
AN ABSTRACT OF THE THESIS OF

Che-Jen Chang for the degree of Master of Science in Electrical and Computer Engineering

presented on June 5, 1997. Title: The Low-Power Design of Prefix Adder.

Shih-lien Lu

Minimizing the dynamic power consumption of a circuit is becoming a more and

more important issue for digital circuit design in the age of portable electronics. Among all

the arithmetic circuits, addition is the most fundamental operation. Therefore, designing low

power adder is an important and necessary research area.

In this thesis, the dynamic switching power consumption of ripple carry adder, carry

look ahead adder, carry skip adder, carry select adder, and prefix adder are discussed. The

power factor, the sum of products of probability and fan-out of all internal nodes, is

presented. This thesis also studies the power and time trade-off with efficiency index which

is the product of power factor and worst case gate counts. The result shows that the carry

look ahead adder has the lowest efficiency index in the design of a 64 bit adder. The carry

skip adder is the best one in a design of a 16 and 32 bit adder. The ripple carry adder is the

best choice for an 8 bit adder.

This study also presents a low power prefix adder design which will reduce the

power consumption of the prefix adder without lost of performance.

Redacted for Privacy

© Copyright by Che-jen Chang

June 5, 1997

All Rights Reserved

The Low-Power Design of Prefix Adder

by

Che-jen Chang

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 5, 1997

Commencement June 1998

Master of Science thesis of Che-jen Chang presented on June 5, 1997

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Chair of Department of Electrical and Computer Engineering

Dean of Gradu School

1 understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader upon
request.

Che-jen Chang, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

TABLE OF CONTENTS

Page

1. Introduction 1

1.1 Motivation 1

1.2 Overview of the Thesis 2

2. Background 4

2.1 Adders 4

2.1.1 Ripple Carry Adder 4

2.1.2 Carry Look Ahead Adder 5

2.1.3 Carry Skip Adder 11

2.1.4 Carry Select Adder 12

2.1.5 Prefix Adder 13

2.1.6 Comparison of Adders 17

2.2 Power Consumption of CMOS ICs 17

2.3 Low Power Design 18

2.3.1 Minimizing Switching Capacitance 19

2.3.2 Voltage Reduction 22

2.3.3 Minimizing Other Power Components 23

3. Methodology 24

3.1 Probability 24

3.1.1 Addition 24

3.1.2 Counting 24

3.2 Power Factor 25

TABLE OF CONTENTS (Continued)

Page

3.3 Efficiency Index 26

3.4 An Example of Power Factor and Efficiency Index Analysis 26

3.5 Simulation 28

4. Dynamic Power Analysis of Adders 31

4.1 Ripple Carry Adder 31

4.2 Carry Look Ahead Adder 32

4.3 Carry Skip Adder 34

4.4 Carry Select Adder 35

4.5 Power Factor Analysis 37

4.6 Efficiency Index Analysis 39

5. Implementation of Low-Power Prefix Adder 43

5.1 Analysis of Wei's Prefix Adder 44

5.1.1 Probability Analysis 44

5.1.2 Fan-out Analysis 44

5.1.3 Power Factor Analysis 46

5.2 Low Power Prefix Adder Design 47

6. Conclusion and Future Work 49

6.1 Conclusions 49

6.2 Future Work 50

Bibliography 51

LIST OF FIGURES

Figures Page

2.1: Circuit of 4 bits full adder 5

2.2: The carry circuit of 3 bit carry look ahead adder 6

2.3: The first part of carry look ahead adder 8

2.4: The second part of carry look ahead adder 9

2.5: The complete carry look ahead adder 10

2.6: An example of 8 bits carry skip adder 11

2.7: A simple carry select adder 12

2.8: Modified carry select adder 13

2.9: Three functional blocks of a prefix adder 15

2.10: Three basic cells of carry look ahead adder 16

2.11: An example of carry generation network of a 6 bit prefix adder 16

2.12: Temporal transition activity comparison for instruction addresses 20

3.1: Chain structure(a) and tree structure(b) 27

3.2: The algorithm of counting the probability of each cell 29

4.1: An 8 bits carry look ahead adder 33

4.2: The power factor comparison of adders 37

4.3: The power factor analysis of adders when increment by 1 38

LIST OF FIGURES(Continued)

Figure Page

4.4: The power factor analysis of adders when decrement by 1 39

4.5: The comparison of efficiency index between 4 adder 42

5.1: Carry generation network of Wei's 8 bit Prefix adder 43

5.2: An example of 8 bit carry generation network 45

5.3: The 8-bit low-power prefix adder design 47

LIST OF TABLES

Tables Page

2.1: Asymptotic time and space requirement for five adders 17

2.2: Computation complexity of vector quantization encoding algorithm 20

2.3: Average number of gate transition per addition 21

3.1: Probability analysis of chain and tree structure 27

4.1: Power factor analysis of a ripple carry adder 32

4.2: Power factor analysis of a carry look ahead adder 33

4.3: Power factor analysis of a carry skip adder 34

4.4: Power factor analysis of a fixed width carry select adder 36

4.5: Power factor analysis of a various width carry select adder 36

4.6: The efficiency index of 8 bit adders 40

4.7: The efficiency index of 16 bit adders 40

4.8: The efficiency index of 32 bit adders 41

4.9: The efficiency index of 64 bit adders 41

5.1: The probability analysis of Wei's 8 bit prefix adder 44

5.2: The fan-out analysis of Wei's 8 bit prefix adder 46

5.3: The power factor analysis of Wei's 8 bit prefix adder 46

5.4: The probability analysis of low-power 8 bit prefix adder 48

5.5: The fan-out analysis of low-power 8 bit prefix adder 48

5.6: The power factor analysis of low-power 8 bit prefix adder 48

The Low Power Design of Prefix Adder

1. Introduction

1.1 Motivation

With the advancement of new technology, we develop higher and higher

expectations on the portability of electronic devices that perform computation and

communication for us. These devices such as notebook computer, pager, cellular phone,

and personal digital assistant(PDA) allow us to have the freedom to be mobile without

cumbersome power source. However, they challenge engineers to design systems which

consume less power. With low power designs, batteries used can be lighter and smaller.

This added dimension in design tradeoffs besides the traditional requirement of cost and

performance has recently attracted many researchers to work on the optimization of

power consumption in digital circuits.

Currently, the dominating technology for implementing digital circuits is

Complementary Metal Oxide Silicon(CMOS). Many papers on reducing power

dissipation in digital electronic system have been published[1][2][3]. There are three

major sources of power dissipation in digital CMOS circuits -- switching, short-circuit,

and leakage. Traditionally, the switching component has been the main power dissipation

source. Dynamic power consumption is summarized with the equation:

Plynannc = a CL Vid2 f

where a is the switching probability of the circuit, CL is the load capacitance, VId

is the supply voltage, and f is the frequency of this circuit.

2

Another important component of digital computers is adders. Adders are used in

many different parts of the digital computer. They are not only used in the Arithmetic

Logic Unit (ALU) but also in address calculation. Adders are also used in multipliers and

other functional units. Therefore, it is important to study adder design as well as to reduce

the power dissipation of adders. Many different addition algorithms exist and they range

from the simple ripple carry adder to the complex carry look ahead adder[4]. We are

particularly interested in the power optimization of the prefix adders[5].

The prefix adder is one implementation of parallel adders. It is the fastest adder in

its design family[6] that is mostly is used in designs that demand high performance. The

key points of prefix adder are: 1) it defines the "carry propagation" and the "carry

generation" terms; 2) a carry generation network circuit calculates the carry of the current

stage with either propagation from previous stages or generation at the current stage; 3)

the sum bit is calculated in parallel within a very short time delay.

