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power adder is an important and necessary research area. 
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power factor, the sum of products of probability and fan-out of all internal nodes, is 

presented. This thesis also studies the power and time trade-off with efficiency index which 
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look ahead adder has the lowest efficiency index in the design of a 64 bit adder. The carry 

skip adder is the best one in a design of a 16 and 32 bit adder. The ripple carry adder is the 

best choice for an 8 bit adder. 

This study also presents a low power prefix adder design which will reduce the 

power consumption of the prefix adder without lost of performance. 
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The Low Power Design of Prefix Adder 

1. Introduction 

1.1 Motivation 

With the advancement of new technology, we develop higher and higher 

expectations on the portability of electronic devices that perform computation and 

communication for us. These devices such as notebook computer, pager, cellular phone, 

and personal digital assistant(PDA) allow us to have the freedom to be mobile without 

cumbersome power source. However, they challenge engineers to design systems which 

consume less power. With low power designs, batteries used can be lighter and smaller. 

This added dimension in design tradeoffs besides the traditional requirement of cost and 

performance has recently attracted many researchers to work on the optimization of 

power consumption in digital circuits. 

Currently, the dominating technology for implementing digital circuits is 

Complementary Metal Oxide Silicon(CMOS). Many papers on reducing power 

dissipation in digital electronic system have been published[1][2][3]. There are three 

major sources of power dissipation in digital CMOS circuits -- switching, short-circuit, 

and leakage. Traditionally, the switching component has been the main power dissipation 

source. Dynamic power consumption is summarized with the equation: 

Plynannc = a CL Vid2 f 

where a is the switching probability of the circuit, CL is the load capacitance, VId 

is the supply voltage, and f is the frequency of this circuit. 
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Another important component of digital computers is adders. Adders are used in 

many different parts of the digital computer. They are not only used in the Arithmetic 

Logic Unit (ALU) but also in address calculation. Adders are also used in multipliers and 

other functional units. Therefore, it is important to study adder design as well as to reduce 

the power dissipation of adders. Many different addition algorithms exist and they range 

from the simple ripple carry adder to the complex carry look ahead adder[4]. We are 

particularly interested in the power optimization of the prefix adders[5]. 

The prefix adder is one implementation of parallel adders. It is the fastest adder in 

its design family[6] that is mostly is used in designs that demand high performance. The 

key points of prefix adder are: 1) it defines the "carry propagation" and the "carry 

generation" terms; 2) a carry generation network circuit calculates the carry of the current 

stage with either propagation from previous stages or generation at the current stage; 3) 

the sum bit is calculated in parallel within a very short time delay. 

1.2 Overview of the Thesis 

Ripple carry adder, carry look ahead adder, carry skip adder, and carry select 

adder are some of most popular adders. These adders and the background of power 

consumption of CMOS circuits are included in the thesis. This study particularly focuses 

on the analysis of dynamic power consumption of each adder design. An indicator, power 

factor, is introduced to measure the dynamic power dissipation. It is defined as the sum of 

products of probability and fan-out of all internal nodes. A comparison of the power 

factor of different adders is included as well. 

The main objective is to modify the topology of the carry generation network of a 

prefix adder and to reduce the number of fan-out of each node. A large fan-out not only 

has longer propagation delays but also consumes more power. The probability and fan-

out of each node are analyzed to design the low-power prefix adder. 
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This thesis contains 6 chapters. Chapter 1 is the introduction. Chapter 2 is the 

background of adder designs, CMOS circuit power dissipation, and methods to reduce the 

power consumption. Chapter 3 demonstrates the methodology used in this study, and 

power factor and efficiency index are introduced. Chapter 4 is the analysis of power 

factor and efficiency index of adders. It also includes power factor analysis of adders 

while they are performing addition or counting. Chapter 5 is the experimental result of 

the prefix adder with low power design. An 8 bit low-power prefix adder is also 

presented. Chapter 6 is the summary of the thesis and recommendation for further 

research. 
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2. Background 

This chapter includes introduction of several adder algorithms, discussion of the 

power consumption in a CMOS circuit, and review of several methods which can be 

applied to minimize the power dissipation of different CMOS circuits. 

2.1 Adders 

Several kinds of adders and the characteristics of time and power will be 

discussed. We will also include the comparison of the time and space between adders. 

First of all, for a binary adder, its logic functions can be summarized by the 

following equations: 

S=11B+Ag=-AeB
 
C=AB
 (2.1) 

where S is the sum bit of input bits A and B, and C is the carry out bit of A and B. 

S can be calculated by an XOR logic gate, and C can be calculated by an AND logic gate. 

2.1.1 Ripple Carry Adder 

The basic function of a one bit full adder(FA) is expressed in equation (2.2), 

where A, and B, are the input data. C is the carry in from previous stage. As for outputs, 

S, is the sum bit of A, and B;, and C, is the carry out bit. 

Si= , B, +: 4 B, C + A, B, j';,, + A, B, Cm 

Cow = A, .8, + A, + B, Cll, (2.2) 

Fig. 2.1 displays a 4 bit ripple carry adder. The ripple carry adder sequentially 

generate the carries and ripple through the next full adder stages. The problem of ripple 
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carry adder is the long time delay. If we define the time delay of each full adder as 8, total 

time delay of a n bit ripple carry adder will be n6. 

COUt FA FA FA FA 4---Cin 

3 

Fig. 2.1: Circuit of 4 bit full adder 

The advantage of the ripple carry adder is its simplicity. Since its implementation 

takes less logic gates, the total power consumption is less than other adders. 

2.1.2 Carry Look Ahead Adder 

Many modifications have been made in the design of parallel adders to shorten the 

maximum time delay. One of the popular solutions is the carry look ahead adder[4]. The 

basic principle of a carry look ahead adder is that it calculates all of the values of carry 

bits before it begins to calculate the sum. 

In order to implement the carry look ahead adder, we need to define the 

propagation bit(P) and generation bit(G) of each input signal in equations: 

R=A+Bi
 
G=AiBi
 
C-H=G+
 (2.3) 
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The key point of carry look ahead adder is that the carry bit can be expressed in 

terms of the combination of P and G. Each carry bit, unlike in the ripple carry adder, can 

be calculated without rippling through the whole length of the adder. The logic function 

of the carry bits' in a 4 bit carry look ahead adder is presented in equations: 

Ci= Go +R)Co 

C2= G+ P-C1= 0+ P(Go+ fbCo)= 0+ Pa+ PAC° 
C3=62+ R-C2= G2+ R(0+ PG0+ PACO 

= G2+ RO+ RPG)- RPIFOCo 

C =G3 +P3 C2= G+ li(a+ P2-6+ R Pia+ R.FIRCo) 
= 0+ PG+ PRG+ fiRTIRCo (2.4) 

An equivalent carry circuit of 3 bit carry look ahead is displayed in Fig. 2.2. 

