


AN ABSTRACT OF THE DISSERTATION OF

MohammadReza Ghaeini for the degree of Doctor of Philosophy in Computer Science

presented on February 04, 2020.

Title: Improving and Understanding Deep Models for Natural Language

Comprehension

Abstract approved:

Xiaoli Z. Fern

Natural Language Comprehension is a challenging domain of Natural Language Pro-

cessing. To improve a model’s language comprehension/understanding, one approach

would be to enrich the structure of the model to enhance its capability in learning the

latent rules of the language.

In this dissertation, we will first introduce several deep models for a variety of nat-

ural language comprehension tasks including natural language inference and question

answering. Previous approaches employ reading mechanisms that do not fully exploit

the interdependencies between the input sources like “premise and hypothesis” or “doc-

ument and query”. In contrast, we explore more sophisticated reading mechanisms to

efficiently model the relationships between input sources (e.g. “premise and hypothe-

sis” or “document and query”). These mechanisms and models yield better empirical

performances, however, due to the black-box nature of deep learning, it is difficult to



assess whether the improved models indeed acquire a better understanding of language.

Meanwhile, data is often plagued by meaningless or even harmful statistical biases and

deep models might achieve high performance by focusing on the biases. This moti-

vates us to study methods for “peaking inside” the black-box deep models to provide

explanation and understanding of the models’ behavior. The proposed method (a.k.a.

saliency) takes a step toward explaining deep learning-based models based on gradient

of the model output with respect to different components like the input layer and inter-

mediate layers. Saliency reveals interesting insights and identifies critical information

contributing to the model decisions. Besides proposing a model-agnostic interpretation

method (saliency), we study model-dependent interpretation solutions and propose two

interpretable designs and structures. Finally, we introduce a novel mechanism (saliency

learning), which learns from ground-truth explanation signal such that the learned model

will not only make the right prediction but also for the right reason. Our experimental

results on multiple tasks and datasets demonstrate the effectiveness of the proposed

methods, which produce more faithful to right reasons and evidences predictions while

delivering better results compared to traditionally trained models.



©Copyright by MohammadReza Ghaeini
February 04, 2020

All Rights Reserved



Improving and Understanding Deep Models for Natural Language
Comprehension

by

MohammadReza Ghaeini

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented February 04, 2020
Commencement June 2020



Doctor of Philosophy dissertation of MohammadReza Ghaeini presented on
February 04, 2020.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

MohammadReza Ghaeini, Author



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere appreciation and gratitude to my

dear advisor, Xiaoli Fern for all her help and guidance. Over the past five years, I have

always counted on her flawless advisory feedback and I will continue to learn from her.

She always has been so supportive and genuinely helpful through all my PhD program.

I also would like to thank my PhD committee members, Dr. Prasad Tadepalli, Dr.

Liang Huang, Dr. David Hendrix, and Dr. Kipp Shearman, for all of their invaluable

feedback, support, and for selflessly agreeing to serve on my committee.

During my years working at Oregon State University, it has been a true pleasure to

be colleagues and office mates with Hamed Shahbazi, Medisa Danaee, Walker Orr, and

Chao Ma. Especially, I am truly appreciative of my dear friend Hamed Shahbazi for all

helpful discussions, suggestion, and collaboration.

Friendship is one of the most important aspects of my life and I could not make it

here without my beloved friends who are like my family here. So, I am very thankful to

each and every one of them. I am happy to have every one of you by my side on this jour-

ney. In particular, I would like to name a few of them here as a token of appreciation for

their friendship: Elham Mirkoohi, Shahrokh Shahi, Shiva Keyvanfar, Farzad Zafarani,

Lily Ranjbar, Ali Jafarnejad, Mehran Amiri, Shiva Bahrami, Meysam Nezafati, Arash

Moradi, Amir Afsharinejad, Forough Khonsari, Mahtab Aboufazeli, Amir Azarbakht,

and Parisa Ataei.

Finally, I must express my very profound gratitude to my parents and my sister

for providing me with unfailing support and continuous encouragement throughout my



years of study. Especially, my dear father who I, unfortunately, lost during my years

of study. He will be truly missed but his memory will always be in my heart. This

accomplishment would not have been possible without them and their sacrifices.



TABLE OF CONTENTS

Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . 13

3 DR-BiLSTM: Dependent Reading Bidirectional LSTM for NLI . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Input Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Ensemble Strategy . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.6 Ablation and Configuration Study . . . . . . . . . . . . . . . . 33
3.4.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Dependent gated reading for cloze-style question answering . . . . . . . . . . 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Dependent Gated Reading . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Multi-hop Reading of Document and Query . . . . . . . . . . . 53
4.3.2 Ranking & Prediction . . . . . . . . . . . . . . . . . . . . . . . 56



TABLE OF CONTENTS (Continued)

Page

4.3.3 Further Enhancements . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Training Details & Experimental Setup . . . . . . . . . . . . . . 60
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.5 Rule-based Disambiguation Study . . . . . . . . . . . . . . . . 65
4.4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Interpreting Recurrent and Attention-based Neural Models: A Case Study on

NLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Task and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 ESIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Visualization of Attention and Gating . . . . . . . . . . . . . . . . . . . 80
5.3.1 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 LSTM Gating Signals . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Attentional Multi-Reading Sarcasm Detection . . . . . . . . . . . . . . . . . 92

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.1 Input Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.3 Re-Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.4 Ablation and Configuration Study . . . . . . . . . . . . . . . . 107



TABLE OF CONTENTS (Continued)

Page

6.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5.1 Attention Study . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5.2 Length Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Gated BERT: Toward Interpreting and Understanding BERT . . . . . . . . . 114

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Preliminary: BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.1 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.2 Transformer Layer . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Gated BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.5 Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Saliency Learning: Teaching the Model Where to Pay Attention . . . . . . . 138

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2 Background: Saliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Saliency-based Explanation Learning . . . . . . . . . . . . . . . . . . . . 140

8.4 Tasks and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.5 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.6 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.7 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7.2 Saliency Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 148
8.7.3 Saliency Visualization . . . . . . . . . . . . . . . . . . . . . . 149
8.7.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.7.5 More Saliency Visualization . . . . . . . . . . . . . . . . . . . 152



TABLE OF CONTENTS (Continued)

Page

8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A Source Code for Gated BERT (G-BERT) . . . . . . . . . . . . . . . . . . 173



LIST OF FIGURES

Figure Page

1.1 Research and dissertation chain of thoughts. . . . . . . . . . . . . . . 2

2.1 Three most commonly used non-linear activation functions in neural
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Representation of a basic multilayer perceptron classifier (MLP) with
one hidden layer and multiple class classification. . . . . . . . . . . . . 8

2.3 Structure of a Recurrent Neural Network (RNN). Folded and unfolded
representations respectively . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Structure of Gated Recurrent Unit (GRU) . . . . . . . . . . . . . . . . 11

2.5 Structure of Long Short-Term Memory (LSTM) . . . . . . . . . . . . . 12

3.1 A high-level view of DR-BiLSTM. The data (premise u and hypothesis
v, depicted with cyan and red tensors respectively) flows from bottom to
top. Relevant tensors are shown with the same color and elements with
the same colors share parameters. . . . . . . . . . . . . . . . . . . . . 18

3.2 Performance of n ensemble models reported for training (red, top), de-
velopment (blue, middle), and test (green, bottom) sets of SNLI. For n
number of models, the best performance on the development set is used
as the criteria to determine the final ensemble. The best performance on
development set (89.22%) is observed using 6 models and is henceforth
considered as our final DR-BiLSTM (Ensemble) model. . . . . . . . . 27

3.3 Performance of n ensemble models using majority voting on natural
language inference reported for training set (red, top), development set
(blue, middle), and test set (green, bottom) of SNLI. The best perfor-
mance on development set is used as the criteria to determine the final
ensemble. The best performance on development set is observed using
6 models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Impact of BiLSTM dimensionality in the proposed model on the training
set (red, top) and development set (blue, bottom) accuracies of the SNLI
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Normalized attention weights for a sample from the SNLI test set. Darker
color illustrates higher attention. . . . . . . . . . . . . . . . . . . . . . 38



LIST OF FIGURES (Continued)

Figure Page

3.6 Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Entailment. Our model returns
Contradiction for the erroneous sample, but correctly classifies the fixed
sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Neutral. Our model returns
Contradiction for the erroneous sample, but correctly classifies the fixed
sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Neutral. Our model returns
Entailment for the erroneous sample, but correctly classifies the fixed
sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Entailment. Our model returns
Contradiction for the erroneous sample, but correctly classifies the fixed
sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Entailment. Our model returns
Neutral for the erroneous sample, but correctly classifies the fixed sam-
ple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Entailment. Our model returns
Neutral for the erroneous sample, but correctly classifies the fixed sam-
ple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Visualization of the normalized attention weights of DR-BiLSTM (a)
and ESIM (b) models for one sample from the SNLI test set. This sam-
ple belongs to the Negation category. The gold label is Contradiction.
Our model returns Contradiction while ESIM returns Entailment. . . . 43

