrophic
flow can be expressed independently.

The T-S Gradient scheme is applied to existing hemispheric
fields of T and S data. It is shown that in the expressions for
(0al/d T)S, p and (&a /BS)T’ b the use of fixed coefficients over the
entire Pacific Ocean relative to a reference level of 1000 db, intro-
duces less than five percent error in the surface velocity. This
application shows the feasibility of making geostrophic computations
by the T-S gradient scheme. Unfortunately, it also shows the de-
ficiencies of the available fields for hemispheric computations by
any scheme. These deficiencies are (1) the inaccuracy of the data,
(2) the large grid spacing, and (3) the inconsistency of the tempera-
ture and salinity fields. These must be corrected before hemispheric
geostrophic computations can be made. The construction of new
fields to meet the requirements of geostrophic computations using
available data is discussed.

Two other aspects of current computation were investigated.
First, using the capability of the T-S Gradient scheme to separate

flow into thermal and haline components, the relationship between

the thermal component and the total geostrophic surface current in



the Gulf Stream water mass in the Grand Banks was studied. Results
show that these quantities are satisfactorily related by a linear ex-
pression. which allows the determination of the total geostrophic sur-
face flow in this water mass using only temperature measurements.
Such techniques may be useful in reducing survey time of the Coast
Guard Ice Patrol in this region.

A second aspect investigated is the relationship between the
indirectly computed currents and measured currents in the California
current. Two experiments were performed in which drogue-
measured surface currents were compared to indirectly computed
currents given by the Fleet Numerical Weather Central and those
computed by the Helland-Hansen and T-S Gradient schemes using
standard hydrographic data. This investigation points out the signifi-

cant need for more work on this aspect.
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THE T-S GRADIENT METHOD, A NEW METHOD
OF COMPUTING GEOSTROPHIC CURRENTS
OVER LARGE OCEAN AREAS

I, INTRODUCTION

The purpose of the research reported in this study is to improve
the contemporary techniques of computing synoptic geostrophic ocean
surface currents over large ocean regions. Techniques that are used
today are either gross approximations with little scientific basis or
applicable to only small regions, or both. Yet knowledge of surface
currents is important, and in some cases essential to public, com-
mercial, and military use of the sea.

The U.S. Coast Guard uses surface current information in
search and rescue, as well as in the forecasting of iceberg drift for
the shipping lanes in the Northwest Atlantic (Lenczyk, 1964). The
U. S. Navy Fleet Numerical Weather Central, Monterey, Califo‘rnia,
computes surface currents every 12 hours over the Northern Hemi-
sphere principally to aid in thermal structure forecasting (Hubert
and Laevastu, 1967). The U.S. Naval Oceanographic Office computes
surface currents in the ASWEPS (Antisubmarine Warfare Environ-
mental Prediction System) area of the Northwest Atlantic for thermal
‘structure forecasting (James, 1966).

Mariners have been using knowledge of ocean currents probably



since the beginning of navigation. As early as 600 BC the east to
west circum-navigation of Africa may have been aided by favorable
winds and currents (von Arx, 1962). Early Greek and Arab traders
could penetrate the Arabian Sea and Bay of Bengal because of
favorable currents under the influence of the monsoon winds. Spanish
trade between Mexico and the Philippines was also aided by knowledge
of the winds and currents (Jones, 1939). The Spanish captains would
take advantage of the North Equatorial Current on their westerly
journey, and return to Mexico along a more northerly route reaching
land fall around Cape Mendocino. An early chart of the Gulf Stream
was published by Benjamin Franklin in 1770. This chart is said to
have improved mail service from England to the American Colonies
by two weeks per crossing (Groen, 1967). Pilot charts, published by
the Naval Oceanographic Office, provide monthly summaries of wind
and surface current conditions. Surface current atlases giving the
monthly mean values are also available from the Naval Oceanographic
Office.

Flow in the surface layers of the deep ocean is influenced by
several forces; the most important are the horizontal pressure
gradient and viscous forces within the fluid, the action of wind stress,
tidal forces, and the Coriolis force. Today incomplete knowledge of
ocean dynamics and lack of suitable available data restricts the in-

direct determination of surface currents to the computation of the



geostrophic and wind driven components (Hubert, 1965).

Computation of geostrophic flow over a large ocean area on a
synoptic basis are facilitated if the computations be as simple and as
fast as possible. Standard geostrophic computations are unsuitable
for many reasons:

1) The computations are numerous and consume more computer
time than is available for this task.

2) Several quantities must be computed that are not used beyond
the analysis of currents.

3) The temperature and salinity data that are required for
standard geostrophic computations are not yet available in the neces-
sary accuracy and density.

4) It would be useful to compute the temperature and salinity
structure contributions to the geostrophic current independently.

This is difficult by the standard method.

Further explanation ofthe last two points is in order. Because
of the relative ease of measuring temperature structure over the
salinity structure, temperature is a much more commonly observed

variable in the ocean. Until the recent development of in situ con-

ductivity measurement, rapid determination of salinity structure was
not possible. For this reason, while nearly synoptic thermal struc-
ture information may be available from many areas of the oceans,

salinity structure is available only from the historical records
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contained in oceanographic data centers and various atlases derived
from this historical data. It will probably be several years before
salinity structure is as commonly observed as thermal structure.

It is because of this compatability that it is desirable to compute the
temperature and salinity contributions to the geostrophic flow sepa-
rately. Furthermore, salt is not as easily exchanged between the air
and sea as is heat, and therefore, it may be more acceptable to use
historical data for salinity information than for temperature informa-
tion. By directly computing the thermal and haline components of the
geostrophic flow the significance of air-sea heat exchanges on thermo-
haline flow may be more easily examined.

To summarize, the purpose of this thesis is to study a simpli-
fied method of computing geostrophic surface currents over large
ocean areas that gives essential agreement with currents computed
by the standard geostrophic method. The derived method must be
computationally faster on digital computers than the standard method.
Furthermore, that the method ought to express, at least to first

order, the thermal and haline components separately.



II. THE GEOSTROPHIC CURRENT

The Equations of Motion for Geostrophic Flow

Fluid is said to be in geostrophic balance if the flow is unac-
celerated and the horizontal pressure gradient is balanced by the
Coriolis force. The simplified equations of motion for geostrophic
flow in rectangular coordinates (x axis east, y axis north and z axis

positive down from the sea surface) are:

A o~ _ 3_\. .
kaVH‘o..HP (L)

TS
g~ agy (2)

where

f = 2wsin ¢ is the Coriolis parameter (1/ sec)

= the angular velocity of the earth (radians/sec)

€
!

= the geographic latitude (degrees)

the horizontal velocity (cm/sec)

@y < ©
i

= the local acceleration of gravity (cm/secz)

= specific volume (cm3/gm)

| -

the horizontal pressure gradient (dynes/cmz)

2
= the vertical pressure gradient (dynes/cm ")

> RISy

= the vertical unit vector



Given the horizontal pressure gradient along a level surface the
geostrophic flow along the surface could be determined directly from
Equation 1. However, direct measurement of the horizontal pressure
gradient in the sea has not been achieved. Several schemes have been
developed to compute the horizontal pressure gradient from the mass
distribution as determined from the measured temperature and

salinity distributions.

The Helland-Hansen Equation

Geostrophic computations, also often referred to as dynamic
computations or the dynamic method, are discussed in any elementary
physical oceanography text, for example Neumann and Pierson (1967).
Fomin (1964) discusses in considerable detail the application and the
limitation of the dynamic method. Yao (1967) gives an excellent re-
view of various computational schemes for computing geostrophic
currents. What might be called the standard or classical method is
based on an equation originally derived from Bjerknes' circulation
theorem (1900) by Sandstrom and Helland-Hansen (1903), (as cited by
Proudman, 1953). However, the resulting equation is commonly re-
ferred to in the literature as the Helland-Hansen equation. The
Helland-Hansen equation, written in terms of the horizontal gradient

of the geopotential between two levels.~P1 and P2 is,



P2
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where
T2
S a(x, vy, p)dp = the geopotential of level P1 with respect
P
! to P2 (cm/sec)2
(\/‘1 - VZ) = the horizontal velocity at P1 relative to the

level P2 (cm/sec)

The geopotential difference between two levels in the ocean is
determined by the integral in the right-hand term of Equation 3.
The integral is numerically evaluated (using the trapazoidal rule)
from computed vertical density distributions, determined from the
measured vertical temperature and salinity structure. Using two
stations the measured temperature and salinity structure can be used
to compute the horizontal gradient in geopotential along an isobaric
surface, and Equation 3 can be evaluated to give the geostrophic flow

between the two stations.

The Limitations of the Dynamic Method

Use of Helland-Hansens'formula suffers from several limita-
tions (Fomin, 1964). The feasibility of computing ocean currents

using the dynamic method is based on the following assumptions:



1) The horizontal velocity and the horizontal pressure gradient
is balanced by the Coriolis force.

2) The horizontal velocity and the horizontal pressure gradient
become negligible at a moderate depth below the sea surface.

3) The field accelerations and frictional forces can be neglected
(Sverdrup, 1947).

That these assumptions are realistic for the large scale mo-
tions, at least sometimes, has been illustrated by Stommel (1965).
Even when the assumptions of geostrophy are satisfied, the neces-

sary measurements are difficult to obtain to the desired accuracy.

Errors in the Dynamic Method

Errors in the dynamic method have been estimated by many
authors, however, no completely satisfying error analysis of geo-
strophic procedures is available. The errors in computing the geo-
strophic current from standard hydrographic measurements (tem-
perature and salinity at discrete levels) can be divided into the two
categories, measurement €rrors and computational errors.

Errors in the geostrophic current due to errors in the hydro-
graphic measurements have been discussed by Wooster and Taft
(1958), Reid (1959) Fomin (1964), and others. Following Reid (1959)
the measurement errors in classical hydrographic work are sum-

marized below:



1, Incorrect temperatures due to errors in temperature

readings.

2. Incorrect temperatures due to errors in the location of

the measurement,

3. Incorrect salinities due to errors in the salinity readings.

4. Incorrect salinities due to errors in the location of the

measurement,

5. Incorrect temperature due to time and space variability,

6. Incorrect salinity due to time and space variability.

The errors in computing geostrophic currents due to computa-
tional procedures have been discussed by Rattray (1961), Fomin
(1964), Yao (1967) and others. These errors are summarized below:

1. Errors in interpolation of point hydrographic data between

sampling levels.

2. Rounding and truncation errors in the numerical integra-

tion.

Due to the dependence of the measurement and computational
errors on one another, no completely rigorous analysis is yet avail-
able for the accumulated error in determining geostrophic currents
by the dynamic method. The analysis by Fomin (1964) appears to be
the most complete to date, but his discussion is not fully documented.
The magnitude of the total error in dynamic height due to measure-

ment and computational errors has been estimated independently by
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several authors. Some of the available estimates are presented in
Table 1. Error in the geostrophic current due to the indicated error
in dynamic height is given in Table 1 for stations separated by
100 km at 45° latitude.

Table 1. Estimates of the error in the dynamic height and geo-
strophic surface current relative to 1, 000 db.

Dynamic Height Velocity
Author Error (dynamic meters) Error (cm/sec)
Wooster and Taft 0.011 1.1
(1958)
Reed and Laird 0. 003 0.3
(1966)
Kollmeyer (1964) 0.018 1.8
Fomin (1964) 0. 004 0. 4

The significance of these errors on geostrophic computations
depends on the magnitude of the current. Certainly if the currents
at mid-latitudes are only a few cm/sec then the relative error may
be 50 to 100 percent. Fomin (1964) states in his conclusions con-
cerning the accuracy of the geostrophic current computations that,
"computational errors may completely distort the result. '' Reid
(1960) estimates that the combined error in salinity, temperature,
pressure and position are on the order of 20 percent. While these
relative errors seem prohibitive, an important point must be made

here: from a practical point of view it is significant to know that



11
the geostrophic currents are weak, Therefore, if the currents are
less than a few centimeters per second, this fact can be determined

even if the relative error is large.

Verification of Geostrophic Surface Currents

A few direct current measurements have been collected in sup-
port of geostrophic computations from hydrographic measurements.
The classic case is a comparison reported by Wust (1924) of
Pillsbury's current observations (1885-1889) in the Straits of Florida
to geostrophic currents computed from hydrographic data collected
in 1888 and 1912. Observed currents are in remarkable agreement
with the computed geostrophic currents. von Arx (1962) reports a
comparison of currents observed with the geomagnetic electro-
kinetograph (GEK) and dynamic topography showing substantial agree-
ment in the Gulf Stream. Broida (1966) made simultaneous measure-~
ments of currents and hydrographic casts in the Florida Straits.

His measured surface currents were in fair agreement with the com-
puted geostrophic surface currents. Reed (1965) compared geo-
strophic currents and currents measured by parachute drogue in the
Alaska Stream and found excellent agreement between the two values
for the surface current. Smith (1931) showed a definite association

between the geopotential topography in the Grand Banks Region and



the drift paths of icebergs that established the basis for the U. S.

Coast Guard hydrographic surveys of this region which continue

today.

12
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III, STANDARD GEOSTROPHIC COMPUTATIONS

Prior to exploring attempts to simplify the standard geo-
strophic computations these computations should be reviewed.
Several schemes have been suggested for computing geostrophic
currents; (1) the geopotential scheme using the Helland-Hansen
formula (Equation 3), (2) the acceleration potential scheme of
Montgomery and Stroup (1962), and (3) the isanosteric contour slope
scheme of Werenskjold (1935, 1937). These three methods have
been reviewed by Yao (1967). Only the geopotential scheme will be
reviewed here, because of its role in later sections of this thesis,
and its more frequent use over the other methods.

The standard computations in the geopotential scheme as ex-
pressed by the Helland-Hansen equation are expressed in the follow-

ing equation:

(AD, - AD_)

V) -V = — (4
where
ADA - ADB = the difference in the anomaly of dynamic height
at stations A and B (cm/sec)2
AD = ;giAPi, where Ei is the average specific

1

h

volume anomaly in the ith pressure interval

(10_5 cm3/gm)
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{(V., - V_.}) = the magnitude of the relative current normal

1 2
to a line joining the two stations (cm/sec)
In order to carry out geostrophic computations with Equation 4
several complicated formulae must be used, or the empirical ex-

pression of these formulae in tables (LaFond, 1951). The formulae

necessary to calculate in situ specific volume anomaly from meas-

ured or interpolated temperature and salinity are summarized by
Yao {1967).

Salinity as a function of chlorinity is given by Knudsen'’s (1901)

equation:
S=0.030 + 1.805 Cl (Knudsen, 1901) (5)
where
S = salinity (%o)
Cl = chlorinity (%o)

If the measurement of electrical conductivity is to be used to deter-
mine salinity or chlorinity then other formulae or tables must be
used.

Given the chlorinity the quantity o can be computed.
- 2 3
o = -0.069 +0.4708Cl - 0.001570C1 " + 0.0000398Cl (6)
o

And with T the quantity o, can be computed.
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= + +0.1 1 - + - 0.1
L (0 *+0 324) { A BT(GO 0. 1324)] (7)

where

~3 .
o, (p s, T, O)10 (Bjerknes and Sandstrom, 1910}

and

1t

Ps. T.o the in situ density at atmospheric pressure
o =g, if T=0°C
o t
. 2
T 503. 570 T +67. 26
- 2,.,-3
AT = T(4.7867 - 0.09815T + 0.0010843T )10
- 2,. -6
BT = (18.030 - 0.8164T +0.01667T )10
T = temperature (°C)

The specific volume of a sea water sample in situ can then

be computed from the equation of state (Ekman, 1908)

Pa 10-9 { 4886

= - _ + . 8
°, T, %S, T,o0 S, T, o T 0000183 [227 + 28. 33T (8)

2 3]

- 2
- 0.551T +0.004T7] + P10 4[1055 +9,50T - 0. 158T]

o -28 2

2 8 —[147.3 - 2.72T +0.04T

- L.sP°T 10 " -

4 > o -28

. 2
P10 %(32.4 - 0.87T + 0. 002T")] +¢ "2‘1"0"") (4.5

4

+0.1T - P10 (1.8 - 0. 6T)]}
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where

L s 3
Ag T, P in situ specific volume (cm /gm)

as T o specific volume at atmospheric pressure (cm3/gm)

P = pressure (decibars)

Frequent oceanographic practice uses the specific volume

anomaly rather than the specific volume.

®%ag 1, P " %350,P (9)
where
~ s 3
) = gpecific volume anomaly (cm /gm)
= i = 35%, T = 0°C, and
(135, o, P specific volume at S = 35%0, T = 0°C, an P

decibars (cm 3/gm)

the latter quantity is computed from the following equation:

_ 4886
%35 0,P %35 0,0 " %35 0, O[l To.0000183p ~ 2%

9
(10)

+0.01055P - ( 28)(14.73-0.0000324P)] 10"

735 0,0

where

- 3
%5 0.0 0.972643 cm™/gm

035,0’0 = 28.126

Specific volume is often expressed in the following way:
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(Sverdrup, 1933, cited (11) by (11)
LaFond, 1951)

= + +
6 AS, T 6S, P 6S, T, P

where

=5 + + ' '

AS, T 6S 6T 6S, T and is called the thermosteric anomaly

(cm3/gm) (Montgomery and Wooster, 1954)

A = 0.0273596 - 10 ¢ A - 10 % )

S, T t t
o5 7,07 %35,0,0

5,2~ %s,0,p " ®35,0,0

b1,p " %35, 17,2 " 9350,0

6S, T, P =6 _AS, T 6S,P - 6T,P (6S, T, P is an order of mag-

nitude smaller than any of the other terms and normally

neglected in geostrophic calculations. )

The individual terms in Equation 11 are given in tables (Sverdrup

et al., 1942 and LaFond, 1951).

These formulae illustrate the computational complexity of
standard geostrophic computations. To carry out these computations
synoptically, on a hemispheric grid such as that used by the U. S.
Navy Fleet Numerical Weather Central is not desirable if it can be
avoided. The question remains can geostrophic computations be

simplified, without giving up necessary accuracy?
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IV. PAST EFFORTS TO SIMPLIFY GEOSTROPHIC COMPUTATIONS

Several attempts have been made to simplify geostrophic com-
putations. The attempts can be divided into three categories: those
which (1) neglect the pressure dependent terms in the specific volume
anomaly, (2) assume a simple relationship between the density of sea
water and the variables (temperature, salinity, and pressure), and
(3) determine the correlation function between two of the variables in
particular water masses. The first approach is the most direct and
will be the most generally applicable, and is discussed in the follow-

ing section.

Thermosteric Anomaly

Montgomery and Wooster (1954) showed that the 'thermosteric

anomaly, " A can be substituted for the specific volume anomaly

S, T’
in geostrophic computations under some conditions without signifi-
cant loss of accuracy. One condition is that the computations be
limited to the upper layers, above 1, 000 db where the pressure
terms (& and & ) are not large; thus the thermosteric anomaly
S, P T, P

is a good approximation to the specific volume anomaly.

Performing geostrophic computations on 47 hydrographic sta-

tions from the Atlantic and Pacific oceans, using both the complete

specific volume anomaly and the thermosteric anomaly, Montgomery
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and Wooster showed that, except for one station in the Atlantic
Ocean, the pressure terms contribute at most five percent to the
station to station difference in the anomaly of dynamic height. These

authors stated (page 66):

The conclusion is reached that for hydrostatic computa-
tion limited to the upper 500 db or 1, 000 db, especially

in the Pacific Ocean, if extreme precision is not required
and if significant convenience is gained, the pressure

terms may be neglected; in other words the thermosteric
anomaly Ag T may be used in place of the complete specific
volume anomaly 6.

While this is clearly a simplification of the standard geo-
strophic computations, the use of the thermosteric anomaly requires
determination of T and U Since the sole purpose for determin-
ing these quantities is to evaluate the thermos»teric anomaly in geo-
strophic computations, a scheme which would allow geostrophic
computations without the determination of these preliminary
quantities would be more efficient. An interesting point made by
Montgomery and Wooster is that for all practical purposes the pres-

sure terms are nearly linear from the surface to the 2, 000 db level

or deeper.

Temperature-Salinity Correlation Methods

One of the earliest attempts to simplify dynamic computations
is that of Stommel (1947) through the use of temperature and

salinity correlation. Since specific volume is a function of
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temperature, salinity and pressure, all three of these variables must
be accurately known in order to compute this quantity. However, if
a correlation exists between any two of the independent variables,
say temperature and salinity, then the specific volume anomaly could
be expressed in terms of only two quantities, since the correlation
function determines the relationship between the other two quantities.
Since temperature as a function of depth is an easier and more com-
mon measurement, Stommel suggested geostrophic computations
could be made from temperature structure measurements alone
using the temperature-salinity correlation to determine the salinity;
from this the specific volume anomaly and then the dynamic height
could be evaluated. Oceanographers have long recognized that tem-
perature and salinity are correlated in certain water masses
(Sverdrup EEE‘ , 1942). That is, for each temperature there will
be a small range of salinity in a given water mass.

