Thomas R. Hayden for the degree of \qquad Master of Science
in \qquad Fisheries presented on \qquad December 12, 1986.

Title: Simulation of Environmental, Biological, and Fisheries Effects on Yields of English sole (Parophyrs vetulus) off Oregon and Washington

Abstract approved:

Redacted for privacy

Albert V. Tyler

English sole is a major contrịbutor to Oregon and Washington groundfish resources. In accordance with the continued trend of increasing fishing effort, in 1975 Oregon State University Sea Grant funded an extensive groundfish research program: the Pleuronectid Project. The purpose was to provide information to assist resource management agencies. This thesis is a computer simulation of potential yields of English sole in the International North Pacific Fisheries Commission (INPFC), Columbia and Vancouver Areas, and is one of the steps in the project.

To initiate this study, non-linear equations were fit to data on trawl selectivity, catch utilization, seasonal growth, and length at maturity. The computer simulation model, ENGLSH, was used to integrate these parameter estimates and other valid information. The model was used to examine effects on yields of varying growth and recruitment rates, ogive and knife-edge instantaneous fishing (F) and discard mortality rates, and migration, and estimate maximum sustainable yield (MSY).

Model validation suggests that Oregon Department of Fish and Wildlife groundfish surveys overestimate recruitment biomass. The simulation model also indicates that E. A. Best's (1961) 5.5-inch mesh Ogive approximates annual fleet selectivity in Pacific Marine Fisheries Commission Area 3A during years 1969 to 1979. A small amount of ogive discard mortality, less than ten percent of the applied F, reduces optimum F by at least 0.5 .

Natural variability in growth rate, with half the coefficent of variation of natural variability of recruitment rate, produced double the variation in yield. Most of this difference may be explained by the synchronous effect of varying growth over all cohorts in the event year, versus the recruitment effect being dampened by all other cohorts in the population in that year. On the other hand, when maximum and minimum observed deviations in growth or recruitment were made to persist over years, recruitment produced over a 1000 metric tonnes (t) deviation from mean yield while maximum and minimum growth produced an approximate 75 t deviation. This high yield is consistent with the yields observed in commercial catches off Oregon and Washington from the 1961 year class.

MSY is currently estimated at 1850 t and 2500 t for mean cohort analysis and groundfish survey recruitment respectively. Considering (a) that the model indicates that survey recruitment estimates are too high, and (b) that MSY estimates excluded discard mortality for ages 1-3, 1850 t should be considered the upper limit of potential yield for the INPFC Columbia-Vancouver Areas.

Simulation of Environmental, Biological, and Fisheries Effects on Yields of English sole (Parophyrus vetulus) off Oregon and Washington

by

Thomas R. Hayden

A THESIS
submitted to

Oregon State University

> in partial fulfillment of
> the requirements for the
> degree of

Master of Science
Completed December 12, 1986
Commencement June 1987

APPROVED:

Redacted for privacy

I

Professor of Fisheries in charge of major

Redacted for privacy

Head of Départment of Fisheries and Wildife

Redacted for privacy

 Dean of Graduate School
ACKNOWLEDGEMENT

I would like to thank Albert V. Tyler, my Major Professor. I can't find words to express the appreciation and respect I have for this man. I think it takes an extra special human being to guide returning graduate students, and Al has an abundance of the necessary traits.

Next I'd like to thank all those helpful people in the Oregon State University faculty and staff. Especially those in the Fisheries and Wildlife and Graduate School Departments, who helped make it easy for returning graduate student, husband and father to accomplish this.

I'd like to thank my parents Thomas D. and Elaine A. Hayden who taught me many of lifes valuable lessons, provided personal and financial assistance and passed on their energy, enthusiasm and the will to do what you think is right; Thanks Mom and Dad!

I also owe a debt to my wife Charlene and children, Oliver and Alicia. They've provided me with help and made sacrifices that only friends and family of graduate students can understand.

I'd like to call recognition to Jane Huyer, Bruce Sheppard, James Hall, Al Tyler and the late Thomas Hoag. Their courses and professional consultations refired my enthusiasm at critical times during this ordeal.

I also owe a professional debt to Robert L. Demory, Gordon H. Kruse, and Eric L. Beals for their assistance in the modeling process. This wouldn't have happened without them.

I thank Oregon State University Sea Grant College program (04-8-M01-144) for funding the majority of this research.

Finally I thank my friends and shipmates in Kodiak, Alaska and especially Captain Robert J. Freeman for helping me to see marine resource management from the fishermans point of view.
INTRODUCTION 1
BACKGROUND MATERIAL 5
Distribution 5
Life History 5
History of Fishery 6
Previous Yield per Recruit Estimates 14
MORTALITY RATES 19
Estimates of age specific fishing and discard mortality 21
Fleet Selectivity 21
Catch Utilization 25
Discard Mortality 27
SEASONAL GROWTH ESTIMATES 29
THE SIMULATION MODEL 31
Geographic Constraints 33
Temporal Constraints 33
Recruitment in the Simulation Model 33
Growth in the Simulation Model 40
Average Annual Length-at-Age 43
Annual Variation in Growth 46
Weight-at-Age 49
Migration in the Simulation Model 50
Maturity 50
Yield in the Simulation Model 52
Calculation of Survival 58
MODELING EXPERIMENTS 60
MODEL VALIDATION 62
RESULTS 65
Validation 65
Yield per Recruit Experiments 73
Estimates of MSY 79
Effects of Varying Growth and Recruitment 80
DISCUSSION 89
Model Costs 89
Model Validation 89
Age Specific Fishing and Discard Mortality 90
Age at Recruitment to the Fishing Grounds 91
Estimates of MSY 91
Variations in Growth and Recruitment Rates 91
REFERENCES 93
APPENDIX 99

LIST OF FIGURES

Figure Page1. Location of International North Pacific FisheriesCommission, Columbia and Vancouver, and PacificMarine Fisheries Commission, 3B, 3A, 2C, and 2B, areas. 2
2. Percentage of age-four and -seven female Englishsole in commercial landings for Pacific MarineFisheries Commission Area 3A.10
3. Number of days till half annual commercial catch of English sole landed for Pacific Marine Fisheries Commission Areas 3A, 3B, 2C, and 2B, years 1971-79.11
4. Monthly percentage of annual commercial landings of English sole for Pacific Marine Fisheries Commission Areas 3B, 3A, 2C and 2B for years 1971-79.12
5. Yield per recruit and fishing mortality rate for three values of M; tp $=4$; tp' $=3.6$; from Ehrhardt 1973.17
6. Yield per recruit and fishing mortality rate for three values of M; $t p=3$; $t p^{\prime}=$ selection matrix; from Lenarz 1978a. 18
7. Selectivity ogives for 4.5, 4.8, 4.9, 5.5 and 5.9-inch mesh cottom cod-ends for female English sole, from E. A. Best's data (1961). 24
8. Catch utilization ogive for female English sole of Oregon trawlers from Pacific Marine Fisheries Commission Area 2B in 1974, from data of TenEyck and Demory (1975). 26
9. 4.5-inch mesh selective (S), Oregon trawl fleet catch discard proportion (1/U) and resultant instantaneous discard mortality rate (D) by length for female English sole off Oregon and Washington, 1969-79. 28
10. Percentage of annual growth versus days of the year for female English sole, from data of Kruse (1978). 30
11. Flow chart of the computer simulation model (ENCLSH) of female English sole in the Columbia Vancouver International North Pacific Fisheries Commission areas. 32

12.	Flow chart of English sole recruitment process in the computer simulation model (ENGLSH).	35
13.	Comparison between natural logarithms of cohort estimates of English sole year-class strength and year-class strength as predicted from the HaymanTyler (1982) barometric pressure model.	37
14.	Von Bertalanffy length-at-age relationship for female English sole off Oregon with and without seasonal variation.	41
15.	Difference approximation of length-at-age relationship for female English sole off Oregon.	44
16.	Flow chart of the English sole growth process in the computer simulation model (ENGLSH).	45
17.	Comparison between observed annual growth increments of age-one female English sole off Oregon and annual growth increments as predicted from the Kreuz et al. (1982) bottom temperature model.	48
18.	Flow chart of the English sole migration (dispersal) process in the computer simulation model (ENGLSH).	51
19.	Percentage maturity with length for female English sole off Oregon, from data of Harry (1959).	53
20.	Flow chart of English sole fishery process in the computer simulation model (ENGLSH).	54
21.	Illustration of knife-edge fishing and discard mortality with length for three possible situations when 50 percent utilization length is less than, equal to, or greater than 50 percent selection (retention) length.	55
22.	Illustration of ogive fishing and discard mortality with length for three possible situations when 50 percent utilization length is less than, equal to, or greater than 50 percent selection (retention) length.	57
23.	Initial response surfaces of yields of female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas with F and M on the x and y axes respectively and mean recruitment estimate from Oregon Department of Fish and Wildlife Groundfish surveys.	66

24. Initial response surfaces of yields of female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas with F and M on the x and y axes respectively and mean recruitment estimate from cohort analysis.67
25. Final response surfaces of yields of female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas with F and M on the x and y axes respectively and mean recruitment estimate from Oregon Department of Fish and Wildlife Groundfish surveys.
26. Final response surfaces of yields of female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas with F and M on the x and y axes respectively and mean recruitment estimate from cohort analysis.
27. 5.5-inch mesh selectivity (S), Oregon trawl fleet catch discard proportion ($1 / \mathrm{U}$) and resultant instantaneous discard mortality (D) by length for female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas, 1969-79.70
28. Yield per million recruits and fishing mortality rate for four values of M; $t p=4 ; t^{\prime}=k n i f e-$ edge (selectivity $=5.5$ and utilization $=3.6$).75
29. Yield per million recruits and fishing mortality rate for four values of M; $t p=1$; $t p^{\prime}=k n i f e-$ edge (selectivity $=5.5$ and utilization $=3.6$).76
30. Yield per million recruits and fishing mortality rate for four values of M; $t p=4$; $t p^{\prime}=$ ogive selection, utilization and discard rates.77
31. Yield per million recruits and fishing mortality rate for four values of M; $t p=1$; $t p^{\prime}=$ ogive selection, utilization and discard rates.78
32. Yield curves and fishing mortality rates for four values of M; $t p=4 ; t^{\prime}=$ ogive selection, utilization and discard; mean recruitment estimated from cohort analysis.
33. Yield curves and fishing mortality rates for four values of M; $t p=4 ; t^{\prime}=$ ogive selection, utilization and discards; mean recruitment estimated from Oregon Department of Fish and Wildlife Groundfish surveys.

Figure

34. Time series of potential maximum yield and annual growth of age-one female English sole in the ColumbiaVancouver, Internatioal North Pacific Fisheries Commission areas.
35. Time series of potential maximum yield and annual recruitment for female English sole in International North Pacific Fisheries Commission Columbia and Vancouver areas. 85
36. Yield curves and fishing mortality rates for five sets of growth and recruitment rates. $M=0.28$; mean recruitment estimated from cohort analysis; $t p=4 ; ~ t p^{\prime}=$ ogive selectivity, utilization and discards.
37. Catch and effort of English sole by Pacific Marine Fisheries Commission area.
38. Percentage age composition of landed female English sole for Pacific Marine Fisheries Commission Area 3A, years 1959-79.
39. Number of Trawl Vessels by length category for the Oregon Groundfish fleet.
40. Number of Trawl Vessels by Horsepower Categories for the Oregon Groundfish Fleet.15
41. Estimates of instantaneous fishing, natural and total mortality rates for female English sole in Pacific Marine Fisheries Commission Areas 3B, 3A, 2C, and 2B.
42. Fifty percent selection lengths of female English sole from E. A. Best 1961 and Westrheim and Foucher 1986.
43. Estimates of thousands of age-four female English sole by method of analysis and Pacific Marine Fisheries Commission Area.
44. Average annual total length (cm) and weight (gm) at age, by Pacific Marine Fisheries Commission Area, of female English sole in the simulation model ENGLSH.
45. Comparison between mean observed age composition of female English sole from Pacific Marine Fisheries Commission Area 3A, years 1969-79, and predicted mean age composition from the computer simulation model (ENGLSH).
46. Mortality rates, migration, and fleet mesh size estimates from validation of the simulation model (ENGLSH), for female English sole in ColumbiaVancouver, International North Pacific Fisheries Commission areas.
47. Predicted mean and observed maximum and minimum deviations in growth for age-one and numbers of age-four female English sole in the ColumbiaVancouver International North Pacific Fisheries Commission areas.

Simulation of Environmental, Biological, and Fisheries Effects on Yields of English Sole
 (Parophrys vetulus)
 off Oregon and Washington

INTRODUCTION

This study uses a computer simulation to examine potential productivity of English sole off Oregon and Washington, Pacific Fisheries Commission Statistical Areas (PMFC) 2B, 2C, 3A and 3B, or International North Pacific Fisheries Commission (INPFC) Columbia and Vancouver Statistical areas (Figure 1). The simulation measures the effects on yield of environmental variations in growth and recruitment, age-specific fishing and discard mortalities and migration within the Columbia-Vancouver area. It also estimates maximum sustainable yield (MSY).

William Lenarz (1978a, 1978b) and Nelson Ehrhardt (1973) have previously modeled portions of the Columbia-Vancouver area. Ehrhardt used a Beverton and Holt yield-per-recruit (Y/R) model of female English sole in PMFC 3B. He concluded that this area was being overexploited during the studied years 1968 to 1970. Lenarz (1978a) examined the female English sole population in PMFC 3A using a Ricker Equilibrium Y / R model. He concluded that this stock was being exploited below MSY based upon parameter estimates from a 1951 to 1970 data base. Lenarz (1978b) also constructed a production model of the same area which also estimated that the fishery was operating below MSY and placed MSY at 862 metric tonnes (t).

Figure 1. The location of the Columbia and Vancouver, International North Pacific Fisheries and 3B, 3A, 2C, and 2B, Pacific Fisheries Commission Statistical Areas.

Oregon State University (OSU) Sea Grant-funded researchers have since compleied studies of the growth (Kreuz 1978; Kreuz et al. 1982) and recruitment (Hayman 1978; Hayman and Tyler 1980; Kruse and Tyler 1983; Kruse 1984) of English sole off Oregon. This information coupled with mesh selectivity (Best 1961), catch utilization studies (TenEyck and Demory 1975), and the Oregon Department of Fish and Wildlife (ODF\&W) groundfish trawl survey data make pos the construction of a new, less constrained fisheries model.

The growth studies of Kreuz and associates (1978, 1982) provide environmentally driven, annually varying, and mean growth models. These works also help eliminate geographic constraints of previous models by providing one growth expression for all four PMFC Areas. Kreuz's (1978) seasonal growth information provides an estimate of average annual length-at-age to accommodate the different timing of fisheries efforts in the Columbia-Vancouver Areas.

The recruitment studies of Hayman, Tyler, and Kruse (1978, 1980 and 1984) provide environmentally driven and mean recruitment estimates as well as estimates of instantaneous fishing mortality (F) and instantaneous natural mortality (M) for PMFC Area 3A. One objective of this research was to examine varying rates of growth and recruitment and what would happen without the extremely good years that occur about once a decade. Another objective was to determine whether recruitment or growth has the greater effect on yield.

ODF\&W groundfish survey results (Barss et al. 1977; Demory et al. 1976; Demory and Robinson 1972; Demory et al. 1978; Barss 1976; Demory and Robinson 1973) provide recruitment, mortality and length-weight parameter estimates for all four PMFC Areas. Their
recruitment data provide information to expand the geographic contraints of the recruitment model to all four PMFC Areas, thus allowing construction of a simulation model of the Vancouver-Columbia Management unit.

The gear savings studies of E. A. Best (1961) provide length-specific fishing mortality information, necessary to measure the full effects of annually varying growth on yield from this management area.

The catch utilization study of TenEyck and Demory (1975) adds length-specific catch utilization to fishing and discard mortalities. These length-specific parameters also increase model sensitivity to growth variations and the resulting effects on yields.

The inclusion of all these biological and fisheries parameters in this simulation removed several constraints which prevented previous models from examining various population parameters and fishery management strategies. Since females constituted over 90 percent of the commercial landings of English sole from 1959 to 1979, the review of general biology and the remainder of this report will be concerned with female English sole unless otherwise specified.

Distribution

English sole have been found from Sebastian Vizcaino Bay, Baja California to Unimak Island in Western Alaska (Forrester 1969). The species is distributed all along the Oregon and Washington coasts and has been found in depths ranging from the surf line to 550 meters (Barss 1976). Commercial fishing and research trawl surveys indicate that English sole shift their depth distribution from shallower water (18-73 m) in the spring to deeper water ($37-91 \mathrm{~m}$) in the winter months (Alverson 1960, Barss 1976). It is generally accepted that smaller English sole, those less than 14 cm total length, inhabit the inshore beaches, bays and estuaries (Pearcy and Myers 1974; Laroche and Richardson 1977; Westrheim 1955; Laroche and Holton 1976), and as they grow older gradually move into deeper offshore waters (Demory 1971; Barss 1976). The occurrence (2 percent of the total catch) of age 1+ fish in the September ODF\&W groundfish surveys confirms that they are recruited to the fishing grounds during their second year of life (age 1+).

Life History

The size and age at 50 percent maturity for female English sole off Astoria is 29.5 cm total length or 4.2 years with 100 percent maturity attained by age five (Harry 1959). Peak spawning for sole off Oregon lasts one to three months within the period of September through April (Kruse and Tyler 1983). It is generally concluded that these fish spawn in water that is deeper (37 to 91 m) than that which is
inhabited during summer months (Demory 1971; Barss 1976; Hewitt 1980).
English sole experience seasonal and annual variations in growth (length at age), with the majority of seasonal growth occuring from April through June (Kreuz 1978). Annual variations in growth of +13 to -17 percent have been observed (Kreuz et al. 1982) and related to bottom temperature (Kreuz 1978). Studies also suggest that growth rate variations are synchronous among ages two through eight (Kreuz et al. 1982) and are similar along the entire Oregon and southern Washington coasts (Kreuz 1978).

Long-distance migrations to Vancouver, Canada and Eureka, California of fish tagged off Oregon and Washington occur (Harry 1956; Pacific Marine Fisheries Commission 1960; Barss 1976), but are sporadic (Ehrhardt 1973). It is felt that the Juan de Fuca Canyon and Blanco Reef present physical obstruction to migration (R. L. Demory, personal communication, 1982) and prevent consideration of the entire INPFC Columbia-Vancouver statistical areas as a management unit or stock as defined by Gulland (1969). The general migratory pattern within this management area is a northern movement in early winter and spring, occupation of the northern area during the summer and a return south in late fall and early winter (Golden et al. 1979).

