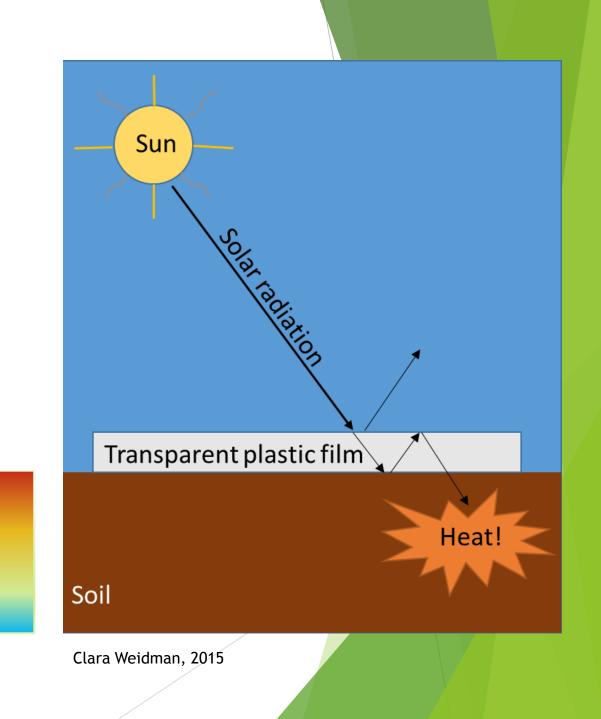
Soil solarization effects on plant growth variables of field-grown tree saplings

Simon Fraher, Joyce Eberhart, Jennifer Parke, PhD

Department of BioResource Research, Oregon State University, Corvallis, Oregon Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon



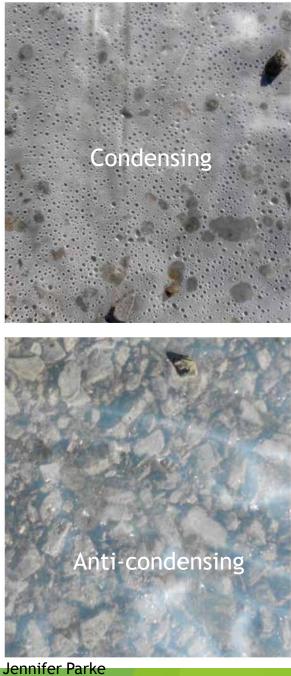
Introduction

What is solarization?

- Control soil environment
 - Chemical, biological, and physical changes
 - Direct thermal lethality on soil pests, pathogens
- ▶ First in Israel, now in over 60 countries
 - Many developing countries
 - Organic agriculture
- Most effective at surface
 - Temperature gradient established in soil
- Soil stores thermal energy

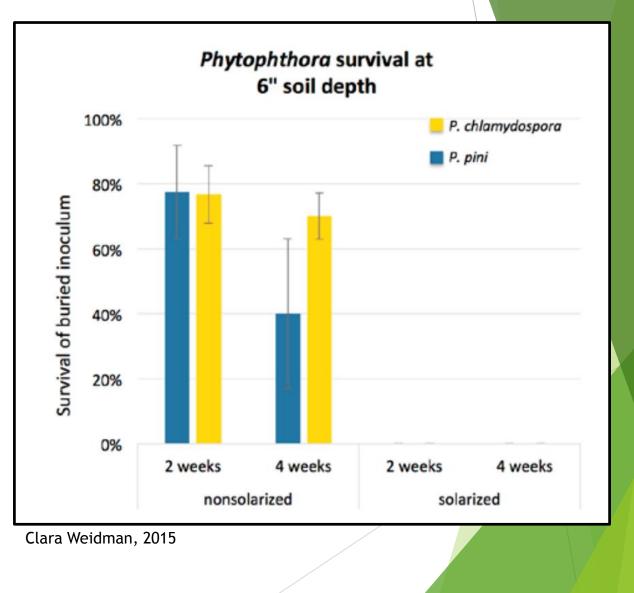
Type of Plastic Matters

- Opaque blocks like a mulch
 - ► Hot surface, like a stovetop
- Clear kills
 - Heat penetrates soil, more like an oven
 - Light can allow for photosynthesis

