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CONVERGENCE OF POSITIVE OPERATORS

I. INTRODUCTION

§1. Historical Remarks

The ordinary Riemann integral can be regarded as an extension

of the integral of a continuous function to a larger space in the follow-

ing way. Let (1,03,C denote respectively the linear spaces of all,

bounded, and continuous real valued functions on [0, 1] . For x in

define

1

P0 x = x(t)dt

then P0 is a linear functional defined on C. Moreover P0 is posi-

tive, i. e., x(t) > 0, x in C implies Pox > 0.

The usual definition of the Riemann integral in terms of the

upper and lower sums yields the following.

THEOREM 1.1. Suppose xE03. Then x is Riemann integrable

if and only if for each n 1, 2, there exist
xnE

C and xnE e such

that

X
n
(0 < x(t) < xn(t), 0 < t < 1,

(ii) P (xn -
xn)

-4-0 as n oo.
0
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If (i) and (ii) are satisfied, then from the positivity of Po it

follows that the numerical sequences {P0 xn} and {P0 xn} both converge

to
1

x(t)dt .

If we set

= Hai P xn = lim POn x
0

n-->co oo

then Theorem 1. 1 yields a subspace (the Riemann integrable func-

tions) such that c Co? C s and P is an extension of
P0

to0? .

This extension procedure has been generalized to other positive

linear functionals [4] and it yields some useful characterizations of

sets of uniform convergence for such functionals. There are applica-

tions to the approximate solution of integral equations by nui: e2ica,1

integration [1] .

We will extend this procedure to more general positive o era-

tors and investigate some applications.

§2. Ordered Vector Spaces

In this section we establish our notation and conventions and

note some standard results which will be used subsequently.

Because of the order theoretic nature of the considerations all

vector spaces are real. Usual y the results can be extended to
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complex spaces by considering real and imaginary parts.

An ordered vector space X is a vector space equipped with a

transitive, reflexive, antisymmetric relation < satisfying the follow-

ing conditions.

If x, y, z are elements of X and x < y, then

x-Fz<y-Fz.

If x, y are elements of X and a> 0, then

x < y implies ax < ay .

The positive cone K in an ordered vector space X is defined by

K = IxE X: x> 01.

Some examples of ordered vector spaces with which we shall be

working are:

00
(1. 1) The set of all real sequences, x = fx 1, where x < yn 1

means x < y , n = 1, 2, .n n
(1. 2) The set B(Q) of all bounded real valued functions f defined

on a nonempty set 0. Here f < g means f(x) < g(x) for all

x in

(1. 3) The set of all measurable functions f defined on some measure

space (0,(1,14. In this case f < g means f(x) < g(x) a. e. .

Whenever we deal with one of these examples, or a subspace,

we use the order relation given above.
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If A is a subset of an ordered vector space X and if x in X

has the following properties:

x> a for all a in A,

z > x whenever z > a for all a in A,

then x is called the supremum. of A and we write x = sup A. The

infimum of A, denoted by inf A, is defined dually. If the supremum

and infimum of {x,y} exist for all x, y in X, then X is called a

vector lattice and we write sup{x, y} = x v y and inf {x, y} = x A y.

If X is a vector lattice, then for each x in X the positive part x+,

the negative part x and the absolute value lxi are defined by

X+ .= X V 0, X = X A 0, x v .

If X is a vector lattice the following relations hold for all x,

y, z in X:

(1.3) x x -x, x x +

-
(1.4) x< y if and only if x < y and y < x

(1.5) I xl < if and only if < x y,
(1.6) lx 4" < 1Y1 11x1 1Y11 < Ix-yl

(1.7) lx++1 < lx lx- Y-1 < lx -

-(1.8) (x + y)+ < x+ + y+ , (x + y) <x +y

(1.9) I (x v z) (y v z)1 < Ix Y1

The above definitions and identities can be found in any stand-

ard reference on ordered vector spaces, for example [13, 15, 17].
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DEFINITION 2.1. An ordered vector space X is an ordered

topological vector space if X is a topological vector space.

Since this definition does not require any relationship to exist

between the order and topological structure, many authors require

some additional restrictions on the space X. However there does

not seem to he any standard definition, and when additional conditions

are needed we shall specifically say so.

If A is a subset of an ordered vector space X, the full hull of

A is defined by

[A] {z E X: x < z < y, x, yE

If A = [A], then A is said to be full.

Suppose X is an ordered topological vector space. The positive

cone K is said to be normal if there if there is a neighborhood basis

of 0 consLting of full sets

The proof of the following useful result can be found in [15, p.

62] .

PROPOSITION 2,1, If X is an ordered topological vector

space with positive cone K, then the following are equivalent.

K is normal.

There is a neighborhood basis of 0 consisting of sets V for

which 0 < x < y and y in V imply x in V.

For any two nets {x3: and {yp: p E I) in X, if



0 <
xP

<
yP

for all p in I and if {Y PE 11 converges to 0,- -
then {x: PE I} converges to 0.

An ordered locally convex space is an ordered topological vector

space equipped with a Hausdorff Locally convex topology. An ordered

norrned (Banach) space is an ordered topological vector space which

is a normed (Banach) space.

The next proposition is proved in [15 p. 63].

PROPOSITION 2. 2. If X is an ordered locally convex space

with positive cone K, then the following assertions are equivalent:

K is normal.

There is a family {pi: iE I} of seminorms generating the top-

ology such that 0 < x < y implies p.(x) < p.(y) for all iE I.

A subset B of a vector lattice X is solid if x in B and

lyl< lxi imply y i.n B. An ordered topological vector space which

is a vector lattice is called a topological vector lattice if there is a

basis of neighborhoods of 0 consisting of solid sets. A vector lattice

is a normed vector lattice if

6

implies 11 x 1< 1101; if X is complete for this norm, X is called a

Banach lattice.

Examples of Banach lattices are:

(1. 10) B(S2) with the supremum norm,

(1.11) c() with the supremum norm, S-2 a compact Hausdorff

topological space,

equipped with a norm 11.11



(1. 12) RIO, 1], the space of Riemann integrable functions on [0, 1]

equipped with the supremum norm,

(1.1 ) L (S2), I < p < , where ) is any measure space.

A map from an ordered vector space X into a vector space Y

is called positive if its maps the positive cone in X into the positive

cone in Y.

Next we give a result 115, p. 86] that guarantees the continuity

of positive linear maps.

PROPOSITION 2.3. If X and Y are ordered topological

vector spaces and if the positive cone in Y is normal and the positive

cone in X has nonempty interior, then every positive linear map

from X into Y is continuous.

COROLLARY 2.1. If X is a toplogical vector space ordered by

a cone with nonempty interior, then every positive linear functional

on X is continuous.

If X is a Hausdorff topological vector space then X can be

completed and the completion of X is essentially unique (cf. [18, pp.

41-48] for the details). A subset A of X is said to be relatively

compact if the closure of A is compact. A subset A of a Hausdorff

topological vector space is said to be precompact if A is relatively

compact when viewed as a subset of the completion of X,

Some authors use the term totally bounded for precompact, but

we will reserve the following meaning for this term.
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DEFINITION 2, 2. Let X be a topological vector space, S a

subset. We say S is totally bounded if for each neighborhood U of

0 in X, there exists a finite subset F of S such that S C F + U.

If X is Hausdorff then S is totally bounded if and only if S is

precompact.

PROPOSITION 2.4. A set S C X is totally bounded if (and ob-

viously only if) for each neighborhood U of 0 in X there exists a

finite set F C X (not necessarily contained in S) such that

S C F + U.

PROOF. Let U be any neighborhood of 0 and V a balanced

neighborhood of 0 such that V + V C U. Then there exist points

x1, in X with S C (x1 + V) U (xr + V). We may assume

+(x. V) n s i 1, r. Select y, in (x. + V) n s, 1, r.

Then xi+VCyi+V+VCyi+U, which implies S is totally bound-

ed.

§3. Summary of Results

In Chapter II the pointwise convergence of positive operators is

examined. A procedure is given that extends a positive operator P

mapping a subspace of an ordered vector space into an ordered Ban.ach

space. It is shown that the extension P inherits some important

properties, involving convergence of operators, of Po. A generaliza-

tion of Korovkints theorem on C[0, I] to an ordered Banach space
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setting is given. Some results involving weak convergence of positive

operators are established and a Korovkin type theorem on L[0, 1] is

presented.

Uniform convergence of positive operators is examined in Chap-

ter III. If P, Pk, k = 1, 2, , are positive operators mapping an

ordered topological vector space X into an ordered topological vector

space Y and Pkx Px for each x in X, then on what sets is the

convergence uniform? The concept of a regular (or P - regular) set

is formulated and it is shown that the convergence is uniform on each

P-regular set. Every totally bounded set is regular and every regular

set is bounded, but the converses are false in general. Other proper-

ties of regular sets are established. For example, regular sets may

be combined in various ways to produce other regular sets. The rela-

tionship between regular sets and sets which are totally bounded in

some locally convex topology is examined. It is shown that every

regular set is totally bounded in some locally convex topology, but the

regular sets in general do not coincide with the totally bounded sets in

any locally convex topology.

In Chapter IV an attempt is made to characterize the regular

sets in specific spaces. For the spaces 0 < p < oo, and c0' the

regular sets are the totally bounded sets. If co is a positive linear

functional on c, then the (p-regular sets are either the totally bounded

sets or the bounded sets, depending on c9 . For L (C2), 1 < p < Go,
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where p,a,p.) is a totally finite measure space, the characterization
*

is more involved. For co in L = L 1/p + 1/q = 1, let OP) =
P

If S is a dominated family in L (C2) such that x(cp)S is totally bound-

ed in L (0), then S is a yo-regular set. Conversely if S is a cp-regu-

lar set, then X(cp)S is totally bounded in L() The P - regu-

lar sets in 11[0, 1], where P is the Riemann integral, are investi-

gated. No characterization is obtained, but several results giving

sufficient conditions for a set to be regular are given. For example,

any bounded set of monotone functions is regular. These results have

important applications to the approximate solution of integral equa-

tions.

Finally, in Chapter V the previous theory is applied to the inte-

gral equation

(3.1) x(t) - x(s)k(s, t)dp,(s) y(t)

where C2 is a compact Hausdorff topological space, p, a finite Baire

measure, k a bounded kernel and y a continuous function. We

assume there is a sequence
{con}

of continuous linear functionals con-

verging pointwise to co, the functional associated with p.. Let p,n be

the Baire measure associated with
con

and xn the solution to

(3. 2) x(t) -
S2

x(s)k(s, t)dp,n(s) = y(t) .
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If k is continuous the concept of a regular set in conjunction with the

theory of collectively compact operator sets yield

(3. 3) xn(t) x(t), as n co, uniformly for t E2,

where x is the solution of (3. 1). If k is not continuous, the exten-

sion procedure of Chapter II is used to extend ca to a space R(C2) con-

taining C(Q,). It is shown that a function x is in R(Q) if and only if

x is continuous a. e. [1.1.j. Again we obtain (3. 3) by means of certain

convergence theorems established in Chapter II, the concept of a regu-

lar set, and the theory of collectively compact operator sets.



II. MONOTONE APPROXIMATION AND
POSITIVE OPERATORS

§1. Extensions of Positive Operators

As we have seen, one can consider the Riemann integral as the

extension of the integral of continuous or step functions to a larger

space of functions. We will show that this same procedure can be

applied to a positive operator defined on an ordered vector space.