History of the Fishery

The Oregon-Washington trawl fishery became a viable industry due to thriving food markets created by the World War II armed forces of the United States. Food fish markets declined following the war, and in 1953 Oregon and Washington trawl landings reached a post-war low. The fish market began a slow recovery in 1956, initiated by increasing
demands for non-human use, and by 1960 the trawl fishery had recovered (Harry and Morgan 1963). The market demands continued to dominate commercial landings of English sole for the next two decades (R. L. Demory, personal communication, 1983), with annual landings averaging 1500 t from 1960-79 (Table 1). It is recognized that English sole can sometimes produce an enormous year class that will dominate the fishery for many years. The 1961 year class is an example of such an event and accounted for high landings in 1966. Commercial catch composition records for PMFC Area 3A (Table 2) illustrate that the effects of that year class were visible until 1975 when twice the previous percentage of age-14 fish were observed.

Time series of the age compositions from Area 3A for ages four and seven (Figure 2) illustrate a shift to larger fish in 1968, the time the 1961 year class entered the fishery. This trend persisted beyond the demise of the 1961 year class from the fishery, suggesting the entry of another strong year class and a change in fleet selectivity characteristics. At present, processors impose stricter size limits (12-12.5 inches minimum size) than the ODF\&W pending regulations (R. L. Demory, personal communication, 1982).

Analysis of the seasonality of commercial catches for PMFC Areas $3 B, 3 A, 2 C$, and $2 B$ illustrates that fishing effort in Areas $2 C$ and $2 B$ (Figure 3) is shifting toward the end of the year while Areas $3 B$ and 3A illustrate no trend. A time series of monthly landings for these areas (Figure 4) indicates the efforts in Areas 3A and 3B are similar and low at the beginning and end of the year with the majority of landings occurring in April through October, while Areas 2B and 2C show the opposite effect with peak fishing occurring in October through March.

Table 1. Landed catches (t), effort (t / hr), and nominal ($\mathrm{nt} / \mathrm{hr}$)* for English sole caught in Pacific Marine Fisheries Commission Areas 3B, 3A, 2C, and 2B. Nominal effort was computed from landings where English sole comprises 29 percent or more of catch.

Pacific Marine Fisheries Commission Areas

	3B		3A		2C		2B		TOTAL
YEAR	CATCH	CPUE*	CATCH	CPUE	CATCH	CPUE	CATCH	CPUE	CATCH
1959			618	. 165	19	. 047	49	. 099	
1960	1182	. 120	761	. 167	172	. 081	106	. 129	2221
1961	909	. 100	582	. 124	50	. 073	85	. 097	1626
1962	704	. 120	660	. 126	109	. 082	225	. 175	1698
1963	749	. 098	575	. 117	139	. 114	116	. 097	1579
1964	737	. 094	419	. 137	140	.106	56	. 060	1352
1965	904	. 124	440	. 173	180	. 079	68	. 088	1592
1966	745	. 085	1100	. 228	184	. 096	206	. 209	2235
1967	623	. 106	572	. 161	141	. 090	155	. 123	1491
1968	822	. 109	456	.127	133	. 094	127	. 109	1583
1969	549	. 070	439	. 114	112	. 090	71	. 152	1171
1970	135	. 040	362	. 112	116	. 102	201	.119	814
1971	109	. 030	313	. 097	147	. 102	239	. 125	808
1972	236	. 050	376	. 159	189	. 140	346	. 105	1147
1973	379	. 070	363	. 118	253	. 112	321	. 088	1316
1974	366	. 040	296	. 144	140	. 087	285	.147	1087
1975	486	. 050	372	. 110	305	. 083	293	. 108	1456
1976	684	. 060	921	. 176	299	.134	498	.128	2402
1977	$26{ }^{\text {\% }}$. 040	371	. 122	318	. 102	342	.109	1297
1978	480	. 040	718	. 169	178	. 074	152	. 068	1528
1979	424	. 050	697	. 106	177	. 067	224	. 081	1522

Table 2. Percentage age composition of landed female English sole for Pacific Marine Fisheries Commission area 3A, years 1959 to 1979.

						AGE							
Year	2	3	4	5	6	7	8	9	10	11	12	13	13+
1959	0.3	5.6	19.9	33.6	24.7	7.6	3.5	2.1	1.8	0.8	0.1	0.1	
1960	1.1	9.3	24.9	34.0	20.6	5.1	2.1	1.3	1.1	0.5	0.1	0.1	
1961	0.1	5.3	20.7	35.4	24.3	6.6	3.0	1.9	1.6	1.0	0.1	0.1	
1962			20.9	29.7	16.8	8.8	5.2	5.2	0.8				
1963	0.2	5.3	20.6	31.3	23.3	8.5	3.0	3.4	3.4	0.9			
1964	0.6	7.3	21.5	33.4	23.4	6.8	3.0	1.7	1.5	0.7	0.1		
1965	0.7	9.5	26.0	32.9	20.2	5.0	2.2	1.4	1.2	0.7	0.1		
1966	0.4	4.0	26.9	43.6	12.2	7.5	1.9	1.7	1.3	0.7			0.1
1967	0.3	5.1	15.6	29.1	34.6	7.5	3.8	1.7	1.1	0.9	0.2	0.1	0.1
1968	0.2	5.1	15.4	17.8	21.2	27.0	7.0	3.3	1.4	0.9	0.5	0.1	0.1
1969	0.1	8.0	18.5	25.1	13.2	16.4	11.9	3.5	2.0	0.6	0.5	0.3	0.1
1970		4.6	17.2	23.5	20.4	12.6	8.9	7.8	3.0	1.3	0.5	0.3	0.1
1971		3.5	14.5	34.6	20.3	12.6	4.6	3.7	3.9	1.4		0.6	0.4
1972		1.2	10.8	21.7	22.3	13.7	11.2	5.4	3.7	4.9	1.3	1.1	0.2
1973		6.9	18.5	29.1	16.7	15.3	6.9	3.7	1.2	1.1	0.3	0.2	0.2
1974		2.8	18.1	21.6	24.2	11.3	10.3	8.2	3.1	1.9	0.5	0.7	0.3
1975		1.8	9.5	24.6	22.6	15.8	8.6	9.2	3.7	1.5	1.3	0.4	0.9
1976		2.8	17.0	29.0	18.0	15.0	10.0	7.5	3.2	1.8	1.2	0.4	
1977	0.2	5.0	17.0	19.0	18.0	16.0	10.0	5.0	3.0	3.0	2.0	0.3	1.1
1978		1.4	6.9	23.1	20.9	17.7	17.0	7.7	3.1	0.8	0.8	0.3	0.3
1979	0.1	0.8	9.9	22.4	25.4	18.6	9.6	6.4	3.9	1.9	0.5	0.2	0.2

Figure 2. Percentage of age-four and -seven female English sole in Commercial landings from Pacific Marine Fisheries Commission Area 3A, years 1959-79.

Figure 3. Number of days till half annual commercial catch of English sole landed for Pacific Marine Fisheries Commission Areas 3B, 3A, 2C, and 2B, years 1971-79.

Figure 4. Average percent of annual commercial landings by month of English sole for Pacific Marine Fisheries Commission Areas 3B, 3A, 2C, and 2B, years 1971-79.

A record catch of 2400 t was landed in Oregon and Washington in 1976 (Figure 2). Demory attributes this to a relatively good market and large fleet size.

The fleet grew in numbers, size and horsepower during the 1970's (Tables 3 and 4). The type of vessel also changed in the 1970's from the converted wooden vessels characteristic of the 1950's and 1960's to the new steel vessel built specifically for trawling. This change was accompanied by refinements in gear and advances in electronic fishing equipment (W. H. Barss, personal communication, 1982).

Characteristic of most trawl fisheries is the practice of discarding of unmarketable fish at sea. Herrman and Harry (1963) noted that in 1950 half the catch by trawlers off Oregon was discarded at sea. TenEyck and Demory (1975) examined catch aboard Oregon trawlers off Newport, Oregon and estimated that age at 50 percent utilization for female English sole was 3.6 years. They reported that 4.5 -inch mesh size was most frequently used by the commercial vessels they studied in 1974.

In June 1978 trawl grounds off British Columbia were closed to
U. S. fishermen, forcing many Washington fishermen into waters off their state. The results of this and the increasing Oregon fleet has created a trawl fleet off Oregon and Washington capable of overexploiting the existing resources and causing concern to fishery management administrators.

Previous Yield Per Recruit Estimates

The first published estimates of yield-per-recruit for English sole off Oregon and Washington were conducted by Ehrhardt (1973) on the

Table 3. Number of trawl vessels by length catagories for the Oregon groundfish fleet.

Length in feet

	Length in feet									
	Number of boats	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	>90		
Time period	24	0	2	11	10	1	0	0		
Before 1944*	$2444-1956^{*}$	30	0	3	8	10	7	1	1	
$1970+$	36	1	4	10	14	7	0	0		
19780	81	5	11	22	21	19	1	2		
19790	109	3	11	28	26	33	6	2		
1982^{\wedge}	152									

* From Harry (1956)
+ Data incomplete, no length data available for 28 vessels
© Boats making more than five trips
- 152 vessels make one or more landings in 182

Table 4. Number of trawl vessels by horsepower catagories for the Oregon groundfish fleet.

	Number	$1-$	$100-$	$200-$	$300-$	$400-$	$500-$	$600-$	
Time period	of boats	-99	199	299	399	499	599	699	>700

$1943-1954$	54	6	40	6	1	1	0	0	0
$1978 巴$	81	3	24	17	28	3	4	1	1
$1979 巴$	110	0	27	23	42	10	5	1	2
$198-*$	152								

© Boats making more than five trips.

* 152 vessels made one or more landings in 1982.
female English sole in PMFC Area 3B. He used a Beverton and Holt method and applied his estimates of the Von Bertalanffy growth, F, M and set age at recruitment to the fishing ground or age at entry to the area where fishing is in progress ($t p=3.6$), and recruitment to the fishery or age at becoming vulnerable to the fishing gear (tp'=4.0). His growth estimates came from interopercula agings of 1960 to 1961 commercial catch samples, and estimates of F and M from 1967 to 1970 Washington Department of Fisheries tagging data. The resultant yield-per-recruit curves (Figure 6) suggested that F should be reduced from 0.90 to 0.75 or tp' increased from 4.0 to 5.5 years. The other yield-per-recruit estimate of English sole off Oregon and Washington was done by Lenarz (1978a) for female fish in PMFC Area 3A. He used the Ricker method which allowed him to incorporate his estimates of age-specific fishing mortality, along with growth and mortality estimates from Demory et al. (1976) and catch utilization rates (TenEyck and Demory 1975). He estimated age-specific fishing mortality by using the ratio of cohort estimates of F at age for the years 1957 to 1965. He set tp at 3.0 years and using Leslie Matrix, his selectivity operated over ages three to five. Results from his analysis (Figure 7) suggest that the fishery was operating below MSY at that time and his selectivity data suggested that an increase in mesh size would produce a small increase in yield.

Figure 5. Yield per recruit and fishing mortality rate for three values of M; $t p=4 ; t^{\prime}=3.6$; from Ehrhardt 1973.

Figure 6. Yield per recruit and fishing mortality rate for three values of M; $t p=3$; $t p^{\prime}=$ selection matrix,; from Lenarz 1978a.

MORTALITY RATES

The mortality rates which are available for English sole off Oregon and Washington are presented in Table 5. Ehrhardt selected his mortality estimates by comparing variability among six sets of data using four different recapture models from Washington Department of Fisheries tagging studies conducted in 1966 to 1969. Hayman estimated instantaneous total mortality (Z) using catch curve analysis of commercial catch data (1971 to 1974) and ODF\&W estimate of instantaneous fishing mortality (F). These analyses estimated average F for these years at 0.293 for PMFC 3A. ODF\&W estimates of \mathbf{Z} were derived using the Robson and Chapman (1961) method. They computed F using their estimates of exploition rate (u), Z and annual total mortality (a) (Barss et al. 1977).

The estimates of 2 by Ehrhardt for Area 3B are noticably different from those of Barss (Table 5). The fishing effort that was higher in Area 3B during Ehrhardt's study period 1967 to 1970 than during the groundfish surveys of 1975 and 1976 (Table 1) explains some of this difference. Commercial catch records illustrate that effort was half again higher in Area 3B during 1967 to 1970 than in 1975 and 1976. This suggests that the fishing mortality component of Z would account for half of the difference and the remainder (approximately O.1) could be due to observational bias in the studies.

Comparing area estimates of 2 from ODF\&W suggests that there was little difference between PMFC Areas $3 A, 2 B$, and $2 C$, while $3 B$ was about half again higher. This difference suggests either that F was higher, or that southward spawning migration had begun by the September survey period and influenced the age compositions in Area 3B. These two

Table 5. Estimates of instantaneous fishing (F), natural (M), and total (Z) mortality rates by Pacific Marine Fisheries Commission Area, year, and source.

PMFC	MORTALITY ESTIMATES				
AREA	Z	M	F	YEAR	SOURCE
3B	$\begin{aligned} & 1.04 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.21 \end{aligned}$	$\begin{aligned} & 1967-1970 \\ & 1975 \& 1976 \end{aligned}$	Ehrhardt 1973 Barss et al. 1977
3A	$\begin{aligned} & .494 \\ & .43 \end{aligned}$	$\begin{aligned} & .201 \\ & .24 \end{aligned}$	$\begin{aligned} & .293 \\ & .19 \end{aligned}$	$\begin{aligned} & 1963-1972 \\ & 1971,73,75 \& 76 \end{aligned}$	$\begin{array}{ll} \text { Hayman et al. } & 1980 \\ \text { Demory et al. } & 1976 \end{array}$
2 C	. 48	.41	. 07	197181973	Demory et al. 1976
2B	. 48	. 21	. 27	1972\&1974	Demory et al. 1976

possiblities were examined during the model validation.

Estimates of Age Specific Fishing Mortality

Trawl fisheries are characterized by at-sea sorting and discarding of unwanted species. This presents problems when modeling at-sea and landed catches and accounting for deaths in the population due to discards. For this study, it was decided that these mortalities would be modeled with length-specific rather than age-specific parameters. To incorporate length-specific fishing mortality into the model and measure the effects of varying growth rates on yield, it was necessary to include length-specific fleet selectivity, and catch utilization and discard rates (Gulland 1969).

Fleet Selectivity

Fleet selectivity, also referred to as recruitment, is that portion of the population entering the exploited phase or becoming vulnerable to the fishing gear. This "recruitment" denoted as tp' by Beverton and Holt (1957) will be refered to as "fleet selectivity" in this study. The gear savings studies of E. A. Best (1961) provide the only available data on trawl selectivity for English sole. His 4.5-, 4.8-, 4.9-, 5.5- and 5.6-inch mesh data were used to develop the mesh selectivity models. These data were standardized using a method described on pages 222-233 in Beverton and Holt (1957). Best's study was conducted using otter trawls constructed of cotton rather than synthetic materials. It was assumed that the ogives fitted to these data were similar in shape to synthetic mesh ogives and would give a realistic representation of the fleet selectivity. Another study was
carried out using length and girth (Westrheim and Foucher 1986), and comparison of their 50 percent retention lengths with those of Best's (Table 6) suggest the cotton ogives retain smaller fish than equal mesh length trawls of current synthetic materials.

The model selected to represent fleet selectivity is a two parameter logistic equation,

$$
\begin{equation*}
s(L)=1-\frac{1}{1+e} \tag{1}
\end{equation*}
$$

where $s(L)$ is that portion of total F (Gulland 1969) or F^{∞} (Beverton and Holt 1957) selected from the fish population entering the trawl, S1 and S2 are parameters, and L is the total fish length (cm).

SPSS NONLINEAR regression (Robinson 1977; Nie et al. 1975) was used to estimate parameters for the fleet selectivity model. The regressions were weighted by the number of observations at each length to give more emphasis to those lengths with more observations and the inverse for lengths with few observations. The regressions were allowed to default to iterative termination tolerance limit 1 (maximum iterative relative change in parameters is less than 1.5×10^{-8}), numerical estimation of derivatives, Marquardt curve-fitting algorithm and maximum number of iterations was set at 25.0. Graphical estimations were used for initial parameter values. Equation 1 was altered to accommodate the curve fitting requirement that all initial parameter values be equal in order of magnitude. The proportions selected for various trawl mesh sizes were regressed with fish total lengths. The estimated fleet selectivity curves and parameter estimates are presented in Figure 7.

Table 6. Fifty percent selection or retention lengths of Cod-ends used for female English sole from E. A. Best (1961)@ and Westrheim and Foucher (1986)*.

Mesh size (inches)	50% selection@ length	50% retention* length
5.0		34.3
5.5	33.6	38.1
5.6	35.5	
5.9		44.5
6.0		

(e E. A. Best measured total length.

* Westrheim and Foucher measured fork length.

Figure 7. Adjusted ogives for cotton cod-ends used on female English sole, from E. A. Best, 1961.

Catch Utilization

The catch utilization study of TenEyck and Demory (1975) is the only study available regarding at-sea sorting, characteristic to this fishery. The same logistic model,

$$
\begin{equation*}
u(L)=1-\frac{1}{1+e} \tag{2}
\end{equation*}
$$

was used to represent proportional length-specific fleet utilization, where $u(L)$ is proportion of at sea catch landed, U1 and U2 are parameters and (L) is as discribed above. The model parameters were estimated using a unweighted version of the SPSS NONLINEAR procedure previously discribed, and the resulting model and parameter estimates along with the observed points are presented in Figure 8. It was assumed that fleet selectivity and catch utilization occurred over the same range of ages (lengths); consequently commercial landings reduced each year class by the factor

$$
e^{-s u F}
$$

where s is age (length) specific fleet selectivity, u is age (length) specific catch utilization, and F is instantaneous fishing mortality. This represents the portion of those fish entering the net which are retained, and of those, the portion of legal and or marketable size landed.

Figure 8. Catch utilization ogive for female English sole caught by Oregon trawlers, data from TenEyck and Demory 1975.

Discard Mortality

Discard mortality is related to fishing mortality and fleet selectivity and inversely related to utilization. The equation for proportional fleet discards is the reciprocal of catch utilization. Consequently equation 2 becomes

$$
\begin{equation*}
d(L)=\frac{1}{1+e^{-(D 1-D 2)} L} \tag{4}
\end{equation*}
$$

where $d(L)$ is the proportion of those fish caught by the net and discarded at sea, D1 and D2 are parameters and (L) is as explained above. The parameter estimates for $U 1$ and $U 2$ from the catch were substituted in the discards model for D1 and D2. Discarding reduced each year class by the factor

$$
e^{-a s d F}
$$

as a result of capture and discard of undersized or unmarketable fish before they enter the acceptable size range. The term 'a' included in equation 5 is the fraction of discarded fish that die. It was assumed that $a=1.0$ unless otherwise specified and s is length-specific fleet selectivity, and d is length-specific fleet discarding as before. Discard. mortality is illustrated in Figure 9 using 4.5-inch selectivity, equation 4 and assuming $a=1.0$. This illustrates that discarding mortality, when fleet selectivity is 4.5 -inch as observed by TenEyck and Demory (1975), removes significant portions of fish at lengths 24-35 cm or corresponding ages three (3) to five and a half (5.5).

Figure 9. Ogive fleet selectivity (S) (tp' $=4.5^{\prime \prime}$ mesh), discards $(1 / U)=$ (1/utilization), and instantaneous Discard Mortality (D) as a fraction of total F or F^{∞}, for female English sole off Oregon and Washington.