3.13 Visualization of the normalized attention weights of DR-BiLSTM (a)
and ESIM (b) models for one sample from the SNLI test set. This sam-
ple belongs to the Negation category. The gold label is Contradiction.
Our model returns Contradiction while ESIM returns Entailment. . . . 43



LIST OF FIGURES (Continued)

Figure Page

3.14 Visualization of the normalized attention weights of DR-BiLSTM (a)
and ESIM (b) models for one sample from the SNLI test set. This sam-
ple belongs to both Negation and Quantifier categories. The gold label is
Neutral. Our model returns Neutral while ESIM returns Contradiction. 44

3.15 Visualization of the normalized attention weights of DR-BiLSTM (a)
and ESIM (b) models for one sample from the SNLI test set. This sam-
ple belongs to both Negation and Quantifier categories. The gold label
is Entailment. Our model returns Entailment while ESIM returns Con-
tradiction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.16 Normalized attention weights for 6 data samples from the test set of
SNLI dataset. (a,c,e) and (b,d,f) represent the normalized attention weights
for Entailment, Neutral, and Contradiction logical relationships of two
premises (Instance 1 and 2) respectively. Darker color illustrates higher
attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.17 Normalized attention weights for 6 data samples from the test set of
SNLI dataset. (a,c,e) and (b,d,f) represent the normalized attention weights
for Entailment, Neutral, and Contradiction logical relationships of two
premises (Instance 3 and 4) respectively. Darker color illustrates higher
attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.18 Normalized attention weights for 6 data samples from the test set of
SNLI dataset. (a,c,e) and (b,d,f) represent the normalized attention weights
for Entailment, Neutral, and Contradiction logical relationships of two
premises (Instance 5 and 6) respectively. Darker color illustrates higher
attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



LIST OF FIGURES (Continued)

Figure Page

4.1 A high-level view of dependent gated reading model (DGR). The data
(document d and query q, depicted with red and cyan tensors respec-
tively) flows from left to right. At the first (input) layer, the word rep-
resentations are shown with black solid borders while the character rep-
resentations are shown with colored dashed borders. The figure is color
coded; relevant tensors and elements are shown with the same color.
Note that none of the elements share parameters. The purple matrices
extract relevant information between document and query representa-
tions. The black arrows between the query Bi-GRUs (yellow ones) pass
the final hidden state of a Bi-GRU to another one as initialization value
for its hidden state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Performance of DGR and its variations on the rule-based disambiguated
test set of CBT-NE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Test accuracy of DGR and its variations against the length of the doc-
ument (A), and length of the query (B) on the WDW-Relaxed dataset.
The bar on top of each figure indicates the number of samples in each
interval. Darker color in the bars illustrates more samples. . . . . . . . 68

4.4 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “sahib”. . . . . . . . 69

4.5 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “butler”. . . . . . . . 71

4.6 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “prince”. . . . . . . . 71

4.7 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “right”. . . . . . . . . 72



LIST OF FIGURES (Continued)

Figure Page

4.8 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “bandmaster”. . . . . 72

4.9 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “cordelia”. . . . . . . 73

4.10 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “first”. . . . . . . . . 73

4.11 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “toomai”. . . . . . . 74

4.12 Layer-wise normalized attention visualization of “DGR” (top) and “DGR
- (a)& (b) & (c)” (bottom) for a sample from the CBT-NE test set.
Darker color illustrates higher attention. Figures only show the aggre-
gated attention of candidates. The gold answer is “darning-needle”. . . 74

5.1 A high-level view of ESIM model. . . . . . . . . . . . . . . . . . . . . 77

5.2 Normalized attention and attention saliency visualization. Each column
shows visualization of one sample. Top plots depict attention visual-
ization and bottom ones represent attention saliency visualization. Pre-
dicted (the same as Gold) label of each sample is shown on top of each
column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Normalized attention and attention saliency visualizations of two ex-
amples (p1 and p2) for ESIM-50 (a) and ESIM-300 (b) models. Each
column indicates visualization of a model and each row represents visu-
alization of one example. . . . . . . . . . . . . . . . . . . . . . . . . . 84



LIST OF FIGURES (Continued)

Figure Page

5.4 Normalized attention (a) and saliency attention (b) visualizations of Ex-
ample 1. The gold relationship for this example is Contradiction. ESIM-
50 also predicts Contradiction for this example. . . . . . . . . . . . . . 86

5.5 Normalized attention (a) and saliency attention (b) visualizations of Ex-
ample 2. The gold relationship for this example is Entailment. ESIM-50
also predicts Entailment for this example. . . . . . . . . . . . . . . . . 86

5.6 Normalized attention (a) and saliency attention (b) visualizations of Ex-
ample 3. The gold relationship for this example is Contradiction. ESIM-
50 also predicts Contradiction for this example. . . . . . . . . . . . . . 87

5.7 Normalized attention (a) and saliency attention (b) visualizations of Ex-
ample 4. The gold relationship for this example is Neutral. ESIM-50
also predicts Neutral for this example. . . . . . . . . . . . . . . . . . . 87

5.8 Normalized attention (a) and saliency attention (b) visualizations of Ex-
ample 5. The gold relationship for this example is Entailment. ESIM-50
also predicts Entailment for this example. . . . . . . . . . . . . . . . . 88

5.9 Normalized signal and saliency norms for the input and inference LSTMs
(forward) of ESIM-50 for three examples. The bottom (top) three rows
show the signals of the input (inference) LSTM. Each row shows one of
the three gates (input, forget and output). . . . . . . . . . . . . . . . . 89

5.10 Normalized signal and saliency norms for the input and inference LSTMs
(backward) for three examples, one for each column. The bottom (top)
three rows show the signals of the input (inference) LSTM, where each
row shows one of the three gates (input, forget and output). . . . . . . 89

6.1 A high-level view of our model (AMR). The data (comment u and re-
sponse v, depicted with red and cyan/blue tensors respectively) flows
from bottom to top. Relevant tensors are shown with the same color and
elements with the same colors share parameters. The left part shows
the utterance-only part and the right part represents the conversation-
dependent part of AMR. . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Normalized attention (a, top) and normalized attention saliency (b, bot-
tom) visualization for a sarcastic instance from the test set of SARC
V2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



LIST OF FIGURES (Continued)

Figure Page

6.3 Test accuracy of AMR and its sub-parts (Utterance-only and Conversation-
dependent) against the length of the comment (A) and response (B). . . 111

7.1 A high-level view of BERT model. . . . . . . . . . . . . . . . . . . . 117

7.2 A high-level view of Gated BERT (G-BERT) model. . . . . . . . . . . 119

7.3 Demonstration of fixed and trainable parts of the Fixed BERT. Gray
parts are fixed and Blue parts are trainable and will be updated during
the training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Demonstration of fixed and trainable parts of the Gated BERT. Gray
parts are fixed and Blue parts are trainable and will be updated during
the training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 High-level demonstration of fixed and trainable parts of the Fixed BERT
and Gated BERT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Layer weights average initialization visualization. . . . . . . . . . . . 126

7.7 Layer weights last initialization visualization. . . . . . . . . . . . . . . 127

7.8 Normalized layer gate weights of Gated BERT model (average initial-
ization) for GLUE tasks. Darker color illustrates higher weight value.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.9 Normalized layer gate weights of Gated BERT (average initialization)
+ Fine-Tuning for GLUE tasks. Darker color illustrates higher weight
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.10 Normalized layer gate weights of Gated BERT model (average initial-
ization) for GLUE tasks when none of the layers are dropped. Darker
color illustrates higher weight value. . . . . . . . . . . . . . . . . . . . 131

7.11 Normalized layer gate weights of Gated BERT model (average initial-
ization) for GLUE tasks when the last top layer (layer 24) is dropped.
Darker color illustrates higher weight value. . . . . . . . . . . . . . . . 131

7.12 Normalized layer gate weights of Gated BERT model (average initial-
ization) for GLUE tasks when the last two top layers (layers 23 and 24)
are dropped. Darker color illustrates higher weight value. . . . . . . . 132



LIST OF FIGURES (Continued)

Figure Page

7.13 Normalized layer gate weights of Gated BERT model (average initial-
ization) for GLUE tasks when the last six top layers (layers 19 to 24)
are dropped. Darker color illustrates higher weight value. . . . . . . . 132