Assuming that a satisfactory temperature-salinity correlation
exists in a given water mass, then using this temperature-salinity
correlation a new set of tables can be constructed giving the specific

volume anomaly as a function of only two terms:

§ = [T] +[T,P] (12)

The first term on the right-hand side, [T], is in reality the thermo-

steric anomaly, Ag T, whichis a function of the temperature only
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because of the established temperature-salinity correlation. The

second term, [T,‘ P}, includes 6§ and § but is fully deter-

S, P T, P’
mined from temperature and depth in the given water mass because
of the established temperature-salinity correlation. It is clear that
the accuracy of the temperature-salinity correlation method is de-
pendent on the nature of the temperature-salinity correlation. For
each temperature there will be a certain finite range of salinity
(Rs) which will represent the uncertainty in specifying the salinity
from the temperature-salinity correlation. The uncertainty in
salinity decreases with the slope of the temperature-salinity curve
on the temperature-salinity diagram. Obviously this is due to the
fact that for small slopes a small error in the temperature leads to
a large change in the implied salinity. The uncertainty in salinity
will also be large whenever seasonal variation and mixing lead to a
poor temperature-salinity correlation. Values of Rs can be deter-
mined at each level from the scatter of temperature-salinity pairs
around the mean., Associated with the value of Rs at each level for

a given water mass is an uncertainty in specific volume R Sum -

5
mation of the values of R6 over the water column during the compu-
tation of dynamic height gives a measure of the uncertainty in the
calculated dynamic height introduced by the uncertainty in the tem-

perature-salinity correlation.

Stommel applied the temperature-salinity correlation technique
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to stations of the International Ice Patrol (3275 to 3278) off the Grand
Banks, ATLANTIS stations 1637 to 1642 across the Gulf Stream, and
some stations (unidentified) from the Sargasso Sea. He found that
the use of temperature-salinity correlation was unsuited off the
Grand Banks as the temperature-salinity correlation is poor in this
region. His results are not surprising since the Grand Banks region
is a mixing region for water masses of the Labrador Current and
Gulf Stream (Kollmeyer, 1966). In the Gulf Stream he found that the
temperature-salinity correlation method can be applied, but only if
the stations are grouped, as the temperature-salinity correlation
changes across this current. However, in the Sargasso Sea where
temperature-salinity correlation is excellent the method seems well
suited. Stommel concludes (page 91):

As a result it appears that in certain restricted regions
the temperature-salinity diagram may be used for rough
dynamic computations. For more details survey work
where great accuracy of the results is desired the method
using the temperature-salinity diagram is clearly un-
suitable.

LaFond (1949) applied the temperature-salinity correlation
scheme in the Marshall Island region in an attempt to determined
the geostrophic flow in this region using bathythermograms. He
used existing hydrographic data to establish the temperature-

salinity correlation function for this region. LaFond's conclusion

(page 236) summarizes the results of his studies:
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To use bathythermograms in determining relative cur-
rents, there are several prerequisites which must be
met; (1) the bathythermogram must extend at least to
900 ft., (2) the temperature-salinity relation must be
established, with consideration of seasonal and geo-
graphic effects, and (3) the effects of internal waves must
be largely eliminated. If these conditions are attainable
the direction of relative currents can be established from
bathythermograms. The results of this test indicate that
the speed of the current (0/305 db) can be within 25 per-
cent of those obtained from Nansen bottle and reversing
thermometer data (0/1, 000 db).

Yausi (1955) used temperature-chlorinity correlation in the
Kuroshio Current, and later (1957) in the adjacent seas of Japan to
determine the dynamic height anomaly from measurement of tem-

perature alone. Approximating o, by the following expression:

2
¢, A +BT +CT +DCI (13)

and using the temperature-chlorinity relationship to express
chlorinity as a function of temperature for the water mass he de-

veloped an approximate equation for the dynamic height anomaly.

1,000
AD = 0.016 - 0. 000241033S TdZ
0
1,000 > 1,000
+ 0. 000010461 S T dz - 0. 000000334265‘ T3dZ

Yausi further simplified this expression by determining the linear

correlation function between the first integral, and the second and



24
third integral. Using the derived correlation function, Equation 9

can be written:

1, 000
AD=(O.2637i0.0182)4‘(0.000154310.0000015)S1 TdZ {15)

Comparing the dynamic height anomalies computed using
Equations 14 and 15 to those computed by the standard method Yausi
found standard deviations of 0. 0484 dynamic meters and 0. 0772
dynamic meters respectively. These are at least four and seven
times the accepted error in the standard method of dynamic compu-
tations (Wooster and Taft, 1958). Computing the surface currents
through a section extending south off Shionomisaki along approxi-
mately 135, 7°E, Yausi found good agreement between the geo-
strophic surface currents found from Equation 14 and those computed
by the standard dynamic computations.

Yausi attempted to achieve further simplification of Equation
14 by expressing the dynamic height at the sea surface relative to
1, 000 db in terms of the dynamic height of the surface relative to
shallower levels, i.e. 300, 400, 500, and 600 db. Again the linear
correlation function was determined as the relationship between the
quantities. The error in determining ADIOOO from the thermal

structure above 600 db was 0. 048 dynamic meters, above 500 db was

0. 051 dynamic meters, above 400 db was 0. 081 dynamic meters,
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and above 300 db was 0. 129 dynamic meters. He concluded that a
reasonably accurate measure of the geostrophic surface currents
could be obtained by using only the thermal structure above 500 db.

Yausi (1957) attempted to apply these methods to the adjacent
seas of Japan, east of Honshu. While the patterns of dynamic
topography obtained by the standard dynamic method and using the
simplified equations of the form of Equation 14 and 15 were similar,
an uncertainty of 0. 08 dynamic meters was inherent in the simple
method due to poor temperature-chlorinity correlation. This is not
unexpected because of the nature of the temperature-chlorinity cor-
relation curve in the adjacent seas and the strong seasonal variability
in this region.

Attempts were made to apply the method over other parts of
the North Pacific using stations 100 to 150 in the seventh cruise of
the CARNEGIE. The difference between the dynamic height computed
by Equation 14 and the standard method was less than 0. 06 dynamic
meters, except for stations 126 and 131 off the west coast of the
United States where the difference between the two methods reaches
0. 18 dynamic meters.

One concludes that the temperature~salinity or temperature-
chlorinity methods are applicable in specific regions. However, it
is not suited to other regions where the temperature-salinity curves

have small slopes or in regions where seasonal variations and mixing
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lead to a large scatter of temperature-salinity pairs. Furthermore,
temperature-salinity correlations would have to be established for
each water mass, and the correlation functicns altered at water mass
boundaries. Since water mass boundaries are not fixed such corre-

lation will be difficult to determine.

U. S. Navy Schemes

Two groups in the U.S. Navy make ocean surface current com-
putations on a synoptic basis over large ocean regions. One group
uses techniques developed at the Naval Oceanographic Office
(NAVOCEANO) principally for application in the Northwest Atlantic
Ocean (James, 1966). The other group, Fleet Numerical Weather
Central (FNWC), computes surface currents over the Northern
Hemisphere every 12 hours (Hubert, 1964). Both groups rely on
synoptic thermal structure data transmitted from ships at sea. The
density and accuracy of thermal structure data has been discussed

by Wolff (1964).

NAVOCEANO Scheme

NAVOCEANO techniques were originally reported by Gibson
(1962). The technique is based on a relationship between the hori-
zontal surface temperature gradient and the surface current speed.

Discussing a hydrographic section along the 50th meridian Gibson
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summarizes (page 4) the basis for the scheme:

These data and sections for other ocean areas (not shown)

form the basis for the analytical approach described

below. Symmetrical undulation of the isotherms indicates

four major water masses.

Upon crossing each mass the surface current changes

direction in an orderly manner; that is, the circulation

is cyclonic for cold waters and anticyclonic for warm

waters. There is also general agreement between the

magnitude for temperature gradients and current velocity.

- . . A .

If V is the surface current velocity, k a vertical vector,

pOS1t1ve outwards, and AT is grad T, the relation,

=% cross AT holds in principle. This relation,

analogous to that which applies for straight air flow sug-

gests that water bands can be treated as greatly elongated

air masses.

James (1966) discusses the application of Gibsons' suggestion
to synoptic analysis of ocean surface currents. Plotting observed
currents against observed horizontal surface temperature gradients
in the Northwest Atlantic, a set of curves is derived giving the sur-
face current as a function of horizontal surface temperature
gradient. The curves are shown in Figure | for the Gulf Stream,
Sargasso and Labrador water masses for summer and winter condi-
tions. The surface current is obtained by determining the sea sur-
face temperature gradient and reading current speed from the ap-

propriate curve. Direction of flow is assumed to be parallel to the

isotherms. James states (page 60):
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Figure 1. NAVOCEANO relationship between surface current speed and
horizontal surface temperature gradient in the Northwest

Atlantic (James, 1966),
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This system, aside from the ease of computation, has two

advantages: (l) use of input based on synoptic temperature

data is apt to be more reliable than the use of climatological

means, and (2) the direction of the flow is fairly accurate.

Interstate Electronics Corporation (1968) made an evaluation
of the geostrophic prediction techniques used by NAVOCEANO. In
this study 7, 000 hydrographic station pairs were selected from the
archives of the National Oceanographic Data Center. Only those
station pairs were selected that were consecutive and separated in
time less than 24 hours. Geostrophic computations were carried out
for the 0 db and 125 db levels relative to the 1, 000 db level. The
geostrophic currents at 0 db and 125 db between station pairs were
correlated with the horizontal temperature gradient at these levels.
The 125 db computation should have overcome local effects due to
heat exchange across the sea surface. The results of the study were
negative showing no correlation between the horizontal temperature
gradient at the surface or at 125 db and the geostrophic current at
these levels.

NAVOCEANO determines the wind drift component of the sur-
face current independently and adds this to the geostrophic com-
ponent to obtain the total surface current. Other forcing factors are

not considered. Wind drift is determined from curves relating the

surface drift to wind speed, duration and fetch (James, 1966).
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FNWC Scheme

Hubert (1964) presents the equation used by FNWC to compute

surface geostrophic flow over the Northern Hemisphere oceans on a

synoptic basis.

_ BAZ v
- = 2= 1
where
AZ = the depth of the level of no motion
VHT = the horizontal gradient of T
T = + t 3
T KlTsfc KZTZOO’ where K1 and K2 are ''tuning
constants"
= t -
Tsfc and T200 the surface and 200 meter temperatures respec
tively.

Hubert (1964) does not develop Equation 16, nor can this in-
vestigator find the development for application to the ocean. How-
ever, Equation 16 is of the same form as the thermal wind equation
(Haltiner and Martin, 1957). Development of the thermal wind equa-
tion requires that there be a linear relationship between the tempera-
ture and density, that is, the thermal wind is parallel to the mean
virtual isotherms with low temperature on the left. Such a relation-
ship cannot exist in the sea since the densityof seawateris anonlinear

function of temperature, salinity and pressure. Hubert points out
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that the coefficients K1 and K_ can be adjusted in areas where

2
salinity gradients are known to be significant.

The use of only the surface and 200 meter temperature fields
cannot be justified over much of the ocean, as these two fields are
not necessarily representative of the fields at other levels. Clearly,
more of the water structure than just the sea surface temperature and
200 meter temperature is necessary to make meaningful geostrophic

computations.

The wind drift is computed from Wittings (1909) formula

W = K3J—\f_ (17)
where
W = the current velocity (cm/sec)
V = the 24 hour mean geostrophic wind speed (M/sec)
K3 = "wind factor"

The factor K3 is adjusted to account for the mass transport as-
sociated with waves and the change of velocity with depth. For the
surface wind drift K3 is taken to be 4. 8, and the surface wind drift
current is assumed to be parallel to the geostrophic wind.

Both the geostrophic current and the wind drift current compu-
tations are carried out on a 63 x 63 linear grid system on a polar

stereographic projection over the Northern Hemisphere (Figure 2).

The grid point separation is given by the following expression:
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The projection is true at 60° N where the grid spacing is 200 nautical
miles.

The wind drift and geostrophic surface current components
(i and j) are computed independently at each grid point, and these
components are added to arrive at the combined wind and geostrophic
u and v components. From these components the current magni-
tude and current direction are determined., The isotachs are con-
toured resulting in a total transport (Figure 3).

In order to obtain a single chart containing both speed and
direction the components are used to obtain the vorticity of the cur-
rent flow and the stream function  is obtained by a relaxation

solution of Poisson's equation (Hubert and Laevastu, 1965).
VT - o (19)

However, this stream function analysis is only applicable to non-
divergent irrotational flow. The stream function field corresponding
to the current transport field shown in Figure 3 is shown in Figure 4.
Direct verification of FNWC computed surface currents has
not been possible. Indirect verification of surface currents has been

made through the verification of sea surface temperature analysis
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(Hubert and Laevastu, 1965). Sea surface temperature analyses are
made twice a day at FNWC over the Northern Hemisphere (Wolff,
1964). Sea surface temperature changes computed from the air-sea
heat exchange are subtracted from the analysis. If the residual cor-
relates with the temperature advection field determined from the
surface current analysis then the currents are assumed to be correct.
If the residual does not correlate with the temperature advection
field then the currents can be ''tuned! to achieve agreement. It
should be noted that the air-sea heat exchange formulae used in this
procedure are generally empirical and have not been subjected to
widespread rigid verification. This indirect verification procedure

may be questioned seriously when used for quantitative results.

Discussion

The methods for determining geostrophic flow described in
this section represent attempts to simplify geostrophic computations.
Each model had some success but all suffer from certain defi-
ciencies. The temperature-salinity correlation schemes of Stommel,
LaFond, and Yausi greatly reduce the number of computations re-
quired to determine geostrophic currents. These methods could
also reduce sharply the field measurements, allowing geostrophic
surface currents to be determined from temperature measurements

alone. However, temperature-salinity correlation is a regional
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parameter, varying from water mass to water mass; and in indi-
vidual water masses it varies in both time and space. Furthermore,
in regions of intense mixing such as the Kuroshio-Oyashio confluence
(Tully, 1964), temperature-salinity curves are so variable that cor-
relation approaches are not applicable.

Use of the thermosteric anomaly v instead of the specific

S, T
volume anomaly reduces the number of computations, or number of
tables, that need to be interpolated in geostrophic computations.

The error introduced by this simplification is acceptable if the com-
putations are limited to the upper 1, 000 db. However, even in this
simplified procedure the quantities T and ¢ ¢ must be determined;
since these are not used beyond the geostrophic computations, their
determination represents unnecessary expenditure of computation
time.

NAVOCEANO correlation curves between current and surface
temperature gradient may provide adequate synoptic current informa-
tion in some regions where strong surface temperature gradients
are dynamically sustained, such as in the Gulf Stream. Over the
world oceans this is not the case; the surface temperature gradients
are small and often are determined by the local heat exchange and
mixing processes. In fact no definite relationship was found be-

tween the surface current and the horizontal temperature gradient

in 7, 000 selected hydrographic station pairs in the Northwest



38
Atlantic where the NAVOCEANO curves (Figure 1) were derived
(Interstate Electronics Corporation, 1968).

The application of the thermal wind equation to the ocean has
no foundation. The simplifying assumption that the density of sea
water is a linear function of temperature cannot be accepted
(Fofonoff, 1962). The adjustment of the coefficients used by FNWC
on the basis of sea surface temperature analysis verification must
be questioned. Since the sea surface temperature field is developed
using the surface current field to compute the advected heat the use
of sea surface temperature in surface current verification is not an
independent verification.

Geostrophic surface currents are most valuable if determined
over a short period of time, say over a seven day period (Lenczyk,
1964). This will be possible only when synoptic fields of tempera-~
ture and salinity are available. While such fields are not available
at the present time, a more scientifically sound scheme of comput-
ing geostrophic currents must be available when these fields do be-
come available. Any scheme used must yield surface currents that
are in agreement with observed surface currents or at least those
computed by the standard geostrophic method. Every effort should
be made to verify by direct measurements any scheme of indirectly

computing surface currents.
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V. TEMPERATURE-SALINITY GRADIENT SCHEME

Development of the T-S Gradient Equation

Consider the Helland-Hansen equation, Equation 3, for geo-

strophic flow where the horizontal gradient is expressed in differ-

ential notation and n is perpendicular to (v1 - VZ) in the horizontal
plane.
Icd PZ
(V, -V,) = "f[g; S‘ a(n, P) dp] (3)
Pl

Equation 3 can be rewritten:

P
1 2
- = - d
(V) -V, =7 § (45 on P)] dp (20)
Pl

where the subscript p indicates the bracket quantity is
evaluated at constant pressure.

Assuming that sea water can be regarded effectively as a binary

fluid system whose specific volume is a function of the three inde-

pendent variables, temperature, salinity and pressure.
a= f(T,S, P) (21)

Then Equation 22 can be written in the following form carrying out
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the indicated differential operation (Reid, 1959).

P
1 2¢ 0a dT da ds
V. -V )=—§ (Qey 4T 4 &gy 48y g (22)
d d
1 2 { J oT s, P n as T. P n p

1

Note that there is no term representing the compressibility cf sea
water because the operation in brackets is carried out at a constant
pressure.

Equation 22 gives the geostrophic velocity in terms of the hori-
zontal gradients of temperature and salinity; a quantity (8a/8T)S’ P
specifying the dependence of specific volume on temperature at a
given salinity and pressure, and a quantity (Ba/BS)T, p specifying
the dependence of specific volume on salinity at a given temperature
and pressure. These latter quantitites become the coefficient of
thermal compressibility and saline contraction if each is divided by
the specific volume. Note that the compressibility of sea water
enters Equation 22 indirectly through the dependence of these quanti-
ties on pressure.

The question then arises, as to whether or not simple expres-
sions be found for (8a/8T)S’ p and (BQ/BS)T, p such that Equation
22 represents a substantial simplification over standard geostrophic
computations without significant loss in accuracy. Two possible ways
of expressing (BQ/BT)S’P and (BG/BS)T,P are: (1) to use
empirical data giving the specific volume as a function of tempera-

ture, salinity and pressure, such as Newton and Kennedy (1965) or

(2) to use one of the available equations of state, such as that of
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Ekman (1908), that have been numerically fitted to the available

empirical data.

Determination of (8a/9T) and (8a/8S)T

S, P P

Empirical Data

The most widely used P-V-T (pressure, specific volume,
temperature) data for sea water are based primarily on Ekman's
(1908) compression determinations. He measured the specific
volume of a sample of sea water taken from 3, 000 m at a station off
Portugal, at two different salinities; 31. 13 %cand38.83 %o, obtained
by dilution and evaporation of the sample, and at three pressures;

200, 400 and 600 bars. V-T data often used is that of Forsch, et al.

(1902) for different salinities at atmospheric pressure. Forsch,
et al. used a total of 24 samples collected entirely from the surface,
mainly from the Baltic, North Sea and the North Atlantic Ocean.

A more recent and extensive set of measurements are those
of Newton and Kennedy (1965). They carried out measurements of
specific volume for three salinities (31. 52, 34.99 and 41. 03 %) at
temperatures from 0 to 25°C in 5°C steps, and at pressures from
I to 1,000 bars in 100-bar steps. The precision of the measure-
ments is reported to be better than seven parts in 105. Because of

the time lapse of about six decades between the measurements of
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Ekman and Forsch, and those of Kennedy and Newton, the latter
measurements should reflect any advance in technique and apparatus
in that interval. Furthermore, P-V-T-S data available prior to
Newton and Kennedy is not sufficient to determine the quantities
(aa/aT)S, p and (aa/BS)T, p over the range of temperature, salinity,
and pressure of interest in the ocean without extensive interpolation
of the data. However, Ekman's compressibility data is internally
consistant to a remarkable degree (Eckart, 1958; Li, 1967).

The dependence of specific volume on temperature, G(T)S, p

at fixed salinity and pressure, and the dependence of specific volume

on salinity, a(S) , at fixed temperature and pressure are il-

T, P

lustrated in Figures 5 and 6 respectively (Newton and Kennedy, 1965).

Figure 5 shows that ao(T) is a nonlinear function over the range

S, P

of variables shown, and of practical interest in this study. However,
c,(T)S P is a continuously increasing function over these ranges.
4

Figure 6 shows that a(S) is nearly a linear function over the

T, P
range of variables of interest in this study.
The quantities of interest, (aa/BT)S, p and (aa/SS)T, p’ can

be determined by direct differentiation of ao(T) and a(S)

T, P T, P

if suitable expressions can be found for these functions. Polynomials
of progressively higher degree (first through fifth) were fit in the
least square sense to Newton and Kennedy's data to determine

a(T)S p over the three salinities, at pressures of 1, 100, and 200
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of temperature at fixed salinity and pressure



44

SPECIFIC VOLUME (ml/gm)

. 9820
. 9800
. 97804
. 97604
.9740d
25°C, 1 bar
. 97204
. 97004 15°C, 1 bar
9()80- SOC, 1 bar
. 96604 15°C, 100 bars
25°C, 200 bars
. 96404
9¢20- 15°C, 200 bars
. 9600+ 5°C, 200 bars

9 58 () @fmp——p—————r———
30 35 40

SAIINITY (%)

Figure 6. The dependence of specific volume as a function
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bars. The fitting was performed on the Naval Postgraduate School
IBM/360 digital computer using the program LSQPOL (Jordan and
Vogel, 1961). This program computes the coefficients of the poly-
nomial, an estimate of the error in the coefficients, and the standard
deviation of the computed points from the fitted points. The standard
deviation of the computed points was less than the precision of the
original data points for a second degree polynomial. Therefore,

a(T) can be expressed to the accuracy of the original data points

S, P

by an expression of the form:

a(T)g p = a (S, P) +A(S, P)T + B(S, P)T > (23)

s

The values of ao(S, P), A(S,P), and B(S, P) are given in Table 2.
A similar procedure was followed to determine (1(S)T p over the
range of temperature and the pressure previously given for Q(T)q p’

a(S) was expressed to the precision of the original data points

T, P

by a polynomial of first degree.
Q(S)T,P = ao(T’ P) - C(T,P)S (24)

The values ao(T, P) and C(T,P) are presented in Table 3.
Examining the values in Tables 2 and 3 inconsistencies are

noted for which no physical reason is available. For example, in

Table 2 the values of A(30. 52 %o, 100 bars) and B(30. 52 %o, 1 00 bars)

are less than the values of these coefficients at 100 bars and
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Table 2. ag(S, P), A(S, P) and B(S, P) as function of salinity and

pressure in cgs units. (From Newton and Kennedy, 1965).