CO AO BO 51 53. 52 52 

PO GO ljG1 P2 G 

C
 

C 

Fig. 2.2: The carry circuit of a 3 bit carry look ahead adder 
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There are some problems within the circuit. In an N-bit adder, the fan-out of the 

OR gates on the propagation bit is proportional to N. The fan-in of the OR gate is N+1. It 

is impracticable to build a full carry look ahead adder when N is large. 

However, carry look ahead adders can still be practical when N is large if a simple 

and regular structure is used. The idea is to build up the P's and G's in steps. The 

equation of carry bits is known as: 

Cl = G o+ Po Co (2.5) 

This equation means that there will be a carry out for the position (C,) if there 

is either a carry generated in the Oth position(G), or a carry in to the Oth position(C) and 

the carry propagates(P). Accordingly, 

C2 = G01+ PDC° (2.6) 

G, means there is a carry generated out of the block consisting of the first two 

bits. P, means that a carry propagates through this block. P and G have the following 

logic functions: 

ai=a-f-pa 
Ai= PA (2.7) 

Generally, for any j with i <j, j +l<k, we have the recursive relations: 

Ck+1 = Gk PkC
 

Gk = G+1,k Pi+1,kai
 

Pk = PJP4-1,k
 (2.8) 

Equation (2.8) indicates that a carry is generated out of the block consisting of bits 

i through k inclusive if it is generated in the high-order part of the block (j +1,k) or if it is 

generated in the low-order (i,j) part of the block and then propagated through the high-

part. These equations will also be hold for i5j<k if we set G.--G, and P P;. 
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With these preliminaries, the design of a practical carry look ahead adder can be 

expressed. The adder consists of two parts. The first part computes various values of P 

and G from p, and g1, and the second part uses these P and G values to compute all the 

carries. The circuit of first part is presented in Fig. 2.3, and the second part is presented in 

Fig. 2.4. 

A, B, A B0Al B1
 

(1 

P,..G23 
0.1 

A, B, Gj-)1 ,k Pi+ I ,k 

G.3 P0.3 
1 1 

P.
 

1 1 
Pi.kPi.JJ+I .kG=AB P=A+B, 

Fig. 2.3: The first part of carry look ahead adder 
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C 

132 pl 

G, G, Ci+1=G ,J-FP ,JC, C, 

P. 
P0,1 

Go 

I C 

Fig. 2.4: The second part of carry look ahead adder 

By feeding in C at the bottom of this tree, all the carry bits come out at the top. 

Each cell must know a pair of (P,G) values in order to do the conversion, and the needed 

values are written inside the cells. 

Comparing Fig. 2.3 and Fig. 2.4, there are one-to-one correspondences between 

cells, and the values of (P,G) needed by the carry generating cells are exactly the same 

values known by the corresponding (P,G) generating cells. The combined cells are 

presented in Fig. 2.5. The numbers needed to be added are flowing from the top and 

downward through the tree, combining with C at the bottom, and flowing back up the 

tree to form the carries. 
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S, S, S, SA B3
3 

0 

G.3 Po., 

Gi,j 

Pi,j 

C, 

P=A+B, 
Pi.kPi.jPj+1,k 

G
i.k=G j+1,k+Pj+1,kGi,j 

Fig. 2.5: The complete carry look ahead adder 

For the carry look ahead adder, the maximum path length is the size of element 

delay and this delay remains almost constant no matter how many additional stages are 

provided in the adder. This is a significant increase in speed and the problem of time 

delay of the carry look ahead adder has been greatly improved. The total delays of N bit 

carry look ahead adder are log,N. 
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2.1.3 Carry Skip Adder 

A carry skip adder is mid-way between the ripple carry adder and carry look 

ahead adder. In the carry look ahead adder, the computation of P is much simpler than 

that of G. The carry skip adder computes only P to speed up. An 8 bit carry skip adder is 

illustrated in Fig. 2.6. 

A, B, A6 B6 A, B, B, A5 4 0 2 B2 

Co 

P4,7 

Fig. 2.6: An example of an 8 bit carry skip adder 

In Fig. 2.6, each gray block is a 4 bit ripple carry adder. Carries begin rippling 

simultaneously through each block. If any block generates a carry, the carry out of a 

block will be true even though the carry in of the block may not be corrected yet. If the 

carry in of each block is zero at the beginning of each add operation, no spurious carry 

out will be generated. Thus, the carry out from the least significant block is generated. It 

not only feeds into the next block, but is also fed through the AND gate with P signal 

from the next block. If the carry out and P signals are both true, the carry skips the second 

block and is ready to feed into the third block and so on. 

The speed of the carry skip adder can be analyzed. Let us assume that it takes one 

time unit for a signal to pass through two logic levels. Then, it will take k time units for a 

carry to ripple across a block of size k and one time unit for a carry to skip a block. The 
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longest signal path in the carry skip adder starts with a carry being generated at the Oth 

position. It takes k time units to ripple through the first block, n/k-2 time units to skip 

blocks, and k more to ripple through the last block. To be specific: if we have a 20 bit 

adder broken into groups of 4 bit, it will take 11 time units to perform an add. 

2.1.4 Carry Select Adder 

Another modification of parallel adder, which attempts to shorten the maximum 

time delay, is the carry select adder. This circuit is faster than the carry look ahead adder, 

but it also has higher hardware cost. 

A carry select adder works based on the following principles: two additions are 

performed in parallel--assuming one of the carry in is zero, and the other is one. When the 

carry in is finally known, the correct sum which has been pre-computed will be simply 

selected. An example is presented in Fig. 2.7. 

4 bit 

C, 
4 bit 4-­

co 
1 

4 bit 

Multiplexers 4 

Fig. 2.7: A simple carry select adder 
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In Fig. 2.7, an 8 bit adder is divided into two halves, and the carry out from the 

lower half is used to select the output of upper half. 

Another issue should be noticed here. The carry signal from the lower half must 

drive many multiplexers, which may cause great time delay. Instead of dividing the adder 

into halves, it could be divided into quarters for further speedup. 

If it takes k time units for a block to add k-bit numbers and one time unit to 

compute the multiplexers inputs from two carry out signals, for optimal operation, each 

block should be one bit wider than the last one (Fig. 2.8). Therefore, in the carry skip 

adder, the best design involves various sized blocks. 

5 bit 4 bit 

4- 4 bit e 
C4 Co 

1 1 

5 bit 4 bit 

C / C8 
4-

/
4- 5 x 2:1 4 x 2: 

Fig. 2.8: Modified carry select adder 

2.1.5 Prefix Adder 

A prefix adder works like a carry look ahead adder. The idea of prefix problem is 

to compute all the products 

Xi 0 X2o 0 Xi, for i k n 

where o is an associative operation. A recursive construction is used to obtain a 

product circuit for solving the prefix problem. 
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The mathematical model of the prefix addition is expressed in the following 

equations: 

gIN = ai bi
 

plN = bi
 

= Gi for i = 1,2,, n
 (2.9) 

where 

(gIN , pIN) 1f 1 =1
(G, ,p,)= 

(gIN , pIN) , P -1) 
(2.10) 

and 0 is a concatenation operator which is defined as: 

(gi , pi) , pr) = (gi + pi , pr) 
(2.11) 

After the carry bit C, is computed, the sum bit Si is: 

= for i =2,...,fl 
SI (2.12) 

Given the fact that 0 is associative, m can be chosen such that i m >1 and 

(G,,, P ) can be written as: 

(2.13) 

where 

(gINE, if 1 = m} 
(gIN , if i> m (2.14) 
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(G,r,P,,) and have similar function forms; they both are functions of 

i-m+/ consecutive input bits and require i-m applications for the associative operator 

Therefore, both of them can be computed by the same circuit. 