7.14 Normalized layer gate weights of Gated BERT model (average initial-
ization) for GLUE tasks when the last 12 top layers (layers 13 to 24;
second half of the model) are dropped. Darker color illustrates higher
weight value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.15 First page of the demo for the sentiment analysing task (SST-2) . . . . 134

7.16 Result page of the demo for the sentiment analysing task (SST-2) . . . 134

7.17 Visualization of word embeddings weights, gradient/saliency of word
embeddings, and Taylor value of word embeddings for a sample from
SST-2 corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.18 Word analysis page of the demo for a sample from SST-2 corpus. . . . 136

7.19 Word analysis page of the demo for a sample from SST-2 corpus when
the work “taxes” has been removed and the sentiment has been changed
from Negative to Positive. . . . . . . . . . . . . . . . . . . . . . . . . 136

7.20 Layer and attention analysis page of the demo for a sample from SST-2
corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1 A high-level view of the models used for event extraction (a) and ques-
tion answering (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



LIST OF TABLES

Table Page

3.1 Examples from the SNLI dataset. . . . . . . . . . . . . . . . . . . . . . 15

3.2 Examples of original sentences that contain erroneous words (misspelled)
in the test set of SNLI along with their corrected counterparts. Erro-
neous words are shown in bold and italic. . . . . . . . . . . . . . . . . 29

3.3 Accuracies of the models on the training set and test set of SNLI. DR-
BiLSTM (Ensemble) achieves the accuracy of 89.3%, the best result
observed on SNLI, while DR-BiLSTM (Single) obtains the accuracy
of 88.5%, which considerably outperforms the previous non-ensemble
models. Also, utilizing a trivial preprocessing step yields to further im-
provements of 0.4% and 0.3% for single and ensemble DR-BiLSTM
models respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Ablation study results. Performance of different configurations of the
proposed model on the development set of SNLI along with their p-
values in comparison to DR-BiLSTM (Single). . . . . . . . . . . . . . 33

3.5 Categorical performance analyses (accuracy) of ESIM [11], DR-BiLSTM
(DR(S)) and Ensemble DR-BiLSTM (DR(E)) on the SNLI test set. . . . 37

4.1 Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Performance of proposed model (DGR) on the test set of CBT-NE, CBT-
CN, WDW-Strict, and WDW-Relaxed datasets. . . . . . . . . . . . . . 61

4.3 Ablation study results. Performance of different configurations of the
proposed model on the development set of the CBT-NE, CBT-CN, WDW-
Strict, and WDW-Relaxed datasets . . . . . . . . . . . . . . . . . . . . 63

4.4 Statistics and performance of the proposed rule-based strategy on CBT-
NE dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Example of a disambiguated sample in CBT-NE dataset with the pro-
posed rule-based approach. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Examples along their gold labels, ESIM-50 predictions and study cate-
gories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



LIST OF TABLES (Continued)

Table Page

6.1 Different types of sarcastic examples from the SARC dataset. Each data
sample contains a comment and response. Important and influential to-
kens are shown in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 SARC main balanced V2.0 statistics. . . . . . . . . . . . . . . . . . . . 103

6.3 F1-measures and Accuracies of models on the test set of SARCcsd. The
second three (4,5, and 6) models benefit from personality feature (their
results are shown in blue). Whereas the first three models (1,2, and 3),
similar to our model; only rely on response or response and comment.
Our models (AMR) achieves the F1-measure and accuracy of 68% and
70% respectively, the best results observed on SARCcsd among similar
methods which does not use personality features. . . . . . . . . . . . . 105

6.4 Ablation study results. Precision, Recall, F1-Measure, and Accuracy of
different models on the test set of SARC V2.0. . . . . . . . . . . . . . . 107

7.1 Two data samples from the CoLA corpus. . . . . . . . . . . . . . . . . 120

7.2 Two data samples from the MRPC corpus. . . . . . . . . . . . . . . . . 121

7.3 Two data samples from the QNLI corpus. . . . . . . . . . . . . . . . . 121

7.4 Two data samples from the SST-2 corpus. . . . . . . . . . . . . . . . . 121

7.5 Four data samples from the STS-B corpus. . . . . . . . . . . . . . . . . 121

7.6 GLUE benchmark Data Statistics . . . . . . . . . . . . . . . . . . . . . 123

7.7 Performance of Fixed BERT and Gated BERT models on the develop-
ment set of GLUE tasks. . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.8 Performance of Fixed BERT and Gated BERT models on the test set of
GLUE tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.9 Performance of Gated BERT model on the development set of GLUE
tasks when 0, 1, 2, 6, 12, and 18 top layers of the Gated BERT model
are dropped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.1 Dataset statistics of the modified tasks and datasets. . . . . . . . . . . . 144



LIST OF TABLES (Continued)

Table Page

8.2 Performance of trained models on multiple datasets using traditional
method and saliency learning. . . . . . . . . . . . . . . . . . . . . . . 148

8.3 Saliency accuracy of different layer of our models trained on ACE, ERE,
CBT-NE, CBT-CN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.4 Top 6 salient words visualization of data samples from ACE for the
baseline and the saliency-trained models. . . . . . . . . . . . . . . . . 150

8.5 True positive rate and true positive rate change of the trained models
before and after removing the contributory word(s). . . . . . . . . . . . 151

8.6 Top 6 salient words visualization of samples from ACE and ERE for the
baseline and the saliency-trained models. . . . . . . . . . . . . . . . . 154

8.7 Top 6 salient words visualization of samples from ACE and ERE for the
baseline and the saliency-trained models. . . . . . . . . . . . . . . . . 155



Chapter 1: Introduction

In this dissertation, we focus on improving and understanding deep learning-based mod-

els for Natural Language Comprehension (NLC). Figure 1.1 demonstrates the chain of

thoughts that form this work. Natural Language Comprehension is a central problem of

Natural Language Processing. NLC is the key factor to obtain good and reliable perfor-

mance in a variety of NLP tasks. One way to improve natural language comprehension

and understanding would be enriching the structure of the model to enhance its capabil-

ity to learn the latent rules of the language. The way we handle and encode input sources

critically influence the model’s behavior and performance. If the model misses impor-

tant information and details in the input encoding stage, the rest of the model could not

recover the missing information and clues.

The first part of this dissertation focuses on proposing more sophisticated read-

ing mechanisms to efficiently model the relationship and dependency between input

sources. Here we start our study with the Natural Language Inference task (Chapter 3).

Natural Language Inference (NLI; a.k.a. Recognizing Textual Entailment, or RTE) is

an important and challenging task for natural language understanding [59]. The goal of

NLI is to identify the logical relationship (entailment, neutral, or contradiction) between

a premise and a corresponding hypothesis. Existing approaches mostly rely on simple

reading mechanisms for independent encoding of the premise and hypothesis. Instead,

we propose a novel dependent reading bidirectional LSTM network (DR-BiLSTM) to



2

1

Improving models reliability and accuracy 
Teaching a model where to pay attention

Can I trust your judgment? 
How/Why does such models work?

• Reza Ghaeini, et al. “Interpreting recurrent and 
attention-based neural models: a case study on 
natural language inference”. EMNLP, 2018.

• Reza Ghaeini, et al. “Saliency Learning: Teaching 
the model where to pay attention”. NAACL, 2019.

Improving and Understanding Deep Models 
for Natural Language Comprehension

Enriching models structure 
Emulating brain/human functionality

• Reza Ghaeini, et al. “DR-BiLSTM: Dependent 
Reading Bidirectional LSTM for Natural Language 
Inference”. NAACL, 2018.


• Reza Ghaeini, et al. “Dependent Gated Reading for 
Cloze-Style Question Answering”. COLING, 2018.

Can I embed the interpretability into models 
structure and design?

• Reza Ghaeini, et al. “Attentional Multi-Reading 
Sarcasm Detection”. Arxiv, 2018.


• Reza Ghaeini, et al. “Gated BERT: Toward 
Interpreting and Understanding BERT”. Microsoft 
Research, 2019.

Figure 1.1: Research and dissertation chain of thoughts.

efficiently model the relationship between a premise and a hypothesis during encoding

and inference. Our evaluation shows that DR-BiLSTM achieves the new state-of-the-art

scores on the Stanford NLI dataset.

In Chapter 4 we test the observed positive impact of using more sophisticated read-

ing mechanisms on a different task. Cloze-Style question answering could be considered

as one of the tasks that essentially studies Human Language Comprehension. It requires

semantic understanding and reasoning over clues. The goal of this task is to read and

comprehend the given document and answer queries. Previous works employ reading

mechanisms that do not fully exploit the interdependency between the document and the

query. In Chapter 4, we propose a novel dependent gated reading bidirectional GRU net-



3

work (DGR) to efficiently model the relationship between the document and the query

during encoding and decision making. Our evaluation shows that DGR obtains highly

competitive performance on well-known machine comprehension benchmarks such as

the Children’s Book Test (CBT-NE and CBT-CN) and Who DiD What (WDW, Strict

and Relaxed).

