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In 1931 W. A. S8hevhart published his book Economic

Control of
Quality of Manufaotured Product wherein he set forth the basic prine
ciples of control charts for maintaining control of a procese.

(8, p. 301-k22) From that time to the present, although centrol
charts have been widely used, there has been little change in the
design of control chart procedures from those proposed by Shewhart.
The sample sizes used are nearly always four or five and the control
limits are almost without exception set at three standard deviations.
The m’e&m between samples is determined from “experience.”

This standardization of control chart procedures is not entirely
wrong because they do work well in & majority of cases. In addition,
the simplicity geined from & standardized procedure has surely helped
to promote the rapid growth in the number of firms using control
charts. The standardized procedures do not always work mli, hovever,
and modifications are necessary to make the mlm procedure it the
needs of the proceses.

Two rather complete analyses have been made which attempt to
determine the sample size, the location of control limite, and the
frequency of sempling. Dudley J. Cowden (3) presents a method for
evaluating alternate procedures., Acheson Duncan (i) has developed a
technique to caloulate the optimum design. Both use the total cost
of the system as the basic design criteria. The cost is assumed to
be & continuous funetion of the fraction defective which are produced.



This paper presenits a method for determining the sampling pro-
cedures when the cost is treated as a discontinuous function of the
fraction defective. Since the function is not continuous, the basic
eriteria for design is the fraction defective produced rather than the
cost. A method is developed whereby the sampling intervel is deter-
mined when the "standerd” ssmple size and limits are used. The method
is then modified to fit different situations. The mm are pre-
sented in the four partas:

Part JA « with the sample size and the location of the con-

trol limits fixed, the sampling interval is deter.
mined so that the average fraction defective is |
controlled. |

Part IB - the same as IA, except that the maximum fraction

defective is controlled.

Part IIA « with the sempling interval fixed, the economic

combination of the sample size and the location
of the limits are determined to comtrol the
average fraction defective.

Part IIB - the same as IIA, except that the maximum fraction

defective is controlled.

The application of these methods requires that the frequency and
the distribution of the shifts in the process average be known. Since
in practice these must be estimated from the history of the process,
en analysis is included to test the sensitivity of the methods to
error in estimation., The results indicate that the sampling interval
is not greatly influenced so long ae some continuous function ie M.r
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An example spplication of the methods for determining the correct
sampling interval is included to show how theee techniques would be
used in an industrial situation. The sampling interval is derived
such that the average fraction defective is .00l or the maximum
fraction defective 1s .003.



THE TRADITIONAL CONCEPTS OF PROCESS CONTROL

The original function of the control chart technique as pro-
posed by Shevhart (8) in 1951 was to provide a system vhereby assign-
&ble cause changes in a process could be distinguished from the
chance m&aﬂ;ima The procedure is besically & systematic test of
hypothesis about the mean of a process statistic, The hypothesie is
that the mean of the statistic has remained unchanged. If the hypoe
thesis is rejected by a point falling out of the control limits, an
assignable cause change is assumed to have taken place and & search
is instituted to locate the source of the change. Some other indi.
cators are used in practice to indicate an mssignable cause change.
The appearance of trend lines, runs of points on one side of the
average, and groupings of points near but within the control limits
are the more common. We will consider here the use of points beyond
the control limits only. The effeect of this will be to make any
design of the sampling procedure a bit on the "safe" side,

Control charts operating on this prineciple may be applied to
the procese mean, the process variation, the fraction defective, or
the mumber of defects. We shall consider only the X ehart as used
for controlling the process average, In most applications of the X
chart & range chart is used convurrently., There are surely cases
vhere there is mmmﬁéu between the two; however we shall comsider
the X ochart as being independent.

In order to determine the Wz&m for the maintenance of the



control chart, the follovwing perameters must be fixed:
(a) the size of the sample, hereafter demoted by n
(b) the location of the control limite. The limits are
fixed at some nmm of standard deviations of the
emln means. The number of standard Mm*bzm will
be ﬁamm by K.
{e) the time interval between successive mla;, gmm
here by h. |
The sample size is normslly set at four or five. This size is not
doumm by any consideration of the wmnm nyyiwwm, ku%
1s & figure found by experience to work well in most situations.
Juren (6, p. 394) estimates that over 90 per ocent of existing ¥
control charts are mﬁw subgroups of four or fi'm.
m lm&ﬁm of the control limits is aleo traditiomal,
8hewhart proposed the m of three sigms limits and these are gemeral-
ly used in the United States., Accepted practice in ﬁmﬁfmm
is to use probebility limits set so that the probadility of sccepting
the process MM change has occurred ie at a given percentage,
usually .99 or .998 (3, p. 235). In either case, three sigms or
probability limite, the location of the control limits is a customary
procedure rather than a decision based on the particuler application.
The justification for this procedure is that it is extremsly simple
and worke well in the majority of cases.
The frequency of sampling ies not determined dy tradition as
explicitly as are the sample size and control limite, PFractical



guides such as Juren's Quality-Control Handbook give only vague
suggestions as to sampling frequency. A typical comment is:
“Although the problem of the proper sample n‘i:s@
and frequency of sampling has not been completely
solved, solutions of one sort or another have been

worked out in practice.” (5, p. 37T1)

18 T0 THE TRADITIONAL CONCEPTS

Although a great deal has been written about the deficiencies
of the traditionsl ammppﬁs of the X chart for process control, not
many proposals for improvement have been advenced. Dudley W (3)
and Acheson Duncan (i) have each wamm rather complete proposals
for determining the most economic prosedures. Since they both pertain
directly to this investigation & short critique of each follows,

Cowden's Proposals (3)

In Statisticsl Methods in Quality Control Cowden presents &
method for determining the total cost expected from a process controlled
by an X chart. The method used does not determine the sampling pro-
cedure but is a method for evaluating various arbitrarily selected
procedures. Some of his assumptions which are of interest here are:
(2) the process may go out of control at any time, but |
once corrected will remain in control for the
remninder of the day.
(b) the cost of producing defective items is proportional
to the fraction defective produced. The relationship



may be either linear or exponential. No limits ‘
are set on the defectives which will be accepted.