Salinity Pressure A(S, P) B(S, P)
(%0) (bars) 0,5 P) x 10 x 107
30. 52 1 0.9761 48. 71 50. 00
30. 52 100 0.9715 89. 14 40. 00
30. 52 200 0.9672 99.93 40. 71
34. 99 1 0.9726 67. 28 47. 14
34. 99 100 0. 9682 88. 21 43, 57
34. 99 200 0.9639 109. 91 40. 00
40. 03 1 0. 9680 90. 78 40. 71
40. 03 100 0. 9637 111,71 37. 14
40. 03 200 0. 9595 126. 07 36. 43

Table 3. a (T P) and C(T, P) as a function of temperature and

pressure in cgs units (From Newton and Kennedy, 1965).

Temperature Pressure C(T, P)
(°C) (bars) ao(T’P) % 109

0 1 0. 9996 -77.02

0 100 0. 9942 -74. 23

0 200 0. 9895 -73. 24

5 1 0.9993 -75.13

5 100 0.9943 -73. 24

5 200 0. 9895 ~71. 35

10 1 0. 9997 -74. 14

10 100 0.9948 ~72. 25

10 200 0. 9904 -71. 35

15 1 1. 0000 -72. 34

15 100 0. 9955 -71. 35

15 200 0.9910 -70. 36

20 1 1.0014 -73. 24

20 100 0. 9965 -70.80

20 200 0.9920 -69. 46

25 1 1. 0025 -72. 34

25 100 0.9977 -70. 45

25 200 0.9934 -69. 46
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34.99 % This is opposite to the trend in the other data. Similar
inconsistencies are found in Table 3 for the C(S, P) coefficients.
These inconsistencies are not unexpected. They are due to the fact
that few data points are used and small errors in the data points fit
lead to large errors in the coefficients. However, such incon-
sistencies in the coefficients makes interpolation of coefficients
from Newton and Kennedy's data to other temperatures, salinities
and pressures impossible. The use of additional data points would
overcome this difficulty. Additional data points smoothed to com-
pensate experimental error can be computed from the equation of

state for sea water.

Equations of State for Sea Water

Several equations of state have been suggested for sea water.
The earliest equation (Equation 8) is that suggested by Ekman (1908)

(Bjerknes and Sandstrom, 1910) for existing P-V-T-S data.

a ¥ a (1 *pp) (25)
where
a = specific volume, (ml/gm)
ag = specific volume at atmospheric pressure

= pressure, in decibars

jge]
1



5

o= 1077 {[4886/(1 +1.83 x 10 "p)] - (227 + 28. 33T

2 -
0.551 T + 0. OO4T3) t10 4p (105.5 *+9.50T

- -1
0.158T%) - 1.5 x 10 812 10 (o

2 -
28[(147.3 - 2.72T + 0. 04T ) - 10 4p(32.4

2

- 0.87T + 0. OZTZ)] +10 (o, - 28)2[4. 5-0.1T

10 %p(1.8 - 0.06T)]}

Ekman's work would indicate that Equation 25 would be applicable

over the following ranges in the variables:

Temperature -2° C to 26°C
Salinity 31. 13 %o to 38. 53 %o
Pressure 0 bars to 600 bars

LaFond (1951), however, gives the range of application as:

Temperature -2° C to 30° C

]
Salinity 21 %o to 38 %o
Pressure 0 bars to 1, 000 bars

Eckart (1958) carefully studied the available P-V-T-S data
for pure water and sea water. He concluded that the equation of
state is represented to the accuracy of the available data (2 x 10~

ml/gm) by the Tumlirz equation.

48
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+ - =
(P +P Ma-a)) A (26)
where

P = total pressure in atmospheres

P_=5890 + 38T - 0.375T° + 35

a_ = 0.6980

o
2
A =1779.5+ 11.25T - 0.0745T - (3.80 + 0.01T)S

Eckart indicates that Equation 26 is a satisfactory fit of the available

data over the following range:

Temperature 0° C to 40°C
Salinity 0 %o to 40 %o
Pressure 0 bars to 1, 000 bars

Fofonoff (1962) compared the Ekman expression to the Tumlirz
equation and found that the maximum disagreement between the two

. -4 .
equations was less than 2 x 10 ml/gm over nearly the entire
range of salinity, temperature, and pressure in the sea. Only at
unusually high ocean temperatures (greater than 29° C) with

c . . . -4

salinities of 36 %o, did the disagreement reach 3 x 10 ml/gm.
However, while specific volumes computed by the two equations
agree to within the accuracy of measurements, quantities derived
from the equation of state, such as the coefficient of thermal expan-
sion, are in serious disagreement.

Li (1967) reviewed the available P-V-T-S data and suggested
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the Tait-Gibson equation as an equation of state. The Tait-Gibson

equation is given by Li as;

B+ P,

_ -3
a T a -(I-SXIO )CLOg[B>,<+1

S, T, 1 (27)

where
C =0.3l5¢g
o)

sTsl
2

B* = (2670. 8 + 6. 890565) + (19. 39 - 0.0703178S)T - 0,223T

Equation 27 is a satisfactory fit to existing P-V-T-S data over

the following range of variables:

Temperature 0° C to 20° C
Salinity 30 %0 to 40 %o
Pressure (absolute) LI bar to 100 bars

Equation 27 gives results that are in agreement with measurements
to the experimental error in the P-V-T-S data. The difference be-
tween the Tait-Gibson equation and Ekman's equation for sea water
of 35 %, 0° C from 1 to 1, 000 bars is no more than 1 x 10_5 ml/gm.
At atmospheric pressure the agreement between the density of sea
water from Knudsen's tables (1901), in common usage in oceanog-
raphy, and Equation 27 is less than 3 x 10-5 gm/ml over the
chlorinity range of 15 to 22 % and temperature range of 0 to 20° C.
Li concludes (page 2073): "Ekman's very involved equation of state
of sea water is equivalent to the much simpler expression given

here. " However, as the Tumlirz equation proposed by Eckart did
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not give the same values as the Ekman equation for derived properties
such as the coefficient of thermal expansion, the Tait-Gison equation
gives again different values.

The dependence of specific volume on temperature O'(T)S, p
is a function of temperature, salinity and pressure according to the
three proposed equations of state discussed above. In each case the
functional relationships are markedly different. Furthermore,
quantities derived from these expressions such as the coefficient of
thermal expansion, 1/al Ba/BT)S, pr may differ significantly.
Fofonoff (1962) compared the coefficient of thermal expansion of sea
water 35 %o salinity at atmospheric pressure computed from the
Ekman and Eckart relationships. The results are given in Table 4.
Table 4. A comparison of the coefficient of thermal expansion of

sea water 1/a(aa/aT)S p X 106 at 35 %o salinity and

atmospheric pressure ‘computed from the Ekman and
Eckart equations of state (from Fofonoff, 1962).

Temperature (°C) Ekman Eckart

0 52 80

5 114 121
10 167 161
15 214 201
20 256 237
25 297 274
30 335 311

While the coefficient of thermal expansion computed by the two

equations are not significantly different at temperatures around 10°C
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these differences increase significantly at higher and lower tempera-
tures.

Equation 22 requires the value of (8a/8T)S’ p before it can be
used for geostrophic computations. To illustrate how this quantity
changes between the three equations of state, Ekman, Eckart, and
Tait-Gibson, the value of (8a/8T)S’ p as a function of pressure for
a salinity of 34 %, for temperatures 0, 10, 20, and 30° C is plotted
in Figure 7. The three proposed equations of state yield values for
(8a/8T)S’ p in closest agreement at temperatures near 10°C at pres-
sures near one atmosphere. However, the values diverge toward
higher and lower temperatures and higher pressures. There is no
clear cut way to specify which equation of state would yield the best
value of (aa/aT)S’ P’ Furthermore, direct differentiation of the
Ekman, Eckart or the Tait-Gibson equations leads to rather compli-
cated expressions for (Ba/aT)S, p 28 well as (aa/BS)T’ P’ Such
complicated expressions would give Equation 22 no advantage over
the Helland-Hansen equation, Equation 4.

Fofonoff (1962) has examined the coefficients of saline con-
traction, (aa/aS)T’ pr 28 computed from the Ekman and Eckart rela-
tionships and found that they differ by less than one percent. There-
fore, in geostrophic computations using Equation 22 there is little
advantage in either expression for (aa/BS)T’ P’ Thus, while the

value of (Ba/BT)S’ p differs significantly between equations of state



35 '___—-"—-

- -
-—‘-—-"—-‘.— — e — e+ — 0 - § — m—
—— e e s —
30°C
- —— -
30
- o =
20°C -
____—-—"—— . —_SSET
—— T s s amans.
___._——"" Py
25 = _
——-‘—-.-
,____-—————-——‘
— m—— — —
e e o
O
o
oo 20
~
—
°
g 0°C e
..——". —’.——_‘-‘ —————— —— e
—_— 1"’.’__—:——- ——————
o E—— - — oum
—— —
ol
15
—
/— -
e -
10 _
/— L—
,—/— o —
— Ooc ’./
—/ .
"
o —
-l‘ ./
> — e —

0 20 40 60 80 100 120 140 160 180 200
PRESSURE (bars)

Figure 7. Variation of (8a/8T) pasa function of pressure for a
salinity of 34%oaccord’ing to the Ekman (— - —),
Eckart ( —), Tait-Gibson (— — —) equations of state
and Equation 23 with coefficients derived from the
Ekman equation of state ( )




54
the value of (aa/BS)T’ p does not.
Another approach to the determination of (8(1/8T)S p and
(8a/8S)

T, P would be to compute specific volume at sufficient values
of temperature, salinity, and pressure using one of the equations of
state, and fitting the resulting values with polynomials as was at-
tempted with the Newton-Kennedy P-V-S-T data. This would over-
come the difficulty encountered in directly fitting the empirical
P-V-S-T data caused by experimental errors in the few data points
as the equations of state would smooth individual inconsistent points.
The question is which equation of state to use to compute the specific
volume? There is little evidence that any of the expressions gives
more reliable values of specific volume over the range of variables
of interest in computing geostrophic currents in the upper few
thousand meters of the ocean (Wilson and Bradley, 1968; Li, 1967).
The Ekman equation (Equation 25) has been the principle equa-
tion of state used by oceanographers (LaFond, 1951). Tables by
Bjerknes and Sandstrom (1910), Sverdrup (1942) and LaFond (1951)
are based on this expression. Since these tables have been and con-
tinue to be so widely used in oceanography the Ekman equation of

state is selected to determine a(T) and a(S)

S, P T, P’

Specific volume was computed using Equation 25 over the range

of temperature, salinity, and pressure of interest in this study:
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Temperature 0°Cto30° C
Salinity 30 %o to 40 %
Pressure 0 bars to 200 bars

Values of specific volume were computed for all possible combina-
tions of the variables at intervals of 2°C for temperature, 2 %o for
salinity and 10 bars for pressure.

Second degree polynomials were fit to the specific volume as
a function of temperature at fixed salinity and pressure to yield

a(T) , and first degree polynomials were fit to specific volume as

Ss P
a function of salinity at fixed temperature and pressure to give

a(S) Again the fitting was accomplished on the Naval Post-

T, P’
graduate School IBM/360 digital computer using the program LSQPOL.
The values of the coefficients A(S, P) and B(S, P) as in Equation 23
and C(T,P) as in Equation 24, are given in Appendix [ as a function
of their respective independent variables. The errors determined
for these coefficients and the standard deviation of the computed
versus the original data points is also given in Appendix L

The standard deviation of the goodness of fit of the computed
to original data points, is always less than 2 x 10-5 ml/gm. Since
Eckart (1958) contends specific volume is not known any better than
2 x 10-4 ml/gm the use of higher degree polynomials is not justified.

Direct differentiation of a(T (Equation 23) with respect to tem-
S, P P

perature yields the following expression:
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(37) " A(S,P) + 2B(S, P)T (28)
S, P

The values (aa/aT)S p from this equation were compared to the
values given by the Ekman, Eckart, and Tait-Gibson equations of

state in Figure 7. The quadratic expression of af leads to

T, p
as good agreement with the commonly accepted Ekman equation of
state as do either of the other proposed equations of state (Equation
26 or Equation 27).

In the same way differentiation of a(S) (Equation 24) with

T, P

respect to salinity yields:
= - C(T, P) (29)

Linear interpolation of the computed values of the three coefficients
leads to Figures 8, 9 and 10 for A(S,P), 2B(S,P) and C(T,P)

respectively.

Temperature-Salinity Gradient Scheme

Recall Equation 22.

P
- 2
1 0 dT ) ds
voovp = p (IE Sregh 5 e (22)
S, P T,P P
P
1
Substitution from Equation 28 and Equation 29 for (8a/8T) and

S, P

(aa/BS)T p respectively in Equation 22 yields the following
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simplified expression for computing geostrophic currents:

S] dp  (30)

b

(v

,_
""I

g A(S, P) —; +213(S,P)TEE - C(T,P)—
P,

Using Equation 30 geostrophic flow through a dynamic section
can be computed without computing specific volume as required in
the classical Helland-Hansen Equation. Only the measured tempera-
ture and salinity gradients along isobaric surfaces, and the coeffi-
cients A(S,P), 2B(S,P) and C(T,P) which can be obtained from
Appendix I or Figures 8, 9 and 10 respectively are required to com-
pute the geostrophic flow through a section. Because of the clear
relationship between the measured temperature and salinity gradients,
and for lack of better, Equation 30 will be referred to as the Tem-
perature-Salinity Gradient method or simply the T-S Gradient

method.

Computational Form of Temperature-Salinity Gradient Scheme

Equation 30 is rewritten in terms of finite differences for

computation:

(v, )«———z: [A AT, +2BTAT -CiASi] AP, (31)
P
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where
A. = the average value of A(S, P) over the ith pressure
interval (cgs units)
2B. = the average value of 2B(S, P) over the ith pressure
interval (cgs units)
C. = the average value of C(T,P) over the ith interval

(cgs units)

ATi = the average horizontal temperature difference in the

ith pressure interval (°C)
TI‘-i = the average temperature in the ith pressure interval (°C)
AS. = the average horizontal salinity difference in the ith

pressure interval (%o)
- .th . 2
AP. = the i* pressure interval (dynes/cm )
An = the horizontal separation of the stations (cm)

Advantages of the Temperature-Salinity Gradient
Scheme of Computing Geostrophic Currents

If Equation 30 is to be used over the standard geostrophic
scheme (Equation 4) it should represent some advantage. The ad-
vantages realized in using Equation 30 are: (1) simplicity of compu-
tation, (2) speed of computation, and (3) additional insight into the
individual significance of the temperature and salinity structure in

geostrophic flow in the ocean. Since the much simpler expressions
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for c,(T)S p and a(S) reproduce values of specific volume to

T, P
the accuracy of the experimental measure of this quantity, these
advantages would seem to be gained without loss of accuracy over
the range of temperature, salinity and pressure considered in this
study. Furthermore the method is completely general and can be
used under any circumstances that the standard method can be ap-
plied.

The computational simplification of the T-S Gradient scheme is
apparent since no density computations are needed. Neither the
relatively involved tables commonly used to calculate specific volume
(or specific volume anomaly), nor the equations of state previously
discussed need to be used. Those properties that are directly meas-
ured in the ocean (temperature and salinity as a function of depth)
can be used to compute the geostrophic flow. Only the three coeffi-
cients A(S,P), 2B(S,P) and C(T,P) are needed.

The speed advantage of the T-S Gradient calculations on a
digital computer was established on an IBM 360 digital computer.
The time to compute the geostrophic flow through a section consist-
ing of two stations, by the standard method and by the T-S Gradient
method was measured. Only the actual time to carry out the mathe-
matical computations was determined. The average time to com-

pute the geostrophic flow for a single station pair was 0. 25 psec for

the T-S Gradient method, and 1.80 usec for the classical method.
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Therefore, the T-S Gradient method is approximately seven times
faster than the standard method using this digital computer.

Another significant advantage of the T-S Gradient scheme is
the potential for separating the thermal and haline contributions to
the geostrophic flow. The interaction that takes place between the
thermal and haline contributions to the flow is through A(S, P),
B(S,P) and C(T,P). Therefore, at least to first order, the first two
terms in Equation 30 can be considered the thermal contribution to

the geostrophic flow, and the last term the haline contribution.
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VI APPLICATIONS OF THE T-S GRADIENT METHOD

Introduction

It has been shown that the T-S Gradient scheme is simpler to
use than the standard geopotential scheme. It remains to evaluate
the T-S Gradient scheme for making geostrophic computations over
large ocean areas, say over the North Pacific.

Clearly, additional advantage is gained in these calculations
if the average value of the coefficients A(S, P), 2B(S,P)and C(T,P)
relative to a selected reference level did not vary greatly over the
ocean such that average values could be used and Equation 31 written:

1 - —_
(v, -V =——[K12T.AP.+K
]'_ 1 1

| o) = T T T, AT, AP - K ZASiAPi] (32)

2j 33

where

El’ EZ and -f{_3 = weighted mean values of A(S,P), B(S, P) and
C(T, P) respectively between the surface and
the selected reference level (cgs units).

If the T-S Gradient scheme can be applied using Equation 32 then

only the three fixed value coefficients and the measured temperature

and salinity structure would be needed to make geostrophic computa-

tions. To determine if Equation 32 is applicable, three questions

must be answered;
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1. What reference level should be used?

2. Relative to the selected reference level, what is the
spatial variation in the weighted mean values of the coeffi-
cients (A(S, P), 2B(S,P) and C(T,P)?

3. Relative to the selected reference level, what is the time
variation of the weighted mean values of the coefficients

A(S, P),2B(S, P) and C(T, P)?

Selection of the Reference Level

The question of the proper reference level to select is open to
question (Defant, 1961, and Fomin, 1964). Hopefully the level se-
lected would be a level of little or no motion. Many reference
levels have been used to compute surface currents (Neumann and
Pierson, 1966). FNWC uses 200 m over the entire Northern Hemi-
sphere oceans (Hubert and Laevastu, 1967). Reid (1958) used a
reference level of 500 db in the California Current region, and
1, 000 db reference level in his investigation (1961) of the dynamic
topography in the entire Pacific Ocean. Reed and Laird (1966) used
1,000 db for dynamic computations in a section off central Cali-
fornia. Reed and Taylor (1965) used 1, 000 db for geostrophic calcu-
lations in the Alaska Stream. Stommel (1965) summarizes the

problem of selecting a reference level (page 20):
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Thus the choice of the reference level for geostrophic

calculations becomes mostly a matter of taste, and we

should admit that that is ultimately intolerable. The

determination of the level of no motion is not a matter

for debate, but for direct measurement.

There are simply not sufficient direct current measurements in the
oceans to select suitable reference levels. However, Fomin (1964)
shows that it may be better to select arshallow reference level of
low velocity than a substantially deeper level where the velocity may
approach zero, thus reducing the computational errors. He points
out that in some cases the selection of a deep reference level may
completely distort the computed currents.

For this study a level of 1,000 db is selected as this is pos-
sibly near an average value for the oceans. Furthermore, more
hydrographic data is available over most of the ocean to 1, 000 db
than to deeper levels. Lastly, to go to a deeper reference level
could introduce computational errors that may overcome any better
approximation to no motion. Stommel (1965) states (page 19)
"Fortunately, the choice of reference level has less effect upon

velocity in the very surface layer than on.those of deep water. "

Determination of the Weighted Mean Value of _I_i-l, -I_i-z
and K3 Relative to 1, 000 db in the Summer and
Winter for the Pacific Ocean

Determination of K "EZ and K, relative to any reference

l 3

level requires that the distribution of temperature and salinity be
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known to this level. These distributions are available from his-
torical data deposited at oceanographic data centers. However, it
requires a great quantity of data to accomplish oceanic coverage.

As a first approximation, atlas values of temperature and salinity
over the Pacific Ocean were used to determine weighted mean values
of the coefficients relative to the 1, 000 db level.

One of the most comprehensive atlases of temperature and
salinity distributions of the entire Pacific Ocean is that by
Muromotsev (1963). This atlas gives the fields of temperature and
salinity at selected levels between the sea surface and the deepest
part of the ocean. Fields are given for summer and winter condi-
tions at the following levels: 0, 10, 25, 50, 100, 150, 200, 300,

400 and 500 m. Below 500 m the seasonal variations are considered
negligible and only single fields of temperature and salinity are
available at each level: 600, 800, 1,000, 1,200, 1,500 m, and
thereafter every 500 m to the bottom. In all 30, 000 deep water
hydrographic stations were used to compile the atlas supplemented
in the upper layers by other temperature data.