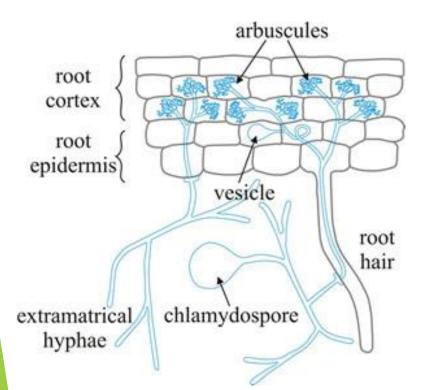

http://2.bp.blogspot.com/-QQpTp5VYeqo/TcW3v1UeVEI/AAAAAAAAW8/_RQSuOLBfH8/s1600/DSCF1327.JPG

Clear vs. AC Plastic

- Clear vs. anti-condensing (AC) plastic
 - ► AC plastic appears clear
 - Clear plastic appears opaque


Jennifer Parke

Results of Solarization


Pathogen control

- Like pasteurization
 - NOT sterilization
- Temperature kills
 - 140°F for X weeks
 - Depends on climate, latitude
 - Diurnal fluctuations

Many fungi are beneficial

- Ectomycorrhizae
- Endomycorrhizae
 - Arbuscular mycorrhizal fungi (AMF)

http://tropicalfungi.org/wp-content/uploads/Freshly-harvested-boletoid-ectomycorrhizae-from-Pakaraimaea-dipterocarpacea.jpg

http://www.davidmoore.org.uk/assets/mostly_mycology/diane_howarth/images/arbuscular_mycorrhiza.png

Traditional Weed and Pathogen Controls

► Fumigation

- Dangerous
- Legality
 - Methyl bromide banned 2005

Pesticides/Herbicides

- Public perception
- Organic
- Hand-picking weeds
 - ► Labor = 70% of farm costs

Steaming

Costly energy usage

Jennifer Parke

Costs

- Herbicides: \$900 \$3400 per acre annually
 - Weeds
- Hand weeding: \$900 \$3400 per acre annually
 Weeds
- Fumigation: \$1100 \$2000 per acre annually
 - Pathogens, some weeds
- Soil solarization: \$330 \$491 per acre annually
 - Weeds AND pathogens


Nonsolarized

Solarized

Some of these may negatively affect AMF colonization

J. Frank Schmidt Nursery (JFS)

- Ornamental tree nursery in Boring, OR
- Early adopters
 - Acres under solarized treatment
- Pilot study
 - Assess cost, viability
- Pathogens and weeds
 - Major problem, take a proactive approach
 - Hand-weeding

Jennifer Parke

Steps in Field Application

- ▶ Till, add amendments
- Damp soil is darker, stores heat
- Apply spring/summer
- Bury edges to seal
 - > This project done by hand
- Wait 6 8 weeks

Jennifer Parke, JFS 2015

Remove plastic and plant

Considerations

- Competition with growing season
 - Better than getting shut own
- Waste plastic
 - Can recycle in Willamette Valley
- What if it kills beneficial stuff?
 - ► This is a special treatment
 - Can re-inoculate
 - Nutrients

Jennifer Parke, JFS 2015

Objective:

Solarization

- Known to be effective in controlling pathogens
- What effect does it have on subsequent plantings?
 - Specifically biomass, length, and mycorrhizal colonization

Jennifer Parke

Methodology

Sam Doane, JFS 2014

Sam Doane, JFS 2014

Field Methods

- 12 rows, standard practices
 - Fertilize, till, mound
 - Nonsolar mounded after plastic removed and treated with glyphosate
- 2 possible treatments (6 rows each)
 - Solarization
 - Nonsolarized control (no plastic)
- Allow 6 8 weeks pass
 - > 7/22/14 9/11/14
 - ▶ 7wk, 2d