1.2 Overview of the Thesis

Ripple carry adder, carry look ahead adder, carry skip adder, and carry select

adder are some of most popular adders. These adders and the background of power

consumption of CMOS circuits are included in the thesis. This study particularly focuses

on the analysis of dynamic power consumption of each adder design. An indicator, power

factor, is introduced to measure the dynamic power dissipation. It is defined as the sum of

products of probability and fan-out of all internal nodes. A comparison of the power

factor of different adders is included as well.

The main objective is to modify the topology of the carry generation network of a

prefix adder and to reduce the number of fan-out of each node. A large fan-out not only

has longer propagation delays but also consumes more power. The probability and fan-

out of each node are analyzed to design the low-power prefix adder.

3

This thesis contains 6 chapters. Chapter 1 is the introduction. Chapter 2 is the

background of adder designs, CMOS circuit power dissipation, and methods to reduce the

power consumption. Chapter 3 demonstrates the methodology used in this study, and

power factor and efficiency index are introduced. Chapter 4 is the analysis of power

factor and efficiency index of adders. It also includes power factor analysis of adders

while they are performing addition or counting. Chapter 5 is the experimental result of

the prefix adder with low power design. An 8 bit low-power prefix adder is also

presented. Chapter 6 is the summary of the thesis and recommendation for further

research.

4

2. Background

This chapter includes introduction of several adder algorithms, discussion of the

power consumption in a CMOS circuit, and review of several methods which can be

applied to minimize the power dissipation of different CMOS circuits.

2.1 Adders

Several kinds of adders and the characteristics of time and power will be

discussed. We will also include the comparison of the time and space between adders.

First of all, for a binary adder, its logic functions can be summarized by the

following equations:

S=11B+Ag=-AeB

C=AB
 (2.1)

where S is the sum bit of input bits A and B, and C is the carry out bit of A and B.

S can be calculated by an XOR logic gate, and C can be calculated by an AND logic gate.

2.1.1 Ripple Carry Adder

The basic function of a one bit full adder(FA) is expressed in equation (2.2),

where A, and B, are the input data. C is the carry in from previous stage. As for outputs,

S, is the sum bit of A, and B;, and C, is the carry out bit.

Si= , B, +: 4 B, C + A, B, j';,, + A, B, Cm

Cow = A, .8, + A, + B, Cll, (2.2)

Fig. 2.1 displays a 4 bit ripple carry adder. The ripple carry adder sequentially

generate the carries and ripple through the next full adder stages. The problem of ripple

5

carry adder is the long time delay. If we define the time delay of each full adder as 8, total

time delay of a n bit ripple carry adder will be n6.

COUt FA FA FA FA 4---Cin

3

Fig. 2.1: Circuit of 4 bit full adder

The advantage of the ripple carry adder is its simplicity. Since its implementation

takes less logic gates, the total power consumption is less than other adders.

2.1.2 Carry Look Ahead Adder

Many modifications have been made in the design of parallel adders to shorten the

maximum time delay. One of the popular solutions is the carry look ahead adder[4]. The

basic principle of a carry look ahead adder is that it calculates all of the values of carry

bits before it begins to calculate the sum.

In order to implement the carry look ahead adder, we need to define the

propagation bit(P) and generation bit(G) of each input signal in equations:

R=A+Bi

G=AiBi

C-H=G+
 (2.3)

6

The key point of carry look ahead adder is that the carry bit can be expressed in

terms of the combination of P and G. Each carry bit, unlike in the ripple carry adder, can

be calculated without rippling through the whole length of the adder. The logic function

of the carry bits' in a 4 bit carry look ahead adder is presented in equations:

Ci= Go +R)Co

C2= G+ P-C1= 0+ P(Go+ fbCo)= 0+ Pa+ PAC°
C3=62+ R-C2= G2+ R(0+ PG0+ PACO

= G2+ RO+ RPG)- RPIFOCo

C =G3 +P3 C2= G+ li(a+ P2-6+ R Pia+ R.FIRCo)
= 0+ PG+ PRG+ fiRTIRCo (2.4)

An equivalent carry circuit of 3 bit carry look ahead is displayed in Fig. 2.2.

CO AO BO 51 53. 52 52

PO GO ljG1 P2 G

C

C

Fig. 2.2: The carry circuit of a 3 bit carry look ahead adder

7

There are some problems within the circuit. In an N-bit adder, the fan-out of the

OR gates on the propagation bit is proportional to N. The fan-in of the OR gate is N+1. It

is impracticable to build a full carry look ahead adder when N is large.

However, carry look ahead adders can still be practical when N is large if a simple

and regular structure is used. The idea is to build up the P's and G's in steps. The

equation of carry bits is known as:

Cl = G o+ Po Co (2.5)

This equation means that there will be a carry out for the position (C,) if there

is either a carry generated in the Oth position(G), or a carry in to the Oth position(C) and

the carry propagates(P). Accordingly,

C2 = G01+ PDC° (2.6)

G, means there is a carry generated out of the block consisting of the first two

bits. P, means that a carry propagates through this block. P and G have the following

logic functions:

ai=a-f-pa
Ai= PA (2.7)

Generally, for any j with i <j, j +l<k, we have the recursive relations:

Ck+1 = Gk PkC

Gk = G+1,k Pi+1,kai

Pk = PJP4-1,k
 (2.8)

Equation (2.8) indicates that a carry is generated out of the block consisting of bits

i through k inclusive if it is generated in the high-order part of the block (j +1,k) or if it is

generated in the low-order (i,j) part of the block and then propagated through the high-

part. These equations will also be hold for i5j<k if we set G.--G, and P P;.

8

With these preliminaries, the design of a practical carry look ahead adder can be

expressed. The adder consists of two parts. The first part computes various values of P

and G from p, and g1, and the second part uses these P and G values to compute all the

carries. The circuit of first part is presented in Fig. 2.3, and the second part is presented in

Fig. 2.4.

A, B, A B0Al B1

(1

P,..G23
0.1

A, B, Gj-)1 ,k Pi+ I ,k

G.3 P0.3
1 1

P.

1 1
Pi.kPi.JJ+I .kG=AB P=A+B,

Fig. 2.3: The first part of carry look ahead adder

9

C

132 pl

G, G, Ci+1=G ,J-FP ,JC, C,

P.
P0,1

Go

I C

Fig. 2.4: The second part of carry look ahead adder

By feeding in C at the bottom of this tree, all the carry bits come out at the top.

Each cell must know a pair of (P,G) values in order to do the conversion, and the needed

values are written inside the cells.

Comparing Fig. 2.3 and Fig. 2.4, there are one-to-one correspondences between

cells, and the values of (P,G) needed by the carry generating cells are exactly the same

values known by the corresponding (P,G) generating cells. The combined cells are

presented in Fig. 2.5. The numbers needed to be added are flowing from the top and

downward through the tree, combining with C at the bottom, and flowing back up the

tree to form the carries.

10

S, S, S, SA B3
3

0

G.3 Po.,

Gi,j

Pi,j

C,

P=A+B,
Pi.kPi.jPj+1,k

G
i.k=G j+1,k+Pj+1,kGi,j

Fig. 2.5: The complete carry look ahead adder

For the carry look ahead adder, the maximum path length is the size of element

delay and this delay remains almost constant no matter how many additional stages are

provided in the adder. This is a significant increase in speed and the problem of time

delay of the carry look ahead adder has been greatly improved. The total delays of N bit

carry look ahead adder are log,N.