Up until this point, we showed that the aforementioned mechanisms and models

yield better empirical performances. However, due to the black-box nature of deep

learning, it is difficult to assess whether the improved models indeed acquire a bet-

ter language understanding. Meanwhile, data is often plagued by meaningless or even

harmful statistical biases and deep models might achieve high performance by focusing

on the biases [1, 94, 32, 45]. This motivates us to study methods for “peaking inside” the

black-box deep models to provide explanation and understanding of the models’ behav-

ior. In the second part of this dissertation, we focus on interpretability and understanding

the model’s behavior and performance. In Chapter 5, we take a step toward explaining

deep learning based models through a case study on a popular neural model for NLI.

In particular, we propose to interpret the intermediate layers of NLI models by visual-

izing the saliency of attention and LSTM gating signals. We present several examples

for which our methods reveal interesting insights and identify the critical information

contributing to the model’s decisions.

Interpretability could also be implanted in the model structure and design (model-

dependent interpretability). In Chapter 6, we aim to propose an interpretable model for

Sarcasm Detection. Recognizing sarcasm often requires a deep understanding of mul-

tiple sources of information, including the utterance, the conversational context, and



4

real-world facts. Most of the current sarcasm detection systems consider only the ut-

terance in isolation. There are some limited attempts toward taking into account the

conversational context. In this work, we propose an interpretable end-to-end model that

combines information from both the utterance and the conversational context to detect

sarcasm, and demonstrate its effectiveness through empirical evaluations. We also study

the behavior of the proposed model to provide explanations for the model’s decisions.

Importantly, our model is capable of determining the impact of utterance and conversa-

tional context on the model’s decisions. A similar goal is pursued in the work described

in Chapter 7, in which we propose an interesting yet simple modification to a well-

known and widely-used model called BERT [18]. Our modification (we refer to the

modified BERT as Gated BERT) introduces interpretability features to this model. In

addition to shedding a light on behavior, role, and impact of different layers of BERT

for disambiguation and decision making of different tasks, the proposed modification

also yields better performance both with and without fine-tuning of the embedding and

transformer layer. We evaluate the Gated BERT and BERT on a variety of NLP tasks

using GLUE benchmarks [97]. Moreover, we provide a demo of this work that provides

a wide range of features for understanding and studying the behavior of Gated BERT

and BERT.

Aforementioned methods are helpful for understanding model’s behavior and assess-

ing the reliability of the model’s predictions. But, such methods do not fix and improve

the model’s reliability. In Chapter 8, we propose a method to teach the model to make

the right prediction for the right reason by providing explanation training signal and

ensuring the alignment of the model’s explanation with the ground truth explanation.



5

Our experimental results on multiple tasks and datasets demonstrate the effectiveness of

the proposed method, which produces more reliable predictions while delivering better

results compared to traditionally trained models.



6

Chapter 2: Background and Preliminaries

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of artificial intelligence and machine learn-

ing models which intent to mathematically model human brain. ANNs model potentially

a very complex function by connecting a series of layers each of which is a linear trans-

formation followed by an element-wise non-linearity like sigmoid or tanh. Aforemen-

tioned non-linearity is called activation function which is inspired by activation behavior

of biological neurons.

Usually, in neural networks the goal is to learn a set of wight matrices W s and bias

terms bs. The output of a simple layer in a neural network with non-linear activation

function f , and input vector x is defined as:

y = f(Wx+ b) (2.1)

There are different choices for activation function in a neural network. Sigmoid

(σ(x)), hyperbolic tangent(tanh(x)), and rectifier function (ReLU(x)) are the most com-

mon activation functions for neural networks, which have different behaviors and char-

acteristics. All non-linear activation functions are shown in Figure 2.1.

The most basic form of such a neural network is the multilayer perceptron classi-

fier (MLP), which is shown in Figure 2.2. MLP consists of an input layer, one or more



7

�(x) =
1

1 + e�x
tanh(x) =

1 � e�2x

1 + e�2x
ReLU(x) = max(0, x)

Figure 2.1: Three most commonly used non-linear activation functions in neural net-
works

fully-connected hidden layers, and finally a prediction layer at the top, which uses Soft-

max (Equation 2.2) to compute the probability of each class given the input, x. In this

layer an error function is minimized. Standard examples for this error function are the

cross-entropy error function for classification and the least squares error function for

regression.

P (y = i | x) =
ex

Twi∑n
k=1 e

xTwk
(2.2)

The most common application of the neural network is classification, where the

goal is to learn model to classify the given input to specific classes. In such a case,

the parameters of the network (set of weights and biases) are learned through back-

propagated gradient descent to minimize a loss function. This procedure is called back-

propagation.



8

Input Layer

Hidden Layer

Classification Layer

Figure 2.2: Representation of a basic multilayer perceptron classifier (MLP) with one
hidden layer and multiple class classification.

2.2 Word Embedding

Typically, neural networks work with dense fixed-dimension data vectors from a con-

tinuous feature set. But natural language processing tasks typically involve discrete

features, such as words, n-grams or co-occurrence of words. In machine learning, such

features are often represented by sparse vectors like binary-valued (e.g. one-hot repre-

sentation for words) or count-valued vectors with very high dimensionality. Features of

this type are typically unsuitable for neural networks because of their inherent sparsity,

which makes the learning intractable, furthermore, they also make the network unnec-

essarily complex in term of the dimensionality. The point is that a well-designed rela-

tively low-dimensional continuous representation of such discrete feature could encode

various relations and similarities between existing discrete entities. Moreover, neural

networks perform much better with this type of input since neural network can extract

complex relations due to their high non-linearity.

The aforementioned advantages lead NLP community to develop various models



9

and structures that extract and learn such relatively low-dimensional vector to represent

words, which are called word embeddings in the literature. There are many powerful

word embeddings that encode different aspects of words. A common way to learn word

embedding is to learn them in an unsupervised manner and rely on co-occurrence of

words in a very large set of valid sentences. Bengio et al. (2003), Collobert and Weston

(2008), Word2Vector method (2013), Mikolov et al. (2013), and the GloVe method

(2014) are examples of successful and powerful word embeddings [6, 14, 63, 64, 70].

Mikolov et al. use word embeddings to encode concept of the words in a way such that

we can remove or add a characteristic (like sex) of words in order to reach the new word

with desired characteristic. For instance, WKing −WMan +WWoman ≈ WQueen.

In NLP tasks, word embeddings instead of one-hot vectors, are fed to the network

at the input layer. Also, word embeddings typically are treated as additional parame-

ters to the network. In such cases, a projection layer transfers indices of the words into

their word embeddings. The pre-initialized word embeddings will be updated during

the training to reach a task specific word embedding. We can initialize word embed-

ding with learned word embeddings like word2vec or initialize them randomly. This

procedure is called fine tuning. Fine tuning usually is an essential step in the training

of a network since we may need to pay attention to different aspect of words for differ-

ent tasks. For example, in a parsing task, words “good” and “bad” should have similar

embeddings because if we replace “good” with “bad”, the parse should be the same.

However, in a task like sentiment analysis, words “good” and “bad” should have very

different embeddings since they might change the final sentiment of a sentence. As

such, we cannot have an universal word embedding that performs appropriately in all



10

h

y

x

y1

x1

y2

x2

y3

x3

yn

xn

Unfold

Figure 2.3: Structure of a Recurrent Neural Network (RNN). Folded and unfolded rep-
resentations respectively

NLP tasks and we need to update them during the training to reach task specific word

embeddings.

Finally, we should note that continuous vector representation can be learned for

other discrete features, such as part-of-speech tags, name-entity tags, etc too. In this

settings, the representations are initialized randomly and then learned during the training

procedure.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) represent a class of neural networks that handle se-

quential data with variable sizes. In a recurrent network, a shared network architecture

is applied repeatedly to a sequence of data with a history at each step being produced by

the previous time step. The main idea for the recurrent neural network is to process the

data in a sequential manner and remember important aspect of the data over time consid-

ering the whole sequence. Recurrent networks can be considered as the most essential

deep learning architecture for natural language processing, because natural languages



11

h
r

z

IN

OUT

h
~

Figure 2.4: Structure of Gated Recurrent Unit (GRU)

are sequential in nature with variable sizes.

The general structure of a recurrent neural network (folded and unfolded represen-

tation) can be seen in Figure 2.3. Also, the computation formula of the simple RNN

(Vanilla RNN) at time step t is as follows:

ht = f(Wxt + Uht−1 + b) (2.3)

where W , U are the weights, b is the bias, f stands for the activation function, xt and ht

are the RNN input and output at time step t respectively and ht−1 is the previous hidden

state.