THEOREM 1.1. Let
X1

be an ordered vector space, X0 a sub-

space and Y an ordered Banach space with a normal closed positive

cone. Assume P0 is a positive linear operator mapping
X0

into Y.

We define a set X as follows. Given x in X1' x is in X if and only

if, for n = 1, 2, -, there exist
xn,

xn in Xo with

x < x < xn-
P xn - P x 0 as n 00 .

0 On

Then X is a subspace and
X0

CXC X1 The sequences

{Pen} converge to the same limit. Define

nPx = limP X = 11MP X' XE X
0 On

Then Px is independent of the choices of txn) and x} P is

a positive linear operator mapping X into Y.

12
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PROOF. Let {xn}, {xn} be sequences in X0 such that (i) and

(ii) hold. Then for any integers n, m> 1, x x < x so P x0 n
mP x . Let p be any positive integer, then

0

(p,
__n_px)<pxn+p pxn<pxn+p_px

On 0 0 0 0 n+p

so {P0xn} is a Cauchy sequence by Proposition 2. 1 of Chapter I,

whence P0xn y for some y in Y. Then (ii) implies P0xn -> y.

Let {y }, {yn} be two other sequences in
X0

satisfying (i) and
m(ii). Then x < x < y implies Px <Py and, since the posi-

n On 0
tive cone in Y is closed,

limP xn = limP x < limP yn = limPyn .
0 On 0 O

n->oo n->oo

By symmetry, limP0xn = limP0yn and so P is well defined
n->oo n->co

by (iii). If xE X0 take xn = xn x, n = 1, 2, whence X0 C X. If

XE X and x> 0, then 0 < x < xn, n = 1, 2, so Px = limP0 x > 0
n->oo

i. e., P is a positive operator. The fact that X is a subspace and P

is linear follow from these respective properties of
X0

and P0. This

completes the proof.

It is clear from the proof that the extension procedure may be

used on an operator P0 which is positive, but not necessarily linear.

For example if
X0

is a subset of X then X would be a subset con-
1

taining X0 and P a positive operator defined on X extending P0.



It should be noted that the norm on Y was never used in the

proof, in fact the theorem is still true if Y is a sequentially complete,

Hausdorff topological vector space ordered by a normal closed positive

cone. However, if the positive cone has nonempty interior, then Y

is normable [15, p. 67], so little would be gained by this apparent

generality.

If X1 is a topological vector space, then X need not be closed.

To see this let X1 L1[0, 1] , X0 the subspace consisting of the con-

tinuous functions and P0 the Riemann integral. Then X is the set

of Riemann integrable functions which is not closed in L1[0, 1] .

However we do have the following result.

PROPOSITION 1. 1 Assume the hypotheses of Theorem 1. 1

hold and in addition suppose X0, X1 are vector lattices. Then X is

a vector lattice.

PROOF. Suppose x, yE X, x < x < xn, y < y < yn, n = 1, 2, .n
(P0 x" - P0xn) 0, (Poyn - P0yn) 0. Then

n nx v y < xv y< x v y and, by (1.9) of Chapter I,n n
n(xn y) (x

14

n v y) < (x - xn) + (y - yn). This proves xv yE X and
n

so X is a lattice.

The next result shows that, in Theorem 1.1, X is complete in

the sense that another application of the extension procedure yields no

further extension.



subspace and co a positive linear functional defined on X0.
0

fine a set X as follows. Given x in X1' x is in X if and only if,
n .for n = 1, 2, there exist xn, x in X such that

0

x < x< xnn- -
Oxnx .

0 0 n

Then X is a subspace and X0
XC X1' The sequences

{cp0xn} converge to the same number and if we define

(iii) x = limy° xn = lim90nx0
n->co

We de-

15

PROPOSITION 1. 2. Let X0' X' X1' Y' PO' P be as in Theo-

rem 1.1. Define a set
X2

by xE X2 if and only if for each n

there exist xn,
xnE X1

such that x < x < xn, Pxn - Pxn 0. Thenn - -
X = X2.

PROOF. The proof is obvious.

A special case of the extension procedure described in Theorem

1.1 has been used in the approximate solutions of certain integral

equations by numerical integration [2] . It will be applied by us in

Chapter V to a larger class of integral equations.

If, in Theorem 1.1, Y is the real line with the usual topology,

then we have the following special case.

COROLLARY 1.1. Let X1 be an ordered vector space, X0 a

and

then (p(x) is independent of the choices of {xn} and {xn} and is a

positive linear functional defined on X.



§2. Pointwise Convergence of Positive Operators

We wish to investigate the pointwise convergence of positive

operators defined on the spaces X0, X of Theorem 1.1 .

Theorem 2. 1. Let X be an ordered vector space, Y an order-

ed Banach space with a normal positive cone, and X0 a subset of X.

Assume P is a positive operator mapping X into Y such that for

n 1, 2, there exist x, x in X0 with

x < x < xn ,
n

Pxn - Pxn 0 .

Let {Pi: iE I} be a net of positive operators mapping X into Y such

that Fix converges to Px for each x in X0. Then Fix converges

to Px for each x in X.

PROOF. From the inequality x < x < xn there follows
n

Px < Px < Pxn and Px
n

<P x< P x for iE I, n 1, 2, Hence
n

Pix - Px < (P xn - Pxn) + (Pxn - Pxn) , and

P.x - Px > (P.x - Px ) + (Px - Pxn) .

The theorem follows by Proposition 2.1, Chapter I.

Note that neither P, nor P., iE I, was required to be linear.

The positivity was the crucial property.

16



(i)

EXAMPLE 2.1. For x in R[O, 1] let

1

Px = x(t) dt ,

0

Px =
n

k=1

If Pnx -9- Px for all x in C[0, 1], then Pnx -4- Px for all x in

R[ 0, 1] . Most of the usual quarature formulas, Newton-Cotes excepted,

have the above properties.

The next result replaces the operator P with a set of operators.

PROPOSITION 2.1. Let X be an ordered vector space, Y an

ordered Banach space with a normal positive cone. Let
{13.

tES-2}t

be a set of positive maps from X into Y such that for each x in X,

nt .n = 1, 2, t in C2, there exist xnt,
x in X satisfying

x < x< xntnt

Ptxnt - Ptxnt -4- 0, uniformly for t in

iForeach t in 0, suppose {P. : E I} is a net of positive operators

mapping X into Y such that for each x in X and each n,

P x Pxnt , uniformly in t,it nt t

Pitxnt -4- P xnt uniformly in t .
t

Then for each x in X

(v) P. x Ptx , uniformly for t in .

w x(t ), w > 0, 0 < t < 1' n 1, 2,nk nk nk nk

17



18

PROOF. The proof is the same as that for Theorem 2.1 except

for the added dependence on t.
*

DEFINITION 2.1. Let X be a normed linear space and X its

normed dual. We say that a subset A of X is norm-determining if

for each x in X we have

X I sup{ If(x) I fE A, Hf = 1} .

*
For example X is a norm-determining subset of itself. If S2

is a compact metric space, then the point evaluation functionals corn-

prise a norm-determining subset of C(2). If X is a normed linear

space ordered by a normal positive cone then each continuous linear

functional can be written as the difference of two positive linear func-

tionals [15, p. 72], so there exists at least one subset A of Y con-

sisting of positive functionals such that A - A is a norm-determining

set.

PROPOSITION 2. 2. Let X be an ordered normed linear space

and C2 a set of positive linear functionals such that 0-S2 is a norm

determining subset of X. Suppose P is a continuous positive linear

map from X into X. For x in X, n 1, 2, tEC2, assume there

exist xnt, xnt such that

x < < xntnt

t(Pxnt Pxnt) 0 as oo, uniformly for t in S-2.
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Let
{Pi:

E II be a net of continuous positive linear operators map-

ping X into X such that for each x in X and each n we have

t(P.x t(Px) , uniformly for t in CZ ,

nt nt

ntt(P.: t(Pxnt) , uniformly for t in S2

Then P.x Px for each x in X.

PROOF. We define (p = Pt, (p , = P. t' t in Q, i in I. Ob-t

serve that (p , (p. are positive continuous linear functionals on X and
t

we can apply Proposition 2.1 to obtain

t(P.x Px) 0, uniformly for t in 042

Hence PxIl sup t (P.x - Px) -> 0.
lit1H-11
tEQ-C2

As a special case of this theorem we have the following result.

COROLLARY 2.1. Let X be a normed linear space of bounded

real functions x(t), tc S, with the sup norm. Let P be a positive

linear operator on X into X. For each x in X, n = 1, 2, and t

in S, assume there exist x , xntEX such thatnt

x < x xntnt -
(Pxnt)(t) (Pxnt)(t) 0 as n 00, uniformly for t in S.

Let
{1D1:

iE I} be a net of positive linear operators mapping X into

X such that for each x in X and each n,



(P.x )(t) (Px )(t)' uniformly for t in S,lilt nt

(P.x.nt)(t) (Px )(t) , uniformly for t in S.

T -henIIP.x Pxli 0 for each x in X.

PROOF. For t in S let
ft in X be point evaluation at

and set 0 = t E S} {0}. Then apply Proposition 2.2.

§3. Generalizations of Korovkin's Theorem

We now prove a result which generalizes Korovkin's theorem

[12, p. 14] to an arbitrary ordered Ba,nach space.

THEOREM 3.1. Let X be an ordered Banach space, X a sub-

space and 0 a set of positive continuous linear functionals in X

such that 0 -0 is a norm-determining subset of X. Let P be a

continuous, positive linear map from X into X. For each x in X,

n = 1, 2, ., t in 0, assume there exists
xnt, xnt in X such that

0

x < x < xnt,nt

(ii) t(Pxnt) - t(Px ) 0 as oo, uniformly for t in 0, and,nt

for each x in X and each n,

{xnt: tEC2}
{xnt: tE0} are totally bounded.

Let {Pk} be a sequence of continuous, positive linear operators

X into X such that

(iv) P x - Px 0 as k co, for each x in Xo.

(i)

20



Then HPkx - Px11 0 as k oo, for each x in X.

PROOF. Since Pkx Px for each x in
Xo

and X is a

Banach space, the uniform boundedness principle implies that the

convergence is uniform on totally bounded subsets of Xo; in particu-

lar, as k co,

Pkxnt Px I
ntl, -0.0 for each n, uniformly in t,

I I Pkxnt
nt

- Px I I

-0.0 for each n, uniformly in t.

Therefore the hypotheses of Proposition 2. 2 are satisfied and so

11Pkx Px11 -O for each x in X.

COROLLARY 3.1. Let X be a Banach space of bounded real

valued functions x(t), t in S, with the sup norm and P a positive

linear operator on X into X. Suppose X0 is a subspace such that
ntfor each x in X, n 1, 2, t in S, there exist xnt,

x X
0

with

x < x< xnt
nt

(Pxnt)(t) - (Pxnt)(t) 0 as n oo, uniformly for t in S,

and for each x in X and each n

{xnt:
t E S} and {xnt: t E S} are totally bounded.

Let {Pk} be a sequence of positive linear operators on X into X

such that

21



(iv) IPkX Px1 I 0 for each x in X0.

Then P II 0 for each x in X.

This Corollary is due to Anselone [4]. Korovkin's monotone

operator theorem is a special case.