11

2.1.3 Carry Skip Adder

A carry skip adder is mid-way between the ripple carry adder and carry look

ahead adder. In the carry look ahead adder, the computation of P is much simpler than

that of G. The carry skip adder computes only P to speed up. An 8 bit carry skip adder is

illustrated in Fig. 2.6.

A, B, A6 B6 A, B, B, A5 4 0 2 B2

Co

P4,7

Fig. 2.6: An example of an 8 bit carry skip adder

In Fig. 2.6, each gray block is a 4 bit ripple carry adder. Carries begin rippling

simultaneously through each block. If any block generates a carry, the carry out of a

block will be true even though the carry in of the block may not be corrected yet. If the

carry in of each block is zero at the beginning of each add operation, no spurious carry

out will be generated. Thus, the carry out from the least significant block is generated. It

not only feeds into the next block, but is also fed through the AND gate with P signal

from the next block. If the carry out and P signals are both true, the carry skips the second

block and is ready to feed into the third block and so on.

The speed of the carry skip adder can be analyzed. Let us assume that it takes one

time unit for a signal to pass through two logic levels. Then, it will take k time units for a

carry to ripple across a block of size k and one time unit for a carry to skip a block. The

12

longest signal path in the carry skip adder starts with a carry being generated at the Oth

position. It takes k time units to ripple through the first block, n/k-2 time units to skip

blocks, and k more to ripple through the last block. To be specific: if we have a 20 bit

adder broken into groups of 4 bit, it will take 11 time units to perform an add.

2.1.4 Carry Select Adder

Another modification of parallel adder, which attempts to shorten the maximum

time delay, is the carry select adder. This circuit is faster than the carry look ahead adder,

but it also has higher hardware cost.

A carry select adder works based on the following principles: two additions are

performed in parallel--assuming one of the carry in is zero, and the other is one. When the

carry in is finally known, the correct sum which has been pre-computed will be simply

selected. An example is presented in Fig. 2.7.

4 bit

C,
4 bit 4-­

co
1

4 bit

Multiplexers 4

Fig. 2.7: A simple carry select adder

13

In Fig. 2.7, an 8 bit adder is divided into two halves, and the carry out from the

lower half is used to select the output of upper half.

Another issue should be noticed here. The carry signal from the lower half must

drive many multiplexers, which may cause great time delay. Instead of dividing the adder

into halves, it could be divided into quarters for further speedup.

If it takes k time units for a block to add k-bit numbers and one time unit to

compute the multiplexers inputs from two carry out signals, for optimal operation, each

block should be one bit wider than the last one (Fig. 2.8). Therefore, in the carry skip

adder, the best design involves various sized blocks.

5 bit 4 bit

4- 4 bit e
C4 Co

1 1

5 bit 4 bit

C / C8
4-

/
4- 5 x 2:1 4 x 2:

Fig. 2.8: Modified carry select adder

2.1.5 Prefix Adder

A prefix adder works like a carry look ahead adder. The idea of prefix problem is

to compute all the products

Xi 0 X2o 0 Xi, for i k n

where o is an associative operation. A recursive construction is used to obtain a

product circuit for solving the prefix problem.

14

The mathematical model of the prefix addition is expressed in the following

equations:

gIN = ai bi

plN = bi

= Gi for i = 1,2,, n
 (2.9)

where

(gIN , pIN) 1f 1 =1
(G, ,p,)=

(gIN , pIN) , P -1)
(2.10)

and 0 is a concatenation operator which is defined as:

(gi , pi) , pr) = (gi + pi , pr)
(2.11)

After the carry bit C, is computed, the sum bit Si is:

= for i =2,...,fl
SI (2.12)

Given the fact that 0 is associative, m can be chosen such that i m >1 and

(G,,, P) can be written as:

(2.13)

where

(gINE, if 1 = m}
(gIN , if i> m (2.14)

15

(G,r,P,,) and have similar function forms; they both are functions of

i-m+/ consecutive input bits and require i-m applications for the associative operator

Therefore, both of them can be computed by the same circuit.

To implement these functions, three circuit blocks (Fig. 2.9) are required. The first

one is a combination circuit, labeled as Pre-condition Circuit, which calculates the adder

inputs a, and b, to generate the initial pIN, and gIN, for each bit position i. Secondly, the

computed p and g are fed into the Fast Carry Generator which performs the operations

defined in equations 2.9 to 2.14. It is this circuit that allows accelerated carry

computations. The third block is a Sum Circuit, consisting of a row of XOR gates, to

combine the carry propagate bits (pIN,) from the first block with the carry bits (c,) from

the second block.

A,B, A,B, A,B, A,B, AB

11 II 11
Pre-condition Circuit

G,P, G3133 G,P, G,P, GP

Fast Carry Generator

S,

Fig. 2.9: Three functional blocks of a prefix adder

Fig. 2.10 shows three basic types of cells to implement the fast carry generator in

the prefix adder: black cells, white cells, and driver cells. The black cell performs the

16

associative concatenation. The white and driver cells act as "through" cells. An example

of a 6 bit prefix adder is presented in Fig. 2.11.

gl pl gl pl
gl pl

gout pout

gout pout gout pout

pout=pl*pr pout =pl

gout=g1+pl*gr gout =gl

Fig. 2.10: Three basic cells of carry look ahead adder

P5.0G5.0 P4.0G4.0
 P3.0G3.0 P2.0G2.0 Pi.oG 1.0 P0.0G0.0

Fig. 2.11: An example of carry generation network of a 6 bit prefix adder

17

2.1.6 Comparison of Adders

The asymptotic time and space requirements for the different adders are

summarized in Table 2.1. These different adders should not be looked at as disjoint

choices, but as building blocks to be used in constructing an adder. The utility of these

different building blocks is highly dependent on the technology used.

For example, the carry select adder works well when a signal can drive many

multiplexers, and the carry skip adder is attractive in technologies where signals can be

cleared at the beginning of each operation.

Table 2.1: Asymptotic time and space requirement for five adders

Adder Time Space

Ripple carry adder 0(N) 0(N)

Carry look ahead adder 0(logN) 0(NlogIV)

Carry skip adder 0(VW) 0(N)

Carry select adder 0(\F\-7) 0(N)

Prefix adder 0(/ogN) 0(NlogIV)

2.2 Power Consumption of CMOS ICs

In digital CMOS circuit, there are four main sources of power dissipation which

are summarized with following equations:

Pang = Pswitching Pshortcircuit Pleakage Pstatic

= a 0--)1 CL V Vid fa + isc VcId + 'leakage Vdd 'static Vid (2.15)

Pswitching denotes the switching component of power, where C, is the load

capacitance, fci, is the clock frequency, and cco,, is the node transition activity factor (the

18

average number of times that the node makes a power consuming transition in one clock

period). The node transition activity factor is a function of the implemented logic

function, the logic style, the circuit topologies, signal statistics, signal correlations, and

the sequencing of operations.

Pshort-circuit is due to the direct-path short circuit current, 4,, which arises when both

the NMOS and PMOS transistors are simultaneously active, conducting current directly

from supply to ground. Through proper choice of transistor sizes, the short-circuit power

can be kept to less than 10% of total power consumption. Alternatively, operating the

circuits at a supply voltage less than the sum of NMOS and PMOS threshold voltages

will essentially eliminate any short-circuit currents.

Pleakage is due to the leakage current, which can arise from reverse bias diode

currents and sub-threshold effects, is primarily determined by fabrication technology

considerations.

Finally, static currents, Isiducs, arise from circuits that have a constant source of

current between the power supplies (such as bias circuitry, pseudo-NMOS logic families,

etc.). This static current will affect a lot if the circuit is idle most of the time (when the

circuit is clocked at low frequencies), then the static power will tend to increase the total

power consumption.