Abstract

Seasonal variations in growth of English sole in Puget Sound, Washington were discovered by Sayed El Sayed (1959). However, due to incomplete sampling, he was unable to determine the exact time when growth was most active. Keith Kreuz (1978) examined seasonal variation in growth of English sole off Astoria, Oregon using variation in length of interopercular bones, which is linearly related to total length (El Sayed 1959; Smith and Nitsos 1969). Kreuz averaged seasonal variation over age and presented his results as monthly percentage of annual growth (Figure 6 in Kreuz 1978, p. 52). His data were converted to accumulative percentage of annual growth to develop a seasonal growth model. Another logistic equation,

$$
\begin{equation*}
P(t)=1-\frac{1}{1+e^{-(G 1-G 2) t}} \tag{6}
\end{equation*}
$$

was selected for these data, where $P(t)$ is percent of total annual growth, G1 and G2 are parameters and t is accumulative time in days.

Unweighted SPSS NONLINEAR curve fitting was used to estimate the parameters for the seasonal growth model (equation 6) with NONLINEAR operating as before. The model, parameter estimates, and observed and predicted percentage of annual growth are presented in Figure 10.

Figure 10. Percentage of annual growth versus days of the year for female English sole, data from Kruse (1978).

THE SIMULATION MODEL

A simulation model may be constructed of sets of equations representing the observed phenomena in the fish population. This allows the scientist to model the system, examine the sensitivity of the equations to determine their importance, and suggest future research.

The computer simulation model, ENGLSH, was constructed for use in answering the questions proposed in this study. It was written in FORTRAN V and uses the Simulation Control Language SIMCON (Beals 1981; Hilborn 1973) to operate on the Oregon State University (OSU) CDC Cyber 70, model 73. SIMCON was used to facilitate program debugging, eliminate input/output programming, and allow access to and changing of every variable within the program. To reduce operator and computer time, a second Fortran V version of the model, ENGLISH, was written for use in experiments requiring numerous population variable changes

The model logic (Figure 11) began with the assumption that the majority of recruitment (numbers of age-4 fish entering the model) takes place in a brief period at the beginning of the simulated year. This number was either set at an annual average value or varied estimated from a time series of environmental data. Mean length and weight at age was calculated next and was also either set at annual averages or varied related to another time series of environmental data. The next step determined whether fish were mature and able to participate in migration, or were immature and would remain in rearing areas. Fishing occurred next, with selection of those fish large enough to be caught by the fleet. From these were calculated the numbers, weights, landings and discards. The last step calculated the

Figure 11. Flow chart of the computer simulation model (ENGLSH) of female English sole in the Columbia Vancouver International North Pacific Fisheries Commission areas.

numbers and weight of the year's survivors and returned these to the beginning of the next year to be simulated.

Geographic Constraints

The physical boundaries of the models were those of the INPFC Columbia and Vancouver statistical areas (Figure 1). The sub-units of population simulated were the four PMFC statistical areas. These four sub-populations or sub-stocks were modeled separately because of area-specific fisheries and biological characteristics. The sub-stocks were treated separately during all computations illustrated in Figure 15 except for migration which dispersed fish into PMFC Areas according to annual migrational patterns.

Temporal Constraints

All calculations were done in the simulation model on annual time resolution. This assumed the population parameters in the model are annual averages and constant over the year. Numbers, length and weight at age, recruitment, and spacial distributions were computed at the beginning of an annual iteration to represent the average annual population for the ensuing year. The catch, fishing mortalities and natural mortality are assumed to take place simultaneously throughout the year (January through December).

Recruitment in The Simulation Model

Recruitment (tp) as referred to in this study is "the process in which young fish enter the exploited area and become liable to contact with the fishing gear" (Gulland 1969), or the process in which young
fish "enter the area where fishing is in progress" (Beverton and Holt 1957). Biological information suggests that English sole enter the exploited area during their second year of life (age 1+); however, estimates of numbers of age-one through age-three fish or natural mortality for these ages were not available. Recruitment in the following section refers to numbers of age-four fish (fish beginning their 5 th year of life) entering the exploited biomass.

The recruitment section of the simulation model was developed to provide measurement of the effects of varying recruitment and to scale the model to allow estimates of MSY for the Columbia and Vancouver management area. Given the recruitment estimates available from cohort analysis (Hayman 1978), ODF\&W groundfish surveys (unpublished manuscript, R. L. Demory, Newport, Oregon, ODF\&W offices) and as a function of barometric pressure (Hayman and Tyler 1980), the logical flow for recruitment in the simulation model was conceptualized as in Figure 12.

The recruitment section logic offers a choice of four regimes, mean (Figure 12, step 5) or annually varying (step 2) cohort analysis derived estimates, or mean (step 6) or annually varying (step 3) survey (ODF\&W) derived estimates. The cohort-based estimate of varying recruitment (step 2) for Area 3 A uses the functional model, (Point A) of Hayman and Tyler (1980). Their model is

$$
\begin{equation*}
\ln (R)=5.60+(.00712) x(i) \tag{7}
\end{equation*}
$$

where $\ln (R)$ is the natural \log of thousands of age-four fish in PMFC $3 A$, and x (i) is mean barometric pressures from September and October year (i). This equation was log transformed and the decimal place of

Figure 12. Flow chart of English sole recruitment process in the computer simulation model (ENGLSH).

the nonexponential constant moved to the right to change the estimate from thousands to unit numbers of fish. The transformed model is

$$
\operatorname{Rc}(t)=270426.41 \mathrm{e}^{.00712(\operatorname{baro}(\mathrm{t}-\mathrm{T})}
$$

where $\operatorname{Rc}(t)$ is the number of age-four female English sole in Area 3 A at year (t) and baro($t-T)$ is the sum of monthly mean barometric pressures for September and October from $46^{\prime} \mathrm{N} 124^{\prime} \mathrm{W}$ at time $\mathrm{t}-\mathrm{T}$ where t is the simulation year and T is four years hence. The 30-year recruitment time-trends for Area 3 A are presented in Figure 13 along with the cohort analysis estimates of recruitment for 1959 to 1974. These estimates suggest several consistently strong year classes entering the fishery during the early 70's or a positive divergence of the cohort estimates from the predicted model.

The mean cohort-based recruitment estimate for Area 3 A was calculated from the 30 years, 1951 to 1980, "predicted" by the Hayman-Tyler model (equation 8). Use of this model allowed standardization of the mean and the variations of recruitment in the simulation model to the thirty-year data base rather than the eleven years from Hayman's cohort analysis. It allowed direct comparison of yields with varying and mean recruitment estimates.

To attain annually varying survey-based recruitment estimates for PMFC Area $3 A$, the Hayman-Tyler model (equation 8) was adjusted by a constant. This constant was the difference between ODF\&W groundfish survey and the Hayman-Tyler predictions for the same years and area. The survey estimate recruitment at $3,504,000$ in September was adjusted to numbers in January ($4,751,000$) using negative exponential survival

Figure 13. Comparison between natural logrithms of cohort estimates of English sole year-class strength and year-class strength as predicted from Hayman-Tyler (1982) barometric pressure model.

with $Z=.43$ (Demory et al. 1976). The resulting proportional difference was 1.422 and equation 8 becomes

$$
\begin{equation*}
\operatorname{Rs}(t)=1.4225\left(270426.41 \mathrm{e}^{.00712(\operatorname{baro}(\mathrm{t}-\mathrm{T}))}\right) \tag{9}
\end{equation*}
$$

where $\operatorname{Rs}(t)$ is the survey-based number of age-four fish recruited to PMFC Area 3A, and e and baro(t-T) were explained above. This model provides survey-based varying (Step 3) recruitment estimates from the same 30 -year data base and a survey-based mean recruitment.

The recruitment estimates for Area $3 A$ were expanded using relative abundances between PMFC areas observed during ODF\&W ground fish surveys 1971 to 1976 (Table 7). The general model conceived was a proportional adjustment relative to these (Table 7) abundances. These figures were somewhat complicated by the logistics of these data collections. Areas $3 B, 2 C$, and $2 B$ were surveyed in their entirety during the years listed (Table 7); however, the southern half of 3A was surveyed in 1971-73 and the northern in 1975-76. To adjust for the among-year environmental variability, the following expression was conceived,

$$
\begin{equation*}
R s^{*}(j, t)=\operatorname{Rs}(j, t)+\frac{R 3 A-R 3 A(t)}{R 3 A} \times \operatorname{Rs}(j, t) \tag{10}
\end{equation*}
$$

where $R s^{*}(j, t)$ is survey recruitment estimates for PMFC Area j for year t with environmental variation removed, R3A is mean recruitment for Area 3A for years 1959-1980 from the Hayman-Tyler model (equation 9), R3A(t) is predicted recruitment in PMFC Area 3 A also from the Hayman-Tyler model for year t, and $R s(j, t)$ is the ODF\&W estimated recruitment for PMFC Area j in year t. These adjusted estimates,

Table 7. Estimates of thousands of age-four female English sole by method of analysis and Pacific Marine Fisheries Commission Area (PMFC).

PMFC Area	SURVEY'@' 1971-76	SURVEY'\&' 1971-76	COHORT'*' $1951-80$	SURVEY' 1951-'
3B	2573	2300	2279	3291
3A	3504	3161	3102	4482
2C	2582	2410	2286	3303
2B	2099	2289	1858	2685

'@' Oregon Department of Fish and Wildlife (ODF\&W) groundfish survey biomass estimates for September during years 1971 through 1976.
'\&' ODF\&W estimates adjusted for between-year environmental variability, using Hayman-Tyler (1982) barometric-pressure model.
'*' Mean cohort-based estimates for PMFC Area 3A from Hayman-Tylers model for simulated years 1951 to 1980, adjusted to remaining PMFC Areas using proportional differences of survey estimates.
'+' Mean survey-based estimates adjusted as described in '*'.
averaged, produced the single estimate of relative abundance for years 1971 to 1976.

The recruitment estimates for Area 3A were expanded to PMFC Areas $3 B, 2 C$, and $2 B$ using the adjusted abundance estimates from ODF\&W (Table 7) and assuming that these relative abundances held constant within the simulated area and time span. It appeared that this population (Vancouver-Columbia) met these assumptions as there were no significant trends in the cohort estimates of population (Figure 13) or commercial catch (Table 1). The model used to extend recruitment estimates over PMFC areas is

$$
\begin{equation*}
R(j, t)=R s^{*}(j, t)+\frac{R 3 A(t)-R 3 A}{R 3 A} R s^{*}(j, t) \tag{11}
\end{equation*}
$$

where $R(j, t)$ is the number of recruits in the PMFC area j at year t and $R s^{*}(j, t), R 3 a(t)$ and $R 3 A$ are the same as in equation 10. Equation (12) was used to estimate mean and varying numbers of recruits for Areas 3B, 2 C , and 2 B at Steps 4,5 , and 6. The mean recruitment for PMFC areas $3 B, 3 A, 2 C$, and $2 B$ for cohort- and survey-based estimates are presented in Table 7.

Growth in the Simulation Model

Growth, or length at age, for English sole has been historically described using a Von Bertalanffy relationship. This relationship provides estimates of length over continuous time as illustrated by the graph of Kreuz's (1978) Von Bertalanffy length-age relationship for female English sole off PMFC Areas 3 A and 2B (Figure 14).

Figure 14. Von Bertalanffy length-at-age relationship for female English sole off Oregon, with (solid line) and without (dashed line) seasonal variation.

AGE

Kreuz (1978) and El Sayed (1959) observed that English sole experienced seasonal variations in growth rates in their respective areas of study. If the seasonal variation in growth (equation 6) is combined with the Von Bertalanffy length-at-age, it produces a new continuous representation of length-at-age also illustrated in Figure 14. Seasonal growth affects yields from a model with annual resolution if the fishery timing is not constant or symmetrical over the year. As an example, if the fishing were concentrated during the first quarter of the year and the traditional Von Bertalanffy expression were used to estimate length at anniversary ages (i) plus a quarter year (i.25) then resulting population biomass and yield would be overestimated. This is illustrated by Figure 14 where less than ten percent of the growth has occurred during the first quarter whereas the traditional Von Bertalanffy expression, the dashed portion of Figure 14, would estimate length at age (i.25) approximately twenty five percent of annual growth. The converse would also be true if the fishery were concentrated in the last quarter of the year. Consequently Kreuz's seasonal variation was incorporated in this growth model to estimate more accurately the yields from the four PMFC areas modeled, as temporal distribution of effort in these fisheries was not equal.

To account for annual deviations in growth observed by Kreuz et al. 1982, the oscillating curve (Figure 14) must be displaced by some environmentally determined amount, and this resultant growth or length-at-age accumulated over years. This means a cohort may maintain a positive or negative deviation from average length-at-age for several years as a result of a single large deviations in growth, or several consecutive small deviations in the same direction.

Average Annual Length-at-Age

The growth models previously discussed all assume growth is a continuous process; however, to model the somatic growth on an annual time resolution requires estimates of average annual length at age. To accommodate this, a difference approximation (Figure 15) is used, where each step represents an average annual length at age over that year. The location of these steps was determined according to change in bottom temperature and seasonally adjusted to accomodate the timing of the fishery in each PMFC area. With this in mind, along with the goals of providing estimates of the effects of annually varying and seasonal growth, the logical flow for the growth algorithm was conceptualized (Figure 16).

This logic began by computing initial annual length-at-age (Step 8) using the Von Bertalanffy expression,

$$
\begin{equation*}
L(t)=L \max (1-e)^{k(t-t n o t)} \tag{13}
\end{equation*}
$$

where Lmax $=43.00 \mathrm{~cm} ., \mathrm{k}$ is $.266, \mathrm{t}$ is fish age in years and tnot is -0.152 (Kreuz 1978). This is used to compute annual anniversary length and growth at age. This is followed by offering a choice (Step 8) of environmentally varying (Steps 11 through 13) or fixed annual growth (Steps 9 and 10).

To compute annual average growth and length-at-age (Steps 9-10 and 14-16), Kreuz's seasonal growth equation 6 (Step 14) adjusts the growths to coincide with the timing of the fishery by PMFC area. It was assumed that the distribution (temporal) of effort among PMFC areas was symetrical. This allowed the use of the number of days till half

Figure 15. Difference approximation of length-at-age relationship for female English sole off Oregon.

Figure 16. Flow chart of the English sole growth process in the computer simulation model (ENGLSH).

of that year's catch was landed to estimate that portion of annual growth (equation 6) that would coincide with the PMFC area's fishery. This was used to estimate average area-specific annual growth which was combined (Step 15) with the previous year's final length to estimate the year's average length-at-age (Step 16) Table 8.

Annual Variation in Growth (Length-at-Age)

Variable growth was computed using 30 years (1951 to 1980) oceanographic data (Point E, Step 11) and the varying growth model of Kruez et al. (1982)(Step 12, Point F). Their equation is

$$
\begin{equation*}
\operatorname{VG}(t)=b+a(B T(t)), \tag{14}
\end{equation*}
$$

where VG(t) $=$ the annual growth increment (cm) for age-one female English sole in year $(t), b=17.06$ and $a=-1.32$ and $B T(t)$ is monthly mean temperature in degrees centigrade at the 100 -meter isobath off Newport, Oregon, at year (t). Bottom temperature is a function of sea level (Step B) as expressed by

$$
\begin{equation*}
B T(t)=b+a(S L(t) / c), \tag{15}
\end{equation*}
$$

from Kruse (1980), where $B T(t)$, ($a=9.0841$) and ($b=-9.1761$), (c) converts sea level in feet to meters, and $\operatorname{SL}(\mathrm{t})$ is monthly mean sea level in June from Neah Bay, Washington in feet below mean low low water on year (t). Results from the varying growth model for the 30 years of data 1951 to 1980 are presented in Figure 17 along with the eleven years of observed growth increments for age one for years 1961 to 1971. Comparison of these data suggest that the model estimated annual variation with a considerable degree of accuracy. It can be

Table 8. Average annual total length (cm) and weight (gm) at age , by Pacific Marine Fisheries Commission area, of female English sole in the simulation model (ENGLSH).

	Pacific Marine Fisheries Commission Areas							
		3B		3A		2 C		2B
AGE	LEN.	WT.	LEN.	WT.	LEN.	WT.	LEN.	WT
0	8.17	4.80	7.33	3.45	8.44	3.10	8.53	3.22
1	16.67	42.23	16.13	38.19	16.85	32.59	16.91	32.98
2	22.82	109.97	22.40	103.91	22.96	93.32	23.00	93.87
3	27.53	194.82	27.21	188.00	27.64	175.35	27.67	176.00
4	31.15	283.90	30.90	277.02	31.23	265.61	31.25	266.19
5	33.91	367.75	33.73	361.83	33.96	353.19	34.00	354.61
6	36.04	442.78	35.89	437.19	36.08	433.95	36.10	434.76
7	37.66	506.28	37.55	501.79	37.70	503.85	37.71	504.30
8	38.91	559.26	38.82	555.33	38.94	562.46	38.95	562.95
9	39.86	601.93	39.80	599.17	39.89	610.50	39.89	609.98
10	40.60	636.64	40.55	634.25	40.61	648.79	40.62	649.33
11	41.16	663.78	41.12	666.01	41.17	679.72	41.17	679.72
12	41.59	685.15	41.56	687.99	41.60	704.16	41.60	704.16
13	41.92	701.85	41.90	700.93	41.93	723.34	41.93	723.34

Figure 17. Comparison between observed annual growth increments of age-one female English sole off Oregon and annual growth increments as predicted from the Kreuz et al. (1982) bottom temperature model.

YEAR
that this accuracy will hold for the years preceeding and following the observed growth. The next step (13) converted growth of age one to the older ages. Kreuz et al. (1982) determined that the annual variations in growth increment were synchronous over ages one through eight. Consequently, the growth for succeeding ages was computed using proportions of the growth of age-one fish. The next step (15) in the growth algorithm involved keeping a record so the annual deviations in growth accumulate over time. This was accomplished by keeping track of annual length-at-age and updating this record annually with that year's increment in annual growth.

Weight-at-Age

The last step (17) converted length to weight-at-age. The four length/weight studies in the literature for English sole off Oregon and Washington used the allometric growth equation,

$$
W=a L^{b}
$$

where, W is weight, L is length, (a) is a constant and (b) is relative growth constant. The estimates selected for this simulation are those of Demory et al. (1975) and Barss et al. (1976) which were made from samples taken during the groundfish surveys conducted during September 1971 to 1976 from PMFC Areas 2B, 2C, 3A, and 3B. Both these authors examined portions of PMFC 3A; however Barss's survey (1975-76) covered the majority of 3A. Consequently, his estimates ($a=.007965, b=3.04795$) were used for $3 B$ and $3 A$, and Demory's $(a=.0021984$ and $b=3.4004)$ for 2C and 2B. The average annual weight at age by PMFC Area are presented in Table 8.