2.3.1 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is an extension of recurrent neural networks which uses

gating in order to determine how much of the current input should influence the hid-

den state and how much of the previous hidden state (ht−1) should be remembered or



12

c

f

IN

OUT

c~

o

i

Figure 2.5: Structure of Long Short-Term Memory (LSTM)

forgotten. Figure 2.4 depicts the structure of GRU and also Equation 2.4 shows the

computation of GRU.

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

h̃t = f(Wxt + U(rt � ht−1))

ht = (1− zt)ht−1 + zth̃t

(2.4)

where Us and W s are set of weights, bs are set of biases, � is the element-wise product,

σ is the sigmoid function, f is the activation of GRU and rt, zt, ht, h̃t and xt stand for

the reset gate, update gate, hidden state, candidate hidden state and the GRU input at

time step t respectively.



13

2.3.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is an extension of recurrent neural networks which

uses gaiting in order to determine how much of the current input should influence LSTM

memory cell, how much of the previous memory cell (Ct−1) should be remembered or

forgotten and how much of the current memory cell should be passed as the output of

the LSTM. Figure 2.5 illustrates the structure of LSTM and also Equation 2.5 presents

the computation of LSTM.

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

C̃t = f(Wcxt + Ucht−1 + bc)

Ct = it � C̃t + ft � Ct−1

ot = σ(Woxt + Uoht−1 + VoCt + bo)

ht = ot � f(Ct)

(2.5)

where Vo, Us and W s are set of weights, bs are set of biases, � is the element-wise

product, σ is the sigmoid function, f is the activation of LSTM and it, ft, ot, ht, Ct

C̃t and xt stand for input gate, forget gate, output gate, LSTM output, memory cell,

candidate memory cell and LSTM input at time step t respectively.



14

Chapter 3: DR-BiLSTM: Dependent Reading Bidirectional LSTM for NLI

This chapter describes the work in Ghaeini et al. (2018a) [26].

3.1 Introduction

Natural Language Inference (NLI; a.k.a. Recognizing Textual Entailment, or RTE) is

an important and challenging task for natural language understanding [59]. The goal of

NLI is to identify the logical relationship (entailment, neutral, or contradiction) between

a premise and a corresponding hypothesis. Table 3.1 shows few example relationships

from the Stanford Natural Language Inference (SNLI) dataset [7].

Recently, NLI has received a lot of attention from the researchers, especially due to

the availability of large annotated datasets like SNLI [7]. Various deep learning models

have been proposed that achieve successful results for this task [30, 99, 11, 103, 69, 106,

82]. Most of these existing NLI models use attention mechanism to jointly interpret and

align the premise and hypothesis. Such models use simple reading mechanisms to en-

code the premise and hypothesis independently. However, such a complex task require

explicit modeling of dependency relationships between the premise and the hypothesis

during the encoding and inference processes to prevent the network from the loss of

relevant, contextual information. In this work, we refer to such strategies as dependent

reading.



15

Pa A senior is waiting at the window of a restaurant
Relationship

that serves sandwiches.

Hb
A person waits to be served his food. Entailment

A man is looking to order a grilled cheese sandwich. Neutral
A man is waiting in line for the bus. Contradiction

aP, Premise.
bH, Hypothesis.

Table 3.1: Examples from the SNLI dataset.

There are some alternative reading mechanisms available in the literature [82, 80]

that consider dependency aspects of the premise-hypothesis relationships. However,

these mechanisms have two major limitations:

• So far, they have only explored dependency aspects during the encoding stage,

while ignoring its benefit during inference.

• Such models only consider encoding a hypothesis depending on the premise, dis-

regarding the dependency aspects in the opposite direction.

We propose a dependent reading bidirectional LSTM (DR-BiLSTM) model to ad-

dress these limitations. Given a premise u and a hypothesis v, our model first encodes

them considering dependency on each other (u|v and v|u). Next, the model employs

a soft attention mechanism to extract relevant information from these encodings. The

augmented sentence representations are then passed to the inference stage, which uses

a similar dependent reading strategy in both directions, i.e. u → v and v → u. Finally,

a decision is made through a multi-layer perceptron (MLP) based on the aggregated

information.



16

Our experiments on the SNLI dataset show that DR-BiLSTM achieves the best sin-

gle model and ensemble model performance obtaining improvements of a considerable

margin of 0.4% and 0.3% over the previous state-of-the-art single and ensemble models,

respectively.

Furthermore, we demonstrate the importance of a simple preprocessing step per-

formed on the SNLI dataset. Evaluation results show that such preprocessing allows

our single model to achieve the same accuracy as the state-of-the-art ensemble model

and improves our ensemble model to outperform the state-of-the-art ensemble model by

a remarkable margin of 0.7%. Finally, we perform an extensive analysis to clarify the

strengths and weaknesses of our models.

3.2 Related Work

Early studies use small datasets while leveraging lexical and syntactic features for NLI

[59]. The recent availability of large-scale annotated datasets [7, 101] has enabled re-

searchers to develop various deep learning-based architectures for NLI.

Parikh et al. (2016) propose an attention-based model [4] that decomposes the NLI

task into sub-problems to solve them in parallel. They further show the benefit of adding

intra-sentence attention to input representations. [11] explore sequential inference mod-

els based on chain LSTMs with attentional input encoding and demonstrate the effec-

tiveness of syntactic information. We also use similar attention mechanisms. However,

our model is distinct from these models as they do not benefit from dependent reading

strategies.



17

Rocktaschel et al. (2015) use a word-by-word neural attention mechanism while

[82] propose re-read LSTM units by considering the dependency of a hypothesis on the

information of its premise (v|u) to achieve promising results. However, these models

suffer from weak inferencing methods by disregarding the dependency aspects from the

opposite direction (u|v). Intuitively, when a human judges a premise-hypothesis rela-

tionship, s/he might consider back-and-forth reading of both sentences before coming

to a conclusion. Therefore, it is essential to encode the premise-hypothesis dependency

relations from both directions to optimize the understanding of their relationship.

Wang et al. (2017) propose a bilateral multi-perspective matching (BiMPM) model,

which resembles the concept of matching a premise and hypothesis from both directions.

Their matching strategy is essentially similar to our attention mechanism that utilizes

relevant information from the other sentence for each word sequence. They use similar

methods as [11] for encoding and inference, without any dependent reading mechanism.

Although NLI is well studied in the literature, the potential of dependent reading

and interaction between a premise and hypothesis is not rigorously explored. In this

work, we address this gap by proposing a novel deep learning model (DR-BiLSTM).

Experimental results demonstrate the effectiveness of our model.

3.3 Model

Our proposed model (DR-BiLSTM) is composed of the following major components:

input encoding, attention, inference, and classification. Figure 3.1 demonstrates a high-

level view of our proposed NLI framework.



18

P
ro

je
cto

r

M
a
x
-Po

o
lin

g

M
LP

B
i-LS

T
M

B
i-LS

T
M

B
i-LS

T
M

B
i-LS

T
M

P
ro

je
cto

r

B
i-LS

T
M

B
i-LS

T
M

B
i-LS

T
M

B
i-LS

T
M

M
a
x
-Po

o
lin

g

M
a
x
&

A
v
g
-Po

o
lin

g
M

a
x
&

A
v
g
-Po

o
lin

g

P
re

m
ise

H
y
p
o
th

e
sis

In
p
u
t E

n
co

d
in

g

In
fe

re
n
ce

C
la

ssifica
tio

n

A
tte

n
tio

n

Figure 3.1: A high-level view of DR-BiLSTM. The data (premise u and hypothesis v,
depicted with cyan and red tensors respectively) flows from bottom to top. Relevant ten-
sors are shown with the same color and elements with the same colors share parameters.

Let u = [u1, · · · , un] and v = [v1, · · · , vm] be the given premise with length n and

hypothesis with length m respectively, where ui, vj ∈ Rr is an word embedding of r-

dimensional vector. The task is to predict a label y that indicates the logical relationship

between premise u and hypothesis v.

3.3.1 Input Encoding

RNNs are the natural solution for variable length sequence modeling, consequently, we

utilize a bidirectional LSTM (BiLSTM) [39] for encoding the given sentences. For ease



19

of presentation, we only describe how we encode u depending on v. The same procedure

is utilized for the reverse direction (v|u).