To implement these functions, three circuit blocks (Fig. 2.9) are required. The first 

one is a combination circuit, labeled as Pre-condition Circuit, which calculates the adder 

inputs a, and b, to generate the initial pIN, and gIN, for each bit position i. Secondly, the 

computed p and g are fed into the Fast Carry Generator which performs the operations 

defined in equations 2.9 to 2.14. It is this circuit that allows accelerated carry 

computations. The third block is a Sum Circuit, consisting of a row of XOR gates, to 

combine the carry propagate bits (pIN,) from the first block with the carry bits (c,) from 

the second block. 

A,B, A,B, A,B, A,B, AB 

11 II 11 
Pre-condition Circuit
 

G,P, G3133 G,P, G,P, GP
 

Fast Carry Generator 

S, 

Fig. 2.9: Three functional blocks of a prefix adder 

Fig. 2.10 shows three basic types of cells to implement the fast carry generator in 

the prefix adder: black cells, white cells, and driver cells. The black cell performs the 
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associative concatenation. The white and driver cells act as "through" cells. An example 

of a 6 bit prefix adder is presented in Fig. 2.11. 

gl pl gl pl 
gl pl 

gout pout 

gout pout gout pout
 

pout=pl*pr pout =pl
 

gout=g1+pl*gr gout =gl
 

Fig. 2.10: Three basic cells of carry look ahead adder
 

P5.0G5.0 P4.0G4.0
 P3.0G3.0 P2.0G2.0 Pi.oG 1.0 P0.0G0.0
 

Fig. 2.11: An example of carry generation network of a 6 bit prefix adder 



17 

2.1.6 Comparison of Adders 

The asymptotic time and space requirements for the different adders are 

summarized in Table 2.1. These different adders should not be looked at as disjoint 

choices, but as building blocks to be used in constructing an adder. The utility of these 

different building blocks is highly dependent on the technology used. 

For example, the carry select adder works well when a signal can drive many 

multiplexers, and the carry skip adder is attractive in technologies where signals can be 

cleared at the beginning of each operation. 

Table 2.1: Asymptotic time and space requirement for five adders 

Adder Time Space 

Ripple carry adder 0(N) 0(N) 

Carry look ahead adder 0(logN) 0(NlogIV) 

Carry skip adder 0( VW) 0(N) 

Carry select adder 0( \F\-7 ) 0(N) 

Prefix adder 0(/ogN) 0(NlogIV) 

2.2 Power Consumption of CMOS ICs 

In digital CMOS circuit, there are four main sources of power dissipation which 

are summarized with following equations: 

Pang = Pswitching Pshortcircuit Pleakage Pstatic 

= a 0--)1 CL V Vid fa + isc VcId + 'leakage Vdd 'static Vid (2.15) 

Pswitching denotes the switching component of power, where C, is the load 

capacitance, fci, is the clock frequency, and cco,, is the node transition activity factor (the 
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average number of times that the node makes a power consuming transition in one clock 

period). The node transition activity factor is a function of the implemented logic 

function, the logic style, the circuit topologies, signal statistics, signal correlations, and 

the sequencing of operations. 

Pshort-circuit is due to the direct-path short circuit current, 4,, which arises when both 

the NMOS and PMOS transistors are simultaneously active, conducting current directly 

from supply to ground. Through proper choice of transistor sizes, the short-circuit power 

can be kept to less than 10% of total power consumption. Alternatively, operating the 

circuits at a supply voltage less than the sum of NMOS and PMOS threshold voltages 

will essentially eliminate any short-circuit currents. 

Pleakage is due to the leakage current, which can arise from reverse bias diode 

currents and sub-threshold effects, is primarily determined by fabrication technology 

considerations. 

Finally, static currents, Isiducs, arise from circuits that have a constant source of 

current between the power supplies (such as bias circuitry, pseudo-NMOS logic families, 

etc.). This static current will affect a lot if the circuit is idle most of the time (when the 

circuit is clocked at low frequencies), then the static power will tend to increase the total 

power consumption. 

For properly designed circuits, the switching component of power will dominate 

and contribute to more than 90% of the total power consumption, which should be the 

primary target for power reduction. 

2.3 Low Power Design 

The fundamental cause of CMOS dynamic power dissipation is the organization 

of the energy transport in the circuit. When charging a node with node capacitance to 

voltage V, a signal energy is stored in the node. When the node is discharged, the energy 



19 

is drained away from the node to ground. Thus, all energy drawn from the supply is used 

only once before being discarded. 

To decrease the dynamic power dissipation, some methods can be applied, such as 

minimizing the switching events, reducing the node capacitance, and decreasing the 

voltage swing. Combination of some or all of these methods can be used as well. 

2.3.1 Minimizing Switching Capacitance 

Since CMOS circuits do not dissipate dynamic power if they are not switching, 

primary approach of low power design is reducing the switching activity to the minimal 

level required for performing the computation. One of the simple methods is simply 

powering down the whole or portion of the circuit. However, sophisticated methods 

including gated clocks or optimizing circuit architectures can be used as well. 

Following sections will describe the methods of the low power design in 

minimizing the switching capacitance at algorithm level, architecture level, logic level, 

circuit level, and physical level. 

2.3.1.1 Algorithmic Optimization 

The choice of algorithm is the most highly leveraged decision in meeting the 

power constraints. The ability for an algorithm to be paralleled will be critical and the 

basic complexity of the computation must be highly optimized. 

First method of algorithmic optimization is to minimize the number of operations. 

For example, consider the problem of compressing a video data stream using the vector 

quantization algorithm. Three vector quantization algorithms are tested and the result for 

16 pixels input vector are presented in Table 2.2[7]. 
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Table 2.2: Computational complexity of vector quantization encoding algorithm 

Algorithm # of Memory access # of Multiplications # of Adds # of Subs 

Full Search 4096 4096 3840 4096 

Tree Search 256 256 240 264 
Differential Tree 

136 128 128 0Search 

Second method is minimizing temporal bit transition activity by choosing data 

representation. For example, Gray-coding is a popular coding algorithm used in low 

power design. The reason why it is so useful is because there is only one bit difference 

between consequence bits. Fig. 2.12 shows the reduction in switching activity for 

instruction address coding for a set of benchmark programs. BPI is the number of bit 

transitions per instruction executed[8]. 