(¢} specirication limits are set at three standard
deviations of the population.

Some of Cowden's findings gained from eveluation of various sampling
schemes are: ,

(a) the frequency of sampling is affected only
moderately by the distridution of the expected
deviations from the desired average.

(b) the optimum location of the control limits was
found to be about 2.5 sigma. Considerable
latitude can be tolerated.

(¢) without exception & sample size between 3 and 6
was found to be best.

Duncan's Proposals (k)

In an article titled “The Hconomic Design of X Charts Used
to Maintain Current Control of a Process,” Duncan presents an
apalytical technique for determining the economic sample sisze,
sampling frequency, and location of limits. Soms of the assumptions
are:
(a) the average number of times that the process goes
out of control per hour is taken to be a point
quantity.
(b) the cost of producing defective unite is & direct
linear function of the fraction defective produced.



(¢} the cost of looking for trouble is independent of
the amount of shift.
(d) when the process goes out of comtrol, it goes out
by a fixed amount. The shift, & , is regarded as
a point quantity.
The method used is to equate the first derivative of the total cost
function to zero, and solve for the sample size, sampling frequency,
and location of eontrol limits. The resulting eguations canmot be
solved directly but approximation technigues are given. Significant
Tindings from application of this method are:
(2) the sample size is determined largely by the
expected shift in the meen ( & ) for:
=2, n
=1, n=28¢to20

2tb

[

6= .05, = = 40 or more |

(b) variations in the loss associated with producing
defective units bas its dominent effect on the
sampling interval, If the loss rate is large, the
interval should be small. The loss rate has little
effect on sample size or location of limite.

(¢) the cost of looking for trouble has its greatest
effect on the location of the limits, Optimum
location of the limits renges from 2.5 to 3.5
etandard deviations.



The basic purpose of the techniques of Duncan and Cowden has
been to find the most economic sampling scheme when no limite are
imposed on the fraction defective vhich may be produced. It is pro-
posed that a more useful oriteria would be to fix the sampling scheme
such that the fraction defeotive were set at a given amount. This
would result in & discontinuous function of the cost with respect to
the fraction defective, The cost relationships are shown in Figure 1,

In the proposed method the cost would be set at zero or at some
small amount 80 long as the fraction defective was at or below a fixed
amoumt, P*, If the frastion defective goes above P', the cost jJumps
to & very high value. Such a system would provide protection for the
producer when the product iz to be subjected to some form of accepte
ance sampling plan by the customer.

In the following sections a method for determining a sampling
plan based on the fraction defective oriteris will be developed and
illustrated. Four cases will be considered, They aret

Part IA « The sample size and location of control limits are fixed
in advance. The sampling interval will be derived to hold
the average fraction defective produced by the process at or
below a given amount.

Part IB -~ The sample size and location of control limits are fixed.
The sampling interval will be derived to hold the maximum
fraction defective produced by the process at or below a

given amount.
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Part IIA - The sampling interval is fixed in advance. The sample
size and location of eontrol limits are derived to fix the
average fraction defective.

Part IIB - The sampling interval is fixed in advance. The sample
size and location of control limits are derived to fix the
maximm fraction defective.



" WHE AVERAGE FRACTION DEFECTIVE

PART IA

Statement of Problem: With n and K fixed, find h such thet
Po<

THE FRACTION DEFECTIVE

4 defective item 1is defined as any item which falls beyond the
specification limits, 8ince there will de mmtim hﬁmmy items
even vhen the process is in control, we are forced to consider not
individual items but the fraction of the items which will be de-
fective under any particular conditions. If we assume that the
distribution of items is normal with constant end lmown standard
&uﬁmim, the fraction defective will be a tmtm of the process
average and the location of the specification limits. |

If the process average is at X, and the specification limits
are designated as USL and 1SL, the fraction defective may be found by
evaluating the normal function between the limits - co to &i, and

ﬁg to +o0 , vwhere zl = mxa:’i and zﬂ - t .o'g’a;;

The fraction defective which will be produced at any value of the
process average 1s easily found by use of normsl tables.

For oomputation it is much easier to express the specification
limits in terms of their distance from the desired average aes
measured in standard deviatioms. ILet:

5}_%-;.5&& M
12
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If the upper and lower specification limits are equidistant from the
desired mean, we obtain
Zy=8-6 and Z, =8 +§
The corresponding values of P are found from the normal tables,

The average fraction defective produced by the process over an
hours time will be the percent defective produced while the process
is "out of control” (P) times the amount of time that the process
remeins “out of control" (T) times the frequemcy of ococurrence of
the "out of comtrol” ¢ondition ( A ). Thus:

F=p%A No. 1
Of these variables, A and P are autam;mé by the process capability.
They may of course be changed by changing the process or the location
of the specification limits. This is not to imply that A or P are
point quantities, they are random variables and may assume various
values within a distribution. T le dependent on the sampling scheme.