The values of k—l’ EZ and E3 were determined for summer
and winter conditions by interpolating the Muromotsev atlas tempera-
ture and salinity fields at the following levels: 0, 10, 25, 50, 100,

150, 200, 300, 400, 500, 600, 800 and 1, 000 m at the intersection

of the lines of latitude and longitude given in Figure 1l. The
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resulting weighted mean values of El’ EZ and E3 for summer and
winter are shown in Figures 11 and 12, 13 and 14, and 15 and 16
respectively. It can be seen from these Figures that the variation
in the coefficients over the entire ocean, or from season to season
does not change by more than a few percent. Using fixed values of
El’ EZ and f{-3 over the entire ocean relative to the selected refer-
ence level of 1,000 db should lead to only a small percent error which

is certainly acceptable in the geostrophic computation. The values of

the coefficients selected are:

=8l.0x 10-6 (cgs units)

K1 =

- -7 .

K2 =86.5x 10  (cgs units)
-_ _5 .
K3 = -74.0 x 10 7 (cgs units)

At most an error of five percent will be introduced into the geo-
strophic surface current relative to 1, 000 db in the Pacific by the

selection of these values.

The Significance of Water Structure

The use of fixed value coefficients relative to the 1, 000 db
reference level in the Pacific appears to be justified. To further
support this hypothesis, station pairs were selected in various re-
gions of the world oceans and geostrophic calculations using the

standard method and the T-S Gradient method using fixed values of
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the coefficients. Lack of agreement would indicate that adjustment
of the coefficients is required in some water masses.

Stations used are shown in Table 5 where region, station
identification, latitude and longitude, and the computed surface speed
by each method are listed. The stations were selected to be approxi-
mately perpendicular to the mean flow in each region. The complete
velocity profile between the surface and the selected reference level
shows small and generally not significant deviations between the two
methods. The velocity profiles computed by both methods are given
in Appendix IL. The velocity profiles for each station pair computed
by the two methods agree to better than ten percent at all depths.

The comparison made in Table 5 shows the agreement required
between geostrophic surface currents computed by the two methods.
None of the values computed by the T-S Gradient method disagree by
more than five percent from the values computed by the standard
method. Therefore, the use of average coefficients in the T-S
Gradient method to calculate geostrophic flow in the surface layer
relative to the 1, 000 db reference level is justified. These results
are encouraging. However, the need for direct verification of in-
directly computed currents is great. Very few attempts to verify
indirectly computed currents have been made, some are reviewed
in Chapter II of this thesis. Clearly, more experiments are needed

to establish the relationship between indirectly computed currents



Table 5. Comparison of geostrophic surface currents computed by the standard method and the T-S
gradient method.

T-S
Latitude Longitude Gradient Standard Remarks

Ocean Region Ship/Cruise Station (°) (°) (cm/sec) (cm/sec)

Subarctic Explorer 5904 51°45'N 174° 22'W 72.0 71.9
Pacific 5905 51°41'N 173° 24'W

Western North Chofu Maru E-7 28° 43'N 132°13'E 13.3 13. 4
Pacific E-8 28° 29'N 132° 26'E

Eastern South Horizon 28 15°40'S 77° 20'W 22. 7 22. 5
Pacific Step 1 29 15°56'S 77°51'W

Equatorial Horizon 24 09°00’'N 111°25'wW 27.8 28. 0
Pacific Eastropac 25 08°00'N 111°33'w

Equatorial H. M. Smith- 135 04° 33'N 139°14'w 11. 3 10. 8
Pacific 31 136 03°31'N 139°15'W

Subantarctic Ob-3 391 52°25'S 159°51'w 5.3 5. 2
Pacific 392 50°21'S 159°50'W

Eastern North NPGS-Al 2ZA 36°50'N 122°36'W 4. 5 4. 5
Pacific 2B 36° 20'N 123°12'w

Western North  Inuna Maru 13 39°01'N 153°00'E 3.5 3.6
Pacific 14 38°56'N 153°17'E

Equatorial Crawford- 122 15°52'S 37°36'W 4.9 5.0
Atlantic 10 123 15°55'S 36°46'W

9L



Table 5., Continued.

T-S
Latitude Longitude Gradient Standard Remarks
Ocean Region Ship/Cruise Station {(°) (°) (cm/sec) (cm/sec)
Equatorial Crawford- 361 15°38'N 73°56'W 34. 3 35. 1
Atlantic 17 16°26'N T73°57'W
Western North Atlantis 2298 36° 23'N 73°45'W 195, 1 204, 2 As cited in
Atlantic 2299 36° 15'N 73°29'W Neumann
and Pierson,
1966 (p. 134-
135)
North Atlantic A 54° 02'N 24° 34'W 12.7 12.9 As cited in
B 54° 06'N 23°00'W Proudman,
1953 (p. 64-
65)
Equatorial Norsel 25 09°00's 75° 00'E 12,7 12.5
Indian 26 06°06'S 75°01'E

LL
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and actual observed currents.

Verification of Indirectly Computed Currents

Two field experiments were performed to investigate the ap-
proximation of computed geostrophic surface currents to measured
currents. These experiments are discussed in some detail in Ap-
pendix V. The surface currents computed by the classical scheme,
the T~S Gradient scheme and by FNWC were compared to the meas-
ured surface currents.

In both experiments the surface currents computed by the T-S
Gradient scheme were identical with those computed by the classical
scheme. In the first experiment the FNWC computed currents were
in the opposite direction to the measured surface currents and the
currents computed by both the T-S Gradient scheme and the standard
geostrophic scheme. FNWC currents are heavily weighted toward
the wind drift component. The computed geostrophic currents (4.0
to 9. 5 cm/sec) were only about half as great as the observed cur-
rents (7.1 to 14. 1 cm/sec) but they were in the correct directicn.

In the second experiment as in the first the computed currents
and measured currents agree in direction, but the geostrophic com-
puted currents were again slower (5. 4 cm/sec) than the measured
currents (9. 7 cm/sec to 16. 8 cm/sec). The FNWC computed cur-

rents were the same speed (12. 7 cm/sec to 25. 5 cm/sec) and
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direction as the measured currents.

Thus in both experiments the geostrophic currents were nearly
half the directly measured currents. This might be completely ex-
plained by the fact that the mass structure was not sensed at the
same time as the currents were measured. Even though these meas-
urements were only separated by approximately 24 hours the mass
structure may have changed or in fact never been in balance with the
local currents. Furthermore, the geostrophic currents were calcu-
lated from the average mass structure over at least a 48 hour period,
and one would expect the average gradients to be less than the maxi-
mum gradient. One fact these experiments show is the need for
more field experiments to establish the validity of indirectly com-
puted currents.

In both experiments the T-S Gradient method and the standard
geostrophic computations lead to essentially the same currents.

That is, the simpler T-S Gradient computations give equivalent re-
sults to the standard geostrophic computations and the advantages
of simplicity are gained without giving up accuracy. Another ad-
vantage of the T-S Gradient scheme is the separation of the thermal

and saline contributions to the flow. An example of this advantage

is presented in the next section.
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The Relationship Between the Thermal Component of the Geostrophic
Surface Velocity and the Total Geostrophic Surface Velocity
in the Gulf Stream Water on the Grand Banks

One of the advantages of the T-S Gradient method over standard
geostrophic computations is the capability to separate the first order
thermal and haline components of the geostrophic flow. To illustrate
this feature of the method the thermal component and the total geo-
strophic surface velocities were computed for 33 station pairs of
the U.S. Coast Guard, International Ice Patrol stations in the Gulf
Stream water (Kollmeyer, 1966) off the Grand Banks (Appendix IV).
The linear correlation of the thermal component and the total geo-

strophic velocity for the 33 station pairs was determined (Moynihan,

1968):
vV =0.39v_+2.84
g t
where
Vg = the total geostrophic velocity (cm/sec)
Vt = the thermal component of the geostrophic velocity

(cm/sec)
The standard deviation of the total geostrophic current from the
linear correlation function between it and the thermal component is
less than four (4) cm/sec. Therefore, in this water mass total geo-
strophic currents might be determined using only temperature data

through the relationship above.
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VI, HEMISPHERIC COMPUTER APPLICATION

Introduction

The Fleet Numerical Weather Central, Monterey, California
is the only facility attempting to determine surface currents on a
hemispheric scale. The background of their computational technique
has been given in an earlier section of this thesis (Chapter IV). For
lack of any other hemispheric fields the FNWC 63 x 63 grid fields
will be used in this study. The following fields are available through
FNWC over their 63 x 63 grid:
1. Synoptic temperature fields between the surface and
1, 200 feet at 100 foot intervals.
2. Climatological (monthly means) temperature fields be-
tween the surface and 1, 200 feet at 100 foot intervals.
3. Climatological (summer and winter) temperature and
salinity fields in the Pacific and Atlantic, derived from
published atlases (Muromtsev, 1963 and Bohnecke, 1936).
Attempts were made in this study to use these fields to investigate
the geostrophic flow through the T-S Gradient computations in the

surface layers of the North Pacific.
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Synoptic Fields

During April, 1968, Equation 33 was programed on the Naval
Postgraduate School IBM 360 digital computer to run over the FNWC
synoptic temperature field for 0000 GMT, March 5, 1968. The pro-
gram is found in Appendix III. While the program will calculate the
salinity term in Equation 32, a constant salinity of 35 % was as-
sumed for lack of a salinity field. The output of the program is the
i and j components of the velocity between the grid points, and the
vector sum of these components at the southwest grid point of a four-
point element as is shown in Figure 17. The direction of the total
current was determined by hand computation from the ratio of the i,

j components. Because of the large number of points (3889) in the

63 x 63 grid only those in the North Pacific will be considered. How-
ever, since the major oceanic circulation features are thought to be
common to all oceans (Sverdrup, 1942) any conclusions drawn for

the Pacific Ocean should be valid in the other oceans.

For comparative purpose the FNWC Current Transport and
Stream Function maps for the same period are shown in Figures 18
and 19 respectively. Recall that these maps represent the sum of
their geostrophic and wind driven components. Independent control
for the geostrophic currents is provided by Tully (1964 after Reid,

1961) who gives the surface geostrophic flow relative to 1, 000 db
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(Figure 20).

First, in Figure 19 the FNWC currents display many features
of the established mean circulation in the North Pacific (Figure 20),
i, e., the subarctic gyre, subtropic gyre, and tropic gyre. Beginning
at the Equator the equatorial system is shown, including the North
Equatorial, South Equatorial, and Equatorial Counter Currents.
The Kuroshio appears as a high speed flow and the Oyashio Current
is present. The North Pacific Drift is apparent as is the separation
of this flow into a northerly flow, providing the Gulf of Alaska circu-
lation, and a southerly flow, the California Current. The magnitude
of the recognized currents is reasonable, but in general the values
are low in the narrow, concentrated streams such as the Kuroshio,
and high in the regions of wide slow flows like the California Current.

The currents computed with Equation 32 are plottedat selected
grid points in Figures 18, 19, and 20. While some of the major cir-
culation patterns can be identified, the current speeds are con-
sistently low over the entire ocean. The computed currents are in
poorest agreement in the western boundary area of the Kuroshio.
Here Equation 33 over the 1, 200 foot temperature field gives a value
which is low by an order of magnitude. The values in the North
Pacific Drift are in agreement with those given by Tully (7 cm/sec
to 10 cm/sec). The speeds in the Alaska stream also are low by an

order of magnitude. The agreement is best in the California
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Current. Some of the features of the equatorial current system ap-
pear, but the speeds are high in the North Equatorial Current com-
pared to those given by Tully.

Several possible explanations are apparent for the low current
speeds in the Kuroshio Current and in the Alaska Current. First
these currents are narrow high speed flows. The grid spacing used
in these calculations is so large as to completely straddle the cur-
rents. Geostrophic computations assume that the velocity is uniform
between any two stations in a section. The statement that any par-
ticular stream is in geostrophic balance is meaningful only within
the boundaries of the stream. If one station of a station pair is re-
moved from the stream (and in many cases grid points used to calcu-
late the velocity in a stream lie outside the stream boundaries) then
geostrophic computations cannot be expected to be representative of
the stream velocity. For this reason alone one would expect the geo-
strophic velocity to be low in most cases since the mass gradients
are rarely sensed at their maximum. Secondly, in both these flows
a 1, 200 foot reference level is clearly too shallow. Lastly, only
the thermal component of the current has been computed. Possibly
the last two of these problems can be corrected by using the climato-

logical temperature and salinity fields.
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Climatological Fields

To investigate the magnitude of the problems suggested in the
previous section Equation 32 was programmed to run over the FNWC
atlas climatological temperature and salinity fields on the FNWC
CDC 3600 computer. The program is found in Appendix III. Since
the atlas temperature fields were not digitized between the surface
and 400 m, either the synoptic or the monthly climatological tem-
perature fields must be used for temperatures above this depth.

Thus fields from different sources are combined to make the calcu-
lations. The compatability of the fields at any level and between
levels has not been investigated. A reference level of I, 000 m was
selected as the average coefficients in Equation 32 had previously
been determined for that reference level (Chapter VI). Furthermore,
this was the reference level used by Reid (1961). The flow computed
is shown in Figure 21 where isotachs indicate the surface current
speed and arrows indicate the direction.

The currents exhibit few of the features of the geostrophic cir-
culation as given by Tully (1964), and many anomalies exist. In
particular, there is a high transport region shown extending off the
Japanese islands but the magnitude is too low by nearly half an order
of magnitude. There is some indication of a westerly drift across

the north Pacific, a southerly flow off the west coast of the United
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States and Mexico, and a cyclonic gyre in the Gulf of Alaska. The
magnitude of the computed currents are in most reasonable agree-
ment in the California Current region where values of a few centi-
meters per second appear. In general the central portion of the
subtropic gyre shows a strong northerly component which is not in
agreement with known geostrophic circulation. Furthermore, the
high transport in the western equatorial region is not in agreement

with Tully.

Remarks and Recommendations

Remarks

Equation 33 has been programed to run over the available
63 x 63 fields of FNWC. The results of these computations have been
compared to surface current computations presently made by FNWC
and with geostrophic flow relative to 1, 000 m given by Tully (1964)
for the North Pacific. These comparisons show clearly that ac-
ceptable geostrophic surface currents cannot be computed from the
existing fields. While indications of accepted flow patterns appear,
several limitations of the available fields are clear.

For the synoptic fields one of the chief limitations is the fact
that these fields only extend to I, 200 feet. This is too shallow for

a reference level over much of the ocean. Obviously, a second
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limitation is the lack of salinity fields to complete the computations.
Another limitation of the synoptic fields is the coarseness of the grid
system. In many areas the grid spacing is larger than the known
width of the existing currents.

Using the existing climatological fields, the computations can
be extended to 1, 000 db. Unfortunately, in the Pacific these fields
do not represent adequately the mass field for geostrophic computa-
tions. Derived from atlases, the fields are smoothed in an undeter-
mined way. Furthermore, since the atlases present the temperature
and salinity as horizontal fields at each level, the interpolation of
these fields to the grid points undoubtedly will contribute errors.

A further problem with the existing climatological fields is the re-
quirement to use monthly climatological temperature fields in the
upper 400 m along with atlas salinity fields, without establishing the
compatability of the two fields. Again the coarseness of the available
63 x 63 grid is not appropriate for geostrophic computations in the
narrow current regions. If these computations are to be made then
several adjustments must be made in the available fields.

Clearly the available fields and coarse grid restrict geo-
strophic computations over the ocean by any method. The more ac-
ceptable agreement between currents computed by FNWC and
'accepted" currents is due to their capability to ''tune'' the flow.

This same procedure could be used to adjust the geostrophic flow
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computed by the T-S Gradient scheme using the synoptic temperature
fields which appear from this study to be the best available fields.
However, ''tuning'' the ocean to an arbitrary standard seems ques-
tionable. Geostrophic computations should be objective and the use
of arbitrary 'tuning' factors removes this objectivity. Several
recommendations are obvious which should be considered as possible
improvements, hopefully leading eventually to the capability of com-

puting actual geostrophic flow over the world oceans.

Recommendations

First, the 63 x 63 Northern Hemisphere grid used by FNWC
gives a grid spacing of 373 nmi at the equator, 200 nmi at 60° N
latitude, and 186 nmi at the pole. This grid spacing is too large for
geostrophic computations over most of the oceans. The minimum
spacing suggested by Reed and Laird (1965) for 160°W and 175°W
longitude is an indication of more acceptable spacing. Their values
are shown in Table 6. The basis for their recommendations is that
the dynamic height difference should be five times the error in
dynamic height computations. However, a grid spacing too much
larger than this will lead to poor results. Since the dynamic height
represents an integral of the water structure a grid should be de-
veloped for geostrophic computations using the dynamic height

gradient as one criterion in constructing a new grid and temperature
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and salinity fields.

Table 6. Minimum station spacing along 160° W and 175° W in the
North Pacific (from Reed and Laird, 1965).

Optimum Station Spacing (km)

along approx. along approx.
Current 160° W 175° W
Alaska Stream 1& o 8
Subarctic i83 110
West Wind Drift 61 39
Gyre > 137 > 137
Kuroshio Extension 55 34

Another justification for altering the grid spacing considers
the distribution of data. The smallest grid spacing is found at the
poles where the lowest data density is available, while in the tropical
regions the grid spacing is largest although this is where data is
relatively more abundant (Wolff, 1964). Therefore, where the most
data are available and the smallest scale features could be shown in
the data, the grid scale is coarsest and these features are lost.

New fields must be constructed if geostrophic computations
are to be made. The best approach to the construction of these new
fields would be to work with actual hydrographic data available from
depositories of these data i. e., the National Oceanographic Data
Center, Washington, D. C. The requirements of geostrophic computa-

tions should be used as a guideline in construction of new fields.
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VIIL. SUMMARY AND CONCLUSIONS

This study has examined schemes for simplifying geostrophic
computations. Several schemes have been previously proposed to
simplify these computations, but except for the use of the thermo-
steric anomaly proposed by Montgomery and Wooster (1954) none are
satisfactory over the entire ocean.

A simplification is proposed here which represents a signifi-~
cant simplification of dynamic computations without loss of accuracy.
The scheme expresses the geostrophic velocity as three terms in-
volving the observed variables, temperature and salinity. Only three
coefficients are needed. These coefficients have been determined
and are given in graphical and tabular form. If a fixed reference
level of 1, 000 db is used it has been shown that fixed values of the
coefficients can be used for geostrophic surface current computations
over the entire Pacific Ocean without introducing more than a five
percent error. The name T-S Gradient scheme is proposed for the
simplificatibn. It provides the following advantages over other
schemes:

1. Computations show no loss in accuracy from the classical
scheme for most practical purposes.

2. The computation of geostrophic currents is substantially

simplified.
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3. The scheme is general and can be used in any regicn of
the ocean where the temperature, salinity and pressure fall within
the range for which the coefficients have been determined.

4. The scheme requires only the observed variables, tem-
perature, salinity and pressure, and the coefficients A(S, ?),
2B(S, P) and C(T, P).

5. The first order thermal and haline structure contributions
to the geostrophic flow can be determined independently.

6. The scheme is computationally faster than the classical
scheme (seven times faster on the IBM 360).

7. The scheme is particularly well suited to use onboard
ships with small digital computers as involved equations of state
are not used.

The proposed scheme was used to compute surface geostrophic
flow over the 63 x 63 FNWC northern hemisphere fields, the only
hemispheric fields available at this time. The resulting comkputed
surface currents were compared to surface currents in the North
Pacific Ocean computed by FNWC, and by Tully (1964) from Reid's
(1961) investigation of the geopotential topography of the 0 db level
relative to the 1000 db level. These comparisons lead to the con-
clusions that the FNWC 63 x 63 fields are unsuited to geostrophic
computations for the following reasons:

l. The grid spacing is too large even at its smallest spacing.
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2. The atlas derived fields do not adequately depict the mass
distribution in the ocean.

3. The synoptic temperature fields do not extend to deep
enough level to reasonably approximate level of little or no motion.
The computations over the 63 x 63 fields do show, however, that it
is practical to make actual geostrophic computations over such a
large ocean area on a synoptic basis if the desired fields are avail-
able.

Two proposals are made to improve geostrophic computations
over hemispheric grids. First, that a new grid should be constructed
in which the grid spacing is compatible with geostrophic computa-
tional requirements; second, new temperature and salinity fields be
constructed from the available hydrographic data to replace the atlas
climatological fields presently available.

The T-S Gradient method can be used to compute independently
the first order thermal and haline contributions to the geostrophic
flow. It has been shown that the correlation of the first order
thermal geostrophic surface current (VT) with the geostrophic sur-
face current (V ) in the Gulf Stream water off the Grand Banks can
be expressed by a simple linear relationship. This relationship is
useful for the determination of the total geostrophic surface current
from temperature measurements alone.

The reliability of the T-S Gradient scheme was tested by
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comparing T-S Gradient and standard geostrophic computations in
several differing water masses. The current velocity structure was
nearly exactly the same in both cases (Appendix II). Never were the
computations in disagreement by more than ten percent even though
fixed coefficients were used.

Two field tests were performed to investigate the approxima-
tion of computed geostrophic surface currents (Appendix IV) to meas-
ured surface currents. The currents were measured prior to the
hydrographic measurements using parachute drogues. Geostrophic
currents were computed from the measured temperature and salinity
by both the classical geostrophic method and the T-S Gradient
method, and FNWC currents were obtained from their Current
Transport and Stream Function maps for the periods of the experi-
ments. On the second experiment the geostrophic computations
were also made with the reversing thermometer temperatures re-
placed by the expendable bathythermograph temperatures.