COROLLARY 3. 2. (Korovkin) Let Pk, k = 1, 2, be positive

linear operators mapping C[0, 1] into itself. If Pkx -> x, as k oo,

for the three functions x(t) = 1, t, t2, then Pkx as k co, for

every x in C[0, 1].

PROOF. Let X = C[ 0, 1], X0 the subspace spanned by the

three functions x(t) = 1, t, t2. For each x in X and n = 1, 2, .,
there exist xnt, x

nt in X of the forms
0

(3.1)
xnt(s) x(t) - 1/n - a (s - t)2

(3. 2)

such that

(3. 3)

nt(s) = x(t) + 1/n + a (s - t)2x

x < x < xntnt - -
This follows from the uniform continuity of each x in X. Note that

nt
x (t) - x (t) = 2/nnt

and that, for each x and each n, the sets

xnt: 0< t<1}, {xnt: 0 < t < 1}
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are bounded and equicontinuous, hence totally bounded. Therefore

the result foiwws from Corollary 3.1 with P I.

We now give some results concerning weak convergence of posi-

tive operators. If X is a Banach space and x xE X, n 1, 2,

we shall denote weak convergence of the sequence {xn} to x by

x x. The proof of the first result is similar to that of Theorem

2. 1,

PROPOSITION 3. 1. Let X be an ordered vector space, Y

ordered Banach space, and X C X. Assume P is a positive oper-

ator mapping X into Y such that for n = 1, 2, there exist xn,

xnE X0
with

(i)

(i)

P(xn - x ) 0 .

Let {P. ° lE I} be a net of positive operators mapping X into Y

such that P.x Px for each x in X . Then P.x Px for each x
1 0

in X.

THEOREM 3. 2, Let X be an ordered vector space, Y an

ordered Banach space, 0 a set of positive continuous linear function-

als on Y and
X0

C X. Let P be a positive operator on X into Y.

For each x in X, n= 1, 2,and t in &-2, assume there exist xnt,
ntx in

X0
such that

nt
x < x < x

23
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t[Pxnt - Pxnt] " 0 as /1 00

Let be a net of positive operators on X into Y such that

t[Pix - Px1 0 for each x in X' t in 0.
0

Then t[P.x Px[ ) for each x in X, t in C2.

PROOF. From (i) we obtain Px < Px < Pxnt, P.x < P,x <nt nt 1

P.xnt, iEl, ti2, n 1, 2, From this we obtain

nP] < t[P.xt Pxnt] + t[Pxnt Pxnt],

t[P.x Px] > t[P.x - Px] + t[Px - Pxnt],nt nt nt

and the theorem follows from (i) and (ii).

COROLLARY 3. 3. Let {Pk} be a sequence of positive linear

operators mapping C[0, 1] into itself. If the norms 11Pk11,

k = 1, 2, are uniformly bounded and (Pkx)(t) x(t), 0 < t < 1,

for the three functions x(t) 1, t, t2, then (P x)(t) x(t), 0 t <_ 1,

for all_ x in C[0, 1].

xPROOF. This follows from Theorem 3. 2, where xnt,
nt are

defined by (3.1), (3. 2) respectively and the fact that for bounded

sequences in C[0, 1], weak convergence is equivalent to pointwise

convergence.

COROLLARY 3.4. Let {Pk} be a sequence of positive linear

operators mapping C(- oo , oo) (the space of continuous functions defined

on the real line) into itself. Suppose for each compact interval I of
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(-00, oo) there exists a constant
MI

such that IPk(1)(01 < MI' for

tE I, k 1, 2, . If (Pkx)(t) -->x(t), - oo < t < oo, for the three func-

tions x(t) = 1, t, t2, then (Pkx)(t) x(t), -oo < t < oo, for every x in

C(-oo, oo).

Now we shall consider the convergence of operators on the

space L [0, 1], 1 < p < co.

THEOREM 3. 3. Let (Pk} be a sequence of positive linear

operators mapping L [0, 1] into itself. Suppose Pkx x for the

three functions x(t) = 1, t, t2. Then Pkx x for every x in L [0, 1]

if and only if the norms k = 1, 2, are uniformly bounded.

PROOF. If Pkx x for each x in L [0, 1], the the norms

IIPk k 1, 2, would be bounded by the uniform boundedness

principle. Suppose there is a constant M such thatPk < M,

k = 1, 2, Let xE L0, 1], assume x is continuous, and let

fE L [0, 1] = L [0, 1], 1/p + 1/ci = 1, f> 0. Define (pt(s) = (t - s)2,

0 s, t 1. For each n = 1, 2, and each t in [0, 1] we have

xnt, xnt as defined in (3.1), (3. 2) and satisfying (3.3). From the

positivity of f and Pk we obtain for each k, n> 1

1 1

(3.4) f(t)[P x)(t) - x(t)] dt < x(t)f(t) [P 1)(t) - 1] dt
0 0

1 1

n-1 f(t)(Pk1)(t)dt + an S f(t)[Pkcpt)(t)] dt,
0 0



1

(3. 5) f(t)[(P x)(t) - x(t)] dt > 1x(t)f(t)[(P 1)(t) - 1] dt
0 " 0

n f(t)(Pkl)(t)dt - an

1

f(t)[Pk(pt)(t)] dt
0

26

of continuous functions such that
xn

x in L [0, 1] . Then

If(Pkx - x)1 < If(Pkx - Pkxn) + 1f(Pkxn - xn)I + If(xn - x)1 <

Uf (M + 1) Ilxn - 4 + If(Pkxn - xn)1 so f(Pkx) f (x). Finally for

arbitrary f in L[0, 1] write f = f+ - f- to obtain f(Pkx) f(x).

The proof is complete.

Now we can give a Korovkin type theorem for L [0, 1].

THEOREM 3.4. Let {Pk} be a sequence of positive linear

operators mapping L[0, 1] into itself. If

(1) the norms 11P111 k = 1, 2, are uniformly bounded,

Pk1 -4.1,

Pkx x for the two functions x(t) = t, t2, then P x x for all

x in L [0, 1].

PROOF. Let G be the set of all gE L[0, 1] such that g is

the characteristic function of subinterval of [0, 1] or the character-

istic function of the complement of such a subinterval. Since the

closed linear span of G is L[0, 1] and the norms (Pkil are uni-

formly bounded, it suffices to show Pkg -3- g for each g in G. For

The fact that
0

f(t)[(Pkcpt)(t)] dt 0 as k -4 co yields f(Pkx) f(x).

Now let x in L[0, 1] be arbitrary. There exists a sequence {xn}



g in G let Z ttE [0, 1] : g(t) = 01. By Theorem 3. 3 we have

P g g which implies

(3. 6)

Now

g)(t)dt as k G .

Let g in G be fixed and f = 1 - g. Then f is in G and by (3.6) we

have

(P )(t)dt 0 as k

(13,,f)(t)dt = [(P,,1)(t) - (Pkg)(t)] dt

Zf "Z.f

[(Pkl )(t) - dt S [1 - (Pkg)(t)] dt

Zf

which implies that

cI 1 - (Pkg)(t) I dt 0 as k Go

Zf

Then (3. 6) yields

(P g)(t) - g(t) I dt 0 as k
k

0

Let {Pg1 be an arbitrary subsequence of fPkg}. Then there is a
tc

further subsequence, say {P1 such that (P" g)(t) g(t) a. e., as
k

k" 00. Let E > 0 be given, then by Egoroff's theorem there exists

as set A with m(A) <T1-1 E[2P + 22P] -1 and on [0, 1] - A = Ac such

27



that (P g)(t) g(t) uniformly. Hence for k" sufficiently large

,g)(t) - g(t)I Pdt <

On the other hand

(Pkng)(t) - g(t) Pdt < m(A)[ 2P + 221)] 22P(HPk, -1 11 1 P< 1
r 2A

for k" sufficiently large. Therefore P" g g in 1_, [0, 1]
k

thus Pkg g in L]0, 1] This completes the proof.
P-

A similar result was established in[10] using the three func-

tions x(t) 1, sint, cos t, except it was assumed that Pkx converg-

ed strongly to x for all three functions.

and
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III. UNIFORM CONVERGENCE OF POSITIVE
OPERATORS AND REGULAR SETS

§1. Uniform Convergence of Positive Operators

Let X and Y be topological vector spaces and P, Pk, k =

1, 2, continuous linear maps from X into Y. Assume Pkx Px

for each x in X. We wish to determine subsets of X on which the

convergence is uniform. If the spaces X and Y have an order

structure and P are positive operators then the sets on which

convergence is uniform will be larger than otherwise.

We state a generalization of the Banach-Steinhaus theorem, a

proof of which can be found in [18, p. 347].

PROPOSITION 1.1. Let X be a barreled topological vector

space, and Y a locally convex space. The following properties of a

subset H of the space L(X, Y) of continuous linear maps of X into

Y are equivalent.

H is bounded for the topology of pointwise convergence;

H is bounded for the topology of bounded convergence;

H is equicontinuous.

PROPOSITION 1, 2. Let X be a barreled topological vector

29

space, Y a locally convex topological vector space. Let P, Pk'

k = 1, 2, be linear maps from X into Y, Pk continuous, such that

Pkx Px for each x in X. Then P is continuous and the convergence
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is uniform on totally bounded subsets of X.

PROOF. It follows from the pointwise convergence that the set

H = fPk: k = I, 2, is bounded for the topology of pointwise con-

vergence. Thus H is equicontinuous by Proposition 1. 1. If V is

any closed neighborhood of 0 in Y, then there exists a neighborhood

U of 0 in X such that
PkU C V, k = 1, 2, and this implies

PU C V, i e., P is continuous.

Now we prove that the convergence is uniform on totally bounded

subsets. Let S be a totally bounded subset of X, V an arbitrary

neighborhood of 0 in Y and W a balanced neighborhood with

W+W+WC V. There exists a neighborhood U of 0 in X such

that PU C W and PkU C W, k = 1, 2, There exist points

xr in X1" such that

S C (xi + U) U + U)

and so there is an N such that k> N implies PkXj - Px. E , j =
J

1, r. Then for x in S and k> N we have xE (x. + U) for some
J

j, whence Pkx - Px = Pk(x - x.) + (P x. - Px.) + P(x. - x) E W + W +
J k j J J

W C V, and the proof is complete.

DEFINITION 1.1. Let X, Y be ordered topological vector

spaces and P a positive linear map from X into Y. A set S C X

is said to be regular if for each x in X and each neighborhood U of

0 in Y, there exist XU x in X such that
'



x < x < xU,
U

P(x - x U,

SU
{Xu X E S},

SU {XUX E S} are totally bounded.

When we wish to emphasize the dependence on P we shall write

P-regular,

if P is a positive linear functional defined on X the definition

of a regular set S becomes the following. Given x in S, c > 0,

there exist x x in X such that

x < x< xc,

P(xE x) < c,

SE {xExE S}, S ={x: xE S} are totally bounded.
E

The significance of regular sets is indicated by the following

theorem.

THEOREM 1, 1, Let X be an ordered, barreled topological

vector space and Y a locally convex space ordered by a normal cone.

Suppose P, Pk, k = 1, 2, ., are positive linear operators mapping

X into Y' Pk continuous, such that Pkx Px for each x in X.

Then P is continuous and the convergence is uniform on P -regular

sets.

PROOF. The continuity of P follows from the Proposition 1. 2.

Let S be a P-regular subset of X and U a neighborhood of 0 in Y.