For properly designed circuits, the switching component of power will dominate

and contribute to more than 90% of the total power consumption, which should be the

primary target for power reduction.

2.3 Low Power Design

The fundamental cause of CMOS dynamic power dissipation is the organization

of the energy transport in the circuit. When charging a node with node capacitance to

voltage V, a signal energy is stored in the node. When the node is discharged, the energy

19

is drained away from the node to ground. Thus, all energy drawn from the supply is used

only once before being discarded.

To decrease the dynamic power dissipation, some methods can be applied, such as

minimizing the switching events, reducing the node capacitance, and decreasing the

voltage swing. Combination of some or all of these methods can be used as well.

2.3.1 Minimizing Switching Capacitance

Since CMOS circuits do not dissipate dynamic power if they are not switching,

primary approach of low power design is reducing the switching activity to the minimal

level required for performing the computation. One of the simple methods is simply

powering down the whole or portion of the circuit. However, sophisticated methods

including gated clocks or optimizing circuit architectures can be used as well.

Following sections will describe the methods of the low power design in

minimizing the switching capacitance at algorithm level, architecture level, logic level,

circuit level, and physical level.

2.3.1.1 Algorithmic Optimization

The choice of algorithm is the most highly leveraged decision in meeting the

power constraints. The ability for an algorithm to be paralleled will be critical and the

basic complexity of the computation must be highly optimized.

First method of algorithmic optimization is to minimize the number of operations.

For example, consider the problem of compressing a video data stream using the vector

quantization algorithm. Three vector quantization algorithms are tested and the result for

16 pixels input vector are presented in Table 2.2[7].

20

Table 2.2: Computational complexity of vector quantization encoding algorithm

Algorithm # of Memory access # of Multiplications # of Adds # of Subs

Full Search 4096 4096 3840 4096

Tree Search 256 256 240 264
Differential Tree

136 128 128 0Search

Second method is minimizing temporal bit transition activity by choosing data

representation. For example, Gray-coding is a popular coding algorithm used in low

power design. The reason why it is so useful is because there is only one bit difference

between consequence bits. Fig. 2.12 shows the reduction in switching activity for

instruction address coding for a set of benchmark programs. BPI is the number of bit

transitions per instruction executed[8].

Chat

Browse

Boyer

Nand

Sem igroup 2.68
Gray Coded

B mary Coded
Circuit 2.23

Reducer 2.57

Qsort 2.64

Fastqueens 2.46
BPI

0 0.5 1 1.5 2 2.5 3

Fig. 2.12: Temporal transition activity comparison for instruction addresses

21

2.3.1.2 Architecture Optimization

Architecture optimization can also be used to significantly reduce the switching

activity by optimizing the number representation, optimizing the ordering of operations,

optimizing resource utilization, and minimizing glitching activity.

2.3.1.3 Logic Optimization

The choice of logic topology has a strong influence on the total transition activity,

which will directly affect the switching activity and the power consumption. Callaway et.

al.[9] emulated five kinds of adders with limited input sample to get the results of average

number of gate transitions per addition in Table 2.3.

Table 2.3: Average number of gate transition per addition

Adder Type 16 bit 32 bit 64 bit

Ripple Carry 90 182 366

Carry Look Ahead 100 202 405

Carry Skip 108 220 437

Carry Select 161 344 711

Conditional Sum 218 543 1323

Their research showed that the carry look ahead adder was the best based on the

product of transitions number and delay. These simulation results were poor because they

were only based on 50,000 randomly distributed input patterns.

2.3.1.4 Circuit Optimization

There are a number of options available in choosing the basic circuit approach and

topology for implementing various logic and arithmetic functions. Choices between static

22

vs. dynamic implementations, passgate vs. conventional CMOS logic styles, and

synchronous vs. asynchronous timing are some of the options for system designer.

First, though dynamic logic must have pre-charge operation and charge-sharing, it

can reduce switching activity due to hazards, eliminate short-circuit dissipation, and

reduce parasitic node capacitance. Dynamic logic style appears to be the better low power

performance.

Second, passgate logic requires fewer transistors to implement logic functions,

such as XOR. Besides, passgate logic can lower the threshold voltage and let it operate at

the lowest possible voltage level, which is very important to low power design.

Third, self-timed implementations can minimize switching activity by power-

down of unused modules. This is a better choice for low power design.

2.3.1.5 Physical Design

At the level of physical design, the place and route can be optimized. For

example, signals with high switching activity can be assigned to short wires; signals with

low switching activity can be allowed to have long wires.

2.3.2 Voltage Reduction

The dominant component of power consumption for properly designed CMOS

circuits is proportional to the square of the supply voltage. Operating the circuit at the

lowest voltage is the key to minimize the energy consumed per operation. However, the

individual circuit element runs slower at lower supply voltages and this must be

compensated through appropriate architectural design.

For example, if possible, we can reduce the supply voltage from 5V to 1.5V. This

power reduction scale will be 1.52/52= 0.09, which means 91% of power reduction. The

trade-off is the increase of circuit delay. While reducing the voltage, there must be some

slack in the critical path of the circuit so that the increased gate delays do not diminish the

23

desired throughput. If not enough slack exist, changes must be made at the algorithm and

architectural level to accommodate the slower gates. Some techniques, including

parallelism and pipe-lining, that have been used to reduce the delay of critical paths can

still maintain constant throughput when we reduce the supply voltage.

2.3.3 Minimizing Other Power Components

While the other components of power dissipation are generally minimal, there are

design constraints that must be followed to prevent these components from becoming

significant. Primary concern is the short-circuit power consumption if signal rise/fall

times are allowed to vary too much, this power can become a significant, or even the

dominant component of the total power.

The reverse-bias diode leakage current power is a function of process and

transistor count. In an example of one million transistor chip, the average leakage current

is approximately 2511A, which is insignificant given that amount of transistors. Thus,

leakage power is negligible in most CMOS ICs. Even that, it can only be optimized by

minimizing the total diffusion area.

24

3. Methodology

In this chapter, the methodology that used in studying switching power

consumption of different adders is presented. Two indicators, power factor and efficiency

index, will be introduced. An example about these two indicators to illustrate the trade-

off between the time and power in different adder designs is presented in the end of this

chapter..

3.1 Probability Analysis

Two different probability analyses will be presented. The first one is addition, and

the second one is counting.

3.1.1 Addition

The basic function of adder is to perform the addition. Two input signals come

into the adder, then the sum bit and the carry out bit are generated. For a random input

data, the probability of input equal to 1 is 0.5. Therefore, we define the probability of

input as 0.5. The probability of each internal node is counted by the simulation program.

3.1.2 Counting

Counting is more frequently operated in general computing than addition.

Usually, it is used by the program counter to control the program flow. Counting includes

increment and decrement. In this study, we will simulate the power characteristic when

the adder is performing the increment or decrement by 1, 2, 4, and 8.

25

3.2 Power Factor

In order to discuss the power in statistic way, the probability of each output

changing from 0 to V is considered. Power is drawn from the power supply and stored

into the load capacitance. With the background discussed in the last chapter, the dynamic

power consumption can be expressed as:

P = a 0-,1 Cc vd,12 f (3.1)

Since all internal nodes of a gate may have transitions, the transition activity of

every node must be calculated in a circuit. The total power of a circuit is the sum of

power of all internal nodes. For example, for a circuit with n internal nodes, the total

power should be:

P r o w = a C Vid2 f = Vdc/2 f
(3.2)

For a circuit, Vad and f can be fixed values. So, the total power will be proportional

to the sum of the products of a_ (switching probability) and CL(load capacitance).