Chat 

Browse 

Boyer 

Nand 

Sem igroup 2.68 
Gray Coded 

B mary Coded 
Circuit 2.23 

Reducer 2.57 

Qsort 2.64 

Fastqueens 2.46 
BPI 

0 0.5 1 1.5 2 2.5 3 

Fig. 2.12: Temporal transition activity comparison for instruction addresses 
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2.3.1.2 Architecture Optimization 

Architecture optimization can also be used to significantly reduce the switching 

activity by optimizing the number representation, optimizing the ordering of operations, 

optimizing resource utilization, and minimizing glitching activity. 

2.3.1.3 Logic Optimization 

The choice of logic topology has a strong influence on the total transition activity, 

which will directly affect the switching activity and the power consumption. Callaway et. 

al.[9] emulated five kinds of adders with limited input sample to get the results of average 

number of gate transitions per addition in Table 2.3. 

Table 2.3: Average number of gate transition per addition 

Adder Type 16 bit 32 bit 64 bit 

Ripple Carry 90 182 366 

Carry Look Ahead 100 202 405 

Carry Skip 108 220 437 

Carry Select 161 344 711 

Conditional Sum 218 543 1323 

Their research showed that the carry look ahead adder was the best based on the 

product of transitions number and delay. These simulation results were poor because they 

were only based on 50,000 randomly distributed input patterns. 

2.3.1.4 Circuit Optimization 

There are a number of options available in choosing the basic circuit approach and 

topology for implementing various logic and arithmetic functions. Choices between static 
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vs. dynamic implementations, passgate vs. conventional CMOS logic styles, and 

synchronous vs. asynchronous timing are some of the options for system designer. 

First, though dynamic logic must have pre-charge operation and charge-sharing, it 

can reduce switching activity due to hazards, eliminate short-circuit dissipation, and 

reduce parasitic node capacitance. Dynamic logic style appears to be the better low power 

performance. 

Second, passgate logic requires fewer transistors to implement logic functions, 

such as XOR. Besides, passgate logic can lower the threshold voltage and let it operate at 

the lowest possible voltage level, which is very important to low power design. 

Third, self-timed implementations can minimize switching activity by power-

down of unused modules. This is a better choice for low power design. 

2.3.1.5 Physical Design 

At the level of physical design, the place and route can be optimized. For 

example, signals with high switching activity can be assigned to short wires; signals with 

low switching activity can be allowed to have long wires. 

2.3.2 Voltage Reduction 

The dominant component of power consumption for properly designed CMOS 

circuits is proportional to the square of the supply voltage. Operating the circuit at the 

lowest voltage is the key to minimize the energy consumed per operation. However, the 

individual circuit element runs slower at lower supply voltages and this must be 

compensated through appropriate architectural design. 

For example, if possible, we can reduce the supply voltage from 5V to 1.5V. This 

power reduction scale will be 1.52/52= 0.09, which means 91% of power reduction. The 

trade-off is the increase of circuit delay. While reducing the voltage, there must be some 

slack in the critical path of the circuit so that the increased gate delays do not diminish the 
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desired throughput. If not enough slack exist, changes must be made at the algorithm and 

architectural level to accommodate the slower gates. Some techniques, including 

parallelism and pipe-lining, that have been used to reduce the delay of critical paths can 

still maintain constant throughput when we reduce the supply voltage. 

2.3.3 Minimizing Other Power Components 

While the other components of power dissipation are generally minimal, there are 

design constraints that must be followed to prevent these components from becoming 

significant. Primary concern is the short-circuit power consumption if signal rise/fall 

times are allowed to vary too much, this power can become a significant, or even the 

dominant component of the total power. 

The reverse-bias diode leakage current power is a function of process and 

transistor count. In an example of one million transistor chip, the average leakage current 

is approximately 2511A, which is insignificant given that amount of transistors. Thus, 

leakage power is negligible in most CMOS ICs. Even that, it can only be optimized by 

minimizing the total diffusion area. 
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3. Methodology 

In this chapter, the methodology that used in studying switching power 

consumption of different adders is presented. Two indicators, power factor and efficiency 

index, will be introduced. An example about these two indicators to illustrate the trade-

off between the time and power in different adder designs is presented in the end of this 

chapter.. 

3.1 Probability Analysis 

Two different probability analyses will be presented. The first one is addition, and 

the second one is counting. 

3.1.1 Addition 

The basic function of adder is to perform the addition. Two input signals come 

into the adder, then the sum bit and the carry out bit are generated. For a random input 

data, the probability of input equal to 1 is 0.5. Therefore, we define the probability of 

input as 0.5. The probability of each internal node is counted by the simulation program. 

3.1.2 Counting 

Counting is more frequently operated in general computing than addition. 

Usually, it is used by the program counter to control the program flow. Counting includes 

increment and decrement. In this study, we will simulate the power characteristic when 

the adder is performing the increment or decrement by 1, 2, 4, and 8. 
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3.2 Power Factor 

In order to discuss the power in statistic way, the probability of each output 

changing from 0 to V is considered. Power is drawn from the power supply and stored 

into the load capacitance. With the background discussed in the last chapter, the dynamic 

power consumption can be expressed as: 

P = a 0-,1 Cc vd,12 f (3.1) 

Since all internal nodes of a gate may have transitions, the transition activity of 

every node must be calculated in a circuit. The total power of a circuit is the sum of 

power of all internal nodes. For example, for a circuit with n internal nodes, the total 

power should be: 

P r o w = a C Vid2 f = Vdc/2 f 
(3.2) 

For a circuit, Vad and f can be fixed values. So, the total power will be proportional 

to the sum of the products of a_ (switching probability) and CL(load capacitance). 

= Coast lo CL; 
(3.3)

i=1 

where Const=v 2f Each load capacitance of gate is assumed to be the same, and 

the interconnected capacitance is ignored. Therefore, the total load capacitance is 

proportional to the fan-out of each gate. Then, the sum of products of probability and fan-

out of all internal nodes can be defined as power factor. 

Power Factor =1 a, Fanout (3.4) 
,=1 
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3.3 Efficiency Index 

Time delay is another important issue in the circuit design. Mostly, time delay 

occurs when the load capacitance(CL) is charging and discharging. The value of load 

capacitance will determine the delay of rising time and falling time. To achieve the goal 

of low power design, every gate should be the minimum size in order to save power. If 

the size of the N-transistor and P-transistor are the same, the rising time will become 

twice as the falling time. For a combination circuit, the maximum time delay is derived 

from the sum of gates charged from 0 to Vdd. 

An efficiency index can be introduced here. We assumed that every gate has the 

same time delay. Based on this assumption, the maximum time delay will occur when all 

gates are in the rising stage. Using the power factor described in equation (3.4), the 

efficiency index can be expressed with the following equation: 

Efficiency Index = Power factor Worst Case Gate Counts (3.5) 

With the Efficiency Index, we will be able to evaluate the tradeoffs between two 

systems with same function but different logic structure. 