Then there exist subsets S' S of X satisfying (i), (iii) of
U
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Definition 1. 2. The equalities

Px < Px<Px , PkxU <Px<Pkxu k = 1, 2, ,U

yield

Pkx - Px < (PkXU - Pxu) (Px - Pxu

x - Px > (PkxU - Px ) + (Px - PxU), k 1, 2,

and the conclusion follows by Proposition 1. 2 and Proposition 2.1 of

Chapter I.

The concept of a regular set was introduced in [1] by P. M.

Anselone to deal with integral equations having discontinuous kernels.

In that paper X = R[O, 1], P was the Riemann integral and Pk numer-

ical quarature. Also see [2, 3, 4].

§ 2. Elementary Properties of Regular Sets

We shall show that .regular sets behave much like totally bound-

ed sets, although there are some differences. The first proposition

is clear.

PROPOSITION 2.1. Let X, Y be ordered topological vector

spaces and P a positive linear map from X into Y. Then every

totally bounded set is a regular set.

The converse is not true in general. To see this let X = C[0, 1]

and P the Riemann integral. Set S =
{xn:

n = 1, 2, where

32
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x (t) = 1 for 1/n < t < 1, xn(0) = 0, and
xn is linear between 0 and

1/n. Then S is not totally bounded since it is not equicontinuous.

On the other hand it is easy to show that S is regular.

LEMMA 2.1. Let X be a topological vector space ordered by

a normal cone, S a subset of X. Assume there are bounded subsets

S1, S2 of X such that for each x in S there exist xi E S, x2E S2

with xi x x2. Then S is bounded.

PROOF. First we observe that if
S1

and S2 are bounded

then S2 - S1 is bounded. Let U be any neighborhood of 0 and let

V be a full neighborhood of 0 such that V + V C U. There exists

X > 0 such that S2 - S1 C k V and S1 C XV. Now x < x < x
1

implies 0< x - x1 < x2 - x1 so that 1/X.(x - Xi)E V. Hence

(1/X)x (1/X)(x - x1) + (1/X.)(xi) EV+ V C U, i. e., S CXU

PROPOSITION 2, 2, Let X, Y be ordered topological spaces

with X possessing a normal positive cone. Suppose P is a positive

linear map from X into Y. Then every regular set is bounded.

PROOF. Observe that totally bounded sets are bounded and use

the preceding lemma.

The converse is again false in general. Let X C[0, 1], P the

Riemann integral. Set S fxn: n 1, 2, where x(t) cos(2n-rrt).

Define

1Px
n n
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We know that Pnx Px for each x in C[0, 1], but Pnxn = 1 and

Pxn = 0 for n = 1, 2, Therefore, by Theorem 1.1 S cannot be a

regular set.

From Proposition 2.1 and 2. 2, we see that the regular sets falls

somewhere between the bounded sets and the totally bounded sets.

PROPOSITION 2. 3, Let X be an ordered topological vector

space, Y a topological vector space ordered by a normal cone, P a

positive linear map from X into Y and S a subset of X. Assume

that for each x in S and each neighborhood U of 0 in Y there

exist x x in X such that
U

x < x < x
U

P(xU - x ) E U,

Su = {xu: xE SU = {xU: xE are P-regular.

Then S is a P-regular subset of X.

PROOF. Let U be a full neighborhood of 0 in Y, V a neigh -

borhood of 0 such that V+V+VC U. If xE S, then there exist
V V VX ES , Xv E Sv satisfying (i), (ii) and (iii). Since S , S are regu-

V
V Vlar, there exist a.v, a , bv, b in X such that

V
a < x < av b < x < b V

V

P(aV - av) E V, P(b - bv)E V

and these sets of approximations are all totally bounded. Observe that



a< x < bV and 0 < bV - a < (bv - by) + (xV - xv) (av - av
whence P(b

This result will be used later in forming new regular sets from

other regular sets.

In some cases totally bounded sets may be replaced by finite

sets in the definition of a regular set.

PROPOSITION 2.4. Let X be a subspace of B(0) which con-

tains the constants and let co be a positive linear functional defined

on X. A subset S of X is co-regular if and only if the following

holds. Given E > 0 and x in S, there exist x , x in X with

X < X < X , cp(x - x ) < E and the sets S = {x XE SE -
XE S} are finite.

PROOF. Let S be a cp-regular subset of X and c > 0. For

x in S. there exist xC, x in X with x < x< xE, cp(xE - x ) <
E E - - E 2

and SE = {xE : xE S.}, SE ---- fxs : xE S} are totally bounded. Let
E

{X' XE
'

{X x} be finite E [8(p(1)] -1- nets for SE, Sl n 1E' ME E

respectively. Then for some i, j and all tc&-2 we have

-1 1x(t) - E[899(1)] < xE (t) < x(t) + E [8 -
(p(1)] ,

31.

-1 -1x (t) - E[8cp(1)] <x (t) < x. (t) + E[8c0(1)]
JE

Since

co((xE. + e[8(P(1)] 1) - (x. - E[8(p(1)-1)) < E
1

a7) U and S is a regular set.
-

-
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we can replace S by {x i = 1, n} and SE by

-1
{x. - [8(p(1)] = 1, °°, rn}

lE

This result applies in particular to X -= R[O, 1] and cp the

Riernann integral.

PROPOSITION 2.5. Let X be a complete topological vector

space ordered by a closed positive cone, Y an ordered topological vec -

tor space, and P a positive continuous linear map X into Y. If

S C X is a regular set, then the closure g of S is a regular set.

PROOF. Let {xi: i E I} be a net in S which converges to an

element x0 in X, and U a closed neighborhood of 0 in Y. Then

there exist totally bounded subsets S' S of X such that for each
U

x in S we have xu in S and xu in Su such that XU

and P(x - x) E U. In particular, for each i E I we have

and x (i)ESu with

exist subnets xu(i) and xU(i) with le I C I, such that x(i) -a

36

x E and
U U

U UxU(i) x ES with jE I

xU(i) E SU

XU(i) and P(x (i) - x (i)) E U. There

Since the positive cone in X

is closed we have x < x0 < x and P(x - x) E U since U is
U

closed. Thus S is a regular set.

The next proposition is similar to the result that a continuous

image of a compact set is compact.

PROPOSITION 2, 6. Let X be an ordered topological vector

space and Y an ordered normed space with a normal cone. If P is

a continuous positive linear map from X into Y and S C X is a



regular set, then P(S) is a totally bounded subset of Y.

PROOF. Let {P(xn)} be a sequence in P(S). For each m,

n = 1, 2, , there exist xna(n)e Sm and x (n)ES with S and

S totally bounded, such that

I lx
m

x (n) < x < x (n), (n) - x (n) < 1/m.m nrn
Using the total boundedness of S, 5m and the Cantor diagonlization

process we can find a subsequence {nk} of the natural numbers such,oooo
for each m = 1, 2, the sequences {xm(nk)}k 1 and {xm(nk)}k, 1

are Cauchy. Then

Px (n ) < Px < Px (n ) ,m k n
Pxnk

-

Pxnk'
< [Px (n, pxm(nkt)1 + [Pxnl(nkt) - Pxm(nkr)],

Px Px > [Pxm(nk) - Pxm(nk,)] [Pxrn(nk,) - Pxrn(nkr)] ,

nk nk'

and the proposition follows by the normality of the positive cone in Y.

Now we consider how one may combine two or more regular

sets to produce another regular set. The following is clear.

PROPOSITION 2. 7. Suppose X, Y are ordered topological

spaces, P a positive linear map from X into Y. If S, S1, S2 are

regular subsets of X, then the following are also regular sets

l
= {x1 + x2: x1 E },S S

2

rS {rx: x e S } for each real number r,
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Si U S2 .

We now consider the case when X is a topological vector lattice.

We need the following lemma.

LEMMA 2.1. Let X be a topological vector lattice and S, Si,

S2 totally bounded subsets of X. Then the following sets are totally

bounded:

(i) S },

x E S },

x ES },

Si A S2 = {x1 A x2: xi c Si, x2c S2},

Si V S2 = fx1 V x2: X1 E Sp X2E S21.

PROOF. Let U be any solid neighborhood of 0. Then there

exist points xi, , xr in X such that S C (xi + U)U U(xr + U).

Using the fact that U is solid and the inequality 11x1 - Iyfl < - y 1 ,

we obtain ISI C( Ix11 + U) U( ]x] + U). So (i) is proved.+l(ii) follows from the inequality Ix - y+I < - y and (iii) from

(i) and (M. Since x A y = I/2[x - y - (x - y)] + y we have

S1 A S2 C - 1/2[S1 Sz - (S1 - S2)] + S2 and so (iv) holds. Finally

(v) follows from (iv) and the identity x v y = - [- (-x) A (-0]

PROPOSITION 2.8. Let X be a topological vector lattice, Y

a topological vector space ordered by a normal cone, P a positive

linear map from X into Y and S, Si, S2 regular subsets of X.



Then the following are regular sets:

S1 v S2,

S A S
1 2

(iv) S,

0 in Y and let V be a neighborhood of 0 such that V + V C U.

Then there exist totally bounded sets S, S1' S, S such that
1 V 2 2V

for x1 in S1 and x2 in S2 we have

V
xl <-- xl ' x2V < x2 < xV2

and

V V,r(x V x2) - ()Cie X

P(xl xlV)E V1' P(x2 x2V) E V

for some
V ,V VxEo X ES ,xEo x ES .
1 I V IV' 2 2' 2V 2V

From this we obtain

V V
xlV x2V

xiv x2<x1v x2

and, by (1. 9) of Chapter I,
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P(xiV - x1V) + P(xv - x2V )E V+ VC U.
2

PROOF. We first prove (1). Let U be any full neighborhood of
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Then Slv 52 is regular by Lemma 2.1 (v). Similarly for GO; (iii)

follows from (i) by setting {0}, and (iv follows from (ii). Fin-

ally I SI C S S and so (v) follows by (iii), (iv) and Proposition

2.7 (i).

PROPOSITION 2.9. Let X C B(0) be a subspace which is a

vector lattice with 1 eX, Y an ordered topological vector space, and

P a positive linear map from X into Y. If Si, 52 are regular sub-

sets of X, then the set

SS ={xx xES xES
1 2 1 2: 1 1' 2 2}

is regular.
+ + + - - + - +

PROOF. Since S1S2 C SS - SS2 - SS2 + SiS2, we may

assume that S1, consist entirely of nonnegative functions. Let M

be a bound for Si and S2. Let U be a neighborhood of 0 in Y, V

a neighborhood of 0 with V + V C U. There exist totally bounded sets

V
' S1' SV

' S2V
such that for x1

in
S1

and x2
in S2 we have1V 2

V
0 < x_ < xi x < M ,iv

V

x2V f- x2 x 2 M

P(xv - x. ) E (1/M)V
i IV

for some

V V
x ES x.E S., 1, 2.

iV iv' 1 1



V. *V V.V.Hence xi vx2v x1x2 x ix 2 and P(x 1x 2 - x1Vx2V) E U . Since it

is easy to verify that the product of two totally bounded subsets of

B(C2) is again totally bounded, the proof is complete.

§3. Regular Sets and Locally Convex Topologies

In this section we examine more closely the relationship between

regular sets and those sets which are totally bounded with respect to

some locally convex topology. While not every regular set is totally

bounded in the original topology the following result shows that it is

totally bounded in some locally convex topology.

