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Chapter 1 – Introduction

Executable Semantics for PLEXIL:

Simulating a Task-Scheduling Language in Haskell

Starting in 2007, a collaboration between members of the Mechanical Engi-

neering and Computer Science departments at Oregon State University performed

an exploratory study of hardware/software systems [26]. The goal was to see why

errors occur during the process of system redesign and how to prevent such er-

rors. The study produced theoretical results for a model that allows description

of designs, manipulation of attributes, and documentation of decisions, which are

summarized in Section 1.1.

While the model was in place for tracking design decisions, finding an appro-

priate real-world application to test this model proved to be a difficult task. The

project needed to include hardware and software design components that were still

in the initial design phase. Searching led to the collaborative projects of NASA’s

PLEXIL and Universal Executive software system and the automated K10 rovers,

described in Section 1.2.

This thesis explores the design of the PLEXIL language and Universal Exec-

utive semantics. It discusses the necessary components for developing a PLEXIL

program and accurately executing such a program on an external system. It also

provides language support for defining the surrounding hardware system. We will

use this language to design a simulator of hardware interactions with the external
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world, improving upon NASA’s script-based simulations with more dynamic run-

time behaviors. With this design, we can provide an accessible testbed with which

to test the effectiveness of the theories of design decisions.

1.1 Theory of Design Decisions

During the study of hardware/software design documentation, the research team

developed a cursory language for describing and recording design decisions [26].

This language provides a way to model objects, which can be a combination of

physical devices or software code, and tracking decisions made while developing

the object model.

Object descriptions can be created with the following definitions.

O ::= {A1 . . . An}

A ::= i : {V1 . . . Vm}

V ::= v | O

Any object O can have a set of attributes. The division into attributes is known

as object or structure branching. Each attribute, A, has an identifier and a set of

possible values V , referred to as choices. Each value V can be a final value or

another subobject. This gives us a tree-like structure for defining a system as a

set of subcomponents.
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As an example, imagine a shovel. It consists of a blade and a handle. The

blade could be made of metal or plastic. The handle can be wood or metal, and it

may have grips or not. We can formulate this idea with the object model in the

following way.

shovel_obj = {"handle" : handle_obj ; "blade" : blade_obj}

handle_obj = {"material" : Wood, Metal ; "has grips" : Yes, No}

blade_obj = {"material" : Metal, plastic_obj}

plastic_obj = {"color" : Black, Red}

This quick example demonstrates how we can model a design using a top-

down approach. We can naturally divide the entire object in its parts and add

new attributes as necessary. However, this model alone is not enough to store all

information we want about our design.

Consider the case where we want to track the total weight of the shovel design,

since heavy shovels are harder to use. Weight is a feature that pertains to multiple

attributes of the object, and the current tree structure does not include an clear

way to store these cross-cutting constraints.

The model proposes an additional rule-based system for formulating more com-

plex constraints. A rule has two parts. First, a rule needs to know whether a given

object tree exhibits a certain property. If so, it needs to know an action to take

to correct the issue. Designers can use rules to apply a much more general set of

design constraints regardless of the tree structure.

With this model, we can define a decision as a transformation that restricts the

choices of an attribute. The effect of a decision is noted by the specific removal of

some portion of the object tree.
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In the basic case, we would use this language to create a design tree, and then

apply decisions until we produce a tree with only one value per attribute. This

works fine for initial design implementation, but we would like to extend this design

to allow for design reuse.

We assume that “most design is done by ‘redesign’ [26],” where design objects

are usually constructed by modifying similar objects. In the process of modifica-

tion, designers are possibly undoing previous decisions. With the shovel, it may

be simple to see what effects may occur by modifying previous decisions, but it

may not be so clear in more complex examples.

For the purpose of design reuse, annotations can be attached to a decision.

Annotations describe why a decision was made. They should persist with the

object tree as long as the associated decision is applied.

By adding annotations to decisions, designers have a way to add extra notes

about their decisions. Should another user later try to undo a decision, he or

she can see a log of potential issues that could arise. For instance, in the shovel

example, we could add the annotation “Using wood handle to prevent exceeding

the weight restriction.” Later on, if a user tries to change the handle material, the

system could present a warning message about breaking the weight restriction.

Forcing users to add their own annotations to decisions may lead to poor docu-

mentation, either from forcing comments on trivial changes or from lack of under-

standing of the situation. Finding the right level of interaction is left as an open

issue.

The research of design decisions seemed to work well on toy applications, such
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as the shovel example. However, it is important to check the model’s effective-

ness on larger scale systems. PLEXIL and K10 rovers were upcoming projects in

development at NASA, which makes as an ideal testing ground for tracking is-

sues between hardware and software designs through their design and integration

phases.

1.2 PLEXIL and the K10 Rover

Plan Execution Interchange Language (PLEXIL) is a task scheduling language

in development at NASA. It boasts a small set of syntax rules, yet it can be

expressive enough to design complicated control structures [23]. The execution

of a PLEXIL plan is operationally deterministic, meaning that the state of the

executing program at any point in time can be determined assuming we know how

the external world is affected by the running program.

PLEXIL comes with a lightweight interpreter, the Universal Executive [24]. As

an interpreted language, PLEXIL does not need to be compiled to a binary file,

which allows users to alter PLEXIL plans during execution.

PLEXIL has a variety of upcoming uses, including the K10 automated rovers,

the International Space Station power system, and the DAME arctic drill [21]. We

will examine the K10 rovers to guide our design since they have multiple years of

concurrent development with PLEXIL [25].

K10 rovers are a line of rovers, designed for cost efficiency and maintainability

[3]. They are generally equipped with four wheels, GPS units, digital compass,
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stereo cameras, and more.

The K10 rovers are designed to be fully automated, with the purpose of assisting

during manned missions. They can be used for terrain scouting, soil sampling, or

equipment inspection [30, 23].

K10 uses PLEXIL for its task coordination [3]. In recent tests at the Haughton

Crater, PLEXIL and the Universal Executive have been able to accurately run

programs on the K10 rovers as desired [25].

1.3 Structure of This Thesis

Chapter 2 covers previous work related to PLEXIL design with a look at other lan-

guages used for interacting and simulating hardware devices. Chapter 3 presents a

design for PLEXIL syntax embedded in Haskell. Chapter 4 will describe a Haskell-

based implementation of internally executing PLEXIL semantics, and Chapter 5

will include function descriptions pertaining to simulating hardware devices in the

external world. Chapter 6 will discuss final thoughts on this system design with

respect to its contribution to the theory of design decisions and future work to

further improve upon the PLEXIL language design.

This design of the PLEXIL language is embedded in Haskell [13], a purely

functional language. Haskell includes the ability to define new data types using

algebraic data types, which is useful when designing domain-specific embedded

languages, or DSELs. Haskell functions are statically typed giving us compile-time

safety. Also, it employs lazy evaluation to increase the efficiency of execution.
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Chapter 2 – Related Work

2.1 Current PLEXIL Simulations

PLEXIL execution is divided into two processes. To clarify the next section, we

will call these processes the executive and the simulator. The executive controls

the PLEXIL program flow, while the simulator handles manipulation of the exter-

nal world (see Figure 2.1). These two processes can communicate through what

PLEXIL calls Commands and Lookups. They must both be running simultane-

ously to produce meaningful output, possibly even in the same process of a single

computer. For this reason, the terms executive and simulator may be used inter-

changeably.

2.1.1 PLEXIL on SourceForge

The PLEXIL project at NASA has been posted on SourceForge as an open-source

project since May of 2008 [21]. They have documented their syntax definitions

and released their executive for public usage.

PLEXIL has three standard concrete syntaxes in development at NASA. See

Figure 2.2 for examples. The two most commonly used forms are Standard PLEXIL,

a standalone concrete style found in some related papers, and PlexiLisp, Lisp-like

syntax designed for quick Emacs editing. Both of these syntaxes can be translated
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/*  Copy r ig ht  ( c )  2006- 2008 , Un iv e r s it ie s  S pa c e  Re s e a r c h  As s oc ia t ion  ( US RA) .
*         All r ig h t s  r e s e r v ed.
*
*  Redis t r ibut ion  a nd us e  in  s our c e  a nd b ina r y  for ms , wit h  or  wit hout
*  modific a t ion , a r e  pe r mit t ed pr ov ided t ha t  t he  following  c ondit ions  a r e  me t :
*                  *  Redis t r ibut ions  of s our c e  c ode  mus t  r e t a in  t he  a bov e  c opy r ig ht
*                          not ic e , t h is  lis t  of c ondit ions  a nd t he  following  d is c la ime r .
*                  *  Redis t r ibut ions  in  b ina r y  for m mus t  r epr oduc e  t he  a bov e  c opy r ig ht
*                          not ic e , t h is  lis t  of c ondit ions  a nd t he  following  d is c la ime r  in  t he
*                          doc ument a t ion  a nd/or  ot he r  ma t e r ia ls  pr ov ided wit h  t he  d is t r ibut ion .
*                  *  Ne it he r  t he  na me  of t he  Un iv e r s it ie s  S pa c e  Re s e a r c h  As s oc ia t ion  nor  t he
*                          na mes  of it s  c ont r ibut or s  ma y  be  us ed t o endor s e  or  pr omot e  pr oduc t s
*                          de r iv ed fr om t h is  s oft wa r e  wit hout  s pe c ific  pr ior  wr it t en  pe r mis s ion .
*
*  THIS  S OF TW ARE IS  PROVIDED BY US RA ̀ ` AS  IS '' AND ANY EXPRES S  OR IMPL IED
*  W ARRANTIES , INCLUDING, BUT NOT L IMITED TO, THE IMPL IED W ARRANTIES  OF
*  MERCHANTABIL ITY AND F ITNES S  F OR A PARTICULAR PURPOS E ARE
*  DIS CLAIMED. IN NO EVENT S HALL  US RA BE L IABLE F OR ANY DIRECT, INDIRECT,
*  INCIDENTAL , S PECIAL , EXEMPLARY, OR CONS EQUENTIAL  DAMAGES  ( INCLUDING,
*  BUT NOT L IMITED TO, PROCUREMENT OF  S UBS TITUTE GOODS  OR S ERVICES ; LOS S
*  OF  US E , DATA, OR PROF ITS ; OR BUS INES S  INTERRUPTION)  HOW EVER CAUS ED AND
*  ON ANY THEORY OF  L IABIL ITY, W HETHER IN CONTRACT, S TRICT L IABIL ITY, OR
*  TORT ( INCLUDING NEGL IGENCE OR OTHERW IS E)  ARIS ING IN ANY W AY OUT OF  THE
*  US E OF  THIS  S OF TW ARE, EVEN IF  ADVIS ED OF  THE POS S IBIL ITY OF  S UCH DAMAGE.
* /

DriveToTarget:
{
        Boolean drive_done = false, timeout = false;
        NodeList:

                Drive:
                {
                        Command: rover_drive(10);
                }

                StopForTimeout:
                {
                        StartCondition: LookupOnChange(time) >= 10;
                        NodeList:
                                Stop:
                                {
                                        Command: rover_stop();
                                }
                                SetTimeoutFlag:
                                {
                                        Assignment: timeout = true;
                                }
                }

                StopForTarget:
                {
                        StartCondition: LookupOnChange(target_in_view);
                        SkipCondition: timeout;
                        NodeList:
                                Stop:
                                {
                                        Command: rover_stop();
                                }
                                SetDriveFlag:
                                {
                                        Assignment: drive_done = true;
                                }
                }

                TakeNavcam:
                {
                        StartCondition: timeout;
                        SkipCondition: drive_done;
                        Command: take_navcam();
                }

CP
U

Plan Executive Rover

Internal External

Figure 2.1: Components of the PLEXIL executive system

into an XML form, allowing for simple schema verification of programs. The execu-

tive is designed to interpret only the XML syntax, so programs must be translated

to XML before running in the simulator.