3.4 An Example of Power Factor and Efficiency Index Analysis 

Based on the equations described in previous paragraphs, a simple example of 

power factor and efficiency index is presented. While illustrating the simple logic 

function in equation (3.6), there are alternative implementations: chain structure (Fig. 

3.1(a)) and tree structure (Fig. 3.1(b)). 

F=AB-CD (3.6) 
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A 

B 

C 

D 

(a) chain 
(b) tree 

Fig. 3.1: Chain structure(a) and tree structure(b) 

Fig. 3.1 includes two circuit topologies. Both circuits perform the same function 

but their power consumption and time delay is different. Those differences will be 

described in the following paragraphs. 

First, the probability analysis of the internal nodes 0, and 0, is presented in Table 

3.1. The rising probability (charging) of node 0, in chain structure is smaller than that in 

tree structure. 

Table 3.1: Probability analysis of chain and tree structure 

0, 0, F 

P,(chain) 1/4 1/8 1/16 

P=1-P,(chain) 3/4 7/8 15/16 

P,,(chain) 3/16 7/64 15/256 

P,(tree) 1/4 1/4 1/16 

P=1-P,(tree) 3/4 3/4 15/16 

P0,,(tree) 3/16 3/16 15/256 
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Both fan-outs of node 0, and 0 are 1. So, the power factors are: 

Power Factor (chain) = /
3 16.1+ 7/6.1 =1Y64 

(3.7) 
Power Factor (tree)= / 1316. -4-X6.1 X 

Based on the assumption that every gate has the same time delay, the efficiency 

indexes should be: 

Efficiency Index(chain)=% 3 = 5764 
(3.8) 

Efficiency Index(tree)= X 2 = X 

Equation (3.8) shows that the efficiency index of tree structure is smaller than that 

of the chain structure although the chain structure has less power factor. It seems that the 

tree structure is a better choice than chain structure for designing the function in equation 

(3.6). 

3.5 Simulation 

Based on the concepts discussed previously, some C++ programs were written to 

simulate the gate level switching behavior of different adder circuits. These programs 

count the switching activities of every internal node based on every possible input. For 

example, for a 4 bit adder, two inputs should have 24 x 24 input combinations. First, we 

set the initial value of each internal node while the initial values come in. Then, another 

set of input signal is fed into the simulation program, and the rising and falling activities 

of every internal cell is counted. The algorithm is presented in Fig. 3.2. 
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For Initial Value A (IA) 
4 

from 0 to 2N-1 

For Initial Value B (IB) 

from 0 to 2N-1 

Set the value of each 

internal nodes 

For Next Value A (NA) 

from 0 to 2N-1 

For Next Value B (NB) 

from 0 to 2N-1 

Count the transaction 

times of internal nodes 

Next value of 

NB 

Next value of4 

NA 

Next value of 

IB 

Next value of 

IA 

Fig 3.2: The algorithm of counting the probability of each cell 
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For the fan-out of each gate in the circuit, the sub-program defines it as the 

number of nodes connected with the output values. For example, the fan-out of node 0, in 

Fig. 3.1(a) is 1. 

The power factor value is calculated by summing up the products of the 

probabilities and fan-outs. The power factor value is proportional to the total power 

consumption of a circuit. The smaller the value is, the lower the power consumption is. 

Thus, the power factor can be used as an index for comparing the power consumption 

between different adder designs. 

When the program is performing counting instead of addition, we change the NA 

value from a loop to the fixed number we want to count. For example, when decrease by 

4, we will put (11111100) in the NA value and run the program. 
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4. Dynamic Power Analysis of Adders 

In this chapter, dynamic power characteristic of adders will be analyzed based on 

the definition of chapter 3. The power factor and efficiency index of each adder will be 

presented and the comparison of different adders is included as well. 

4.1 Ripple Carry Adder 

Ripple carry adder is a combination of N-bit full adders. Each full adder has a 

carry out signal ripple through next stages in order to calculate the sum bits. When the 

adder is performing the general addition, it shows that the probability of sum bit being 1 

is 0.5 and the probability of carry out bit being 1 is 0.5, too. 

In a counting operation, the probability of each carry out bit being 1 is different 

while the sum bit remains the same. For example, when we use an 8 bit ripple carry adder 

to perform "increment by 1" operation, the probabilities of each carry out bit from bit 0 to 

7 are 0.75, 0.375, 0.18755, 0.09375, 0.04688, 0.02344, 0.01172, and 0.00586 

respectively. In fraction form, these numbers are 3/4, 3/8, 3/16, 3/32, 3/64, 3/128, 3/256, 

and 3/512, respectively. 

The fan-out of sum bit in the full adder is 1 and the fan-out of carry out bit is also 

the same. By summing up the products of probability and fan-out of each bit, the power 

factor analysis of ripple carry adder is presented in Table 4.1. 
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Table 4.1: Power factor analysis of a ripple carry adder 

Method 8 bit 16 bit 32 bit 64 bit 

General Addition 4 8 16 32 

Increment by 1 2.74415 4.74998 8.75 17.1667 

Increment by 2 2.90693 4.91663 8.91667 17.3333 

Increment by 4 2.98252 4.99993 9 17.4167 

Increment by 8 3.00883 5.04154 9.04167 17.4583 

Decrement by 1 2.41471 4.41666 8.41667 16.8333 

Decrement by 2 2.74415 4.74998 8.75 17.1667 

Decrement by 4 2.90306 4.91661 8.91667 17.3333 

Decrement by 8 2.97099 4.99989 9 17.4167 

For example, the power factor of an 8 bit ripple carry adder is 4 when the adder 

does the general addition. The power factor is proportional to the number of bits because 

of its regular layout. The counting operations consume less power than general addition 

because the increment and decrement operations have less carry chain and less switching 

probabilities. Comparing the decrement with the increment operation, the increment 

operation in the ripple carry adder has more switching probability than decrement has. 

4.2 Carry Look Ahead Adder 

Fig. 4.1 shows the structure of an 8 bit carry look ahead adder. In this figure, the 

gray blocks calculate the propagation and generation bit; the white blocks calculate the 

result of equation (2.6). The probabilities of propagation and generation bits being 1 are 

3/4 and 1/4, respectively. 
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Fig. 4.1: An 8 bit carry look ahead adder 

Table 4.2: Power factor analysis of a carry look ahead adder 

Method 8 bit 16 bit 32 bit 64 bit 

General Addition 14.266325 29.373644 59.417049 119.43512 

Increment by 1 8.765146 14.810695 26.54528 49.764025 

Increment by 2 8.94802 15.018055 26.752753 49.971498 

Increment by 4 9.124691 15.243207 26.97813 50.196875 

Increment by 8 9.198288 15.4118 27.147173 50.365919 

Decrement by 1 5.8951111 10.464186 19.34846 36.846049 

Decrement by 2 7.9506073 13.04445 22.428837 40.426426 

Decrement by 4 7.7789154 12.7968 22.056412 39.929001 

Decrement bz8 . 8.5079193 13.465657 22.569469 40.285808 
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Table 4.2 shows the power factor analysis of a carry look ahead adder. The carry 

look ahead adder has more power consumption than ripple carry adder has since it uses 

more circuits to generate the carry out without ripple through all the gates. It also shows 

that the power factor of counting operation is around half of the power factor of addition 

operation. When we increase the number of bits, the power factor of the counting 

operation is not proportional to the number of bits. The table shows that the decrement 

operation has smaller power factor than increment operation has. 