If Y is an ordered locally convex space with a normal positive

cone then by Proposition 2. 2 there is a basis of monotone seminorms

q, i. e., 0 < x < y implies q(x) < q(y)

THEOREM 3, 1, Let X be an ordered topological vector space,

Y an ordered locally convex space with a normal positive cone, P a

positive continuous linear map from X into Y and q a monotone

continuous seminorm on Y. If S is a regular subset of X, then S

is totally bounded in the locally convex topology Tc induced on X by

the semin.orm p(x) -= q(Px).

PROOF. We shall let T denote the original topology on X.

Since P is continuous in the topology we have j-C7. Observe

that the sets U {xE X: p(x) < c} form a basis of neighborhoods

for. For each e > 0, there exist sets S and S which are

41



S C
(X1

+ U

12 s

Let x, x be fixed, Then we have p (x - x.) < c for some
2

1 <j < r. Since 0< x -
xE

<Ex - x and q is monotone it follows

that p (x - x) < c. Therefore
3

S C (X1 + U) U U (Xr U)

and S is totally bounded in ac.

There exist totally bounded sets in a-- which are not regular.

To demonstrate this let X = C[0, 1] and let cp in C[0, 1] be point

evaluation at 0. If xn(t) = nt, 0 < t < 1, and S {xn: n = 1, 2, },

then S is totally bounded in the locally convex topology induced on

C[0, 1] by p(x) = co(x)I, but S is not bounded in C[0, 1] and so can-

not be a yo-regular set.

COROLLARY 3.1. Let X be a topological vector lattice and (19

a positive continuous linear functional on X. If S is a yo-regular

subset of X, then X is totally bounded in the locally convex topology

induced by the seminorm CI(X) = 99( lx').

PROOF. This follows from cp (x) < co( lx1) and Theorem 3. 1,
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totally bounded in 7- and hence in J
c, such that, for each x in S,

there are x ES and x£ ESE with x < x< xE and p (xE - x ) <
E E E £ 2 *

Since S is totally bounded in T there exist points x in
C

x ,l r
X such that



only if S is totally bounded in

is in general no,

For , 0< p< I,

n=m

d(x, y) =

We shall show that the answer

defines a metric and this metric induces a topology 7- on which

is not locally convex [9] , With this metric is a complete metric

space.

LEMMA 3.1, A bounded set SCi , 0< p< 1, is totally

bounded (with respect to ) if and only if

P = 0 uniformly for x in S.
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COROLLARY 3, 2. Let X = R[0, 1] and co be the Riemann

integral. Then every co -regular set is totally bounded in L1[0, 1].

Now we turn to a question posed by Anselone [4] . Is it possible

to find a locally convex topology a-c such that a set is regular if and

PROOF. Suppose S is totally bounded. Fix £ > 0. Then there

exist a finite E - net {x1, x } for S and N N(c ) such that

00

p 1

< -2
E y 1/

For x in S, we have d(x,:xj) < £ for some j, 1 < j < M, which



n=N+1

I P < c, x in S.
2

For x in S, let xN (x x) in Euclidean R . The set
n2'

SN = fxN: xE S} is bounded and hence totally bounded. Since all

finite dimensional topological vector spaces are homeomorphic, S

is totally bounded in RN with the p-metric. Hence SN has a finite

1 c -net, say xNj (x1, ) j = 1, L. Then the vectors xi =
N

xiN, 0, ) provide an E -net for S and so S is totally bound-

ed in f .

LEMMA 3. 2. Let SCi 0< p< 1, and assume there exist

totally bounded sets S S CI such that for each x in S, there
2

are x1 in S1 and x2 in
S2

with x < x < x2. Then S is totally

bounded.

PROOF. For E > 0. Then by Lemma 3.1 there is a positive

integer N = N(c ) such that
00

1

xnI
P < E for x in S1

n=21\T
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implies en

Li
lxnlP < E

n=N

Conversely let S be a bounded set with the property that for

each E > 0 there exists N N(E ) such that

00



Let x ES, X1 < X < X2, and x1E
S1'

x2E
S2.

Then

oo oo co

- xi IP +

n=N n=-N n=N

n=N

2 it)X -x +
n n

By Lemma 3.1, S is totally bounded.

COROLLARY 3. 3. A set SCf 0< p< 1, is regular if and

only if S is totally bounded.

LEMMA 3. 3. Let X be a locally convex topological vector

space and S C X totally bounded. Then the convex hull H(S) is total-

ly bounded.

PROOF. First, if S is a finite set, {x1, }, then H(S) is

compact because it is the image of the compact simplex

{(X. X
n):

X. >0, = 1} C Rn

1

under the continuous map

(X X. )1" n
1

<
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Then
2K 2K

1/2 < 1/k =
K+1 K+1

[(1/10(1/k)]1/2 <

K+1

2K

2-1/2 [(1/K)(1/k)]1/2

2K

[ (1/ 2K)(1/k)] 1

K+1

2
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Now let S be any totally bounded set in X, U a neighborhood of 0,

and V a convex balanced neighborhood of 0 such that V + V C

Then there exists a finite set A C S with S C A + V, H(A) is com-

pact, and H(S) C H(A) + V. Since H(A) is compact, there is a finite

set B such that H(S) CB+V+VCB+ U. Therefore H(S) is

totally bounded.

We now show that there cannot exist a locally convex topology
r-,--
L) whose totally bounded sets are the same as the totally bounded

sets of

At this point we set p = 1/2.

Define xk E f 1/ 2,Ic = 1, 2, , by xk 0 for n k and xk =

1/k. Let S = {xk: k = 1, 2, Then S is totally bounded in 0-

(in fact, xk -4. 0). We now shows that the convex hull of X is not

totally bounded in.),) . Let K be an arbitrary positive integer and

observe that
2K

1/K > K(1/2K) = 1/2.

K+1



K
)(K+1 K+2 2Ks.Let y = (1/K ) Then

2K Co

K 1/2
2, Y

K+1 K+1

K 11/2
>

1/21/2 2 .
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Since K was arbitrary, the convex hull of S does not satisfy Lemma

3.1 and so S is not totally bounded. On the other hand, if the totally

bounded sets in Icoincided with those in some locally convex topolo-

gy a-, then the convex hull of S would also be totally in k7-- by

Lemma 3. 3. Therefore the regular sets in 1/2 cannot coincide

with the totally bourAo,-- sets in any locally convex topology on 1/2.



IV. REGULAR SETS IN SPECIAL SPACES

§1. Sequential Spaces

We shall investigate the concept of a regular set in the various

sequence spaces and obtain several characterizations. Actually it

turns out that most of the time the regular sets are precisely the

totally bounded sets. Recall that this is the case for )2 , 0 < p < 1.

First we investigate the spaces f, 1 < p < 00 The order relation
P

that we shall be using in this section is given by (1.1) in Chapter I.

We will use the following well known characterization of totally

bounded sets in f, 1 < p < co, which is given in [11, p. 338].
P

LEMMA 1.1. A subset S of f , 1 < p < oo, is totally bounded

if and only if it is bounded and
00

lim
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= 0

n=rn

uniformly for x = (x1, x2, in S.

LEMMA 1. 2. Let SCi 1<p< co, and suppose there exist

totally bounded sets S1' S2 in 12 such that for each x in S, there

are elements x1 in S1 and x2 in
S2

with x1 < x < x2. Then S

is totally bounded.

PROOF. Since the proof is similar to the proof of Lemma 3. 2

Chapter II, it is omitted.



49

From this and Corollary 3.3, Chapter II, we have the following

result.

THEOREM 1.1. A set SCi , 0< p< oo, is regular if and only

if S is totally bounded.

We consider next the space c of real convergent sequences with

the norm xH = sup ixk I for x = (x1, x2, The discussion in-
k

eludes the subspace c0
of sequences converging to zero.

The next result is given in [11, p. 339] .

LEMMA 1.3. A set S in c or co is totally bounded if and

only if it is bounded and the limit lim xk
exists uniformly for x

(x1' x2' in S.

LEMMA 1.4. Let S C c and assume there exist totally bound-

ed sets S1, S2 in c such that for each x in S, there are x1

0

S1
and x2 in

S2
with x1 < x < x2. Then S is totally bounded._ _

PROOF. If x1 < x < x2, then x1 < x < x2, n = 1,2, and

the proof follows by Lemma 1.3.

From Lemma 1.4 we obtain the following.

THEOREM 1.2. A subset S of c0
is regular if and only if S

is totally bounded.

The dual c of c is isometrically isomorphic to and the
1

representation is given by (cf. {19, p. 115] )



N+1
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00

59(x) = a0 limxn +Li xn

= (a0, a1, C

x = (x1, x
'

EC .

We will investigate the y-regular subsets of c with co in c

LEMMA 1.5. A functional y = (a0, al, ) in c is positive if

and only if an > 0, n 0, 1, .

PROOF. It is clear that a > 0, n = 0, 1, implies that go is
n

a positive functiona . Conversely, assume y is positive and for each

k> 1 let xk be an element in c withxk = 1 and xk 0 for n k.

Then yxk ak > 0 k 1, 2, . Now we show a0
> 0. If

a0
< 0, then

1there exists N such that E a < - a . Choose x in c with
N+1

2
0n

x = 0, 1 < n < N and x 1, n> N. Then x is positive and yo x <

1 ao < 0 and so y is not positive.

LEMMA 1.6. Let co = (0, al, a2, ) E c, where a > 0, n =
n

1, 2, . If S C c is a bounded set, then S is a y-regular set.

PROOF. Suppose S is bounded by M and let c > 0 be given.

Let Nc ) be such that
CO

-1
an < E[2M] .



ter II, there exist finite sets SE, S such that, for each x in S,

E
Ethere are x in S and in S with x < x < xEx and

E E e

E 1
(a )1im (x -x ) = co (x - x ) < c ) a Let L(x) =, limx for XE C,

0 n-4-co n E n E 4 0. n--0.00 n
1

Then there exists N(E ) such that n> N implies Ix E - L(xE )1 <

1 1

XEn - L(x)1 < E and 1 xE x < "--E for all x in S. From
2 n n 2

X < X < X we obtain L(x ) < L(x) < L(xE ), which yields -E <En n n 6

xn
L(x) < E for n> N. Hence, by Lemma 1. 3, S is totally bounded.

THEOREM 1. 3. Let yo = (a0, a1, be a positive linear func-

tional in c and S a subset of c.

Assume a0
= 0. Then S is (p-regular if and only if S is

bounded.

Assume a0
> 0. Then S is co-regular if and only if S is

totally bounded.

= {XE C: Ixn1 <M, n = 1, 2, N; x =M, n > N} ,

S {xE C: 1 Xn1 < M, n = 1, 2, N; x - M, n> N},

then SE, S are totally bounded sets by Lemma 1. 3. For each XE S

pick x E S and XEE SE such that
xEn

= xn = xn, n = 1, 2, N. Then
E E

x < x < xE and X ) < E and so S is (p-regular.

LEMMA 1.7. Let co E c , co = (a , 0 0 a >00 " 0
If S is a

(p-regular subset of c, then S is totally bounded.

PROOF. Let E > 0 be given. Then, by Proposition 2.4, Chap-
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If we set



PROOF, In view of Lemma 1.6 we need prove only (ii). Let

(po (a0, 0, 0, ) and note that (pox cpx if x > 0. From this it

follows that if S is a cp -regular set, then S is cp 0-regular. By

Lemma 1. 7, S is totally bounded.