NASA has a PLEXIL plan executive written in C. To run a simulation, the

executive needs a PLEXIL plan in XML format and a script.

A PLEXIL script, shown in Figure 2.3, is a file with a sequence of predetermined

events. Each event is referenced by name, and it includes the expected result for

the simulator.

The problem with this script-based design is that the programmer must an-

ticipate the list of commands sent and sensor values requested from the program

during runtime. The user must then generate the corresponding return values
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Standard PLEXIL:

Drive: {

PreCondition: ! LookupNow(At("Rock"));

Command: drive(1.0);

}

PlexiLisp:

(CommandNode "Drive"

(Precondition (= false (LookupNow "At" "Rock")))

(Command "drive" 1.0))

Plexil XML:

<Node NodeType="Command">

<NodeId>Drive</NodeId>

<NodeBody>

<Command>

<Name> <StringValue>drive</StringValue> </Name>

<Arguments> <RealValue>1.0</RealValue> </Arguments>

</Command>

</NodeBody>

</Node>

Figure 2.2: Short examples of PLEXIL syntaxes [21]
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initial-state {

state At ("Rock" : string) = false : bool;

}

script {

command-success drive (1.0 : real);

state At ("Rock" : string) = true : bool;

command-success takeSample ();

}

Figure 2.3: A sample script to simulate SafeDrive program (not shown) [21]

by hand to mimic the values returned from the external world. This process is

tedious for the programmer and does not help for testing a program in dynamic

environments.

Along with documentation on the PLEXIL website, a formal definition of

PLEXIL semantics were presented in [5]. The details provided for these opera-

tional semantics were the most complete ones available, and were a strong basis

for the executive design presented in future chapters. The semantics have since

been updated and elaborated in [6].

The semantics describe how PLEXIL plans update over time, along with the

interactions between the executive and simulator systems. Some papers describe

changes as state diagrams, as in Figure 2.4, and others use small step semantics.

Of particular note is that the formal semantics definitions only describe a por-

tion of the cases for execution. For instance, they do not discuss what happens

when the executive sends a unknown command sent to the simulator. Some as-

sumptions will be pointed out in later sections when the semantics do not explicitly
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Ancestor Invariant F

Ancestor End T

Parent Executing T

INACTIVE

SKIPPED

SKIPPED

FINISHED

FINISHED

WAITING

1

2

3

Figure 2.4: Inactive transitions at the lowest (atomic) semantic level [23]

define how to handle all cases of execution.

2.1.2 Lightweight Universal Executive Viewer

The executive at NASA is extended with a graphical user interface known as

Lightweight Universal Executive Viewer, or LUV. As shown in Figure 2.5, LUV

provides a way to display information about PLEXIL node states during execution.

This system allows a user to track the status of a program as it progresses.

With LUV, a user must supply a plan and a script to execute. It uses the

executive from the SourceForge website to process the plan.

LUV is still actively updated. It includes features to read intermediate vari-

able values during execution. Also, a user can set breakpoints on nodes or pause

execution at any time to allow debugging of a PLEXIL plan in execution.
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Figure 2.5: LUV Displaying an Executing PLEXIL Plan

2.2 Functional Reactive Programming

Functional reactive programming [16] is a style of simulation that is based on

two key components, behaviors and events. Behaviors are simple functions that

define how an object naturally reacts to a given environment, and events are time-

sensitive actions that can occur within this environment. A program thus consists

of behaviors that naturally occur, such as a robot driving forward, and events that

control which behaviors are exhibited, like a robot running into a wall.
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2.2.1 Frob/YAMPA

Frob, now combined into the YAMPA project [29], is a language designed for

describing robot movements [10, 17]. Frob is a functional reactive DSEL embedded

in Haskell. It extends the notion of behaviors and events with an encompassing

data type Task b e. This should be read as, “A Task returns a behavior result

type b until an event occurs with result type e.” Tasks have been defined as a

monadic type in [18], meaning that Haskell has a built-it syntax to easily compose

Tasks together.

Tasks can be built up from behaviors and events. Frob includes the following

primitives for lifting these components into a Task:

nullTask :: e -> Task b e

liftB :: Behavior b -> Task b e

Frob also defines a set of combinators for designing more complex tasks. A

programmer can use Task transformations such as these to generate tasks with a

wider assortment of actions:

withError :: Event Err -> Task a b -> Task a b

withExit :: Event a -> Task b c -> Task b a

withB_ :: Behavior a -> Task b c -> Task b a

The first two combinators allow a task to have additional events defining their

termination, in either an error or a normal state. The third allows extra behaviors

to be attached to an existing task.
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bug goal =

do {

finished <- driveTo goal;

if (not finished)

then do {

goAround goal;

bug goal

}

else nullTask ()

}

Figure 2.6: BUG Algorithm Written in Frob [10]

Frob builds upon Haskell’s monadic do-notation to compose tasks together in

a style similar to imperative programming. The language introduces the symbols

(;) and (|||) to connect tasks either sequentially or in parallel.

In [10], we see an example of a robot maneuvering to a waypoint goal using the

BUG algorithm, shown in Figure 2.6. It describes a robot driving towards a goal,

traveling around objects in its path. The example shows a concise interaction of

behaviors to produce a complex task.

Comparing with PLEXIL, we can see Frob as a language that is designed to take

advantage of its embedded language. It makes ample use of monadic computations

with the Task data type, as well as higher-order functions that are so prevalent

in functional languages. PLEXIL was designed as a standalone, lightweight inter-

preter, so these features will not be as visible in a program definition.

Unlike Frob, where behaviors are an integral part of writing a program, PLEXIL

is not a language for defining behaviors. PLEXIL abstracts this information away
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to a separate simulator of the external world, only to be referenced by command

name.

As shown in the example, recursion is allowed in Frob with the Task data type,

but there is no built-in iterative looping structure. PLEXIL include this ability

through node repeat conditions.

YAMPA extends from Frob through the addition of arrows. Arrows provide an

even more generalized technique for describing monadic computations. YAMPA

has been used in many domains, reaching much farther than controlling robots in

a simulated world, so it will not be discussed in depth in this thesis.

2.2.2 Timber

Timber is another functional reactive programming language embedded in O’Haskell

[2]. It is designed as a general-purpose concurrent language, with a program scope

ranging over “time-constrained embedded systems. . . to very high-level symbolic

manipulation and modeling applications” [4].

Timber programs are designed as a group of objects, waiting for events from

the external world. They can react with their defined behaviors, similar to Frob.

However, as with most object-oriented languages, Timber provides a way for ob-

jects to pass messages. This allows objects to affect each other or to alter the

world with some form of output.

The semantics of Timber are broken into three distinct layers, more similar to

PLEXIL’s approach than Frob. Tasks are broken apart into the functional layer
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for behavior and the reactive layer for events, which work independently of each

other. Also, scheduling is separated into its own layer, unlike Frob’s approach of

dumping everything into a single Task description.

The representation of the environment in Timber is designed as a set of input

and output ports. Any object can read or write data to a given port in the envi-

ronment. This allows objects to examine the external world without needing direct

access to the world’s complete internal data representation (akin to information

hiding).

2.3 Synchronous Reactive Languages

Synchronous reactive languages are programming languages designed to work on

reactive systems. As with functional reactive languages, synchronous reactive lan-

guages continually react to their environment [7]. The difference is that syn-

chronous languages have a system for representing time, called clocks, within the

language. All events use this clock type to add details on when behaviors need to

occur. Signal, Esterel, Lustre, and Lucid Synchrone are some languages that fit

into this category that we will describe next.

2.3.1 Signal

Signal is a declarative synchronous language [14]. It is used to described interac-

tions of processes over time through signals.
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A signal is a sequence of values. Values may or may not be present at certain

points in time, known as a tick. Any tick with no value is said to hold bottom

value, (⊥), which represents no defined value.

The set of ticks where a signal holds a value is known as the signal’s clock.

Signals might have equal clocks, but this is not always the case. When two signals

have differing clocks, their values show the relative ordering of actions.

The values of a signal can be determined based on constant input streams such

as a system clock, input signals described in files, or calculated from values in other

signals. An execution of a Signal program will apply some input signal definitions

to produce all the signal descriptions in the program. To get a feel for what is

going on, let’s look at some examples.

Let’s start with a simple example of how to manipulate signals, taken from

[14].

process PLUS1 =

( ? integer IN :

! integer OUT )

(| OUT := IN + 1 |)

The process PLUS1 reads a signal with integer values and writes integer values

to another. In this case, the signals are named IN and OUT respectively. Written

between the (| and |) symbols, the body of the process describes, ”Whenever the

IN signal has a value, the OUT signal will be assigned the value of IN + 1”. In

this case, the two signals will have the same clock.

Executing PLUS1 on the sample input TEST IN would produce the following
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results. Any cases where TEST IN has a ⊥ value can be ignored since these ticks

will hold no useful data.

TEST_IN: 3 7 1 6 0

TEST_OUT: 4 8 2 7 1

It is useful to note that, in this example, the two signals show that they have

the same clock. This means that a value always appears when another one has

a value. There may be ticks with no values between these ticks with values, but

according to Signal conventions in [14], we can ignore these ticks with no useful

data. Effectively, Signal prefers to show only relevant data, which is the relative

signal timing, over the absolute time of outputs.

Signal’s model is extended by the concept of event types. Signals with an event

type only contain outputs with values ⊥ or true, to denote if the given tick has a

value or not.

The Signal documentation covers more advanced examples of how to combine

signals [14]. These papers discuss clock operations to combine signal clocks in

interesting ways, as well as syntax for conditional signal definitions or lookup of

previous data in signals.

The execution of a Signal program could be equated to an abstracted version of

PLEXIL. Like PLEXIL, Signal programs read in values from an external system,

process the data, and result possible results over time.

PLEXIL takes a different approach by abstracting away sense of time to an

external simulator. All execution in the PLEXIL executive is considered to happen

in one instant, the equivalent of one Signal click. PLEXIL programs should be able
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to deterministically execute as much as possible until an update from the simulator

is needed. Signal is not bound by this constraint.

Also, the simulator of PLEXIL handles reading the output of the executive and

dynamically building up new sensor values. This approach does not seem to exist

within Signal.

2.3.2 Esterel

Esterel is a synchronous reactive language, but its syntax follows that of imperative

languages [1]. By developing the appropriate abstractions, the designers argue that

they can simultaneously achieve concurrency and determinism.

Here is an example of an Esterel program, described in [1].

module ABRO:

input A, B, R;

output O;

loop

[ await A || await B ];

emit O

each R

end module

This program reads input signals A, B, and R, and sends outputs to signal O.

The command emit O makes the output signal present, meaning the signal will

hold a value. If this statement is not executed, the signal will instead be absent,

or empty.
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The command await A tells the program to wait for the given input signal to

be present. By using the (||) operator for parallel execution, the program in this

case will wait until both A and B are present. Then, by sequencing the commands

with (;), an output value will be produced once both inputs are received.

The program includes an abort command, in the form loop each R. The

loop will be executed until the signal of R is present. Once this occurs, the loop is

immediately exited and then started again.

[1] also gives us the following sample of execution.

> A;

Output:

> B;

Output: O

> R;

Output:

> A B;

Output: O

> A B R;

Output:

As expected, we receive an output on O whenever the inputs A and B exist.

They can be input simultaneously or sequentially. The last case shows that the

presence of R forces the loop to not be fully executed.

We can see from this example how signal control flow can be generated im-

peratively. We have access to both sequential and parallel commands, along with

the equivalent of while loops not found in the declarative synchronous reactive

languages.
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The timing constraints of Esterel match closely with conditions in PLEXIL.