4.3 Carry Skip Adder 

An 8 bit carry skip adder is shown in Fig. 2.8. In our simulation program, we use 

a 4 bit ripple carry adder in each gray block. The switching probability of carry skip adder 

is more than that of ripple carry adder because of the carry skip circuit. Table 4.3 shows 

the power factor of carry skip adder. 

Table 4.3: Power factor analysis of a carry skip adder 

Method 8 bit 16 bit 32 bit 64 bit 

General Addition 4.7558393 9.767518 19.790875 39.581751 

Increment by 1 2.8407631 4.8473661 8.847392 16.847392 

Increment by 2 3.0581093 5.0691012 9.0691445 17.069144 

Increment by 4 3.2192116 5.2389502 9.239028 17.239028 

Increment by 8 3.3220558 5.3591629 9.3593099 17.35931 

Decrement by 1 2.5642438 4.8007008 9.2694589 18.089771 

Decrement by 2 2.9524612 5.1930744 9.6618489 18.482161 

Decrement by 4 3.2053134 5.4542078 9.923013 18.743327 

Decrement by 8 3.3666675 5.6319996 10.100872 18.921185 
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The carry skip adder is in the mid-way between the ripple carry adder and carry 

look ahead adder. It has less complicated design than the carry look ahead adder has. The 

power factor of carry skip adder is higher than the power factor of the ripple carry adder 

because of the skip circuit. In the counting operations, the increment operation has less 

power factor than the decrement has. 

4.4 Carry Select Adder 

The circuit of an 8 bit carry select adder is shown in Fig. 2.6. The ripple carry 

adder is used in each gray block. We have two options for implementing the carry select 

adder architectures. The first one is to use fixed width blocks to implement the carry 

select adder. For example, if each block is a 4 bit ripple carry adder, a 16 bit adder is the 

combination circuit of 4 blocks of 4 bit ripple carry adders. 

The second architecture is shown in Fig. 2.7. We use blocks with various width; 

each successive block is one bit wider than the last one. In our simulation program, we 

choose the combination of 4-4-5-6 to implement a 19 bit adder. The combination for a 34 

bit adder is 4-4-5-6-7-8. For a 64 bit adder, the combination is 4-4-5-6-7-8-9-10-11. The 

speed of the various width carry select adder is faster than the fixed width adder because 

the carry signal ripple through less stages. Table 4.4 and Table 4.5 show the power 

factors of fixed and various width carry select adders. 
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Table 4.4: Power factor analysis of a fixed width carry select adder 

Method 8 bit 16 bit 32 bit 64 bit 

General Addition 7.583984 24.34523 58.09737 125.667 

Increment by 1 5.519531 12.85278 27.2748 56.11855 

Increment by 2 5.769531 13.17456 27.59668 56.44043 

Increment by 4 5.957031 13.48218 27.90449 56.74824 

Increment by 8 5.957031 13.62866 28.05137 56.89512 

Decrement by 1 5.082031 24.27966 62.70137 139.5451 

Decrement by 2 5.519531 24.68469 63.10605 139.9498 

Decrement by 4 5.832031 24.90881 63.32949 140.1732 

Decrement by 8 5.957031 24.76331 63.18262 140.0264 

Table 4.5: Power factor analysis of a various width carry select adder 

Method 8 bit 19 bit 34 bit 64 bit 

General Addition 7.583984 30.00806 60.27868 120.2067 

Increment by 1 5.519531 15.27783 28.05663 52.87793 

Increment by 2 5.769531 15.60303 28.38186 53.20316 

Increment by 4 5.957031 15.91748 28.69639 53.51768 

Increment by 8 5.957031 16.07764 28.85668 53.67798 

Decrement by 1 5.082031 29.69781 61.47648 122.2978 

Decrement by 2 5.519531 30.0993 61.87782 122.6991 

Decrement by 4 5.832031 30.31635 62.09454 122.9158 

Decrement by 8 5.957031 30.15668 61.93425 122.7555 
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These tables show that the carry select adder really consumes more power than 

other adders because of its double addition circuits and multiplexers. Power factors show 

that the counting operation consumes less power than the addition operation does, and 

increment operations have better performance than decrement operations have. 

Decrement operation consumed twice the power as increment operation. The various 

width carry select adder has more improvement on power than the fixed width carry 

select adder has since it takes less stages to get the result. 

4.5 Power Factor Analysis 

After analyzing adders, we will discuss the differences between the power factors 

of adders. Fig 4.2 shows the power factor comparison of five adders when they are 

performing general addition. The ripple carry adder has the best performance in saving 

power. The second choice is the carry skip adder. The carry look ahead adder takes a lot 

more power than others when it is only 8 or 16 bit. 

140 

120 
Ripple Carry Adder 

D Carry Skip Adder 
100 

Carry Look Ahead Adder 

80 Carry Select Adder(fixed) 

60 
Carry Select Adder(various) 

40 

20 

8 16(19) 32(34) 64 

Fig. 4.2: The power factor comparison of adders 
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Fig. 4.3: The power factor analysis of adders when increment by 1 

The result of "increment by 1" operation is presented in Fig. 4.3. For 8, 16, and 32 

bit adders, ripple carry adder is the best choice. For a 64 bit adder, carry skip adder is 

better than others. Carry look ahead adder is the worst one in 8 bit adders. As for the 64 

bit adder, fixed size carry select adder has the biggest power factor. 
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Fig. 4.4: The power factor analysis of adders when decrement by 1 

Fig. 4.4 shows the comparisons of adders when performing "decrement by 1". 

The ripple carry adder still is the best choice because of its low power factor. Carry skip 

adder is the second choice. For both fixed and various size of carry select adders, the 

power factor analyses show that they have the worst performance. 

4.6 Efficiency Index Analysis 

The comparison of the efficiency indexes of different adders is presented in the 

following paragraphs. The efficiency indexes of 8, 16, 32, and 64 bit adders are listed in 

Table 4.6, 4.7, 4.8, and 4.9. 
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Table 4.6: The efficiency index of 8 bit adders 

Adder Power factor Longest Delay Efficiency Index 

Ripple Carry 4 8 32 

Carry Look Ahead 14.266325 3 42.798975 

Carry Skip 4.7558393 8 38.046714 

Carry Select (fixed) 7.583984 5 37.91992 

According to Table 4.6, the ripple carry adder has the smallest efficiency index. 