To dependently encode u, we first process v using the BiLSTM. Then we read u

through the BiLSTM that is initialized with previous reading final states (memory cell

and hidden state). Here we represent a word (e.g. ui) and its context depending on the

other sentence (e.g. v). Equations 3.1 and 3.2 formally represent this component.

v̄, sv = BiLSTM(v, 0)

û,− = BiLSTM(u, sv)

(3.1)

ū, su = BiLSTM(u, 0)

v̂,− = BiLSTM(v, su)

(3.2)

where {ū ∈ Rn×2d, û ∈ Rn×2d, su} and {v̄ ∈ Rm×2d, v̂ ∈ Rm×2d, sv} are the inde-

pendent reading sequences, dependent reading sequences, and BiLSTM final state of

independent reading of u and v respectively. Note that, “−” in these equations means

that we do not care about the associated variable and its value. BiLSTM inputs are the

word embedding sequences and initial state vectors. û and v̂ are passed to the next layer

as the output of the input encoding component.

The proposed encoding mechanism yields a richer representation for both premise

and hypothesis by taking the history of each other into account. Using a max or av-

erage pooling over the independent and dependent readings does not further improve



20

our model. This was expected since dependent reading produces more promising and

relevant encodings.

3.3.2 Attention

We employ a soft alignment method to associate the relevant sub-components between

the given premise and hypothesis. In deep learning models, such purpose is often

achieved with a soft attention mechanism. Here we compute the unnormalized atten-

tion weights as the similarity of hidden states of the premise and hypothesis with Equa-

tion 3.3 (energy function).

eij = ûiv̂
T
j , i ∈ [1, n], j ∈ [1,m] (3.3)

where ûi and v̂j are the dependent reading hidden representations of u and v respectively

which are computed earlier in Equations 3.1 and 3.2. Next, for each word in either

premise or hypothesis, the relevant semantics in the other sentence is extracted and

composed according to eij . Equations 3.4 and 3.5 provide formal and specific details of

this procedure.

ũi =
m∑
j=1

exp(eij)∑m
k=1 exp(eik)

v̂j, i ∈ [1, n] (3.4)

ṽj =
n∑
i=1

exp(eij)∑n
k=1 exp(ekj)

ûi, j ∈ [1,m] (3.5)

where ũi represents the extracted relevant information of v̂ by attending to ûi while ṽj



21

represents the extracted relevant information of û by attending to v̂j .

To further enrich the collected attentional information, a trivial next step would be to

pass the concatenation of the tuples (ûi, ũi) or (v̂j, ṽj) which provides a linear relation-

ship between them. However, the model would suffer from the absence of similarity and

closeness measures. Therefore, we calculate the difference and element-wise product

for the tuples (ûi, ũi) and (v̂j, ṽj) that represent the similarity and closeness information

respectively [11, 50].

The difference and element-wise product are then concatenated with the computed

vectors, (ûi, ũi) or (v̂j, ṽj), respectively. Finally, a feedforward neural layer with ReLU

activation function projects the concatenated vectors from 8d-dimensional vector space

into a d-dimensional vector space (Equations 3.6 and 3.7). This helps the model to

capture deeper dependencies between the sentences besides lowering the complexity of

vector representations.

ai = [ûi, ũi, ûi − ũi, ûi � ũi]

pi = ReLU(Wpai + bp)

(3.6)

bj = [v̂j, ṽj, v̂j − ṽj, v̂j � ṽj]

qj = ReLU(Wpbj + bp)

(3.7)

Here� stands for element-wise product whileWp ∈ R8d×d and bp ∈ Rd are the trainable

weights and biases of the projector layer respectively.



22

3.3.3 Inference

During this phase, we use another BiLSTM to aggregate the two sequences of computed

matching vectors, p and q from the attention stage (Section 3.3.2). This aggregation is

performed in a sequential manner to avoid losing effect of latent variables that might

rely on the sequence of matching vectors.

Instead of aggregating the sequences of matching vectors individually, we propose

a similar dependent reading approach for the inference stage. We employ a BiLSTM

reading process (Equations 3.8 and 3.9) similar to the input encoding step discussed in

Section 3.3.1. But rather than passing just the dependent reading information to the next

step, we feed both independent reading (p̄ and q̄) and dependent reading (p̂ and q̂) to a

max pooling layer, which selects maximum values from each sequence of independent

and dependent readings (p̄i and p̂i) as shown in Equations 3.10 and 3.11. The main

intuition behind this architecture is to maximize the inferencing ability of the model by

considering both independent and dependent readings.

q̄, sq = BiLSTM(q, 0)

p̂,− = BiLSTM(p, sq)

(3.8)

p̄, sp = BiLSTM(p, 0)

q̂,− = BiLSTM(q, sp)

(3.9)

p̃ = MaxPooling(p̄, p̂) (3.10)



23

q̃ = MaxPooling(q̄, q̂) (3.11)

Here {p̄ ∈ Rn×2d, p̂ ∈ Rn×2d, sp} and {q̄ ∈ Rm×2d, q̂ ∈ Rm×2d, sq} are the independent

reading sequences, dependent reading sequences, and BiLSTM final state of indepen-

dent reading of p and q respectively. BiLSTM inputs are the word embedding sequences

and initial state vectors.

Finally, we convert p̃ ∈ Rn×2d and q̃ ∈ Rm×2d to fixed-length vectors with pooling,

U ∈ R4d and V ∈ R4d. As shown in Equations 3.12 and 3.13, we employ both max

and average pooling and describe the overall inference relationship with concatenation

of their outputs.

U = [MaxPooling(p̃),AvgPooling(p̃)] (3.12)

V = [MaxPooling(q̃),AvgPooling(q̃)] (3.13)

3.3.4 Classification

Here, we feed the concatenation of U and V ([U, V ]) into a multilayer perceptron (MLP)

classifier that includes a hidden layer with tanh activation and softmax output layer. The

model is trained in an end-to-end manner.

Output = MLP([U, V ]) (3.14)



24

3.4 Experiments and Evaluation

3.4.1 Dataset

The Stanford Natural Language Inference (SNLI) dataset contains 570K human anno-

tated sentence pairs. The premises are drawn from the Flickr30k [72] corpus, and then

the hypotheses are manually composed for each relationship class (entailment, neutral,

contradiction, and -). The “-” class indicates that there is no consensus decision among

the annotators, consequently, we remove them during the training and evaluation fol-

lowing the literature. We use the same data split as provided in [7] to report comparable

results with other models.

3.4.2 Experimental Setup

We use pre-trained 300-D Glove 840B vectors [70] to initialize our word embedding

vectors. All hidden states of BiLSTMs during input encoding and inference have 450

dimensions (r = 300 and d = 450). The weights are learned by minimizing the log-loss

on the training data via the Adam optimizer [48]. The initial learning rate is 0.0004.

To avoid overfitting, we use dropout [86] with the rate of 0.4 for regularization, which

is applied to all feedforward connections. During training, the word embeddings are

updated to learn effective representations for the NLI task. We use a fairly small batch

size of 32 to provide more exploration power to the model. Our observation indicates

that using larger batch sizes hurts the performance of our model.



25

3.4.3 Ensemble Strategy

Ensemble methods use multiple models to obtain better predictive performance. Previ-

ous works typically utilize trivial ensemble strategies by either using majority votes or

averaging the probability distributions over the same model with different initialization

seeds [99, 30].

By contrast, we use weighted averaging of the probability distributions where the

weight of each model is learned through its performance on the SNLI development

set. Furthermore, the differences between our models in the ensemble originate from:

1) variations in the number of dependent readings (i.e. 1 and 3 rounds of dependent

reading), 2) projection layer activation (tanh and ReLU in Equations 3.6 and 3.7), and

3) different initialization seeds. To be exact, we use the following configurations in our

ensemble model study:

• DR-BiLSTM (with different initialization seeds): here, we consider 6 DR-BiLSTMs

with different initialization seeds.

• tanh-Projection: same configuration as DR-BiLSTM, but we use tanh instead of

ReLU as the activation function in Equations 3.6 and 3.7:

pi = tanh(Wpai + bp) (3.15)

qj = tanh(Wpbj + bp) (3.16)

• DR-BiLSTM (with 1 round of dependent reading): same configuration as DR-

BiLSTM, but we do not use dependent reading during the inference process. In



26

other words, we use p̃ = p̄ and q̃ = q̄ instead of Equations 3.10 and 3.11 respec-

tively.

• DR-BiLSTM (with 3 rounds of dependent reading): same configuration as the

above, but we use 3 rounds of dependent reading. Formally, we replace Equa-

tions 3.1 and 3.2 with the following equations respectively:

−, sv = BiLSTM(v, 0)

−, svu = BiLSTM(u, sv)

−, svuv = BiLSTM(v, svu)

û,− = BiLSTM(u, svuv)

(3.17)

−, su = BiLSTM(u, 0)

−, suv = BiLSTM(v, su)

−, suvu = BiLSTM(u, suv)

v̂,− = BiLSTM(v, suvu)

(3.18)

Our final ensemble model, DR-BiLSTM (Ensemble) is the combination of the fol-

lowing 6 models: tanh-Projection, DR-BiLSTM (with 1 round of dependent reading),

DR-BiLSTM (with 3 rounds of dependent reading), and 3 DR-BiLSTMs with different

initialization seeds.