Both have the power to control execution flow over time in approximately the

same level of detail.

Some examples of Esterel acting as a hardware-controlling program can be

found at [7]. Of particular interest, these examples include Esterel in control of

Lego Mindstorm robots, showing Esterel’s ability to interact with hardware.

2.3.3 Lustre and Lucid Synchrone

Lustre [11] is another declarative synchronous language. It has many similar con-

structs to read and write values to signals on a given clock, similar to Signal. It is

considered a data-flow language, where the major focus of a program is to update

the program’s state based on previous and current signal values.

There are two main differences between Lustre and Signal. First, Lustre en-

forces an program-wide clock to which all signals must adhere, while Signal leaves

this as an option. A signal is allowed to hold no value in a given cycle, but there

is no mention of the ability to assign values to a signal unless it is synchronized

with the system clock. In comparison, PLEXIL avoids clock-based cycles, allowing

programs to change internally as much or as little as necessary at any given point

in time. Having Lustre tied to a clock restricts its usability for this thesis.

Also, most examples using Lustre [12] compile output code in the form of de-

terministic finite automata. The result is a set of program states with transitions

describing how to alter the state during execution. The programs show a deter-
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ministic execution path for a given set of inputs. However, with PLEXIL we are

more interested in tracking the effects on the external world simulation, rather

than changes to the internal state.

Lucid Synchrone is an extended version of Lustre [20]. It is embedded in

Objective CAML, which gives additional access to a built-in type system allowing

more complicated types like records and unions, and higher-order functions that

are present in many functional languages. While it provides extra functionality

beyond that of Lustre, Lucid Synchrone still has the same purpose of tracking the

internal state of an executing program.

For these reasons, we consider Lustre and Lucid Synchrone to be in a different

domain than PLEXIL. Thus they will not be considered further in this thesis.
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Chapter 3 – PLEXIL Syntax

/*  Copy r ig ht  ( c )  2006- 2008 , Un iv e r s it ie s  S pa c e  Re s e a r c h  As s oc ia t ion  ( US RA) .
*         All r ig h t s  r e s e r v ed.
*
*  Redis t r ibut ion  a nd us e  in  s our c e  a nd b ina r y  for ms , wit h  or  wit hout
*  modific a t ion , a r e  pe r mit t ed pr ov ided t ha t  t he  following  c ondit ions  a r e  me t :
*                  *  Redis t r ibut ions  of s our c e  c ode  mus t  r e t a in  t he  a bov e  c opy r ig ht
*                          not ic e , t h is  lis t  of c ondit ions  a nd t he  following  d is c la ime r .
*                  *  Redis t r ibut ions  in  b ina r y  for m mus t  r epr oduc e  t he  a bov e  c opy r ig ht
*                          not ic e , t h is  lis t  of c ondit ions  a nd t he  following  d is c la ime r  in  t he
*                          doc ument a t ion  a nd/or  ot he r  ma t e r ia ls  pr ov ided wit h  t he  d is t r ibut ion .
*                  *  Ne it he r  t he  na me  of t he  Un iv e r s it ie s  S pa c e  Re s e a r c h  As s oc ia t ion  nor  t he
*                          na mes  of it s  c ont r ibut or s  ma y  be  us ed t o endor s e  or  pr omot e  pr oduc t s
*                          de r iv ed fr om t h is  s oft wa r e  wit hout  s pe c ific  pr ior  wr it t en  pe r mis s ion .
*
*  THIS  S OF TW ARE IS  PROVIDED BY US RA ̀ ` AS  IS '' AND ANY EXPRES S  OR IMPL IED
*  W ARRANTIES , INCLUDING, BUT NOT L IMITED TO, THE IMPL IED W ARRANTIES  OF
*  MERCHANTABIL ITY AND F ITNES S  F OR A PARTICULAR PURPOS E ARE
*  DIS CLAIMED. IN NO EVENT S HALL  US RA BE L IABLE F OR ANY DIRECT, INDIRECT,
*  INCIDENTAL , S PECIAL , EXEMPLARY, OR CONS EQUENTIAL  DAMAGES  ( INCLUDING,
*  BUT NOT L IMITED TO, PROCUREMENT OF  S UBS TITUTE GOODS  OR S ERVICES ; LOS S
*  OF  US E , DATA, OR PROF ITS ; OR BUS INES S  INTERRUPTION)  HOW EVER CAUS ED AND
*  ON ANY THEORY OF  L IABIL ITY, W HETHER IN CONTRACT, S TRICT L IABIL ITY, OR
*  TORT ( INCLUDING NEGL IGENCE OR OTHERW IS E)  ARIS ING IN ANY W AY OUT OF  THE
*  US E OF  THIS  S OF TW ARE, EVEN IF  ADVIS ED OF  THE POS S IBIL ITY OF  S UCH DAMAGE.
* /

DriveToTarget:
{
        Boolean drive_done = false, timeout = false;
        NodeList:

                Drive:
                {
                        Command: rover_drive(10);
                }

                StopForTimeout:
                {
                        StartCondition: LookupOnChange(time) >= 10;
                        NodeList:
                                Stop:
                                {
                                        Command: rover_stop();
                                }
                                SetTimeoutFlag:
                                {
                                        Assignment: timeout = true;
                                }
                }

                StopForTarget:
                {
                        StartCondition: LookupOnChange(target_in_view);
                        SkipCondition: timeout;
                        NodeList:
                                Stop:
                                {
                                        Command: rover_stop();
                                }
                                SetDriveFlag:
                                {
                                        Assignment: drive_done = true;
                                }
                }

                TakeNavcam:
                {
                        StartCondition: timeout;
                        SkipCondition: drive_done;
                        Command: take_navcam();
                }

Plan

Internal

Figure 3.1: PLEXIL plans, defining the program syntax

PLEXIL is a scheduling DSL designed to interact closely with an arbitrarily

complex hardware system. This chapter will discuss a PLEXIL implementation

embedded in Haskell (see Figure 3.1). Later chapters will discuss how to process

data created from this syntactic representation.

NASA provides PLEXIL language implementations in multiple formats, includ-

ing embedded versions in Lisp and XML, as well as a standalone syntax known

as Standard PLEXIL. All of these are a concrete syntaxes, which are discussed in
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[21]. However, we can avoid latching onto a specific syntactic representation by

using Haskell’s data type system for defining syntactic constructs.

3.1 Type Parameterization

The data types discussed in the following sections may include the two type pa-

rameters, s and c. These refer to the Sensor and Command names. Commands are

messages sent to an external simulator, and Sensors are bindings for sensor values

received back from the simulator. By parameterizing these data types, the program

will be generalized to work in different systems with their own set of commands

and sensor values.

For rovers, we could consider the following data types for commands and sen-

sors. This data type listing is shortened, just to give a feel for what definitions we

might expect to see when defining the rest of the syntactic constructs. See Section

5.1 for a more in-depth look into these data types.

data Command =

Drive

| TakePic

data Sensor =

PosX

| PosY

| WheelStuck

By creating data types for these parameter type definitions, we can use Haskell’s

type system to statically check that the commands and sensors used in a PLEXIL
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plan are valid for the simulator while allowing these definitions to reside in modules

outside of the PLEXIL syntax. In comparison, NASA’s current implementation of

PLEXIL uses strings for names with no included collection of names for assisting

with program validation.

Note that this is one place where PLEXIL widely differs from Frob. PLEXIL

command names are just placeholders with no semantic information, leaving the

execution of the commands entirely up to the simulator. Frob does not separate

the syntax from the semantics. Instead, Frob takes advantage of its embedding in

Haskell by passing around first-order functions, as shown in examples from [10].

3.2 Expressions: Use of GADTs

PLEXIL allows users to include expressions within their node definitions. However,

trying to set up an efficient yet expressive way to create these expressions in Haskell

poses an interesting issue.

One possible solution would involve a single data type Expr. Every possible

expression allowed in the syntax could be a constructor for this data type, making

a single consolidated type. The downside to this method is that users are allowed

to interchange these constructors freely to produce meaningless expressions. For

instance, we can imagine a case where two values of different types are being

combined together, as in the case Add (BoolConst True) (StrConst "Hello").

Another solution may be to create multiple typed data types, like BoolExpr,

IntExpr, etc. Each expression data type holds its own separate combinator def-
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initions, forcing all typed expressions to be evaluatable. The problem with this

solution is a bulky and redundant syntax as a result. For instance, both FloatExpr

and IntExpr need their own Add combinators, and BoolExpr would need a unique

combinator for Equals for each variable type in the language.

This project opts to use a Generalized Algebraic Data Type [19], or GADT, as

an alternative way to generating expressions. A GADT is a single parameterized

data type that enforces the use of a different constructor syntax, as seen below. It

allows each constructor to designate its own parameterized result type in-line. This

lets the efficiency of a single data type blend with the expressiveness of multiple

typed data types.

We will now look at the different types of expressions allowed by the following

GADT definition.

data Expr s a where

BConst :: Bool -> Expr s Bool

IConst :: Int -> Expr s Int

FConst :: Float -> Expr s Float

SConst :: String -> Expr s String

NSConst :: Status -> Expr s Status

...

The first GADT constructors wrap constant values into the Expr type. Each

input type needs its own constructor. The Status argument in the NSConst rep-

resents a node’s execution status and will be explained in more depth later.

The following are valid Expr usages for constants.

BConst True
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IConst 5

FConst 1.7

Just wrapping values into expressions is not very exciting. Next we will discuss

accessing variables in expressions.

type ID = String

data Expr s a where

...

VarBoolEx :: ID -> Expr s Bool

VarIntEx :: ID -> Expr s Int

VarFloatEx :: ID -> Expr s Float

VarStringEx :: ID -> Expr s String

VarStatus :: ID -> Expr s Status

LookupBool :: s -> Expr s Bool

LookupInt :: s -> Expr s Int

LookupFloat :: s -> Expr s Float

LookupString :: s -> Expr s String

...

All of the constructors above are used to get values from variables. They each

take a name of some sort and produce an Expr of the appropriate type. The

constructors starting with Var are used to read internal variables, while Lookup

expressions look at sensor data from the external world.

The following are valid variable expressions.

VarIntEx "numPictures"

LookupFloat PosX

LookupBool WheelStuck
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Now we need combinators to design more complex expressions.

data Expr s a where

...

--Boolean

Equal :: Eq a => Expr s a -> Expr s a -> Expr s Bool

LsThan :: Ord a => Expr s a -> Expr s a -> Expr s Bool

GrThan :: Ord a => Expr s a -> Expr s a -> Expr s Bool

And :: Expr s Bool -> Expr s Bool -> Expr s Bool

Or :: Expr s Bool -> Expr s Bool -> Expr s Bool

Not :: Expr s Bool -> Expr s Bool

IfThen :: Expr s Bool -> Expr s a -> Expr s a -> Expr s a

--Numeric

Add :: Num a => Expr s a -> Expr s a -> Expr s a

Sub :: Num a => Expr s a -> Expr s a -> Expr s a

Mult :: Num a => Expr s a -> Expr s a -> Expr s a

The combinators can be broken into two types, with either boolean or numeric

value outputs. We can look at some examples to see what is happening.

For And, we need two Expr s Bool arguments, and the result will also be Expr

s Bool with the two inputs anded together. IfThen should check an argument of

type Expr s Bool. It also takes two Expr s a, one if the result is True and the

other if it is False.

The Add combinator uses a type class Num a to enforce that the type parameter

a is of some numeric type. If so, the two values can be added together to produce

a resulting Expr s a.

