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CONVERGENCE OF POSITIVE OPERATORS

I, INTRODUCTION

§1. Historical Remarks

The ordinary Riemann integral can be regarded as an extension
of the integral of a continuous function to a larger space in the follow-
ing way. Letd,B,(C denote respectively“the linear spaces of all,
bounded, and continuous real valued functions on [0, 1]. For x in C

define

1
P x = S‘ x(t)dt ,
0 0

then P_. 1is a linear functional defined on . Moreover P, 1is posi-

0 0

tive, i. e., x(t)>0, x in ¢ implies P, x> 0,

0

The usual definition of the Riemann integral in terms of the

upper and lower sums yields the foliowing.

THEOREM 1, 1. Suppose xe®. Then x is Riemann integrable

if and only if for each n = 1, 2, .., there exist X e C and xne ® such
that
(i) x_(t) < x(t) <x'(t), 0<t<1,
(i1) P(xn-x)—>0asn—>oo.
0 n



If (i) and (ii) are satisfied, then from the positivity of PO it
follows that the numerical sequences {PO xn} and {PO xn} both converge

to

If we set

then Theorem 1.1 yields a subspace R (the Riemann integrable func-
tions) such that ® C® ( 8 and P is an extension of PO to® .

This extension procedure has been generalized to other positive
linear functionals [4] and it yields some useful characterizations of
sets of uniform convergence for such functionals. There are applica-
tions to the approximate solution of integral equations by numerical
integration [1].

We will extend this procedure to more general positive opera-

tors and investigate some applications.

§2. Ordered Vector Spaces

In this section we establish our notation and conventions and
note some standard results which will be used subsequently.
Because of the order theoretic nature of the considerations all

vector spaces are real. Usualiy the results can be extended to



complex spaces by considering real and imaginary parts.
An ordered vector space X 1is a vector space equipped with a
transitive, reflexive, antisymmetric relation < satisfying the follow-

ing conditions.

(i) If x,y,z are elements of X and x <y, then
xtz<y+taz.
(i1) If x,y are elements of X and « > 0, then

x <y implies ax < ay.

The positive cone K in an ordered vector space X 1is defined by
K={xe¢X: x>0}.
Some examples of ordered vector spaces with which we shall be

working are:

(1.1) The set of all real sequences, x = {xn}[f, where x <y
means xrl iyn , no= 1,2, ¢-e
(1. 2) The set B(2) of all bounded real valued functions f defined
on a nonempty set 2. Here f< g means f(x) < g(x) for all
x in §2.
(1.3) The set of all measurable functions f defined on some measure
space (2,(],i). In this case f < g means f(x) f_g(x) a. e.[p].
Whenever we deal with one of these examples, or a subspace,

we use the order relation given above.
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If A is a subset of an ordered vector space X and if x in X

has the following properties:
(i) x > a foralla in A
(ii) z > x whenever z > a forall a in A
then x is called the supremum of A and we write x = sup A. The
infimum of A, denoted by inf A, is defined dually. If the supremum
and infimum of {x,y} exist for all x, y in X, then X is called a
vector lattice and we write sup{x, y} = x yy and inf {x,y} =x A Y.

+

If X is a vector lattice, then for each x in X the positive part x ,

the negative part x and the absolute value |x| are defined by

+ -
x = xvQ{, x = x AO, x| = xv(-x).

If X is a vector lattice the following relations hold for all x,

, |x| = x++x—

b

+ 4 - -
(1.4) x<y ifandonlyif x <y and y < x ,

(1.5) |x| < y if and only if -y < x< vy,

(L.6)  |x+yl<Ix| +1]yl, x| -1yl <1x-yl,
+ o+ - -

1.7 Ix -y l<lx-yl, |5 -y < |=-v],

+ + + - - -
(1.8) (x+y) <x +y , (xty) <x +ty ,
(1.9)  Jxvz) -(yva)]<|x-yl.
The above definitions and identities can be found in any stand-

ard reference on ordered vector spaces, for example [13, 15 17].



DEFINITION 2.1. An ordered vector space X is an ordered

topological vector space if X is a topological vector space.

Since this definition does not require any relationship to exist
between the order and topological structure, many authors require
some additional restrictions on the space X, However there does
not seem to be any standard definition, and when additional conditions
are needed we shall specifically say so.

If A is a subset of an ordered vector space X, the full hull of

A is defined by

If A=[A], then A is said to be full,

Suppose X is an ordered topological vector space. The positive
cone K 1is said to be normal if there if there is a neighborhood basis
of 0 consisting of full sets.

The proof of the following useful result can be found in [1l5, p.
62].

PROPOSITION 2.1, If X is an ordered topological vector

space with positive cone K, then the following are equivalent.

(i) K is normal.

(ii) There is a neighborhood basis of 0 consisting of sets V for
which 0<x <y and y in V imply x in V.

(iii) For any two nets {xB: Be I} and {yﬁ: Be I} in X, if



< <
O_xB_y

| g

then {x,: Be¢ I} converges to O,
vf{;l

for ail Pp in I and if {yﬁ: Pe I} converges to O,

An ordered locally convex space is an ordered topological vector
space equipped with a Hausdorff locally convex topology. An ordered
normed (Banach) space is an ordered topological vector space which
is a normed (Banach) space.

The next proposition is proved in |15 p. 63].

PROPOSITION 2,2, If X is an ordered locally convex space

with positive cone K, then the following assertions are equivalent:
(1) K 1is normal.
(ii) There is a family {pi: ie I} of seminorms generating the top-
ology such that 0 < x < y implies pi(x) < pi(y) for all i¢ I.
A subset B of a vector lattice X is solidif x in B and
|y| < !x’ imply v in B. An ordered topological vector space which
is a vector lattice is called a topological vector lattice if there is a
basis of neighborhoods of 0O consisting of solid sets. A vector lattice

equipped with a norm ” -|| is a normed vector lattice if le < |y|

1

implies “x” < Hyl ; if X is complete for this norm, X 1is called a
Banach lattice.

Examples of Banach lattices are:
(1.10) B(§¢) with the supremum norm,

(1.11) C(R) with the supremum norm, £ a compact Hausdorff

topological space,



(1.12) R[0, 1], the space of Riemann integrable functions on [0, 1]
equipped with the supremum norm,
(1.1 ) LD(QL 1 < p<ow, where (¢, p) is any measure space.

A map from an ordered vector space X into a vector space Y
is called positive if its maps the positive cone in X into the positive
cone in Y,

Next we give a result (15, p. 86] that guarantees the continuity
of positive linear maps.

PROFOSITION 2,3, If X and Y are ordered topological

vector spaces and if the positive cone in Y is normal and the positive
cone in X has nonempty interior, then every positive linear map
from X into Y is continuous.

COROLILLARY 2,1, If X is a toplogical vector space ordered by

a cone with nonempty interior, then every positive linear functional
on X is continuous.

If X is a Hausdorff topological vector space then X can be
completed and the completion of X is essentially unique (cf. [18, pp.
41-48] for the details). A subset A of X is said to be relatively
compact if the closure of A is compact. A subset A of a Hausdorff
topological vector space is said to be precompact if A 1is relatively
compact when viewed as a subset of the completion of X.

Some authors use the term totally bounded for precompact, but

we will reserve the following meaning for this term.



DEFINITION 2, 2. Let X be a topological vector space, S a

subset. We say S is totally bounded if for each neighborhood U of
0 in X, there exists a finite subset F of S suchthat S F + U,
If X is Hausdorff then S is totally bounded if and only if S is

precompact,

PROPOSITION 2.4. A set S X is totally bounded if (and ob-

viously only if) for each neighborhood U of 0 in X there exists a
finite set F ( X (not necessarily contained in S) such that
SCF+U.

PROOF. Let U be any neighborhood of 0 and V a balanced
neighborhood of 0 such that V + V (C_ U, Then there exist points

X X in X with S (x1 +V) U ... U(Xr + V). We may assume

P
(Xi + V)M SEP i=1, .., r. Select v in (x,1 +V)YS, =1 r,
Then x. + v C v, * V+ v v, t U, which implies S is totally bound-

ed.

§3. Summary of Results

In Chapter II the pointwise convergence of positive operators is

examined. A procedure is given that extends a positive operator PO

mapping a subspace of an ordered vector space into an ordered Banach
space. It is shown that the extension ¥ inherits some important
properties, involving convergence of operators, of P _. A generaliza-

0

tion of Korovkin's theorem on C[O0, 1] to an ordered Banach space



setting is given. Some results involving weak convergence of positive
operators are established and a Korovkin type theorem on Lp[O, 1] is
presented.

Uniform convergence of positive operators is examined in Chap-
ter III. If P, Pk’ k=1,2 +-, are positive operators mapping an
ordered topological vectoz; space X into an ordered topological vector
space Y and ka - Px for each x in X, then on what sets is the
convergence uniform? The concept of a regular (or P -regular) set
is formulated and it is shown that the convergence is uniform on each
P-regular set. Every totally bounded set is regular and every regular
set is bounded, but the converses are false in general, Other proper-
ties of regular sets are established. For example, regular sets may
be combined in various ways to produce other regular sets. The rela-
tionship between regular sets and sets which are totally bounded in
some locally convex topclogy is examined. It is shown that every
regular set is totally bounded in some locally convex topology, but the
regular sets in general do not coincide with the totally bounded sets in
any locally convex topology.

In Chapter IV an attempt is made to characterize the regular
sets in specific spaces. For the spaces ﬁp, 0<p<o, and Cy the
regular sets are the totally bounded sets. If ¢ 1s a positive linear

functional on ¢, then the ¢-regular sets are either the totally bounded

sets or the bounded sets, depending on ¢. For Lp(Q), 1 <p<oo,
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where (2,4,p) is a totally finite measure space, the characterization
is more involved. For ¢ in L; = Lq’ 1/p +1/q =1, let X{¢) = X[(p> 0]
If S is a dominated family in Lp(ﬂ) such that X(¢)S 1is totally bound-
ed in LP(Q), then S is a ¢-regular set. Conversely if S is a ¢-regu-
lar set, then X{¢)S 1is totally bounded in Lp(Q) . The P - regu-
lar sets in R[0, 1], where P is the Riemann integral, are investi-
gated. No characterization is obtained, but several results giving
sufficient conditions for a set to be regular are given. For example,
any bounded set of monotone functions is regular. These results have
important applications to the approximate solution of integral equa-
tions.

Finally, in Chapter V the previous theory is applied to the inte-

gral equation

(3.1) x(t) - (‘ x(s)k(s, t)duls) = y(t)
Y6l

where 2 is a compact Hausdorff topological space, p a finite Baire
measure, k a bounded kernel and y a continuous function. We
assume there is a sequence {qon} of continuous linear functionals con-
verging pointwise to ¢, the functional associated with p. Let By be

the Baire measure associated with @ and X the solution to

(3. 2) x(t) - 5 x(s)k(s, t)dpn(s) = y(t) .
Q
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If k is continuous the concept of a regular set in conjunction with the

theory of collectively compact operator sets yield

(3. 3) xn(t) - x(t), as n — o, uniformly for te%Q,

where x is the solution of {(3.1). If k is not continuous, the exten-
sion procedure of Chapter Il is used to extend ¢ to a space R(§2) con-
taining C(R). It is shown that a function x is in R{§2) if and only if
x 1s continuous a. e. [p]. Again we obtain (3. 3) by means of certain
convergence theorems established in Chapter 1, the concept of a regu-

lar set, and the theory of collectively compact operator sets.
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Ii, MONOTONE APPROXIMATION AND
POSITIVE OPERATORS

§1. Extensions of Positive Operators

As we have seen, one can consider the Riemann integral as the
extension of the integral of continuous or step functions to a larger
space of functions. We will show that this same procedure can be
applied to a positive operator defined on an ordered vector space.

THEOREM 1.1, Let X1 be an ordered vector space, XO a sub-

space and Y an ordered Banach space with a normal closed positive

cone. Assume PO is a positive linear operator mapping XO into Y.