Jennifer Parke, JFS 2014

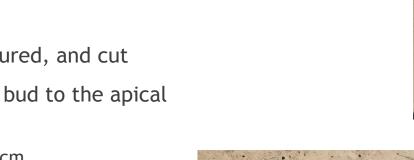
Field Methods

- Solarization plastic removed
 - Balled and recycled
- Three species planted from seed
 - Hawthorn Crataegus monogyna
 - Mazzard Cherry Prunus avium
 - Red Oak Quercus rubra
- Harvest methods
 - Early season 6/23/15
 - Late season 9/10/15

Red oak (Quercus rubra) seedlings

Jennifer Parke

Plant Preparation


Shoots

- Plants washed, measured, and cut
- Shoot length: lowest bud to the apical meristem
 - ▶ To the nearest 0.5 cm

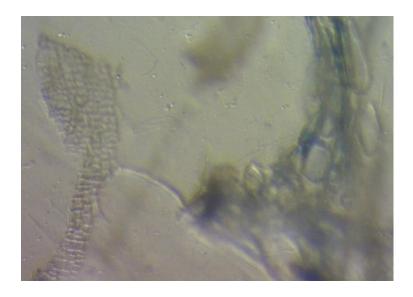
Roots


- Rinsed, gently shaken dry
- Put in moist bags to keep separate
- Set aside for AMF/ECM