Migration in the Simulation Model

Migration in this simulation was handled at two levels, the Columbia-Vancouver management unit as the maximum range, and the PMFC areas as sub-units. The Columbia-Vancouver management area was the geographic limit of this simulation and was assumed closed or with balanced emigration and immigration. Personal communications with R. L. Demory and early tagging reports (Anonymous 1960) which estimate emigration and immigration rates at less that five percent support this assumption. The migration within the Vancouver-Columbia area was studied by Ehrhardt (1973) and Golden et al. (1979), and describe general northward movement in winter and spring followed by southern movement in the fall. To simulate this migration on an annual time resolution required simplification of the movement into mature fish congregating in a common spawning area at the beginning of the year and then being proportioned to PMFC areas (Figure 18) for ensuing fisheries. The redistribution proportions were determined during model validation by comparing the simulated output (yield by area) with the mean commercial catch statistics, by operating the model near mean levels of recruitment, growth, and mortality until simulated and actual landed catches were about equal.

Maturity

Mature and immature fish were separated using a length-specific equation fit to the percent-mature-at-length data of Harry (1959). The equation used was

Figure 18. Flow chart of the English sole migration process in the computer simulation model (ENGLSH).

$$
\begin{equation*}
M(L)=1-\quad \frac{1}{1+e^{-(M 1-M 2) L}} \tag{17}
\end{equation*}
$$

where $M(L)$ is percent maturity by length, M1 and M2 are parameters (L) is fish total length (cm). Unweighted NONLINEAR regression was used to fit percent-mature-by-length equation using the previously discribed procedures. Parameter estimates along with the observed and predicted relationships are presented in Figure 19.

Yield in the Simulation Model

Simulated numbers and weight of the commercial landings from the population were the most important outputs. They provided measures of the effects of age-specific fishing and discarding mortalities, varying growth and recruitment rates, migration and estimates of the portion of the population available to society. Yields also provided the majority of comparative information for model validation.

The logic for the fishery portion of the simulation model (Figure 20) begins by offering selection of area-specific fishing mortality rate F. The next logical step (21) offers knife-edge or length-specific (ogive) selectivity, catch utilization, and discards. Knife-edge selectivity, catch utilization, and discards all operate at lengths where 50 percent are selected or retained, utilized or discarded (Step 22). There is no discard mortality (Figure 21) when the 50 percent utilization length is greater than or equal to the 50 percent selectivity length (e.g., fleet is utilizing or landing all fish caught). For those situations where fleet selectivity length is less than fleet utilization length (Figure 21), there is discard

Figure 19. Percent maturity with length for female English sole off Oregon, form data of Harry (1959).

Figure 20. Flow chart of English sole fishery process in the computer simulation model (ENGLSH).

Figure 21. Illustration of knife-edge fishing and discard mortality with length for three possible situations when 50 percent utilization length is less than (A), equal to (B), or greater than (C) 50 percent selection (retention) length.

mortality as illustrated by the double cross-hatched portion of the figure.

When logistic fleet selectivity and catch utilization are switched on, age-specific fishing and discard mortalities are calculated using equations 3 and 5 with the length-at-age, area, and year included. Equation 3 then becomes age-specific fishing mortality,

$$
\begin{equation*}
F(i, j)=s(i, j)) u(i, j) F(j) \tag{18}
\end{equation*}
$$

where $F(i, j)$ is age-specific(i) and year-specific(j) fishing mortality, $s(i, j)$ and $u(i, j)$ are as described earlier, and $F(j)$ is the year-specific(j) instantaneous fishing mortality rate. Expression 5, age-specific discarding mortality is incorporated as follows:

$$
\begin{equation*}
D(i, j)=a(s(i, j) d(i, j) F(j) \tag{19}
\end{equation*}
$$

where $D(i, j)$ is instantaneous the age-specific(i) and year-specific(j) discard mortality, $d(i, j)$ is equation (4) subscripted for age(i) and year (j), and $a, s(i, j)$ and $F(j)$ are proportion of dead discards, age(i) and year(j) fleet selectivity and annual(j) instantaneous fishing mortality as described before. The effects of selectivity and utilization curve on discarding mortality are illustrated in Figure 22. The largest discarding mortality occurs when utilization is to the right of the selectivity ogive (Figure 22), coinciding with a situation in which sizes acceptable to the processor are larger than fleet trawl selectivity. These figures also illustrate that discard mortality is present as long as the selectivity and utilization curves overlap.

Figure 22. Illustration of ogive fishing and discard mortality with length for three possible situations when 50 percent utilization length is less than (A), equal to (B), or greater than (C) 50 percent selection (retention) length.

Yield in numbers (Step 24) is computed using the Baranov catch equation expanded to include age-specific fishing and discarding mortality rates. The equation is

$$
C(i, j)=N(i, j) \frac{F(i, j)}{F(i, j)+M+D(i, j)} 1 .-e^{-(F(i, j)+M+D(i, j))}(20)
$$

where $C(i, j)=$ landed catch in numbers of fish,$N(i, j)$ is the number of fish and $F(i, j), M$ and $D(i, j)$ are mortality rates described previously. The ($(i, j))$ denotes that these population parameters are expanded to include age and year, respectively.

Yield in weight is computed (Figure 20., Step 25) with

$$
\begin{equation*}
Y(i, j)=C(i, j) W(i, j) / c \tag{21}
\end{equation*}
$$

where $Y(i, j)=$ landed catch in metric tons $C(i, j)$ is as above, $W(i, j)$ is weight of the fish, (c) is a conversion constant from grams to tonnes and (i, j) is as above. Yields are summed over age, area and year so that they are available in numbers and various weights (metric and English) for each PMFC subpopulation and total population (Step 25). Also computed are landed percentage age compositions by PMFC area to simulate state agency sampling for reference and validation of fleet selectivity.

Calculation of Survival

The last step in the model logic removed annual mortalities to determine the portion of the population or stock that would enter its next year of life. This was computed on an annual resolution using the negative exponential survival relationship,

$$
\begin{equation*}
N(i, j, k)=N(i, j, k-1) e^{-Z} \tag{22}
\end{equation*}
$$

where $N(i, j, k)$ is numbers of fish at age(i), area(j) and year(k) and $Z=(F(i, j)+M+D(i, j))$.

Equation 22 was used for each of the four PMFC areas, and the resultant survivors were summed over age and area to provide various population system-state variables. Some of these variables included numbers, pounds and tonnes of the population before and after the simulated year. These were included to provide population reference points for model debugging. This completed the model logic for a simulated year after which the flow was returned to the beginning of another year. The fortran version of this model, 'ENGLSH' is listed in Appendix 1.

MODELING EXPERIMENTS

The following is a list of the experiments that were designed for model validation, parameterization, to estimate MSY, and measure the effects on yield of knife-edge and ogive fishing and discard mortality rates, and varying growth and recruitment:

1. Yield contours or response surface analyses with F and M on the x and y axes respectively and yield on the z axis. These simulations illustrate the range of acceptable values for F and M, given estimates of average growth and two recruitment levels.
2. Yield-per-recruit simulations for PMFC Area $3 A$ to select a fleet selectivity ogive that will reproduce ODF\&W's catch composition from this area for years 1969-79.
3. Yield by PMFC area with F, M and fleet selectivity from two experiments (a. and b. below) to adjust adult migration within PMFC areas to reproduce average catch statistics by areas, for years 1969-79.
a. F is assumed to be constant over area.
b. F in PMFC Area 3B is assumed to be double the others.
4. Four sets of yield-per-recruit simulations to examine age-one versus age-four fish recruited to the fishing grounds, and ogive versus knife-edge fishing and discard mortality.
5. Two MSY estimates, one with each recruitment estimation, both using ogive selection, utilization and discard mortality, migration from validation analysis and average growth
rates.
6. Two series of yield simulations (a. and b. below) to measure effects of varying growth and recruitment;
a. Use of varying recruitment and mean growth.
b. Use of varying growth and mean recruitment.
7. The final series of five yield curves examine the effects of maximum and minimum observed deviations in growth and recruitment. One control curve used mean growth and recruitment; the others used either maximum or minimum growth or recruitment.

To meet validation criterion, it was necessary for the simulation model to produce statistics within the .95 confidence interval (C.I.) of the mean commercial catch statistics. These statistics were landed commercial catch-age compositions for PMFC 3A, and landed catches by PMFC area and for the Columbia-Vancouver areas combined. Validation was complicated by the lack of initial point estimates for M, F, D, fleet selectivity and migration rates. A validation procedure was conceived that utilized the population parameter range estimates and the .95 C.I. of mean commercial catch statistics. Catch statistics were restricted to years 1969 to 1979 to eliminate the different age structure of the commercial landings in PMFC 3A previous to 1969. (Prior to 1969 the age composition of commercial landings showed higher percentages of younger, and lower percentages of older fish.) (See Figure 2.)

The general solution for this validation problem was to conceptualize this simulation model as a multidimensional equation with the dependent variable a cloud of yields corresponding to the .95 C.I. of mean commercial landing statistics for 1969 to 1979. This region of acceptable yields restricts the range of acceptable population parameter values (independent variables). This adjusts the simulation model to the current fishery statistics. The separate examination of the two recruitment estimates and removal of migration and fleet selectivity reduce the problem to two three-dimensional yield response surfaces.

The yield contours were obtained from a Fortran V version of ENGLSH which increments (F) and (M) internally to reduce operator and computer time. Recruitment and growth were set at annual averages for years 1969 to 1979. The initial running of the contours used 4.5-inch mesh selectivity and Teneyck and Demory's 1975 ogive for catch utilization and discarding, and dispersal proportions equal to recruitment proportions. The yield matrix output from the two different recruitment estimates were input into PLOTLIB (OSU Computer Center 1980), a FORTRAN contour plotting routine. The x and y axes were also labeled with the range of estimates available for M and Z (Table 5).

To validate fleet selectivity, simulated and commercial age composition catch statistics for PMFC Area 3A (1969 to 1979), were compared for the five mesh size ogives (Figure 8). Selectivity validation acceptance criteria was to have the model reproduce the age compositions within the 95 percent C.I. of observed mean for years 1969 to 1979 on Table 2. Since this process compares sets of age composition as percentages, it was not necessary to have actual numbers of fish at age or recruitment. Commercial catch samples contain traces of ages one through three (Table 2.). Consequently recruitment in this simulation was extended to include age-one fish. Recruitment during these analyses was set at one million age-one fish and it was assumed that M for ages one through four was equal to M for ages four and older. These simulations were made with mean estimates of F and M from a prelimimary response surface analysis, the utilization and discard ogives, and average growth.

The last step in this validation process checked migration, or annual dispersal proportions, by comparing simulated landings with actual landings by PMFC area for the years 1969 to 1979. At acceptable levels, it was necessary that the model reproduce average yields by PMFC area for this ten-year period that were within the .95 C.I. of means observed. ENGLSH was used for these simulations with two separate series run, one with cohort analysis-based recruitment, the other with survey-based recruitment. The other population parameters were average annual growth, best estimates of F and M, and selectivity from the previous analyses.

These procedures were repeated with the results of each step updating the values of F, M, fleet selectivity, and redistribution proportions used in the next simulation run, updating the parameter values used in the next. Final parameter values were arrived at when acceptance criteria were met.

RESULTS

Validation

Initial response surface analysis of F and M (Figures 23 and 24) suggested that M would be in the upper ranges of the estimates (Table 5, p. 20). The final runs (Figures 25 and 26) which incorporated the final fleet selectivity and redistribution proportions suggest M and F of 0.26 and 0.29 respectively for cohort-estimated recruitment (Figure 27), and M and F or 0.35 and 0.26 respectively for survey-estimated recruitment (Figure 25). These final response surfaces for survey-estimated recruitment (Figure 25) still place the acceptable region of M above and in the upper range of observed values, while final cohort-estimated recruitment (Figure 26) places $M=0.27$ almost midpoint of the range of estimates available.

The 5.5 -inch mesh selectivity ogive provided the best representation of fleet selectivity, with only slight (less than one percent) deviation from the .95 C.I. of mean age compositions at ages 2 and 13 (Table 9). Coincidentally, 5.5-inch mesh is the size preferred by the majority of the Oregon Trawl Fleet (R. L. Demory, personal communication, 1982). The discard mortality rate from the 5.5-inch mesh ogive (Figure 27) is less than ten percent of F and half of that observed with 4.5 -inch ogive (Figure 10).

The redistribution proportions computed when F was assumed constant over PMFC Areas (Table 10) suggested that the majority, over 60 percent, of the population resides in PMFC Areas $3 A$ and $3 B$. This observation coincides with the migratory patterns observed by Golden et al. (1979).

Figure 23. Initial response surfaces of yields of female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas with F and M on the x and y axes respectively and mean recruitment estimate from Oregon Department of Fish and Wildlife groundfish surveys.

Figure 24. Initial response surfaces of yields of female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas with F and M on the x and y axes respectively and mean recruitment estimate from cohort analysis.

Figure 25. Final response surfaces of Yields of female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas with F and M on the x and y axes respectively and mean recruitment estimate from Oregon Department of Fish and Wildife groundfish surveys.

Figure 26. Final response surfaces of yields of female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas with F and M on the x and y axes respectively and mean recruitment estimate from cohort analysis.

Figure 27. 5.5-inch mesh selectivity, Oregon trawl fleet catch utilization and resultant instantaneous discard mortality by length for female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission Areass, 1969-79.

Table 9. Comparison between mean observed age composition of female English sole from Pacific Marine Fisheries Commission Area 3A, years 1969-79, and predicted mean age compostion from the computer simulation model (ENGLSH).

AGE	PMFC AREA 3A		SIMULATED CATCH COMPOSITIONS	
	MEAN\%	. 95 C.I.	COHORT RECRUITMENT	SURVEY RECRUITMENT
2	0.05	0.06	00.2	00.2
3	03.6	1.5	03.0	03.4
4	14.1	2.6	13.8	14.5
5	24.5	2.1	23.5	23.6
6	20.4	2.1	21.8	21.4
7	15.0	1.4	15.3	14.9
8	10.0	1.9	9.6	9.4
9	6.1	1.2	5.9	5.6
10	3.1	0.5	3.4	3.3
11	1.6	0.8	1.9	1.9
12	0.8	0.4	1.1	0.6

Table 10. Mortality rates, migration, and fleet mesh size estimates from validation of the simulation model (ENGLSH), for female English sole in Pacific Marine Fisheries Commission Statistical Areas, 3B, 3A, 2 C and 2 B .

PARAMETER	SIMULATION RUNS				
	INITIAL		FINAL		$F=$ OVER AREA
	COHORT	SURVEY	COHORT	SURVEY	COHORT
F	. 26	. 31	30	21	$\begin{aligned} & F(3 B)=.406 \\ & F(3 A)=.173 \\ & F(2 C)=.167 \\ & F(2 B)=.220 \end{aligned}$
M	. 31	. 38	. 27	. 35	. 28
MESH SIZE	4.5"	4.5"	5.5"	5.5"	5.5"
		1 Distri	tion Pro	ortions	
3B	. 31	. 33	. 30	. 31	. 19
3A	. 38	. 42	. 36	. 36	. 39
2 C	. 18	. 16	. 19	. 19	. 21
2B	. 13	. 09	. 15	. 14	. 21

An alternative hypothesis to the assumption that fishing effort is equal among PMFC areas is that the area-specific estimates of Z represent valid differences in fishing mortalities among these areas. To examine this, another experiment on annual redistribution was run using mean recruitment from cohort analysis, the 5.5-inch mesh selectivity, and ogive utilization and discarding, and area-specfic estimates of F. Results from this run (Table 10) reduced the annual proportion of fish in Area $3 B$ by 30 percent. These results suggest that the majority of the population annually resides in Area 3A.

Yield Per Million Recruits from the Simulation Model

Population parameter values were selected for these simulations with the following goals in mind: to analyze the effects of different ages at recruitment to the fishing grounds (tp); to compare knife-edge with ogive selectivity; and to provide a final model validation by comparing these with two previously published yield-per-recruit models. Four values of M were decided upon for these simulations: $M=0.28$ and 0.35 , the most likely values from validation analysis; and $M=.14$ and 0.21 which coincide with values used in Ehrhardt's and Lenarz's models, respectively. The yields were then summed over age (year classes) and plotted. Parameter values for these simulations were
recruitment $=1,000,000 . \quad(250,000$ per PMFC Area)
$t(p)=$ age 1 or 4
growth $=$ average annual length- and weight-at-age (Table 8)
redistribution proportions $=$ (Table 10 final cohort column)
selectivity $=5.5$-inch ogive or
SKNIFE $=33.29 \mathrm{~cm} . \quad$ (length of 50 percent selectivity)
utilization and discard equations 3 and 5 or UKNIFE $=27.22 \mathrm{~cm}$. (length of 50 percent utilization)
$M=.14, .21, .28, .35$
$F=0.05$ to 2.00
$a=1.0$ (assumes all discards die)

The results from experiments comparing knife-edge and ogive fishing and discard mortality, and age-at-recruitment to the fishing grounds are illustrated by four sets of yield curves (Figures 28 through 31). Comparison of the knife-edge (Figures 28 and 29) with the ogive fishing mortalities (Figures 30 and 31) illustrates a noticeable difference in the shape of the curves. The knife-edge curves show that yield continues to increase with F , while the ogive curves suggest optimum F ranges from 0.6 to 2.0. These results suggest that a model with knife-edge selectivity would overestimate optimum F. Adding ages one through three to the model reduced optimum F from 1.70 and +5.00 to 1.23 and 1.68 for $M=.28$ and .35 respectively. These M values were the most likely values from the validation and coincide with recruitment estimates from cohort- and survey-based analyses respectively.

Yield-per-million-recruit curves from this model for M values of 0.14 and 0.21 (Figure 28) are slightly flatter and the yields are a little higher than Ehrhardt's corresponding curves for M values of 0.15 and 0.20 (Figure 6). Ehrhardt's curves for M of 0.15 and 0.20 predict yield-per-million-recruits of approximately 250 t and 200 t respectively while yield-per-million-recruits from this study were 300 t and 250 t for M of 0.14 and 0.21 .

Figure 28. Yield per million recruits and fishing mortality rate for four values of M; tp $=4$; tp' = knife-edge (selectivity $=5.5$ and utilization $=3.6$).

Figure 29. Yield per million recruits and fishing mortality rate for four values of M; $t p=1$; tp' = knife-edge (selectivity $=5.5$ and utilization $=3.6$).

Figure 30. Yield per million recruits and fishing mortality rate for four values of M; $t p=4$; $t p{ }^{\prime}=$ ogive selectivity, utilization and discard rates.

Figure 31. Yield per million recruits and fishing mortality rate for four values of M; $t p=1$; tp' = ogive selectivity, utilization and discard rates.