TIME "OUT OF CONTROL"

T, the amount of time that the process remsins out of control
may be veried by changes in the sample size (n), the frequency of
sampling, (h), and the number of standerd deviations at which we
set the control limite (K). We find from Cowden (3), p. 288) that

W= ‘.é.%é No. 2
where N is the average number of samples which will be taken before
the control chart shows the prosess as "out of contrel.” /A 1s
defined as the probability of accepting the process on the basis of
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a single sample and X is the probebility of rejecting. < (1- 2)
For sonvenlence let us substitute R for o and (1-R) for @ . If the
control limits are syt at K standard deviations of the sample averages,
R will be the probability that a sample mean lies outside the interval
(-K to + K). From the relationship g, = O/77 we note that if the
mean shifts to SO the shift is equivalent to 8§77 0% . We may
find R by entering the normal tebles at the point
z=X.8Vn
The average amount of time that the process remains out of con-

trol is then
§=*h =%ﬁ-—u‘a h ' h’ﬁ

vhere h is the time interval between samples and R is the probability
of rejection. The variable R will be dependent upon the sample size
and the location of the control limits.

ATION OF THE SAMPLING INTERVAL

Combining equations No. 1 and No. 3,we obtain the average per-
cent defective produced by the process over a long period of time:

P=p 7\%&

Since the oriteria for solution is that P < BY, we substitute B*
for P and solve for h.

h = - -~ . Ro. ‘ﬁ'
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Of the variables in equation No. &, only A, P, and B need be calou-
lated, P! is the desired value of the process fraction defective,
The number of occurrences per hour of "out of comtrol” conditions,
A , is a random varieble and will sseume yarious velues, However,
if ve assume that the control chart is to operate a long time with
respect to A , then we may use the expected value of A in our caleu-
lations.

The variables P and R are both greatly influenced by the varia-
tions in the process mean. R is also affected by the semple size
and the location of the control limits, Because of this dependence
the proposed method of calculation uses an average value of the term

P 42-8) | veighted to correspond to the expected distribution of & .

m DISTRIBUT

[0 OF &

Before any calculations can be made to design the sampling pro-
cedure some information must be available regarding the distribution
of shifte in the process and the frequency of occurrence of the
shifts,

For most operations there will be a large number of different
things which may cause a shift. Tool wear, set-up error, equipment
failure, and variations in raw material are a few of the more common.
If the shifts can result from any of a number of independent and
randomly distriduted csuses, the central limit theorem vould indi-
cate that the distribution of & would be approximately normal,

In addition to the distribution of & , information is aleo
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necessary on the frequency of the shifts. No such handy assumptions
can be made concerning A ; the values used must be based on observae
tion of the process, Bince data gathered to determinme the frequency
of deviations must fit the distribution of & , the assumption of
normality does not appear to be reasoneble, It ies not reasonable
because the small deviations, which comprise the bulk of ocourrences
in the normal distribution, would simply not be discovered. By way
of explanation, let us exemine how A and & might be determined in
practice.

The most convenlent source of data would be past records of
control charts, if such exist. Fach time that the charte shoved an
“out of control" condition would be recorded as one ocourrence, and
the amount of the deviation would be plotted to form a frequency
histogram. 8ince & control chart iz normelly & very weak tool for
detecting small changes in the process, the small &nmtam eimply
would not show on the records even if they 414 occur, It would de
too likely that another deviation would cccur, s large one, which
would throw the chart out of control before the small deviation was
ever detected. 8ince only those deviations which are observed can
serve as data for the determinmation of A the assumption of & normal
distribution appears inadvisable.

Rather than make any assumptions regarding the distribution of

6 , it is suggested that the distribution be derived empirically.
Schlaifer (7, p. 109) states:
"Basically, the problem is one to be decided by
Judgement, and Judgement must be based more om a
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general understanding of the real phenomena under
study than on statistical theory.”
Schlaifer also sm,utu the following eteps in smoothing the histori.
cal frequency distribution. (7, p. 108) |
1. Fit by eye & smooth curve which has the right general
shape. _
2, Adjust the curve so that the probabilities will add

to one.

In order to solve equation No. & to find the sampling interval
the following information must be obtained.

(a) n, the sample size

(b) K, the location of the control limits

(e) P', the desired average percent defective

(4) the probability aistridution of &

(e) 7\, the frequency of occurrence of shifts

(f) the losation of the specification limite

(8) X*, the population mean

(r) O, the population standerd deviation
The procedure for solution is best shown by illustration.

Example Calculation

Assume the following informetion:



(&) n = & () X = 3
() 1=, (@ A=.
(e) 8 =3 (£) = o
(&) O'= 1

(1) The distridution of & is triangular, with mean O and
variance 1. The range of & is then from - V6 to +1/6
For caleulation purposes, the probability fumction of S is divided
into intervals and treated as a discrete function. In this example
the function has been divided into 25 intervals. Since the function
is symmetrical, the probabilitiee are doubled and only one side of the
distribution is used. If greater acouracy is desired the distridution
can be divided into a greater number of intervals. ;
The calculations required to evaluate the weighted average of
the term P 42B) are shown in Table 1.

From Table 1, P 32-B) - o 3ou0)

) - 01 = 3 ,
m; h —m;_.ﬁ@mﬁ

or approximetely one sample every 20 minutes.