We define a set X as follows., Given x in X x is in X if and only

1’
if, for n=1, 2 -+, there exist X, x" in XO with
(i) x < x< x
n—~ "=
(ii) Poxrl - POXn - 0 as n -~ o ,

Then X is a subspace and X, CXC Xl . The sequences {POXn}’

{Poxn} converge to the same limit. Define

(iii) Px = limP x" = limP x , xe X,
0 0 n
n-»co n-»o0

Then Px is independent of the choices of {xn} and {xn} and P is

a positive linear operator mapping X into Y.
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PROOF, Let {xn}, {xn} be sequences in XO such that (i) and

(ii) hold. Then for any integers n, m > 1, Xn< x< x " so POx <
- — "z n —

m
POx . Let p be any positive integer, then

n
(Px"-P < P - < i
(Pox 0% = Fo¥ Pox < Pyx P X nip

so {Poxn} is a Cauchy sequence by Proposition 2.1 of Chapter I,
whence Poxrl - vy for some y in Y. Then (ii) implies Poxn—»y.

Let {yn}, {yn} be two other sequences in X satisfying (i) and

0

(ii). Then Xni x < an implies P Xni Poym and, since the posi-

0

tive cone in Y 1is closed,

. n . . n .
= < -
hmPOx llrnpoxrl lim POy llmPOyn

n->o0 n-»o0 n—»co n—>co

By symmetry, limP x" = 1irnPOyn and so P is well defined

0
n—>oo n-—>00
by (iii). If xeX  take x_= x'=x, n=1,2 -, whence X, CX. If
xeX and x> 0, then 0< x< xn, n=1,2 -, so Px = limPOanO,

n-»co
i. e., P 1is a positive operator. The fact that X is a subspace and P

is linear follow from these respective properties of XO and PO. This

completes the proof.
It is clear from the proof that the extension procedure may be
used on an operator PO which is positive, but not necescarily linear.

For example if XO is a subset of Xl then X would be a subset con-

taining X and P a positive operator defined on X extending PO.

0
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It should be noted that the norm on Y was never used in the
proof, in fact the theorem is still true if Y is a sequentially complete,
Hausdorff topological vector space ordered by a normal closed positive
cone. However, if the positive cone has nonempty interior, then Y
is normable [15, p. 67], so little would be gained by this apparent
generality.

If X is a topological vector space, then X need not be closed.

1

To see this let X. = LI[O’ 1], X the subspace consisting of the con-

1 0

tinuous functions and PO the Riemann integral, Then X is the set
of Riemann integrable functions which is not closed in LI[O’ 17.

However we do have the following result,

PROPOSITION 1.1, Assume the hypotheses of Theorem 1,1

hold and in addition suppose XO, X1 are vector lattices. Then X is

a vector lattice.
n n

PROOF, Suppose x, yeX, Xni x< x, Yni y<y,n=1,2-,

(P x" - P 0, (Py -Py) - 0. Th
o " Fo*n) > oY T 0"n -oaen
XV Yy, <xvy< x" v Yn and, by (1.9) of Chapter I,
(x v Yn) -(x vy )< (x" - x )+ (yn -y ). This proves xvyeX and
n n — n n

so X 1is a lattice.

The next result shows that, in Theorem 1.1, X 1is complete in

the sense that another application of the extension procedure yields no

further extension.
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PROPOSITION 1, 2. Let XO, X, Xl’ Y, PO, P be as in Theo-

rem 1,1, Define a set XZ by xe XZ if and only if for each n =1,2,...,

. n n n
there exist x , xneX such that xrl < x< x, Px - Pxrl ~— 0. Then

1
Xl = XZ'

PROOF. The proof is obvious.

A special case of the extension procedure described in Theorem
1.1 has been used in the approximate solutions of certain integral
equations by numerical integration[2]. It will be applied by us in
Chapter V to a larger class of integral equations.

If, in Theorem 1.1, Y is the real line with the usual topology,

then we have the following special case.

COROLLARY 1l.1. Let Xl be an ordered vector space, X0 a

subspace and ¢y @ positive linear functional defined on XO. We de-

fine a set X as follows. Given x in Xl’ x is in X if and only if,

n
for n=1, 2, -+, there exist Xn’ x in XO such that

n
(1) x < x< x
n— "=

(ii) qDOXn - 0%, -0.

Then X 1is a subspace and XO C XC Xl . The sequences {qooxn} and

{gooxn} converge to the same number and if we define

L n_ .
(iii) X = hmqoox = hmqooxn

n->00 n—-o0
then ¢(x) is independent of the choices of {xn} and {xn} and ¢ is a

positive linear functional defined on X.
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§2. Pointwise Convergence of Positive Operators

We wish to investigate the pointwise convergence of positive
operators defined on the spaces XO, X of Theorem 1.1.

Theorem 2.1, Let X be an ordered vector space, Y an order-

ed Banach space with a normal positive cone, and XO a subset of X.

Assume P is a positive operator mapping X into Y such that for

n=1,2 ., there exist xn, Xn in XO with
(i) x < x< xn s
n— =
(ii) Px' - Px - 0.
n

Let {P.l: ielI} be a net of positive operators mapping X into Y such
that Pix converges to Px for each x in XO. Then P_lx converges
to Px for each x in X.

PROOF. From the inequality X < x< x there follows

Px < Px< Pxn and P.x < P x< P_xn for i1e¢l, n=1, 2, --- ., Hence
n — - in—"1 —"1i
Px - Px< (P_lxn - PxY) + (Px - Px ), and
Px -Px>(Px -Px )+ (Px - Pxn) .
i — ' in n n

The theorem follows by Proposition 2.1, Chapter I.
Note that neither P, nor Pi’ iel, was required to be linear.

The positivity was the crucial property.
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EXAMPLE 2.1. For x in R[0, 1] let

1
Px = S‘ x(t) dt ,
0
n
= > < < 1. = e
an Z wnkx(tnk), w2 0, 0< tnk <1l n=12
k=1

If an - Px for all x in C[O0, 1], then an - Px for all x in
R[ 0, 1]. Most of the usual quarature formulas, Newton-Cotes excepted,
have the above properties,

The next result replaces the operator P with a set of operators.

PROPOSITION 2,1, Let X be an ordered vector space, Y an

ordered Banach space with a normal positive cone. Let {Pt: teS2}

be a set of positive maps from X into Y such that for each x in X,

. . nt . . .

n=1 2 «. t in & there exist x p X in X satisfying

n
. nt
(i) x < x<x ,

nt — -

.. nt . .
(ii) Ptx - Ptxnt - 0, uniformly for t in .

For each t in £, suppose {P,t: ieI} 1is a net of positive operators
i

mapping X into Y such that for each x in X and each n,

X - P x
1t nt t nt

(iii)

, uniformly in t,

(iv) P, xnt - Ptxnt

¢ uniformly in t .
i

b

Then for each x in X

(v) Pitx - Ptx, uniformly for t in .
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PROOF, The proof is the same as that for Theorem 2.1 except
for the added dependence on t,.

S

DEFINITION 2.1, Let X be a normed linear space and X its

normed dual. We say that a subset A of X is norm-determining if

for each x in X we have

x[l = sup {[fG)] « fea [l£]] = 1}.

e

For example X isa norm-determining subset of itself. If £
is a compact metric space, then the point evaluation functionals com-
prise a norm-determining subset of C(Q)*. If X is a normed linear
space ordered by a normal positive cone then each continuous linear
functional can be written as the difference of two positive linear func-
tionals [15, p. 72], so there exists at least one subset A of Y* con-
sisting of positive functionals such that A - A is a norm-determining

set,

PROPOSITION 2, 2. Let X be an ordered normed linear space

and 2 a set of positive linear functionals such that £2-& is a norm
determining subset of X, Suppose P 1is a continuous positive linear
map from X into X, For x in X, n=1,2 -, tef, assume there
. nt
exist x , X such that
nt

. . nt
(i) x < ox< x

nt

(ii) t(Pxnt - Px - 0 as n - o, uniformly for t in §2.
nt Y
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Let {Pi: iel} be a net of continuous positive linear operators map-

ping X into X such that for each x in X and each n we have

(iii) t{P.x } — t{Px ), uniformly for t in 2,
1 nt nt

Y nt
(iv) HP %) — t(Px ), uniformly for t in €.

Then Pix - Px for each x in X.

ale S
s P

PROOF, We define ¢ =P t, 0. =P t, t in £ i in I. Ob-
o ——— i i
serve that o, @y are positive continuous linear functionals on X and
i

we can apply Proposition 2.1 to obtain
t(Pix - Px) - 0, uniformly for t in $£2-Q

Hence ||P.x - Px|| = supt(P.x - Px) —- 0,
i i
[[e]] =1
tef2-82

As a special case of this theorem we have the following result.

COROLLARY 2.1. Let X be a normed linear space of bounded

real functions x(t), teS, with the sup norm. Let P be a positive

linear operator on X into X. For each x in X, n=1, 2 ..., and t

. nt
in S assume there exist Xnt’ x €X such that
. nt
(i) x < x< x
nt — -
nt .
(ii) (Px ¥{t) - (Pxnt)(t) - 0 as n — o, uniformly for t in S,

Let {Pi: ielI} be a net of positive linear operators mapping X into

X such that for each x in X and each n,
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(iii) {(P.x }t) = (Px_ _)}(t), uniformly for t in S,
i nt nt

Y

(iv) (P.x 3ty — (Px )t), uniformly for t in S,

Then HPiX - Pxi; -~ 0 for each x in X,

PROOEF, For t in 8 let ft in X be point evaluation at t

and set §2 = {ft: te S} U {0}. Then apply Proposition 2. 2.

§3. Generalizations of Korovkin's Theorem

We now prove a result which generalizes Korovkin's theorem
[12, p. 14] to an arbitrary ordered Banach space,

THEOREM 3,1, Let X be an ordered Banach space, XO a sub-

ale

space and § a set of positive continuous linear functionals in X

such that $2-§2 is a norm-determining subset of X'. Let P bea

continuous, positive linear map from X into X. For each x in X,
nt

n=1 2 +- { in & assume there exists X p X in XO such that

. nt
(i) x < x< x
nt — —

t
(ii) t(Pxn ) - t(PXnt) - 0 as n — o, uniformly for t in §, and,

for each x in X and each n,
(iii) {xnt: tell} | {xnt: tef2} are totally bounded.

Let @1’} be a sequence of continuous, positive linear operators on

X into X such that

{iv) Hka~Px|| -~ 0 as k - o, for each x in XO.
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Then Hka —Px“ -0 as k - o, for each x in X.
PROOF,. Since ka - Px for each x in XO and X is a
Banach space, the uniform boundedness principle implies that the

convergence is uniform on totally bounded subsets of X ; in particu-

0,'

lar, as k — oo,

P, x - PxntH —~0 for each n, uniformly in ¢

||P, 5™ - Px™|| >0 for each n, uniformly in t.

Therefore the hypotheses of Proposition 2. 2 are satisfied and so
llka - Px|| -0 for each x in X.

COROLLARY 3.1, Let X be a Banach space of bounded real

valued functions x(t), t in S, with the sup norm and P a positive

linear operator on X into X. Suppose X _ is a subspace such that

0
for each x in X, n=1 2 -+, t in S, there exist X o xnt in XO
with
(1) x < x< xnt,
nt — -
(1i) (Pxnt)(t) - (Pxnt)(t) -+ 0 as n — o, uniformly for t in S,

and for each x in X and each n
(iii) {x ¢ teS} and {xnt: te S} are totally bounded.
n

Let {Pk} be a sequence of positive linear operators on X into X

such that
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(iv) Hka - Px|| -0 for each x in XO.
Then HPkX - Px|| -0 for each x in X,

This Corollary is due to Anselone [4]. Korovkin's monotone

operator theorem is a special case.

COROLILARY 3, 2. (Korovkin) Let Pk’ k=1, 2 ..., be positive

linear operators mapping C[O0, 1] into itself. If ka - x as k - oo

. . 2
for the three functions =x(t) = 1,t, t

ki

then ka~9x, as k - w0, for
every x in C[0, 1],

PROOF., Let X = C[0, 1], XO the subspace spanned by the

2
three functions x(t) =1,t,t . Foreach x in X and n=1, 2 «--,

nt

there exist x , x in X _ of the forms
nt 0
(3. 1) x (s)=x(t) -1/n -a (s - t)2
* nt n

nt 2
(3. 2) x (s) = x(t)+ 1/n+ an(S - t)
such that

t

(3. 3) x < x< X"

nt

This follows from the uniform continuity of each x in X. Note that

x (t) - Xnt(t) = 2/n

and that, for each x and each n, the sets
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are bounded and equicontinuous, hence totally bounded. Therefore
the result foliows from Corollary 3.1 with P = L.