27

Train
D

ev
Test

1 2 3 4 5 6 7 8

94.2

94.4

94.6

94.8

88.8

89.0

89.2

88.6

88.8

89.0

89.2

Number of Models

A
cc

ur
ac

y

Figure 3.2: Performance of n ensemble models reported for training (red, top), devel-
opment (blue, middle), and test (green, bottom) sets of SNLI. For n number of models,
the best performance on the development set is used as the criteria to determine the fi-
nal ensemble. The best performance on development set (89.22%) is observed using 6
models and is henceforth considered as our final DR-BiLSTM (Ensemble) model.

The main intuition behind this design is that the effectiveness of a model may depend

on the complexity of a premise-hypothesis instance. For a simple instance, a simple

model could perform better than a complex one, while a complex instance may need

further consideration toward disambiguation. Consequently, using models with different

rounds of dependent readings in the encoding stage should be beneficial.

Figure 3.2 demonstrates the observed performance of our ensemble method with

different number of models. The performance of the models are reported based on

the best obtained accuracy on the development set. We also study the effectiveness of

other ensemble strategies e.g. majority voting and averaging the probability distribution

strategies for ensemble models using the same set of models as our weighted averaging



28

Train
D

ev
Test

1 2 3 4 5 6 7 8 9

94.1
94.2
94.3
94.4
94.5

88.7
88.8
88.9
89.0
89.1

88.6

88.8

89.0

Number of Models

A
cc

ur
ac

y

Figure 3.3: Performance of n ensemble models using majority voting on natural lan-
guage inference reported for training set (red, top), development set (blue, middle), and
test set (green, bottom) of SNLI. The best performance on development set is used as
the criteria to determine the final ensemble. The best performance on development set
is observed using 6 models.

ensemble method. Figure 3.3 shows the behavior of the majority voting strategy with

different number of models. Interestingly, the best development accuracy is also ob-

served using 6 individual models including tanh-Projection, DR-BiLSTM (with 1 round

of dependent reading), DR-BiLSTM (with 3 rounds of dependent reading), and 3 DR-

BiLSTMs with varying initialization seeds that are different from our DR-BiLSTM (En-

semble) model. We should note that our weighted averaging ensemble strategy performs

better than the majority voting method in both development set and test set of SNLI,

which indicates the effectiveness of our approach. Furthermore, our method could show

more consistent behavior for training and test sets when we increased the number of

models (Figure 3.2). According to our observations, averaging the probability distribu-



29

Original Sentence Corrected Sentence
Froends ride in an open top vehicle together. Friends ride in an open top vehicle together.
A middle easten store. A middle eastern store.
A woman is looking at a phtographer A woman is looking at a photographer
The mother and daughter are fighitn. The mother and daughter are fighting.
Two kiled men hold bagpipes Two killed men hold bagpipes
A woman escapes a from a hostile enviroment A woman escapes a from a hostile environment
Two daschunds play with a red ball Two dachshunds play with a red ball
A black dog is running through a marsh-like area. A black dog is running through a marsh like area.
a singer wearing a jacker performs on stage a singer wearing a jacket performs on stage
There is a sculture There is a sculpture
Taking a neverending break Taking a never ending break
The woman has sounds emanting from her mouth. The woman has sounds emanating from her mouth.
the lady is shpping the lady is shopping
A Bugatti and a Lambourgini compete in a road race. A Bugatti and a Lamborghini compete in a road race.

Table 3.2: Examples of original sentences that contain erroneous words (misspelled) in
the test set of SNLI along with their corrected counterparts. Erroneous words are shown
in bold and italic.

tions fails to improve the development set accuracy using two and three models, so we

did not study it further.

3.4.4 Preprocessing

We perform a trivial preprocessing step on SNLI to recover some out-of-vocabulary

words found in the development set and test set. Note that our vocabulary contains all

words that are seen in the training set, so there is no out-of-vocabulary word in it. The

SNLI dataset is not immune to human errors, specifically, misspelled words. We noticed

that misspelling is the main reason for some of the observed out-of-vocabulary words.

Consequently, we simply fix the unseen misspelled words using Microsoft spell-checker

(other approaches like edit distance can also be used). Moreover, while dealing with an



30

unseen word during evaluation, we try to: 1) replace it with its lower case, or 2) split the

word when it contains a “-” (e.g. “marsh-like”) or starts with “un” (e.g. “unloading”). If

we still could not find the word in our vocabulary, we consider it as an unknown word.

Table 3.2 shows some erroneous sentences from the SNLI test set along with their

corrected equivalents (after preprocessing). Later, we demonstrate the importance and

impact of such trivial preprocessing.

3.4.5 Results

Table 3.3 shows the accuracy of the models on training and test sets of SNLI. The first

row represents a baseline classifier presented by Bowman et al. (2015) [7] that utilizes

handcrafted features. All other listed models are deep-learning based. The gap between

the traditional model and deep learning models demonstrates the effectiveness of deep

learning methods for this task. We also report the estimated human performance on

the SNLI dataset, which is the average accuracy of five annotators in comparison to the

gold labels [30]. It is noteworthy that recent deep learning models surpass the human

performance in the NLI task.

As shown in Table 3.3, previous deep learning models (rows 2-19) can be divided

into three categories: 1) sentence encoding based models (rows 2-7), 2) single inter-

sentence attention-based models (rows 8-16), and 3) ensemble inter-sentence attention-

based models (rows 17-19). We can see that inter-sentence attention-based models per-

form better than sentence encoding based models, which supports our intuition. Natu-

ral language inference requires a deep interaction between the premise and hypothesis.



31

Model Accuracy
Train Test

Bowman et al. (2015) [7] (Feature) 99.7% 78.2%
Bowman et al. (2015) [7] 83.9% 80.6%
Vendrov et al. (2015) [92] 98.8% 81.4%
Mou et al. (2016) [65] 83.3% 82.1%
Bowman et al. (2016) [8] 89.2% 83.2%
Liu et al. (2016) [58] 84.5% 84.2%
Yu and Munkhdalai (2017) [103] 86.2% 84.6%
Rocktaschel et al. (2015) [80] 85.3% 83.5%
Wang et al. (2016) [98] 92.0% 86.1%
Liu et al. (2016) [57] 88.5% 86.3%
Parikh et al. (2016) [69] 90.5% 86.8%
Yu and Munkhdalai (2017) [104] 88.5% 87.3%
Sha et al. (2015) [82] 90.7% 87.5%
Wang et al. (2017) [99] (Single) 90.9% 87.5%
Chen et al. (2017) [11] (Single) 92.6% 88.0%
Gong et al. (2017) [30] (Single) 91.2% 88.0%
Chen et al. (2017) [11] (Ensemble) 93.5% 88.6%
Wang et al. (2017) [99] (Ensemble) 93.2% 88.8%
Gong et al. (2017) [30] (Ensemble) 92.3% 88.9%
Human Performance (Estimated) 97.2% 87.7%
DR-BiLSTM (Single) 94.1% 88.5%
DR-BiLSTM (Single)+Process 94.1% 88.9%
DR-BiLSTM (Ensemble) 94.8% 89.3%
DR-BiLSTM (Ensem.)+Process 94.8% 89.6%

Table 3.3: Accuracies of the models on the training set and test set of SNLI. DR-
BiLSTM (Ensemble) achieves the accuracy of 89.3%, the best result observed on SNLI,
while DR-BiLSTM (Single) obtains the accuracy of 88.5%, which considerably outper-
forms the previous non-ensemble models. Also, utilizing a trivial preprocessing step
yields to further improvements of 0.4% and 0.3% for single and ensemble DR-BiLSTM
models respectively.

Inter-sentence attention-based approaches can provide such interaction while sentence

encoding based models fail to do so.



32

To further enhance the modeling of interaction between the premise and hypothesis

for efficient disambiguation of their relationship, we introduce the dependent reading

strategy in our proposed DR-BiLSTM model. The results demonstrate the effectiveness

of our model. DR-BiLSTM (Single) achieves 88.5% accuracy on the test set which is

noticeably the best reported result among the existing single models for this task. Note

that the difference between DR-BiLSTM and [11] is statistically significant with a p-

value of < 0.001 over the Chi-square test1.

To further improve the performance of NLI systems, researchers have built ensemble

models. Previously, ensemble systems obtained the best performance on SNLI with a

huge margin. Table 3.3 shows that our proposed single model achieves competitive

results compared to these reported ensemble models. Our ensemble model considerably

outperforms the current state-of-the-art by obtaining 89.3% accuracy.