The geostrophic currents computed by both methods were
identical for both experiments. The substitution of expendable
bathythermograph temperatures raised the computed surface velocity
by both methods approximately one cm/sec. The computed geo-
strophic surface velocity was approximafely half the observed cur-
rent in both experiments. The FNWC currents were in the opposite

direction to the observed flow in the first experiment but agreed
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with the observed flow in the second.

Certainly two experiments should not be considered as verifi-
cation or condemnation of any scheme. The results of the experi-
ments do show the need for additional experimentation before a great
deal of confidence can be placed in any indirectly computed currents.

It is proposed that this research be continued to further in-
vestigate the relationships between indirectly computed surface cur-

rents and observed currents (see Appendix V).



100

BIBLIOGRAPHY

Bierknes, V. and J. W. Sandstrom. 1910. Dynamic meteorology
and hydrography, Part I. Statics. Washington, D. C.,
Carnegie Institution of Washington. 146 p. (Publication 88)

Bisset-Berman Corporation. 1968. 9040 Salinity-temperature-
depth system. San Diego. n.p. (Specifications brochure)

Bowden, K. F. 1953. Measurement of wind currents in the sea by
methods of towed electrodes. Nature 171(4356):735-736.

Broida, S. 1966. Interpretation of geostrophy in the straits of
Florida. Ph. D. thesis. Coral Gables, Florida, University
of Miami. 107 numb. leaves.

Brown, N. L. 1968. An in situ salinometer for use in the deep
ocean. In: Marine sciences instrumentation, ed. by Fred Alt.
Vol. 4. Proceedings of the Fourth National Instrument
Society of America Marine Sciences Instrumentation Sympo-
sium, Coca Beach, Florida, 1968. New York, Plenum.
p- 563-577.

Cox, C.S. 1962. Internal waves. Partl. In: The sea, ed. by M.
N. Hill. Vol. 2. New York, Interscience. p. 752-763.

Defant, A. 1950. Reality and illusion in oceanographic surveys.
Journal of Marine Research 9(2):120-138.

1961. Physical oceanography. Vol. 1 New York,
Pergamon. 725 p.

Denner, W.W., T. Green and W. H. Snyder. 1968. Large scale
oceanic drogue diffusion. Nature 219(5152):361-362.

Eckart, C. 1958, Properties of water, Part III. The equation of
state of water and sea water at low temperatures and pres-
sures. American Journal of Science 256:225-240.

Ekman, V. W. 1908. Die Zusammendrlickbarkeit des Meerwassers.
Publications de Circonstance du Conseil Permanent Inter-
national pour L'Exploration de la Mer 43:1-47,



101

Fofonoff, N.P. 1962, Physical properties of sea-water. In: The
sea, ed. by M. N. Hill. Vol. 2. New York, Interscience.
p. 3-28.

Fomin, L.M. 1964. The dynamic method in oceanography. New
York, Elsevier. 212 p.

Forsch, C., M. Knudsen and S. P. L. Sorensen. 1902 Berichte
uber die Konstantenbestimmungen zur Aufsellung der hydro-
graphischen Tabellen. Kongelige Danske Videnskabernes
Selskab Skrifter, Naturvidenskabelig og Mathematisk Afdeling
12(1):1-151.

Gibson, B.W. 1962. Sea surface temperature synoptic analysis.
Washington, D.C., U.S. Naval hydrographic office. 17 p.
(Antisubmarine Warfare Environmental Prediction System
Report no. 7)

Groen, P. 1967. The waters of the sea, Princeton, New Jersey,
Van Nostrand. 316 p.

Haltiner, G.J., and F. L. Martin. 1957. Dynamical and physical
meterology. New York, McGraw-Hill. 470 p.

Haurwitz, B., H. Stommel and W. H. Munk. 1959. On the thermal
unrest in the ocean. In: The atmosphere and the sea in
motion, ed. by Bert Bolin. New York, Rockefeller Institute
in association with Oxford University. p. 74-94. (Rossby
Memorial Volume)

Hubert, W.E. 1964. Computer produced synoptic analysis of sur-
face currents and their application for navigation. Navigation
12(2):101-107.

Hubert, W.E. and T. Laevastu. 1967. Synoptic analysis and fore-
casting of surface currents. Norfolk, U.S. Navy Weather
Research Facility. 55 p. (Reportno. 36-0667-127)

Interstate Electronics Corporation. 1968. Critical evaluation of
geostrophic current prediction techniques for ASWEPS.
Anaheim, California. 125 p. (Unpublished report)

James, R.W. 1966, Ocean thermal structure forecasting.
Washington, D.C. U.S. Naval Oceanographic Office. 217 p.
(Antisubmarine Warfare Manual no. 5)



102

Jones, T.B. 1939. An introduction to Hispanic American history.
New York, Harper. 577 p.

Knudsen, M. 1901. Hydrographic tables. Copenhagen, G. C. E. Gad.
63 p.

Kollmeyer, R. C. 1964. An examination of errors in dynamic height
determinations. Washington, D. C,, U. S. Coast Guar«,
Oceanographic Unit. 23 p.

1966. Oceanography of the Grand Banks region of
Newfoundland in 1965. Washington, D.C., U.S. Coast Guard,
Oceanographic Unit. p. 157. (Report no. CG373-11)

LaFond, E C. 1949. The use of bathythermograms to determine
ocean currents. Transactions of the American Geophysical
Union 30(2):231-237.

1951. Processing oceanographic data. Washington,
D. C., U.S. Hydrographic Office. 113 p.

Lenczyk, R.E. 1962. Report of the International Ice Patrol Service
in the North Atlantic Ocean. Washington, D. C., U. S. Coast
Guard. 109 p. (Bulletin no. 50)

Li, Yuan-Hui. 1967. Equation of state of water and sea water.
Jounral of Geophysical Research 72(10):2665-2678.

Magnavox Corporation. MX/702/hp Shipboard navigation system.
Fort Wayne, Indiana. n.p. Specification brochure TP 67-1947)

Montgomery, R. B. and W. S. Wooster. 1954. Thermosteric anomaly
and analysis of serial oceanographic data. Deep sea research

2:63-70.

Montgomery, R. B. and E. D. Stroup. 1962. Equatorial waters and
currents at 150°W in July-August 1952. Baltimore, Johns

Hopkins Press. 88p. (Johns Hopkins Oceanography Studies no. 1)

Moynihan, M. J. 1968. Investigation of Geostrophic current calcu-
lations on the Grand Banks. Master's thesis. Monterey, U. 5.
Naval Postgraduate School. 62 numb. leaves.

Neurnann, G. and W.J. Pierson, Jr. 1966. Principles of physical
oceanography. Englewood Cliffs, New Jersey, Prentice-Hall.

545 p.

Newton, M.S. and G. C. Kennedy. 1965. An experimental study of
the P-V-T-S relations of sea water. Journal of Marine
Reseaich 23(2):88-103.



103

Proudman, J. 1953. Dynamical oceanography. London, Methuen.
409 p.

Rattray, M. 1962. Interpolation errors and oceanographic sam-
pling. Deep Sea Research 9:25-37.

Reed, R.K. and N. E. Taylor. 1965, Some measurements of the
Alaska Stream with parachute drogues. Deep Sea Research
12:777-784.

Reed, R.K. and N. B. Laird. 1966a. On the reliability of geo-
strophic flow determinations across a section of the North
Pacific-Ocean. Paper presented at the Northwest Regional
Meeting of the American Geophysical Union, Corvallis, Oregon,
August. 7 numb. leaves.

1966b. An oceanographic section off the California
coast, February, 1966. Seattle, Environmental Science
Services Administration, Pacific Oceanographic Laboratory.
51 p. (Technical Memorandum IER TM-POL-s)

Reid, J. L., Jr., G.I. Roden and J. G, Wyllie. 1958. Studies of the
California Current system. In: Progress report of the
California Cooperative Oceanic Fisheries Investigations, July
1, 1956, to January 1, 1958. [Sacramento| p. 27-57.

Reid, J. L. 1961. On the geostrophic flow at the surface of the
Pacific Ocean with respect to the 1, 000 decibar surface.
Tellus 13(4):489-502.

Reid, R.0O. 1959. Influence of some errors in the equation of state
or in observations on geostrophic currents. In: Proceedings
of a Conference of Physical and Chemical Properties of Sea
Water. Washington, D. C., (National Research Council. p. 10-
29. (Publication 600)

Sandstrom, J. W. and B. Helland-Hansen. 1903. Uber die Bere-
chnung von MeerstrSmungen. Bergen, Norway. 43 p.
(Report on Norwegian Fisheries and Marine Investigation.
Vol. 2. No. 4)

Smith, E.H. 1931. Arctic ice with special reference to its distri-
bution to the North Atlantic Ocean. Washington, D.C. U.S.
Coast Guard. 221 p. (The Marion Expedition, 1928.
Bulletin 19, part 3)



104

Stommel, H. 1947. Note on the use of the T-S correlation for
dynamic height anomaly computations. Journal of Marine
Research 6:85-92.

Stommel, H. 1965. The Gulf Stream, a physical and dynamical
description. Berkeley, University of California. 248 p.

Sverdrup, H. U., M. W. Johnson and R. H. Fleming. 1942. The
oceans: their physics, chemistry and general biology.
Englewood Cliffs, New Jersey, Prentice-Hall. 1087 p.

Sverdrup, H. U. 1947. Wind-driven currents in a baroclinic ocean,
with application to the equatorial currents of the Eastern
Pacific. Proceedings of the National Academy of Sciences
33:318-236.

Tully, J.P. 1964. Oceanographic regions and assessment of tem-
perature structure in the seasonal zone of the North Pacific
Ocean. Journal of the Fisheries Research Board of Canada

21:941-969.

Volkman, G., J. Knauss and A. Vine. 1956. The use of parachute
drogues in the measurement of subsurface ocean currents.
Transactions of the American Geophysical Union, 37(5):573-
577.

von Arx, W.S. 1962. - An introduction to physical oceanography.
Reading, Massachusetts, Addison-Westley. 422 p.

Warriner, B.. 1958. Application of NNSS to marine navigation. In:
Marine sciences instrumentation, ed. by Fred Alt. Vol. 4.
Proceedings of the Fourth National Instrument Society of
America Marine Sciences Instrumentation Symposium, Coca
Beach, Florida, 1968. New York, Plenum. p. 168-188.

Werenskiold, W. 1937. Die Berechnung von MeeresstrOmungen.
In: Annual hydrographic report on maritime meteorology.
Berlin, Hamburg Marine Observatory. p. 68-72.

Wilson, W. and D. Bradley. 1968. Specific volume of sea water as
a function of temperature, pressure, and salinity. Deep Sea
Research and Oceanographic Abstracts 15:355-364.



105

Wolff, P. 1964. Operational analyses and forecasting of ocean
temperature structure. Monterey, California, U.S. Navy
Fleet Numerical Weather Facility. 24 p. (Unpublished report)

Wooster, W.S. and B. A, Taft. 1958, On the reliability of field
measurements of temperature and salinity in the ocean.
Journal of Marine Research 17:552-556.

Wist, G. 1924. Floridaund Antillenstrom. VerGffentlichungen
des Institutes fir meereskunde and dem universitat. Berlin,
University of Berlin., 48 p.

Yao, N. 1967. Analysis of hydrographic techniques--A study of
different effects on geostrophic current computations by using
various hydrographic data processing methods. Master's
thesis. Corvallis, Oregon State University. 70 numb. leaves.

Yausi, M. 1955. On the rapid determination of the dynamic depth
anomaly in the Kuroshio area. Records of Oceancgraphic
Works in Japan 2(2):90-95.

1957. On the rapid estimation of the dynamic
topography in the seas adjacent to Japan. Records of
Oceanographic Works in Japan 3(1):8-15.




APPENDICES



106

APPENDIX I

Tables of A(S, P), B(S, P) and C(T, P)



107

. 6
Table AI-1. c,O(S, P), 106 A(S,P), the error in A(S,P)[10 ],

7 7 “A(S, P)
10" B(S,P), the error in B(S, P)[10 ¢ ] and the

5 B(S, P)
standard deviation of 10 af( T)S pasa function of salinity

(%0) and pressure (db). (cgs units)

€

S (%) A(S, P) A B(S, P) B Sigma
P=0db
30 56. 09 2. 06 46.97 0. 66 2. 00
31 58. 89 2. 04 46. 55 0. 66 1. 99
32 61. 65 2.03 46. 14 0. 65 1. 97
33 64. 41 2. 01 45. 72 0. 65 1.95
34 67. 14 2. 00 45. 31 0. 64 1. 95
35 69.85 1.99 44.90 0. 64 1. 94
36 72. 55 1. 98 44. 49 0. 64 1.92
37 75. 23 1. 97 44. 08 0. 63 1.92
38 77.89 1. 96 43. 67 0.63 1. 91
39 80. 53 1.96 43. 27 0. 63 1. 90
40 83.16 1.95 42.87 0. 63 1. 90
P =100 db
30 58. 72 2.03 46. 58 0. 65 1. 98
31 61. 49 2. 01 46. 16 0. 65 1. 96
32 64. 23 2. 00 45. 75 0. 64 1. 95
33 66. 96 1. 99 45. 34 0. 64 1.93
34 69. 67 1. 97 44.93 0. 64 1.92
35 72. 36 1. 96 44. 52 0.63 1.91
36 75. 03 1. 95 44.11 0. 63 1. 90
37 77. 69 1. 94 43. 71 0. 62 1. 89
38 80. 32 1. 94 43. 31 0. 62 1.88
39 82.94 1.93 42.90 0. 62 1. 88

40 85. 55 1.92 42. 50 0.62 1.87



108

Table AI-1. Continued.
S (%) A(S, P) ‘A B(S, P) ‘B Sigma
P = 200 db
30 61. 33 2. 01 46.19 0. 64 1.95
31 64. 07 1.99 45. 77 0. 64 1. 93
32 66. 80 1. 97 45, 37 0.63 1.92
33 69. 50 1. 96 44. 96 0.63 1. 91
34 72.18 1. 95 44. 55 0.63 1. 89
35 74. 85 1. 94 44. 15 0. 62 1. 88
36 77. 50 1.93 43, 74 0. 62 1.87
37 80.13 1.92 43. 34 0. 62 1. 86
38 82. 74 1. 91 42.94 0. 61 1. 86
39 85. 34 1.90 42. 55 0. 61 1.85
40 87.91 1. 90 42.15 0. 61 1.85
P = 300 db
30 63.93 1. 98 45. 80 0. 64 1.92
31 66. 64 1. 96 45. 40 0.63 1. 91
32 69. 34 1.95 44. 98 0.63 1. 89
33 72.01 1. 93 44. 58 0. 62 1. 88
34 74. 68 1.92 44. 18 0. 62 1.87
35 77. 32 1. 91 43,78 0. 61 1. 86
36 79. 94 1. 90 43. 38 0.61 1.84
37 82.55 1.89 42. 98 0. 61 1.84
38 85.14 1. 88 42. 59 0. 61 1.83
39 87. 71 1. 88 42.19 0. 61 1.82
40 90. 27 1.87 41. 80 0. 60 1.82
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Table AI-1. Continued
S (%) A(S, P) A __B(S,P) ‘B Sigma
P = 400 db
30 66. 50 1. 95 45. 41 0. 63 1. 90
31 69. 19 1. 94 45, 01 0.62 1. 88
32 71. 86 1. 92 44. 60 0. 62 1.87
33 74, 52 1. 90 44. 21 0. 61 1.85
34 77. 15 1. 89 43.81 0. 61 1.84
35 79. 77 1. 88 43, 41 0. 60 1.83
36 82. 37 1.87 43.01 0. 60 1.82
37 84.95 1.86 42. 62 0. 60 1.81
38 87. 52 1.86 42, 23 0. 60 1.80
39 90. 07 1. 85 41, 84 0. 60 1. 80
40 92. 60 1. 85 41. 45 0. 59 1. 79
P = 500 db
30 69. 05 1. 92 45. 03 0.62 1. 87
31 71. 72 1.91 44. 63 0. 61 1.85
32 74, 37 1. 89 44. 23 0. 61 1. 84
33 77. 00 1.88 43.84 0. 60 1.82
34 79. 61 1. 86 43. 44 0. 60 1.81
35 82. 20 1.85 43. 05 0. 60 1.80
36 84. 78 1.84 42, 65 0. 60 1. 79
37 87. 34 1.84 42. 26 0. 59 1. 78
38 89. 88 1.83 41.88 0. 59 1. 78
39 92. 41 1.82 41. 49 0. 59 1. 77
40 94,92 1.82 41.10 0. 59 1. 77
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Table AI-1. Continued.

€

S (%) A(S, P) A B(S,P) B Sigma
P = 600 db
30 71. 59 1. 90 44. 65 0. 61 1.84
31 74. 23 1. 88 44. 26 0. 60 1.83
32 76. 85 1.86 43.86 0. 60 1.81
33 79. 46 1.85 43. 47 0. 60 1.80
34 82. 05 1.84 43. 08 0. 59 1. 79
35 84. 62 1.83 42. 69 0. 59 1. 78
36 87.17 1.82 42. 30 0. 58 1. 77
37 89. 71 1.81 41.91 0. 58 1. 76
38 92. 22 1. 80 41.53 0. 58 1. 75
39 194,73 1. 80 41. 14 0. 58 1. 75
40 97, 22 1. 79 40. 76 0. 58 1. 74
P = 700 db
30 74. 01 1.87 44. 28 0. 60 1.82
31 76, 72 1.85 43.89 0. 60 1.80
32 79. 32 1. 84 43. 49 0. 59 1. 79
33 81.91 1.82 43.10 0. 59 1. 77
34 84. 47 1.81 42.72 0. 58 1. 76
35 87.02 1. 80 42. 32 0. 58 1. 75
36 89. 55 1. 79 41.94 0. 58 1. 74
37 92. 06 1. 78 41. 56 0. 57 1. 73
38 94. 56 1. 77 41.18 0. 57 1. 72
39 97. 04 1. 77 40. 80 0. 57 1. 72