We define some infix operators to allow shorthand creation of expressions. The

symbols should be similar to those in most programming languages.
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(==:) :: Eq a => Expr s a -> Expr s a -> Expr s Bool

(<:),(>:),(<=:),(>=:) :: Ord a => Expr s a -> Expr s a -> Expr s Bool

(+:),(*:),(-:) :: Num a => Expr s a -> Expr s a -> Expr s a

(==:) = Equal

(<:) = LsThan

(>:) = GrThan

(<=:) a b = LsThan a b ||: Equal a b

(>=:) a b = GrThan a b ||: Equal a b

(&&:) = And

(||:) = Or

(+:) = Add

(-:) = Sub

(*:) = Mult

With these infix operators, we can begin to generate larger expressions as fol-

lows.

VarIntEx "numPictures" >: IConst 10

Not (LookupBool WheelStuck) &&: LookupFloat PosX <=: 5.3

FConst pi *: VarFloatEx "r" *: VarFloatEx "r"

GADTs have a drawback that a list of the GADT, in this case [Expr s a],

will not allow varying types for parameter a. This becomes an issue when defining

an environment, a lists of bindings for variables. For instance, the next expression

will not type check in Haskell:

[IConst 0, BConst False, SConst "hello"]
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We can fix the issue with a union type that wraps all the possible types for

the parameter a of the type Expr. The following definition of ExprType is a valid

workaround for allowing the creation of typed Expr lists.

data ExprType s =

BoolEx (Expr s Bool)

| IntEx (Expr s Int)

| FloatEx (Expr s Float)

| StringEx (Expr s String)

The previous example will now type check by wrapping the Expr in an ExprType

constructor. We provide syntactic sugar functions to ease with readability.

int = IntEx . IConst

bool = BoolEx . BConst

float = FloatEx . FConst

string = StringEx . SConst

[int 0, bool False, string "hello"]

The function int wraps an integer value into a data type Expr s Int by using

IConst and subsequently into a ExprType s with IntEx. Similar functions are

included for boolean values, floating-point numbers, and strings. The last line is

an updated version of a variable list, which is now type correct in Haskell.

With the definition of expressions, we can add a data type for variable defini-

tions.

data Binding s = Var ID (ExprType s)

type Env s = [Binding s]

The Binding data type allows us to attach an expression to a variable name.

We can extend this with the Env data type, to store a list of variable definitions.
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3.3 Actions

The purpose of PLEXIL as a task scheduling language is to produce a list of tasks,

or Actions, over time to be executed in an external world simulator. Actions in

PLEXIL can be one of the following seven types:

Command : A request to be executed on the external hardware system

Function: A complicated calculation to be calculated outside of PLEXIL

Assignment : Sets a value to an internal variable within a PLEXIL program

List : A collection of sub nodes for grouping similar nodes and allowing multiple

actions

Update: Sends output data to the external system, like status information for

users

Plan Request : Sends a request to design support asking for a new plan

Empty : No other defined action

The following data type describes the subset of the most commonly used ac-

tions in PLEXIL programs. This definition can be extended for a more complete

simulation of programs, but this will provide most of the functionality we want for

now.

data Action s c =

Command c [ExprType s]

| Assignment ID (ExprType s)

| NodeList [Node s c]



32

A Command call takes a command name and a list of arguments. For example,

one might use the following to tell a rover to drive forward one meter.

driveComm = Command Drive (float 1.0)

Assignments take a variable name and a new expression to be evaluated and

bound to the ID. The variable should be in scope of its current node context,

and the type of the expression should match its defined type. These checks will

be discussed in more detail in Section 4.2. Here are a few examples of allowed

assignments.

incPics = Assignment "numPics" (IntEx $ VarIntEx "pictures" +: IConst 1)

isWheelStuck = Assignment "wheelStuck" (BoolEx $ LookupBool WheelStuck)

NodeLists use Haskell’s built in list data type to contain a list of children

Nodes, which are described next.

3.4 Nodes

The main abstraction in PLEXIL is called a node. A node can have a name, local

variables, control conditions, which are optional, and a required action.

Actions define the purpose of a node when it is executing, as described earlier.

Each node is limited to containing only a single action.

Some nodes may control a list of children nodes as their action, building up a

tree-like structure for the overall program. A program is defined as a single root

node with children, which in turn may also be list nodes. Only the leaf nodes
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will contain actions that could affect either the internal or external state of the

executing program.

data Node c s = Node ID (Env s) [Condition s] (Action s c)

This data type allows for creation of new nodes. The simplest Node we can

generate would be the following.

Node "" [] [] (NodeList [])

This is effectively an empty node, with no name and no children nodes. Of

course, such a node would not be of much use. We would prefer nodes to store

some information.

Node "OneMeter" [] []

(Command Drive [float 1.0])

This is a node that, when executing, will call a Drive command on the rover.

3.5 Conditions

Nodes will naturally try to execute as soon as possible. The programmer needs

some way to limit when a node is allowed to execute. This is why the Condition

s type was introduced in the previous section.

There are six different node conditions, which can be broken up into two cat-

egories. Gate conditions (Start, End, RepeatWhile) define when a node should

begin or end execution. Check conditions (Pre, Post, Invariant) describe the

settings that must be true for a node to execute properly.
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type Condition s = (ConditionName, Expr s Bool)

data ConditionName =

Start | End | RepeatWhile |

Pre | Post | Invariant

deriving (Show,Eq)

Each node can be given at most one of each condition. If a node has two defined

Start conditions, for example, only the first will be recognized and the rest are

ignored. Every condition is tied to a boolean expression that can be as complex

as needed.

Node "DriveProgram"

[Var "keepDriving" (bool True)]

[(RepeatWhile,VarBoolEx "keepDriving" ==: BConst True)]

(NodeList [ ... ])

In this case, the DriveProgram node will repeat as long as the boolean variable

keepDriving remains True. If any child node causes the value to change, the node

should not try to restart after it has finished executing.

3.6 Node State Information

PLEXIL needs a bit of runtime information available in the syntax. The syntax

must include a way to reference the state of a node during execution. This can

be broken into two parts, the Status and the Outcome of the node, which will

be described in Section 4.1.1. How nodesupdate their status will be discussed in

Section 4.3.1.
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data Status =

Inactive | Waiting | Executing

| Finishing | Failing | IterationEnded | Finished

deriving (Show,Eq)

data Outcome = Success | Failure | Skipped | Unknown

deriving (Show,Eq)

By including node state in the syntax, we can now write node conditions like

the following:

afterDrive = (Start,VarStatus "DriveOneMeter" ==: NSConst Finished)

In this case, a node with this start condition will execute only after the node

DriveOneMeter has finished, forcing serial execution.
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Chapter 4 – PLEXIL Semantics

CP
U

Executive

Internal

Figure 4.1: PLEXIL executive, defining the semantics for processing plans

The semantics for PLEXIL, defined in [5, 6], discuss how nodes change state

over time and briefly touch on how commands are sent to an external system.

In order to generate an accurate simulation of a PLEXIL plan in execution, the

Haskell system follows the provided definition. This chapter will discuss in detail

translating PLEXIL programs into an executable format and the Haskell imple-

mentation of PLEXIL’s executive semantics (see Figure 4.1).
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4.1 Building an Execution Environment

We have discussed how to design a PLEXIL plan in previous sections, but we still

need a way to run them. In order to allow program execution, we need a way to

store and manipulate program state during runtime. But what else is needed to

execute a PLEXIL plan?

As a plan is executing, we need to store three types of data. These are node

states, internal variables values, and an external world representation.

4.1.1 Node States

Nodes need to perform their actions at specific times during execution. In order to

ensure this, we need a way to keep track of their status. The following data types,

first mentioned in Section 3.6, will provide a way to track and control each node’s

execution.

data Status = Inactive | Waiting | Executing | Failing

| Finishing | Finished | IterationEnded

data Outcome = Success | Failure | Skipped | Unknown

The Status of a node is its execution status. Each node can be waiting to start,

currently executing, or completed (successfully or not) with its action. During

execution, or possibly before, a node or one of its ancestors may have failed to

meet certain conditions resulting in a failure state. The Outcome of a node refers

to the result of the last attempt at execution for a node.
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Section 4.3.1 will discuss the rules for updating the status and outcome of a

node during execution. For now, we just need the definition of the data type for

defining a semantic node state.

Now we can design a data type for storing a node’s runtime state.

data State s c = State {nodeId::ID, status::Status, outcome::Outcome,

start::Expr s Bool, end::Expr s Bool, pre::Expr s Bool,

post::Expr s Bool, rep::Expr s Bool, inv::Expr s Bool,

parent::Maybe ID, children::[ID], body::Action s c}

The State data type contains the information necessary to execute a node.

This is stored in a Haskell record type, where each element of the data type is

named for easier access.

From a static definition of nodes in PLEXIL, we can obtain information of each

node’s ID, its parent and children nodes, and the associated action. We also may

have a partial listing of its controlling conditions. The undefined conditions need

to be given default values, and the status and outcome fields must be initialized.

getNodeSem :: Maybe ID -> Node s c -> [State s c]

getNodeSem par (Node i vs cs act) = s : ss act

where

s = State i stat out staEx endEx preEx posEx repEx invEx par cids body

ss (NodeList ns) = concatMap (getNodeSem $ Just i) ns

ss _ = []

...

The function getNodeSem will let us convert a plan into a list of states by

applying it to the root node. We can see the function constructs a new State to
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hold various data on the current node. It also recursively calls this on all children

nodes, if they exist. The function’s first parameter of type Maybe ID is used for

recursively assigning the parent node field to each child node. An appropriate

initial use of this function would be getNodeSem Nothing rootNode.

getNodeSem :: Maybe ID -> Node s c -> [State s c]

getNodeSem par (Node i vs cs act)

...

stat = if isNothing par then Waiting else Inactive

out = Unknown

(cids,body) =

case act of

NodeList ns -> (map (\(Node i _ _ _) -> i) ns, NodeList [])

a -> ([], a)

...

PLEXIL sets the root node, defined as the only node in the plan with no parent,

to a status of Waiting, while all other nodes have an initial Inactive status. All

outcomes start out as Unknown since they have yet to execute. Child nodes are

stored as a list of their names, which should be unique according to PLEXIL

programming guidelines [21]. Since we are converting all Nodes to States, we can

throw away the NodeList references to children nodes to simplify the result.

getNodeSem :: Maybe ID -> Node s c -> [State s c]

getNodeSem par (Node i vs cs act)

...

getEx def = fromMaybe def . flip lookup cs

preEx = getEx (BConst True) Pre

posEx = getEx (BConst True) Post

repEx = getEx (BConst False) RepeatWhile
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invEx = getEx (BConst True) Invariant

staEx = getEx (BConst True) Start

endEx =

case act of

NodeList ns

-> maybe nodeListEnd (\ex -> Or ex nodeListEnd) $

lookup End cs

Assignment _ _

-> getEx (BConst True) End

_ -> getEx (BConst False) End

-- End when all children are finished

nodeListEnd = (foldr1 (&&:) .

map (\i -> VarStatus i ==: cFinished)) cids

For adding conditions to a State, we need to scan through the node’s list of de-

fined conditions. For each condition, we will either take the first defined condition

through the flip lookup cs function. Otherwise, we will use a predefined de-

fault. In [21], we get the following default conditions for five of the six conditions,

which are used for all node types.

Condition Default Value (all nodes)

Pre True

Post True

Repeat False

Invariant True

Start True

Each default expression is passed to getEx to provide an alternative in case an

explicit definition cannot be found.
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The default End condition is a bit more complex. Each node type has a unique

condition description, as seen below.

Node Type End Condition Default

NodeList All Children Finished

Command Cmd Handle Received

Assignment Call Completed

NodeLists use nodeListEnd, which creates the expression (VarStatus i1 ==:

cFinished) &&: ... &&: (VarStatus in ==: cFinished) for children with

IDs [i1..in]. Assignments should always occur right away, so they should attempt

to finish as soon as possible. This leads to the default condition True. Command

nodes should wait to receive a message from the simulator. We will set the com-

mand node’s end condition to False, but provide a message handler for ending

command nodes in a later section.