= Coast lo CL;
(3.3)

i=1

where Const=v 2f Each load capacitance of gate is assumed to be the same, and

the interconnected capacitance is ignored. Therefore, the total load capacitance is

proportional to the fan-out of each gate. Then, the sum of products of probability and fan-

out of all internal nodes can be defined as power factor.

Power Factor =1 a, Fanout (3.4)
,=1

26

3.3 Efficiency Index

Time delay is another important issue in the circuit design. Mostly, time delay

occurs when the load capacitance(CL) is charging and discharging. The value of load

capacitance will determine the delay of rising time and falling time. To achieve the goal

of low power design, every gate should be the minimum size in order to save power. If

the size of the N-transistor and P-transistor are the same, the rising time will become

twice as the falling time. For a combination circuit, the maximum time delay is derived

from the sum of gates charged from 0 to Vdd.

An efficiency index can be introduced here. We assumed that every gate has the

same time delay. Based on this assumption, the maximum time delay will occur when all

gates are in the rising stage. Using the power factor described in equation (3.4), the

efficiency index can be expressed with the following equation:

Efficiency Index = Power factor Worst Case Gate Counts (3.5)

With the Efficiency Index, we will be able to evaluate the tradeoffs between two

systems with same function but different logic structure.

3.4 An Example of Power Factor and Efficiency Index Analysis

Based on the equations described in previous paragraphs, a simple example of

power factor and efficiency index is presented. While illustrating the simple logic

function in equation (3.6), there are alternative implementations: chain structure (Fig.

3.1(a)) and tree structure (Fig. 3.1(b)).

F=AB-CD (3.6)

27

A

B

C

D

(a) chain
(b) tree

Fig. 3.1: Chain structure(a) and tree structure(b)

Fig. 3.1 includes two circuit topologies. Both circuits perform the same function

but their power consumption and time delay is different. Those differences will be

described in the following paragraphs.

First, the probability analysis of the internal nodes 0, and 0, is presented in Table

3.1. The rising probability (charging) of node 0, in chain structure is smaller than that in

tree structure.

Table 3.1: Probability analysis of chain and tree structure

0, 0, F

P,(chain) 1/4 1/8 1/16

P=1-P,(chain) 3/4 7/8 15/16

P,,(chain) 3/16 7/64 15/256

P,(tree) 1/4 1/4 1/16

P=1-P,(tree) 3/4 3/4 15/16

P0,,(tree) 3/16 3/16 15/256

28

Both fan-outs of node 0, and 0 are 1. So, the power factors are:

Power Factor (chain) = /
3 16.1+ 7/6.1 =1Y64

(3.7)
Power Factor (tree)= / 1316. -4-X6.1 X

Based on the assumption that every gate has the same time delay, the efficiency

indexes should be:

Efficiency Index(chain)=% 3 = 5764
(3.8)

Efficiency Index(tree)= X 2 = X

Equation (3.8) shows that the efficiency index of tree structure is smaller than that

of the chain structure although the chain structure has less power factor. It seems that the

tree structure is a better choice than chain structure for designing the function in equation

(3.6).

3.5 Simulation

Based on the concepts discussed previously, some C++ programs were written to

simulate the gate level switching behavior of different adder circuits. These programs

count the switching activities of every internal node based on every possible input. For

example, for a 4 bit adder, two inputs should have 24 x 24 input combinations. First, we

set the initial value of each internal node while the initial values come in. Then, another

set of input signal is fed into the simulation program, and the rising and falling activities

of every internal cell is counted. The algorithm is presented in Fig. 3.2.

29

For Initial Value A (IA)
4

from 0 to 2N-1

For Initial Value B (IB)

from 0 to 2N-1

Set the value of each

internal nodes

For Next Value A (NA)

from 0 to 2N-1

For Next Value B (NB)

from 0 to 2N-1

Count the transaction

times of internal nodes

Next value of

NB

Next value of4

NA

Next value of

IB

Next value of

IA

Fig 3.2: The algorithm of counting the probability of each cell

30

For the fan-out of each gate in the circuit, the sub-program defines it as the

number of nodes connected with the output values. For example, the fan-out of node 0, in

Fig. 3.1(a) is 1.

The power factor value is calculated by summing up the products of the

probabilities and fan-outs. The power factor value is proportional to the total power

consumption of a circuit. The smaller the value is, the lower the power consumption is.

Thus, the power factor can be used as an index for comparing the power consumption

between different adder designs.

When the program is performing counting instead of addition, we change the NA

value from a loop to the fixed number we want to count. For example, when decrease by

4, we will put (11111100) in the NA value and run the program.

31

4. Dynamic Power Analysis of Adders

In this chapter, dynamic power characteristic of adders will be analyzed based on

the definition of chapter 3. The power factor and efficiency index of each adder will be

presented and the comparison of different adders is included as well.

4.1 Ripple Carry Adder

Ripple carry adder is a combination of N-bit full adders. Each full adder has a

carry out signal ripple through next stages in order to calculate the sum bits. When the

adder is performing the general addition, it shows that the probability of sum bit being 1

is 0.5 and the probability of carry out bit being 1 is 0.5, too.

In a counting operation, the probability of each carry out bit being 1 is different

while the sum bit remains the same. For example, when we use an 8 bit ripple carry adder

to perform "increment by 1" operation, the probabilities of each carry out bit from bit 0 to

7 are 0.75, 0.375, 0.18755, 0.09375, 0.04688, 0.02344, 0.01172, and 0.00586

respectively. In fraction form, these numbers are 3/4, 3/8, 3/16, 3/32, 3/64, 3/128, 3/256,

and 3/512, respectively.

The fan-out of sum bit in the full adder is 1 and the fan-out of carry out bit is also

the same. By summing up the products of probability and fan-out of each bit, the power

factor analysis of ripple carry adder is presented in Table 4.1.

32

Table 4.1: Power factor analysis of a ripple carry adder

Method 8 bit 16 bit 32 bit 64 bit

General Addition 4 8 16 32

Increment by 1 2.74415 4.74998 8.75 17.1667

Increment by 2 2.90693 4.91663 8.91667 17.3333

Increment by 4 2.98252 4.99993 9 17.4167

Increment by 8 3.00883 5.04154 9.04167 17.4583

Decrement by 1 2.41471 4.41666 8.41667 16.8333

Decrement by 2 2.74415 4.74998 8.75 17.1667

Decrement by 4 2.90306 4.91661 8.91667 17.3333

Decrement by 8 2.97099 4.99989 9 17.4167

For example, the power factor of an 8 bit ripple carry adder is 4 when the adder

does the general addition. The power factor is proportional to the number of bits because

of its regular layout. The counting operations consume less power than general addition

because the increment and decrement operations have less carry chain and less switching

probabilities. Comparing the decrement with the increment operation, the increment

operation in the ripple carry adder has more switching probability than decrement has.

4.2 Carry Look Ahead Adder

Fig. 4.1 shows the structure of an 8 bit carry look ahead adder. In this figure, the

gray blocks calculate the propagation and generation bit; the white blocks calculate the

result of equation (2.6). The probabilities of propagation and generation bits being 1 are

3/4 and 1/4, respectively.