We now give some results concerning weak convergence of posi-
tive operators. If X is a Banach space and Xn’ x€X, n=1,2 -«
we shall denote weak convergence of the sequence {xn} to x by
x z x. The proof of the first result is similar to that of Theorem
2.1,

PROPOSITION 3.1, Let X be an ordered vector space, Y an

ordered Banach space, and XO (_ X. Assume P is a positive oper-
n

ator mapping X into Y such thatfor n =1, 2 --., there exist x ,

x eX  with

n 0

(i) x < x<x

(ii) P(x - xn) hid 0.

Let {Pi: iel} be a net of positive operators mapping X into Y

W ) W
such that Pix» Px for each x in XO. Then P.lx—> Px for each x
in X.

THEOREM 3,2, Let X be an ordered vector space, Y an

ordered Banach space, £ a set of positive continuous linear function-
als on Y and XC (_ X. Let P be a positive operator on X into Y.

For each x in X, n=1, 2 -+, and t in § assume there exist x o
n

xnt in XO such that

(i) x < x< x ,
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1

(ii) t[let—Px ] =0 as n - .
nt

Let {Pi: ieI} be a net of positive operators on X into Y such that
(i11) t[Pix - Px] - 0 for each x in XO’ t in £,

Then ‘t[Pix - Px] - 0 foreach x in X, t in Q,

PROOF, From (i) we obtain Px < Px< Px |, Px < P x<
_ nt — - i"nt— "1 —
nt . - - . .
P,lx , tel, tesl n=1 2 +«. ., From this we obtain
. nt 13 nt
t{P.x - Pxj < t[P x - Px" ] +{{Px - Px t]’
i — i n

t{Pix - Px| > t[P x

-Px | +t[Px - Pxnt]n
— " 1 nt nt nt

and the theorem follows from (i) and (ii).

COROLLARY 3, 3, Let {Pk} be a sequence of positive linear

operators mapping C[0, 1] into itself. If the norms ||Pk|l’

k=1, 2 -

’ 'y

+, are uniformly bounded and (ka)(t) = x(t), 0< t< 1,
for the three functions x(t) = 1, t, tZ, then (ka)(t) - x(t), 0< t<1,
for all x in C[0, 1].

PROO¥. This follows from Theorem 3., 2, where Xnt’ xrlt are
defined by (3.1), (3. 2) respectively and the fact that for bounded
sequences in C[0, 1], weak convergence is equivalent to pointwise

convergence.

COROLLARY 3,4. Let {Pk} be a sequence of positive linear

operators mapping C(-o, o (the space of continuous functions defined

on the real line} into itself. Suppose for each compact interval I of
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(-, ) there exists a constant M_ such that |Pk(1)(t)| < MI’ for

I
tel, k=1, 2 .-, If (ka)(t) -+x(t), -0 < t< o, for the three func-
tions =x(t) = 1, t, tz, then (ka)(t) - x(t), -0 < t< oo, for every x in
C(-00, o0).

Now we shall consider the convergence of operators on the

space Lp[O, 1], 1< p<ao,

THEOREM 3.3, Let {Pk} be a sequence of positive linear

operators mapping Lp[O, 1] into itself, Suppose ka T x for the

three functions x(t) =1, t, tZ. Then ka ¥ x for every x in Lp[O, 1]

b

if and only if the norms ||Pk”’ k=1, 2 .-+, are uniformly bounded.
PROOF. If P x %X x for each x in L [0, 1], the the norms

HPkH, k=12 -, would be bounded by the uniform boundedness

principle. Suppose there is a constant M such that ||Pk|| < M,

k=1 2"+, Let xe¢ Lp[O, 1], assume x is continuous, and let
sk 2

feLp[O, 1] = Lq[O, 11, 1/p+1/q =1, £> 0. Define ¢t(s) =(t - s),

0< s,t< 1, Foreach n=1, 2 +-, andeach t in[0, 1] we have

X <" as defined in (3.1), (3.2) and satisfying (3.3). From the

positivity of f and Pk we obtain for each k, n > 1

1 1

(3. 4) 5 f(t)[ka)(t) - x(t)] dt 55 x(t)f(t)[Pkl)(t) - 1]dt
0 0

1 L

t a7l go O, D(t)dt + 8 gof(t)[quat)(w]dt,
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1 1
(3.5) (‘ f(t)[(ka)(t) - x(t)] dt > (‘ x(t)f(t)[(Pkl)(t) - 1]at
L% 0 L% 0
] 1 1
-n § f(t)(Pkl)(t)dt -a_ g f(t)[quot)(t)] dt .
0 0

[

The fact that SO f(t)[(quot)(t)] dt - 0 as k - o yields f(ka) - f(x).
Now let x in Lp[O, 1]l be arbitrary. There exists a sequence {xn}
of continuous functions such that X X in Lp[O, 1]. Then

|f(ka - x)l < lf(ka - kan)| + |f(kan - Xn)| + ’f(x][1 - x)| <

HfH (M + 1) HXn - xH + ‘f(kan - xn)] s0 f(ka) - f(x). Finally for
arbitrary f in L:[O, 1] write f = f+ - f to obtain f(ka) - f(x).
The proof is complete,

Now we can give a Korovkin type theorem for LP[O, 17.

THEOREM 3.4, Let {Pk} be a sequence of positive linear

operators mapping Lp[O, 1] into itself. If

(i) the norms HPkH, k=1, 2 «., are uniformly bounded,

(i1) Pkl -1,

(iii) ka X x for the two functions =x(t) = t, tZ, then ka - x for all

x in L O, 1].

p[ ]

PROOF. Let G be the setof all ge Lp[O, 1] such that g is
the characteristic function of subinterval of [0, 1] or the character-
istic function of the complement of such a subinterval. Since the
closed linear span of G is L [0, 1] and the norms HPkH are uni-

p
formly bounded, it suffices to show Pkg -+ g for each g in G. For
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g in G let Zg: = {te[0, 1]: g{t) = 0}. By Theorem 3.3 we have

P = g which implies

K8

(3.6) g‘ (Pkg)(t)dt - 0 as k —=>w, geG .,
Yz
g
Let g in G befixedandf =1 - g, Then f is in G and by (3. 6) we
have
(: (Pkf)(t)dt - 0 as k - .

Now

=\ [(P,_1)(t) - 1]dt + g [1 - (P, _g)(t)]dt
)sz k z, k

which implies that

( |1 ‘(Pkg)(t)ldt*Oas k - x,

Then (3. 6) yields
1

5 I(Plg)(t) - g(t)|dt -0 as k -,

i<
0
Let {Pk,g} be an arbitrary subsequence of {Pkg}. Then there is a
further subsequence, say {Pk“} such that (Pk”g)(t) ~ g(t) a.e., as
k' >, Let ¢ > 0 be given, then by Egoroff's theorem there exists

1 -1
as set A with m{A) < ) e[Zp + ZZP] and on [0, 1] - A = AS such
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that (Pk”g)(t)»> g(t) uniformly. Hence for k' sufficiently large

(e
C

! g)(t) - glt)]Par< i,
A

k!i ;
On the other hand

g (P2 - e)Pat < m(a2P+ 2°P] + 2%P(||p. 1 -1]|P< lze
A

k!l

for k' sufficiently large. Therefore Pk”g - g in Lp[O, 1] and
thus P g — g in Lp]O, 1]. This completes the proof.
A similar result was established in[10] using the three func-

tions x(t) = 1, sint, cost, except it was assumed that P _x converg-

k

ed strongly to x for all three functions.
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III. UNIFORM CONVERGENCE OF POSITIVE
OPERATORS AND REGULAR SETS

§1. Uniform Convergence of Positive Operators

et X and Y be topological vector spaces and P, Pk’ k =
1, 2, -+, continuous linear maps from X into Y. Assume ka - Px
for each x in X. We wish to determine subsets of X on which the
convergence is uniform, If the spaces X and Y have an order
structure and Pk, P are positive operators then the sets on which
convergence is uniform will be larger than otherwise.

We state a generalization of the Banach-Steinhaus theorem, a
proof of which can be found in [18, p. 347].

PROPOSITION 1.1, Let X be a barreled topological vector

space, and Y a locally convex space. The following properties of a
subset H of the space IL(X, Y) of continuous linear maps of X into
Y are equivalent.

(i) H is bounded for the topology of pointwise convergence;

(ii) H is bounded for the topology of bounded convergence;

(iii) H 1is equicontinuous.

PROPOSITION 1. 2. Let X be a barreled topological vector

space, Y a locally convex topological vector space. Let P, Pk’
k=1, 2 +-, be linear maps from X into Y, Pk continuous, such that

ka—>Px for each x in X. Then P is continuous andthe convergence
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is uniform on totally bounded subsets of X,

PROOF. It follows from the pointwise convergence that the set
H = {Pk: k=1 2 -} is bounded for the topology of pointwise con-
vergence. Thus H is equicontinuous by Proposition 1.1, If V is
any closed neighborhood of 0 in Y, then there exists a neighborhood
U of 0 in X such that PkU CV, k=1,2 ++, and this implies
PU (C V, i. e., P is continuous.

Now we prove that the convergence is uniform on totally bounded
subsets. Let S be a totally bounded subset of X, V an arbitrary
neighborhood of 0 in Y and W a balanced neighborhood with
W+ W+ W (C V. There exists a neighborhood U of 0 in X such
that PU C W and PkU C W, k=1, 2 +--, There exist points
ST Xr in X such that

s C (x; +U) ) -~U(xr + U)

and so there is an N such that k> N implies Pka - PxJ.e W, j=

1

)
b b

r. Thenfor x in S and k> N we have XE(Xj + U) for some

j, whence P x - Px =P (x -x,)+ (P x. - Px.) +P(x, - x)e W+ W +
k k J k] J J

W ( V, and the proof is complete.

DEFINITION 1.1, Let X, Y be ordered topological vector

spaces and P a positive linear map from X into Y. Aset S X
is said to be regular if for each x in X and each neighborhood U of

LU
0 in Y, there exist XU, X in X such that
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(i) Xy < x< XU,
8]
(ii) Pilx - x“)( g
U LU
{111) SU = {xd xe 8}, S = {x : xe¢S8} are totally bounded.

When we wish to emphasize the dependence on P we shall write
P-regular.
If P is a positive linear functional defined on X the definition
of a regular set S becomes the following. Given x in S ¢ > 0,
there exist xa,xg in X such that
€

(1) ng_x‘ix,

(ii) P(x -x )< g,

(iii) S = {xgz xeS}, 8 = {Xg: x€S} are totally bounded.
€
The significance of regular sets is indicated by the following

theorem.

THEOREM 1,1, Let X be an ordered, barreled topological

vector space and Y a locally convex space ordered by a normal cone,

Suppose P, Pk’ k =1, 2 +.., are positive linear operators mapping

bl

X into Y, P. continuous, such that ka -~ Px for each x in X.

k
Then P is continuous and the convergence is uniform on P -regular
sets.

PROQF, The continuity of P follows from the Proposition 1. 2.
Let S be a P-regular subset of X and U a neighborhood of 0 in Y.
U

Then there exist subsets SU’ S of X satisfying (i), (ii), (iii) of
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Definition 1. 2. The equalities

U U
P < Px< P P < P < P =1
XU—- x< Px, ka_ kx__ kx , k 2, ,

yield

ka - Px< (kaU - PXU) + (PxU - Px

U, .
P x-Px>(P -P P - P =1 2 e
X x > U xU) + ( Xy x ), k , 2 ,

and the conclusion foliows by Proposition 1, 2 and Proposition 2.1 of
Chapter 1.

The concept of a regular set was introduced in [1l] by P. M.
Anselone to deal with integral equations having discontinuous kernels,
In *hat paper X = R[0, 1], P was the Riemann integral and Pk numer-

ical quarature. Also see [2 3, 4].