4.1.2 Variable Bindings

Variables are defined in nodes, but we will separate them into their own separate

list for ease of use. Each variable will be bound to its current value. Recall the

Binding data type we used for describing variables in PLEXIL syntax.

data Binding s = Var ID (ExprType s)

type Env s = [Binding s]

Given the root node for a plan, we can extract all the variables from the nodes

into their own separate list. This will allow us to quickly read and update variable
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values.

getVarsSem :: Node s c -> Env s

getVarsSem (Node _ vs _ act) = vs ++ vs’

where vs’ = case act of

NodeList ns -> concatMap getVarsSem ns

_ -> []

Note that by separating variables from their nodes, there is no way to check

that variables are accessed by nodes with appropriate scope. It is currently left

to the program designer to verify that a plan has no assignments that are out of

scope, but the system could be updated in the future to statically check for this.

4.1.3 External World Representation

We will discuss designs for simulators in a later section, but for now we need a

data type to store relevant pieces of an external world. We begin with some type

definitions.

type BoundAction s c = (ID,Action s c)

type BoundReturn s = (ID,ExprType s)

type CommandFunction s =

TimeSpan -> [ExprType s] ->

[Sensor s] -> ([Sensor s], Maybe (ExprType s))

type TimeSpan = Float

BoundActions are used to hold commands with a reference to the ID of the

node that is executing it. Similarly, a BoundReturn is a node ID tied to a result

value from a completed command. A CommandFunction is a function designed
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in the simulator for updating sensors. With these types, we can now define a

representation of the external world for the executive.

data ExtWorld s c = World {

sensors::[(s,ExprType s)], comms::[BoundAction s c],

commrets::[BoundReturn s], commlist::[(c,CommandFunction s)]}

Within a World record type, we store four items to describe the workings of a

simulator. Sensors is a list of current sensor values. The comms list holds all active

commands, while commrets is a list of return values from completed commands.

We also include commlist, a list of available functions similar to an interface.

Note that both the sensors and commlist lists use the parameterized types s

and c in their type definitions, respectively. This allows the command and sensor

names to be defined outside of the executive module, allowing for an executive

that is independent of any particular simulation system.

During execution, all of the external data is available to the executive, but it

should only have limited write access. We will see cases later where the executive

must manipulate the command returns list, but other manipulation should be left

to simulator modules.

4.1.4 PlexilEnv: The PLEXIL Environment Data Type

With all of the separate components defined, we can now create an execution

environment for PLEXIL. We will collect the data types defined in the previous

sections into a PlexilEnv data type.
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data PlexilEnv s c = PlexilEnv {

internal::Env s,

states ::[State s c],

external::ExtWorld s c,

commands::[BoundAction s c] }

A PlexilEnv is the current state of a PLEXIL plan in execution. The first

three pieces of this record type are the internal bindings for variables, the states

of all nodes in the plan, and a collection of data for the external world. The

last element, commands, is the list of commands sent from nodes, but have yet

to be received by the executive. The command list could be separated from the

environment for a more succinct definition, but it is easier to design the semantic

relations described later when all the data is kept close together.

plexilEnv :: Node s c -> ExtWorld s c -> PlexilEnv s c

plexilEnv n e = PlexilEnv vars nodes e []

where

vars = getVarsSem n

nodes = getNodeSem Nothing n

This function allows us to convert a plan into an environment for execution.

It takes a plan, referenced by its root node, and a predefined external world. It

uses the previously defined functions getNodeSem and getVarsSem for converting

the data into a PlexilEnv type. With this new structure, we can begin to define

semantics for updating the environment.
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4.2 Evaluating Expressions

With a runtime environment, we can now begin discussing semantic rules. We will

begin with an expression evaluator. PLEXIL expressions were defined earlier in

section 3.2 with GADTs, and they get used often throughout execution.

eval :: (Show s, Eq s) => Expr s a -> PlexilEnv s c -> a

This function takes a expression of type Expr s a. Expressions need access

to local variables, external sensors, and node states, which explains the need to

include a PlexilEnv as a parameter. Once evaluated, the result should be of

the resulting type a, which currently may be Bool, Int, Float, or String. Some

expressions may also return a node’s status in an intermediate step, but the Status

value should not be returned as a final value.

Let us consider a few examples of possible expressions we will evaluate.

eval ex env =

case ex of

BConst val -> val

IConst val -> val

FConst val -> val

SConst val -> val

NSConst val -> val

...

These are constant values wrapped in an Expr constructor. Evaluation here is

just unwrapping the value inside. For example, FConst 3.5 should become 3.5

and NSConst Finished will evaluate to Finished.
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Along with constant values, we also want to evaluate variables. This requires

reading values from the PlexilEnv. The following helper function allows us to

scan for expressions that match variable or sensor definitions by name and type.

findExpr :: Eq i =>

[(i,ExprType s)] -> i -> ExprType s -> Maybe (ExprType s)

findExpr es i e’ = listToMaybe [e | (i’,e) <- es, i == i’, e == e’]

This function first looks for variables that match both the id and the type of

expression. The call to listToMaybe will return the first result, or Nothing if none

exists.

eval ex env =

case ex of

...

LookupBool s -> eval (lsub s unwrapB) env

LookupInt s -> eval (lsub s unwrapI) env

LookupFloat s -> eval (lsub s unwrapF) env

LookupString s -> eval (lsub s unwrapS) env

...

where

lsub s (un, def) = maybe (lookupError s) un $

findExpr (sensors $ external env) s def

lookupError i = error $ "Lookup " ++ show i ++ " does not exist"

unwrapB = ((\(BoolEx ex) -> ex), bool False)

unwrapI = ((\(IntEx ex) -> ex), int 0)

unwrapF = ((\(FloatEx ex) -> ex), float 0.0)

unwrapS = ((\(StringEx ex) -> ex), string "")

To evaluate lookups, we can apply findExpr to our sensor list. The result will

be in the form of an ExprType union type, so we need the unwrapping functions
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to extract the expression. If the requested sensor cannot be found in the external

world definition, an error is thrown by lookupError. Otherwise, the result is an

Expr type, which must be recursively evaluated.

Internal variables are evaluated similarly to lookups. The difference is that

they instead scan over the list of internal variables, states env.

eval ex env =

case ex of

...

VarBoolEx i -> eval (vsub i unwrapB) env

VarIntEx i -> eval (vsub i unwrapI) env

VarFloatEx i -> eval (vsub i unwrapF) env

VarStringEx i -> eval (vsub i unwrapS) env

VarStatus i -> stat i

...

where

vsub i (un, def) = maybe (varError i) un $

findExpr [(i’,e’) | Var i’ e’ <- internal env] i def

varError i = error $ "Var " ++ i ++ " does not exist"

stat i = maybe (statError i) status (lookupByID nodeId (states env) i)

statError i = error $ "Node " ++ i ++ " does not exist"

lookupByID :: (a -> ID) -> [a] -> ID -> Maybe a

lookupByID f as i = listToMaybe [a | a <- as, f a == i]

Internal variables can also include accessing node statuses. The VarStatus

case instead needs to look for a node with a matching name and return its current

status.

eval ex env =

case ex of
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...

Add l r -> eval l env + eval r env

Equal l r -> eval l env == eval r env

Not l -> not $ eval l env

IfThen i t e -> if (eval i env) then (eval t env) else (eval e env)

...

The rest of the cases are expression combinators, combining one or more subex-

pressions. A few examples are given above. They each recursively evaluate their

components, then combine the results with the appropriate function.

Evaluating expressions is one of the lowest levels of semantics available in

PLEXIL. We will use this ability to read variables to produce more complex effects

in the PLEXIL environment.

4.3 Five Levels of Semantics

4.3.1 Level 1: Atomic Relation

The atomic relation controls one node through a single status update. Each node

has the potential to update its status based on its current status, ancestors’ sta-

tuses, guard conditions, and action type.

We can see three potential updates occur in any particular atomic relation. The

first two are changes to a node’s status or outcome. Also, command nodes may

have commands ready to run, and assignment nodes may want to update internal

variables. Thus, given a node state and the current PlexilEnv, we produce a

function with the following type.
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atomic :: (Show s, Eq s) =>

PlexilEnv s c -> State s c -> (State s c,[Binding s],[BoundAction s c])

The rules defining the atomic relation transitions were originally defined in [23]

as a group of state diagrams. These have since been updated to a more formalized

set of small-step inference rules in [6].

In both cases, we can see that there are over 30 possible transitions a node

could take and multiple conditions to track to determine which is most appropriate.

We will begin by defining how to evaluate some necessary conditions, then show

examples of how transition rules can be converted into semantics embedded in

Haskell.

For any node, we may need to check its status or evaluate one of its conditions.

We include the following subfunctions to handle these cases:

atomic env s = ...

where

is stat = status s == stat

evalT cond = evalnT cond s

evalF = not . evalT

evalnT c x = eval (c x) env

evalnF c = not . evalnT c

...

The first function will compare the current node’s status. Calling is Executing,

for example, checks if the the node status is Executing. The other functions evalu-

ate conditions. So, the call evalF inv will let us know if the invariant condition of

the node evaluates to False. The functions evalnT and evalnF evaluate explicit
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node conditions in case we want to view other nodes’ conditions, which we will be

using next.

We may need to check if a node’s ancestors are, for any reason, trying to alter

execution. The following code lets us access their states to see if there is any

important information.

getAncestors ns n =

case maybe Nothing (lookupByID nodeId ns) (parent n) of

Just parProc -> parProc : getAncestors ns parProc

_ -> []

atomic env s = ...

where

...

ancestors = getAncestors (states env) s

ancestorInvF = any id $ map (evalnF inv) ancestors

ancestorEndT = any id $ map (evalnT end) ancestors

parentStatus = maybe Executing status $ listToMaybe ancestors

parentExecuting = parentStatus == Executing

parentWaiting = parentStatus == Waiting

...

The function getAncestors builds a recursive list of parent nodes. In some

cases we need to know if any ancestor passes an end condition or fails an invariant

condition. We can view these cases by using, respectively, ancestorInvF and

ancestorEndT.

The parent process’s status may also trigger a change in the current node’s

status. We can get the parent node state by using listToMaybe ancestors, which
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safely extracts the first element of the ancestor list into a Maybe data type. We

can then extract the parent status with the maybe function for comparison.

Finally, before we begin to define transitions, we add a shorthand way to update

node states. Each update will set either a node status or node outcome.

atomic env s = ...

where

...

sInac, sWait, sExec, sFing :: State s c -> State s c

sIter, sFail, sFind :: State s c -> State s c

sInac s = s {status = Inactive}

sWait s = s {status = Waiting}

...

oSucc, oFail, oSkip, oUnkn :: State s c -> State s c

oSucc s = s {outcome = Success}

...

Each available status and outcome has its own shorthand notation. By leaving

these updates as functions, we can compose them together to easily make multiple

changes.

We can now begin to implement semantics for atomic relations. First, we need

to determine the appropriate function for updating a node. We can use Haskell’s

guard syntax for defining transition conditions and their respective results.

atomic env s = (f s, vs, c)

where

f | is Waiting && (ancestorInvF || ancestorEndT) = sFind . oSkip

| is Waiting && evalT start && evalF pre = sIter . oFail

| is Waiting && evalT start && evalT pre = sExec

...
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Figure 4.2: Waiting transitions at the atomic level [23]

These three cases match the transitions in 4.2, where a node is in Waiting

status. The first definition of f, which executes if ancestorInvF or ancestorEndT

holds true, will produce the update function that sets a node outcome to Skipped,

then its status to Finished.