These differences are due to the increased natural mortality Ehrhardt's fish experience for 0.4 years while on the grounds but not fully recruited to the fishery. Some of the difference is also explained by Ehrhardt's use of knife-edge selectivity as illustrated by comparison of Figures 30 and 31. Lenarz Y / R curves with $M=.14$ and .7 , (Figure 27) illustrate steeper descending portions than do comparable curves from the present study (Figure 30). These differences are explained by the different ages-at-recruitment (tp), selectivity and growth in the two models. Lenarz recruits fish to his model at age three compared to age four illustrated in Figure 30. This causes a small increase in the steepness of his Y / R curves as illustrated by comparing Figures 30 and 31. Age at 50 percent selection in the Lenarz study was 3.9 years, while in this model it is 5.4 years. This effectively increases mortality for ages 3.9 to 5.4 in his model and as illustrated by Beverton and Holt in Figure 17.18.2 (1957, p.321) would cause his curves to have steeper descent. Lenarz's Von Bertalanffy Brody constant ($k=.14$) as opposed to Kreuz's estimate of ($k=.266$) would also cause his curves to have steeper descent (Figure 17.22, Beverton and Holt 1957, p. 323).

Estimates of MSY

To estimate MSY the simulation model ENGLSH was run with population parameter values the same as in Y / R simulations except for tp and numbers of recruits. Yields were calculated by summing cohorts in a year, rather than summing a cohort over years. Mean recruitment from cohort analysis and survey data (Table 7) were used, and tp set at age four. Age at recruitment to the fishing grounds (tp) was
limited to age-four fish as estimates of population numbers and or natural mortality rates for younger fish were unavailable.

The results from the two recruitment levels (Figures 32 and 33) suggest that the fishery was operating below MSY for years 1969 to 1979 at either recruitment level, when catch ranged from 808 t to 2402 t . These results also indicate that MSY for mean recruitment from cohort analysis at $M=0.28$ is 1854 t at $F=1.8$ and for survey-based recruitment at $M=0.35$, $M S Y=2500$ t at $F=5.0+$. The cohort analysis values ($M=0.28$, $F=1.80$, and MSY=1854 t) are the preferred values as suggested by validation results.

Effects of Varying Growth and Recruitment

One of the goals of this study was to measure the effects of varying growth and recruitment rates on yield from the English sole population off Oregon and Washington. To measure these effects this goal was broken down into two parts. Part 1 compared the effects of "simulated" varying growth and recruitment. Part 2 compared the effects of sustained observed extremes in growth and recruitment. These extremes are the actual maximum and minimum deviations in cohort estimates of recruitment (Kruse 1984) and growth (Kreuz et. al. 1982).

The coefficent of variation (C.V.) was selected to compare variations in growth and recruitment. This is commonly used to describe variation in a population (Snedecor and Cochran 1978). It is well suited for this experiment as it accommodates comparison of effects resulting from variables measured in different units.

Figure 32. Yield curves and fishing mortality rates for four values of M ; $\mathrm{tp}=4 ; \mathrm{tp}{ }^{\prime}=$ ogive selection, utilization and discard; mean recruitment estimated from cohort analysis.

Figure 33. Yield curves and fishing mortality rates for four values of M ; tp $=4 ; \mathrm{tp}{ }^{\prime}=$ ogive selection, utilization and discards; mean recruitment estimated from Oregon Department of Fish and Wildlife groundfish surveys.

The experiments of Part 1 involved the simulation model ENGLSH run for ten years with population parameters used in "Estimates of MSY" to establish initial populations and age distribution. After that, either varying growth or recruitment was switched on and run for a 60 -year period so that the second 30 -year period could be examined with all cohorts free of the effects of the initial mean annual growth or recruitment. When growth varied, recruitment was held at the mean level for the period examined, and vice versa. A time series of the driving variables, growth and recruitment, and yields were saved from these runs. Statistics were also calculated for the years 1951 to 1980.

The results from these simulations (Figures 34 and 35) illustrate that varying growth had approximately twice the effect on yield of varying recruitment. This was true even though varying recruitment had almost double the coefficient of variation of varying growth (Figures 34 and 35). It is also important to mention that extreme or outlier recruitment was not considered in this simulation run. Yield responses to varying growth are more abrupt (Figure 34) while those from varying recruitment (Figure 35) appear smoothed. The continued decline of average growth for the years 1950 through 1959 produced (Figure 34) the largest deviation in yield observed with either varying growth or recruitment operating (Figures 34 and 35). Also noticeable is the increase in yield one year after two consecutive positive growth deviations (1958 and 1959). The continued downward trend in recruitment for years 1958 through 1960 produced a moderate dip in yield which began and ended two to three years after the recruitment trend changed.

Figure 34. Time series of potential maximum yield and annual growth of age-one female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas.

Figure 35. Time series of potential maximum yield and annual recruitment for female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission areas.

Experiments in Part 2 examined the effects of sustained extremes in growth and recruitment. Simulations to examine this consisted of a control with mean growth and recruitment and other population parameter values used in the "Estimates of MSY" and four other simulations with either maximum or minimum growth or recruitment. While growth was maximum or minimum, recruitment was mean, and vice versa. The maximum and minimum values along with means are listed in Table 11. These simulations were run using the same methods and plotting procedures as Estimates of MSY. The yield curve for $M=0.28$ and mean recruitment estimates from cohort analysis provided the control.

The results from these simulations (Figure 36) illustrate that either maximum or minimum extremes in recruitment, if allowed to continue for the simulated population's life cycle (ten years), would produce considerably larger effects in yields than persistent extreme deviations in growth. Persistent maximum and minimum deviations in growth produced approximately 75 t deviation in yield, while persistent deviations in recruitment produced over 1000 t deviation in yield.

Table 11. Predicted mean and observed maximum and minimum deviations in growth for age-one and numbers of age-four (recruits) female English sole in the Columbia-Vancouver International North Pacific Fisheries Commission Areas.

GROWTH (CM)			
PMFC AREA	- 17% DEVIATION'*'	AVERAGE	+13\% DEVIATION*'
3B	4.42	5.32	6.01
3A	3.97	4.78	5.40
2 C	4.56	5.50	6.21
2B	4.61	5.56	6.28
RECRUITMENT (thousands)			
PMFC AREA	MINIMUM'@'	AVERAGE ' + '	MAXIMUM'e'
3B	1706	2278	4164
3A	2345	3102	5724
2 C	1788	2286	4364
2B	1698	1858	4145
Kruse (1983) updated Haymans cohort anayalsis. Kreuz et al. (1982). + from Table 7. this study.			

Figure 36. Yield curves and fishing mortality rates for five sets of growth and recruitment rates; $M=0.28$; mean recruitment estimated from cohort analysis; tp $=4$; tp' $=$ ogive selectivity, utilization and discard rates.

The primary objectives of this study were to determine effects on yield of annual variations in growth and recruitment, age specific fishing and discard mortality and migration rates, and estimate optimal yield for the Columbia-Vancouver management unit.

Model Cost

ENGLSH was written in Fortran V for the CDC Cyber 70 model 73. The code is appended to this thesis. As indicated earlier, the model operates on annual time resolution and maintains records of environmental, population and fishery variables for monitoring or alteration during simulations. Running the model for a sum of approximately 350 years, the time necessary to produce yield data for yield curves, cost approximately 33 SRU-S or $\$ 3.50$ on prime shift at the Oregon State University Computer Center.

Model Validation

The acceptable region of yields from the response surface analysis of mortality rates for cohort estimates of recruitment is associated with the range of mortality rates that were empirically estimated (Figure 26); however the location of this surface for survey estimates of recruitment (Figure 25) suggest these estimates are high. ODF\&W assumed that survey trawl catchability was 1.0. Adjusting this by a small amount would bring their estimates more in line with mortality estimates.

The 5.5-inch cotton mesh ogive reproduced catch-age compositions with slight underestimates of age-two fish. This deviation may be explained by the small numbers of this age fish sampled and the possilility of continued dockside and processor discards prior to sampling. The actual fleet mesh size is probably smaller than 5.5 -inch mesh as 50 percent retention lengths for 5 .5-inch mesh from recent studies for new synthetic trawl materials is over 38 cm versus the 33.6 cm from Best's cotton gear (Table 6). This difference and the interactive effect of the catch utilization factor emphasize the importance of conducting both gear savings and updating catch utilization studies over the entire Columbia-Vancouver management area. Results from dispersion or migration validation (Table 9), placing the majority of the fish in the Areas $3 B$ and $3 A$, confirm Golden's general migration model, northward movement and residence during the majority of the year with return south for two to three months. This type of migration emphasize the importance of quantifying these movements as well as monitoring fishery and population biology parameters along the coast. This is justified by the possibility of intense fishing or an outlier biological event in one of the PMFC areas producing extreme effects on the population and fishery in the other areas.

Age-Specific Fishing and Discard Mortality

The results of comparing knife-edge with ogive selectivity suggest that a model with knife-edge fishery selection would overestimate both optimum F and Yield-per-Recruit or MSY. As in the case of this fishery, 50 percent fleet selectivity length is greater
than 50 percent catch utilization length and, as a result, no discards exist. (Figure 22.).

Age at Recruitment to the Fishing Grounds (tp)

Results from examination of $t p=1$ versus $t p=4$ emphasize the need for natural mortality estimates for ages 1-to 3. The inclusion of discard mortality for ages 1 to 3 reduces optimum F by at least 0.5 ; however its effect on yield is unquantifiable until estimates of M for ages 1 to 3 are made.

MSY or Optimal Yield

MSY estimates of 1850 to 2500 t are high when considering that both were made excluding discard mortality of ages 1 to 3 and the latter was derived using high mean recruitment estimates from groundfish surveys. This suggests that 1850 t is above the high end of a range of optimal yields for the Columbia-Vancouver Management Area, and serious effort should be made not exceed this yield.

Variations in Growth and Recruitment Rates

Varying growth produced approximately twice the deviation in yield as varying recruitment. This is explained by the fact that variations in growth were synchronous over all year classes at year (t) while recruitment only affected one year class at year (t). In other words, variation in growth affected all cohorts in a given year while varying recruitment affected only the recruited cohort.

Trends in simulated deviations in growth and recruitment produced the most significant affects in yields. Continued positive or negative deviations in growth or recruitment produce more significant changes in yield than random variations. This suggests that three or more years of consistent negative or positive deviations would produce significant effects on yields from this fishery. This emphasizes the need to initiate research for monitoring and developing further understanding of these events.

REFERENCES

Anonymous. 1960. Migrations of English sole on the Pacific coast of the United States. 13th Annual Report of the Pac. Mar. Fish. Comm. for 1960: 39-42.

Alverson, D. L. 1960. A study of annual and seasonal bathymetric catch patterns for commercial important groundfish of the Pacific Northwest coast of North America. Pac. Mar. Fish. Comm. Bull. 4.

Barss, W. H. 1976. The English sole. Information Report of the Oregon Dept. Fish Wildlife. 76-1: 7 p.

Barss, W. H., R. L. Demory and N. TenEyck. 1977. Marine resource surveys on the continental shelf off Washington, 1975-76. Completion report of the Oregon Dept. Fish Wildlife to the National Mar. Fish. Service. 34 p.

Beals, E. L. 1981. SIMCON: A simulation control language at Oregon State University. Processed report Oregon State Univ. Dept. Fish. Wildlife. 45 p.

Best, E. A. 1961. Savings gear studies on Pacific Coast flatfish. Pac. Mar. Fish. Comm. Bull. 5:25-47.

Beverton, R. J. H., and S. J. Holt. 1957. On the dynamics of exploited fish populations. U.K. Min. Agric. Fish., Fish. Invest. (Ser. 2) 19:533 p.

COMPLOT Reference manual. Aug. 1981. Oregon State Univ. Computer Center. M-4210-01; 58 p.

Demory, R. L. 1971. Depth distribution of some small flatfishes off the Northern Oregon - Southern Washington coast. Research report of Oregon Dept. Fish Wildlife. 71-3:49-55.

Demory, R. L., and J. G. Robinson. 1972. Resource surveys on the continental shelf off Oregon. Annual report of Oregon Dept. Fish Wildlife to the National Mar. Fish. Service. 13 p.

Demory, R. L., and J. G. Robinson. 1973. Resource surveys on the continental shelf off Oregon. Annual report of Oregon Dept. Fish Wildlife to the National Mar. Fish. Service. 18 p.

Demory, R. L., M. S. Hosie, N. TenEyck and B. O. Forsberg. 1976. Marine resource surveys on the continental shelf off Oregon, 1971-74. Oregon Dept. Fish Wildlife. Completion report to the National Mar. Fish. Service. 49 p.

Demory, R. L., W. H. Barss and J. T. Golden. 1978. Groundfish assessment: Pacific Ocean perch (SEBASTES ALUTUS), English sole (PAROPHRYS VETULUS) and Lincod (OPHIODON ELONGATUS). Annual report of Oregon Dept. Fish Wildlife to the National Mar. Fish. Service. 17 p.

Ehrhardt, Nelson. 1973. Population dynamics of English sole (Parophrys vetulus) off the Coast of Washington. NORFISH, Center for Quantitative Science, Technical report, Univ. of Washington. 43: 177 р.

El-Sayed, S. 2. 1959. Population dynamics of English sole (Parophrys vetulus, Girard) in Puget Sound, Washington, with special reference to the problems of sampling. Ph.D. diss., Univ. of Washington. 189 p.

Forrester, C. R. 1969. Life history information on some groundfish species. Technical report, Fish. Res. Bd. Can. 105: 17 p.

Golden, J. T., W. H. Barss, and R. L. Demory. 1979. Groundfish assessment: Pacific Ocean Perch (Sebastes alutus) and tagging studies for English sole (Parophrys vetulus). Oregon Dept. Fish Wildife Annual report to N.M.F.S. 19 p.

Gulland, J. A. 1969. Manual of methods for fish stock assessments. Part I. Fish population analysis. FAO (Food Agric. Organ. U.N.) Mar. Fish. Sci. 4:1-154.

Harry, G. Y., Jr. 1956. Analaysis and history of the Oregon otter trawl fisheries. Ph.D. diss., Univ. of Washington. 328 p.

Harry, G. Y., Jr. 1959. Time of spawning, length at maturity, and fecundity of the English, petrale and Dover soles (Parophrys vetulus , Eopsella jordani and Microstomus pacificus), respectively. Oregon Fish Comm. Research Briefs. 7:5-13.

Harry, G. Y., Jr., and A. R. Morgan. 1963. Results of a sampling program to determine catches of Oregon trawl vessels. Pac. Mar. Fish. Comm. Bull. 6:39-51.

Hayman, R. A. 1978. Environmental fluctuation and cohort strength of Dover sole (Microstomus pacificus) and English sole (Parophrys vetulus). Master's thesis, Oregon State Univ. 133 p.

Hayman, R. A., and A. V. Tyler. 1980. Environment and cohort strength of Dover sole and English sole. Trans. Am. Fish. Soc. 109:54-68.

Herrmann, R. B. and G. Y. Harry, Jr. 1963. Results of a sampling program to determine catches of Oregon trawl vessels. Pac. Mar. Fish. Comm. Bull. 6:39-51.

Hewitt, G. R. 1980. Seasonal changes in English sole distribution: An analysis of the inshore trawl fishery off Oregon. Master's thesis. Oregon State Univ. 59 p.

Hilborn, Ray. 1973. A control system for FORTRAN simulation programing. Simulation. 20:172-175.

Kreuz, K. F. 1978. Long-term variation in growth of Dover sole (Microstomus pacificus) and English sole (Parophrys vetulus), and its possible relationship with upwelling. Master's thesis. Oregon State Univ. 71 p.

Kreuz, K. F., A. V. Tyler, G. H. Kruse, and R. L. Demory. 1982. Variation in growth of Dover soles and English soles as related to upwelling. Trans. Amer. Fish. Soc. 111:180-92.

Kruse, G. H. 1980. Relationships between Shelf Temperatures, Coastal Sea Level, the Coastal Upwelling Index, and English sole (Parophrys vetulus) Spawning activity off Oregon. Master's thesis, Oregon State Univ. 25 p.

Kruse, G. H. and A. V. Tyler. 1983. Simulation of temperature and upwelling effects on the English sole (Parophrys vetulus) spawning season. Can. Journal Fish. Aquatic Sci. 40-2:230-37.

Kruse, G.H. 1984 A simulation model of English sole (Parophrys vetulus) recruitment mechanisms. Ph.d. diss. Oregon State Univ. 103 p .

Laroche, W. A. and R. L. Holton. 1976. Occurance of O-age English sole (Parophrys vetulus) in the ocean off Oregon: An open coast nursey area? Processed paper. School of Oceanography. Oregon State Univ. 36 p.

Laroche, J. A. and S. L. Richardson. 1977. Winter-spring abundance of larval English sole, (Parophrys vetulus) off Cape Blanco, Oregon during 1972-1975 with notes on occurences of three other pleuronectids. Processed paper. School of Oceanography. Oregon State Univ. 48 p.

Lenarz, W. H. 1978a. Cohort analysis and estimates of yield per recruit of three species of Oregon flatfish. Unpublished Rept. to Groundfish Management Plan Development Team of Pac. Fish. Management Council. 51 p.

Lenarz, W. H. 1978b. Production model analysis of fisheries for three species of flatfish in the Columbia area. Unpublished report to the Groundfish Management Plan Development Team of Pac. Fish. Management Council. 10 p.

Nie, N. H., G. H. Hull, J. G. Jenkins, K. Stienbrenner, and D. H. Bent. 1975. Statistical package for the Social Sciences. 2nd ed. New York: McGraw Hill Book Comp.

Pearcy, W. G. and S. S. Myers. 1974. Larval fishes of Yaquina Bay, Oregon: A nursery ground for marine fishes? Fish. Bull. 72(1).

PLOTLIB Reference manual. Jan. 1980. Oregon State Univ. Computer Center. M-4220-01; 51 p.

Robinson, Barry. 1977. SPSS subprogram NONLINEAR: nonlinear regression. Northwestern Univ. Vogebelback computing ctr. Man. No. 433. 26 p.

Robson, D. S. and D. G. Chapman. 1961. Catch curves and mortality rates. Trans. Amer. Fish. Soc. $90(2): 181-89$.

Smith, J. G. and R. J. Nitsos. 1969. Age and growth studies of English sole, (Parophrys vetulus), in Monterey Bay, California. Bull. Pac. Mar. Fish. Comm. 7:73-79.

Snedecor, G. W. and W. G. Cochran. 1978. Statistical methods. 6th ed. Ames, Iowa. Iowa State Univ. Press.

TenEyck, N. and R. Demory. 1975. Utilization of flatfish caught by Oregon trawlers in 1974. Informational report. Oregon Dept. Fish Wildlife. 75-3: 11 p.

Westrheim, S. J. 1955. Size composition, growth and seasonal abundance of juvenile English sole (Parophrys vetulus) in Yaquina Bay. Oregon Dept. Fish Wildlife. Research Briefs. 6(2):4-9. Westrheim, S. J. and R. P. Foucher. 1986. Pacific Cod. In: Groundfish stock assessments for the west coast of Canada in 1986 and recommended yield options for 1987. Ed. Tyler, A. V. and M. W. Saunders. In press.

APPENDIX
Computer program for simulation model 'ENGLSH'.