Drying oven 48hr at 50°C

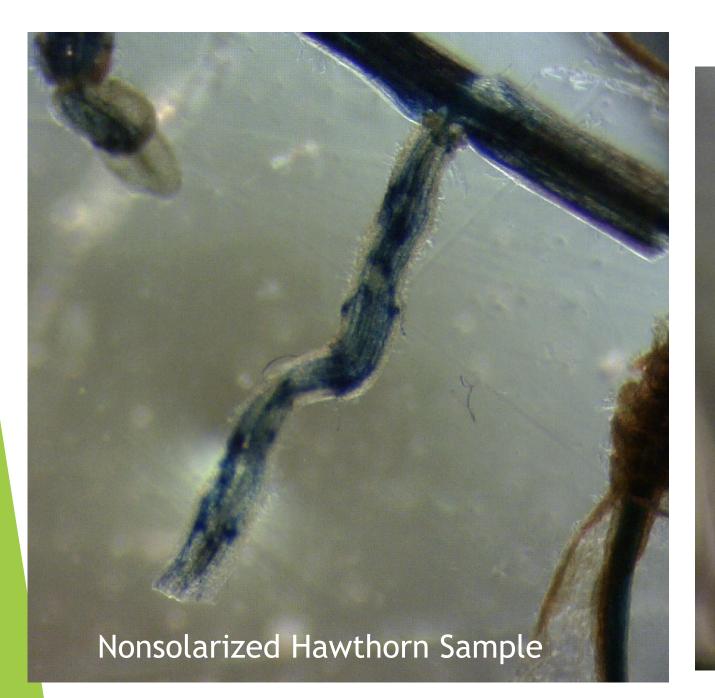
Lab Methods

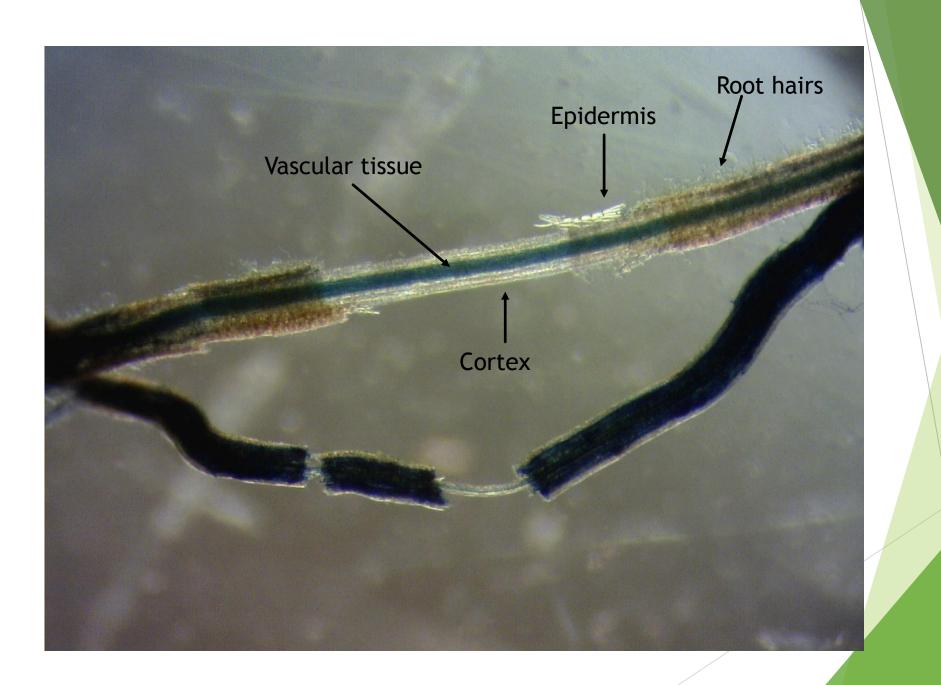
- AMF colonization assessment (cherry, hawthorn)
- Ectomycorrhizae (red oak)
 - Microscopy no stain
- Both assessments done only on early harvests