The transitions are ordered in the diagram. Guards in Haskell allow us to obey

this ordering since the first guard it matches will be executed. So, as long as each

guarded statement is written in order, a Haskell interpreter will choose the appro-

priate transition to follow. Also, this example shows that multiple transitions with

the same result can be combined to help shorten the number of checks required.

For executing command nodes, the formal semantics do not clearly define the

default end condition. The online documentation describes it as when a “command

handle [is] received [21]”. The formal semantics definitions do not otherwise discuss

this detail. The solution presented here is to scan for command returns sent from

the simulator.
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atomic env s = (f s, vs, c)

where

f ...

| is Executing

= case body s of

Command _ _

| hasCommRet && evalT post -> sIter . oSucc

| hasCommRet && evalF post -> sIter . oFail

| ...

...

commRet = lookup (nodeId s) . commrets

hasCommRet = isJust $ commRet (external env)

This solution only checks for the existence of a return value. Since it is not

clearly defined how command returns should be handled, this is left as an open

problem.

It should be noted also that some transitions want to know whether a failure

outcome was caused by a parent or not. For simplicity, all failures are considered

the same. The Outcome data type could be updated later to allow for a ParentFail

constructor should test cases need this feature.

The final guard of f is as follows.

atomic env s = (f s, vs, c)

where

f ... | otherwise = id

Not every node state needs to be updated. Some nodes may be have an

Inactive status and are waiting for their parents to begin executing. Others,

like command nodes, may still be Executing but have yet to receive a return
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value. We can apply the identity function to these node states, telling them to

return unchanged until some other time.

Along with updating the node state, we also need to check for variable updates

and commands to return. We can use the following test to find variable updates.

atomic env s = (f s, vs, c)

where

...

vs = case body s of

Assignment i exType

| is Executing && evalT end && evalT post

-> [Var i $ evalExprType exType env]

| otherwise -> []

_ -> []

...

evalExprType (BoolEx x) e = bool (eval x e)

evalExprType (IntEx x) e = int (eval x e)

evalExprType (FloatEx x) e = float (eval x e)

evalExprType (StringEx x) e = string (eval x e)

Updates occur when an Assignment node leaves Executing status. The as-

signment expression must be evaluated outside of its ExprType wrapper, and then

rewrapped into a new variable definition.

It is important to point out that all nodes should be executing the atomic

relation in parallel. We cannot immediately update the internal list of variables

now, in case the current node changes a value before another node can access it.

So, the new definition must be returned up one level to execute simultaneously.
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Finally, before moving on to the next relation, we need to gather new commands

to execute. These can only come from command nodes.

atomic env s = (f s, vs, c)

where

...

c = case body s of

c@(Command i es)

| is Waiting && evalT start && evalT pre

-> [(nodeId s, c)]

| otherwise -> []

_ -> []

...

To find a new command, we look for a node with a Command action. Then if

the node has the same conditions that would cause it transition to Executing, we

can return its command. In this function, we bind the command to the ID of the

node, so we can track which node sent the command request.

4.3.2 Level 2: Micro Relation

At the micro relation level, we want to collect all the updates made for each node

in the atomic relation and reconstruct a new PlexilEnv. Updates can be in the

form of nodes with new status, changed variable values, or commands to send to

the external world.

It is possible that there will be no updates in a given micro relation cycle. We

return a Bool flag that tells whether or not any updates were made. This will

become important when designing the next relation in the following section.
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The final consideration before defining the micro relation is the transactional

nature of the relation. This means that instead of creating an implicit ordering

of effects from the nodes, all effects should occur simultaneously to produce an

updated state. Such a behavior can be obtained by copying the original state

and updating the necessary parts, all while checking that no two nodes produce

conflicting effects.

With these constraints in place, we can define the micro relation as follows:

micro :: (Show s, Eq s) => PlexilEnv s c -> (PlexilEnv s c, Bool)

micro env = (e’, changed)

where

ns = states env

(ns’,vs’,cs’) = getAtomicUpdates env ns

changed = nodesChanged ns’ ns || nonEmpty vs’ || nonEmpty cs’

e’ = PlexilEnv {internal = microVars vs’ (internal env),

states = ns’,

external = (external env) {commrets = [], commmsgs = []},

commands = commands env ++ cs’}

getAtomicUpdates e ns = (ns’, concat vs, concat cs)

where (ns’,vs,cs) = (unzip3 . map (atomic e)) ns

The micro relation begins with applying the atomic relation to the current

states. This call produces three lists containing updated node states, variables,

and commands. We insert each of these lists back into a PlexilEnv constructor.

To construct the new environment, we need to combine the results just ob-

tained. The atomic relation returns an updated state for every node, so the original

list of states can be replaced with ns’. New commands are appended to the list of
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commands that have yet to be sent to an external simulator. Variables are a bit

more tricky and will be discussed later in this section. Notice that data from the

external world is also updated, as return values and messages from externally exe-

cuting commands should be consumed through node status updates in the atomic

relation.

With the new environment e’, the result also contains the changed flag. It is

marked as true whenever a node or variable is updated or a command is passed

up from the atomic relation. We can complete this definition with the following

helper function.

nodesChanged :: [State s c] -> [State s c] -> Bool

nodesChanged ns nsOld

| nonEmpty nonmatches = error $ "Couldn’t find State(s) "

++ (show . map nodeId) nonmatches

| otherwise = nonEmpty changed

where

nonmatches = [ n | n <- ns, all (diffId n) nsOld]

changed = [ n | n <- ns, all (diffNode n) nsOld]

diffId n n’ = nodeId n /= nodeId n’

diffNode n n’ = diffId n n’ || status n /= status n’

|| outcome n /= outcome n’

This definition assumes that, by some chance, new nodes with no previous

definition may get added. We can assume that each node has a unique ID, which

forces ID recognition to determine that no nodes are out of place. Misplaced nodes

are treated as an error, as seen in the first guarded case of the nodesChanged

function.
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If copies of all nodes are present in both lists, we can determine if a node has

been updated by comparing the status and outcome of nodes. The changed list

marks all nodes in the updated list that do not match any previous node definition.

If this list contains any elements, a node has been changed.

To finish up the micro relation, we need a way to handle all special cases of

variable updates. We propose the following solution to generate an updated list of

variable bindings.

microVars :: (Show s,Eq s) => [Binding s] -> [Binding s] -> [Binding s]

microVars vs vsOld

| nonEmpty nonmatches = error $ "Attempted to assign unknown vars "

++ show nonmatches

| nonEmpty dups = error $ "Attempted the following simultaneous"

++ " illegal assignments: " ++ show dups

| otherwise = vs ++ unchanged

where

nonmatches = [ v | v <- vs, notElem v vsOld]

dups = [ v | v <- vs, length (filter (==v) vs) > 1]

unchanged = [ v | v <- vsOld, notElem v vs]

The third case is the simplest. It says that, in the general case, we want to

combine the updated list of bindings along with the original bindings not just up-

dated. However, we need to take account for cases where unusual update behaviors

are requested.

First, for assignment statements contained within nodes, there has been no

check thus far to confirm that the assigned variable is within scope of the node.

Should a program like the following one attempt to write to an unknown variable,

the interpreter will produce an error.
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Node "BadAssign"

[Var "i" $ int 0]

[]

(Assignment "xyz" $ bool False)

The microVars function can handle cases of simultaneous updates to a single

variable. PLEXIL throws an error when two assignment actions attempt to change

the same variable in a micro relation, as in the following example.

Node "BadXXAssigns"

[Var "x" $ int 0]

[]

(NodeList [

Node "X1" [] [] (Assignment "x" $ int 1),

Node "X2" [] [] (Assignment "x" $ int 3)

])

The dups list holds all new bindings that match at least one other binding. In

this case, both assignments to x will be added to this list, resulting in an error.

However, we can still make simultaneous transaction-style updates as expected in

cases like this example taken from [5].

Node "XYSwap"

[Var "x" $ int 1, Var "y" $ int 2]

[]

(NodeList [

Node "XY" [] [] (Assignment "x" $ VarIntEx "y"),

Node "YX" [] [] (Assignment "y" $ VarIntEx "x")

])

With this example, both assignments should execute simultaneously. When

they do, they values of x and y will be appropriately swapped.



60

4.3.3 Level 3: Quiescence Relation

PLEXIL defines the quiescence relation as the repeated application of the micro

relation on the internal state until reaching a normal form. A normal form is

obtained when executing the micro relation no longer produces an effect, such as

nodes changing status or variables getting updated.

Executing until normal form is referred to as running to completion [6]. Effects

in the external world cannot be determined programmatically, thus are a source

of non-determinism in PLEXIL programs. In order to minimize the program vari-

ability, the executive attempts to maximize the change in internal structure for

each given state of the external world.

Thus, we can define the quiescence relation in the following manner:

quiescence :: (Show s, Eq s) => PlexilEnv s c -> PlexilEnv s c

quiescence e = fst $ until (not . snd) (micro . fst) (e,True)

This says that, given an initial PlexilEnv e, continually update e using the

micro relation until it produces no changes. Recall that the micro relation pro-

duces a data tuple, an updated PlexilEnv with a Bool flag noting if any changes

occurred. The definition above uses the initial state (e,True), executes the mi-

cro relation on e to produce the intermediate state (e’,b’), and then recursively

continues executing micro steps on e’ unless b’==False.

It is important to note that with this definition of quiescence, we are not

guaranteed termination of all PLEXIL programs. We could imagine the following

program:
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Node "Endless"

[Var "b" $ bool False]

[RepeatWhile $ BConst True]

(Assign "b" $ bool True)

This node does not need to communicate with the external world. So, the node

will continually update its status with its repeat condition always set to True. This

is a simple case where a program will never break out of the quiescence loop.

A few alternatives have been proposed to work around the issue of infinite

looping [6]. These solutions limit the number of times the micro relation is executed

in a single cycle of quiescence. This could range from a single micro relation to

as many as necessary such that every node changes at most from an initial status

back to the same status (i.e. Waiting to Waiting). Any of these modified versions

of quiescence could be easily implemented with minor adjustments to the structure

of the described interpreter.

4.3.4 Level 4: Macro Relation

The macro relation is the first semantic level that is affected by the external world.

It controls sending commands to the simulator and updating the resulting repre-

sentation of the external world for use in the lower levels of semantics.

We can begin with a function for sending commands to the external world.

addCommands :: Eq c => [BoundAction s c] -> ExtWorld s c -> ExtWorld s c

addCommands as w = w {comms = comms w ++ cs’}

where cs’ = [c | c@(_,Command x _) <- as, hasKey x $ commlist w]

hasKey k = isJust . lookup k
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The addCommands function appends a new list of commands, stored in a BoundAction

type, to the external world’s list of running commands. When setting the value

of cs’, we can use a list comprehension with a filter to only add commands that

are defined in the world’s commlist, or list of known commands. This will let us

simplify the following functions.

Next, we need a way to receive updated sensor values after letting the simulator

run for some amount of time. We can solve this by defining the following function.

execComms :: Eq c => TimeSpan -> ExtWorld s c -> ExtWorld s c

execComms t w | null $ comms w = w

| otherwise = w’ {comms = comms’}

where

(c@(node,Command cid ps) : cs) = comms w

(Just f) = lookup cid $ commlist w

(ss’,ret) = f t ps $ sensors w

w’ = execComms t w {comms = cs, sensors = ss’, commrets = rs’}

rs’ = maybe (commrets w) (\r -> ((node,r) : commrets w)) ret

comms’ = maybe (c:comms w’) (\_ -> comms w’) ret

Thi execComms function begins by extracting the first element from the world’s

list of commands. It converts this to a CommandFunction f, defined by the simu-

lator. This function is executed to give intermediate sensor updates. The function

execComms is then recursively called on the remainder of the commands until the

list is empty. Each command will be added back to the list of commands unless it

had a return value. In this case, the return value is bound by the node state and

added to the list of return values.