33

S, a, b, a, b, ao botll tll
t 11

C: co1 Tr

CoT.. 'Co

co

co

Fig. 4.1: An 8 bit carry look ahead adder

Table 4.2: Power factor analysis of a carry look ahead adder

Method 8 bit 16 bit 32 bit 64 bit

General Addition 14.266325 29.373644 59.417049 119.43512

Increment by 1 8.765146 14.810695 26.54528 49.764025

Increment by 2 8.94802 15.018055 26.752753 49.971498

Increment by 4 9.124691 15.243207 26.97813 50.196875

Increment by 8 9.198288 15.4118 27.147173 50.365919

Decrement by 1 5.8951111 10.464186 19.34846 36.846049

Decrement by 2 7.9506073 13.04445 22.428837 40.426426

Decrement by 4 7.7789154 12.7968 22.056412 39.929001

Decrement bz8 . 8.5079193 13.465657 22.569469 40.285808

34

Table 4.2 shows the power factor analysis of a carry look ahead adder. The carry

look ahead adder has more power consumption than ripple carry adder has since it uses

more circuits to generate the carry out without ripple through all the gates. It also shows

that the power factor of counting operation is around half of the power factor of addition

operation. When we increase the number of bits, the power factor of the counting

operation is not proportional to the number of bits. The table shows that the decrement

operation has smaller power factor than increment operation has.

4.3 Carry Skip Adder

An 8 bit carry skip adder is shown in Fig. 2.8. In our simulation program, we use

a 4 bit ripple carry adder in each gray block. The switching probability of carry skip adder

is more than that of ripple carry adder because of the carry skip circuit. Table 4.3 shows

the power factor of carry skip adder.

Table 4.3: Power factor analysis of a carry skip adder

Method 8 bit 16 bit 32 bit 64 bit

General Addition 4.7558393 9.767518 19.790875 39.581751

Increment by 1 2.8407631 4.8473661 8.847392 16.847392

Increment by 2 3.0581093 5.0691012 9.0691445 17.069144

Increment by 4 3.2192116 5.2389502 9.239028 17.239028

Increment by 8 3.3220558 5.3591629 9.3593099 17.35931

Decrement by 1 2.5642438 4.8007008 9.2694589 18.089771

Decrement by 2 2.9524612 5.1930744 9.6618489 18.482161

Decrement by 4 3.2053134 5.4542078 9.923013 18.743327

Decrement by 8 3.3666675 5.6319996 10.100872 18.921185

35

The carry skip adder is in the mid-way between the ripple carry adder and carry

look ahead adder. It has less complicated design than the carry look ahead adder has. The

power factor of carry skip adder is higher than the power factor of the ripple carry adder

because of the skip circuit. In the counting operations, the increment operation has less

power factor than the decrement has.

4.4 Carry Select Adder

The circuit of an 8 bit carry select adder is shown in Fig. 2.6. The ripple carry

adder is used in each gray block. We have two options for implementing the carry select

adder architectures. The first one is to use fixed width blocks to implement the carry

select adder. For example, if each block is a 4 bit ripple carry adder, a 16 bit adder is the

combination circuit of 4 blocks of 4 bit ripple carry adders.

The second architecture is shown in Fig. 2.7. We use blocks with various width;

each successive block is one bit wider than the last one. In our simulation program, we

choose the combination of 4-4-5-6 to implement a 19 bit adder. The combination for a 34

bit adder is 4-4-5-6-7-8. For a 64 bit adder, the combination is 4-4-5-6-7-8-9-10-11. The

speed of the various width carry select adder is faster than the fixed width adder because

the carry signal ripple through less stages. Table 4.4 and Table 4.5 show the power

factors of fixed and various width carry select adders.

36

Table 4.4: Power factor analysis of a fixed width carry select adder

Method 8 bit 16 bit 32 bit 64 bit

General Addition 7.583984 24.34523 58.09737 125.667

Increment by 1 5.519531 12.85278 27.2748 56.11855

Increment by 2 5.769531 13.17456 27.59668 56.44043

Increment by 4 5.957031 13.48218 27.90449 56.74824

Increment by 8 5.957031 13.62866 28.05137 56.89512

Decrement by 1 5.082031 24.27966 62.70137 139.5451

Decrement by 2 5.519531 24.68469 63.10605 139.9498

Decrement by 4 5.832031 24.90881 63.32949 140.1732

Decrement by 8 5.957031 24.76331 63.18262 140.0264

Table 4.5: Power factor analysis of a various width carry select adder

Method 8 bit 19 bit 34 bit 64 bit

General Addition 7.583984 30.00806 60.27868 120.2067

Increment by 1 5.519531 15.27783 28.05663 52.87793

Increment by 2 5.769531 15.60303 28.38186 53.20316

Increment by 4 5.957031 15.91748 28.69639 53.51768

Increment by 8 5.957031 16.07764 28.85668 53.67798

Decrement by 1 5.082031 29.69781 61.47648 122.2978

Decrement by 2 5.519531 30.0993 61.87782 122.6991

Decrement by 4 5.832031 30.31635 62.09454 122.9158

Decrement by 8 5.957031 30.15668 61.93425 122.7555

37

These tables show that the carry select adder really consumes more power than

other adders because of its double addition circuits and multiplexers. Power factors show

that the counting operation consumes less power than the addition operation does, and

increment operations have better performance than decrement operations have.

Decrement operation consumed twice the power as increment operation. The various

width carry select adder has more improvement on power than the fixed width carry

select adder has since it takes less stages to get the result.

4.5 Power Factor Analysis

After analyzing adders, we will discuss the differences between the power factors

of adders. Fig 4.2 shows the power factor comparison of five adders when they are

performing general addition. The ripple carry adder has the best performance in saving

power. The second choice is the carry skip adder. The carry look ahead adder takes a lot

more power than others when it is only 8 or 16 bit.

140

120
Ripple Carry Adder

D Carry Skip Adder
100

Carry Look Ahead Adder

80 Carry Select Adder(fixed)

60
Carry Select Adder(various)

40

20

8 16(19) 32(34) 64

Fig. 4.2: The power factor comparison of adders

60

38

50

EI Ripple Carry Adder

El Carry Skip Adder

40 Carry Look Ahead Adder

0 Carry Select Adder(fixed)

Carry Select Adder(various)

30

20

10

1

8 16(19 32(34) 64

Fig. 4.3: The power factor analysis of adders when increment by 1

The result of "increment by 1" operation is presented in Fig. 4.3. For 8, 16, and 32

bit adders, ripple carry adder is the best choice. For a 64 bit adder, carry skip adder is

better than others. Carry look ahead adder is the worst one in 8 bit adders. As for the 64

bit adder, fixed size carry select adder has the biggest power factor.

39

140

120

100

80

Ripple Carry Adder

O Carry Skip Adder

Carry Look Ahead Adder

0Carry Select Adder(fixed)

Carry Select Adder(various)

60

40

20 JI
8 16(19) 32(34) 64

Fig. 4.4: The power factor analysis of adders when decrement by 1

Fig. 4.4 shows the comparisons of adders when performing "decrement by 1".

The ripple carry adder still is the best choice because of its low power factor. Carry skip

adder is the second choice. For both fixed and various size of carry select adders, the

power factor analyses show that they have the worst performance.

4.6 Efficiency Index Analysis

The comparison of the efficiency indexes of different adders is presented in the

following paragraphs. The efficiency indexes of 8, 16, 32, and 64 bit adders are listed in

Table 4.6, 4.7, 4.8, and 4.9.

40

Table 4.6: The efficiency index of 8 bit adders

Adder Power factor Longest Delay Efficiency Index

Ripple Carry 4 8 32

Carry Look Ahead 14.266325 3 42.798975

Carry Skip 4.7558393 8 38.046714

Carry Select (fixed) 7.583984 5 37.91992

According to Table 4.6, the ripple carry adder has the smallest efficiency index.

The carry look ahead adder does not show its improvement because it has a relatively big

power factor. Carry skip adder and carry select adder have almost the same performance.