9 to 1.1
1.1 to 1.3
1.3 to 1.5
1.5 to 1.7

1.7 to 1.9

1.9 to 2.1

2.3 to V6

1.0
1.2
1.h
1.6
1.8
2.0
2.2
2.4

z

04336
03004
01676
00340

1.0000

2.6
2.2
1.8
1.4
1.0
0.6
0.2
-0.2
-0.6
«1.0
~1.h
-1.8

- W

22
370
2

0.5

27.4

11.9
5.8
3.14
1.88
1.21

875

690

587

531

&



DETERMINATION OF THE SAMPLING INTERVAL p—
m MAXIMUM FRACTION DEFECTIVE

PART IB

Statement of Problem: With n and K fixed; find h such that

PP

In part IA an expression was derived which would determine the
sampling interval such that the average fraction defective would be
controlled. The expression can be converted so that the maximum
fraction defective is controlled. This is dome by replacing the
term for the aversge number of periods before a shift is detected by
the maximum number.

MUM TIME "OUT OF CONTROL®

If the probability of rejecting & process on the basis of any
one sample iz given as R, the probability of accepting it will be
(1.R). 1et Q@ = (1-R). If the probability of the process being
accepted at the first sample after a shift is Q, the probability of
acceptance of both the Pirst and the second is Q°, the first, second
and third is @, etc. The probability of the shift going undetected
for h samples would be Q.

Since there is a finite though smell probability that the shift
will never be detected we canmot say with certainty what the maximum
number of sampling periods will be. We can, however, state the
probability that the shift will not be detected by the h'® semple.
lIet this probability be designated as € , Then:

€ =g

20
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and h:«%%%- No. 5

We can say with a confidence of (1 - €) that h will be the maxi.
mum number of sampling periods before the shift is detected,
Substituting No. 5 into egquation No. 4, we obtain

A

b = -

or h = B! log (1.R ¥o. 6
og €

Example Qaleculation

¥or comparison assume the same information as used in example
IA, 1In additiom, let € =,10. The calculations for computing the
weighted average of the term {1-R) are shown in Table 2.

¥rom Table 2, ml*ﬂ - .§'7352

end,

h = .251 hours
or approximately one sample every 15 minutes.



mfn
Interval
=1l to .1
1 to 3
5 to 5
5 to .7
<7 to .9
«9 to 1.1
1.1 to 1.3
1.3 to 1.5
1.5 to 1.7
1.7 to 1.9
1.9 to 2.1
2.1 to 2.3

2.3 to V6

Mig-
Point

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.k

R

TABLE 2
SAMPLE CALCULATIONS OF In (1.R

(1-R)

<9970

99534

98610
96410
-91920
84130
~T2570

In{1-R)

-.0030
.0050
L0141
.0366

In{1-R)W

-.0890
-.2310
-.3850
-+5500
-.6680
- 7330
- Th50
-.6970
-.6100
- 4870
3480
«+1950
-.0h12
2 -5.182



TERMINATION OF THE SAMPLE SIZE ARD LOCATIOR OF
amm, LIMITS 7O CONTROL THE AVERAGE FRACTION DEFECTIVE

PART IIA

Statement of Problem: With h fixed, determine the most economic n

and K such that F < B,

In Parte IA snd IB the sampling procedurs wes developed dy fixing
n and K and determining the sampling interval. Such a prosedure would
be appropriate for situamtions vhere the charts were maintained by
operating persomnel. By using “standard” wvalues of n and K the simpli.
city of the control chart is preserved.

If the sampling and the maintenance of the charts is to be done
by non-opsreting personnel it may be more desirable to fix the samp-
ling intervel and derive n and XK. This would be particulerly ap-
propriate vhere the sampling vas done by a roving inspector and the
interval was fixed by the time required for him to make his rounds,

Examination of equation Wo. L showe that the only term affected
by n and K is the probebility of rejecting the process. Solving
equation Wo. & for R, we obtain:

Sim!inéap«n&mhm 6 , ve must again use a weighted average for
P according to the distribution of & . The value of R obtained in
this manner is taken to be the required probability of rejection when
the process has shifted to the average value of & .

8ince the control chart is a two-sided test of hypothesis

e3



2k
regarding the mean with known stendard deviation, we may use the follow-
ing expression for finding n or K.

or : 2
n €§+xﬁ) No. 8

"3t
For application of equation No. 8 we use the mean deviation of § and
obtain K. from tables of the mormal curve from the relationship

-Kg | +00
R = [fxdx + [ Flx)dx
~C0 +KR

For most & , one or the other of the terms will be megligible, so
only one need be evaluated., When using the normal tables to find Eﬁ
care must be taken to select the correct sign. If R is less then
0.50, KB will be negative.

Evaluation of equation No. 8 requires that a value of n or K be
assumed, Since there are infinite combinations of n and K whish will
satisfy the requirements, the economics of the situation must be cone
sldered to determine vhish combination is best.