40 99. 50 1. 76 40. 42 0. 57 1. 72
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Table AI-1. Continued.
S (%) A(S, P) ‘A B(S, P) ‘B Sigma
P = 800 db
30 76. 60 1. 84 43,91 0. 59 1. 79
31 79. 20 1.82 43.52 0. 59 1. 77
32 81. 77 1. 81 43.13 0. 58 1. 76
33 84. 33 1. 80 42,74 0. 57 1. 75
34 86.87 1. 78 42. 36 0. 57 1. 73
35 89. 40 1. 77 41. 94 0. 57 1. 72
36 91. 90 1. 76 41. 59 0. 57 1. 71
37 94. 40 1. 75 41. 21 0. 56 1. 70
38 96. 87 1. 75 40. 83 0. 56 1. 70
39 99. 32 1. 74 40. 45 0. 56 1. 69
40 101. 77 1. 74 40. 08 0. 56 1. 69
P = 900 db
30 79. 08 1.81 43. 54 0. 58 1. 76
31 81. 65 1. 80 43,15 0. 58 1. 75
32 84. 21 1. 79 42. 76 0. 57 1. 73
33 86. 74 1. 77 42. 38 0.57 1. 72
34 89. 26 1. 76 42. 00 0. 56 1. 71
35 91. 76 1. 74 41. 62 0. 56 1. 70
36 94, 24 1. 74 41. 24 0. 56 1. 69
37 96. 71 1. 73 40. 87 0. 56 1. 68
38 99. 16 1. 72 40. 49 0. 55 1. 67
39 101. 60 1. 72 40.12 0. 55 1. 67
40 104. 02 1. 71 39. 75 0. 55 1. 66
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Table AI-1. Continued.
S (%o) A(S, P) ‘A B(S, P) ‘B Sigma
P = 1000 db
30 81.55 1. 79 43.18 0. 58 1. 74
31 84. 09 1. 77 42.79 0. 57 1. 72
32 86. 62 1. 76 42. 40 0. 56 1. 71
33 89.13 1. 74 42. 03 0. 56 1. 69
34 91. 63 1.73 41. 65 0. 56 1. 68
35 94. 01 1. 72 41. 27 0. 55 1. 67
36 96. 57 1. 71 40. 90 0. 55 1. 66
37 99. 01 1. 70 40. 53 0. 55 1. 65
38 101. 44 1. 69 40. 15 0. 54 1. 65
39 103. 85 1. 69 39, 78 0. 54 1. 64
40 106. 25 1. 68 39. 41 0. 54 1. 64
P = 1100 db
30 83.99 1. 76 42.81 0.57 1. 71
31 86. 51 1. 74 42. 43 0. 56 1. 69
32 89. 02 1.73 42. 06 0. 56 1. 68
33 91. 51 1. 71 41. 68 0. 55 1. 67
34 93.98 1. 70 41. 30 0. 55 1. 65
35 96. 43 1. 69 40. 93 0. 54 1. 64
36 98.87 1. 69 40. 56 0. 54 1. 64
37 101. 29 1. 67 40. 19 0. 54 1. 62
38 103. 70 1. 67 39. 82 0. 54 1. 62
39 106. 09 1. 66 39, 45 0.53 1. 61
40 108. 46 1. 66 39. 09 0.53 1. 61
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Table AI-1. Continued.
S (%o) A(S, P) ‘A B(S, P) ‘B Sigma
P = 1200 db
30 86. 41 1.73 42. 46 0. 56 1. 68
31 88. 91 1. 72 42. 08 0. 55 1. 67
32 91. 40 1. 70 41. 70 0. 55 1. 65
33 93. 86 1. 69 41. 33 0. 54 1. 64
34 96. 31 1. 67 40. 96 0. 54 1. 63
35 98. 74 1. 66 40. 59 0.53 1. 61
36 101. 16 1. 65 40. 22 0. 53 1. 61
37 103. 56 1. 65 39. 85 0. 53 1. 60
38 105. 94 1. 64 39. 49 0. 53 1. 60
39 108. 31 1.63 39,12 0. 53 1. 59
40 110. 66 1. 63 38. 76 0.52 1. 58
P = 1300 db
30 88.82 1. 70 42.10 0. 55 1. 66
31 91. 29 1. 69 41. 73 0. 54 1. 64
32 93. 76 1. 67 41. 35 0. 54 1. 63
33 96. 20 1. 66 40.98 0.53 1. 61
34 98. 63 1. 65 40. 61 0.53 1. 60
35 101. 04 1. 64 40. 25 0.53 1. 60
36 103. 43 1. 63 39, 88 0. 52 1. 58
37 105. 81 1. 62 39. 52 0.52 1. 57
38 108. 17 1. 61 39, 16 0. 52 1. 57
39 110. 51 1. 61 38. 80 0. 52 1. 56
40 112. 84 1. 60 38. 44 0. 52 1. 56
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Table AI-1. Continued.
S (%o) A(S, P) ‘A B(S, P) ‘B Sigma
P = 1400 db
30 91. 21 1. 68 41. 75 0. 54 1. 63
31 93, 66 1. 66 41. 38 0.53 1. 61
32 96. 10 1. 65 41. 01 0.53 1. 60
33 98. 52 1. 63 40. 64 0. 52 1. 59
34 100. 92 1. 62 40. 28 0. 52 1. 57
35 103. 31 1. 61 39. 91 0.52 1. 56
36 105. 68 1. 60 39, 55 0. 51 1. 55
37 108. 04 1. 59 39. 19 0. 51 1. 55
38 110, 38 1. 58 38.83 0. 51 1. 54
39 112. 70 1. 58 38. 47 0. 51 1. 54
40 115. 01 1. 58 38,12 0. 51 1.53
P = 1500 db
30 93. 58 1. 65 41. 40 0.53 1. 60
31 96. 01 1. 63 41.03 0.52 1. 59
32 98. 43 1. 62 40. 67 0.52 1. 57
33 100. 82 1. 60 40. 30 0.52 1. 56
34 103. 20 1. 59 39. 94 0. 51 1. 55
35 105. 57 1. 58 39. 58 0. 51 1. 54
36 107. 92 1. 57 39, 22 0. 51 1.53
37 110, 25 1. 56 38. 86 0. 50 1. 52
39 112. 57 1. 56 38. 51 0. 50 1. 51
39 114.87 1. 55 38. 15 0. 50 1. 51
40 117. 16 1. 55 37.80 0. 50 1. 51
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Table AI-1. Continued.
S (%o) A(S, P) ‘A B(S, P) ‘B Sigma
P =1600 db
30 95.93 1. 62 41, 06 0. 52 1. 58
31 98. 34 1. 61 40. 69 0. 52 1. 56
32 100. 73 1. 59 40. 33 0. 51 1. 55
33 103.11 1. 58 39. 97 0. 51 1. 53
34 105. 47 1. 57 39. 61 0. 50 1.52
35 107.81 l. 56 39. 25 0. 50 1. 51
36 110. 14 1. 54 38.89 0. 50 1. 50
37 112. 49 1. 54 38. 54 0. 49 1. 49
38 114. 74 1.53 38.19 0. 49 1. 49
39 117.03 1. 53 37.84 0. 49 1. 48
40 119. 29 1. 52 37.49 0. 49 1. 48
P = 1700 db
30 98. 27 1. 60 40. 71 51. 32 1. 55
31 100. 65 1. 58 40. 35 50. 79 1. 54
32 103.02 1. 56 39. 99 50. 30 1. 52
33 105. 38 1. 55 39.63 49. 86 1. 51
34 107. 71 1. 54 39. 28 49. 47 1. 50
35 110. 04 1.53 38.92 49.13 1. 49
36 112, 34 1.52 38. 57 48. 82 1. 48
37 114. 63 1. 51 38. 22 48. 57 1. 47
38 116. 90 1,50 37.87 48. 36 1. 46
39 119. 16 1. 50 37. 52 48. 19 1. 46
40 121, 41 1. 49 37. 17 48, 07 1. 45
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Table AI-1. Continued.
S (%ho) A(S, P) ‘A B(S, P) ‘B Sigma
P = 1800 db
30 100. 59 1. 57 40. 38 0. 50 1. 52
31 102. 95 1. 55 40. 02 0. 50 1. 51
32 105. 30 1. 54 39. 66 0. 49 1. 49
33 107. 63 1. 52 39. 31 0. 49 1. 48
34 109. 94 1. 51 38. 95 0. 49 1. 47
35 112. 24 1. 50 38. 60 0. 48 1. 46
36 114. 53 1. 49 38. 25 0. 48 1. 45
37 116. 79 1. 48 37. 90 0. 48 1. 44
38 119. 05 1. 48 37. 56 0. 47 1. 43
39 121. 29 1. 47 37. 21 0. 47 1. 43
40 123. 51 1. 47 36.87 0.47 1. 43
P = 1900 db
30 102. 89 1. 54 40. 04 0. 50 1. 50
31 105. 23 1. 53 39. 69 0. 49 1. 48
32 107. 55 1. 51 39. 33 0. 49 1. 47
33 109. 86 1. 50 38. 98 0. 48 1. 45
34 112. 16 1.48 38. 63 0. 48 1. 44
35 114. 43 1. 47 38. 28 0. 47 1. 43
36 116. 69 1. 46 37.93 0. 47 1. 42
37 118. 94 1. 46 37. 59 0.47 1. 42
38 121.17 1. 45 37, 25 0. 47 1. 41
39 123. 39 1. 45 36. 90 0. 46 1. 40
40 125. 59 1. 44 36. 56 0. 46 1. 40
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Table AI-1. Continued.
S (%) A(S, P) ‘A B(S, P) ‘B Sigma
P = 2000 db

30 105, 17 1.51 39. 71 0. 49 1. 47
31 107. 49 1. 50 39. 36 0. 48 1. 46
32 109.79 1. 48 39. 00 0. 48 1. 44
33 112. 08 1. 47 38. 65 0. 47 1. 42
34 114. 35 1. 46 38. 31 0.47 1. 42
35 116. 61 1. 45 37. 96 0. 47 1. 41
36 118.85 1. 44 37.62 0. 46 1. 40
37 121. 07 1.43 37. 28 0. 46 1. 39
38 123. 28 1. 42 36. 94 0. 46 1. 38
39 125. 48 1.42 36. 60 0. 46 1. 38
40 127. 66 1. 41 36. 26 0. 45 1. 37




5
Table AI-2. 105 C(T, P), lO5 and the standard deviation of 10 a(S) as a function of

“C(T, P) T, P
temperature (°C) and pressure (db).

T(°C) C(T,P) °C Sigma T(°C) C(T,P) ¢C Sigma T(°C) C(T,P) °C Sigma

P= 04db P =100 db P = 200 db
0 76. 26 0.04 0,37 0 76.11 0.03 0.37 0 75. 96 0.03 0. 37
2 75. 71 0.03 0.35 2 75. 57 0.03 0.34 2 75.43 0.03 0.34
4 75. 22 0.03 0.32 4 75. 08 0.03 0.32 4 74.93 0.03 0.32
6 74. 75 0.03 0.30 6 74. 62 0.03 0.30 6 74. 48 0.03 0.30
8 74. 33 0.03 0.30 8 74.19 0.03 0.28 8 74. 06 0.03 0. 28
10 73.94 0.03 0.28 10 73.81 0.03 0.27 10 73.68 0.03 0.27
12 73. 58 0.02 0.26 12 73. 45 0.02 0.26 12 73. 32 0.02 0.26
14 73. 26 0.02 0.25 14. 73.13 0.02 0.25 14 73.01 0.02 0.25
16 72.96 0.02 0.24 16 72.84 0.02 0.24 16 72.72 0.02 0.24
18 72. 71 0.02 0.23 18 72.59 0.02 0.23 18 72. 47 0.02 0.23
20 72. 48 0.02 0.22 20 72. 36 0.02 0.22 20 12. 22 0.02 0.22
22 72. 29 0.02 0.22 22 72.17 0.02 0.21 22 72. 06 0.02 0.21
24 72.12 0.02 0.20 24 72.01 0.02 0.20 24 71.89 0.02 0.20
26 71.98 0.02 0.19 26 71.87 0.02 0.19 26 71. 76 0.02 0.19
28 71.88 0.02 0.18 28 71,77 0. 02 0.18 28 71. 66 0.02 0.17
30 71.80 0. 01 0.16 30 71.69 0.02 0.16 30 71. 88 0.02 0.16

811



Table AI-2. Continued.

€ €

T(°C) C(T, P) C Sigma T(° C) C(T, P) C Sigma T(°C) C(T, P) ‘C Sigma

P = 300 db P =400 db P = 500 db
0 75.81 0.03 0.36 0 75. 66 0.03 0. 36 0 75. 51 0.03 0.36
2 75. 28 0.03 0.37 2 75.14 0.03 0.33 2 75. 00 0.03 0.33
4 74.80 0.03 0.31 4 74. 66 0.03 0.31 4 74. 52 0.03 0.31
6 74, 34 0.03 0.30 6 74. 21 0.03 0.29 6 74. 07 0.03 0.29
8 73.93 0.03 0.28 8 73.80 0.03 0.28 8 73. 67 0.03 0.27
10 73. 55 0. 02 0.27 10 73. 42 0. 03 0.26 10 73. 29 0.02 0.26
12 73. 32 0.02 0.26 12 73.08 0.02 0.25 12 72. 95 0. 02 0.25
14 72.89 0.02 0.25 14 72. 76 0.02 0. 24 14 72. 64 0.02 0,24
16 72. 60 0.02 0.24 16 72. 48 0.02 0,23 16 72. 37 0.02 0.23
18 72. 35 0.02 0.23 18 72. 24 0.02 0.23 18 72.12 0.02 0.22
20 72.13 0.02 0.23 20 72.01 0.02 0,22 20 71.90 0.02 0.21
22 71.94 0.02 0.21 22 71.83 0.02 0.21 22 71. 72 0.02 0.20
24 71. 78 0.02 .0.20 24 71. 67 0.02 0.20 24 71. 56 0.02 0.19
26 71. 65 0.02 0.19 26 71. 54 0.02 0.19 26 71. 43 0.02 0.18
28 71. 55 0.02 0.17 28 71. 44 0.02 0.17 28 71. 33 0.02 0.17
30 71. 47 0. 01 0.16 30 71. 36 0. 01 0.16 30 71. 26 0. 01 0.15
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Table AI-2. Continued.

€ € €

T(°C) C(T, P) C Sigma T(°C) C(T, P) C Sigma T(°C) C(T, P) C Sigma
P = 600 db P = 700 db P =800 db

0 75. 36 0. 03 0. 35 0 75, 22 0.03 0. 35 0 75, 07 0.03 0. 34
2 74. 85 0.03 0. 33 2 74. 71 0.03 0. 32 2 74. 57 0.03 0. 32
4 74. 38 0.03 0. 31 4 74. 24 0.03 0. 30 4 74. 10 0.03 0. 30
6 73. 94 0.03 0.29 6 73.81 0.03 0.28 6 73. 67 0.03 0.28
8 73. 54 0.03 0. 27 8 73. 41 0.03 0. 27 8 73. 28 0. 03 0. 27
10 73.16 0.02 0. 26 10 73, 04 0.02 0. 26 10 72.91 0.03 0. 25
12 72.83 0.02 0. 25 12 72.70 0.02 0. 25 12 72. 58 0. 02 0. 24
14 72. 52 0.02 0. 24 14 72. 40 0.02 0. 24 14 72. 28 0.02 0. 23
16 72. 25 0.02 0.23 16 72.13 0.02 0.23 16 72.01 0.02 0.23
18 72.00 0.02 0. 22 18 71. 89 0.02 0. 22 18 71. 77 0.02 0. 22
20 71. 79 0.02 0. 21 20 71. 67 0.02 0. 21 20 71. 56 0.02 0. 21
22 71. 61 0.02 0. 20 22 71. 49 0.02 0. 20 22 71. 38 0. 02 0. 20
24 71. 45 0.02 0.19 24 71. 34 0.02 0.19 24 71. 23 0. 02 0.19
26 71. 32 0.02 0.18 26 71. 21 0. 02 0.18 26 71. 10 0.02 0.18
28 71. 22 0.02 0.17 28 71. 11 0.02 0.17 28 71. 01 0. 02 0.16
30 71.15 0.01 0.15 30 71. 04 0.01 0.15 30 70.93 0.01 0.15
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Table AI-2. Continued.

€ €

T(°C) C(T, P) C Sigma T(° C) C(T, P) C Sigma T(°C) C(T, P) ‘C Sigma
P =900 db P =1000 db P =1100db
0 74.93 0.03 0. 34 0 74. 78 0.03 0. 33 0 74. 64 0.03 0. 34
2 74. 42 0.03 0.32 2 74. 29 0.03 0. 31 2 74. 15 0.03 0. 31
4 73.97 0.03 0.30 4 73.83 0.03 0.29 4 73. 69 0.03 0.29
6 73, 54 0.03 0. 28 6 73. 41 0. 03 0. 28 6 73. 28 0.03 0. 27
8 73.15 0.03 0.26 8 73.02 0.02 0.26 8 72. 89 0.02 0.26
10 72. 79 0,02 0. 25 10 72. 66 0.02 0. 25 10 72. 54 0. 02 0. 25
12 72, 49 0.02 0. 24 12 72. 34 0.02 0. 24 12 72, 21 0.02 0. 24
14 72.16 0, 02 0.23 14 72, 04 0.02 0. 23 14 71.92 0.02 0. 23
16 71.89 0.02 0, 22 16 71, 78 0.02 0. 22 16 71. 66 0. 02 0. 22
18 71. 66 0.02 0. 21 18 71. 54 0.02 0. 21 18 71.43 0.02 0. 21
20 71. 46 0.02 0. 21 20 71. 34 0.02 0. 21 20 71. 23 0.02 0. 20
22 71. 27 0.02 0. 20 22 71. 16 0.02 0.19 22 71. 05 0.02 0.19
24 71. 12 0.02 0.18 24 71. 01 0.02 0.19 24 70. 90 0.02 0.19
26 71. 00 0.02 0.18 26 70. 89 0.02 0.18 26 70. 78 0.02 0.17
28 70. 90 0.02 0.16 28 70. 79 0.02 0.16 28 70. 69 0.02 0.16
30 70.83 0. 01 0.15 30 70. 72 0. 01 0.15 30 70. 62 0. 01 0.15

121



Table AI-2. Continued.

T(°C) C(T,P) °C Sigma T(°C) C(T,P) €C Sigma T(°C) C(T,P) °C Sigma

P =1200db P =1300 db P = 1400 db
0 74. 49 0.03 0.33 0 74. 35 0.03 0. 33 0 74. 21 0.03 0.33
2 74.01 0.03 0.31 2 73.87 0.03 0.31 2 73. 73 0.03 0,30
4 73. 56 0.03 0.28 4 73,42 0.03 0.28 4 73. 29 0.03 0.28
6 73. 14 0,03 0.27 6 73.01 0.03 0,27 6 72.88 0.03 0.26
8 72. 76 0.02 0.26 8 72.63 0.02 0.25 8 72. 51 0.02 0.25
10 72,41 0.02 0.24 10 72. 29 0.02 0.24 10 72. 16 0.02 0.24
12 72. 09 0. 02 0.23 12 71. 97 0.02 0.23 12 71.85 0.02 0.23
14 71.80 0.02 0.22 14 71. 69 0.02 0.22 14 71. 57 0.02 0.22
16 71. 55 0.02 0.22 16 71.43 0.02 0.21 16 71. 32 0.02 0.21
18 71. 32 0.02 0.21 18 71. 20 0.02 0,21 18 71. 09 0.02 0.20
20 71. 11 0.02 0,20 20 71. 00 0.02 0.20 20 70.89 0.02 0.20
22 70. 09 0.02 0.19 22 70.83 0.02 0.19 22 70. 72 0.02 0.19
24 70. 79 0.02 0.18 24 70. 69 0.02 0.18 24 70. 58 0.02 0.18
26 70. 67 0.02 0.17 26 70. 57 0.02 0.17 26 70. 46 0.02 0.17
28 70, 58 0.02 0.16 28 70. 48 0.02 0.16 28 70. 37 0.02 0.16
30 70. 51 0.01 0.15 30 70. 41 0. 01 0.14 30 70. 30 0. 01 0.14

(A



Table AI-2. Continued.

€

T(°C) C(T, P) C Sigma T(° C) C(T, P) ‘c Sigma T(° C) C(T, P) ‘C Sigma

P = 1500 db P =1600 db P =1700 db
0 74. 07 0.03 0.32 0 73.92 0.03 0.32 0 73. 78 0.03 0.32
2 73. 59 0.03 0.30 2 73. 46 0.03 0.30 2 73. 32 0.03 0.29
4 73.16 0.03 0.27 4 73.02 0.03 0.28 4 72.89 0.03 0.27
6 72. 75 0.02 0.26 6 72. 62 0.02 0.26 6 72. 50 0.02 0.26
8 72. 38 0.02 0.25 8 72. 26 0.02 0.25 8 72.13 0.02 0.24
10 72. 04 0.02 0.24 10 71.92 0.02 0.23 10 71.80 0.02 0.23
12 71.73 0.02 0.23 12 71. 61 0.02 0.22 12 71.49 0.02 0.22
14 71. 45 0.02 0.22 14 71. 34 0.02 0.22 14 71. 22 0.02 0.21
16 71. 20 0.02 0.21 16 71. 09 0.02 0.21 16 70.97 0.02 0.21
18 70.98 0.02 0.20 18 70.87 0.02 0.20 18 70. 76 0.02 0.20
20 70. 78 0.02 0.20 20 70. 67 0.02 0.19 20 70. 56 0.02 0.19
22 70. 61 0.02 0.19 22 70. 51 0.02 0.19 22 70. 40 0.02 0.18
24 70. 47 0.02 0.18 24 70. 37 0.02 0.18 24 70. 26 0.02 0.18
26 70. 36 0.02 0.17 26 70. 25 0.02 0.17 26 70.15 0.02 0.17
28 70. 27 0. 01 0.16 28 70. 16 0. 01 0.15 28 70. 06 0. 01 0.15
30 70. 20 0. 01 0.14 30 70. 09 0. 01 0.14 30 69. 99 0. 01 0.14

XA



Table AI-2. Continued.