Table 4.7: The efficiency index of 16 bit adders

Adder Power factor .,Longest Delay Efficiency Index

Ripple Carry 8 16 128

Carry Look Ahead 29.373644 4 117.494576

Carry Skip 9.767518 10 97.67518

Carry Select (fixed) 24.34523 7 170.41661

Table 4.7 shows that the carry skip adder is better than other 16 bit adders.

Though the carry look ahead adder is the fastest adder, it consumes much more power

than others. That make it the second choice of 16 bit adder design.

41

Table 4.8: The efficiency index of 32 bit adders

Adder Power factor Longest Delay Efficiency Index

Ripple Carry 16 32 512

Carry Look Ahead 59.417049 5 297.085245

Carry Skip 19.790875 14 277.07225

Carry Select (fixed) 58.09737 11 639.07107

According to Table 4.8, the carry skip adder is still the best choice for a 32 bit

adder. The table shows that the carry select adder is not a good adder design because it

not only takes more power but also longer time delay.

Table 4.9: The efficiency index of 64 bit adders

Adder Power factor Longest Delay Efficiency Index

Ripple Carry 32 64 2048

Carry Look Ahead 119.43512 6 716.61072

Carry Skip 39.581751 22 870.798522

Carry Select (fixed) 125.667 19 2387.673

In Table 4.9, it is shown that the carry look ahead adder is the best choice for a 64

bit adder. Its short time delay makes it the best choice. The ripple carry adder consumes

the least power but takes a relatively long time that makes it not a good adder design.

42

2500

2000
Ripple Carry Adder

Carry Look Ahead Adder

Carry Skip Adder
1500

0 Carry Select Adder(fixed)

1000

500 I I
8 16 32 64

Fig. 4.5: The comparison of efficiency index between 4 adders

Fig. 4.5 is the comparison of the efficiency indexes of four adders. Based on this

analysis, for an 8 bit adder, the ripple carry adder is the best choice. Carry skip adder is

the best choice for 16 and 32 bit adder. Carry look ahead adder is the best adder for a 64

bit adder design.

43

5. Implementation of Low-Power Prefix Adder

This chapter included the results of simulation programs. First, the carry

generation network of prefix adder designed by Wei, Thompson, and Chen[6] was

analyzed. Then, programs were written to calculate every possible combination of carry

generation network within the prefix adder. With those results, one may evaluate the

power factor of every combination and find out the smallest number of power factor to

achieve the low power design of the prefix adder.

For an 8 bit prefix adder, minimum depth of 3 is needed in the carry generation

network. As the depth of the carry generation network increase, the number of possible

combinations also increase. Those combinations will have different time delay and fan-

out for each internal cell. Because of the change in topology, different power factor of the

carry generation network can be evaluated. Fig. 5.1 shows the 8 bit prefix adder is

designed by Wei, Thompson, and Chen.

Po G. P,G, P,G, P4G4 P,G, P6G6 P,G,

(0,0) (0,1) MI (0,2) (0,3) IIMI (0,4) (0,5) MN (0,6) (0,7)

1 ION 1 i 101 I
(1,0) INN (1,1) IM (1,2) (1,3) (1,4) MI (1,5) MI (1,6) MIN (1,7)

I I I I 14111411111111
(2,0) (2,1) (2,2) (2,3) (2,4) MI (2,5) MI (2,6) 1111 (2,7)

I I I I 111111.11111111
(3,0) (3,1) (3,2) NM (3,3) INII (3,4) MI (3,5) MI (3,6) MN (3,7)

Fig. 5.1: Carry generation network of Wei's 8 bit Prefix adder

44

5.1 Analysis of Wei's Prefix Adder

The prefix adder is the fastest adder in their design family. The problem of the

prefix adder is its complicated carry generation network which consumes a lot of power.

In order to save the power without losing its speed, we need to analyze the switching

probability and fan-out of each internal node. Then, we can compare the power factor

between different combinations. The result shoes the one with lowest power factor is the

low-power prefix adder designed in the thesis.

5.1.1 Probability Analysis

The probability of each cell is calculated by simulation program. The algorithm of

the program is illustrated in Fig. 3.2. Table 5.1 is the probability analysis of P and G for

each corresponding cell of Fig. 5.1. For example, (1/4, 3/8) is the probability of P=1 and

G =1 of the cell (0,0).

Table 5.1: The probability analysis of Wei's 8 bit prefix adder

(1/4, 3/8) (1/2, 1/4) (1/4, 3/8) (1/2, 1/4) (1/4, 3/8) (1/2, 1/4) (1/4, 3/8) (1/2, 1/4)

(1/4, 3/8) (1/8, 7/16) (1/16, 15/32) (1/2,1/4) (1/4, 3/8) (1/2, 1/4) (1/4, 3/8) (1/8,7/16)

(1/4, 3/8) (1/8, 7/16) (1/16, 15/32) (1/2,1/4) (1/4,3/8) (1/8,7/16) (1/16,15/32) (1/32, 31/64)

(1/4, 3/8) (1/8, 7/16) (1/16, 15/32) (1/32, 31/64) (1/64, 63/128) (1/32, 31/64) (1/64, 63/128) (1/128. 127/256)

5.1.2 Fan-out Analysis

The fan-out of each cell inside the carry generation network plays a very

important role. It has a great impact in the power consumption as well as the time delay.

The bigger the fan-out is, the larger the total load capacitance is. Since the black cell and

white cell have different function, it is possible to rearrange the topology to reduce the

45

fan-out. From the analysis of topology, every possible combination will be test to

evaluate its fan-out.

When output cell is black, the fan-out of propagation bit is 2 and the fan-out of

generation bit is 1. When the output cell is white, the propagation and generation fan-out

depend on how many connected black cells on the right of this white cell. In the example

of Fig. 5.2, the propagation and generation bit of cell (1,4) are used by the cells (2,4),

(2,5), (2,6), and (2,7). The fan-out of propagation and generation bit for cell (1,4) is 4.

(0,0) INN (0,1) (0,2) (0,3) MI (0,4) (0,5) MN (0,6) (0,7)

1 1 1 1 1 1

I
(1,0)

I
(1,1)

I
(1,2)

I
(1,3)

I
(1,4)

I
(1,5) lel(1,6) (1,7)

(2,0) (2,1) (2,2) (2,3) (2,4) 5) ((2,7)

(3,0) (3,1) (3,2) MI (3,3) MI (3,4) MI (3,5) MI (3,6) =I (3,7)

Fig. 5.2: An example of 8 bit carry generation network

The fan-out analysis of Wei's 8 bit prefix adder is shown in Table 5.2. The cell

(2,2) have a very big fan-out which is the critical path of this prefix adder. This critical

path is the source of the longer time delay and power consumption. Also, the cell (1,4)

have the fan-out (4,4) for both the propagation and generation bit. It is very important to

reduce the fan-out or distribute the fan-out to other cells.

46

Table 5.2: The fan-out analysis of Wei's 8 bit prefix adder

(3, 3) (2, 1) (2, 1) (1, 1) (1, 1) (I, 1) (2, 2) (2, I)

(1, 1) (1, 1) (1, 1) (1,1) (4,4) (2, 1) (2, 1) (2,1)

(1, I) (1, I) (6, 6) (2,1) (2, 1) (2, 1) (2, 1) (2, 1)

(1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, I)

5.1.3 Power Factor Analysis

Table 5.3 shows the power factor analysis of Wei's 8 bit prefix adder (Fig. 5.1);

the prefix adder consumes much more power than any other adders. It is necessary to

reduce the power consumption by proper arrangement of the black and white cells in the

carry generation network.