The costs of having 2 control chart which are influenced by n
or K are:
(a) the cost of looking for trouble when none exists.
Jet this cost be C;. The probability of this



happening is dependent om K, let oL be the
probability of looking for trouble when none exists.
(b) the cost of taking and plotting one observation.

let this cost be e@. |

The cost per sample will dbe
¢ = Otﬁl + nﬁﬂ o. 9

Bince wve are interested in the least total cost, equating the firast
derivative of equation No. 9 to zero and solving for n and K mla
appear to be the appropriate method, However, the resulting ex.
pression must be solved by enumeration, so enmumeration of the origie
nal function appears to be the easiest vmthad,

Since n must be an integer, enumeration is best done by assuming
values of n and solving for K and the total cost. ZEgquation ﬁa, 8 is
converted tot |

K =6Ya K | Fo. 10
That combination of n and K vhich results in the least total cost is
~ taken to be the optimum design of the sampling procedure when the
interval is fixed at h,

Example Oaloulations

To illustrate the caleulations required to determine R and xx,
assume the following information:

(‘) 5' = .01 (d) —71 = 10
() 8 = 3 (e) X* = 0
() O = 1 (£) = .3 hours
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(g) the distribution of & is trisngular,

with mean O and variance 1.
The caleulations required to determine R and n are shown in Table 3,
From Table 3, the weighted average of P is .0351768. Then

R

0913
From the normal tables, IE = «1.33

In order to determine the least coet am%imtim of n and K,
agsume:

¢, = $20

¢, = $.10
The semple caloulations are shown in Table k. The minimum cost
occurs at o = 5 and K = 2,74,



l'!fém Weight P W SW
Point
¢ 0
2 0300
X -05h7
6 .001010 L0740
-8 -001520 0877
1.0 .002200 .0966
1.2
1.k
1.6
1.8
2.0
2.2 .01676 2119




O O M F W N B

B &

n(6)

82
1.15
1.4
1.63
1.82
2.00
2.31
2.58
2.73
3.05

SAMPLE CALCULATIONS OF n AND K

o) -]
2.15
2.48
2.7h
2.96
3.15
3.33
3.6
3.91
k.06
4.38

TABLE b

0010
<0001
00006

" 00001

%106

Ji32

.262

122
062

.10
.20
30
40
.50
.60
.80

1.00

1.20

1.h0

-332
62

62
538
610
.806
1.002
1.2012
1.4002

ge



DETERMINATION OF THE SAMPLE SIZE AND LOCATION OF
THE CONTROL LIMITS TO CONTROL THE MAXIMUM FRACTION DEFECTIVE

PART IIB

Statement of Problem: With h fixed, determine the most ecomomic n

and K such that P < P!

The procedures developed in Part IIA for controlling the average
fraction defective may be used with slight modification. In order to
use maximum fraction defective as a criteria, we need only substitute
the expression for maximum time before process rejection in place of
the average time. The expression for maximum fractiom defective

becomes

golving for log (1-R)

log (1-R) = hAP %;C._). No. 11

The methods for solution are similar to those used in Part IIA.
Weighted averages are used rwrmnmaranrwrmamza.
The economic combination of n and K is found by enumeration.

Example Caloulations

To illustrate the calculations regquired to determine R and ER,.
assume the following information:

() P = .01 (a) A =.10

(v) 8 = 3 (e) X+ = o
(e) O = 1 (f) b =.25 hours
(¢) € = .10
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() The distribution of & is triengular, with
mean O and variance 1.

The caloulations for P and n are the seme as for Part IIA and are
shown in Table 3.

m(1-R) _ (.25)
= «,183

18 = 833
R = ,b167

From the normal tables, Ky = =097
Caleulations for the minimum cost combination of n and K are shown in
Table 5. The minimum cost occurs at n= 14 and X=2.60,
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82
1.15
1.4
1.63
1.8
2.00
2.31
2,58
2.73

2.79
2.97
3.28
3.55
370
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.30
R
50
.60
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1.00
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In the development of the procedures for determining & sempling
scheme & basic assumption was made that all relevant data could be
accurately obtained, The assumption is necessary from an scadenic
point of view but ie not practical for an industrial application of
the procedures, The cost would be prohiditive in meny ceses, Before
attempting to apply these procedures we should first determine their
sensitivity to error in the data.

We will oonsider only the procedure for determining the sampling
interval as developed in Part IA. Bince the other procedures are
s!n;aiar modifications or reversals of procedure IA, the same arguments
should apply to them all,

Examination of equation No. 4 shows that the parameters which
may cause difficulty ave P!, the desired average percent defective;
O’ , the population standard deviation; /\, the frequemey of "out
of eontrol”, and the distribution of & ,

Since h is linear with respest to ' and A , any error in these
parameters will be reflected in the same magnitude by h. The value of
P* to be used must be chosen to it the actual requirements of the pro-
auet. If P 18 set at .0OL to be conservative when a value of .01
would be acceptable, the sampling frequency and the cost of maintaining
control will be inoreased tenfold. The cost of sampling and the
importance of maintaining the desired percent defective must de

carefully considered. 32
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It should also be pointed out that a control chart camnot maintain
the fraction defective at & point below the process capabilitiea., If
the process variation and the location of the specification limits is
such that P percent defective are produced even when the process is in
control, the average percent defective cannot be lower than P no matter
how small the sempling interval. mwmmmmmw in the
development of equation No, 4 was that the percent defective produced
was virtually zero until the process went "out of control" by some
amount O ., Defective items were then produced until the condition
wvas signalled by the control chart, If the specification limits are
such that the percent defective produced when the procese has not
shifted 1s not muh less than F* the assumption is not valid and
equation No. b cannot be used,

The percent defective W'm& at any given process average is
actpméwt on the population standard deviatiom and will be influenced
by error in the measurement of sigma. The relationship is not linesr
but ie a funetion of the area under the normal ewrve. Calculations
of the sampling interval are quite semsitive to O, However if a
sufficient history of the process is available the standard deviation
can be guite adequately determined and should cause no difficulty in
the application of the procedures.