€

T(°C) C(T,P) C Sigma T(°C) C(T,P) ‘C Sigma T(°C) C(T,P) ¢C Sigma

P =1800 db P =1900 db P = 2000 db

0 73. 64 0.03 0.31 0 73. 50 0.03 0.31 0 73. 37 0.03 0,31
2 73.19 0.03 0.29 2 73. 05 0.03 0.29 2 72.91 0.03 0.28
4 72. 76 0.03 0.27 4 72. 63 0.03 0.27 4 72. 50 0.03 0.26
6 72. 37 0.02 0.25 6 72. 24 0.02 0.25 6 72.11 0.02 O 25
8 72.01 0.02 0.24 8 71.88 0.02 0.24 8 71. 76 0.02 0.23
10 71.68 0.02 0.23 10 71. 56 0.02 0.23 10 71. 44 0.02 0.22
12 71. 38 0.02 0.22 12 71. 26 0.02 0.22 12 71.14 0.02 0.21
14 71.10 0.02 0.21 14 70. 99 0.02 0.21 14 70.87 0.02 0.2l
16 70.86 0.02 0.20 16 70. 75 0.02 0.20 16 70. 64 0.02 0.20
18 70. 64 0.02 0.20 18 70. 53 0.02 0.19 18 70. 42 0.02 0.19
20 70. 46 0.02 0.19 20 70. 35 0.02 0.19 20 70. 23 0.02 0.19
22 70. 29 0.02 0.18 22 70. 19 0.02 0.18 22 70. 08 0.02 0.18
24 70.15 0.02 0.17 24 70. 05 0.02 0.17 24 69. 95 0.02 0.17
26 70. 04 0.02 0.16 26 69. 94 0.02 0.16 26 69. 84 0.02 0.16
28 69. 96 0. 01 0.15 28 69. 85 0.01 0.15 28 69. 75 0. 01 0.15
30 69. 89 0. 01 0. 14 30 69. 79 0. 01 0.14 30 69. 69 0. 01 0.13

yel
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APPENDIX II

Geostrophic Velocity Profile Comparison of
Standard Versus T-S Gradient Method for
Various Regions in the Oceans

(Stations Positions are Given in Table 5)

Note: Original scales reduced in reproduction.
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APPENDIX III

Computer Programs for Hemispheric Computations
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Program 1. A program to interpolate hydrographic data
on the IBM/360 computer
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Program 2. A program to compute specific volume
anomaly from hydrographic data on the
IBM /360 computer
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Program 3. A program to compute geostrophic cur-
rents by the Helland-Hansen equation
and the T-S Gradient equation on the
IBM /360 computer
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Program 4. A program to compute the geostrophic
surface velocity over the FNWC 63 x 63
fields on the IBM/360 computer
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Program 5. A program to compute the geostrophic
surface velocity over the FNWC 63 x 63
fields on the CDC/3600 digital computer



TS

~
C

PROGRAM GENCURIOUTAUTITAPEL s TAPE2s TAPEAZAUTRIT s TARFQ)
DIMENSTION T(63463),T1(3989),T2(3969)

NIMENSION S{A3e63)951(3969)982(3969) ¢53(3969)
DIMENSINN A(12)4B(12)sn(17)

DIMENSTION VAX (A3,03)4VAY (63+63)9VRX(63:67)eVCY (AT4A3)
COMMON VBY (A3e63) VX (63063)

DIMENSINAN VX(6346319VY(63463),v(63463)

DIMENSTION WINDX (39R9) 4w INDY (39R9) ,WINDY (3969)
DIMENSION TRANS(39R9) +STREAM(39RG)

DIMENSION PTAH(4)«DATE (3)

INTEGFER TX(6I) o IY(63)9E(S) 4ETIR) oF (3) 05 (5)
EGUIVALFNGE (T1(21)eT) e (T2eVY)

EQUIVALFNCF (S1eS)e(S3eVX)e(S2eVOY)

ENUIVALFNCE (VAXeWINNX (21)) 9 (VAYsWINpY (21))
FOUIVALFNCE (VBXeWINDV)

EIVALENCE (TRANS({Z21) V) e {STREAM(2]) 4V X)

EQUIVALFNCE (DATEsA)

EQUIVALENCFE (FaTX) o (Gel1X(4))

DATA GTAR/ZIT0770000R/

UATA(PTAB(T) alx144)/,54,459508,0,/

Ay B AND ¢ ARE FONSTANTS, AND ARE AVERAGFK VA[LUHES FOR
THE PRESENT DEPTH OF cALCULATION aNp THAT OF THF PRe=
VIOUS ITMTEGRATION STEP. A& AND B ARF GHASEN AT ¢NN-
STAMT SALINTTY OF 34.5(0700)
=,0000m)
1z ,00000R45
== ,N0074

D IS THF PEPTH TNCREMENT IN METERS BETWEFN THF LFVFL
OF PRFSENT CALCULATTIONs AND THE PREFEEDING ONF
ND(1)=0,

Dt2)= 3N,4R

D(3)= 3N ,4R

Diar= 3n,4R

D(SY= 30,48

D(A)= 60,96

D(7T)= 60,94

D(R)=121,92

D(Y)= 34,7

D(lO)y=200,

v(lly=200,

Delgy=20n,

ET IS AN ARRAY CONTAINING THF ADDRESSES NF FNWF FTFILnS

(=====SURF ACE=========

ET(l)=10HT SEA

C—-—--IOOFT/30 .ASM-—--

ET(2)=104ys 100

(me===200FT/60,9pM==wu

ET(3)=1041s 200

Cmemm=300FT/9],44Macux

ET(4)=19HTS 300

Comm==b00FT/12] ,OMavaa

ET(5)=z10HTS 400

(memeeh00FT/132 ,9Macea-

ET(6)=lNHTS 60N
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Cmeee=B00FT/243,8Mecax

ETt7)=104TS 8OO

Cmew==1200FT7/365,8M=c=

P
C
r

o Ihe 2o RN B

R EaEe e ]

]

iy

41

135
1351

136
1361

137

138
1381

139

Er(8)=lonTsi200

E IS AN ARRAY WwHICH CONTAINS THE CALLING PARAMETFRS
FOR THE SUBROUTINF RNOMSTF WHFN READING FNWF FIFLNS
DATE(1)=n,

E{1)aDATF (1)

E(2) IS DFFINED LATER IN THE nO LOOP

E(3):0

E(4)=38

E(S)=5LTAPEL

1SVO IS a VELOCITY FIELD PRINTING OPTION AS FOLLNWS
0 COMPLETE VELOCITY FIFELD PRINTOUT AT ALL DEPTHS
1  SURFACF VFLOCITY FIELD WILL RE PRINTED ONLY
2 NO VELOCITY FIFLn PRINTOOT Wil RESULT

I1svO=2

1O IS A CONTOUR PRINT SELECTOR AS FOLLOwS
0 ALL LEVFLS CONTOURED
1 SURFACE COMTOUR(SY ONLY
2 NO cONTOUR(S) PRIMTOUT

1cn=2

IF(ISVO.ER.2)G0 TO 26
IX AND 1Y ARF ARRAYS WHICH SERVE TO NUMBER THF ROWS
AND COLUMNS OF THE GRID FOR PRINTING PURPOSFS

DO 41 1=1463

READING IN OF TEMPFRATURE AND SALINITY FIFLDS FOL) OWe
N=ll

No 18 K=1,n

IF(K,GT,R)G0 To 127

GO TO(135,136,138,14091429144,146,148)K

E(2)=ET (1)

CALL RDMSTFI(TLl.E)

IF(E(3) NFL.0)GO TO 1351

READ(2) S}

GO TO 17

Et2)=ET(2)

CALL RDMSTF(T14E)

IF(E(3) ,MEL0)GO TO 1361

READ(2) S

READ(2) Ss3

D0 137 1=21+3969
S1(I)=(19,%2#S1 (1) +5,.,4R%33(1)) /2%,
GO To 17

E(2)=ET(3)

CALL RDMSTF(T1+E)

IF(E(3) ,NFL,0)GO TN 1383

READ(2) S2

DN 139 I=143969
SI(I)=(39,04%S3(1)+10.96%#S2(1))/50,
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O

m

DO O D

140
1401

141

142
1421

143

144
144

145

146

la6]

147

148
1481

149

127

17

19

13

60 70 17

E(2)=2ET t4)

CALL RDMSTFI(T]E)

IF(E(3) NF.0)GO To 1401

DO 141 12143969
S1(I1)'=(8,56%53(1)+4]1.44%52(1)) /5,
Gn 10 17

E(2)=ET (5}

CALL RDMSTF(TLl4F)

IF(E(3) ,NFL,0)GO T 142)

READ(2) S3

D0 143 1=1+3969
SI(I)Z(2H,08%¥S2(1)+21.92%S3(1))/5n,
Go To 17 )

E(2)=ET (&)

call RDMSTF(T14E)

IF(E(D) onpa0) GO T 1644)

READ (2) §2

DO 145 1=1,3969
S1(IY=(17,12%S3(1)+32.R8%52(11)7/5¢,
GO To 17

E(2)=ET(7)

CaLl. ROMSTF(T)oF)

IF(E(3) NFEL0YGO TO laAk)

READ(2)T?

READ(2) S3

DO 147 1=193969
SI{I)=(156.,1A%82(1)+43,84%53(7)) /200,
GO 1O 17

E(2)=ET (R)

CALL RDMSTF(T1eF)

IF(E(3)NFL,0)GU TO 148]

DO 149 Ia1+3969
S1(I)=2(34,26%S2(1)+165,76%53(1))/200.
GO ToO 17

READ(2) (T1(I),1221,3989)
READ(2) Sy

THE FIELDS ARE WRITTEN ON NnIsk
WRITE(S) TS
IF(KWEQ,BIWRTITE(9)T24587
CONTINUE

REWIND 9

THE aCTual CALCULATION BFGINS HERE, THE FIRST CalCUmw
LATION INITTALIZES cOMPONENTS AT THE LEVEL NOF ASSUMa
ED MOTION

RFAD(9) T,8

no 22 Jsl,s2

DO 22 121,42

vx(IeJ)=n,

VY (IeJ)=n,

VI(led)=n,
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e e Ne )

O

VAX(To)=T(lod) =T (Tely)) 154
VAY (To ) =T (Ied) =T(ToJ*y)
VRX(Te )= (T {To ) eT(ToleJ)) #,G50VAX(Tr])
VRY (1o ) =(T(Te ) eT(Tedel))#,58vAY (I )
VEX(TeJ)=S(1yd)ueS(Telyd)

22 VCY(Te V=S (le ) eQ(ToJe))

THME ACCHMULATION OF COMPONENTS RFGINS HWERE
M2=Ne ]
NO 1% K=2.M2
READ(9) TS

23 00 24 J=1,62
D0 24 I=1e62
DTXET(Ie ) =T(Iele.))
DYYET (T )=T(Ied*1)
HDX=(T(Te ) eT(1ele)))® , 52DTX
HOY=(T(1e ) eT(Te Je1) ) # SHDTY
DSX=S(Te.)=S(Taly )
DSYSS(Ted)=S(Tedel)
DAXZ (VAX (TeJ) ¢NTX) #,5
DAYS(VAY (T J)+DTY)®,5
DRX= (VBY (TeJ) ¢RBNX) #,5
DRY=Z (VBY (Ted) +BNY)#,5
DEXS(VEX (ToJ)¢DSX)#,5
Dcyz{veyl(TeJ) eDSY) #,5
CNHRFOR IS A SUBRQUTINE FOR COMRPUTIMG CORIOLIS FORCE

RASED ON GRID POSITION

CALL CORFOR (leJseCFL)
VXITod)=uX (Te ) ¢ ( (NAXRASDRXRB+NC#C) #D (K) #CF ) #,4665
VY (Ted)zvy (Ted) ¢ ((DAY#AeDBY#R4NCyaC) #D (K)#CFL) #,4665
1%,4665
VITed)s SART(VX(TaJ)RB2eVvY (T4 j) #82)
VAX(TeJd)=NTX
VAY (T,J)=nTY
VRX(IsJ)=nNX
VRY (IsJ)=RDY
VCX(Ted)=nSX
VCY(IyJ)=NSY

24 CONTINUF

FOR COMPATIBILITY WITH PLOTTING PRNGRAMy VXy VY AND Vv
MUST HF FXTENDED TO 63X63 ARRAYS WITH DUMMY VALIIES
DO 40 I=1,63
VX(63+sT)=yX(62,1)
VX(Ie63)=yX(1e62)
VY (63eI)=vY(K2e1)
VY (J1e63)2yY(1962)
VI6341)2v(6241)
40 VI(Te63)zv(1e62)

CONTQUR ani) PRINTING SFLECTION
18 IF(IC0.FN,2)G0 TO 16

IF(ICOEN,L1aAND K NEGNIGOH TO 16

WRITE (641)

CALL CONTOUR(VXs63,63,43,43AVX)

CALL CONTOUR(VY 6396393, 03LAVY)
16 IF(ISVO.FN.2) 6N TN 15



OX NPT

31

32

33

34

15

IF(ISVO,FNeleAnDsK NESN) GO TO 15

FORMAT
FORMAT
FORMAT
FORMAT
FARMAT
FORMAT

(1HD)
(/)

(13+13F9,4)
(191319,
(3X*13F9,4)

(3xs1

WRITE (he})
WRITE (Ae7y

DN 31
WRITE
WRITE
WRITE
WRITE
WRITE
WRTTE

I=1,63
(699)
(Ae9)
(Aeh)
(648)
(heR)
(AeH)

WRITE (by 1)
WRITE (647y (

bDn 32
WRITE
WRITE
wRITE
WRITE
WRITF
WRITE

I=[963
(609}
(649)
(6e6h)
(69Q)
(AeR)
(Ae5)

WRITE (641)
WRITE(647)

no 33
WRITE
WRITE
WRITE
wRITE
WRITE
WRITE

121463
(Ae9)
(A649)
(Aeh)
(AaR)
(heR)
(Ae5)

WRITE(6,41)
WRITE (6473

Do 34
WRITE
WRITE
WRITE
WRITE
WwRITE
WRITE

121,63
(649)
(heg)
(faA)
(648)
(Fe8)
(hes)

WRITE (641)
WRITE(647)

Do 15
WRITE
WRITF
wRITE
WRITE
WRITE
WRITE

I=1,63
(6e9)
(hFe9)
(e b)
(Ao8Q)
(AyR)
(Fe5)

CONTINyF
REWIND 1tREWIND 2

REWIND
PAUSE

Q
1

3F9,2)

IX(T)el=ls13)

(T(1e ) eg=1913)
(S(Ted)eg=leld)
TY(TYo(VX{To)ed=lsld)
(VY (19.0) 9d=le13)

(V(Te J)ed=1913)

Tx(1),1=14,26)

(TUTeJ) e J=14926)
(S(T9J) e =14,426)
Iv(Tysrux(Tod)edzlée?26)
(VY (Te.d) ed=140e26)
(V(Ted)ed=14426)

IX(I)s1=227439)

(T(Ts.) e J=2T7439)
(S(TeJyed=27439)
IY (DY (VX(TeJ)eds2T939)
(VY (TeJ)oeJd=27439)
(V(19J)ed=?2Te39)

IX(T)e1=40452)

(T(TeJd)ed=40,52)
(S(TeJ)egsanes)
TY(T)a(VX(T0 )9 =4T952)
(VY (TeJ)sJd=%40452)
(ViTeJyeJd=40,52)

IX(T)e12%53463)

(T(TeJ)e.j=c3963)
(S(10g) e z53,63)
Ty (l)ye(ux(Tyed)ysdz53463)
(VY (Te.))9Jd=5363)
(V(ToeJ)eJ253,463)
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DO DN NN

aNe]

[ Ie e |

48

46

45

47

42

43

25

M]l=0
GO TO 43

UNLOAD TEMPERATIIRE TAPF 1 AND SALINITY TaPg 2

MOUNT wiNnD TAPE On HUNIT 1 FOR READING

MOUNT CURTRANS/CURRSTRM FIEn TaAPE(AUTPHT)Y an UMTT »
FOR wRITING

READ IN WwIND COMPONENTS

Gtl)=0

G2y =10w W
G(3)=0
G(4)m36

G(5)=5LTAPE]

CALL RDMSTFIWINDX4G)

IFIG(3) ,Fn. 1Yy 60 Th 44

GI(R)Y=10KY W

CaLlL ROMSTF (WINNY!G)

IF(G(3)Y,Fn.lY 6N TO 45

IT IS NFCFSSARY TO COMpUTFE A WIND NRIFT THANSPORT,
SINCE ONLY THE U AND V COMPONENTS OF THE WIND DRIFY
ARE REAN INM

DO 47 1=21+43989
WINDV(I=P0)S(SQRT(NINDY (T)#R24wINDY (1) HH#2) ) # 4665
REWIND 1

Ml=Mlel

COMBINE GFOSTROPHIEC CURRENT onMPONFNTS WITH WIND FIEID
WITH WINPD FIELD COMPONENTS (USING EQUIVALENT STARAGE)

Do 42 [=1,6A3

Dn 42 J=l'63

VX (Tad)msyX(Ted) o (VAX(I4J))BR4hhA%

VY (Ted)zuy (Ied) e (vaY(1ed)) #4665
VIIod)=v(TeJd)eyRBX (1))

THE TRAMSPORT FIFLD IS NOW TO RE WRITTFN ON TAPF
Et4) =40

E(5)=5LTAPF2

TRANS (2)=140R
TRANS(2) = (TRANS(2) ,OR.NATFE (1)
TRANS (3)=10KH
TRANS(6)=)10HACURTRANS
TRANS(7)=10HCLIMATIC

IF (Ml aNF 1) TRANS(R)=10HG=STRAPKWIC
IF(MleEQ.1) TRANS(A)Y=10HTOTAL
TRANS(9)=10H NM/DAY

TRANS(10)=10H FIG 7.

CALL WRMSTF(TRANS.F(3))

IF(E(3) 4FN.1) GO ToO 25

COMPUTE STREAM FUNCTTIOM LISING SURRNUTINE PSNF AND PSaN
CALL PSNF(PTARyVXeVY«GTABYERR)

THFE STRFaAM FUNCTION FIFLD 1S NOW TO RE WRITTFM ON TADF
F(l)= 0

F(2)= 3R

F(3)= 5| TAPE?

STREAM(2)=1408
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28

29

STREAM(2)=(STREAM(2) 4ORDATE (1))
STREAM(3)=10H
STREAM (&) =1 0HACIURRS TRM
STREAM(T)=10HCL IMATIC

IF (Ml NELL)STREAM(R) =1 OHG=STROPHIC
IF (Ml EN.L)STREAM(B) =1 OHTOTAL
STREAM(9)=10H NM/DAY
STREAM(10y=10W FIG 7,

CALL WRMSTF(STRFAM.F)
IF(F(1),Fn.l) GO T 28

IF(M1eEN.p)GN TO 48
END FILE 2
REWIND 7

STOP
END
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APPENDIX IV

A Determination of the Thermal Geostrophic Component
in the Gulf Stream Water off the Grand Banks
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A DETERMINATION OF THE THERMAL GEOSTROPHIC
COMPONENT IN THE GULF STREAM WATER
OFF THE GRAND BANKS

One of the important advantages of the T-S Gradient method is
the possibility of identifying the significance of the thermal and
haline components of the geostrophic flow. Furthermore, if the
thermal or haline components can be neglected or correlated with
the total geostrophic flow, then the possibility exists that only one
or the other measurement need be taken. If only the thermal struc-

ture is known the first order thermal contribution to the geostrophic

current can be computed:

(V. =v,) =
1 2

|-

(K. saT.AP. + K. S T.AT.AP.] (A.111-1)
l.1 i 1 2 i 11

Correlating the first order thermal current with the total geostrophic
current the correlation function can then be used to determine the
total geostrophic current from the temperature measurements alone.
The feasibility of accomplishing this is enhanced by the de-
velopment of the expendable bathythermograph (XBT) which allows
a ship to steam at full speed over a region and measure the tempera-
ture structure to 6, 000 feet. Prior to the development of the XBT,
temperature structure was commonly measured by mechanical
bathythermographs which were limited to 900 feet.

If this technique were possible, one application where it would
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be valuable would be in the International Ice Patrol Survey of the U.S.
Coast Guard in the Grand Banks region. The purpose of these sur-
veys is to provide information on the currents in this region for ice-
berg drift movement during the ice season. This information is use-
ful for safe navigation. Unfortunately, two requirements of the sur-
vey are conflicting. First is the requirement to survey a relatively
large area with sufficient density to delineate the flow. Second is
the requirement to complete the survey in a short enough time to
give a reasonable synoptic picture. At the present time the surveys
take about two weeks during which time approximately 100 hydro-
graphic stations are occupied (Lenczyk, 1964). If even a 50 percent
reduction in the number of complete hydrographic stations could be
achieved by sampling these at full speed using XBT's the survey time
could be reduced by several days and the currents would be far more
synoptic than the present program allows. Unfortunately, this re-
gion is a region of rapid changes in water structure. The charts of
dynamic topography are considered of little value after two weeks
and another survey must be conducted. Several surveys are needed
in a single ice season, March through June.

Three water masses have been identified in the Grand Banks
region (Kollmeyer, 1966): Gulf Stream Water, Labrador Water,
and mixed water, representing the boundary between the two other

Waters. If the geostrophic currents are to be determined from the
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thermal component alone some technique must be established for
separating the water masses as a different correlation will exist be-
tween the thermal component and the total flow in each water mass.

For the purpose of testing the feasibility of establishing such a
relationship 33 hydrographic station pairs in the Gulf Stream Water
were selected from the U. S. Coast Guard Ice Patrol Reports
(Moynihan, 1968). The stations were selected using the Coast Guard
charts of dynamic topography for the survey containing each station
pair. The station pairs were used to compute the thermal component
of the geostrophic current using Equation A. III-1, and the total geo-

strophic current. The coefficients used in Equation A.IV-1 were:

El =83.4 x 1070

Ez =858 x 10"

The resulting thermal component is plotted against the total geo-
strophic surface velocity in Figure A.IV-1. A linear regression

analysis fit in the least square sense, yields the following expression;

=0,39(V. -V, + 2.84 (cm/sec)
120

(V, -V,

The variance of the total geostrophic surface velocity is 15. 5
2
(cm/sec) .

Therefore, if the water mass boundaries can be identified it
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Figure AIV-1. Relationship between the total geostrophic surface current and the T-S Gradient
thermal component in the Gulf Stream Water off the Grand Banks.
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is possible to compute the total geostrophic surface current from the
thermal component using the above expression. Hydrographic sur-
veys of this region could be made more synoptic using XBT's to

substitute for some of the standard hydrographic stations.
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APPENDIX V

Field Evaluation
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FIELD EVALUATION

Introduction

Based on the results of this research the T-S Gradient method
should allow the computation of surface geostrophic currents in good
agreement with those computed using the standard geostrophic calcu-
lations. Of course, both computations suffer from the limitations
inherent in the geostrophic assumptions. Therefore, the purpose
of this research to find a simplified scheme to make geostrophic
computations has been met, yet the computation of currents without
environmental verification is not very satisfying. However, it must
be concluded that at this time current observations are too few and
unreliable to be used as a quantitative measure of indirectly com-
puted currents. This appendix reviews two attempts by the author
to verify the representativeness of geostrophic currents to the actual
ocean currents, and proposes some refinements of these attempts
to continue the research. These two experiments are the only ones
known to the author as direct efforts to verify computed surface
currents in the open ocean in the slow California Current.

The major oceanic gyres appear to be revealed by geostrophic
computations (Reid, 1961, and Stommel, 1965). Yet atany point

or time in the ocean the geostrophic current may or may not be
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representative of the instantaneous flow. As mentioned earlier,
many forces act to drive the waters of the ocean, and generally the
flow in the ocean will consist of both baroclinic and barotrophic
components (Foffonoff, 1962). Therefore, the determination of the
geostrophic current at any given time from a pair of hydrographic
stations does not yield the existing current. However, if the hydro-
graphic stations are sampled in a time-series fashion over a suffi-
cient length of time to remove the non-geostrophic periodic com-
ponents, then the resulting computed current can be expected to
come into closer agreement with the average current over the period
of the extended sampling.