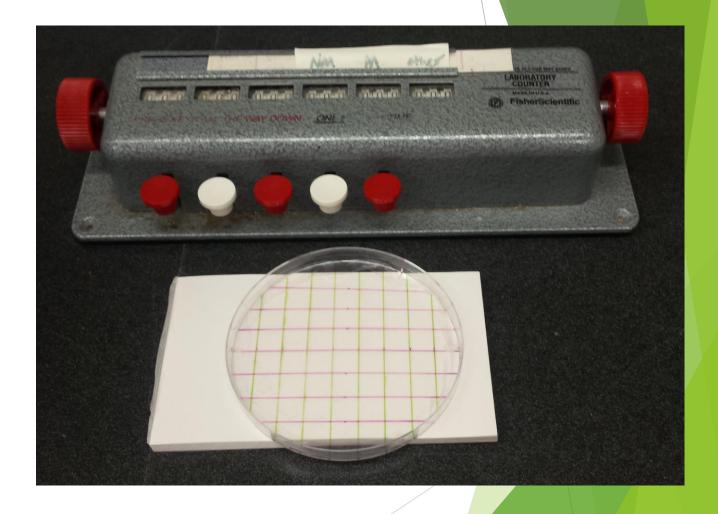

Mycorrhizae on nonsolarized oak

Joyce Eberhart

Clearing and Staining

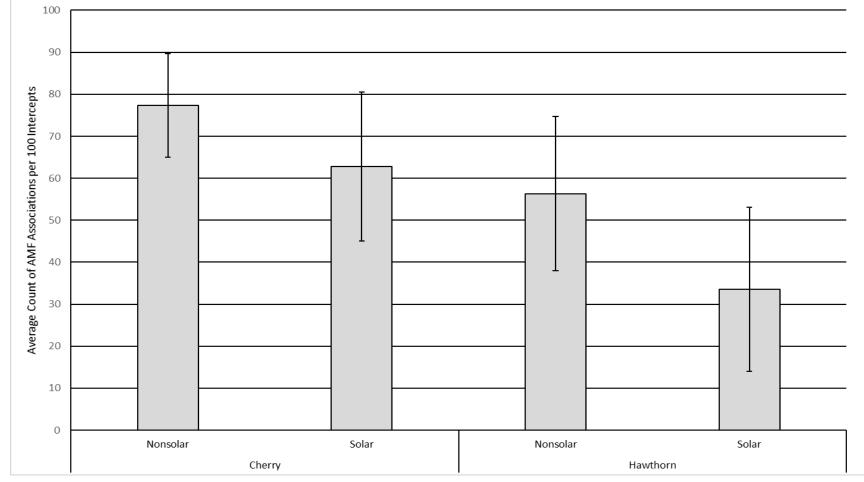

- Modified protocol: Phillips and Hayman 1970
- KOH + heat = pigment removed from roots
 - (Alkali soluble compounds come out)
- Rinse with tap water
- HCl + heat = more "stuff" removed
- Add stain + lactoglycerol




Solarized Cherry Sample

Grid-Line Intersect

- Giovanetti and Mosse, 1980
- ► 1cm grid
- Count to 100
 - Percent of root intercepts with AMF associations


T-test

- All data were run through 1-way t-tests to form the following graphs
- Significance determined by P < 0.05</p>

Mazzard Cherry 6/23	/15					Red Oak 6/23/15						Hawthorn 6/23/15					
Ch + i +						Shoot Length						Shoot Length					_
Shoot Length Source of Variation		df	MS	F	P-value	Source of Variation	cc.	df	MS	E.	P-value	Source of Variation	cc.	df	MS	c	P-value
Between Groups	2067.25	1.00		-		Between Groups	28.13					Source of Variation	1415.12				
Within Groups	4669.70	48.00			<0.001		28.13				0.34	Within Groups	1415.12				/ <0.0
	6736.95	48.00				Within Groups	1484.00						2555.48			•	
Total	6/36.95	49.00				Total	1512.13	49.00				Total	2555.48	49.00			-
Shoot Dry Mass						Shoot Dry Mass						Shoot Dry Mass					
Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-valu
Between Groups	0.00	1.00	0.00	0.00	0.99	Between Groups	0.24	1.00	0.24	0.21	0.65	Between Groups	13.30	1.00	13.30	37.8	3 <0.
Within Groups	236.61	98.00	2.41			Within Groups	110.90	97.00	1.14			Within Groups	34.45	98.00	0.35		
Total	236.61	99.00				Total	111.14	98.00				Total	47.74	99.00			
Root Dry Mass						Root Dry Mass						Root Dry Mass					
Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-valu
Between Groups	0.00	1.00		0.00		Between Groups	0.23			0.97		Between Groups	0.40	0 1.00	0.40	5.6	
Within Groups	43.85	98.00				Within Groups	22.98					Within Groups	6.84				
Total	43.85	99.00				Total	23.21					Total	7.2				
Mazzard Cherry 9/10	/15					Red Oak 9/10/15						Hawthorn 9/10/15					
Shoot Length						Shoot Length						Shoot Length					
Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-val
Between Groups	1726.40	1.00	1726.40	1.57	0.21	Between Groups	930.25	1.00	930.25	2.55	0.11	Between Groups	10652.19	1.00	10652.19	25.8	1 <0.
Within Groups	107547.85	98.00	1097.43			Within Groups	35714.61	98.00	364.43			Within Groups	40041.10	97.00	412.79	•	
Total	109274.25	99.00				Total	36644.86	99.00				Total	50693.29	98.00			
Shoot Dry Mass						Shoot Dry Mass						Shoot Dry Mass					
Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-valu
Between Groups	0.36	1.00	0.36	0.00	0.97	Between Groups	13.16			0.12	0.73	Between Groups	553.68	3 1.00	553.68	16.4	0 <0.
Within Groups	21681.00	97.00	223.52			Within Groups	10858.47	98.00	110.80			Within Groups	3308.26	98.00	33.76		
Total	21681.36	98.00				Total	10871.63	99.00				Total	3861.94	99.00			
Root Dry Mass						Root Dry Mass						Root Dry Mass					
Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-value	Source of Variation	SS	df	MS	F	P-val
Between Groups		NA	NA	NA	NA	Between Groups	1.57			0.03		Between Groups	37.51			6.4	
		NA	NA			Within Groups	5801.63				2.07	Within Groups	570.57				
Within Groups	NA																