Up to this point, we have a way to execute the quiescence relation for updating
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internal state and functions to control external simulator actions. Now we need to

tie these two parts together to complete the macro relation.

To have a simulator that functions in real-time, we need access to the sys-

tem clock. Haskell provides us with a ClockTime data type with the function

getStateTime :: IO ClockTime to read the computer’s current clock time. In

order to show the progress of an executing plan over time, we will introduce the

following state transformation monad.

type PlexilMonad = StateT ClockTime IO

The StateT monad allows us to store a value of type ClockTime, which we

can update by reaching down to the IO monad. We could thus read the type

PlexilMonad PlexilEnv as the status of the PlexilEnv at a given ClockTime.

getSecDiff :: ClockTime -> ClockTime -> Float

getSecDiff c d = f

where

t = diffClockTimes c d

f = ((/ 10^12) . fromInteger . tdPicosec) t + (realToFrac . tdSec) t

The helper function getSecDiff compares two ClockTime values. We use

diffClockTimes to get a comparison, and then extract the difference in seconds.

We will use the following function to control the application of a single entire

iteration of the macro relation.

macro :: (Show s, Eq s, Eq c) =>

PlexilEnv s c -> PlexilMonad (PlexilEnv s c)
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The macro function is best explained when split into its parts. Monadic compu-

tations will execute commands iteratively, so we can follow the order of execution.

macro e = do

e’ <- return $ quiescence e

liftIO $ threadDelay 10000 -- 1/100 second

...

First, the quiescence relation updates our internal state. The result is stored

in e’ for later use.

The next line is optional. threadDelay 10000 forces the executive to pause

for 1
100

second, which is an external system command that must be run in the IO

monad context. Without this line, execution traces generally grow quickly. This

way, there will be at most 100 iterations of the macro relation each second.

macro e = do

...

cthen <- get

cnow <- liftIO getClockTime

put cnow

...

Here, we are accessing the ClockTime stored within the state of the PlexilMonad.

We update the old stored time cthen with the current value cnow obtained by call-

ing getClockTime.

macro e = do

...

ext’ <- (return . execComms (getSecDiff cnow cthen) .

addCommands (commands e’)) $ external e’

...
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Given the current external world, we add commands sent from the quiescence

relation. Then, we simulate command execution over the span of time that passed

since last execution. This gives us a new copy of the external world to use in the

next iteration.

macro e = do

(return . updateExt ext’) e’

where updateExt e p = p {external = e, commands = []}

We finish the macro relation by updating the PlexilEnv external world with

the newly simulated version. We can also remove all commands passed up from

quiescence so they will not be run again in later iterations.

4.3.5 Level 5: Execution Relation

Execution of a PLEXIL plan is defined as the repeated application of the macro

relation until all nodes have finished execution. We will begin simulating this

execution with the executeN function.

executeN :: (Show s, Eq s, Eq c) =>

Int -> PlexilEnv s c -> PlexilMonad [PlexilEnv s c]

executeN i e

| i==0 || allNodesFinished = return [e]

| otherwise = liftM (e:) $ macro e >>= executeN (i-1)

where

allNodesFinished = all (\x -> x == Inactive || x == Finished)

(map status $ states e)
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Each iteration of executeN will execute one step of the macro relation and add

the resulting state to a recursive list of states. This allows us to gather an entire

trace of an executing plan.

There are two base cases given in the first guarded statement. First we include

an Int parameter to the function. This controls the maximum number of iterations

allowed to ensure we only run a finite number of macro steps in the simulation.

Second we can stop execution when all nodes are have either Inactive or Finished

status. In this case, no conditions can force any node to reactivate, so we can use

a form of short-circuit evaluation to exit early.

The next function trace handles wrapping and unwrapping executeN in the

PlexilMonad.

trace :: (Show s, Eq s, Eq c) =>

PlexilEnv s c -> Int -> IO [PlexilEnv s c]

trace e i = getClockTime >>= evalStateT (executeN (max i 0) e)

To finish getting a trace of a plan execution, we need to attach our initial state

to the computer’s current time. The function trace will get the initial ClockTime

from the system, execute a given number of iterations, and extract the result from

the PlexilMonad state through evalStateT.

We can then opt to read portions of the trace with functions like the following.

execute :: (Show s, Eq s, Eq c) =>

PlexilEnv s c -> Int -> IO (PlexilEnv s c)

execute e = liftM last . trace e

traceExt :: (Show s, Eq s, Eq c) =>
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PlexilEnv s c -> Int -> IO [ExtWorld s c]

traceExt e = liftM (map external) . trace e

The first function, execute, will return only the final element of the trace,

instead of the list of intermediate states. The other function, traceExt, filters the

trace environments to only their external world data.
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Chapter 5 – The External World

Rover

External

Figure 5.1: PLEXIL simulator, controlling effects in the external world

So far, we have discussed the necessary components to design a PLEXIL plan

and update its state internally. We have included a representation for holding data

of the external world, but we have yet to define a simulator for an external system.

This chapter discusses the components necessary to describe an external world

representation (see Figure 5.1). We will set up the language to represent the

hardware, then show some potential functions that affect the status of the world.



69

5.1 Naming Sensors and Commands

In order to define an external world, we need a way to describe the connections

with the PLEXIL interpreter. That is, we only need to know the parts of the

external world that a PLEXIL plan can see.

Recall that in previous chapters, our data types have included type parameters.

For instance, we had the type Node s c. In this case, the s and c are the data

type for sensor names and command names, respectively.

There are a few different ways to define names for sensors and commands.

PLEXIL assigns the String type to these, which has low overhead in predetermin-

ing command name definitions and allows for dynamic command execution. For

instance, calling a command with "Check" + systemName could be used to run

multiple system verification commands, only by changing the value of systemName.

However, this becomes a hassle for static typing of PLEXIL plans. We will opt to

define our own data types, as shown below.

Let us use a simple rover as our example. The rover can be equipped with some

wheels, a few cameras, and an internal heater.

data RoverSensor =

PosX | PosY | WheelStuck | MoveDist

| DirX | DirY | LocalTemp | NumPics

deriving (Eq,Show)

In order to move, we allow a program to track the rover’s location. PosX and

PosY store the current position, while DirX and DirY give relative, component-

wise direction vectors in X and Y directions, respectively. We can also include
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sensors WheelStuck to check if the wheels can spin and MoveDist to record the

total distance moved since the start of the last movement command.

Along with sensors for movement, we add on two more sensors to the list. The

first, LocalTemp, stores a temperature reading from an on-board thermometer.

The other is NumPics, which is a counter for number of pictures taken. This is

useful to store in case, say, there is limited storage space for images.

With these sensor names defined, we can use expressions like LookupFloat

PosX in a program to access sensor values.

For commands, we give the following data type to define potential command

names.

data RoverCommand =

Drive | Turn | TakePic | TakePancam | RunHeater

deriving (Show,Eq,Enum)

These commands allow us to activate the hardware components on the rover.

Drive is meant to move the rover straight forward, and Turn will represent a change

in direction. TakePic and TakePancam each activate their own specific cameras,

while RunHeater turns on a heater.

The command name constructors only store names with no list of command

parameters. In this design of PLEXIL, recall the constructor definition Command

c [ExprType s] for the Action data type. We can see the ExprType parameters

are kept separate from the command name.

We could instead add parameters of the RoverCommand constructors. For in-

stance, we could define the constructor TakePic (Expr s Int), where the addi-
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tional parameter defines the number of pictures to take. However, this ties the

command name data type to a specific implementation, which we want to leave as

general as possible for now.

5.2 Defining Behaviors

A behavior is an action that transforms sensor values over time.

type CommandFunction s = TimeSpan -> [ExprType s] -> [Sensor s] ->

([Sensor s], Maybe (ExprType s))

With this type definition, we can see that a command takes, among other

values, a list of sensor values and produces a new list of updated sensor values.

The result is a tuple, with the second element being a potential return value. The

return value is used to signal the end of a command execution on the simulator.

There are two other parameters to consider in the definition. The first is

a TimeSpan, which is a type synonym for Float that represents the number of

seconds the behavior should be applied. The second parameter, [ExprType s], is

the list of command arguments defined in the PLEXIL plan. As described earlier,

this parameter list could be added to the command name data type, which would

affect this part of the type definition.

To help design some CommandFunction definitions, we first include some helper

functions.

remove k = filter (\s -> fst s /= k)

insert s@(k,_) = (s:) . remove k
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The function remove uses the name of a key to throw out all pairs of a dictio-

nary, a list of key-value tuples, that have a matching key. The insert function

uses this definition to add a tuple to a dictionary, replacing any old occurrences of

the key with the current value.

getConst :: Expr s a -> a

getConst (BConst x) = x

getConst (IConst x) = x

getConst (FConst x) = x

getConst (SConst x) = x

getConst _ = error "Rover has a non-resolved value!"

Values stored in sensors will be wrapped in the ExprType s union type, which

itself will contain an element of type Expr s a. The getConst function just helps

us unwrap the innermost layer of the value, exposing the raw value. Note that we

do not have access to the internal PlexilEnv in the simulator, so we cannot use

the eval function. We will expect that all sensor values will always be constants,

not unevaluated expressions, and this function will throw an error if this is ever

not the case.

sensToVal unwrap ss = getConst . unwrap .

fromMaybe undefined . flip lookup ss

Given a dictionary of sensors and a sensor name, the function sensToVal finds

the corresponding sensor value and extracts the value out of the ExprType wrapper.

In case no valid value was found, the function will throw an undefined error. The

user must supply the unwrapper for getting from ExprType to Expr values, as seen

below.
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bval :: Eq s => [Sensor s] -> s -> Bool

...

bval = sensToVal (\(BoolEx x) -> x)

ival = sensToVal (\(IntEx x) -> x)

fval = sensToVal (\(FloatEx x) -> x)

sval = sensToVal (\(StringEx x) -> x)

These four functions give an unwrapper to sensToVal. To satisfy Haskell’s type

system, each possible value type needs its own function. Therefore, we include bval

for Bool values, ival for Int values, and so on.

We need a default dictionary of sensors at the beginning of execution. We will

use the following list.

roverSensors = [

(PosX, float 0),

(PosY, float 0),

(DirX, float 1),

(DirY, float 1),

(MoveDist, float 0),

(NumPics, int 0),

(LocalTemp, float 0),

(WheelStuck, bool False)

]

We will use this list to read current sensor values. Then, we can change the

values to simulate effects occurring in the external world.

With this set of helper functions, we can begin defining behaviors in a CommandFunction

context. Let’s look at some possible effects we may like to include in our program.

takePic :: CommandFunction RoverSensor
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Figure 5.2: Distance calculations represented with Euclidean vectors

takePic _ _ ss = (ss’,Just $ int 0)

where ss’ = insert (NumPics, int $ 1 + ival ss NumPics) ss

In the takePic function, we will immediately add a new photo to memory.

For our given list of sensors, this means updating the number of pictures currently

taken and stored. We can use ival ss NumPics to read the current number of

pictures. With this, we can increment the value of NumPics by adding one to its

current value and using insert to insert the updated tuple back into the sensor

list. The result, (ss’,Just $ int 0), will return the updated sensors with a

value of 0, indicating no errors during execution.

The next function we define will control movement of the rover. We are storing

component-wise direction vectors DirX and DirY in our sensor list. To calculate

the distance traveled, as shown in Figure 5.2, we will need the following formulas.