§2. Elementary Properties of Regular Sets

We shall show that regular sets behave much like totally bound-
ed sets, although there are some differences. The first pfoposition

is clear.

PROPOSITION 2,1. Let X, Y be ordered topological vector

spaces and P a positive linear map from X into Y. Then every
totally bounded set is a regular set.
The converse is not true in géne‘ral. To see this let X = CJ0, 1]

and P the Riemann integral, Set S = {xn: n=1 2 --.}, where
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xn(t) =1 for l/ni t < 1 xn(O) = 0, and x is linear between 0 and
1/n. Then S is not totally bounded since it is not equicontinuous.
On the other hand it is easy to show that S is regular.

LEMMA 2,1, Let X be a topological vector space ordered by

a normal cone, S a subset of X. Assume there are bounded subsets

Sl’ S2 of X such that for each x in S there exist xlesl, xZGS2

with X, < xf_xz. Then S 1is bounded.

PROOF. First we observe that if S, and S2 are bounded

1

then S2 - S1 is bounded. Let U be any neighborhood of 0 and let

V be a full neighborhood of 0 such that V + V (C U, There exists

X > 0 such that SZ—SIC)\V and SIC)\V. Now x, € x<x

1 2

implies 0_<_x—x1_<_‘x2—x1 so that l/k(x—xl)eV. Hence

(l/k)x:(1/k)(x-x1)+(1/)\)(xi)6V+VCU, i. e., SC U,

PROPOSITION 2. 2. Let X, Y be ordered topological spaces

with X possessing a normal positive cone. Suppose P is a positive
linear map from X into Y. Then every regular set is bounded.
PROOF. Observe that totally bounded sets are bounded and use
the preceding lemma.
The converse is again false in general. Let X = C[0, 1], P the
Riemann integral. Set S = {xn: n=1 2 ..}, where xn(t) = cos{2nmt).

Define

Y.
»
|
=

n
Z X(l—;-)
1
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We know that an - Px for each x in C[0, 1], but P x =1 and
f n

n
Pxn =0 for n=1,2 .. Therefore, by Theorem 1.1l S cannot be a
regular set.

From Proposition 2.1 and 2. 2, we see that the regular sets falls

somewhere between the bounded sets and the totally bounded sets.

PROPOSITION 2.3. Let X be an ordered topological vector

space, Y a topological vector space ordered by a normal cone, P a

v

positive linear map from X into Y and S a subset of X. Assume
that for each x in S and each neighborhood U of 0 in Y there

. U .
exist x , XU in X such that

. U
(i) XU x< x

A

c

(ii) P(x~ -x,)eU,

U
(iii) SU: {xU: x€S}, S = {XU: x€S} are P-regular.
Then S is a P-regular subset of X.
PROOF. Let U be a full neighborhood of 0 in Y, V a neigh-

borhood of 0 such that V+ V+ V ( U, If x€¢8S then there exist

\ \
x eSV, x_. €S__ satisfying (i), (ii) and (iii). Since S, S are regu-
vV 'V \
. v Vo
lar, there exist ayp a , bV’ b in X such that
\ \ \
< < < <
ay S xy<an, bV <x <b ,
v .
Pa’ -ay)eV, P(b' -b )eV

and these sets of approximations are all totally bounded. Observe that
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< b+ (x -x )t -ay)

V A \%
a<xib andOf_b - a v v v

' v

YA
whence P(b - av)eU and S is a regular set.

This result will be used later in forming new regular sets from
other regular sets.

In some cases totally bounded sets may be replaced by finite
sets in the definition of a regular set,

PROPOSITION 2.4. Let X be a subspace of B(§2) which con-

tains the constants and let ¢ be a positive linear functional defined
on X. A subset S of X is ¢-regular if and only if the following

x in X with
£

holds., Given € > 0 and x in S, there exist x

b

€ €
xeixf_xs, plx —x€)<s and the sets S = {x: xeS}, Ss =

{x : xeS} are finite.
€

PROOF, Let S be a ¢-regular subset of X and € > 0. For

E-x)<~—£

. . 3 . . 3
x in S there exist x, x in X with x < x< x|, ¢lx . 5
3 e — -

and S = {XEZ xeS}, S = {x : x€S} are totally bounded. Let
€ €
e x ), dx, e be finite ¢[80(1)] | -nets for S, S
{Xl’ ,xn}, Xy ’Xms} e e €[8p e S
respectively, Then for some i, j and all te$2 we have

x () - e[8(1)] 1< x5(t) + ¢ [8p(1)] -

x (6 - e[8AD)] T <x (0 < x (1) +e[Be(1)]

Since

(’0((}{ +e[8¢(l)] _1) - (Xje - 8[890(1)—1)) <e ,
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we can replace s by {xel te[8¢(1)] -1 : i=1++,n} and S by
£

-1
{x,lE -e[8L)] i i=1, -, m}.
This resuit applies in particular to X = R[0, 1] and ¢ the

Riemann integral.

PROPOSITION 2.5, Let X be a complete topological vector

space ordered by a closed positive cone, Y an ordered topological vec -

tor space, and P a positive continuous linear map X into Y., If

S C X is a regular set, then the closure S of S is a regular set.
PROOF. Let {Xi: ieI} be anetin S which converges to an

element X, in X, and U a closed neighborhood of 0 in Y. Then

U
there exist totally bounded subsets SU’ S~ of X such that for each

U U
x Iin S we have x in S and Xy in SU such that xU_<_xi xU

U
and P(x - xU)GU. In particular, for each i€l we have xU(i)eSU

U U U U
and x (i)eS with xU(i) < x, < x (i) and P(x (i) - Xy
U

exist subnets xU(i) and x (i) with ieI' (C I, such that x

(i)) e U, There

EE

XUE§U and xU(i) - er §U with i€I', Since the positive cone in X

U U . .
is closed we have X1 < X, < x  and P(x - xU) ¢eU since U is
closed. Thus S is a regular set,

The next proposition is similar to the result that a continuous

image of a compact set is compact.

PROPOSITION 2,6, Let X be an ordered topological vector

space and Y an ordered normed space with a normal cone. If P is

a continuous positive linear map from X into Y and S ( X is a
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regular set, then P(S) is a totally bounded subset of Y.
PROOF. Let {P(xn)} be a sequence in P(S). For each m,

n=1 2 °*, there exist x (n)eS and xm(n)ésm with S and
m m m

b bl

s™ totally bounded, such that

x (n)< x < xm(n), ||xm(n)—x (n)|l <1/rn.
m - n — m

. m . o
Using the total boundedness of Srn’ S and the Cantor diagonlization
process we can find a subsequence {nk} of the natural numbers such,

for each m = 1,

0 m 0
2, ***, the sequences {Xm(nk)}kZI and {x (nk)}k:1

are Cauchy. Then

m

P < <

Xm(nk)-—PXn < Px (nk),
k
m m m
Pxrl —Pxn < [Px (nk) - Px (nk,)] + [Px (nk') - me(nk,)],
k k!

) P > [Px_(n) - Px _(n )] + [Px _(n,) - Px (n,)]
Xnk— Xnk, ZAEE I s EE m k' k'

and the proposition follows by the normality of the positive cone in Y.
Now we consider how one may combine two or more regular
sets to produce another regular set. The following is clear.

PROPOSITION 2. 7. Suppose X,Y are ordered topological

spaces, P a positive linear map from X into Y. I §, Sl’ S2 are

regular subsets of X, then the following are also regular sets:

(1) S+S={x1+x

1 2 xp€ 5}

2'.‘

(ii) rS = {rx: xe¢S } for each real number r,
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(iii) S1 S2 .
We now consider the case when X 1is a topological vector lattice.
We need the foilowing lemma.

LEMMA 2.1. Let X be a topological vector lattice and S, Sl’

S2 totally bounded subsets of X. Then the following sets are totally

bounded:

(1) s | ={l=: xes},

(ii) SJr = {x+: xed },

(iii) 8 ={x : xeS },

(iv) S, /\SZ: {xl/\xz: xlesl, xzeSZ},
(v) 8 VS, ={x vx,r xje85), x,¢5 5.

PROOF. Let U be any solid neighborhood of 0. Then there

.ee,x in X suchthat S (x1 + )l ... U(Xr + U},

exist points Xy r

Using the fact that U 1is solid and the inequality Hx‘ - lyH < ix - y],
we obtain | S| (lxll +u) U . Uy Ixrl + U). So (i) is proved.
. . . + +
(ii) follows from the inequality |x -y | < |x - y| and (iii) from
(i) and (ii), Since xAy=-1/2[x-y - (x -y)] *y we have

A 21 S - - + i . Fi
S,/ S, C /z[s1 S, - (8, sz)] S, and so (iv) holds. Finally

(v) follows from (iv) and the identity x vy = - [- (-x) A (-y)].

PROPOSITION 2,8. I.et X be a topological vector lattice, Y

a topological vector space ordered by a normal cone, P a positive

linear map from X into Y and S, Sl’ S2 regular subsets of X,



Then the following are regular sets:

(i) s vs,
(i) S1 A SZ’
Gi) s,

(iv) S,

(v) s ].
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PROOF., We first prove (i). Let U be any full neighborhood of

0 in Y and let V be a neighborhood of 0 such that V+ V ( U.

. Vv \'
Then there exist totally bounded sets S1 R SIV’ SZ, SZV such that
for Xy in S1 and x‘2 in S‘2 we have
x x xV
v = 1= 1 2v="2="2
and
v \'
P(x1 - le)e Vl’ P(x‘2 - XZV) eV
for some
\'2 \' \' v
S S S .
x ESI, XlVE 1y xze , XZVE >V
From this we obtain
X \Y < Vx_ < x.V xV
vy Fav> ™1 =X 2

and, by (l.9) of Chapter I,

P(XV

1\/xz)~(x v ox

v ZV)]

(A
B
»
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Then Slv S2 is regular by Lemma 2.1 (v). Similarly for (ii); (iii)
follows from (i) by setting SZ = {0}, and (iv, follows from (ii). Fin-
ally ISI C S" +8 7 and so (v) follows by (iii), (iv) and Proposition
2.7 (i).

PROPOSITION 2.9, Let X (_ B(f?) be a subspace which is a

vector lattice with 1 €X, Y an ordered topological vector space, and
P a positive linear map from X into Y. If Sl’ SZ are regular sub-

sets of X, then the set

is regular.

; +
PROOF. Since Sls2 C Sls2 -S

+
— +

+ -t
> + slsz, we may

assume that Sl’ S2 consist entirely of nonnegative functions. Let M

be a bound for 81 and SZ' Let U be a neighborhoodof 0 in Y, V

a neighborhood of 0 with V + V (C_ U. There exist totally bounded sets

v v . .
Sl’ SlV’ SZ’ SZV such that for X, in Sl and X, in S2 we have
A%
< <
O—<—X1V—X1—X1—M’
A%
< < < <
O——XZV-—XZ—XZ—M’
A%
P(x, -x, )e(l/M)V,
i iv
for some
x. . € XVE SV i=1 2.
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x.x_< x ) eU. Since it

V.V
<
Hence x)yX,y S X%, 2 %1%,

Vv
and P(xlx2 - Xy X,y

is easy to verify that the product of two totally bounded subsets of

B(2) is again totally bounded, the proof is complete.

§3. Regular Sets and Locally Convex Topologies

In this section we examine more closely the relationship between
regular sets and those sets which are totally bounded with respect to
some locally convex topology. While not every regular set is totally
bounded in the original topology the following result shows that it is
totally bounded in some locally convex topology.

If Y is an ordered locally convex space with a normal positive
cone then by Proposition 2. 2 there is a basis of monotone seminorms
q, i. e., 0< x<y implies q(x) < qly).

THEOREM 3.1, Let X be an ordered topological vector space,

Y an ordered locally convex space with a normal positive cone, P a
positive continuous linear map from X into Y and g a monotone
continuous seminorm on Y. If S is a regular subset of X, then S
is totally bounded in the locally convex topology Tc induced on X by
the seminorm p(x) = q(Px).