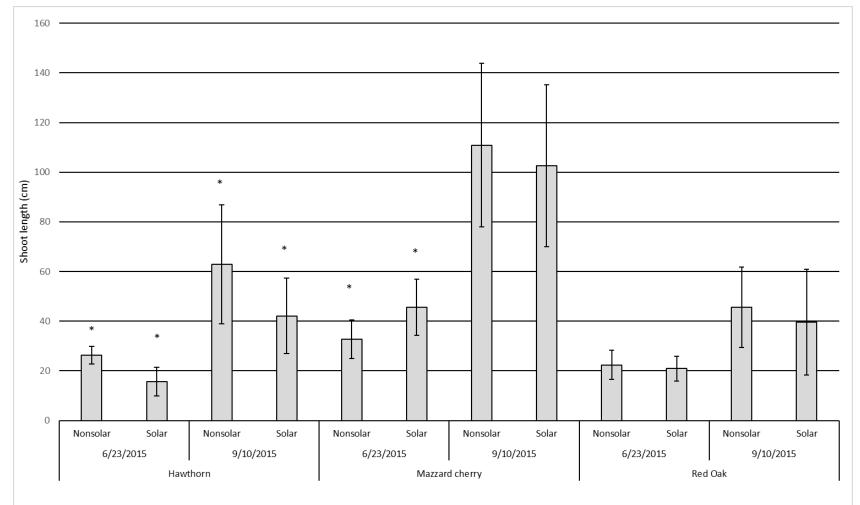
Results

Mean mycorrhizal associations per 100 intercepts, hawthorn and cherry, 6-23-15

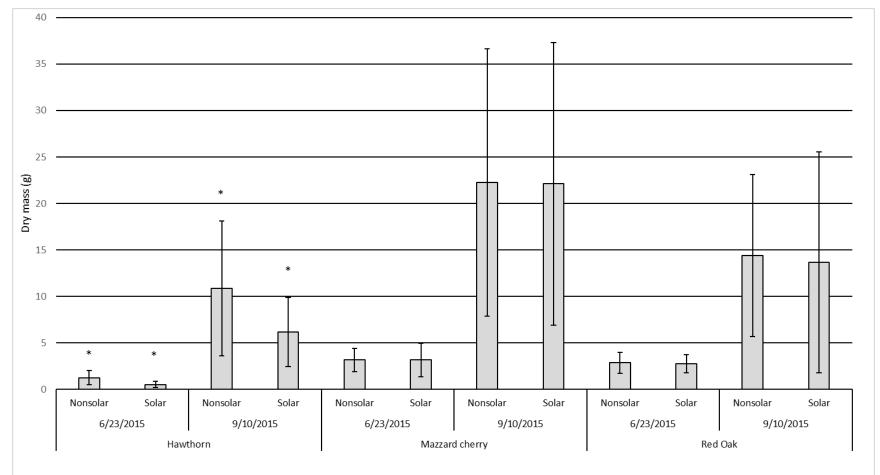
All differences between nonsolar and solar treatments showed significance (P < 0.05). Error bars represent standard deviations.