The carry look ahead adder does not show its improvement because it has a relatively big 

power factor. Carry skip adder and carry select adder have almost the same performance. 

Table 4.7: The efficiency index of 16 bit adders 

Adder Power factor .,Longest Delay Efficiency Index 

Ripple Carry 8 16 128 

Carry Look Ahead 29.373644 4 117.494576 

Carry Skip 9.767518 10 97.67518 

Carry Select (fixed) 24.34523 7 170.41661 

Table 4.7 shows that the carry skip adder is better than other 16 bit adders. 

Though the carry look ahead adder is the fastest adder, it consumes much more power 

than others. That make it the second choice of 16 bit adder design. 
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Table 4.8: The efficiency index of 32 bit adders 

Adder Power factor Longest Delay Efficiency Index 

Ripple Carry 16 32 512 

Carry Look Ahead 59.417049 5 297.085245 

Carry Skip 19.790875 14 277.07225 

Carry Select (fixed) 58.09737 11 639.07107 

According to Table 4.8, the carry skip adder is still the best choice for a 32 bit 

adder. The table shows that the carry select adder is not a good adder design because it 

not only takes more power but also longer time delay. 

Table 4.9: The efficiency index of 64 bit adders 

Adder Power factor Longest Delay Efficiency Index 

Ripple Carry 32 64 2048 

Carry Look Ahead 119.43512 6 716.61072 

Carry Skip 39.581751 22 870.798522 

Carry Select (fixed) 125.667 19 2387.673 

In Table 4.9, it is shown that the carry look ahead adder is the best choice for a 64 

bit adder. Its short time delay makes it the best choice. The ripple carry adder consumes 

the least power but takes a relatively long time that makes it not a good adder design. 
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Fig. 4.5: The comparison of efficiency index between 4 adders 

Fig. 4.5 is the comparison of the efficiency indexes of four adders. Based on this 

analysis, for an 8 bit adder, the ripple carry adder is the best choice. Carry skip adder is 

the best choice for 16 and 32 bit adder. Carry look ahead adder is the best adder for a 64 

bit adder design. 
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5. Implementation of Low-Power Prefix Adder 

This chapter included the results of simulation programs. First, the carry 

generation network of prefix adder designed by Wei, Thompson, and Chen[6] was 

analyzed. Then, programs were written to calculate every possible combination of carry 

generation network within the prefix adder. With those results, one may evaluate the 

power factor of every combination and find out the smallest number of power factor to 

achieve the low power design of the prefix adder. 

For an 8 bit prefix adder, minimum depth of 3 is needed in the carry generation 

network. As the depth of the carry generation network increase, the number of possible 

combinations also increase. Those combinations will have different time delay and fan-

out for each internal cell. Because of the change in topology, different power factor of the 

carry generation network can be evaluated. Fig. 5.1 shows the 8 bit prefix adder is 

designed by Wei, Thompson, and Chen. 

Po G. P,G, P,G, P4G4 P,G, P6G6 P,G, 

(0,0) (0,1) MI (0,2) (0,3) IIMI (0,4) (0,5) MN (0,6) (0,7) 

1 ION 1 i 101 I 
(1,0) INN (1,1) IM (1,2) (1,3) (1,4) MI (1,5) MI (1,6) MIN (1,7) 

I I I I 14111411111111 
(2,0) (2,1) (2,2) (2,3) (2,4) MI (2,5) MI (2,6) 1111 (2,7) 

I I I I 111111.11111111 
(3,0) (3,1) (3,2) NM (3,3) INII (3,4) MI (3,5) MI (3,6) MN (3,7) 

Fig. 5.1: Carry generation network of Wei's 8 bit Prefix adder 
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5.1 Analysis of Wei's Prefix Adder 

The prefix adder is the fastest adder in their design family. The problem of the 

prefix adder is its complicated carry generation network which consumes a lot of power. 

In order to save the power without losing its speed, we need to analyze the switching 

probability and fan-out of each internal node. Then, we can compare the power factor 

between different combinations. The result shoes the one with lowest power factor is the 

low-power prefix adder designed in the thesis. 

5.1.1 Probability Analysis 

The probability of each cell is calculated by simulation program. The algorithm of 

the program is illustrated in Fig. 3.2. Table 5.1 is the probability analysis of P and G for 

each corresponding cell of Fig. 5.1. For example, (1/4, 3/8) is the probability of P=1 and 

G =1 of the cell (0,0). 

Table 5.1: The probability analysis of Wei's 8 bit prefix adder 

(1/4, 3/8) (1/2, 1/4) (1/4, 3/8) (1/2, 1/4) (1/4, 3/8) (1/2, 1/4) (1/4, 3/8) (1/2, 1/4) 

(1/4, 3/8) (1/8, 7/16) (1/16, 15/32) (1/2,1/4) (1/4, 3/8) (1/2, 1/4) (1/4, 3/8) (1/8,7/16) 

(1/4, 3/8) (1/8, 7/16) (1/16, 15/32) (1/2,1/4) (1/4,3/8) (1/8,7/16) (1/16,15/32) (1/32, 31/64) 

(1/4, 3/8) (1/8, 7/16) (1/16, 15/32) (1/32, 31/64) (1/64, 63/128) (1/32, 31/64) (1/64, 63/128) (1/128. 127/256) 

5.1.2 Fan-out Analysis 

The fan-out of each cell inside the carry generation network plays a very 

important role. It has a great impact in the power consumption as well as the time delay. 

The bigger the fan-out is, the larger the total load capacitance is. Since the black cell and 

white cell have different function, it is possible to rearrange the topology to reduce the 
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fan-out. From the analysis of topology, every possible combination will be test to 

evaluate its fan-out. 

When output cell is black, the fan-out of propagation bit is 2 and the fan-out of 

generation bit is 1. When the output cell is white, the propagation and generation fan-out 

depend on how many connected black cells on the right of this white cell. In the example 

of Fig. 5.2, the propagation and generation bit of cell (1,4) are used by the cells (2,4), 

(2,5), (2,6), and (2,7). The fan-out of propagation and generation bit for cell (1,4) is 4. 

(0,0) INN (0,1) (0,2) (0,3) MI (0,4) (0,5) MN (0,6) (0,7) 

1 1 1 1 1 1 

I 
(1,0) 

I 
(1,1) 

I 
(1,2) 

I 
(1,3) 

I 
(1,4) 

I 
(1,5) lel(1,6) (1,7) 

(2,0) (2,1) (2,2) (2,3) (2,4) 5) ( (2,7) 

(3,0) (3,1) (3,2) MI (3,3) MI (3,4) MI (3,5) MI (3,6) =I (3,7) 

Fig. 5.2: An example of 8 bit carry generation network 

The fan-out analysis of Wei's 8 bit prefix adder is shown in Table 5.2. The cell 

(2,2) have a very big fan-out which is the critical path of this prefix adder. This critical 

path is the source of the longer time delay and power consumption. Also, the cell (1,4) 

have the fan-out (4,4) for both the propagation and generation bit. It is very important to 

reduce the fan-out or distribute the fan-out to other cells. 
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Table 5.2: The fan-out analysis of Wei's 8 bit prefix adder 

(3, 3) (2, 1) (2, 1) (1, 1) (1, 1) (I, 1) (2, 2) (2, I) 

(1, 1) (1, 1) (1, 1) (1,1) (4,4) (2, 1) (2, 1) (2,1) 

(1, I) (1, I) (6, 6) (2,1) (2, 1) (2, 1) (2, 1) (2, 1) 

(1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, I) 

5.1.3 Power Factor Analysis 

Table 5.3 shows the power factor analysis of Wei's 8 bit prefix adder (Fig. 5.1); 

the prefix adder consumes much more power than any other adders. It is necessary to 

reduce the power consumption by proper arrangement of the black and white cells in the 

carry generation network. 