PROOF. We shall let ‘J' denote the original topology on X.
Since P is continuous in the :/vtopology we have J;C? Observe
that the sets Us = xeX: p(x)<e} form a basis of neighborhoods

€ .
for f)vc For each ¢ > 0, there exist sets Ss and S which are
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totally bounded in U and hence in rJvc, such that, for each x in S

2

£ £ . £ £ 1
there are xses and x €5 with x < x< x and p(x -x )<—2—s,
£ £ - £

Since S is totally bounded in _J there exist points x., -+ ,x in
€ c

1’ r

X such that

SE C (x1 + Uy YU e k)(xr + U ).

— & _—

2 2 ¢

Let x, x be fixed., Then we have p (xE -x,) <
. =

i ¢ for some j,

|-

. . : € . .
l1<j<r. Since 0< x-x <x -x and q is monotone it follows
B = e — €

that p(x - x ) <e. Therefore
SC(x, +U)U ---Ux +U)
1 3 r €

and S is totally bounded in :7::

There exist totally bounded sets in O’; which are not regular.
To demonstrate this let X = C[0, 1] and let ¢ in C[O, 1] * be point
evaluation at 0. If xn(t) =nt, 0<t< 1, and S = {xn: n=1,2..},
then S is totally bounded in the locally convex topology induced on
C[0,1] by pix) = l<p(x)|, but S is not bounded in C[0,1] and so can-

not be a ¢-regular set,

COROLLARY 3.1, Let X be a topological vector lattice and ¢

a positive continuous linear functional on X. If S is a ¢-regular
subset of X, then X is totally bounded in the locally convex topology
induced by the seminorm q(x) = ¢f |x| ).

PROOF. This follows from |go(x)| < o |x|) and Theorem 3.1,
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COROLLARY 3.2. Let X = R[0,1] and ¢ be the Riemann

integral. Then every ¢-regular set is totally bounded in LI[O’ 1].

Now we turn to a question posed by Anselone [4]. Is it possible
to find a locally convex topology O’C such that a set is regular if and
only if S is totally bounded in D‘C ? We shall show that the answer
is in general no.

For { , 0< p< 1,
b P

(o e}
d(x, y) = len -V, P
n=1

defines a metric and this metric induces a topology ’J on Ip which
is not locally convex [9]. With this metric JZp is a complete metric

space.

LEMMA 3.1, A bounded set S ﬁp, 0< p<1, is totally

bounded (with respect to (/) if and only if

lim =

Lm 0 uniformly for x in S,

o0

|x |P
[ n
n=m

PROOF. Suppose S is totally bounded. Fix ¢ > 0. Then there

. .. 1 M
exist a finite e ~-net{x ,**,x } for S and N = N(¢) such that

1
2

7 lxillp < }i €, j: 1:“.:M-
ra—vi

<0
n=m

N

For x in S, we have d(x, .xJ) < e for some j, 1< j< M, which
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implies

Conversely let S be a bounded set with the property that for

each ¢ > 0 there exists N = N(e) such that

0
Z X ’p < l— e, x in S
n 2 :
n=N+1
\ N
For x in S, let x = (XI,XZ,“',Xn) in Euclidean R . The set

N N
S = {x : xeS} is bounded and hence totally bounded. Since all

finite dimensional topological vector spaces are homeomorphic, S

N .
is totally bounded in R with the p-metric. Hence SN has a finite

NG . ) .
%s -net, say x )= (XJl’“.’Xi\I)’ j=1,+, L, Then the vectors xJ =

(le’ cee XJN, 0,+--) provide an ¢ -net for S and so S is totally bound-

ed in ¢

LEMMA 3,2, Let S(C ¢, 0< p< 1, and assume there exist
p

N

totally bounded sets Sl’ S2 4 ﬁp such that for each x in S, there

1 1
are x in Sl and xZ in S2 with x < x< XZ. Then S is totally

bounded.

PROOF. For ¢ > 0., Then by Lemma 3.1 there is a positive

integer N = N(e} such that

0

D s I <

n=N

g for x iIn SlUSZ,

N
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1
and x eSl, xze SZ. Then

uwl ZH—xP+le

H

1
Let xeS, x < x< x2

[0} (o 0}
N NI WEWLE
- /, n n n
n=N n=N

By Lemma 3.1, S is totally bounded.

COROLLARY 3,3, Aset S(C £, 0< p<1, is regular if and
p
only if S 1is totally bounded.

LEMMA 3.3, Let X be a locally convex topological vector

space and S ((_ X totally bounded. Then the convex hull H(S) is total-
ly bounded.
PROOF. First, if S is a finite set, {Xl’ ---xn}, then H(S) is

compact because it is the image of the compact simplex

n
n
N vee : N, >0 N.o=1 R
{( 1: ) )\n) i = Z i } C
1
under the continuous map
n
(N, e, N ) > N . x,
1 n i

—
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Now let S be any totally bounded set in X, U a neighborhood of O,
and V a convex balanced neighborhood of 0 such that V +V ( U,
Then there exists a finite set A (S with S A+ V, H(A) is com-
pact, and H(S) (_ H{A) + V. Since H(A) is compact, there is a finite
set B such that H(S) (. B +V +V (B + U, Therefore H(S) is
totally bounded.

We now show that there cannot exist a locally convex topology
Uc” whose totally bounded sets are the sa,rnekas the totally bounded
sets of J.

At this point we set p = 1/2.

Define xke£1/2,1<:1,2,~-, by xi::O for n # k and xt:
l/k. Let S ={?k: k=1,2,-}. Then S is totally bounded in CT
(in fact, xk -+ 0). We now shows that the convex hull of X is not

totally bounded in T. Let K be an arbitrary positive integer and

observe that

2K
Z 1/K > K(1/2K) = 1/2,
K+1
Then
2K 2K 2K
1/2 iz 1/% = Z [(1/1<)(1/1<)]1/2 < Z[(I/ZK)(I/k)] 1/2
K+1 K+1 K+1

2K
- prl/2 Z[(l/K)(l/k)]l/Z

K+1
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K+2 ZK)

Let yK = (l/K)(xK+1 + x + o0+ x Then

2K 00

Z lylflll/z =Z|Y§|1/Z > 1/2 2172,

K+1 K+1
Since K was arbitrary, the convex hull of S does not satisfy Lemma
3.‘1 and so S is not totally bounded. On the other hand, if the totally
bounded sets in v’coincided with those in some locally convex topolo-
gy 3‘;, then the convex hull of S would also be tctally in T by
Lemma 3. 3. Therefore the regular sets in 21/2 cannot coincide

with the totally bourdc sets in any locally convex topology on 21/2
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IV. REGULAR SETS IN SPECIAL SPACES

ntial Share s
ot Ak i = & SV WV vt
§1. Sequential Spaces

We shall investigate the concept of a regular set in the various
sequence spaces and obtain several characterizations. Actually it
turns out that most of the time the regular sets are precisely the
totally bounded sets. Recall that this is the case for ﬁp, 0< p< 1.
First we investigate the spaces Rp, 1 < p< oo The order relation
that we shall be using in this section is given by (1.1) in Chapter L,

We will use the following well known characterization of totally

bounded sets in Ep, 1 < p< o, which is given in [11, p. 338].

LEMMA 1.1, A subset S of £ , 1 < p< w, is totally bounded
p =

if and only if it is bounded and

o0
lim Z x |P=o0,
m->n n
n=m
uniformly for x = (XI’X .+ ) in S,

27
LEMMA 1.2, Let S ¢ , 1 < p< o, and suppose there exist
p =

totally bounded sets Sl’ SZ in ﬂp such that for each x in S, there

1 1 2
are elements x in S1 and xZ in S2 with x ixf_x . Then S

is totally bounded.

PROOF. Since the proof is similar to the proof of Lemma 3.2

Chapter 1I, it is omitted.
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From this and Corollary 3.3, Chapter II, we have the following

result,

THEOREM 1,1, A set S (C ﬁp, 0< p< o, is regular if and only

if S is totally bounded.
We consider next the space ¢ of real convergent sequences with

the norm Hx“ = sup |Xk| for x = (xl,x *+-). The discussion in-
k

cludes the subspace ¢

22
0 of sequences converging to zero.

The next result is given in [ 11, p. 339].

LEMMA 1.3, Aset S in ¢ or o is totally bounded if and

only if it is bounded and the limit lim X, exists uniformly for x =
k=00

(xl,x .) in 8.

.
LEMMA 1.4, Let S (C <y and assume there exist totally bound-

1
ed sets SI’SZ in CO such that for each x in S, there are x in

S1 and xZ in S2 with x1 < x< XZ. Then S is totally bounded.

1 1
PROOF. If x < x< xz, then x < x < xZ, n=1,2 -+, and
—_— - - n— n-— n
the proof follows by Lemma 1. 3.
From Lemma 1.4 we obtain the following.

THEOREM 1. 2. A subset S of ¢, is regular if and only if S

0

is totally bounded.

The dual ¢ of c is isometrically isomorphic to £y and the

representation is given by (cf. [19, p. 115])
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[s.0]
p(x) = a_ limx +Zax ,
nn
1
wi(ao,al, e ¢
x:(xl,xz,- )ec

We will investigate the ¢-regular subsets of c¢ with ¢ in c .

LEMMA 1,5, A functional ¢ = (ao, ap, .-} in c is positive if

and only if a.n ?_ 6, n=20,1, .-
PROOF. It is clear that a > 0, n=0,1, -, implies that ¢ is
a positive functionai. Conversely, assume ¢ is positive and for each
k . : k k
k> 1 let x be an element in ¢ with X, = 1 and X = 0 for n # k.

k
Then ¢x =a >0, k=1,2,'. Now we show a

> 0. If a <0, then
k — 0

0

1
there exists N such that OZO a < - 5 ao. Choose x in c¢ with
N+1

x =0, 1< n< N and x =1, n>N., Then x is positive and ¢x <
n - - n

N
5 2 < 0 and so ¢ is not positive.
LEMMA 1.6. Let ¢ = (0,2, 2, .)ec , where a_ >0, n=

1,2,-- . If S c is a bounded set, then S is a ¢-regular set.
PROOF. Suppose S is bounded by M and let ¢ > 0 be given.

Let N(e) be such that

0

-1
< 2M .
Ean e[ 2M]
N+
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If we set

st = {xec: IX [< M, n=1,2..,N; x =M, n>N},
- n

Se = {xec: lxn] <M, n

i
[
A

.

..,N;x :—-M,n>N},
n

then SE, Ss are totally bounded sets by LLemma 1.3. For each xe¢S

pick x ¢S and x ¢S’ such that x =x =x£, n=1,2,++,N. Then
£ £ en n n

€ 3 .
x < x< x and ¢{x -x )<e andso S is ¢-regular,
e — - €

T
<

LEMMA 1,7. Let (pec’l, @ = (ao, 0, 0, *=* ), a0>0. If S is a

p-regular subset of ¢, then S is totally bounded.
PROOF, Let € > 0 be given. Then, by Proposition 2.4, Chap-
ter II, there exist finite sets SE, S such that, for each x in S,
£

. € . & . £
there are x In S and x in S with x < x<x and
£ £ £ — -

£ £
] - = - < [— = 1i
(aO)xlqln;‘o(Xn X n) o (x xg) (4 e) a- Let L(x) r%lr?éxn for xec,

1
Then there exists N(g) such that n> N implies |Xi1 - L(xs)l < 5 &

S 1
x - Lix )l < =¢ and ]xﬁ - X | < —¢ forallx in S, From
en £ 2 n en 2

x < x < x we obtain Lix )< L(x) < L(xg ), which yields -& <
en— n— n g’ — -

X - L{x) <e for n> N, Hence, by Lemma 1.3, S is totally bounded.

THEOREM 1,3, Let ¢ ={a,, a,, ") be a positive linear func-

VR ¢

oo

oo

tional in ¢ and S a subset of c.
(i) Assume ag = 0. Then S is ¢-regular if and only if S is
bounded.

(ii) Assume a, > 0. Then S is ¢-regular if and only if S is

totally bounded.



52
PROOF. In view of Lemma 1.6 we need prove only (ii). Let

¢y = (8, 0,0,-:+) and note that ¢

o x < ¢x if x ZO. From this it

0
follows that if S is a ¢@-regular set, then S is qoo—regular. By

Lemma 1.7, S is totally bounded.