§2. Regular Sets in L 1 < p < co
P
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Let (C2, ) be a totally finite measure space. We shall attempt

to characterize the cp-regular sets in L (C2), 1 < p < ,x3, when (p is an

element of L (0). By the Riesz representation theorem, for 1 < p <

09 we may identify L (S-2), with L (S2) where 1/p + 1/q 1.

Recall that for measurable functions f and g, f < g means

f(t) < g(t) a. e. For f and g in L, 1 < p < co, f < g means this
P

inequaltiy is satisfied by all functions in the respective equivalence

classes.

Suppose cp is a positive linear functional on L (C2). Define a

function X(cp) in L (0) by letting X((p) be the characteristic function
co

of the set [cp > 0[ {t ES-2: (t)> 01.

THEOREM 2.1. Let S C L (S2), I < p < cc, and cp a positive

linear functional on L (Q). Assume that the set OP)S is a cp -regular

(or totally bounded). Assume that [1 - x(con S (or S itself) is dom-

inated, i, e., there exists ge L (C2) such that

-g < [1 - x(yo)] x < g, x



Then S is co-regular.

PROOF. For each xe S,

X X(qi)X + [1 - x(cion [1 - X((p)] g < [1 - X(conx < - x()] g.

Since co([1 x(co)} g) 0, the set [1 - X((p)] S is a (p-regular. Since

S C X(cp)S + [1 - S,

S is co-regular by Proposition 2.7, Chapter III.

The assumption that S is dominated cannot be dropped. Let

= [0, 1] and p. Lebesgue measure. If we let co X[ 0, 1/2], (Pn

X[0, 1/2 +
n-1)' n = 2, 3, then by Lebesguels dominated convergence

theorem we have
cpnx

cpx for all x in L [0, 1], 1 < p < co . Define

xn = nX(1/2, 1/2 + n-1 n = 2, 3, and set S {xn: n 2, 3, C

Lp[0,
1] . Now X(OS is totally bounded in

Lp[0,
1], but

cpn
does not

converge uniformly to co on S since cpnx 1 and co xn = 0, n = 2, 3,

Therefore by Theorem 1.1, Chapter III, S cannot be a regular

set.

We now set about establishing a converse of Theorem 2.1.

LEMMA 2. 1. Let (C2,0, p. ) be as before and suppose cp L1(0)

co > 6 > 0. Then a subset S of LI(2) is yo-regular if and only if S

is totally bounded.

PROOF. Suppose S is co-regular and let C > 0 be given. For
xEin S, there exist x , in L (C2) such that x < x < x ,

1 E

1
c9 (X x) < (6) and SE, S are totally bounded in L1(0). Then
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1 I XE
XE 1

/ Ewhich implies !ix xi[ < 1 E. So any 1 E -net for Sc will be
2 2

an E -net for S.

LEMMA 2. 2, Let EcO, AIE Lop ), xElf. If co > 6xE, 6 > 0,

and S is a (p-regular subset of LI(c2), then OP)S is totally bounded

in Ll (0).

PROOF. The proof is similar to that of Lemma 2.1.

LEMMA 2.3. Suppose S is a bounded set in Lo() and co a

positive functional in LI(2). If S is a (p-regular subset of

then X((p)S is a totally bounded subset of L1(0).

PROOF. By a typical construction there exists an increasing

sequence {con} of simple functions such that II (Pn II co --,- 0. Let

M be the Lo(2) supremum of S and fix c > 0. Then there exists

N(E) such that
11(oN-

< E [4M] -1. Since (p N < , S is a
oo

regular set and by Lemma 2. 2, X((pN)S is a totally bounded subset of

--2-1 E-net for X(coN)S
L1

(Q). Let {X((pN)xl, X((PN)xr} be a finite

and let )(ES. Then for some j, 1 < j < r, we have I I X(49N)xj

1
X.((pN)x I 1 < E Therefore

I I X(`P)x 311

_1 r E1- x ) < (x xE <c
S-2

[x(co) - x(N1 - X((p )1 x x, Id < E
3 N

and so {X(Oxi, X(co)x} is a finite E -net for X((p)S in L1(C2).
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It is obvious that if S is a totally bounded subset of L (0) for

some p > 1, then S is also totally bounded in LiP). Under certain

conditions the converse is true.

LEMMA 2.4. Let S be a bounded set in Lo(c2). If S is totally

bounded in L02), then S is also totally bounded in L (0), 1 < p < oo.

PROOF. Let M be the bound on S and let x, y, e (1/ 2M)S.

Then 1x - y1 < 1, whence

yiPdp. <
.S1 -

and this implies (1/2M)S is totally bounded in L() and so S itself

is totally bounded in L (Q).

Now we can extend Lemma 2. 3 to the L (a), 1 < p < co, case.

LEMMA 2.5. Let S be a bounded set in L(0), E Lo(2), ço > 0.

If S is a (p-regular subset of L (C2) where 1 < p < co, then X((p)S

is a totally bounded subset of L (S2).

PROOF. If S is a (p-regular subset of L(c2) then it is cer-

tainly a cp-regular subset of L1(0) and, by Lemma 2. 3, X((p)S is a

totally bounded subset of Li(). Whence, by Lemma 2.4, X((p)S is

totally bounded in L (C2).

Lemma 2.6. Let S be a bounded set in L00(0), yo a positive

linear functional on L (0) 1 < p < co . If S is a (p-regular subset of

L (a), then Mcp)S is totally bounded in L (0).



PROOF. Let--k1' be the characteristic function of [cp < 1] and

set Cp' + (1 - 4i). Then E L,o(S2), 0 < < p and X(3) X((p).

Hence S is a co'-regular set in L (c2) and, by Lemma 2, 5, X((p)S is

totally bounded in L (Q).

Now we want to weaken the hypotheses on S. The next result

generalizes the classical result on the continuity of the integral.

LEMMA 2. 7. Suppose S is a totally bounded subset of L (c2),

l< p < co, and let E > 0 be given. Then there exists 5(e ) > 0 such

that A EO, p, (A) < 6 implies 11XAx11 < e for all XES.
1PROOF. Let {x1, xr} be a finite -2- c -net for S and let

5(c ) > 0 be such that A EO, p. (A) < 5 implies

11 XAxj11 < E , j 1, r .

Then for each x in S we have

and

1

x.11 <j 2

A
< 11x - X. + 11XAxj <£

Now suppose S is any subset of L (C2). For x in S and n a

positive integer let x(x) be the characteristic function of [x >

X(x) the characteristic function of [x < - n] and X(X) = X (x)

If S is bounded in L (0) by say M, then M> 114 >11xXii(x)11 >

Ilnxn(x) whence

for some
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1 < j < r,

(2.1) 11Xn(x)11 as n co, uniformly for x in S.



implies

X (x')

and

<E for all x, x in S.

PROOF. This follows from (2. 1) and Lemma 2. 7.

I x < 1 .x1 1 + I x 21

The assertion follows by Lemma 2, 8.

Suppose S is any subset of L (2), 1 < p < co and x E S. For

n 1, 2, , we define

xn
= n X (x) + (1 - X (x)) x - n Xn(x) ,

X (x') < X (x' ) + X (x' ) .
n n 1 n2

S {X X E .
n n

Note that
Sn

C L (C2). If x, y ES, then
oo
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LEMMA 2. 8. Let S be a totally bounded subset of L (0),

1 < p < 00 and fix E Then there exists N(c ) such that n > N

LEMMA 2. 9. Let S be a subset of L (C2), 1 < p < oo, and

suppose there are totally bounded sets
S1

and
S2

in L() such

that for each x in S, there are x1 in
S1

and
x2

in S2 with
x1

<

< X,. Then

lim I xX (x' )11 0 uniformly for x, x' in S.
n--)-001 n

PROOF. From
x1

< x < x2
and x' < x' < xl we have



of L (0).
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From this it follows that
Sn

is totally bounded in L (0) if S is.

LEMMA 2, 10, Let co be a positive linear functional on L (0),

1 < p < oo and S a cp -regular subset of L (a). Then S is also

co - regular.

PROOF, If x, y E L (0) and x < y, then x < y andn n
(y - x) < (y - x). The lemma now follows from the precedingn n

paragraph.

We are now ready to state and prove the theorem we have been

working towards.

THEOREM 2. 2. Let co be a positive linear functional on L

1< p< co, and S a go-regular subset of L (0). Then X(cp)S is a

totally bounded subset of L (0).

PROOF. Fix e > 0. By Lemma 2.9 there exists N(s) such that

x XN(x) < c for all x E S.

By Lemma 2.10, SN is cp regular. So X(v)SN is totally bounded in

L (0) from Lemma 2.6. Now

Ilx x(cp) xN xN(cp) I I 11 ,i(x)1 I < for all x E S.

Hence X(go)SN is a totally bounded e -net for X(go)S which implies

X()S is totally bounded.

COROLLARY 2. 1. Suppose co E L (o), > 0. Then S is a

cp -regular subset of L() if and only if S is a totally bounded subset
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It is interesting that the property of (p-regularity depends only

on X(p) and not on the values of (p.

§3. Regular Sets in C[0, 1] and RIO, 11

We want to consider the concept of a (p-regular set in R[O, 1]

and also in the subspace C[0, 1]. In contrast to the previous sections

we will not obtain characterizations of regular sets in these spaces

but will give some sufficient conditions for a set to be regular. In

terms of applications, perhaps the most important case is R[O, 1]

with (f) being the Riemann integral.

DEFINITION 3.1. Let C2 be a topological space and K a subset

of C(C2). Then K is said to be equicontinuous if for each c > 0 and

each t in there is a corresponding neighborhood N = N(t, C) of t

with

sup,SE
su

AfE
Rif(t) - f(s)I <C .

1N

The following classical result [11, p. 226] gives a nice charac-

terization of the totally bounded subsets of C(0).

THEOREM 3.1. (Arzela-Ascoli) If 2 is compact then a set in

C(0) is totally bounded if and only if it is bounded and equicontinuous.

We will let q denote the Riemann integral defined on R[O, 1]

until otherwise stated.



LEMMA 3.1. Let S be a bounded set of step functions such

that the number of discontinuities of each element of S are uniformly

bounded. Then S is a (p-regular subset of R[O, 1].

PROOF, Since the number of discontinuities are uniformly

bounded we can approximate each step function above and below by

trapezoidal functions with fixed slopes. Such a set of functions is

clearly equicontinuous and bounded, hence totally bounded.

We can use this lemma to build new classes of (p-regular sets.

If xE R[ 0, 1 and A is a subset of [0, 1] we define to(x, A)

sup I x(s) x(t) If I is a subinterval of [0, 1] let f(I) denote its
s,teA
length.

THEOREM 3. 2. Let S be a bounded subset of R[ 0, 1] . Assume

that, for each c > 0 and x E S there exist positive integers N(c ) and

K(E ) such that

there are disjoint intervals J Jn, where n < N and

x ) < E

m=1

the complement of U J in [0, 1] is the disjoint union of
m=1 x

intervals Ik where k < K and u) (x, I) < =
X X X -

1, k.