Ectomycorrhizae

- Very few instances observed
- Not enough data to graph
 - Certainly consider further experiment

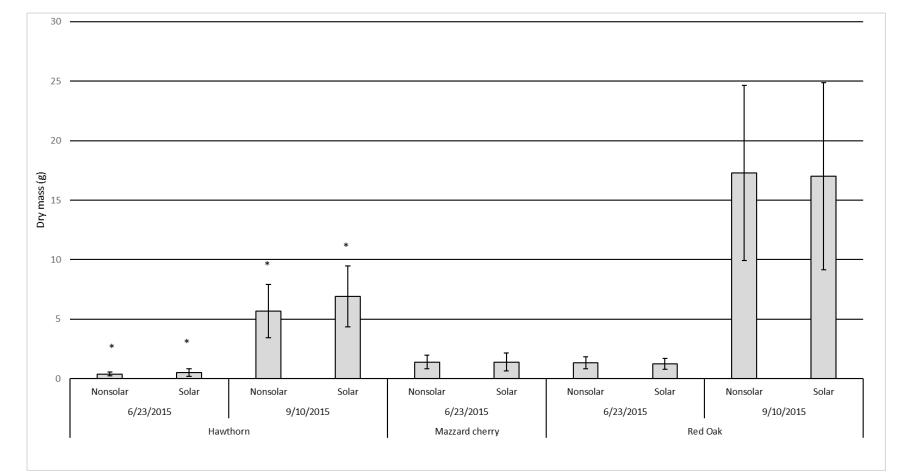


Non-solarized#20 oak root Joyce Eberhart


Joyce Eberhart

Mean shoot length

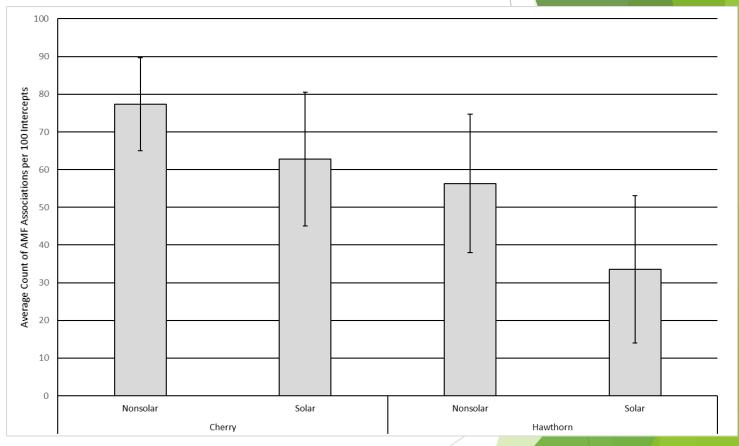
Starred bars (*) showed significant differences between nonsolar and solar treatments (P < 0.05). Error bars represent standard deviations.


Mean shoot biomass

Starred bars (*) showed significant differences between nonsolar and solar treatments (P < 0.05). Error bars represent standard deviations.

Mean root biomass

There were no data collected for Mazzard cherry roots on 9/10/15.



Starred bars (*) showed significant differences between nonsolar and solar treatments (P < 0.05). Error bars represent standard deviations.

Discussion

Mycorrhizal colonization

- Solarization does reduce AMF colonization
 - Not necessarily a bad thing solarization IS working
- For species more reliant on AMF, solarization may not be recommended
 - Especially a species where disease is not a major issue
- ECM needs more robust data set

Conclusions

- Species respond differently to solarization
 - AMF reduced by solarization in hawthorn and Mazzard cherry
- Hawthorn negatively affected by solarizing, except in root biomass
 - Solarization (maybe) not recommended for this species
 - May rely more on AMF than other species
- Mazzard cherry had slightly better shoot growth when solarized
 - ► For the early season when it matters most
- Red oak showed no differences in trials
 - For the documented variables
 - Look next at disease

Future Research

- Finding better materials
- Solarization timing was 7 weeks enough?
 - Could less time achieve same result?
 - Especially of interest in Willamette Valley
- AMF or Disease:
 - Which matters more, and to what plants
- Looking at various crops and assessing viability of solarization

Acknowledgements

- Sam Doane, JFS Nursery
- Clara Weidman
- Ebba Petersen, CSS
- Alonso Salazar
- Caleb Trammell

Questions?