In Part IA the suggested method for application of eguation No, &
vas to use an average welghted to correspond to the expected distri.
bution of & . In order to test the sensitivity of the sampling
interval to the distribution of O , sample caloculations were made
for normal, triangular, rectangular, and point dietributioms. ¥or
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comparison, all distributions have a mean of zero and & standard
deviation of one. The test dlstributione ere shown in Figure 2.,
Tolerance limits were set at 2.5, 3.0, 3.5, and 4.0 standerd devis-
tions, ‘Mwhmi@m&mam in the tolerance limits or
as changes in the standard deviation. Similar saloulations were made
of K = 2,5 and K = 3.0, Tightening the control limits mekes the con-
trol chert e more powerful test and hence lengthens the sampling in-
terval, Incressing the sample size would have the seme effect, The
-results of these caloculations are shown in Tables 6 and 7.

fxamination of Tables 6 and 7 shows that the mormal, triangular,
and rectangular distributions yield sssentially the same results. This
is perhaps to be expected since they all yield & nmormasl distridution
of the semple averages. The point distridution gives a sampling ine
terval vhich is significantly greater than the others.

This may be explained by noting what happens at the ¢center and
extreme points of the distributions. When & small shift in the process
meen occurs & rather emall fraction defesctive is prodused. Although
the amount is small, the number of sampling periods which elapse before
the shift is detected is very large. In the point distridution these
shifts do not ocour.

At the extreme points of the distributions the opposite oceurs.

At values of S = 2,5 or &= 3.0 the fraction defective becomes quite
large. Although the control chart detects the shift very quickly the
result is still & shortening of the sampling interval to protect
sgeinst these infrequent cccurrences,
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Both of these arguments sgainst the assumption of a point dietri-
bution diminish as the tolerance limits become further from the. mean,
This is shown in Tables 6 and 7 in that the difference in the sampling
interval between the point distribution and the others is much less
proncunced when the tolerance limits are at four standard deviations.
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SAMPLING INTERVALS FOR vmm%m‘ NS AND TOLERANCE LIMITS
' a=h, K=3
_Distribution g'é - -
Normal | 072 .301 1.4k 10,6
Triangular 035 .308 1.46 0.0
Pestanguler 121 +360 1.69 10,2
Point 258 760 2.78 12.8

TABLE 7

SAMPLING INTERVALS FOR VARIOUS DISTRIBUPIONS AN

!i=k, x=@05

8
Distribution | s il 22 o
Normal | 256 <95 3.96 20.3
Triangular .268 .96 b.13 22.2
Rec tangular 300 1,08 k.50 25.0

Point «350 1.61 5.80 27.0



EXAMPLE APPLICATION

In order to further illustrate the use of the techniques developed
in the previous sections a step-by-step exemple follows., Historical
data were obtained on a heat-treating gmaima for emall steel parts.
This process was selected because a rather Z!.aag history in the form of
X and B charts vas availsble. In order to preserve the confidential
nature of these data, the company will be designated as the ABC
company. ._

Although a number of different parts are treated in the process,
most of them are about 1/8 by 1/2 by 1 inches, The perts are carried
in a continuous flow through a furnace and are then quenched to harden
them. The parts are tempered in a salt bath to the desired hardness,
which is controlled by adjusting the temperature of the salt bath.
Since the temperatures cannot be changed rapidly, sbout twenty minutes
are required for an adjustment to have any effect.

This process has been controlled by £ and R charts for some time
and had achleved a good state of statistical control Maw any data
were taken for this atw. The present system uses Mw of five
taken at half-hour intervels. The control limite sre set at three
standard deviations of the sample averages., The operating personnel
have accepted the control chart procedures and are able to interpret
the resulte, It is felt that any change in the sample size or the
location of the control limits would cause considersble confusion and
would not be worthwhile. The sampling interval can be changed without
much difficulty.

The procedures developed in Parts IA and IB will be applied to
38
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this example to determine the sampling interval necessary to achieve an
average fraction Mfaaﬁiw of .001 or & maximum fraction defective of
.003. |

THE COLLECTION OF NECESSAR

DATA

Bince the present smml charts are operated on the basis of
three standerd deviation limits and samples of five, these will be
retained. The epecification limite for this product are set at 49 and
52 Rockwell C. The desired average is 50.5. In order to i»am:zz Pro-
cedures IA and IB, the process standard &wmﬁzm, the frequency of
shifts, and the distridution of shiftes must be determined from the
hueéry of the process. For this application, the data were taken
from control charts covering & period of 575 houre, or 1,150 samples.

The Standard Deviation

The most preferable method of determining the standard deviation
would be to compute it from a large number of cbservations by the
relationship |

O"z Z(X'/\?)z
N-/

In this application the standerd deviation wae calculated from
the control limits. From the relationship

O" = W(UCL-Y)
K



= L3753

Figure 3 showe the relationship of the process average, the con-
trol limits, and the specification limits.

The Dietridbution of Shifts

In order to determine the distribution of the shifts in the proe
cess mean the control charts vere examined for out of control wmﬁu.
The process operated in a steady state only so long as the type of
part or the material remained the seme, When these were changsd, the
charts often showed out of control conditions until the temperature
could be adjusted sufficiently., Points falling out of control immedi-
ately after a material chenge were not counted, After control had
been achieved, an occurrence of a shift was recorded whemever the
chart again went out of the limits. smasaiim pointe beyond the
limite were counted ae one mmﬁs& unless notes on the chart indi.
cated that the process had beem adjusted between the samples.