Then S is a (p-regular set.
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lar we may assume that S is bounded by . Assuming (i) and (ii)

hold we define

( 1-z if t E J m = 1, n
x

xE (t) =

supwic(t) if t E 1M, al -= 1, k.

tE Ix

Similarly

1-- m
if t E J, m 1,

inf x(t) if t E = 1,
5

k.
t E IM

X

EThen x < x < x and cp (x x) < s. By Lemma 3.1 the sets S =
E

1XE: X Sl and S = {x x E S} are co-regular. So S is a co -regu-

lar set by Proposition 2.4 of Chapter III.

THEOREM 3. 3. Let S be a bounded subset of R[O, 1].

that for each c > 0, there exist positive integers N(E ) and K(E) such

that: for x in S there exist disjoint intervals J1 -. Jk, k < K and
x

f(J ) <E ; and on each complementary subinterval
1m, x is a

x

piecewise monotone function with at most N distinct oscillations.

Then S is a cp -regular subset of R[0, 1]

61

PROOF. Since a scalar multiple of a regular set is again regu-

As sume
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PROOF. We assume that S is bounded by 1 and then partition

the interval [-1, 1] into L subintervals each of length less than E.

Each subinterval c an be further partitioned into at most N sub-

intervals on which x is monotone. Then a further subdivision of

these into at most L intervals
Ix

yields (,)(x, Ix ) < c. There are at

most (K + 1)(N)(L) of the intervals Ix and the assertion follows by

Theorem 3. 2.

This theorem has some important corollaries.

COROLLARY 3.1. Any bounded set of monotone functions in

R[O, 1] is a cp-regular set.

COROLLARY 3. 2. Any bounded set S of functions on [0, 1] of

bounded variation with uniformly bounded total variations is a v-regu-

lar set.

PROOF. Any function x in S can be written as the difference

of two increasing functions
x1

and x2 such that the sets S1 =

{x1: x E S} and S2 = {x2: x E S} are bounded. Then S1, S2 are

yo-regular and since S C S1 - S2, S is yo-regular.

Theorem 3. 2 and Corollaries 3.1, 3. 2 are important in the

numerical approximation of integral operators with discontinuous

kernels [3].

We now mention some results that hold for C[0, 1]. If g is a

continuous, nondecreasing function defined on [0, 1] then



dg(t)
0

defines a continuous positive linear functional on C[ 0, 1] .

It is not difficult to show that Theorems 3, 2, 3. 3 and Corollar-

ies 3.1, 3. 2 remain valid for the linear functional cp
g'

Here trape-

zoidal functions are used in place of step functions in SE, S . Since

the proofs are similar to the ones given they will be omitted.
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V. APPLICATIONS TO INTEGRAL EQUATIONS

§1. Integral Equations with Continuous Kernels

In this chapter we shall use the idea of the extension of a positive

operator and of a regular set to obtain approximate solutions for a

large class of integral equations.

In §1 and §2 of this chapter, unless othervise stated, S-2 will

denote a compact Hausdorff (and therefore uniform) topological space.

The class of Baire sets is defined to be the smallest (I-algebra

a of subsets of C2 such that each function x in C(C2) is measurable

with respect to 6( . If c9 is a continuous linear functional on C(0),

then there exists by the Riesz representation theorem [16, p. 310],

a unique, finite signed Baire measure p, on 12 such that

(x) = Sxdp,, for each x in c()
s-2

and
I I co I I = I (Q). Moreover if cp is positive then p. is a measure.

Let k be a continuous real-valued function defined on x

Since 2 x S2 is compact k is uniformly continuous.

'Assume co is a linear functional on C(0) and p. the associated

signed Baire measure. We want to consider integral equations of the

form

x(s) - k(s, t)x(t) dp. (t) y(s), s EC2,
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where y E C (a), X is a non-zero real number and x is the unknown

function.

One method of solution is to replace the integral by some approx-

imation, solve this approximate equation and show that the approximate

solutions that are obtained converge in C(S2) to a solution of (1.1).

An example of this is = [0, 1] and cp the Riemann. integral. The

functionals discussed in Example 2.1 of Chapter II can be used to

approximate cp . For a discussion of this classical case and other

references see [2].

Getting back to the general case, we shall assume that there

exists a sequence
{yon}

of continuous linear functionals on C(C2) such

that

(1. 2) yonx
cox for each x in C(0).

Let 11 be the signed Baire measure associated with cpn, n = 1, 2,

Define linear operators K and Kn, n = 1, 2, on C() into C(0)

by

(1. 3) (Kx)(s) k( s, t)x(t)dii,(t), x E C (a), S E a,

(1.4) (Knx)(s) k(s, t)x(t)diln(t), x E C(0), s E

Note that K, Kn are compact operators.



Let k (t) = k(s, t) for s, t E C2. Then k E C(C2) and

(1. 5) (Kx)(s) cp(k x), SE

(1.6) (K x)(s) (k x). SE
n s

By (1. 2) we have

(1. 7) (Knx)(s) (Kx)(s) for each se xE

It follows from (1. 2) and the uniform boundedness principle that the

norms H ,ii::n 1, , are uniformly bounded. Then by the uni-

form continuity of k we obtain for each x in Cp.

(1. 8) {(,9 (k x): n = 1, 2, .. ) is an equicontinuous family.
n s

From this and (1.6) it follows [16, p. 178] that 99n(ksx) sx)

uniformly for s in C?. Thus,

(1.9)nx - Kx11 0 for each x in cp.

At this point we need to review some of the theory of collectively

compact operator approximations. This theory has been developed

within the last six or seven years. Some references are [2, 3, 5, 6, 14].

Let X be a Banach space and [X] the set of all continuous

linear operators mapping X into X. A set of operators :)(' C [X] is

collectively compact if the set {Tx: T Ek,11x11 < 1} is totally

bounded in X.

Recalling the definition of
Kn in (1.4) it follows from the con-

tinuity of k and the uniform boundedness of
=

I
n
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1, 2, that

(1.10) fl<n: n -2-, 1, 2, is collectively compact.

We need the following result.

PROPOSITION Li. Let
Tn.'

T c [X], X / 0. Assume

Ty - Ty I 0 for each y in X,

{Tn: n 1, 2, is collectively compact,

T is comp-act.

Then (X - T)
-1

formly bounded for n sufficiently large. In either case

-
(X - T)1 (X. - T)'.

Actually (iii) is a consequence of (1) and (ii). In particular, it

follows from the contraction mapping theorem. that (\ - K)-1 exists

for X sufficiently large, i. e., (1. 1) has a unique solution for each

y in C(c).

Fix X so that (X - K) exists and let y E C(C2). Then, by

Proposition 1.1, (X - Kn)-1 exists for n sufficiently large, say n >

N, so the equation

(1. 11) X. x(6 ) k(s, t)x(t)cip, n(t) y(s), s E n> N,

exists if and only if (X. - Tn) exists and is uni-

has a unique solution xn

Then by (1. 9) and Proposition 1.1 we have the following.

67



68

THEOREM 1.1. Suppose x is the unique solution of (1. 1) and

xn the unique solution of (1.11). Then x(t) converges uniformly to

x(t) as n cc.

§2. The Extension of Positive Linear Functionals on C(Q)

We henceforth assume that cp is a positive 1Linear functional on

C(C2) and p. the associated Baire measure. Note that C(2) C B(2),

where B(S-2) is the set of all real valued bounded functions defined on

C2 with the sup norm. Now by Corollary 1.1, Chapter II, cp may be

extended to a subspace of B(2) which we shall denote by R(C2). We

shall denote the extension also by cc.

LEMMA 2.1. Each x in R(c2) is a Baire measurable function.

PROOF. Let x E R(0), then for each positive integer n there

aren, xn in C() ) such that x < x < x and cp(xn - xn) < 1/n.
n

Moreover by redefining the functions xn

assume that x , xn Hence there exist Baire measurable func-

tionssuch that x(t) x1(t), (t) x (t) for each t in S-2

n
.

1' X2 2

By Lebesguels dominated convergence theorem

d(xnx ) p. \ (x2 - xi)dp, .
kJ' 'L10at

But since

cp(xn - xn) (xn - xn)dp. 0

iS2

nand x if necessary we may



we have

( x2 - x1)dp.. = 0,

whence x2(0 x. e. Since xi(t) < x(t) < x2(t) for all t in

we have x, (t) x(t) = x(t) a. e. [II]. Thus x is Baire measurable.

LEMMA 2. 2. R(0) is a closed subspace of B(0) and consequent-

ly R(S2) is a Banach space.

PROOF. Let
xn x, and xn

E 11(S2). For each c> 0 there

exists N(E ) such that

1 1
xN e[4cp(1)] < x < x + c[401)]

Eand there exist xNs xN C(2) such that

1
x <x <x

NE N
and cp (xN -

xNe
< E..

If we set t) x(t) + c[4(i)1 -1, t E

-X (t)
XNE

(t) E [4y9(1)] t E 0,

then x, x E CP, X < X < X and cp(x - x) < c. Thus X E RP).
E

This lemma follows from a later result, but we wanted to give it

an independent proof.

A different characterization of R() will be given, but first we

need some results concerning semi-continuous functions.

DEFINITION 2.1. Let C2 be a topological space. -We say that

x E B(7) is upper (lower) semi-continuous at
t0

if given e > 0 there
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exists a neighborhood U of t such that t E U implies x(t0 ) >

X(t) - E (X(t0' < X(t) + )

If 0 is a uniform topological space, then x E B(C2) is upper

(lower) semi-continuous on 0 if and only if x is the inf (sup) of a

family of continuous functions on 0 [8, p. 146]. If C2 is metrizable

then X E B(c2) is upper (lower) semi-continuous if and only if x is the

pointwise limit of a decreasing (increasing) sequence of continuous

functions [8 155].

If 0 is a topological space and t E 0 let ?I, denote the collect-

ion of all neighborhoods of t.

DEFINITION Z. 2, If 0 is a topological space and X E B(C2), the

upper envelope of x is

x(t ) inf sup_ x(t) t ES2
0 U tE LJ 0

.to
0

and the lower envelope of x is

x(t ) = sup inf x(t), t EC2.
UE77tE U

to

LEMMA 2. 3. Let 0 be a topological space and X E B(0). Then

5, x E B(C2),

x < x < ,

x is upper semi-continuous,

x is lower semi-continuous,

70



x(t) .?--(-(t) if and only if x is upper semi-continuous at t,

x(t) x (t) if and only if x is lower semi-continuous at t.

PROOF. (i) is clear since x E BP).

(ii) Let U E . Then t0 E U and so x(t0 )
-0

x(t ). Similarly, x < x.0
.hood U of t0
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< sup_ x(t) which implies
tE U

(iii) Let
t0

EP, and E > 0 be given. There exists an open neighbor-

such that K..t,) > sup_ x(t) - E . Let s EU. Then
U t E

U is a neighborhood of s, whence inf sup x(t) < sup, x(t).
U

Cr' s
tE u

Therefore) > )7(s)- E for all s in U, so is upper
-0

semi-continuous,

(iv) is proved in a similar fashion.

(V) Suppose x is upper semi-continuous at t0
and let E > 0 be

given. Then there exists a neighborhood U of t0
such that

tE U implies x(to) > x(t) - E. Then x(t ) > sup_ x(t) - > inf
0 tE U U Olt

1.1- X(t) -E ;,.7(t ) -e. Hence x(t ) > X.(t ) and by (ii)
tE -0 0 0

X(t ) (t ). Conversely suppose x(to) = X-(to) and let E > 0

be given, then by (iii) there exists a neighborhood U of t0 such

that x(t0 ) x(t0) > T(t) - e for t in U and so from (ii) we

have x(t0 > x(t) - E for t in U so x is upper semi-continu-
'

ous at to.