§2. Regular Sets in L , 1< p<ow
p =

Let (2,¢4,p) be a totally finite measure space. We shall attempt
to characterize the ¢-regular sets in Lp(Q), 1< p<x when ¢ is an
element of Lp (§2). By the Riesz representation theorem, for 1 < p<
© we may identify Lz(ﬂ), with Lq(ﬂ) where 1/p+ 1/q = 1.

Recall that for measurable functions f and g, f < g means
f(t) < gft)a. e. For f and g in Lp’ 1 < p< o, £f< g means this
inequaltiy is satisfied by all functions in the respective equivalence
classes.

Suppose ¢ is a positive linear functional on Lp(Q). Define a
function X{¢) in LOO(Q) by letting X{¢) be the characteristic function
of the set [¢ > 0] = {teS2: ¢ (t) > 0}.

THEOREM 2.1, Let S L (), 1 <p<o, and ¢ a positive
p =

linear functional on Lp(Q). Assume that the set X{¢)S is a ¢-regular
(or totally bounded). Assume that [1 - x(¢)]S (or S itself) is dom-

inated, i. e., there exists ge Lp(ﬂ) such that

g <[1 - xle)x< g, x €8,
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Then S is ¢-regular.

PROOF. For each x¢8,
x = Xle)x+[1 - xX(e)]x -[1 - X(@)g<[l-x(@x<[Ll - xe)g .
Since ¢([1 - X{¢)]g) = O, the set [l - X(¢)]S is a ¢-regular. Since
S C X(@S + [1 - X(e)]S,

S is ¢-regular by Proposition 2.7, Chapter IIIL,
The assumption that S is dominated cannot be dropped. Let

2 ={0,1] and u Lebesgue measure. If we let ¢ = X[ 0.1/2]" n =

X n = 2 3, -, then by Lebesgue's dominated convergence

[0,1/2 + nﬁl)’

theorem we have ¢ X > ex for all x in L [0, 1], 1 < p<ow, Define

% n=2 3 -+, and set S:{xn; n=23-3}C

= nX -1
n "1/ 1/24+n7Yy
Lp[O, 1]. Now X{¢)S is totally bounded in Lp[O, 1], but 2 does not
converge uniformly to ¢ on S since Q¥ = 1 and X = 0, n=2 3
Therefore by Theorem 1.1, Chapter III, S cannot be a regular

set.

We now set about establishing a converse of Theorem 2. 1.

s

LEMMA 2.1. ILet ((,n) be as before and suppose ¢e L

b

¢ > 6> 0. Then a subset S of LI(Q) is ¢@-regular if and only if S

is totally bounded.

PROOF. Suppose S is ¢—regular and let ¢ > 0 be given. For

. . € . €
x Iin S, there exist x , x in L_{2) such that X < x< x,
e I

1
1

<p(x8 - XE) < 5 (6¢) and Sg, S are totally bounded in L_(2). Then
3

1
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€

) € -1
HXE - Hl = gg(x —xe)dp <9 gﬂ(xg _xg)(pdp < %e

which implies gfxg - 4“ < = e¢. Soany —]é— e -net for S° will be
an ¢ -net for S,

LEMMA 2. 2. Let Ec¢(], ¥eL (@), ¢ = X% I ¢ > X, 6> 0,

and S is a g¢-regular subset of L. (R), then X(¢)S is totally bounded

I3
in Ll(Q),
PROOF. The proof is similar to that of Lemma 2.1,

LEMMA 2,3. Suppose S is a bounded set in Loo(Q) and ¢ a

Sl
3%

1 &)

positive functional in L_ (). If S is a ¢-regular subset of L

1 b
then X{¢)S is a totaliy bounded subset of LI(Q)'
PROOF. By a typical construction there exists an increasing

sequence {(pn} of simple functions such that ||qun - gu||°0 - 0. Let

M be the LOO(Q) supremum of S and fix € > 0. Then there exists

-1
N(e) such that Hsz-<pHoo< e[4M] . Since quiqa, S is a N

regular set and by Lemma 2. 2, X(goN)S is a totally bounded subset of
_ 1
Q ini -
Ll( ). Let {X((pN)xl, ,X(guN)xr} be a finite 5 € net for X(<PN)S

)x, -

and let x¢S. Then for some j, 1 < j< r, we have HX(<pN i

X(q;N)le < -]Ze . Therefore

[[Xto)x - Xto)x |[ ) = SQ[ X(@) - Xloy] [x - x[du + SQX(qu)Ix - x;ldu <

and so {X(¢)Xl, .-, X((P>Xr} is a finite ¢ -net for X(¢)S in Ll(Q).
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It is obvious that if S is a totally bounded subset of Lp(Q) for

some p > 1, then S 1is also totally bounded in L, (). Under certain

1

conditions the converse is true.

LEMMA 2.4. Let S be a bounded set in Loo(Q)' If S is totally

bounded in LI(Q)’ then S is also totally bounded in Lp(Q), 1 < p<oo
PROOF., Let M be the bound on S and let x, vy, ¢(1/2M)S.

Then ‘x ~ 'yl < 1, whence

gﬂlx -yl Pau < §le ~ylaw

and this implies {1/2M)S is totally bounded in Lp(Q) and so S itself
is totally bounded in L. (§2),
p

Now we can extend Lemma 2.3 to the Lp(Q), l < p<oo, case.

LEMMA 2.5. Let S be a bounded set in LOO(Q), X LOO(Q), ¢ > 0.

If S is a ¢-regular subset of Lp(Q) where 1< p< o, then X(0)S
is a totally bounded subset of Lp(Q).,

PROOF. If S is a ¢-regular subset of Lp(Q) then it is cer-
tainly a ¢-regular subset of LI(Q) and, by Lemma 2.3, X(¢)S is a

totally bounded subset of L. (82), Whence, by Lemma 2.4, X{¢)S is

1

totally bounded in Lp(Q).

Lemma 2.6. Let S be a bounded set in LOO(Q), ¢ a positive

linear functional on Lp(Q), Il < p<ow. If S is a ¢-regular subset of

Lp(Q), then X{(¢)S 1is totally bounded in Lp(Q),



56

PROOF. Let ¥ be the characteristic function of [¢ < 1] and

set @ = Wg + (1 - T). Then o ¢ Lm(ﬂ), 0< $< ¢ and X(@) = Xp).
Hence S is a @-regular set in Lp(Q) and, by Lemma 2.5, X(¢)S is
totally bounded in Lp{ﬂ)o

Now we want to weaken the hypotheses on S. The next result

generalizes the classical result on the continuity of the integral.

LEMMA 2.7, Suppose S is a totally bounded subset of Lp(S‘Z),
1< p< o, andlet ¢ > 0be given. Then there exists 6(e) > 0 such
that A €7, w(A) < & implies IIXAXH <e¢ for all xeS.

PROOF. Let {Xl, LR xr} be a finite -;— e -net for S and let

6(e) > 0 be such that A e, p(A) < S implies
|iX X,H<s, j=1, .,
Aj

1
¢ for some j, 1< j<r,

Then for each x in S we have l|x—xjH <2

and
X xl] < - lel + HXAXJ.II <e.

Now suppose S is any subset of Lp(Q). For x in S and n a

positive integer let xr'](x) be the characteristic function of [x > n],
- — . + .
Xn(x) the characteristic function of [x < - n| and Xn(x) = Xn(x) + Xn(x).

If S is bounded in Lp(fl) by say M, then Mi“x" z_HxXn(x)H >

||nX (X)H, whence
n

(2. 1) HXn(x)H -~ 0 as n - o, uniformly for x in S,
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LEMMA 2.8, Let S be a totally bounded subset of Lp(Q)
1< p < ® and fix € > 0, Then there exists N(¢) such that n> N
implies
HxXn(x')H <g¢ forall x, x' in S.

PROOF. This follows from (2. 1) and Lemma 2. 7.

LEMMA 2.9. Let S be a subset of Lp(ﬂ), 1 < p< e, and
suppose there are totally bounded sets S1 and S2 in Lp(Q) such
that for each x in S, there are X, in S1 and x, in S2 with x1_<
x < X Then

lim !|xX (x')|| = 0 uniformly for x, x' in S,
n—to n

PROOF¥. From Xy < x< X, and x'1 < x'_<x'2 we have

=l <l + Il X ) <% () x ()

The assertion follows by Lemma 2. 8.

lip< 0o and xeS. For

b

Suppose S 1is any subset of Lp(Q)

we define

bl i

and

S = : S},
{xn x € S}

Note that Sn C LOO(Q). If x, yeS, then

lx_ -y | <lx-vyl.
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From this it follows that Sn is totally bounded in L (2) if S is.
P

LEMMA 2,10, Let ¢ be a positive linear functional on L (§2),
p

1< p< o and S a ¢-regular subset of Lp(Q). Then Sn is also
¢~-regular,

PROOF, If x, yeLp(Q) and x <y, then xnf_ Vo and
<p(yn - xn) < ¢(y - x). The lemma now follows from the preceding
paragraph.

We are now ready to state and prove the theorem we have been

working towards.

THEOREM 2,2, Let ¢ be a positive linear functional on Lp(Q),

1< p< o and S a ¢-regular subset of Lp(Q). Then X(¢)S is a
totally bounded subset of Lp(Q).

PROOF. Fix ¢ > 0. By Lemma 2.9 there exists N(e) such that
Hx)&\](x)ll < g for all x €8S,

By Lemma 2.10, SN is ¢-regular. So X(qo)SN is totally bounded in

Lp(Q) from Lemma 2.6. Now

llxX(<p) - Xy &((p)” < Hx XN(X)H < g for all x e S.

Hence X(<p)SN is a totally bounded ¢ -net for X(¢)S which implies
X{¢)S is totally bounded.

COROLLARY 2.1. Suppose <peL;(Q), ¢ > 0. Then S is a

¢-regular subset of Lp(Q) if and only if S is a totally bounded subset

of L. (82).
P
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It is interesting that the property of ¢-regularity depends only

on X({¢) and not on the values of ¢.

§3. Regular Sets in C[0, 1] and R[O, 1]

We want to consider the concept of a ¢-regular set in R[0, 1]
and also in the subspace C[0, 1]. In contrast to the previous sections
we will not obtain characterizations of regular sets in these spaces
but will give some sufficient conditions for a set to be regular. In
terms of applications, perhaps the most important case is R[0, 1]
with ¢ being the Riemann integral.

DEFINITION 3. 1. Let §2 be a topological space and K a subset

of C({2). Then K is said to be equicontinuous if for each ¢ > 0 and
each t in § there is a corresponding neighborhood N = N(t, ) of t

with

u su}_i\j|f(t) - f(s)| <g .,

s
feKse

The following classical result [11, p. 226] gives a nice charac-
terization of the totally bounded subsets of C(52).

THEOREM 3,1, (Arzela-Ascoli) If Q is compact then a set in

C(R) 1is totally bounded if and only if it is bounded and equicontinuous.
We will let ¢ denote the Riemann integral defined on R[O, 1]

until otherwise stated,
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LEMMA 3,1, 1Iet S be a bounded set of step functions such

that the number of discontinuities of each element of S are uniformly
bounded. Then S is a ¢-regular subset of R[O, 1].

PROOY . Since the number of discontinuities are uniformly
bounded we can approximate each step function above and below by
trapezoidal functions with fixed slopes. Such a set of functions is
clearly equicontinuous and bounded, hence totally bounded.

We can use this lemma to build new classes of ¢-regular sets.

If xeR[0,1] and A is a subset of [0, 1] we define w(x, A) =
sutpﬁlx(s) - x(t)l. If I is a subinterval of [0, 1] let £(I) denote its
s, te

length.