Table 5.3: The power factor analysis of Wei's 8 bit prefix adder 

Method Power factor 

General Addition 17.85698 

1 11.1674 

Increment by	 2 11.67924 

4 11.58037 

8 11.43925 

1 14.44597 

Decrement by	 2 14.84282 

4 15.01396 

8 13.36601 



47 

5,2 Low Power Prefix Adder Design 

According to our analysis, a simulation program is designed to find out every 

possible arrangements of the carry generation network. It also checks the validity of the 

result. With these valid combinations, power factor analysis is needed to determine which 

one consume less power. 

Fig. 5.3 shows the best model of the carry generation network for an 8 bit prefix 

adder. Based on our power factor analysis, this design has the lowest amount of power 

factor, the design consumes less power than others. 

(0,0) (0,1) (0,2) (0,3) (0,4)MI (0,5) (0,6) (0,7) 

I I I I I 
(1,0) (1,1) (1,2) (1,3) (1,5) (1,6) (1,7) 

I I I 1 
(2,0) (2,1) (2,2) Mit (2,3) (2,4) (2,5) (2,6) 

I I I I I 
(3,0) (3,1) (3,2) (3,3) (3,4) MI (3,5) (3,7) 

Fig. 5.3: The 8-bit low-power prefix adder design 

Table 5.4 is the probability analysis of this low-power design, Table 5.5 is its fan-

out analysis, and Table 5.6 is its power factor analysis. One can remark that has some 

improvement compare to Wei's prefix adder design presented in Table 5.3. 
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Table 5.4: The probability analysis of low-power 8 bit prefix adder 

(1/2, 1/4) 

(1/2, 1/4) 

(1/2, 1/4) 

(1/2, 1/4) 

(1/4, 3/8) 

(1/4, 3/8) 

(1/4, 3/8) 

(1/4, 3/8) 

(1/2, 1/4) 

(1/8, 7/16) 

(1/8, 7/16) 

(1/8. 7/16) 

(1/2, 1/4) 

(1/2,1/4) 

(1/16,15/32) 

(1/2, 1/4) 

(1/4, 3/8) 

(1/4, 3/8) 

(1/32, 31/64) 

(1/4, 3/8) 

(1/2, 1/4) 

(1/2, 1/4) 

(1/2, 1/4) 

(1/8, 7/16) 

(1/4, 3/8) 

(1/4, 3/8) 

(1/4, 3/8) 

(1/16, 15/32) 

(1/2, 1/4) 

(1/8,7/16) 

(1/8, 7/16) 

(1/32, 31/64) 

Table 5.5: The fan-out analysis of low-power 8 bit prefix adder 

( 1 , 1 ) 

(1, 1) 

(1, 1) 

(I, 1) 

(2, 2) 

(1, 1) 

(I, 1) 

(1, 1) 

(2, 1 ) 

(3, 3) 

(1, 1) 

(1, 1) 

( 1 , 1 ) 

(2,1) 

(1,1) 

(1, 1) 

( 1 , 1 ) 

(2, 1) 

(4,4) 

(1, 1) 

( 1 , 1 ) 

(1, 1) 

(2, 1) 

(1, 1) 

(2, 2) 

(1, 1) 

(2, 1) 

(1, 1) 

(2, I ) 

(1,1) 

(2, 1) 

(1, 1) 

Table 5.6: The power factor analysis of low-power 8 bit prefix adder 

Methods 

General Addition 

1 

Increment by 2 

4 

8 

1 

Decrement by 2 

4 

8 

Power factor 

16.65601 

10.54199 

10.40918 

10.00293 

10.38867 

14.27148 

14.13867 

13.48242 

12.35742 
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6. Conclusion and Future Work 

6.1 Conclusions 

This thesis is the first study that uses software to exhaustedly exercise all input 

combinations to find out the probability of every internal node. Using this method, this 

thesis introduced two indicators which are the power factor and the efficiency index to 

evaluate the power consumption and trade-off of digital circuit. The study includes the 

power factor and efficiency index analyses of ripple carry adder, carry look ahead adder, 

carry skip adder, carry select adder, and prefix adder. 

From the power factor analysis, the ripple carry adder has the best performance in 

saving power. The second choice is the carry skip adder. When performing the 

"increment by 1" operation, the ripple carry adder is also the best choice for 8, 16, and 32 

bit adders. The carry skip adder is the best choice for a 64 bit adder design. When 

performing the "decrement by 1" operation, the ripple carry adder is still the best 

solution. 

According to the efficiency index analysis, ripple carry adder has the lowest 

efficiency index for an 8 bit adder design. It is the best choice because its simple and 

regular logic structure. Carry skip adder has the lowest efficiency index for 16 and 32 bit 

adder designs. The reason why it is the best is because it uses a simple "skip" circuit to 

shorten a lot of delay. The carry look ahead adder is the best choice for a 64 bit adder 

design. Though its sophisticated circuit consumes a lot of power, its architecture makes it 

the fastest design among the 4 adders. 

The prefix adder is the fastest adder in its design family. After studying the power 

characteristics of the prefix adder, we can design the prefix adder by properly arranging 
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the black and white cells in the carry generation network and making it consume less 

power without losing its speed. 

The method used to reduce the power consumption of the prefix adder is by 

reducing the switching probability on some critical paths. The power consumption is 

proportional to the product of the probability and the fan-out. The smaller the power 

factor is, the smaller the power it consumes. With the design which is illustrated at the 

end of Chapter 5, we can enjoy the high speed without consuming a lot of power. 

6.2 Future Works 

Future work can be done by expanding the circuit to a more complex level. It may 

be expanded to a 16 bit prefix adder or a hybrid adder design. Moreover, we can apply 

this power factor and efficiency index to more complicated circuit designs. For example, 

different multiplexers designs can use the concept of power factor and efficiency index to 

evaluate their power characteristic and trade-off between time and power. 

This study only emphasizes the statistical model of the power consumption 

analysis. Real circuit layout and SPICE verification can be done in further studies. The 

model of power analysis is only shown of the gate level. It would be possible to simulate 

the circuit down to the transistor level to get more accurate results. 
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