Given X = 〈x, 0〉, Y = 〈0, y〉, time t, speed s:
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dS = st

dX = st
x√

x2 + y2

dY = st
y√

x2 + y2

With these formulas, we can begin calculating updated values for sensors.

move :: CommandFunction RoverSensor

move t args ss = (ss’, ret)

where

[dirX,dirY,posX,posY,dist] = map (fval ss)

[DirX,DirY,PosX,PosY,MoveDist]

...

The move function starts by reading the necessary values from the current

sensor values.

move t args ss = (ss’, ret)

where

...

spd = 1 -- For now, assume speed 1 unit/second

len = sqrt $ dirX*dirX + dirY*dirY

dS = spd * t

dX = spd * t * dirX / len

dY = spd * t * dirY / len

...
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Here we use the formulas defined earlier to calculate the total distance moved

dS and the component-wise distances dX and dY. For now, we are assuming the

rover speed is 1 meter per second, though this can be changed within this function

later as necessary.

move t args ss = (ss’, ret)

where

...

ss’ = foldr insert ss [(PosX,float $ posX + dX),

(PosY,float $ posY + dY),

(MoveDist,mv)]

endDist = case args of

FloatEx x:_ -> getConst x

_ -> 1

(mv,ret) = if dist + dS <= endDist

then (float $ dist + dS, Nothing)

else (float 0, Just $ int 0)

The last part of move prepares the result values. The updated position values

get inserted into the sensor list to produce the output ss’ list. The value endDist

is how far the rover should move, which will either be the only parameter value or

a default value of 1 (meter).

Based on the value of endDist, we can determine whether or not the rover

has finished executing the Drive command. The values assigned to mv and ret

show that, should the total distance driven since starting the latest call to Drive

be greater than endDist, we can return a success value of 0 and reset the value of

MoveDist for the next call to Drive. Otherwise, we produce no return value and

continue accumulating the distance travelled thus far.
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Once we get every CommandFunction defined for our simulator, we can put

them into a dictionary, as seen below.

roverCommands = [

(Drive, move),

(TakePic, takePic),

(TakePancam, takePic),

...

]

Recall that we included the parameter commlist in the ExtWorld data type.

This is a list of tuples with command name and CommandFunction, which is used

as a dictionary to access simulator behaviors from the PLEXIL executive. We

can add new tuples to the commlist as new functionality is generated, and the

addCommands function defined in Section 4.3.4 uses this list to communicate the

executive’s output commands to the simulator.

Suppose that we want to simulate the move function in a less forgiving terrain.

We could make a new description of the function to insert issues into the simulator.

move2 :: CommandFunction RoverSensor

move2 t args ss

| posX > 2.5 = (insert (WheelStuck, bool True) ss, Just $ -1)

| otherwise = move t args ss

where posX = fval ss PosX

If the rover ends up traveling into an area where it should not go, we could force

the wheels to get stuck. In the above case, this will occur anywhere the rover’s

position in the X direction is beyond 2.5. Note that we do not care what is causing

the issue, be it rough terrain or a rock, as long as the effect is the same.
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We can arbitrarily update these functions to design different effects of the

simulator. By editing the command list in the representation of the external world,

we can change the description of the external environment.

5.3 Sample Programs

This section will cover some definitions of PLEXIL nodes and plans that represent

the execution of a K10 rover. We will begin with some node definitions.

driveOneMeter =

Node "OneMeter"

[]

[]

(Command Drive [float 1])

The node driveOneMeter immediately calls the Drive command. It should

end when the simulator finishes execution.

getPicture =

Node "TakePic"

[]

[(Start, (VarStatus "OneMeter" ==: cFinished)

&&: (VarIntEx "pictures" <: IConst 10))]

(Command TakePic [])

The getPicture node will tell the simulator to take a picture. We can see

it contains an additional Start condition that forces it to only execute when the

previous node is done executing and as long as a local variable pictures doesn’t

get too large.
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countPics =

Node "Counter"

[]

[(Start, VarStatus "TakePic" ==: cFinished),

(Pre, VarIntEx "pictures" <: IConst 10)]

(Assignment "pictures" (IntEx $ VarIntEx "pictures" +: IConst 1))

The countPics node increments the local pictures. This will only occur after

we have taken a picture in getPicture node.

Now, we can combine these nodes to make a full program.

safeDriveProgram =

Node "SafeDrive"

[Var "pictures" (int 0), Var "distance" (float 0.0)]

[(Invariant, LookupBool WheelStuck ==: cFalse),

(RepeatWhile, LookupBool WheelStuck ==: cFalse)]

(NodeList [driveOneMeter, getPicture, countPics])

This node, safeDriveProgram, is the root node for this example, based off an

example from [5]. It creates all the internal variables necessary for this program

and puts all the previous nodes into a NodeList. It loops the program as long

as the rover can drive (the wheels are not stuck). We also include an Invariant

condition, which causes the program to quit all subnodes immediately if it reaches

the error state of being stuck.

To use this plan, we first need to define the external world. We use the following

world definition for rovers.

roverExtWorld = World roverSensors [] [] roverCommands
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We put the default lists of sensors and commands available to a World construc-

tor, along with empty lists for the initial command calls and command returns.

With an external world, we can define an entire PlexilEnv.

safeDriveEnv = plexilEnv safeDriveProgram roverExtWorld

Recall back to Section 4.1.4, where we defined the plexilEnv function. This

builds the framework for executing PLEXIL plans in the executive. We can run

the program now with any of the execution functions defined in 4.3.5. For instance,

we could try running the following traceExt function.

> traceExt safeDriveEnv 150

[external =

[(PosX,0.0),(PosY,0.0),(DirX,1.0),(DirY,0.0),(MoveDist,0.0),...]

[]

[]

,external =

[(PosX,1.0296e-2),(PosY,0.0),(MoveDist,1.0296e-2),...]

[("OneMeter",Command: Drive(1.0))]

[]

,external =

[(PosX,2.5093e-2),(PosY,0.0),(MoveDist,2.5093e-2),...]

[("OneMeter",Command: Drive(1.0))]

[]

,

...

,external =

[(PosX,1.781234),(PosY,0.0),(MoveDist,0.7732531),(NumPics,2),...]

[("OneMeter",Command: Drive(1.0))]

[]

]
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As the program executes, we can build up a stack trace of the effects of program

execution. By using the traceExt function, we can focus on the external effects

of the PLEXIL plan. In this case, we can see the values of PosX and MoveDist

changing as the Drive command is executed.

We could also try running with program on a different external world. Recall

the definition of the move2 function, where the wheels got stuck if the X position

of the rover exceeded 2.5. We can design a different PlexilEnv that uses this

external world definition.

roverExtWorld2 = roverExtWorld {commlist = list}

where list = [(Drive, move2),(TakePic, takePic)]

safeDriveEnv2 = plexilEnv safeDriveProgram roverExtWorld2

Once again, we can execute the program with a different external world to see

the changes in program behavior.

> execute safeDriveEnv2 300

PlexilEnv {

internal =

Var pictures = 2

Var distance = 0.0

states =

State:

ID: "SafeDrive"

Status: Finished

Outcome: Failure

State:

ID: "OneMeter"
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Status: Finished

Outcome: Failure

State:

ID: "TakePic"

Status: Finished

Outcome: Skipped

State:

ID: "Counter"

Status: Finished

Outcome: Skipped

external =

[(WheelStuck,True),(PosX,2.5042782),(PosY,0.0),(MoveDist,0.50297904),

(NumPics,2),(DirX,1.0),(DirY,0.0),(LocalTemp,0.0)]

[]

[]

}

By using the execute function, we can examine the final program state in full.

From this result, we can see that the WheelStuck sensor did indeed get set to True

once the rover’s PosX went over 2.5 units. The nodes shifted to a Finished status,

with either Failure or Skipped outcomes. This shows us that something went

wrong, and it provides details to allow us to examine what might have caused the

issue.
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Chapter 6 – Closing Remarks

This thesis has presented a new implementation of the language PLEXIL with the

semantic layers of the Universal Executive embedded in Haskell. The implemen-

tation followed the formal semantics defined by NASA to produce accurate results

from execution.

The language description was extended by a simulator definition. The simu-

lator included the names of commands and sensors available on a K10 rover, as

well as functions to simulate the effects of commands in the external world. The

simulator definition was abstracted from executive to allow future users to develop

new simulated external environments for further testing separate from the PLEXIL

executive.

This design can be used to test the theories on design decisions, discussed in

Section 1.1. The project team wants a way to see if altering design decisions in

a complicated system can produce meaningful messages about potential issues in

a hardware/software design. Both the design of PLEXIL plans and the external

world interfaces can be added into the object model representation. Whenever

a change is made in either the hardware and software design, the team can use

this PLEXIL simulator to check for errors that occur during program execution.

Should any errors occur, they can see if their object model would catch these errors

in order to prevent them from occurring in real tests. This simulation allows them
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to verify the effectiveness of their model.

6.1 Project Issues

One of the design goals was to allow for quick translation from PLEXIL plans in

Haskell to Standard PLEXIL formatting. This would allow code to better integrate

into NASA’s open source system as an additional testing tool. The simplest way

to translate plans is to add pretty printing to all the Haskell data types. Pretty

printers are functions that convert data type values to nicely formatted Strings.

This design goal ended up proving to be a major roadblock for refactoring the

PLEXIL data type definitions. This PLEXIL definition is notably full of overhead

compared with similar languages embedded in functional languages, such as those

in Section 2.2. Haskell, along with other functional languages, can use higher-order

functions as a powerful abstraction tool [13]. Higher-order functions are functions

that take other functions as arguments [28]. Higher-order functions can often lead

to elegant solutions, but they cannot always be used.

However, functions in Haskell cannot be natively printed. The Haskell compiler

GHC [9] will display a message like No instance for (Show (t -> t1)) when a

user tries to print a function by name. By enforcing that PLEXIL plans embedded

in Haskell are printable, the available options for data types becomes severely

restricted.

This project also ran into an issue with finding technical data on the NASA’s

integration of PLEXIL on the K10 rovers. However, PLEXIL avoided using a
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database of command names during execution to improve execution speed [23]. As

such, no database of the available command names was ever generated and pub-

licized. The commands listed in Section 5.1 were based on examples either found

online or in earlier PLEXIL papers. These examples gave a peek into commands

available for a K10, but it was difficult to design an accurate system without a

more comprehensive list of commands.

6.2 Future Work

There are a couple of ways this work could be expanded. First, it would be useful

to include graphical output of plans in execution.

Currently, the output of this PLEXIL simulator is a textual execution trace.

These traces could be used as keyframes for generating animated graphical versions

of program execution.

NASA recently added a RoboSim project to their open source release. It is

based on the OpenGL graphics library. The program displays rovers in a 2D

environment, and it allows interactive input of simple commands such as driving

in four cardinal directions. However, it does not currently support the input of

complex PLEXIL plans into its simulations.

The SVG image format includes the option for designing animated images.

This would be a potential lightweight graphical system for displaying the results of

PLEXIL execution. SVG animation is not currently supported by many programs,

but should this change it would be a viable option.
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Also, this design for PLEXIL execution focused around implementing a simula-

tor for the K10 rover. As NASA begins to implement more hardware systems with

PLEXIL, it is recommended to produce a new simulator interface for describing

these devices to verify the accuracy of the executive.

The PLEXIL executive could also be extended to use multi-threading in the

future. The macro semantics of the executive are still closely tied to the design of

the simulator. Using multi-threading in Haskell could allow for better separation

of these two devices, which can lead to a wider variety of simulator designs.
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[5] G. Dowek, C. Muñoz, and C. Păsăreanu. A formal analysis framework for
PLEXIL. In Proceedings of 3rd Workshop on Planning and Plan Execution
for Real-World Systems, September 2007.
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