MODEL ENGLSH1: A COhPUTER SIKULATION MODEL of FEMALE ENGLISH SOLE OFF ThE ORESON AMD UASHINGTOM COASTSIPHFC AREAS 2B,2C,3A,3E). hodeled by t. r. haydem and prograhed by eric beals and T. R. HAYDEN.
recruithent: emglsh affords a selection of four recruithemt resines, tho estinates of mean recruithent and tuo estiantes of anmually yarying regruithent. recruithemt is defined as the number of age FOUR FEKALE ENGLSH SOLE EMTERIMG THE MODEL (FISHERY) ANKUALLY. recruithent defaults to hean ammual estihate based primarily on COHORT ANALYSIS CONDUCTED BY HAYMAN ET. AL. 1980.
grouth: englsh offers hean annual or anmually varying grouth. anNual LEMgTh at age is estimated using kreuz's yom gertalanffy grouth eguation and hean lemgth is estimated usimg a logistic EXPRESSION OF KREUZ'S SEASOMAL GROUTH DATA. THE MODEL DEFAULTS to hean annual grouth uith the average lemgth est. using the MEAM NO. DF (DAYS) TILL HALF THE GOMH. GATEH IS LANDED BY PMFC AREA.
FISHING HORTALITY: EMGLSH OFFERS THO FISHERY HANAGEHENT REGIMES. BOTH UTILIZE age specific besh selection (E.a. best 6i) amd catch UTILIZATIDN (TENEYCK AND DEHORY 75) TO ADJUST IRSTAMTANEDUS FISHIME hortality (f). default hamagehemt regime the hodeler selects (F) uhile the other regime the hodeler sets a duota and the hodel selects (f) to take the quota
SURUIVAL: NEGATIVE EXPOMEMTIAL SURUIVAL IS USED UITH AGE SPECIFIC hesh selection and catch utilization incorporated in (f) and the adoition of discardimg hortality (dmort) to total hortality. the model also affords a selection of that fraction
(A) DF THE DISCARDED FISh THAT DIE, DEFAULT (A)=1.0 (ASSUMES all DISCARDED FISH DIE). MATURAL MORTALITY (MAORT) MAY BE SET HOUEVER IT DEFALUTS TO MHORT $=2000$
redistribution: the hature population hodeled is redistributed to PHFC AREAS PROPORTIOHAL TO THE COHERERCIAL CATCHS OBSERVED 1960-79. the ihmature population is redistributed to phfi areas in proportion TO THE NO'S. OBSERVED DURING THE ODFIU GRD. FSH. SURVEYS 1971-78.
default operation of the hodel results im its operations in the dYManic podl hode uithonstant hean recruithent based primarily UPON COHORT ANALYSIS (HAYMAN ET. AL. 1990), HEAN AHKUAL GROKTH ESTIMATED FROH KIETH KREUZ'S UORK 1978,AND CONSTANT ANNUAL MATURAL hortality (mhort=o 2) also froh hayman et. al.. the operator hust first run the model for 10 years to allol recruitment to

BUILD A POPULATION UITH STABLE AGE DISTRIBUTION. THEM SELECT
AREA SPECIFIC FISHING MORTALITY (F3B=0.3.FJA=0.3,F2C=0.3,F2B=0.3),
RUN THE MODEL FOR A DESIRED NUMBER OF YEARS AND MOMITOR AUAILABLE
OUTPUTS. SEE 'DEFIMITION OF VARIALBES' FOR AUAILABLE OUTPUT VARIALBES.
THIS MODEL AFFORDS THE USER THE FOLLOUING UARIATIONS;
I. RECRUITMENT
A. A CHOICE OF TUO MEAM ANMUAL RECRUITHENT REGIMES
(1.) MEAK RECRUITMEKT (2.) NEAN RECRUITKENT

BASED PRIMARILY UPON BASED PRIMARILY.UPON
COHORT ANALYSIS
SURUEY AMALYSIS
DEFAULT(COHORT:1.0)
(COHORT $=0.0$)
DEFAULT(VARREC=0.0)
(VARREC $=0.0$)
B. A CHOICE OF TUO ANNUALLY VARYING RECRUITMENT REGIMES
(1.) VARYING RECRUITMEMT (2.) VARYING RECRUIMENT

BASED PRIMARILY UPON BASEZ PRIMARILY UPOK
COHORT AHALYSIS AND SURUEY ANALYSIS AKD USIMG THE RECRUITMEMT USIMG THE RECRUITKEMT MODEL DESCRIBED BY HAYMAN MODEL DESCRIBED BY HAYMAK
(VARREC=1.0)
(VARREC=1.0)
DEFAULT(COHORT=1.0) (COHORT=0.0)
II. GROUTH
A. A CHOICE OF ANHUAL REAN OR AMMUALLY VARYING GROUTH
(1.) MEAN EROUTH (2.) VARYIMG GROUTH ESTIMATED USIMG KREUZ'S ESTIMATED USING KREUZ'S
VON EERTALANFFY AND EROUTH UITH BOTTOM SEASONAL GROUTH ESPRES TEHPERATURE AND SEASUNAL SIONS GROYTH ESPRESSION DEFAULT (VARGRO=0.0) (VARGRO=1.0)
III. FISHING MORTALITY
A. A CHOICE OF MANAGING BY SELEETING (F) OR (YIELD)
(1.) MODELER SELEETS (2.) MODELER SELECTS
FEFAULT(RUOTA=0.0)
YIELD

DEFAULT(QUOTAZO.O) (RUOTA TOTAL YIELD IN
A CHOICE OF KMIFE EDGE OR LESISTIC MESH SELECTIOK
8. A CHOICE OF KHIFE EDGE OR LEGISTIC MESH SELEC
$\begin{array}{ll}\text { (1.) LOEISTIC MESH } & \text { (2.) KRIFE EDGE MESH }\end{array}$

SELECTION (E.A. BEST
SELEETIOK
1971)
(SKMIFE=50 PERCENT SELECTION
DEFAULT (SKMIFE=0.0)
LENGTH IN CH. TOTAL LENGTH)
C. A CHOICE OF KNIFE EDEE OR LOGISTIC EATCH UTILIIATION
(1.) LOGISTIC CATCH

UTILIZATION TENEYCK AND DEKORY 1975. DEFAULT (UKMIFE=0.0)
(2.) KRIFE EDEE CATCH

UTILIZATIOK (UKNIFE=
SO PERCENT UTILIZATION
LEMGTH
IV. SURUIVAL
A. A CHOICE OF NATURAL MORTALITY RATE AND THE pROPORTION OF DISCARDED FISH THAT DIE
(1.) MODELER. SELECTS

MATURAL MORTALITY
DEFAULT (MHORT=0.2)
(2.) NODELER SELECTS

FRACTION OF BEAD DISCARDS
DEFAULT(A=1.0) ASSUMES ALL DISCARDS DIE
v. REDISTRIBUTION
A. A CHOIEE OF REDISTRIBUTION OR NOT
（i．）REDISTRIBUTION（2．）REDISTRIBUTION
BASED UPON ODFIH SURUEY OFF
RECRUTIHENT ESTIHATES（REDIST＝0．0）
AND FROPORTIONS NECES5ARY
TO SIMULATE THE 1960－79
COMMEREIAL CATCH RECORDS
DEFAULT（REDIST：1．0）
SUBROUTINE UHODEL（IT）
REAL NMORT，LENFLAG，LENMAX．K
REAL N，N3B，N3A，N2C，N2B
REAL NHATJB，NHAT3A，NHAT2C，NHAT2B，NHAT
REAL IHATR 3 ，IHATRJA，IMATRIC，IKATR2B
REAL MATUR3B，HATUR3A，MATUR2C，HATUR2B
REAL MTRB1，HTRB2，HATURE
COMHON COHORT，BARO，RDATA（30），B，RECBARC，RECBARS．GROBAR
COMHON VARGRO，LEMFLAG，GYEAR，BTHTEAP，SEALEV，VARREC，GDATA（3O）．D
COMHON LENHAX，K，TNOT，BTCOM1，BTCON2，BTCON3，VGRCOM ，VGRCON2
COMMON AMLEN3B（14），ANLEN3A（14），ANLEN2C（14），ANLEM28（14）
COMHON ANGRO3B（14），ANEROJA（14），ANGRO2C（14），ANGRO2B（14）
COMMON REC3B，REC3A，RECZC，REC2S，TREC，COVAREC，RECHAT（12）
COMMON ANUGR38（14），ANUGR3A（14），ANUGR2C（14），ANUGR2B（14）
CDMHON DAYS3B，DAYS3A．DAY52C，DAY52E，RYEAR，PCT（14），GRSUTCH
COHHON AUGRDJB（14），AUGROJA（14），AYGRO2C（14），AUGRO28（14），GROFLAG
COMHON AVLEN3B（14），AVLEM3A（14），AVLEN2C（14），AVLEN2B（14）
COMHON UT3B（14），UTZA（14），UT2C（14），UT28（14），UTCOMN，UTEXPN
COMMON SEL3B（14），SEL3A（14），SEL2C（14），SELSB（14），UTCONS，UTEXPS
COMKDN SELE1，SELBE，SKKIFE，VOKB，KKIFE
COMMON UTL3B（14），UTLSA（14），UTLEC（14），UTL28（14）
COMMON DSCRD38（14），DSCRD3A（14），DSCRD2C（14），ISCRD2B（14）
COMHON UTLBI，UTLB2，UKKIFE
COMMON DHORT3B（14），DHORTJA（14），DKORT2C（14）．DHORT2B（14）
COMHON F3B，F3A，F2C，F2B，QUOTA
COMMON FHORT3B（14），FMORTJA（14），FHORT2C（14），FMORT28（14）
COMMON CATCH3B（14），CATCH3A（14），CATCH2C（14），CATCHSB（14），MMORT
COMMON TOTCC3B，TOTCCJA，TOTCC2C，TOTCC2B
COMMON PCTCP3B（14），PCTCF3A（14），PCTCP2C（14），PCTCP2（14）
COMMON YTONS3B（14），YTONSJA（14），YTONS2C（14），YTONS2B（14）
COMRON YLBS3B（14），YLBS3A（14），YLBS2C（14），YL8528（14）
COHRON YIELD3Z，YIELD3A．YIELD2C，YIELD2B．XYTOMS
COMMON EYELD3B，EYELD3A，EYELD2C，EYELD2B
COMHOK TCATCH，TYIELD．TEYELD，A
COMHON SFPOP3B（14），5FPOP3A（14），5FPOPEC（14），5FPOP2B（14）
COMRON 5POP3B，SPOP3A，5POP2C，SPOP2B，SFPOP（14）
COMMON STONS3B（14），STONS3A（14），STOMS2C（14），STONS2B（14）
COMHON SLBS3B（14），SLBS3A（14），SLES2C（14），SLBS2B（14）
COMMON 5BIOH3B，SBIOHZA，SBIOH2C，SBIOH2B
COMMON SEBIMSB，SEBIH3A SEBIM2C，SEBIH2S
COMMON TSPOP，TSA10H，TSEBIOM
COMMON NHAT3B（14），MHAT3A（14），NHAT2C（14），NHAT2B（14），MHAT（14）
COHRON M．N3B．N3A，N2C．N28
COMRON C，F．E3S，C3A．E2C，C2B

```
    COMMON MaTURJB(:4),MATUR3A(14),AATUR2C(14),MATUR2B(14)
    COMHON MTRB1,MTRB2
    COMHON IMATRJB(14).IMATR3A(14),IMATR2C(14),IMATR2B(14)
    COMHON OISTSBC,DISTJAC.DIST2CE,DIST2BC
    COMHON DIST3BS,DIST3AS,DIST2CS.DIST2BS
    COHHON RHATJBC,RHAT3AC,RHAT2CE,RHATIEC,REDIST,TRHGTC
    COHHON RHAT3B5,RHATZAS,RHAT2CS,RHAT2BS,TRHATS
    COMHON RFPOPJB(14),RFPOPJA(14),RFPOP2C(14),RFPOP2B(14)
    COMHON RFPOP(14),RFOF3B,EPOP3A,RPOP2C,RPOP2B
    COMMON RTONS3B(14),RTONS3A(14),RTONS2C(14),RTONS2B(14)
    COMHON RLBS3B(14),RLBS3A(14),RLBS2C(14),RLPS2B(14)
    COMHON RBIOH3B,RBIOH3A,RBIOK2C,RBIOH2B
    COMHON REBIHJB,REBIMSA,REBIH2C,REBIM2B
    COMAON TRPOP,TRBIOM,TREBIOM
C
C-------TABLE FINC (FISHING MORTALITY INCREMEMTS) USED UHEN QUOTA OPERATIOMAL.
c
    DIHENSION FIMC(9)
    DATA FINC /1.28, .64, .32, .16, .08, .04, .02, .01, .01/
C
C-------------DEFINITION OF VARIABLES USED IN THIS nODEL--m-m
A
ANGRO()(I) AREA AND AGE SPECIFIC AMNUAL EROUTH IH LENGTH
ANLEN( )(I) AREA AKD AGE SPECIFIC AVERAGE ANMUAL LENGTH
ANUGR( (II) AREA AND AGE SPEEIFIC ANRUAL EROUTH INCLUDING ANNUAL VARIATION
AVGRO()(I) AREA AGE AND TIHE SPECIFIC AMNUAL GROUTH
AULEN( ) (I) AREA AGE AND TIME SPECIFIC ANWUAL LENGTH
8
BTCON1
BTCON2
BTCON3
GROBAR MEAY EROUTH FOR AGE I AREA JA ESTIMATED FROM K. KREUZ'S
HODEL OF ANNUALLY VARYING SROUTH USING 30 YEARS DATA 1951-80
THE SUM OF SEPT. AND OET. MONTHLY MEAN BAROHETRIC PRESSURE AT
46 DEGRESS M. L. 124 DEG.U.L. IN KILLIBAR5*10-10000
JUNE BOTTOH TEHP IN DEG. C AT WH-15 OFF NEUPORT ORE.
    BTMTEMP
    C
    C()
    CATCH( )(I) AREA AMD AGE SPEEIFIC AT SEA CATCH
    COHORT A SUITCH TO SELECT COHORT OR SURUEY ESTIHATES OF RECRUITMEMT
    COVAREE A SUITHC TO SELECT PREDICTED OR OESERUED COHORT EST OF REC.
    G MULTIPLIER FOR COEFFICIENT OF VARIATION USED TO EXAMINE
    R RELATIVE VARIABILITY IH GROUTH
    DAYS( ) AREA SPECIFIC NUHBER OF DAYS TILL HALF THE GNNLUAL EATCH IS LANDED
    DIST: IC AREA SPEEIFIC PROPORTIOK OF FISH EISTRI#UTED TO PAFC AREAS
    FOR COHORT GASED ESTIMATES OF RECRUITMENT
    DISTE IC AREA SPEEIFIC PROPORTION OF FISH DISTRIBUTED TO PMFC AREAS
    FOR SURUEY BASED ESTIHATES OF RECRUITMENT
    DSERD! )II) AREA ARD AGE SPEEIFIC PROPORTION OF GATEH EISCARNED
```

EYELDI 1 AREA SPEEIFIE GANDIMGS IM LU5.
FIME AN ARRAY OF IMTETYAL HALUINES TO ESTIMATE F UHEM QUOTA OPERATIOMAL
F IKSTAMTANEDUS FISMIME RORTALITY FOR POP NODELED EETIMATED FROM
 POPVLATIOM OF AEE 6 AMB GREATER AMS SIVEM MATURAL MORTALITY AREA SPEEIFIE INSTAMTAMEDUS FISMIMG MORTALITY
$F(1)$ AREA SPEEIFIE LHSTAMTMMEDUS FISAIMG MORTALITY
 ABJUSTES BT MESH SELEETIOM MNA REEDRDED OFF MEAH BAT WASH.
GDATM IO TEAR MRRAY OF SEALEVEL EATA REGUML GFFOUTH AT MEE
K VOM BERTMANFFT GROUTM GJEFFIEIEMT
otear amulal indey of sealevel baia
tMarri) () AREA AMl afE SPEEIFIC PEREEM IHMATURE
EMFLAG FLAE TO TURI OFF vaniert ESTIMATE OF IKITIML LEMGTH AT MGE
ATUR1 $1($) AREA MI AEE SPEEIFIE PEREERT MATURE FROM MARRT 59.
GIRE: PARAMETER FOR PERCENT MATURITY UHIEA GOHTROLS LATERAL PLACEMEMT
PakanEtE for percemt haturity unica comprois rate of chamge
LEmARZ voM BETTALAMFFT ASTMPTOTIE LEMETH
N
M()
TOTM POP of AsE 4 AN EAEATE USED IK ITERATIVE EST. OF F
ANEA SFEIFIE POP OF AOE GM GREATER USEI TO EST. NKAOO

praportion of hef 2 mumunc grouth oiservea at sucessive (ages)

TOTML TOMNES IM REOISTRIJUTED POPVLATZOM

RIIOAI) hREA SPELIFIC REDISTKISNTES PRESSURE BaTh FROM to 124

mea specific popmlation after kevistrijution in lis.

regiaks heal amanl regxuithemp for area ja esitmate proh hayman's REERUITMEMT MABEL FOR YEARS 1 YSt-80 ADJUSTES TO GRI. FHS. SURUET EडTIMATES 1971-76
rechat al arkat of matmans comort estimates of mes. of aet 4
REEMAT PEMALE EMCLISM SELE TI AREA JA FOR TEARS 1959-70. a suiten to silegt neea and age specific popviation kebistrizution
 DEFAULT is reaistrizution on (REJIST $=1.0$)