(vi) is proved in a similar fashion.

LEMMA 2.4. Suppose S-2 is a topological space and x C B(S2).

Then x is continuous at t0
if and only x(to) x(to) Tc-(to).
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PROOF. This follows from Lemma 2. 3 and the observation that

x is continuous at t if and only if x is both upper and lower semi-

continuous at to.

Now we come back to the case where C2 is a compact Hausdorff

topological space. The following theorem gives a complete character-

ization of RP.

THEOREM 2. 1. Let x E B(2). A necessary and sufficient con-

dition that xc R() is that x be continuous a. e. [ill

PROOF. The full proof is quite long and complicated and can be

found in [7]. We will give here a different proof of the necessity and

a simple proof of the sufficiency under the additional assumption that

C2 is metrizable.

Assume x E R(C2). Then there exist sequences {xn1,
{xn}

in

c(s-2) such that x < x < xn, xn3 , xn+ and cp(xn - xn) -4- 0. Define
n

x2(t) = lim xn (t), x (t) lim x (t), t ESL Then x <x<x x is
' 2

upper semi-continuous, xI is lower semi-continuous and by Lebesgue's

dominated convergence theorem cp(xn - xn) cp (x2 - xl), whence

cp(x2 - x1) = 0. This implies that xi(t) = x(t) x2(t) a. e. [1.1.] and so

x is continuous a. e. {}i.] .

For the converse we assume that S-2 is metrizable and suppose

x is continuous a. e. . Let 5E, x be the upper and lower envelopes

respective ILy of x. By Lemmas 2. 3 and 2.4 we have x < x < x and

x(t) x(t) a. e. hal . Since C2 is metrizable there exist sequences
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n
and Ixn in C(S-2) such that xn and xn

x. By Lebesgue's

dominated convergence theorem we have x - x cp x) = 0, so

E R(2). The proof is complete.

For = 10, ij and (i) the Riemann integral, this reduces to the

classical result that a function is Riemann integrable if and only if it

is continuous except on a set of Lebesgue measure zero.

COROLLARY 2. 1. If x, y E R(Q), then the product .xy E R(c2),

i. e., R(Q) is a Banach algebra.

COROLLARY 2, 2. If x R(0), then the absolute value xl of x

in R(C2).

Note that Lemma 2. 2 also follows from Theorem 2. 1.

$3. Integral Equations with Discontinuous Kernels

We now extend our results in §1 to the case where k may

have some points of discontinuity.

Henceforth we assume that C2 is a compact metric space with

metric d.

Let us define for x in R(C2) a new norm x (p(1
1

xl ) and

QletR,( ) be the space R(C2) with this new norm.

We shall assume that k is a bounded kernel such that

(3.1) k E R(Q) for each s E

As before we define

(3. 2) (Kx)(s) = co(ksx), S E C2, x E MO)



Then

(3.4)

(3.5)

(3. 6)

(3. 7)

PROPOSITION 3.1. Assume that

(3. 3) lirnIlks - k = 0 for each s
1 s 1

Ilks ks'111-""

K R(S2) C C(0).

K is a compact linear operator.

max co( ks ) exists and
sell

PROOF. Define f:S2 R1(C2) by f(s) = ks. Then f is contin-

uous by (3. 3) and therefore uniformly continuous by the compactness

of ft This proves (3.4). The function II ks
II l' s E R is a continuous

real valued function defined on a compact set and so it attains its max-

imum. For each x E R(2)

I (Kx)(s)I

as d(s, s') -b.0, uniformly for s, s' in 0.

< 11 x 11

IIKII < max
seS2

l(Kx)(s) - (Kx)(s?)< 11x11 kstil

It follows that K R(Q)C C(2), II O< max 1( and K is compact
11

by the Arzela-Ascoli theorem,

PROPOSITION 3, 2. Suppose for m = 1, 2, there are continu-

ous kernels k such that

(3.8) Mks - ksil 0 uniformly in s.

(P(Ilcs1)

max 99(l ks l)se

Then (3. 3) holds and if we define (Kmx)(s) = (p(kms x), m = 1, 2,
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then

(3.9) 1Km .

PROOF. Define f, fm:C2 R1
() by f(s) = ks and fm(s) = km.

Then each 1is continuous and fm converges uniformly to f, so f

is continuous and (3. 3) holds. Now 11Km - K11 < max 11km - ks11

0 as in oo,

DEFINITION 3.1. The kernel k(s, t) is said to be uniformly

t-integrable if for each e > 0 there exist continuous kernels ke, k

such that

(3.10) k (s, t) < k(s, t) < kE (s, t), s, t ES-2,

(3.11) 11kE - k 11 < E for all s in Q.
s E s 1

THEOREM 3.1. Suppose k is a uniformly t-integrable kernel.

Then (3. 3) holds and {ks: s E S-2} is a co-regular set.

PROOF. It is clear that fks: s E S-2} is a y-regular set from

the definition of a uniformly t-integrable kernel, and (3. 3) follows by

Proposition 3. Z.

One may find a discussion of uniformly t-integrable kernels for

= [0, 1], y the Riemann integral in [1].

We assume there exists a sequence{Pn of positive linear func-

tionals on C(Q) such that nx yx for each x in C(0). By Theor-

em 3,1, Chapter II,

(3.14ynx cpx for each x in R(C2) .



For each n define

(3.13) (K )(s) ço (k x), xc R(C2), s EQ.
II n s

PROPOSITION 3 3, Each
Kn

is a continuous linear map from

R() into B(Q) and the norms II KnII, n 1, 2, ., are uniformly

bounded.

PROOF. It follows from (3,12) and the principle of uniform

boundedness thatli'g) < M, n = 1, 2, -, for some M< oo. Then
n

1(Knx)(s)I < (lk x
n s

which implies

>< 11x11[MssmIlks11],

Kn II <_ M :128-2 I I ks II

We denote by i. the finite Baire measures associated with the

(pn,
n = 1, 2, , and let

(3.14) kt(s) k(s, t) for s, t E

In general one should not expect to have KR(2) C R(C2), n =

1, 2, .... The next result gives one condition for which this is true.

PROPOSITION 3,4. Suppose there exist continuous kernels km,

k , m = I, 2, satisfying

k (s, t) < k(s, t) < krn(s, t), m = 1, 2, s, t E ,

m

[krn(s, t) - km(s, t)d[i(s) 0 as m co for each t E
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Then
KnR(C2)

C R(C2), n 1, 2, .



PROOF. Without loss of generality assume that k , k f.
Let x E R(c2), x> 0 and n > 1 be fixed. From (1) we obtain

co (k x) < co (k x) < (km x), m 1, 2,nms ns ns
As functions of s,n (kmsx) and co n(ks x), m = 1, 2, are continu-

ous because of the uniform continuity of k and km. By Fubinits

theorem and Lebesgue's dominated convergence theorem

cp[ep n(krns x) - (pn(kmsx]

tcx(t)d ( ) [km(s, t) - km(s, t)1d14(s) -4- 0 as m oo.

Thus, (Knx)(s) =çon (ksx)
ER(0). For an arbitrary x in R(Q), write

x = x+ - x- to obtain K x = K x+ - K x R(c2).

The next result gives a criterion for each Kn to be compact.

Let n > 1 be fixed,

PROPOSITION 3.5. Suppose there exist continuous kernels km,

m 1, 2, satisfying

km(s, t) < k(s, t) < km (s, t), s, t E

km - k ) 0 as m -4. oo for each s in O.
n s ms

Then
Kn

is compact.

PROOF. From the inequalities

ks
-k < (km - k ) + (k -k T )

S S ms MS MS
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ks k > (k - km) + (km - km)"S S S 5 S

there follows

(k k 7) < co (k - k ) + co (k - k
n s

,
s n s ms n ms ms

(k k 7) > (k - km) + co (km - km7).
n s s n ms s n s

By the continuity of km, k and (ii) we have

(k -k7)-k7) -÷0 as s7
n s

s

1 (
Knx)(

s) - (Knx)( s1)1 I (pri(ks - ks i)k X E 11 XII <

Hence the set of functions 11x11 < is equicontinuous. These

functions are also uniformly bounded and so Kn is compact.

There are other conditions that would guarantee the compactness

of each
Kn.'

for example if each Kn had a finite dimensional range.

For cp of the form

X w ,x(t .), w > 0, t e
'

n 1, 2,
5on

i=1

we need only specify kt R() for each t in C2 to obtain

(3.15) KR(c2) C R(0), n = 1, 2, .,

(3. 16) Kn is compact, n 1, 2,

Now we turn to the question of convergence of the approximate

solutions of our integral equation to the exact solution.
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Then

that II km - k
S S1

{K: n > 1}
n

as m 00, uniformly for s

is collectively compact.

PROOF. For m, n> I define

(Kmx)(s) = (km x) xc R(0), s E
n S

79

THEOREM 3.2. Suppose {ks: s E21 is a co-regular subset of

R(Q). Then IlKnx K as n 00 for each x in R(&).

PROOF. For x in R(Q), (3.12) implies.:

(Knx)(s) (pn(ksx)
(k5x)= (Kx)(s) for each s in C2.

But {ks: s E S-2} is a go -regular set and so (Knx)(s) (Kx)(s) uni -

formly for s in 0, 1. e., IIKnx - Kx I 0 as n 00

In particular this result holds if k is uniformly t-integrable.

We need the next result which appears in [3].

PROPOSITION 3.6. Let X be a Banach space and Kn' Km,

m, n = 1, 2, continuous linear maps from X into X. Suppose Kn

is compact for each n, n > 1} is collectively compact for each

m, and
mlirn IIK -K = 0.

n-->G0 n

Then
{Kn:

n > 1} is collectively compact.

THEOREM 3.3. Suppose (3.15), (3.16) hold. If

{ks: s ES-21 is a (p-regular set,

for each m = 1, 2, there exist continuous kernels km such



m mBy ( 1 . 1 0) and the continuity of k ,
{Kn.

n > 1} is collectively corn-

pact for each Also by the continuity of k
{krns

s EQ) is totally

bounded, whence {l
km - k 1: s eS-2} is a cp -.regular set for each m,

s s

Since 11Kni - K jj < sup, (Ikm
E "

urn IKm - K < suR (p(Iknis - ks1)Iin SEZ

inand so, by (ii), lirn lim II
Kn - Kn I 0, Then by Proposition 3. 6,m-oo

{K. n > 11 is collectively compact.
n

Let y in R(Q) be fixed and consider the equations

(3.17) Xx(s) - k(s, t)x(t)dp.(t) = y(s),

(3.18) \x(s) k(s, t)x(t)dph(t) = y(s), n 1, 2,

Suppose (3.17) has a unique solution x in R(0) and suppose the

hypotheses of Theorem 3. 3 hold. Then (3.18) has a unique solution

xn for n sufficiently large, say n > N, and by Proposition 1.1 and

Theorem 3. 2, 3.3 we have 11xn - xj1 0 as n co. We note in

particular that this would hold if k were uniformly t-integrable and

(3.15), (3.16) were valid.

Finally we remark that everything in this section is valid if C2 is

a compact Hausdorff (not necessarily metrizable) topological space,

However in that case some of the notation becomes rather cumbersome.

In particular d(s, st) 0 uniformly in s, sr would have to be replaced

by a statement involving the uniformities of 0.
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