Table 5.3: The power factor analysis of Wei's 8 bit prefix adder

Method Power factor

General Addition 17.85698

1 11.1674

Increment by	 2 11.67924

4 11.58037

8 11.43925

1 14.44597

Decrement by	 2 14.84282

4 15.01396

8 13.36601

47

5,2 Low Power Prefix Adder Design

According to our analysis, a simulation program is designed to find out every

possible arrangements of the carry generation network. It also checks the validity of the

result. With these valid combinations, power factor analysis is needed to determine which

one consume less power.

Fig. 5.3 shows the best model of the carry generation network for an 8 bit prefix

adder. Based on our power factor analysis, this design has the lowest amount of power

factor, the design consumes less power than others.

(0,0) (0,1) (0,2) (0,3) (0,4)MI (0,5) (0,6) (0,7)

I I I I I
(1,0) (1,1) (1,2) (1,3) (1,5) (1,6) (1,7)

I I I 1
(2,0) (2,1) (2,2) Mit (2,3) (2,4) (2,5) (2,6)

I I I I I
(3,0) (3,1) (3,2) (3,3) (3,4) MI (3,5) (3,7)

Fig. 5.3: The 8-bit low-power prefix adder design

Table 5.4 is the probability analysis of this low-power design, Table 5.5 is its fan-

out analysis, and Table 5.6 is its power factor analysis. One can remark that has some

improvement compare to Wei's prefix adder design presented in Table 5.3.

48

Table 5.4: The probability analysis of low-power 8 bit prefix adder

(1/2, 1/4)

(1/2, 1/4)

(1/2, 1/4)

(1/2, 1/4)

(1/4, 3/8)

(1/4, 3/8)

(1/4, 3/8)

(1/4, 3/8)

(1/2, 1/4)

(1/8, 7/16)

(1/8, 7/16)

(1/8. 7/16)

(1/2, 1/4)

(1/2,1/4)

(1/16,15/32)

(1/2, 1/4)

(1/4, 3/8)

(1/4, 3/8)

(1/32, 31/64)

(1/4, 3/8)

(1/2, 1/4)

(1/2, 1/4)

(1/2, 1/4)

(1/8, 7/16)

(1/4, 3/8)

(1/4, 3/8)

(1/4, 3/8)

(1/16, 15/32)

(1/2, 1/4)

(1/8,7/16)

(1/8, 7/16)

(1/32, 31/64)

Table 5.5: The fan-out analysis of low-power 8 bit prefix adder

(1 , 1)

(1, 1)

(1, 1)

(I, 1)

(2, 2)

(1, 1)

(I, 1)

(1, 1)

(2, 1)

(3, 3)

(1, 1)

(1, 1)

(1 , 1)

(2,1)

(1,1)

(1, 1)

(1 , 1)

(2, 1)

(4,4)

(1, 1)

(1 , 1)

(1, 1)

(2, 1)

(1, 1)

(2, 2)

(1, 1)

(2, 1)

(1, 1)

(2, I)

(1,1)

(2, 1)

(1, 1)

Table 5.6: The power factor analysis of low-power 8 bit prefix adder

Methods

General Addition

1

Increment by 2

4

8

1

Decrement by 2

4

8

Power factor

16.65601

10.54199

10.40918

10.00293

10.38867

14.27148

14.13867

13.48242

12.35742

49

6. Conclusion and Future Work

6.1 Conclusions

This thesis is the first study that uses software to exhaustedly exercise all input

combinations to find out the probability of every internal node. Using this method, this

thesis introduced two indicators which are the power factor and the efficiency index to

evaluate the power consumption and trade-off of digital circuit. The study includes the

power factor and efficiency index analyses of ripple carry adder, carry look ahead adder,

carry skip adder, carry select adder, and prefix adder.

From the power factor analysis, the ripple carry adder has the best performance in

saving power. The second choice is the carry skip adder. When performing the

"increment by 1" operation, the ripple carry adder is also the best choice for 8, 16, and 32

bit adders. The carry skip adder is the best choice for a 64 bit adder design. When

performing the "decrement by 1" operation, the ripple carry adder is still the best

solution.

According to the efficiency index analysis, ripple carry adder has the lowest

efficiency index for an 8 bit adder design. It is the best choice because its simple and

regular logic structure. Carry skip adder has the lowest efficiency index for 16 and 32 bit

adder designs. The reason why it is the best is because it uses a simple "skip" circuit to

shorten a lot of delay. The carry look ahead adder is the best choice for a 64 bit adder

design. Though its sophisticated circuit consumes a lot of power, its architecture makes it

the fastest design among the 4 adders.

The prefix adder is the fastest adder in its design family. After studying the power

characteristics of the prefix adder, we can design the prefix adder by properly arranging

50

the black and white cells in the carry generation network and making it consume less

power without losing its speed.

The method used to reduce the power consumption of the prefix adder is by

reducing the switching probability on some critical paths. The power consumption is

proportional to the product of the probability and the fan-out. The smaller the power

factor is, the smaller the power it consumes. With the design which is illustrated at the

end of Chapter 5, we can enjoy the high speed without consuming a lot of power.

6.2 Future Works

Future work can be done by expanding the circuit to a more complex level. It may

be expanded to a 16 bit prefix adder or a hybrid adder design. Moreover, we can apply

this power factor and efficiency index to more complicated circuit designs. For example,

different multiplexers designs can use the concept of power factor and efficiency index to

evaluate their power characteristic and trade-off between time and power.

This study only emphasizes the statistical model of the power consumption

analysis. Real circuit layout and SPICE verification can be done in further studies. The

model of power analysis is only shown of the gate level. It would be possible to simulate

the circuit down to the transistor level to get more accurate results.

51

Bibliography

[1] A. P. Chandrakasan, and R. W. Brodersen, "Low Power Digital CMOS Design",

Kluwer Academic Publishers, 1995.

[2] T. Burd, "Low-Power CMOS Library Design Methodology", Master Thesis of UC

Berkeley, 1994.

[3] N. Asher, "Area, Delay and Power characterisitcs of CMOS Adders", Master Thesis

of Penn Stat U., 1996.

[4] J. L. Hennessy, and D. A. Patterson, "Computer Architecture: A Quantitative

Approach", Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[5] R. E. Ladner, and M. J. Fischer, "Parallel Prefix Computation", JACM, Vol. 27, No.

4, pp. 831-838, 1980.

[6] B. W. Y. Wei, C. Thompson, and Y. Chen, "Time-Optimal Design of a CMOS

Adder", Research Paper, UC Berkeley, 1984.

[7] A. Gersho, and R. Gray, "Vector Quantization and Signal Compression, Kluwer

Academic Publishers, 1992.

[8] C. Su, C. Tsui, and A. Despain, "Low-power Architecture Design and Compilation

Techniques for High-Performance Processors", Compcon, pp. 489-498, 1994.

[9] T. Callaway, and E. Swatzlander, Jr., "Optimizing Arithmetic Elements for Signal

Processing", VLSI Signal Processing V, pp. 91-100, IEEE Special Publication, 1992.

52

[10] A. De Gloria, and M. Olivieri, "Statistical Carry Lookahead Adders", IEEE

Transactions on Computers, Vol. 45, No. 2, pp. 340-347, 1996.

[11] D. J. Kinniment, J. D. Garside, and B. Gao, "A Comparison of Power Consumption

in Some CMOS Adder Circuits", Research Paper, Oxford University.

[12] M. A. Cirit, "Estimating Dynamic Power Consumption of CMOS Circuits", ICCAD,

pp. 534-537, 1987.

[13] S. L. Lu, "Average Carry Chain Length", Research Paper, Oregon State University.