RFPGP (i) AGE SFLGFIS

 comort amal
isfto above
Rhat33C gitpo above
RHatzet
oitio above
вMatzic bitto above

rhat3as	sRgumafish sunvers 1971-76 alduste it a hean uSime caniparisoms of haman's
RHatjes	DITTO a Beve
mmatzes	DITTO ADOVE
RHaTE85	OITTO ALOVE
RL83 () (5)	
RPPP 1	
RTans: $)(1)$	
RTEAR	
S318M	TotM Towi in survivins mopuation if mek
SEALEV	
stzint	
sE1 (1)	
SEIJI	
SELI2	
SFPap ($1(1)$	
synife	
SL351)(1)	
Spapl)	
staws $)(1)$	
Tign	
teatem	
Timan	
TETEL	
TW0T	
Tr3inm	
fresion	
TRES	Trtal kecrertheit Ml mexat cunire
trmate	
	lactu unom cmour mmatsis
trmats	TOTML Me. OF NEE 4 FEMME EMELSM SHE NLL AREAS
TRPOP	
Ps8104	
T3E3INM	
T3P0P	
T7EE!	
UKMIFE	
UTL ${ }^{\text {(1) }}$	
TTLE	
4782	
Yamere	
Vamets	
vil	
vereanz	
UT () (1)	
UTEOMM	
uTEDM	

```
C UTEXPN LENGTH UEIGHT COEFFICIENT FOR PMFC 3B-3A
C UFEXPS LENGTH-UEIGHT COEFFICIENT FOR PMFC 2C-2B
C YIELD( ), arEA SPECIFIC TOTAL COMHERCIAL LANDED CATCH IM METRIC TONNES
C YLBS( )(I) AREA AND AGE SPECIFIC YIELD IN LBS.
C YTONS( )(I) AREA AND AGE SPECIFIC YIELD IM HETRIC TONNES
C---m-----------TUNCTIONS
C
C------VON BERTALAMFFY GROUTH EqUATION TO ESTIHATE MEAN ANMUAL LENGTH, KREUZ 1979.
    VOMBERT(LENHAX,K,AGE,TMOT) = LEMMAX*(1.-EXP(-(K*(AGE+TMOT))))
C------LINEAR RELATIONSHIP BETUEEM SEALEVEL AND BOTTOK TEMPERATURE, KRUSE 80.
    BTEMP(B1,82,SEALEV,BJ) = B1+82*(SEALEV/BJ)
C
C------LIMEAR RELATIONSHIP bETUEEM BOTTOH TEHPERATURE AND ANNUAL GROUTH OF AgE 2
C--*----FEMALE ENGLISH SOLE, KRUSE ET. AL. 80.
C
    UARYGRO(B1,B2,BTMTEMP)=B1-B2*BTMTEMP
C
C----O--EXPONENTIAL LENGTH UEIGHT EQUATION, DENORY & ROBINSOM }72
    UEIGHT(A,FLEM,B)=A*FLEM**B
C
C-------SEASGRO COMPUTES THE PROPORTION OF ACCUMULATED ANNUAL GROUTH
C----DEPENDENT UPON TIME, HEASURED IM DAYS. KREUZ 1979
    SEASGRO(TIME)=1.-1./(1.+EXP(-(4.81-.0294*(TIME))\)
C
C-------HATURE COMPUTES LEMGTH SPECIFIC PROPORTION MATURE
    MATURE(FLEM, B1,B2)=1.-1./(1.+EXP(-(81-82#(FLEN))))
C
C-------SELECT COMPUTES LEMGTH AND MESH SIIE SPECIFIC
C--m-O-PROPORTIOK OR RATIO CAUGHT FOR 4.5" MESH, E.A. BEST 1961
    SELECT(FLEM,B1,B2)=1.-1./(1.+EXP(-(B1-82%(FLEN))))
C
C------RECRUITMENT (AGE FOUR FEHALES) IN AREA JA IS A FUNCTION OF BAROMETERIC
C------PPRESSURE(UPUELLIMG), AS OBSERVED BY HAYMAN 1979.
    RECRUIT(BAROPRE)=(270.42641*EXP(.00712*BAROPRE))*1000.
C
C-------baranou IS the baramou catch equation
C
    BARAMOV(XN,F,XH,A,FK)=XN*F/(F+XK+A*FK)*(1. -EXP(-F-XH-A*FK))
C
C-------UTILIZE COMPUTES THE LENGTH SPECIFIC UTILIIATION RATE OF CATCH
C-------TEMEYCK AND DEHORY (7S)
```

```
    UTILIZE(FLEN,B1.BE)=1.-1.J(1.+EXP(-(B1-B2*(FLEN))))
C
ZMORT(XN,F,XH,A,FK)=XN*EXP(-{F+XH+A=FK))
C-------PORTIDN OF BARAMOU CATCH EQUATION USED TO ITERATIVELY SOLUE FDR THE
C-------HODELED POPULATION'S INSTANTANEDUS FISHING MORTALITY (F)
C
    FUMC(F,XH)=F/(F+XH)*(1.-EXP(-F-XH))
C
C------------m---------PR06RAM-----------------------
C
C-------IENO mAJORITY OF ANHUAL TOTALS
c
        EYELDJ8=EYELDJA=EYELD2C=EYELD2P=0.0
        TGATCH=TYIELD=TEYELD=0.0
        SBIOM3B=SBIOM3A=SBIOM2C=SBION2B=0.0
        SEBIKJB=SEBIK3A=SEBIM2C=SEBIK2B=0.0
        5POP3B=SPOP3A=SPOP2C=SPOP2B=0.0
        C3B=C3A=C2C=C2B=0.0
        N3B=N3A=N2C=R2B=0.0
        RPOP3B=RPOPJA=RPOP2C=RPOP 28=0.0
        RBIOH38=RBIOK3A=RBIOH2C=RBIOM2B=0.0
        REBIH3B=REZIKSA=REBIH2C=REBIH2B=0.0
C
C---m--AGING DF POPULATIONS
C
        DO 1 I=2,14
            L=16-1
            H=L-1
            5FPOP3H(L)=5FPOP3B(M)
            SFPOP3A(L)=SFPOP3A(M)
            5FPOP2E(L)=SFPOPEC(M)
            SFPOP2B(L):SFPOP2B(M)
            SFPOP(L)=SFPOP(N)
        I COMTINUE
C------5ELECT AMNUALLY varying grouth via predictive model (Hayman ET al)
C--O----OR ACTUAL COHORT ESTIMATES OF MOS. AGE 4 FEMALES FROM HAYMAN
C if (COvarec .EQ. O.0) GO TO 130
C C---m--IMCREMEMT VARYING RECRUITMENT YEARS 1959-70 TO READ IN
C-----ACTUAL COHORT ESTIMATES OF MOS. AGE 4 FEMALE FM HAYMAM.
c
    IF (RYEAR .GE. 12) RYEAR=0.0
    RYEAR=RYEAR+1.0
C
C-------read in recruithemt estimates
```

```
    REEJA=RECHAT(RYEAR)
C
C-------GOMPUTE vaRYING REERUIMTENT TO EXAMINE SENSITIVITY
C
    REE3A=&*(REC3A-3187083.)+3187083.
    60 TO 131
c
[------sElect hean annual or annually varying recruitmemt (default is meam amnual varrec=0.0)
c
    130 IF (varREC .ER. 0.0) 60 TO 104
C
c-------IMCREMEMT varying recruithemt data year gelector
C-------DATA YEARS ARE 1946-1995 UHILE RECRUITMENT YEARS ARE 1951-1980
C
        IF (RYEAR .ER. 30.) RYEAR = 0.0
        RYEAK=RYEART1.
        BARO=RDATA(RYEAR)
C
C-------SELECT COHORT OR SURUEY ESTIMATES OF NUMBERS RECRUITED.
C-------COHORT=1.O IS DEFAULT USING HAYMAM'S COHORT ESTIMATES.
C
        IF (COHORT .ER. O.0) 60 TO 108
C-m-m-no's of age 4 FEmales in area 3a is a function of barometric pressure
        REEJA=REERUIT(BARO)
C
C------COKPUTE INCREASED OR DECREASED RECRUITHENT TO EXARIME SEMSITIVITY
C-------OF RECRUITMENT USIMG COEFFICIERT OF VARIATIOM
        REC3A=B=(RECJA-RECBARC)+RECBARC
C
C-------NO-S OF AGE 4 FEMALES IK AREAS IE 2C AND 2B COMPUTED USIMG RATIGS OF
C-------A.D.FiN. GROUNDFISH SURUEY ESTIMATES AND MEAN COHORT ESTIMATES FROM HAYMAN ET. AL.
C
    1J1 RECJB=RHATJBC+((RECJA-RHATJAC)/RHATJAC) &RHAT3BC
        REC2C=RHAT2CC+((RECJA-RHAT3AC)/RHATJAC)*RHAT2CC
        REC2P=RHAT2BC+((RECJA-RHATJAC)/RHATJAC)*RHAT2BC
        60 T0 106
C
C------nOOS OF AgE 4 fEMALES IN AREA JA AS A FUMCTION OF bAROMETRIC PRESSURE
C------ADJUSTED TO GRD. FSH. SUR. ESTIMATES.
    108 RECJA=(RECRUIT(BARO))*1.4449
C
c-------COKPUTE INCREASED OR DECREASED RECRUITMENT TO EXAMIME SEMSITIVITY
C-------OF RECRUITMENT USIMg COEFFICIEMT OF VARIATIOM
C
    fECJA=B=(REEJA-RECBARS)+RECBARS
E------NO'S of agE 4 FEmalEs in AREAE Is IE AND 2S computEd usine ratios of
```

C------0.D.fil. groundfish survey estimates and hein cohoft estimates from hayman et. al. C