THEOREM 3.2, Let S be a bounded subset of R[0, 1]. Assume

that, for each ¢ > 0 and x ¢S there exist positive integers N(¢) and

K(e) such that

1
(i) there are disjoint intervals Jx’ .ee, J;l, where n< N and
n
£(J )< ¢,
X
m=1
n m
(ii)  the complement of mul J in [0, 1] is the disjoint union of
= X
. 1 k m
intervals IX, cos, IX where k< K and o(x Ix )<e, m=

Then S is a ¢-regular set.
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PROOF. Since a scalar multiple of a regular set is again regu-
1
lar we may assume that S is bounded by > - Assuming (i) and (ii)

hold we define

sup x(t) if telm, m =1, , k.
tel x
Similarly
.
o= if teJm, m=1 ¢+ 'n
x
x (t) =
>
Linf x(t) if tel ", m=1, .., k.
te ™ x
x

Then X <x< % and <p(xs - Xs) <g¢. By Lemma 3.1 the sets st =

{XSI xeS} and S = {x : xeS} are ¢-regular. So S is a ¢-regu-
£

lar set by Proposition 2.4 of Chapter III.

THEOREM 3, 3. Let S be a bounded subset of R[0, 1]. Assume

that for each ¢ > 0, there exist positive integers N{e) and K(e) such

Jk kf_K and

that: for x in S there exist disjoint intervals Jk’ oo, J
X

Z!Z(Jm) < ¢ ; and on each complementary subinterval Ixm, x is a
% | -

piecewise monotone function with at most N distinct oscillations.

Then S is a ¢-regular subset of R[O, 1].
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PROOF. We assume that S is bounded by 1l and then partition
the interval [-1, 1] into L subintervals each of length less than €.
Fach subintervalcan be further partitioned into at most N sub-
intervals on which x 1is monotone, Then a further subdivision of
these into at most L intervals I;n yields w(x, I;n) < ¢, There are at
most (K + 1)(N)(L) of the intervals I}r:l and the assertion follows by
Theorem 3. 2.

This theorem has some important corollaries,

COROLLARY 3.1. Any bounded set of monotone functions in

R[0, 1] is a ¢-regular set,.

COROLLARY 3.2, Any bounded set S of functions on [0, 1] of

bounded variation with uniformly bounded total variations is a ¢-regu-
lar.set,

PROOF., Any function x in S can be written as the difference
of two increasing functions X, and X, such that the sets S1 =
{xl: x €S} and S2 = {xZ: x €S} are bounded. Then Sl’ S2 are
¢-regular and since S ( Sl - SZ’ S is ¢-regular.

Theorem 3, 2 and Corollaries 3.1, 3.2 are important in the
numerical approximation of integral operators with discontinuous
kernels [3].

We now mention some results that hold for C[0, 1]. If g is a

continuous, nondecreasing function defined on [0, 1] then
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1

vy - Soxm dg(t)

defines a continuous positive linear functional on C[ 0, 1] .

It is not difficult to show that Theorems 3. 2, 3.3 and Corollar-
ies 3.1, 3.2 remain valid for the linear functional <pg. Here trape-
zoidal functions are used in place of step functions in SE, S8 . Since

the proofs are similar to the ones given they will be omitted.
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V. APPLICATIONS TO INTEGRAL EQUATIONS

§1. Integral Equations with Continuous Kernels

In this chapter we shall use the idea of the éxtension of a positive
operator and of a regular set to obtain approximate solutions for a
large class of integral equations.

In §1 and §2 of this ch%apter, unless otherwise stated, 2 will
denote a compact Hausdorff (and therefore uniform) topological space.

The class of Baire sets is defined to be the smallest (-algebra

gl of subsets of 22 such that each function x in C({2) is measurable
with respect to(. If ¢ is a continuous linear functional on C(S2),
then there exists by the Riesz representation theorem [16, p. 310],

a unique, finite signed Baire measure p on £ such that

p(x) = Sxdp, for each x in C(2)
Q

and H(p“ = |n| Q). Moreover if ¢ is positive then p is a measure,
Let k be a continuous real-valued function defined on £ x 2.
Since 2 x is compact k is uniformly continuous.
"Assume ¢ is a linear functional on C(2) and p the associated
signed Baire measure. We want to consider integral equations of the

form

(1.1) »x(s) - S. k(s, t)x(t)dp (t) = y(s), sef
Q



65
where y eC(2), N\ 1is a non-zero real number and x is the unknown
function,

One method of solution is to replace the integral by some approx-
imation, solve this approximate equation and show that the approximate
solutions that are obtained converge in C(2) to a solution of (1.1).
An example of this is £ =[0, 1] and ¢ the Riemann integral. The
functionals discussed in Example 2.1 of Chapter II can be used to
approximate ¢. For a discussion of this classical case and other
references see [ 2].

Getting back to the general case, we shall assume that there

exists a sequence {qon} of continuous linear functionals on C{£2) such

that
(1. 2) ¢ X > 9x for each x in C({2).
Let B be the signed Baire measure associated with ¢ n=1 2 ...,

Define linear operators K and Kn’ n=1 2 .-, on C(2) into C(2)

by
(1. 3) (Kx)(s) = S k(s, t)x(t)dp (t), xeC(2), s €8,
Q
(1.4) (K x){s) = 5 k(s, t)x(t)du (t), x e C(2), s €2,
n o n

Note that K, Kn are compact operators.
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Let ks(t) = k{s, t}) for s, tef2 Then k ¢C() and
. s

(1.5) (KxMs) = q)(kqx), se

(1.6) (K x}{s) = ¢ (k x), seS2,
n n s

By (1. 2) we have
(1.7 (Knx)(s) —~ (Kx){s) for each se 2, xe C(2),

It follows from (1. 2) and the uniform boundedness principle that the
norms Hgo !I, n=1, 2+, are uniformly bounded. Then by the uni-
form continuity of k we obtain for each x in C{(§2).

(1.8) {r_,on(ksx): n=1 2 ..} is an equicontinuous family.

From this and (1, 6) it follows [16, p. 178] that qon(ksx) - qo(ksx)

uniformly for s in Q. Thus,
(1.9) HKnx - Kx|| = 0 for each x in C().

At this point we need to review some of the theory of collectively
compact operator approximations. This theory has been developed
within the last six or seven years. Some references are [2, 3,5, 6, 14].

Let X be a Banach space and [X] the set of all continuous
linear operators mapping X into X. A set of operators Jk ( [X] is
collectively compact if the set {Tx: TeXk, ||x|| < 1} is totally
bounded in X.

Recalling the definition of Kn in {1, 4) it follows from the con-

n =<

tinuity of k and the uniform boundedness of ||_Ln| (2) = qunl

b
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1, 2, ..., that

(1.10) {Kn: n =1, 2 ..} is collectively compact,

We need the following result,

PROPOSITION 1,1, Let T, Te[X], N # 0. Assume
n
(1) HTny - Ty‘H - 0 for each y in X,

(ii) {Tn: n=1,2 +.} is collectively compact,

(1i1) T is compact.

-1 -1
Then (N - T) exists if and only if (N - Tn) exists and is uni-
formly bounded for n sufficiently large. In either case

(n - T )'l - (N - T)'l.
n

Actually (iii) is a consequence of (1) and (ii). In particular, it
follows from the contraction mapping theorem that (XA - K) = exists
for N sufficiently large, i. e., (l.1l) has a unique solution for each
y in C{2).

Fix N so that (\n - K)_l exists and let y € C(82). Then, by

-1
Proposgition 1.1, (A - Kn) exists for n sufficiently large, say n >

N, so the equation

n

(1.11) N x(s) ~§k(s, t)x(t)dp (t) = y(s), sef n>N,
Q2

has a unique solution x
n

Then by (1.9) and Proposition 1. 1 we have the following.
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THEOREM 1.1, Suppose x is the unique solution of (1.1} and

X the unique solution of {1.11)., Then x (t} converges uniformly to
n

x(t) as n -= oo,

§2. The Fxtension of Positive Linear Functionals on C(8)

We henceforth assume that ¢ is a positive linear functional on
C{2) and jp the assoclated Baire measure. Note that C(R) ( B(Q),
where DB{Q) is the set of all real valiued bounded functions defined on
§2 with the sup norm. Now by Coroliary 1.1, Chapter II, ¢ may be
extended to a subspace of B(S2) which we shall denote by R{). We
shall denote the extension also by ¢.

LEMMA 2.1, Each x in R() is a Baire measurable function.

PROOF, Let xeR(2), then for each positive integer n there

n ‘
are x , X in C{2) suchthat x < x< x and qo(xn - Xn) < 1/n.
n-==

o , n .
Moreover by redefining the functions x and x if necessary we may
n

assume that x %, %% . Hence there exist Baire measurable func-
n
tions X, X, such that xn(t) - Xl(t)’ xn(t) - xz(t) for each t in €,

By Lebesgue's dominated convergence theorem

C(xn_x)dpﬁx (x, - x,)dp .
Je, n Jo 2 1

But since
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we have

whence xZ(t) = Xl{t> a. e. [p]. Since =x_ (t) < x(t) < xZ(t) for all t in

2 we have x,(t} = x(t) = x_(t) a. e. [u]. Thus x is Baire measurable.

LEMMA 2. 2. R(R) is a closed subspace of B(f2) and consequent-

ly R{2) is a Banach space.
PROOF, Let X% and xneR(Q). For each ¢ > 0 there
exists N{e) such that

Xy - e[4p(1)] -1 Sx<xgt e[4e(1)] -1

and there exist x x; in C(2) such that

Ne’
<x._<x d olx y< L
e SxN SxEy and elxg - x S €
£ € -1
If we set x (t) = xN(t) +efde(l)] 7, te
(6) = x,,_(0) - e[4p(1)] T, teQ
x (t) = x - e[4p , tef

then .xa, x_ C($2), xeix ng and qo(x€ - Xe) <¢. Thus x e R(Q).
This lemma follows from a later result, but we wanted to give it
an independent proof,
A different characterization of R(S2) will be given, but first we

need some results concerning semi-continuous functions.

DEFINITION 2.1, Let Q2 be a topological space. We say that

x e B(2) is upper (lower) semi-continuous at tO if given ¢ > 0 there
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exists a neighborhood U of ty such that te¢U implies x(to) >
x{t) - (x(to) < x(t) Fe).

If § is a uniform topological space, then x ¢ B(f2) is upper
(lower) semi-continuous on £ if and only if x is the inf (sup) of a
family of continuous functions on £ [8, p. 146]. If & is metrizable
then x eB(2) is upper (lower) semi-continuous if and only if x is the
pointwise limit of a decreasing (increasing) sequence of continuous
functions {8, p. 155},

If &2 is a topological space and te$2 let ; denote the collect-
lon of all neighborhoods of t,

DEFINITION 2.2, If Q is a topological space and x ¢ B(82), the

upper envelope of x is

%(t = inf sup x(t), t_ e,
x( O) Uns‘}':;t te ) 0
0
and the lower envelope of x 1is
x(t = su inf x(t), t_ ef2.
x(to) Ue%’s te U ( 0
't

LEMMA 2, 3. Let Q2 be a topological space and x ¢B(2). Then

(1) X, x e B(Q),
(ii) x < x< X,

(iii) x is upper semi-continuous,

{iv) x is lower semi-continuous,



(iii)

(iv)
(v)

(vi)

Then x is continuous at t_  if and only x(t

71
x(t) = x(t) if and only if x is upper semi-continuous at t,
x(t) = x{t} if and only If x is lower semi-continuous at t.
PROOF. (i} is clear since x e¢B(Q).

Let Uew , Then t_ €U and so x(t )< su%x{t) which implies
i(’) 0 0" — te

x{t )< x(t }. Similarly, x < x.
0" - o -

Let to € and ¢> 0 be given. There exists an open neighbor-

hood U of t. such that X{t ) > su% %(t) -e. Let s¢U, Then
O O te

U is a neighborhood of s, whence inf supx(t) < su%x(t).
UeT, ~ te
's
Therefore x(to) > x(s)-¢ forall s in U, so x is upper

semi-continuous,
is proved in a similar fashion.

Suppose x is upper semi-continuous at tO and let ¢ > 0 be

given. Then there exists a neighborhood U of tO such that

teU implies x(t.)> x{(t) -e. Then x(t.)> sup x(t) - ¢ > inf
P 0 ) o) Z & ~ifen,

sup x{t) - ¢ = x(t_ ) -e. Hence x(t.)>x(t ) and by (ii)
te 0 0" -~ o)

x(to) = SE(tO). Conversely suppose x(to) =x{t.) and let ¢ > 0

0

be given, then by (iii) there exists a neighborhood U of t such
that x(to) = ;"(co) > x(t) -¢ for t in U and so from (ii) we

have x(t0)> %{(t) -¢ for t in U so x is upper semi-continu-

ous at t .
“

is proved in a similar fashion.