These data were then grouped and p:wem‘ to form the frequency
histogram shown in Figure 4. The histogram appears to be the two tails
from an approximately normal distribution. If the sample vere suf-
ficiently large, ome could use the ectual frequencies as the veights
for the computation of the sampling interval, Since this sauple e
rather small, a smoothed distribution is used.

Before drawing the smoothed distribution one must first consider
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k9.6 2,51
k9.7 2,14
k9.8 -1.88
49.9 ~1.61
50.0 «1,3%
50.1 ~1.07
50.2 - 85
50.3 - JSh
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the process and the source of the data. The nature of the heat
treating process is such that emall shifts in the mean are more likely
than the large ones. Only large shifts appear on the histogram be«
cause of the manner of collecting data. Also, many of the smaller
shifts will not show because the process was corrected before any
points fell beyond the control limite. Shifts, runs, ‘mﬁ groups of
points near the control limits sre used in addition to points beyond
the control limits as a basis for adjusting the process. In viev of
these arguments the curve is extrapolated toward the center. The
extrapolation extends to a distance of §.5 standard deviations from
the specification limits. To extend m extrapolation further would
make little difference as the fraction defective produced by the
emaller shifts is negligidle. Such exﬁayahtim is riaw business
at best, and should mt be used unless better data are not available,
Even s0, the murw; of m results is smly mlmé and should
be interpreted accordingly.

The frequemey of shifts is vead m the smamé frnqm,v dis~
tridution of Figure 4. The shifts are converted to & by dividing the
shift by O’ » &nd the frequencies are converted to probabilities by
dividing by the total frequency. This is shown in Table 8.

The Frequency of Shifte

The frequency of shifts in the process meen is caloulated from
the smoothed frequenmcy distribution by dividing the total frequency
of shifte by the total hours of record, Thus:

7=%=.ﬁﬁé



Pt =,001

In order to solve equation No. 4 for the sampling interval, ve

mist first find the veighted average for the term P %‘%? . The

calculations are shown in Table 9. The computational steps are:

1.
2.

3.

i,

5.

6.

List the values of & as computed in Table 8,
Caloulate (8 « & ). S is found by the relationship

ecification - X
Sl

In this application the specification limits are
equidistant from the mean so 5 is the same for both
upper and lower specification limits. The quantity |
(8 « &) represents the distance, measured in standard
deviations, from the process mean to the specification
1imit vhen the mean has shifted to & .

The value P is found by entering the normal tables at
the point (8 - 6 ), P is the area under the normal
curve which lies beyond (8 - O ) standard deviations.
Galoulate | VP | . This quantity is the amount
of the shift as measured in standard deviations of the
sample average.

Caleulate K - |§7/71 | . For this exauple K =3. This
quantity represents the distance from the shifted mean
to the control limits, measured in standard deviations
of the sample average.

Find R, the probability of rejection. This is done
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by entering the normal tables at the point K - |§ VA |.
Care must be taken in reading R from the tables. Since
the tables are not arranged in & standard form no
general rule can be given. However, if K -| & VA |1e
negative, R will be greater then .50, and vice versa.
7. Caloulate %'. . % » the average number of periods
before the shift is detected. For conveniemce, this
is denoted here by .
8., List the weights, or probabilities, of the oceurrence
of &, The values shown ave as caleulated in Table 9.
9. Compute the produet ‘?ﬁw. ;
10. Sum the term PV for all values of & to obtain the
weighted aversge. :
From Table 9, the weighted average of PN is .006501. The
sampling interval necessary to maintain en average fraction defective
of .00 or lese is then

or 17.2 minutes



TABLE 9 g

6 s-1s8l oAl 3.8% R £%
*ﬁJ‘l l-él 1@3? §05 "'ﬂ 05 L - w -gl
Sk

<2.3% 1.8 .0301 4.8 .1.8 .96k

-1.88 2.0k .062 k.2 .1.2 8849 .63
-1.61 2.1 .00798 3.6 - .6 .7257 .88
~1.3% 2,68 ,00368 3.0 0 .50 1.50
«1.07 2.95 .,00159 2.k 6 L2783 3.15

- .85 3.7 1.9 1.1 .1357 8.88
- S5k 348 1.2 1.8 .03%9 27.30
Sk 3.8 1.2 1.8 0359 27.30
8 3.7 1.9 1.1 .1357 8.8

1,07 2.95 .00159 2.k & .27h3 3.15
1.3k 2,68 .,00368 3.0 0 .50 1,50
1.61 2.k 3.6 - .6 .7275 .88
1.88 2,14 b2 1.2 8849 .63
2.1k 1.8 .0300 k8 .1.8 .96k1 .5
2.h1 161 L0537 5.5 2.5 ,993 51
2,68 1.3% .,0901 6.0 3.0 .9987 .50
2.95 1.07 .k23 6.6 3.6 .9998 .50




In order to solve equation No. 6 for the mlms interval

necessary to umtam the maximum fraction ’atfwtiw im &&5 or mn,
ve must first £ind the wzgh%aé average of the m Qé}._).
calculations required are shown in *mu 10, viuah emnm to the
following steps:

1.
2.

o

7.
3.

List the values of O as computed mmas.

List the values of R for each value of S , The
methode for determining R are mmucmm
Table 9. |

Compute the gquantity (1-R).