RECJB=RHATJBS $+($ (RECJA-RHATJAS $) /$ RHATJAS $)$ *RHATJBS
RECEC=RHGTECS+((RECJA-RHATJAS)/RHATJAS) *RHAT2CS
RECIE=RHAT2BS+i(REC3A-RHATJAS)/RHATJAS) =RHAT2BS
60 TO 106
c
c-------sElECT COHORT DR SURVEY ESTIMATES DF CONSTANT MEAM RECRUITKENT
C
104 IF (COHORT .ER. O.0) 60 TO 105
c
c-------hean recruitment via cohort estimates hayman et.al. 80
C
RECJB=RHATSBC*B
RECJA=RHATJAC*B
RECEC=RHATECC*B
REC2B=RHAT2BC*E
60 TO 106
©
C-------MEAAN RECRUITMENT VIA GROUND FSH SURVEY EST. ODFZU (DEMORY)
105 REC3B=RHATJBS*B
RECJA=RHATJAS:B
REC2CzRHATELS*B
REC28=RHAT235*8
c
c-------conpute total recruithent all phfe areas combine
c
106 TREL $=$ REC3B + REC3A + REE2C + REE2 A
C
C-------SFPOP(S) 15 actually the reciuited pop not the surviving pop
C------FDR GOMPUTATIOMAL PURPOSES AND SFPOP(S) IS LAST YEARS RECRUITS
c
SFPOP(5)=TREC
c
C-------REGRUITMEMT---AGE AT EMTKY IMTO hODEL
C------AgE OF RECRUITMEMT IS AGE \& HOLEVER,
C-------THESE FISH ARE IH THEIK STH YEAR OF LIFE AND
C------ARE INDEXED AS FIVES IM THE SIMULATIOM MODEL.
SFPOPJB(5)=REC3B
SFPOPJA(5) $=$ RET3A
SFPOPSC(5)=REETC
SFPOP2B(5)=REC2B
C
C-------SELEET AVERAEE LENGTH AT AGE USIME VOK BERTALANFFY
C----mend average tine or von bert. and seasomal grouth
IF (VONB .EA. O.0) GO TO 101
C------CompijiE avERā̃e annual length at age using von bertalanffy

```
C-------gQUATION WITH TIME (T) = TO THAT FEACTION OF yEAE UHEN HALF
c-------THE COMMERCIAL CATCH IS LANDED.
C
        DO 501 I=2,14
            J=1-1
                            AVLEN3B(I)=YONBERT (LEMMAX,K,FLOAT(J)+DAYS3B/365.,TNOT)
                            AVLEN3A(I) = VONBERT (LENMAX,K,FLDAT(J) +DAYS3A/36S.,TNOT)
                            AULEN2C(I)=UOHBERT (LENMAX,K,FLDAT(J)+DAYS2C/365.,TMOT)
                            AULER2B(1) = VONBERT (LENHAX,K,FLDAT (J)+DAYS2Z/3CE., TNOT)
    501 CONTINUS
            AVLEM3B(1)=UONBERT(LEMMAX,K,DAYS38/365.,TMOT)
            AVLENJA(!)=UONBERT(LENMAX,K,DÄYS3A/3S5.,TNOT)
            AULEM2C(T)=VONBERT(LENMAX,K,DAYS2C/3GS.,TNOT)
            AULEN2B(1)=VONBERT(LENMAX,K,DAYS2B/3'5.,TNOT)
            50 T0 }70
C
```



```
C-------DEFAULT MEAN.ANNUAL GROUTH (VARGRO=0.0)
C
    101 IF (VARGRO .LT. 1.0) GO TO 102
c
c-------CHECK LENGTH COMPUTE SUITHC TO SKIP VONBERT AFTER IST ITERATIOM
    IF ILENFLAG .EE. 1.01 60 TO 103
c
c--m----calculate areas initial heak amuul lemgths
C
    DO 3 1=1,14
        ANLEM3B(I)=VONPERT(LEMHAX,K,FLOAT(I),TMOT (
        ANLEM3A(I)=VONBERT(LENHAX,K,FLOAT(I),TNOT)
        ANLEM2E(I) = UONBERT(LEMMAX,K,FLOAT(I),TNOT)
        ANLEK2B(I)=VOHBERT(LENMAX,K,FLOAT(I),TMOT)
    3 continue
        LENFLAG=1.0
c
C-------AMNUALLY UARYING EROHTH
C------DRIVEM BY SEALEVEL FOR AGE 2, USIMG DATA FROM 1951-1980.
C
    103 IF (GYEAR .ER. 30.) EYEAR = 0.0
        GYEAR=GYEAR+1.
        SEALEV=GDATA(GYEAR)
        BTHTEMP= BTEMP (BTCOM1, BTCON2, SEALEV, BTCON3)
            AMUGR3B(1)=ANLEMJB(1)
            ANUGR3A(1)=AMLEM3A(T)
            ANUER2C(1)=ANLEK2E(1)
            ANUER2B(1)=AMLEM2S(1)
                    ANVGRJA (2) =YARYGROCUGRCON1, UGRCON2,BTHTEMP)
                    c
                            G-------COMPUTE IMCREASED OR DECREASED AMNUAL VARYING GROUTH FOR SENSITIVITY
C------AHALYYSIS, USING CDEFFIEIENT OF VARIATIOK
i
```

```
            ANUGRJA(2)=p#(ANUGRJA(2)-GROBAR)+GROBAR
C
C-------sET gROLTh amoung areas gqual for hge 2 FISH
C
        ANUGR3B(2)=ANUGR2C(2)=ANUGR2B(2)=ANUGR3A(2)
C
C------ADJUST GROUTH AT SUCESSIVE AGES (3-13) BY PROPORTIDN OF AGE 2
C
DO 2 I=3,14
ANUGRJA(I)=PGT(I)*ANUERJA(2)
C
[------SET gROLTH AT AGES (3-13) EQual dUER AREAS
E
                ANVGR3B(I)=ANUGR2C(I)=ANUGR2B(I)=ANVGR3A(I)
    2 CONTINUE
C
C------UfDATE ANNUAL LENGTH (CM. TOTAL LEMGTH) at agE
c------TO ALLDH accuhnulative EFFECTS OF varyiNg GROHTH
C
    DO 6 I=2,14
            L=id-i
            HaL-1
                ARLEM3E(L)=ANLEMJB(H)+ANUGR3B(L)
                    ANLEMJA(L)=ANLEMZA(H)+ANUGRJA(L)
                    AMLEK2C(L)=AMLEM2C(H)+ANUGR2C(L)
            ANLEM2B(L)=AMLEK2B(H)+ANVER2B(L)
        comtinue
        60 T0 }14
C
C-------CHEEX ANNUAL LENGTH COMPUTAION SHITCH
C
    102 IF (GRSUTCH .ER. 1.0) GO TO 150
C
c-------calculate areas imitIal mean anmual lemgths
C
    DO 30 I=1,14
        ANLEN3B(I)=VONBERT(LENHAX,K,FLOAT(I),TNOT)
        AMLEMSA(I) = VONBERT(LEMMAX,K,FLOAT (I),TNOT)
        ANLEK2C(I)=VONBERT (LENHAX,X,FLOAT(I),TMOT)
        ANLEN2B (I) = VONBERT (LEMMAX,K,FLOAT(I),TNOT)
    30 CONTINUE
        GRSUTCH = 1.0
E
C-------Calculate area specific neak annual grouth imCrements
C
    150 IF (gROFLAG .EQ. 1.0) 60 T0 140
        ANUGR3B(1) =ANGROJB(1)=ANLEM3B(1)
        ANVGRJA(1)=ANGROJA(1)=ARLEMJA(1)
        ANVGK2C(1)=ANGRO2E(1)=ANLEN2C(1)
        ANUGR2B(1)=ANGRO2B(1)=ANLEN2B(1)
        DO 4 I=?.14
```

```
            ANUGR3B(I)=ANGROJB(I)={ANLENJE(I)-ANLEN3B(I-1))
            ANणGR3A(I)=ANGRO3A(I)=(ANLEN3A(I)-ANLEN3A(I-I))
            ANUGR2C(I)=ANGROSE!I)=(ANLEN2C(I)-ANLEN2C(I-I))
            ANUGR2B(I)=ANGRD2B(j)*(ANLEN2B(I)-AHLEN2B(I-1))
    4 continue
        GROFLAG=1.0
C
c-------compute avekage annual grouth adjusted to
C-------COINEIDE UITH SEASONAL GROUTH (KREUZ 79).
C
    140 D0 5 I=1,14
            AVGRO3B(I)=ANUGRZB(I)*SEASGRO(DAYSJB)
            A\cupGROJA(I)=ANUGRZA(I)*SEASGRO(DAYS3A)
            AUGRO2C(I) = ANUGR2C(I)*SEASGRO(DAYSSC)
            AVGRO2B(I)=ANVGR2B(I)*SEASERO(DAYS2B)
        S COMTINUE
C
C-------compute avErage anNual leNGTH at age
C-------TO ALLOY accunulatIVE EFFECTS of varying grouth
    0071=2.14
        L=10-i
            H=6-1
                AULEK3B(L)\approxAMLEN3B(H)+AUGRO3B(L)
                AULEM3A(L)=ANLENJA(M)+AUGR03A(L)
                    AULEM2C(L)=ANLEN2C(H)+AUERO2C(L)
                    AULEK2B(L)=AMLEN2B(H)+AUERO2B(L)
        7 COMTINUE
            AULEM3B(1)=AU6RO3B(1)
            AULEM3A(1)=AvER03A(1)
            AULEN2C(1)=AUGRO2C(1)
            AULEK2B(i)=AVGRO2B(i)
C C------UPDATE MEAN AMNUAL UEIGHT (GRAMS) AT LEMGTH (BARSS ET. AL. 1977)
C
        700 DO 8 i=1,14
            HT3B(I)=UEIGHT(HTCONK,AVLEN3B(I), UTEXPN)
                    HTJA(I)=UEIGHTIUTGONR,AULENJA(I),UTEXPN)
C
C-------update mean anmual uEIGHt (gramS) at lemgTh (dEmory Et. al. 1975)
    UT2C(I)=#NEIGHT(UTCOMS.AULEN2C(I),HTEXPS)
    HT2B(I)=HEIGHT(UTCONS,AULEN2B(I), UTEXPS)
C
C-------CHECK IF REDISTRIBUTION IS ON
C
    IF (REDIST .EQ. O.) 60.TO 21
C
C-------COMPUTE LEMGTH SPECIFIC PERCENT MATURE
C
    MATURJB!!)=MATURE(AHLENSB(I),MTEBI,MTRBZ)
```

```
    MATUR3A(I)=#ATURE(AULEKJA(I),MTRBI, HTRBE)
    MATUREE?I)=MATURE(AULENEC(I), HTRB1,HTREE)
    MATUR2g(I) =HATURE(AVLEN2B(I), KTRB1,KTRB2)
C
C-------GOMFUTE LENGTH SPECIFIC PERCEMT IMMATURE
C
        IMATR3B(I)=9.0-nATUR3B(I)
        IMATRJA(I)=1.0-HATUR3A(I)
        IMATR2C(I)={.0-HATURIE(I)
        IMATR2B(I)=1.0-HATUR2B(I)
C-------5ELEET COHORT OR SURUEY BASED IISTRIBUTION ESTIMATES
C
        IF :COHORT. ED. O.0) 60 TO 100
C
C------redistributE nature surviving population to pmfc areas using
C-------PPDPORTIONS THAT SATISFY AUERAGE CATCHS OBSERUED IN THESE AREAS
c-------AND COHORT BASED RECRUITHENT ESTIMATES
C
    RFPOP3B(I)=SFPOP(I)*HATUR3B(I)*DI5T3BC
    RFPOP3A(I)=SFPOP(I)*HATURJA(I)=DISTJAC
    RFPOP2C(I) =SFPOP(I)*HATUR2C(I) = ISTECE
    RFPOP2B(I)=SFPOP(I)*HATUR2B(I)*DIST2BC
    60 T0 99
C
C-m----REIISTRIBUTE MATURE SURUIVINU POPULATION TO PFFE AREAS USING
C-\infty-\infty---PROPORTIONS THAT SATISFY AUERAGE GATCHS OESERUEL IN THESE AREAS
C----\infty--AND SURUEY BASED RECRUITHENT ESTIKATES.
C
    100 RFPOP3B(I)&GFPOP(I)*HATUR3B(I)&DIST3BS
        RFPOP3A(I)=SFPOP(I)*HATUR3A(I)*DIST3AS
        RFPOP 26(I) =SFPOP(I)*HATUR2C(I)*⿴囗ST2CS
        RFPOPIB(I)=SFPOP(I)*KATUR2B(I)*DIST2BS
C
C-------REDISTRIBUTE IHMATURE SURVIVINE POPULATION TO PMFE AREAS USING
C--\infty-\infty--PROPORTION OF AGE FOUR GROUND FISH SURUEY ABUNDANCES ESTIMATES
C
    O9 RFFOPTB(I)=RFPOF3B(I)+SFPOP(I)*IHATR3B(I)#(RHAT3BS/TRHATS)
        RFPOPJA(I) & RFPOPJA(I) +SFPQP(I):IHATRJA(I):(RHATJAS/TRHATS)
        RFPOPZC(I) =RFPOP2C(I)+SFPOP(I)#IHATRIC(I)*(RHAT2CS/TRHATS)
        RFPOP2B(I)=RFPOP2D(I)+SFPOP(I) #IMATR2B(I)&(RHAT2BS/TRHATS)
        60 T0 22
    C
    C-------NONREDISTRIBUTED POPULATION
    C
    21 RFPOP3B(I)=5FPOPJB(I)
        RFPOP3A(I)=SFPOP3A(I)
        RFPOP2C(I)=SFPOPEE(I)
        RFPOP28(I)=SFPOP2B(I)
E
C-------SUM REDISTRIBUTED POP BY AGE OVER AREAS
```

```
c
    22 RFPOP(I)=RFPOFJB(I)+RFPOFJA(I)+RFPOFIS(I)+RFFOFIR(I)
    & COntINUE
C
C-------CHEEK IF QUOTA OK
    IF (quota .EQ. 0.0) 60 T0 107
G
c------IMITIALIIE quota paranEtERS
    F3B=FJA=F2C=F28*2.56
    IE=0
C
C------ZERO REMAINDER OF AMNUAL TOTALS
    107 TOTCESB=TOTCEJA=TOTCCEC=TOTCESS=0.0
        YIELD3B=YIELD3A=YIELD2C=YIELD2B=0.0
        DO O I=1,14
```



```
        UTLJ#(I)=UTLJA(I)=UTL2C(I)=UTL2B{I)=0.0
        CATCH3B(I)=CATCH3A(I)=CATCH2C(I)=CATCH2B(I)=0.0
c
C--m---SELEET KNIFE EDGE OR LOGISTIC TRAUL SELECTIVITY
IF (SKMIFE .NE. 0.01 60 TO 120
C--------COMPUTE LENGTH SPECIFIC TRAUL SELECTIVITY
C
        SEL3B(I)=SELEET (AULEM3B(I),SELB1,SELB2)
            SELJA(I)=SELECT(AULEN3A(I),SELB1,SELB2)
            SEL2C(I)=SELECT(AVLEK2C(I),SELB1,SELB2)
            SEL28(I) =SELECT(AULEK2B(I),SELB1,SELB2)
            60 T0 121
C
C---m--KMIFE EDGE RESH SELECTIOM AT 29.15od C.M. TOTAL LEMGTH
C------SO PERCENT SELECTIOK FOR 4.5 INCH HESH TRAUL, E. A. BEST 1961.
120 IF (AVLEM3B(I) .EE. SKMIFE) SEL3B(I)=1.0
        IF (AVLEN3A(I).GE. SKNIFE) SEL3A(I)=1.0
        IF (AVLEN2C(I) .GE. SKNIFE) SEL2C(I)=1.0
        IF (AVLEM2B(I).GE. SKMIFE) SEL28(I)=1.0
    c
    c-------SELECT KMIFE EDGE OR LOGISTIC CATCH UTILIIATION
    121 IF (UKNIFE .NE. 0.0) 60 TO 122
    C-------compuTE LENGTh spECIfIL CATCh UTILIZATIOM
    C
        UTLJB(I)=UTILIEE(AVLEN3B(I),UTLB1,UTLBE)
        UTL3A(I)=UT:IIE(AULENJA(D),UTLE1,UTLB2)
        UTLAE(!)=\TILIZE(AULEH2C(I),UTLB1,UTLB2)
```

```
    UTL2&(I)=UTIGIIE(AULENSS(I),UTLS1,UTLS2)
    50 10 123
¿
E------KNIFE EDGE CATCH UTILIZATION AT 2E.9368 C.K. TOTAL LENGTH = SO
C--m----PEREENT SELECTION FROM CATCH UTILIZATION STUDY TENEYCK AND DEMOKY TE.
C
    122 IF (AULEN3B(I) .GE. UKNIFE) UTLJB(I)=1.0
        IF (AULEN3A(J) .GE. UKNIFE) UTLJA(I)=1.0
        IF (AVLEH2C(I) .GE. UKNIFE) UTL2C(I)=1.0
        IF (AVLEN2B(I) .GE. UKNIFE) UTL2B(I)=1.0
C
C-------COMPUTE LENGTH SPECIFIL FRACTION OF CATCH DISCARDED
C
    12J nSERD3B(I)=1.0-UTLJB(I)
        0SCROJA(I)=1.0-UTLJA(I)
        OSCRD2C(I)={.0-UTL2C(I)
        DSCR12B(I)=1.0-4TL2B(I)
C
C------GOHPUTE LENGTH SPECIFIC INSTANTANEOUS FISHING HORTALITY
C------ADJUSTED FOR MESH SELECTION AND AT SEA DISCARDIMG
C
        FMORT3B(I)=SEL3B(I)*UTL3A(I)*F3B
        FHORTZA(I)=SELJA(I)*UTLJA(I)&F3A
        FHORT2C(I)=SELAC(I)*UTL2C(I)*FIC
    FMORT28(I) =SEL2B(I)*UTL2B(I)*F2B
C
C-------COHPUTE LEMGTH SPEEIFIC INSTANTANEDUS NORTALITY DUE TO FISHING
C
    BMORT3B(1)=DSERD3B(I)*SEL38(I)*F3B
    DMORTJA(I) =DSCRD3A(I)*SELJA(I) *F3A
    DMORT2C(I)=1SCRD2C(I)*SELSC(I)*F2C
    DHORT2B(I)=0SCRD28(I)*SEL2B(I)*F28
C
C-------COHPUTE VESSEL CATCH AT AGE BY AREA
    CATCH3B(I)= BARANOU (RFPOP3B(I),FMORTJB (I),NMORT,A,DHORT3E(I))
    CATCHJA(I)= SARANOU(RFPOPZA(I),FMORTJA(I),NHORT,A,DHORTJA(I))
        CATCH2C(I)= BARANOV(RFPOPIC(I),FHORT2C(I),MMORT,A,DMORT2C(I))
        CATCH2B(I) = BARANOV(RFPOP2B(I),FMORT2B(I),MHORT,A,IHORT2B(I))
E
C-------COMPUTE LANDED GATCH TOTALS BY AREA
C
    TOTCE3B=TOTEEJB+CATCH3B(I)
    TOTCEJA=TOTCCJA+CATCH3A(1)
    TOTCE2C=TOTCCzC+CATCH2C(I)
    TOTEC2B=TOTCE28+CATCH2B(I)
C
c-------ut. of landimgs by age im m.t.
c
    YTONSJB(I)=6ATCH38(I)*甘T3B(I)/1000000
    YTONS3A(I)=CATCH3A(I)*UTSA(I)/1000000
```

```
    YTONSEE(:)=CATCRSC(J)*UTSC(I)/1000000
    YTONS2g(I)=CATCR2B(I)*UT2B(I)/10000NO
C
C-------SUM OF LAKDINGS BY AGES IN H.T.
c
    YIELD3B=YIEIDJB+YTONS3B(I)
    YIELDJA=YIELDJA+YTONSJA(I)
    YIELD2C=YIELD2C+YTONS2C(I)
    YIELD2B=YIELD2B+YTONS2B(I)
    - continue
        XYTONS=YTONS3A(5)+YTONSZA(6)+YTOKS3A(7)+YTONS3A(8)
C
C--m----sun total catches IN nETRIC TOMnES
        TYIELD = YIELDJB+YIELDJA+YIELD2C+YIELDES
C
C-------CHECK IF GUOTA ON
    IF(QuOTA .ER. O.) GO TO 110
C------UHEN QUOTA IS ON, FIND THE F UHOSE YIELD JUST MEETS OR EXEEEDS
C-------THE QUOTA. THIS ALGORITHM USES IMTERVAL HALVIMG TO SEARGH FOR F
C------BETHEEK 0.0 AND S.12 UHERE F=5.12 IS NDRE THAN 99% MORTALITY
    I0 = IQ + 1
    IF (IQ .GT, 9) 60 to 110
    IF (TYIELD .GT. QuOTA) 60 TO 210
C
c-mo----if total yiEld is less than quota imcrement F and go around again
    F3B = F3B + FINC(IO)
    F3A = F3A + FINC(IB)
    FEC = F2C + FINC(IQ)
    FES = F2B + FING(IO)
    60 io 107
C
C-------OTHERHISE, DEGREMENT F UNLESS THE LAST CHAMGE IM F UAS ONLY . O1 UNIT
C-------IN UHICH CASE UE ARE THROUGH.
C
    210 IF (18 .EQ. 9) 60 T0 110
        F3B = F3B - FINC(IQ)
        FJA= F3A - FIMC(IO)
        F2C = F2C - FINC(IO)
        F2B = F2B - FIMC(IQ)
        60 10 107
C
C---m--sum varidus catch stats duer ages uithin areas
C
    110 D0 10 121,14
C
```

```
S
    YLSE3B(I)=YTONSJB(I)*2204.6
    YLBSJA(I)=YTONS3A(I)*2204.6
    YLSSこE(I)=YTOKS2C(I)*2204.6
    YLES2B(i)=YTONS2B(I)*2204.6
C
C-------SuM OF LANDINGE IN LBS. by age and area.
C
    EYELD3B=EYELD3B+YLBS3B(1)
    EYELDJA=EYELD3A+YLBSJA(I)
    EYELD2C=EYELD2C+YLBSSC(I)
    EYELD2S=EYELD2B+YLBS2B(I)
C
C-------GDMPUTE PERGEMT AgE COMPOSITION OF LANDED COMM. CATCH
C
    IF (F3B .NE. O.) PCTCPJB(I)=CATCH3B(I)/TOTCE3B
    IF (F3A .NE. Q.) PETCPJA(I)=CATCH3A(I)/TOTCE3A
    iF (F2C .NE. O.) PCTCP2C(I)=CATCH2C(I)/TOTCCSC
    IF IF2B .NE, O.) PCTCPEB(I)=CATCH2马(I)/TOTCESB
    10 gONTINUE
C
C-------SUM TOTAL catches in nunbers and pounds
C
    TCATCH = TOTCEJB+TOTECJA+TOTCE2E+TOTCC2S
    TEYELD = EYELD3B+EYELDJA+EYELD2C+EYELD2S
C
C-------GOMPUTE AREA SPEGIFIG REGATIVE EXPONEMTIAL SURUIVAL USIMg COMSTANT
C--\infty----IMSTAMTANEOUS MATURAL MORTALITY (MHORT) AMD AGE SPECIFIE IMSTANTAEDUS
C--~---FISHIMG HORTALITY (FKORT) HHICH INCLUDES AT SEA IISCARDING AND
C-\infty-m--(A) THE FRACTIOM OF DISCARDS THAT DIE, AND NORTALITY DUE TO FISHIMG (DMORT).
    DO 11 {=1.14
        SFPOP3B(I)=2MORT(RFPOP3B(I),FHORT3B(I),MMORT, A,DHORT3B(I))
        SFPOPJA(I) = ZMORT(RFPOPJA\I),FMORTJA(I),MMORT,A,DMORTBA(I))
        SFPOPIC(I):ZMORT(RFPOP2C(I),FHORT2C(I),MKORT,A,DHORT2C(I))
        SFPOP28(I)=2MORT(RFPOP2B(I),FHORT2B(I),NBORT,A,DHORT2B(I))
C
c
C
                                    SFPOP(I) =SFPOP3B(I)+SFPOPTA(I)+SFPOP2C(I)+SFPOPPB(I)
G
C
    STONS3B(I)=SFPOP38(I)*UT3B(I)/1000000
        STONS3A(I)=5FPGP3A(I)*UT3A(I)/1000000
        STOMSEC(I)=SFPOPSC(I)*甘T2C(I)/1000000
        STOMS2B(I)=5FPOP2B(I)*UT2&(I)/{000000
        SL.BS3B(I)=STORS3B(I)=2204.6
        SLES3A(I)=STONS3A(I) =2204.6
        SLBS2C(I)*STOMS2C(I)*2204.6
        SLBE2B(i)=STONS2B(I)*S204.6
```



```
    SFOP3B = SFOF3B + SFPOP3B(I)
    EPOFJA = SPOP3A + SFPOPJA(I)
        SPOPIC = SPOPIC + SFPOPZC(I)
        SPDP2B = SPOP2S + SFPOP2B(I)
        SBIOM3B = SBIOM3B + STONS3B(1)
        SBIOM3A = SBIOM3A + STOKS3A(I)
        SBIOH2C = SBIOR2C + STONS2C(I)
        SBIOn2B = SBIOM2B + STONS2B(I)
        SEBIM3B = SEBIM3B + SLBSJB(I)
        SEBIM3A = SEBIKJA + SLBSJA(I)
        SEBIM2C = SEBIM2C + SLBS2C(I)
        SEBIM2B = SEBIM2B + SLBS2B(I)
        1: continue
C
C------SUM SURVIVING FISH NOS., K.T., & LIS. OUER AREAS
C
    TSFOP = SPOP3B + SPOP3A + SPDP2C + SPOP2B
    TSBIDM = SBIOR3B + SBIOM3A + SBIOR2C + SBION2B
    TSEBION = SEBIMSB + SEBIMSA + SEBLM2C + SEBIM2B
C
C-------GOMPUTE AREA SPECIFIC CATCH AND PDP FOR AgES 6 AND gREATER
C-------FOR COMPUTING F OUER MODELED AREA
C
    10 12 1=6,14
                C3B=C38+CATCH3B(I)
                CJA=CJA+CATCH3A(I)
                C2C=C2C+CATCH2C(I)
                C28=C2B+CATCH2B(I)
                N3B=\3B+5FPOP3B(I)
                N3A=N3A+5FPOP3A(I)
                K2C=H2C+SFPOP2C(I)
                N2B=K2B+SFPOP2B(1)
    12 CONTINUE
C
C-------SUM AREA SPEEIFIC CATCH AND POP, AGES S AND GREATER
C
    C=C5B+C3A+C2C+C2B
    N=N3B+N3A+N2C+N2B
    IF (N .EE. O.) N = 1.0
C
C------Al50RITHM FOR COMPUTIMG TOTAL POPULATION INSTANTAMEDUS FISHING hORTALITY
[------USING barandU Catch EquatION CATCH and pop for age 6 and greatErand matural mortality
    F=2.56
    I& = 0.
300 10= 10 + 1
    [F (I0 .GT. 9) 30 T0 400
    if (FURG(F.MMORT) .GT. G/N) GO TO 3iv
```

```
        F = F + FINC(IQ)
        60 T0 300
    310 IF (IQ .Eq. 9) 50 T0 400
    F=F - FINC(ID)
    60 TO 300
    400 10 20 1=1,14
C
C-------compute redistributed population tons and pounds at age mithin area
C
        RTOKS3B(I)=RFPOP3B(I)*UT3B(I)/1000000
        RTOKS3A(I)=RFPOPJA(I)*UTJA(I)/1000000
        RTONS2C(I)=RFPOP2C(I)*UT2C(I)/1000000
        RTONS2B(I)=RFPOP2B(I)*&T2B(I)/1000000
        RLBS3B(I)=RTONS3B(I)*2204.6
        RLBS3A(1) =RTDNS3A(I)*2204.6
        RLBSEC(I)=RTONS2C(I):2204.6
        RLBS2B(I)=RTONS28(I)*2204.6
E
C-------SUM REDISTRIBUTED POPULATION NOS. IN H.T. & LBS. OUER AGES BY AREASS
        RPOP3B = RPOP38 + RFPOP3B(I)
        RPOP3A = RPOPJA + RFPOP3A(I)
        RPOP2C = RPOF2C + RFPOP2C(I)
        RPOP2B = RPOP2B + RFPOP2B(I)
        RBIOH38 = RBIOH3B + RTONS3B(I)
        RBIOK3A = RSIOMSA + RTONSJA(I)
        RBIOH2C = RBIOH2C + RTONSEC(I)
        RBIDH2B = RBIOM2B + RTONS2B(I)
        REEIM3B = KEBIM3B + RLBS3B(I)
        REBIKJA = REBIMJA + RLBSJA(I)
        REBIH2C = REBIM2C + RLBS2C(I)
        REBIH2B = REBIH2B + RLBS2B(I)
    zo comtinue
C
C-m----sun rediSTRIBUTED POP NOS., M.T., & LBS. OUER AREAS
C
        TRPOP = RPOP3B + RPOP3A + RPOP2C + RPOP2B
        TRBIOM = RBIOM38 + RSIOMSA + RBIOR2C + RBIOH2B
        TREBIOM = REBIKJB + REBIKIA + REBIM2C + REBIM2B
        RETURH
        END
C
C------SUBROUTIME EXTENDS SIMCON COMYOM BLOCX LIMITS
    susroutinE CGOM
    common DUMmy(1700)
    RETURM
    END
C
C--~----SUBROUTINE TO EXTEND SYHBOL TABLE LENGTH
C
```