LEMMA 2,4. Suppose £ is a topological space and x ¢ B(§2).

) = x(to) = E(to).

0 0
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PROOEF. This follows from Lemma 2. 3 and the observation that
x 1is continuous at t;0 if and only if x is both upper and lower semi-
continuous at tou
Now we come back to the case where & is a compact Hausdorff
topological space. The following theorem gives a complete character-

ization of R(2).

THEOREM 2.1, Let xeB(2). A necessary and sufficient con-

dition that x ¢ R(Q) is that x be continuous a. e. [p].

PROOF., The full proof is quite long and complicated and can be
found in [7]. We will give here a different proof of the necessity and
a simple proof of the sufficiency under the additional assumption that
2 is metrizable.

Assume x € R(2), Then there exist sequences {xn}, {xn} in

n n n .
C(2) such that Xn< x< x, x§,x 4 and ox - Xn) - 0, Define
- - n

< x< x X is

. n
= 1i c = 13 < 94
x (t) = lim x (t), _xl(t) %ero%) xn(t), t €2, Then x » %,

2 n-+00

1

upper semi-continuous, x, is lower semi-continuous and by Lebesgue's

1
dominated convergence theorem go(xn - Xn) - <p(x2 - Xl)’ whence
¢(x2 - x,) = 0. This implies that x,(t) = x(t) = xz(t) a. e. [u] and so
x 1is continuous a. e. [p].

For the converse we assume that $2 is metrizable and suppose
x 1is continuous a. e. [p]. Let X x be the upper and lower envelopes

respectively of x. By Lemmas 2.3 and 2.4 we have x< x < x and

x(t) = x(t) a. e. [u]. Since 2 is metrizable there exist sequences
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n (v 1 n, = '
{x } and {x,} in C(§2) such that x ¢ x and x 4 X By Lebesgue's
. n —_
dominated convergence theorem we have ¢{x - xn) - ¢{x - x) =0, so
x € R(2), The proof is complete.
For § =10, 1] and ¢ the Riemann integral, this reduces to the
classical result that a function is Riemann integrable if and only if it

1s continuous except on a set of L.ebesgue measure zero.

COROLLARY 2,1, If x, vy eR(2), then the product xy € R{§2),

i. e., R(2) is a Banach algebra.

COROLLARY 2, 2. If x¢R(Q), then the absolute value |x| of x

in R(§2),

Note that Lemma 2. 2 also follows from Theorem 2.1,

§3. Integral Equations with Discontinuous Kernels

We now extend our results in §1 to the case where k may

have some points of discontinuity.

Henceforth we assume that $2 is a compact metric space with
metric d,

Let us define for x in R{R2) a new norm HXHl = o(|x|) and
let Rl(ﬂ) be the space R(2) with this new norm.

We shall assume that k is a bounded kernel such that
(3.1) quR(Q) for each s e,

As before we define

(3. 2) Kx)(s) = <,o(ksx), s €8 xeR().
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PROPOSITION 3,1, Assume that

(3. 3) lim ||k -k ,H = 0 for each s ¢,
glesg s s 1
Then
(3.4) Hk -k zHl"O as d(s, s') =0, uniformly for s, s' in Q.
s s

(3.5) K R() C C(E«).
(3. 6) K is a compact linear operator.

(3.7) max ¢(|k |) exists and ||K||< max qo(|k |).
sef 5 T 5682 s

PROOF, Define f:2 — Rl(ﬂ) by f(s) = ks. Then f is contin-
uous by (3. 3) and therefore uniformly continuous by the éompactness
of ©, This proves (3.4). The function HkSH p S¢ Q, is a continuous
real valued function defined on a compact set and so it attains its max-

imum, For each x ¢ R(2)

[®x)(e)| < |]x|] magollx [),

|(Kx)(s) - (Kx)(s') < ||x|| ||ks - ks'Hl .
It follows that K R{2) (C C(Q), HKH < maé HkSH 1’ and K is compact
Se

by the Arzela-Ascoli theorem,

PROPOSITION 3, 2. Suppose for m =1, 2, -« there are continu-

ous kernels km such that

m

(3.8) Hks - kSH1 ~ 0 uniformly in s,

Then (3. 3) holds and if we define (Kmx)(s) = qo(k:lx), m=1, 2 -,
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then
(3.9) k™ =K]|| - 0.

«

PROOF, Define f, f :8 =R, @) by f(s) =k_ and £7s) = k;n

m . m .

Then each f{ is continuous and f converges uniformly to f, so f

. : m . m

is continuous and (3. 3) holds, Now | |K - KH < max ]| koo - k || 1
- S

0 as m —» w,

DEFINITION 3.1, The kernel k(s, t) is said to be uniformly

t-integrable if for each € > 0 there exist continuous kernels ke, k
€

such that

(3.10)  x (5,6)< Kis, £) < K (s, t), s, t e©,

(3.11) er -k < ¢ foralls in £,
s €

s H 1
THEOREM 3,1, Suppose k is a uniformly t-integrable kernel.

Then (3. 3) holds and {kS: s €8} is a ¢-regular set,

PROOF, It is clear that {kS: s ¢ 2} is a ¢-regular set from
the definition of a uniformly t-integrable kernel, and (3. 3) follows by
Proposition 3. 2.

One may find a discussion of uniformly t-integrable kernels for
=10, 1], ¢ the Riemann integral in [1].

We assume there exists a sequence {qon} of positive linear func-
tionals on C{52) such that g% > ox for each x in C(R). By Theor-

em 3,1, Chapter II

(3.12) ¢ X > ox for each x in R(2) .
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For each n define

(3.13) (K x)s) =¢ (k x), xeR(2), s €,
n n s

PROPOSITION 3, 3, Each Kn is a continuous linear map from
R(2) into BI(2) and the norms H KnH, n=1 2 -, are uniformly
bounded.

PROOF'. It foliows from (3.12) and the principle of uniform

boundedness that HwnH <M n=1, 2 .-, for some M< o Then
LK ()| < o (T x) < [[xl[ [M sup [k ]
which implies
K I < Msup [l ]] -

We denote by by the finite Baire measures associated with the

¢ , n=1 2 -+ and let

(3.14) k'(s) = k(s, t) for s, tef2,

In general one should not expect to have K R(€Q) C RE), n =
1, 2, --«. The next result gives one condition for which this is true.

PROPOSITION 3, 4. Suppose there exist continuous kernels km,

k , m=1 2 -+, satisfying

m
(1) k (S t) < k(s, t)<k( t)y m=1 2 <+ s, tell,
(ii) (s, t) - k (s, t}ydu(s) - 0 as m — o for each tef2,

ThenKR ) C RE€), n=1, 2 -
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PROOEF. Without loss of generality assume that kmq,, ka .

Let x€R(2), x> 0 and n> 1 be fixed. From (i) we obtain

b

m
k <9 (k x)<¢ (k =1, 2 .
p (kxS e (kx)<e (k x), m=12

: ‘ m .
As functions of 5 ¢ (k x) and ¢ (k 'x), m=1 2 -+ are continu-
n ms n s

ous because of the uniform continuity of krn and k , By Fubini's

theorem and lL.ebesgue's dominated convergence theorem

m
ole (k_x) - qon(kmsx}

(t)d ™ -k - 0 -
S;_zx(t) pn(t) 59[ (s, t) m(s, t)] du(s) as m o,

Thus, (Knx)(s) = gon(ksx) ¢R(R2), Foran arbitrary x in R(R), write
+ - . + -
Xx=x -x toobtain K x=K x - K x ¢R(Q).
n n n
The next result gives a criterion for each Kn to be compact.

Let n > 1 be fixed.

PROPOSITION 3,5, Suppose there exist continuous kernels km,

k =1, 2 - isfyi
my , 2, ***, satisfying

() k_(s,6)< (s, )< K (s, t), 5, teQ,

(ii) cp(km~k ) = 0 as m — o for each s in €.
n s ms

Then Kn is compact.

PROOF. From the inequalities
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kK -k  >(k -k )+ -k,
s st — ""ms s s s
there follows
m
o (k -k )< ¢ (k -k )+ k -k I
n s s n s ms n ms ms
m m m
k -k > - k + k -k .
qDn( s s') - qDn{ ms s ) qDn( s s')

By the continuity of km, km and (ii) we have

o (k -k |} -0 as s' — s,
n s s

xer@), ||x[l < 1.

b

(K _x)(s) - (K _x)(s)] <o (k- k)

Hence the set of functions {Knx: |x|| <1} is equicontinuous. These
functions are also uniformly bounded and so Krl is compact,

There are other conditions that would guarantee the compactness
of each Kn, for example if each Kn had a finite dimensional range.

For (pn of the form
n

qDX:zW,X(t.), w .>0,t . ef n=1 2 -,
n ni ni ni — ni
i=1

we need only specify kt R(2) for each t in £ to obtain

(3.15) K R(2) C RE2),

’ n

1, 2’ see,

o}
i

(3.16) Kn is compact, n =1, 2 -.-

Now we turn to the question of convergence of the approximate

solutions of our integral equation to the exact solution.
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THEOREM 3, 2. Suppose {ksz s €S2} is a ¢-regular subset of

R(§2). Then HKnx - Kx|] -0 as n - «w for each x in R(Q).

PROOF¥. For x in R(5), (3.12) implies

(K xj{s) = ¢ {(k x) =@k x) = (Kx)(s) for each s in %,
n n s s
But {k : sef} is a ¢-regular set and so (Knx)(s) - {Kx)(s) uni-
P=]
formly for s in 2 i. e,, HKnx - KxH -0 as n - o0.
In particular this result holds if k is uniformly t-integrable,
We need the next result which appears in [3].

m

PROPOSITION 3, 6, Let X be a Banach space and Kn’ Kn ,

m, n =1 continuous linear maps from X into X. Suppose K
n

“sa
b £ B

m :
is compact for each n, {Kn : n>1} is collectively compact for each

m, and

lim  lim |[|[K™ - K || = 0.
m-—=co n->»00 n n

Then {Kn;‘ n > 1} is collectively compact.

THEOREM 3, 3, Suppose (3.15), (3.16) hold, If

(i) {ks: s ¢} is a ¢g-regular set,

(ii) for each m =1, 2, -+-, there exist continuous kernels km such

that Hkm -k H -~ 0 as m — o, uniformly for s ef2.
S s

1

Then {Kn: n > 1} is collectively compact.

PROOF. For m, n > 1 define

(KT™x)s) =0 (KTx), x e R(Q), s €2,
n n s
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By (1.10) and the continuity of km, {Km: n> 1} is collectively com-
n -
pact for each m, Also by the continuity of k {kg : sefl} is totally

m . :
bounded, whence {ikc - kg{: s €S2} is a ¢-regular set for each m,

Since HK;H - Knii < z\,é% ¢n(E RI: - ksl ) we have

Lim || K™

m
L K5 - K< supelfie” -k ])

and so, by (ii}, lim_Lim ||K™ - K || = 0. Then by Proposition 3. 6,
>0 N~>0G n n ‘

{Kn’: n > 1} is collectively compact.

Let vy in R(Z) be fixed and consider the equations

(3.17) A x(s) - ( k(s, t)x(t)dut) = y(s),
Q

(3.18) Ax(s) - S‘k(s, t)x(t)dp (t) = y(s), n=1, 2 --
Q n

Suppose (3, 17) has a unique solution x in R(R) and suppose the
hypotheses of Theorem 3, 3 hold., Then (3.18) has a unique solution
X for n sufficiently large, say n > N, and by Proposition 1.1 and
Theorem 3. 2, 3.3 we have Hxn - XH -~ O0Qas n - o, We note in
particular that this would hold if k were uniformly t-integrable and
(3.153), (3.16) were valid,

Finally we remark that everything in this section is valid if £ is
a compact Hausdorff (not necessarily metrizable) topological space.
However in that case some of the notation becomes rather cumbersome.
In particular d(s, s'} - 0 uniformly in s, s' would have to be replaced

by a statement involving the uniformities of €,
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