Find the value In{1-R). Natural :imritm hmn :

been used here for convenience. The m' ef the
logarithm is not important so .'ng as :u is am&amﬁ.
List the probability of each value of & from Table 8.
m%mmar»twmmwnaanmw 6
The values shown in Table 10 were mramam ‘
Table 9. The methode of @mahu&m m the m,
Compute the product In(1-R) W/P.

Sum the term In(1-R) W/P to obtain the weighted average.

From Table 10, In(1.R)/P = .184.632, Before using egquation No. 6
to find the sampling interval we must firet select a level of con-

fidence,

or l%l

If we set € =.10, then the level of confidence is 1. €
We would thus be about 90% confident that the fraction

defective would not exceed .003. Ietting € = .10, we find h as:
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According to this model then, the long term maximum fraction
defective from this process should not exceed .003 if samples are
taken approximately every thirty minutes. Adequate data are not
available as to the fraction defestive actually produced by this
process. However, estimates made from spot checks are that the average
fraction defective is between ,001 and .002 and that the meximum
fraction defective is seldom above ,003,

Although the results of this example appear to agree well with
the actual performence of the process, this should not be taken as an
adequate test of these procedures. The example is given primarily as
an illustration, not as a test.
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SUMMARY

This paper has presented & method for determining the sampling
interval for X control charts on the basis of the desired frastion
defective produced by & process. Although "standard” values for the
sample size and the location of the control limite ave available and
are widely used in industry, no standards are available for the
sampling interval, The interval must be determined from experience.

The sampling interval is derived from the process frection de-
feetive by first writing an expression for the fraction defsotive
vhich will result from any sampling interval and then solving this
expression for the appropriate interval. The fraction defective is
found to be a function of:

n, the sample size

K, the location of the control limits

h, the sampling interval

b, the distribution of shifts in the process average

A the average frequensy of shifts in the process
average

R, the probebility of a point showing out of control
vhen the process has shifted to &

P, the fraotion defective produced when the process
has shifted to &

The average fraction defective (P) produced by the process over

& long period is
- Ap %ﬁ.

51
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If Pt s the desived fraction defective, this expression is solved
for the sampling interval required to make F = B¢,

*t
B

AP (2.8

Bince the values of P and R ave dependent on the distridution of the
shifte in the process average, the expression for h must be weighted
to correspond to the expected distribution of O

The above expression for the sampling interval can be adjusted
80 that the maximum rather than the average fraction defective is used
as the design criteria. It can also be reversed so that the sample
size and the location of the control limits are derived when the
sampling interval is fixed.

4An analysis of the sensitivity of the sampling interval to the
distribution of & ia inoluded. The results indicate that the ghape
of the distribution is not critical so long as it is & continuous
function. Treating & as a point quantity rather then as & random
variable does not appear Justified,

In order to more fully 1llustrate the use of these methods for
determining sampling intervals en example application is presented,
Although the sampling interval and fraction defective predicted by
the example caloulations agree well with the actual performance of
the process, this example should mot be considered an adequate test of
these methods,



Before the teschniques developed in this paper ave &g;px‘ig& to

industrial situations the following should be considered:

L.

2,

3

b,

5.

The effects of the variance of the distribution of &

Although the sampling interval does not appear to be too
sensitive to the shape of the distribution, errors in deter-
mining the variance of & may impose limits on the use of
these methods. |

Limits on attainable values of P' or B!

As was pointed out in the discussion, m control chart camnot
maintain a fraction defective which is below the process
capability. Before applying these methods to any situation
vhere the desired fraction defective is clome to the process
capability en analysis should be made to determine what limits
must be imposed on P' or B,

The effects of treating the frequemcy of shifts as & point

quantity rather than as & random veriable

Limits on the values of A

Derivation of the methods aseumed that the freguenmsy of
shif'te vas small with reepect to the amung interval, Just
how small 1t must be should be determined.

Emperical testing

Before these methods sre used vaere the results might be
eritical, they should be thoroughly tested in industrisl

situations, DBecause of the historical data mﬁm and the
55



subsequent auditing of actual fraction defective such
tests will necessarily cover a rather long time spen.
They are, however, essential,
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APPENDIX.



Basic Parsmeters

n =

-

po]
'

the eize of a sample taken for sai chart

the number of stendard deviations of the sample averages
at which the limite are set

the frequency of sampling, expressed in hours between
samples

the desired maximum percent defective from the system
the desired average percent defective from the system
the percent defective produced at any ‘given amt;sm
from the process average

the amount of the shift in the process average, measured
in standard deviatione

- &=

Xt
O.l

8=

the average frequency with which m'w&at mean shifts
from ', measured in ocourrences per hour

the probability of detecting a shift in the process mean
on any one sample

the probability of & point showing out of comtrol when
the mean has not shifted

the level of confildence used when predicting the meximum
aumber of intervals vhich may elapse before a sghift is
dotected

the cost of looking for trouble vhen none exists
56
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C, = the cost of teking and charting one observation
§ - the average number of periods which will elapse before a
shift in X 1 detected
the average number of hours before & shift in X is

i
1

detected
the average of a sample
X* - the desired process average

t b
|

’

O - the standard deviation of the individuals
UBL - the upper specification limit
I8L - the lower specification limit
UCL - the upper control limit
ICL - the lower control limit
& - the shift in the mean of the process as measured in
standard deviations of the population. If a process
shifts to X from X', then

5. X-Xt
O-I

1]
]

the average percent defective from the system