Defant (1950) has shown that the internal oscillations in the
water structure can lead to significant errors in the geostrophic
currents. Particularly important in dynamic computations is the
change in the water structure associated with internal waves, and
the most significant periods are those of the diurnal and semidiurnal
tide (Defant, 1950). LaFond (1951) also identified the semidiurnal
and diurnal periods as the most significant perterbations in the
water structure.

Little is known of the internal oscillations in the ocean at the
present time. However, Haurwitz, et al. (1959) show that signifi-
cant peaks occur in their long series of records of temperature at

50 m and 500 m offshore from Castle Harbor, Bermuda, only at the
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semidiurnal and inertial or diurnal periods. Except for a broad
maximum at about 0. 5 cycles per hour their spectra decreases
monotonically with increasing frequency. There appears to be no
statistically significant coherence between observations at 50 m and
500 m. Cox (1962) shows in observations taken from the U. S. Navy
Electronics Laboratory oceanographic tower with isotherm fol-
lowers that the observations between laterally-spaced sensors are
coherent only at low frequencies, well below the mean value of the
Viisgl4 frequency.

It would be advantageous to use more than one ship to deter-
mine geostrophic flow between hydrographic stations, such that the
measurements applied at the same ''instant' in time. In general
oceanographic operations are conducted by single vessels. Single
vessel hydrographic surveys are limited to two possible sampling
procedures, both of which may significantly influence the resulting
computed geostrophic current. The choice lies between sampling
between stations, first one station then another, such that enough
casts are made at each station to remove the variability; or second
sampling each station in a time-series fashion a sufficient number
of times to remove the variability, moving on to the next station at
the completion of the first.

Rapid sampling between stations means that the samplings are

almost synoptic, that is, taken under nearly the same conditions.
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Furthermore, in running between stations the intervening water
structure can be sampled. However, in the California current area
hydrographic stations for determining geostrophic flow should be at
least 35 kilometers apart. This means that a conventional oceano-~
graphic vessel traveling at ten knots will require two hours to
steam between stations, and a total of four hours will be required
to complete both stations. Changes in the hydrographic conditions
at either station may be significant during this four hour period
(Defant, 1950).

On the other hand, time-series sampling at a single station
requires a sample of sufficient length and density to remove the
periodic variations. At least 12 hours and preferably 24 hours of
sampling should be made at each station; with a cast every two hours,
50 hours will be required to completely sample a station pair (24
hours per stations with two hours steaming). One disadvantage of
single station time-series sampling is that between any two station
pair only one sampling of the intervening water structure is made.

To test the two types of sampling (continuous time series
sampling at one station versus alternating sampling between stations)
two experiments were performed. In the first experiment the al-
ternating sampling between stations was used. In the second, the

24 hour sampling at each station was performed.
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Experiment I

The first experiment was performed from August 31, 1967 to

September 4, 1967 off Santa Cruz, California.

Purpose

This experiment had a dual purpose: f{first, the verification of
computed surface currents for this research; second, to examine
the validity of Richardson's '"4/3 law'' for particle diffusion, at large
particle separations (in this case separations in excess of six
nautical miles). The results of this latter work have been pre-

viously reported (Denner, et al., 1968).

Sampling Procedure

The experiment consisted of alternate sampling between two
stations A and B at intervals of every four to six hours. The

location of these stations were:

A = 36° 50" N, 122° 36.2'W

1

B = 36° 20" N, 123° 12.0' W
Temperature and salinity measurements were made using
standard hydrographic procedures. Temperatures were determined

as the average of paired thermometers, and salinities were deter-

mined from water samples on a Hytech model 6210 laboratory
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salinometer. Temperature structure was measured to 1, 500 feet
every hour on station and at three equi-distant points between stations
with XBT casts. Surface currents were measured at Station A using
parachute drogues (Volkmann, it_a_l. , 1956). The drogues were
positioned relative to a taut reference mooring, using radar. The
initial locations of Station A and Station B, and all later locations of

B were made using Loran C.

Meteorological Conditions

The meteorological conditions were favorable for the entire
cruise. Winds were always less than Beaufort 4 and predominantly
below Beaufort 3 from 330° true, with corresponding sea states.
The swell were always less than five feet from about 300° true. No
difficulty was experienced in sampling or holding station due to

weather conditions.

Current Measurements

Station A was established first by setting a taut moored sur-
face reference buoy for current measurements, diffusion studies,
and hydrographic casts. The drogues were seeded, as nearly as
possible, in an octagonal pattern at a range of two nautical miles
about the reference. Also, one drogue was placed next to the refer-

ence marker. All drogues were shallow with a 10 m line between
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the float and parachute. The position of each drogue relative to the
reference mooring was recorded every 30 minutes on the ships radar
for seven hours with the exception of drogue Number 2, which was
lost after five hours.

The movement of all drogues was consistent over the entire
period except for drogues 2, 4, and 8. Drogue 2 was considered
anomalous and dropped from the analysis. The final position of
drogue 4 and initial position of drogue 8 were anomalous and also
were neglected. The surface current was taken as the straight line
distance between the initial and final accepted position divided by the

time lapse. The results of this analysis are given in Table A. V-1,

Table A.V-1. Average velocity of the drogues in Experiment I.

Displacement Time Speed Direction
Drogue (n miles) (hours) (knots) (degrees true)

1 2.0 6. 6 0. 28 340

2 - - - -

3 1.2 7.2 0.17 17.5
4 1.0 7.2 0.14 347

5 1.8 7.2 0. 25 336

6 1.7 7.2 0. 24 336

7 2.0 7.2 0. 28 334

8 1.8 6. 2 0. 29 350

9 1.4 7.2 0.19 2
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Hydrographic Measurements

At the conclusion of the current measurements the hydrographic
studies were initiated with a hydrographic cast at Station A. Station
B was established 40 nmi from station A, bearing 250° true, approxi-
mately at right angles to the observed currents. Casts were taken
alternately at Stations A and B. The same bottle spacings were used
on each cast for convenience and the maximum sampling depth was
fixed by the amount of wire out, 1, 000 m. An expendable bathy-
thermograph was launched at each cast with the messenger, and at
each mid-point crossing between stations. The transit time between
stations was approximately five hours, and five casts were made at
each station. The hydrographic studies required 60 hours. The
hydrographic data are on file at the Naval Postgraduate School,

Monterey, California under NPGS Cruise A-1, 1967.
Results

The drogue-measured current was taken as the average of the
results summarized in Table A. V-1, 0. 25 knots toward approxi-
mately 340° true. Geostrophic surface currents were computed

from the hydrographic data for each successive station pair (AlBl,

B1A2’ A2B2, B2A 37 etc. ) using both the T-S Gradient method and

the standard geostrophic method. A reference level of 700 m was



Table A. V-2,

currents for Experiment I.

Comparison of standard and T-S gradient geostrophic surface currents, and FNWC

Standard T-S Gradient
Station Method Method FNWC
Day Time Pair Speed Direction Speed Direction Time Speed Direction

9/1/67 11:00 .~ By 4,0 340° 4.0 340° 06:00 12.7 168
9/1/67 18:00 LT A, 4, 6 340° 4, 6 340° 16:00 12.7 185
9/2/67 00:00 .~ B, 4.7 340° 4,7 340°
9/2/67 05:30 . " A, 6. 8 340° 6.8 340° 06:00 12,7 180
9/2/67 18:30 3 - By 9.5 340° 9.5 340° 16:00 12,7 180
9/3/67 01:30 37 By 8.8 340° 8.8 340°
9/3/67 03:30 4" By 5.8 340° 5.8 340° 06:00 12. 7 185
9/3/67  09:30 P 6. 8 340° 6.9 340°
9/3/67 21:00 5 - B 4,4 340° 4.4 340° 16:00 12. 7 180

€Ll
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selected for both calculations as this depth was achieved on each
cast.

The velocity profiles indicate a steady increase in velocity

~relative to the 700 db reference level. The profiles obtained by the
two approaches to the geostrophic computations are essentially the
same. The relative geostrophic surface current was between

4 crn/sec and 9. 5 crn/sec, and the values for each station pair is
given in Table A.V-2. These values are low compared to the meas-
ured velocity at Station A. There are several possible explanations
for the disagreement between the measured and computed velocity.
First, part of the measured flow may have been in the barotrophic
mode which is not revealed by geostrophic computations. Secondly,
the current measurements and the hydrographic measurements were
not concurrent, and the currents may have decreased after the
measurements. This would have been determined by longer current
measurements. In fact attempts were made to locate the drogues
on each return to Station A but without success.

Also shown in Table A. V-2 are the surface current speed and
direction read from the FNWC synoptic current and stream function
charts. During this entire period the FNWC currents were to the
south-southeast (160° to 180° true) at approximately 12. 7 cm/sec.
This flow is in the opposite direction to the measured currents.

However, it should be noted that the FNWC currents are the sum
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of their mass driven and wind driven components. FNWC uses
Witting's (1909) results (Equation 17) with a wind factor of 4. 8:
taking the winds at 10 rn/sec from 330° true, a wind drift of 15.8
cm/sec to 330° true is computed. Therefore, it appears as if the
FNWC current is governed mainly by the wind component which in
this case does not lead to agreement with the measured currents.
This is true even though the wind was persistent over the entire

period.

Conclusion

This experiment shows that under these hydrographic condi-
tions the T-S Gradient method gives essentially identical results to
the standard geostrophic computations. These results give the geo-
strophic current in the same direction as directly-measured cur-
rents, but at a lower speed (4. 0 cm/sec to 9. 5 cm/sec computed
versus 12.8 crn/sec measured). Since there are many variables
that could not be controlled, better agreement probably cannot be
expected.

Currents computed by FNWC for this area are in the opposite
direction of measured flow at about 12.8 crn/sec. Since the FNWC
current consists of both geostrophic and wind components, the wind
component appears to be the dominant component in this case.

Two factors might improve the confidence in these results.
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First would be better navigation control than the Loran C provides
in this area (% 0. 5 nmi), and second, a longer period of current
observations. A second experiment was designed and performed to

correct these difficulties.

Experiment II

The results of the first experiment indicated that the T-S
Gradient method of computing geostrophic component of the flow
yielded better agreement between computed and observed currents
than did FNWC techniques. Yet the navigational control was not
completely satisfying. On this cruise the ship's Loran navigation
was supplemented with Lorac navigation, a highly accurate system
capable of providing fixes to within 0. 1 nmi. Experiment Il was per-
formed 50 nmi south of Point Arguello (Station A) using the U. S.
Navy Pacific Missile Range Lorac system December 4, through

December 7, 1967.

Purpose

The purpose was the same as for Experiment L

Sampling Procedure

The sampling procedure was altered from Experiment I to

provide two 24 hour stations (A and B) at which one cast was taken
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approximately every two hours. KEach station was marked with a
taut moored surface marker. Drogue current measurements were
made at each station. Station B was established perpendicular to
the flow measured at Station A. A savonius rotor current meter
was moored at Station B at a depth of 10 m. The locations of the

stations were:

>
H

33° 43,8' N, 120° 45.5' W

oy
I

33° 28. 7' N, 121° 40.0' W

Meteorological Conditions

The winds were Beaufort 3 to Beaufort 5 over the entire cruise,
with Beaufort 3 prevailing at Station A and Beaufort 5 at Station B.
The winds were from 230° to 340° true over the entire cruise, pre-
dominantly from 320° to 340° true. The swell and sea were pre-

dominantly from 320° true.

Current Measurements

Station A was occupied first and a reference mooring was
established. Unfortunately the mooring did not hold and drifted
slowly to the south-southeast. However, six drogues were seeded
in an east-west line around the mooring. The movement of the
drogues relative to the reference float was determined by radar.

These measurements do not yield absolute currents since the



178
mooring was moving. However, the drogue positions were deter-
mined frequently between casts by running alongside the drogues and
noting their Lorac positions. Again the surface current was deter-
mined by averaging the straight line movement between successive
positions. The measurements were divided into three intervals.
During the first interval drogues 1 and 6 did not move consistently
with drogues 2, 3, 4, and 5 and were eliminated. During the second
period all drogues moved consistently. During the third interval
drogue 6 was eliminated.

During the first period, 21:33 on December 4, 1967 to 14:44
on December 5, 1967, the drogues moved at 9.8 cm/sec toward
127° true. During the second period, 14:40 to 17:40, December 5,
1967, the drogues moved at 16. 2 cm/sec toward 129° true. During
the last period. 17:28 on December 5, 1967 to 11:28 on December 6,
1967, they moved 13.2 cm/sec toward 163° true.

At Station B another reference mooring was set, at right angles
to the flow measured at Station A, and again six drogues were
seeded. On this mooring a continuous recording savonious current
meter was placed at 10 m below the surface on the mooring. Several
problems were encountered at this station. Radar contact with the
drogues was lost after only a few hours, too short a time to deter-
mine significant movement. Attempts to position the drogues by

running alongside and taking their Lorac position failed when the
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Lorac signal was lost. Reliable current measurements could not be
determined from the drogues. The current meter on the mooring
should have provided independent measure of the currents, but the

recorder paper failed to advance and the record was of no value.

Hydrographic Measurements

The hydrographic stations were established prior to the cruise.
Hydrographic casts were to be initiated every two hours, however,
delays of up to one hour were experienced. Only 10 casts of the 12
planned at each station were obtained. The hydrographic station
data is on file at the Naval Postgraduate School, Monterey,
California, under NPGS Cruise A-2, 1967. Again, the stations
were approximately perpendicular to the measured drift of the
drogues at Station A. The section established will give the geo-~
strophic current components along 160/340° true. The hydrographic
data at each station was averaged to remove insofar as possible any
short period variations, or measurement errors.

In a second analysis of the geostrophic currents, the XBT
temperatures were substituted for the reversing thermometer tem-
peratures and the computations repeated. The purpose of this
analysis was to see if the current structure derived from the XBT
data would agree with the analysis from the reversing thermometer

temperatures.
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Results

The velocity profiles for both sets of data are shown in Figure
A.V-1. Since the values of the geostrophic current computed by
both the T-S Gradient and the standard method agreed at all levels
to within 0. 02 cm/sec only the T-S Gradient value is given. The
surface current computed by the standard method, the T-S Gradient
method, FNWC, and the drogue measured current at Station A are
compared in Table A. V-3,

Table A. V-3, Comparison of computed and measured geostrophic
surface currents for Experiment IL

Standard Method T-S Gradient FNWC Measured
Reversing Reversing
Thermometer XBT Thermometer XBT

Current

Speed 3.3 4.5 3.3 4,5 12.7to 9. 7 to

(cm/sec) 20. 5 16. 8

Current

Direction 160° 160° 160° 160° 150° to 125° to

(degrees 160° 165°
true)

Conclusions

The surface geostrophic current through this section is 3. 3
cm/sec by both the standard geostrophic method and the T-S Gradient
method using reversing thermometer temperatures. Both methods

yield 4. 5 cm/secwhen the XBT temperatures are substituted for the
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Figure AV-1, Comparison of geostrophic velocity profiles
using reversing thermometer temperatures
and XBT temperatures in Experiment II.
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reversing thermometer temperatures. The FNWC computations

yield a surface current between 12. 7 cm/sec and 20. 3 cm/sec with
directions between 125° true and 165° true. These values are in
substantial agreement with the drogue measurements of 9. 7 cm/sec
to 16.8 cm/sec with directions between 150° true and 165° true.

If the wind drift computed according to FNWC is added to the geo-
strophic surface currents the currents would be increased by 18
cm/sec. This would lead to surface currents somewhat larger than
those measured for the standard and T-S Gradient geostrophic com-
putations. However, the drogue measured surface currents aver-
aged over a depth interval of approximately eight meters around the
ten meter depth of the center of the parachute. Therefore, one
would expect the measured currents to be slightly lower than the
current at the very surface. The influence of other factors has not

been considered.

Recommendations

Introduction

Clearly the results of these two experiments cannot be con-
sidered conclusive. Much more experimental work is necessary to
establish any relationship between actual currents in the ocean and
those determined by indirect computation. Even though every effort

was made to maintain the tightest possible experimental control
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during these studies further control is necessary and possible. Two
recent developments would have improved the possible control in
these experiments. These developments are the commerzrcial avail-
ability of reliable continuous profiling salinity-temperature-pressure
systems (STP) (Brown, 1968), and satellite navigation systems
(Warriner, 1958). In the following paragraphs another experiment is
described, incorporating these developments and other improve-
ments that occur to this researcher for the continuation of this work.
The STP provides a continuous profile of temperature and
salinity as a function of depth to at least classical Nansen bottle and
reversing thermometer accuracy (* 0. 02 %, , £ 0. 02°C, £ 4 m)
(Bissett Berman Corporation, 1968). The continuous profile of these
variables also eliminates the need to interpolate discrete Nansen
data and the associated interpolation error. Another advantage of
the STP over the classical Nansen approach is speed, since a cast
can be completed in less than half the Nansen cast time. Finally, a
distinct advantage of the STP is the repeatability of the measures.
The repeatability of the STP is two times better than the absolute
measurement accuracy, thatis, +0.01%, * 0.01°C, and + 2 m.
Taking advantage of this repeatability very precise difference meas-
urements necessary for geostrophic computations are possible.
Thus, using the STP the measurement and computational errors in

geostrophic computations could be substantially reduced.
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The U. S. Navy has used satellite navigation on its vessels
since 1964 (Warriner, 1968). In 1967 the system was released for
private users, and receivers are now available commercially which
will yield position accuracy of better than 0. 1 nmi anywhere in the
ocean (Magnavox Corporation, 1968). This represents at least a
five-fold increase in accuracy over the best previous open ocean

navigation system.

Proposed Experiment

The purpose of the experimental work discussed here is to
establish the relationship between the currents at a point in the
ocean and driving forces. Since currents exhibit a turbulent nature
over a wide range of scales it is clear that we will never be able to
specify the instantaneous velocity indirectly., However, for the
purpose of contemporary forecasting this impossibility is not neces-
sary. In the continuation of this research a modification of the

experimental procedure used in this study is recommended.

Stations

Three stations should be established, initially in an area where
the surface currents are not disturbed by topographic influences,
such that the sections between the stations enclose a triangular re-

gion. The primary reason for the triangular array is the fact that
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the three stations are the minimum number forming a closed ele-
ment. Continuity considerations can be used for a closed element to
help reduce ambiguities in the results. Furthermore, the geo-
strophic currents perpendicular to the three sections formed by the
sides of the triangular station pattern will allow vector resolution of
the actual current. Station locations should be marked with suitable
taut moorings. Station separation should be determined by the cri-
terion suggested by Reed and Laird (1965) that the dynamic difference
between the stations be five times the error in the dynamic computa-
tions (see Chapter III}. However, because of the potential repeata-
bility of the STP and precision of the satellite navigation the station
separation might be reduced from that used in Experiments I and II,

keeping the transit time between stations to a minimum.
Sampling

Sampling of the following parameters should be performed at
each station as outlined in the following discussion:
l. Temperature and salinity should be measured from the
surface to 1, 000 m.
2. Surface currents and currents at 1, 000 m should be
measured over the period of the study.
3. Surface wind should be measured and recorded over the

period of the study.
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4, Sea conditions should be measured and recorded over the

period of the study.

5. Barometric pressure should be recorded over the period

of the study.
Sampling should be conducted such that significant periodic variation

in the structure can be identified.

Phase I - Establish Initial Conditions

At each station the taut line moor should be established,
drogues with radar transponders should be set at the surface and
1, 000 m, and the best satellite position obtained. Once the station
has been established, two STD lowerings should be made to 1, 000
db, Nansen bottles with reversing thermometers placed at 0, 500,
and 1, 000 db. During the period of the STD casts XBT's should be
launched every ten minutes. This procedure should be followed at
each station. The vessel should proceed between stations at maxi-
mum cruising speed. Between stations XBT's should be launched
every one-half hour. Given a station separation of 40 km the first
phase will require approximately 24 hours. Phase I establishes the
stations to be used in Phase II, the initial hydrographic conditions,

and the short term variability.
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Phase II - Sampling

The purpose of Phase II is to establish the median conditions
over the period to provide the best estimate of the factors contribut-
ing to the surface flow. Only the significant factors should be con-
sidered. Returning to each station in initial order, 24 hour time-
series sampling should be initiated to the 1, 000 db level. STD casts
will be made every hour, with XBT probes launched every one-half
hour. A parachute drogue will be established at the start of this
phase at 1, 000 db and at the surface, the position of the drogues in
the water at each station should be established every one-half hour.
As the drogues are lost, they should be replaced. The ships posi-
tion will be maintained at the reference position. Again the vessel
should proceed between 24 hour stations at maximum cruising speed,
launching XBT's every one-half hour.

Atthe conclusion of the time series sampling the vessel should
proceed to locate as many drogues as possible, recover the radar
transponders and then the surface buoys. Approximately 96 hours

would be required for Phase II exclusive of equipment recovery time.

Analysis

The currents through the array should be determined by both

direct and indirect methods. The computed surface currents should
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be compared to the measured surface currents. Wind data should be
used to compute the wind component by various formulae to deter-
mine the best expression to use to obtain agreement between meas-
ured and computed surface currents. Significant periodic variations
in the measured currents could be correlated with variations in the
structure and local winds and tides to determine any relationships
between these factors and the currents.

Many other questions could be answered by the data collected
in this experiment. These questions should not be ignored, but the
goal of the experiment is to determine the relationships between ob-

served and computed ocean surface currents.