Up until this point, we discussed the performance of our models where we have

not considered preprocessing for recovering the out-of-vocabulary words. In Table 3.3,

“DR-BiLSTM (Single) + Process”, and “DR-BiLSTM (Ensem.) + Process” represent

the performance of our models on the preprocessed dataset. We can see that our pre-

processing mechanism leads to further improvements of 0.4% and 0.3% on the SNLI

test set for our single and ensemble models respectively. In fact, our single model

(“DR-BiLSTM (Single) + Process”) obtains the state-of-the-art performance over both

reported single and ensemble models by performing a simple preprocessing step. Fur-

thermore, “DR-BiLSTM (Ensem.) + Process” outperforms the existing state-of-the-art

1Chi-square test (χ2 test) is used to determine if there is a significant difference between two categor-
ical variables (i.e. models’ outputs).



33

Model Dev Acca p-value
DR-BiLSTM 88.69% -
DR-BiLSTM - hidden MLP 88.45% <0.001
DR-BiLSTM - average pooling 88.50% <0.001
DR-BiLSTM - max pooling 88.39% <0.001
DR-BiLSTM - element-wise product 88.51% <0.001
DR-BiLSTM - difference 88.24% <0.001
DR-BiLSTM - difference & element-wise product 87.96% <0.001
DR-BiLSTM - inference pooling 88.46% <0.001
DR-BiLSTM - dep. inferb 88.43% <0.001
DR-BiLSTM - dep. encc 88.26% <0.001
DR-BiLSTM - dep. enc & infer 88.20% <0.001
aDev Acc, Development Accuracy.
bdep. infer, dependent reading inference.
cdep. enc, dependent reading encoding.

Table 3.4: Ablation study results. Performance of different configurations of the pro-
posed model on the development set of SNLI along with their p-values in comparison
to DR-BiLSTM (Single).

remarkably (0.7% improvement). For more comparison and analyses, we use “DR-

BiLSTM (Single)” and “DR-BiLSTM (Ensemble)” as our single and ensemble models

in the rest of the work.

3.4.6 Ablation and Configuration Study

We conducted an ablation study on our model to examine the importance and effect of

each major component. Then, we study the impact of BiLSTM dimensionality on the

performance of the development set and training set of SNLI. We investigate all settings

on the development set of the SNLI dataset.

Table 3.4 shows the ablation study results on the development set of SNLI along



34

with the statistical significance test results in comparison to the proposed model, DR-

BiLSTM. We can see that all modifications lead to a new model and their differences

are statistically significant with a p-value of < 0.001 over Chi square test.

Table 3.4 shows that removing any part from our model hurts the development set

accuracy which indicates the effectiveness of these components. Among all compo-

nents, three of them have noticeable influences: max pooling, difference in the attention

stage, and dependent reading.

Most importantly, the last four study cases in Table 3.4 (rows 8-11) verify the main

intuitions behind our proposed model. They illustrate the importance of our proposed

dependent reading strategy which leads to significant improvement, specifically in the

encoding stage. We are convinced that the importance of dependent reading in the en-

coding stage originates from its ability to focus on more important and relevant aspects

of the sentences due to its prior knowledge of the other sentence during the encoding

procedure.

Figure 3.4 shows the behavior of the proposed model accuracy on the training set

and development set of SNLI. Since the models are selected based on the best observed

development set accuracy during the training procedure, the training accuracy curve

(red, top) is not strictly increasing. Figure 3.4 demonstrates that we achieve the best

performance with 450-dimensional BiLSTMs. In other words, using BiLSTMs with

lower dimensionality causes the model to suffer from the lack of space for capturing

proper information and dependencies. On the other hand, using higher dimensionality

leads to overfitting which hurts the performance on the development set. Hence, we use

450-dimensional BiLSTM in our proposed model.



35

Train
D

ev

250 300 350 400 450 500 550 600

94.0

94.5

95.0

95.5

88.4
88.5
88.6

Dimensionality of BiLSTMs

A
cc

ur
ac

y

Figure 3.4: Impact of BiLSTM dimensionality in the proposed model on the training set
(red, top) and development set (blue, bottom) accuracies of the SNLI dataset.

3.4.7 Analysis

We first investigate the performance of our models categorically. Then, we show a

visualization of the energy function in the attention stage (Equation 3.3) for an instance

from the SNLI test set.

To qualitatively evaluate the performance of our models, we design a set of anno-

tation tags that can be extracted automatically. This design is inspired by the reported

annotation tags in [101]. The specifications of our annotation tags are as follows:

• High Overlap: premise and hypothesis sentences share more than 70% tokens.

• Regular Overlap: sentences share between 30% and 70% tokens.

• Low Overlap: sentences share less than 30% tokens.



36

• Long Sentence: either sentence is longer than 20 tokens.

• Regular Sentence: premise or hypothesis length is between 5 and 20 tokens.

• Short Sentence: either sentence is shorter than 5 tokens.

• Negation: negation is present in a sentence.

• Quantifier: either of the sentences contains one of the following quantifiers:

much, enough, more, most, less, least, no, none, some, any, many, few, several,

almost, nearly.

• Belief: either of the sentences contains one of the following belief verbs: know,

believe, understand, doubt, think, suppose, recognize, forget, remember, imagine,

mean, agree, disagree, deny, promise.

Table 3.5 shows the frequency of aforementioned annotation tags in the SNLI test

set along with the performance (accuracy) of ESIM [11], DR-BiLSTM (Single), and

DR-BiLSTM (Ensemble). Table 3.5 can be divided into four major categories: 1) gold

label data, 2) word overlap, 3) sentence length, and 4) occurrence of special words. We

can see that DR-BiLSTM (Ensemble) performs the best in all categories which matches

our expectation. Moreover, DR-BiLSTM (Single) performs noticeably better than ESIM

in most of the categories except “Entailment”, “High Overlap”, and “Long Sentence”,

for which our model is not far behind (gaps of 0.2%, 0.5%, and 0.9%, respectively). It

is noteworthy that DR-BiLSTM (Single) performs better than ESIM in more frequent

categories. Specifically, the performance of our model in “Neutral”, “Negation”, and

“Quantifier” categories (improvements of 1.4%, 3.5%, and 1.9%, respectively) indicates



37

Annotation Tag Frequency ESIM DR(S)b DR(E)c

Entailment 34.3% 90.0% 89.8% 90.9%
Neutral 32.8% 83.7% 85.1% 85.6%
Contradiction 32.9% 90.0% 90.5% 91.4%
High Overlap 24.3% 91.2% 90.7% 92.1%
Reg. Overlap 33.7% 87.1% 87.9% 88.8%
Low Overlap 45.4% 87.0% 87.8% 88.4%
Long Sentence 6.4% 92.2% 91.3% 91.9%
Reg. Sentence 74.9% 87.8% 88.4% 89.2%
Short Sentence 19.9% 87.6% 88.1% 89.3%
Negation 2.1% 82.2% 85.7% 87.1%
Quantifier 8.7% 85.5% 87.4% 87.6%
Belief 0.2% 78.6% 78.6% 78.6%
bDR(S), DR-BiLSTM (Single).
cDR(E), DR-BiLSTM (Ensemble).

Table 3.5: Categorical performance analyses (accuracy) of ESIM [11], DR-BiLSTM
(DR(S)) and Ensemble DR-BiLSTM (DR(E)) on the SNLI test set.

the superiority of our model in understanding and disambiguating complex samples.

Our investigations indicate that ESIM generates somewhat uniform attention for most

of the word pairs while our model could effectively attend to specific parts of the given

sentences and provide more meaningful attention. In other words, the dependent read-

ing strategy enables our model to achieve meaningful representations, which leads to

better attention to obtain further gains on such categories like Negation and Quantifier

sentences.

Next, we show a visualization of the normalized (min-max normalization) attention

weights (energy function, Equation 3.3) of our model in Figure 3.5. We show a sentence

pair, where the premise is “Male in a blue jacket decides to lay the grass.”, and the

hypothesis is “The guy in yellow is rolling on the grass.”, and its logical relationship

is contradiction. Figure 3.5 indicates the model’s ability in attending to critical pairs



38

_FOL_

The

guy

in

yellow

is

rolling

on

the

grass

_EOL_

_F
OL_

Male in a
blu

e
jac

ke
t

de
cid

es to lay the
gr

as
s .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

Figure 3.5: Normalized attention weights for a sample from the SNLI test set. Darker
color illustrates higher attention.

of words like <Male, guy>, <decides, rolling>, and <lay, rolling>. Finally, high

attention between {decides, lay} and {rolling}, and {Male} and {guy} leads the model

to correctly classify the sentence pair as contradiction. Note that we add two dummy

notations (i.e. FOL , and EOL ) to all sentences which indicate their beginning and

end.

Furthermore, we show the energy function (Equation 3.3) visualizations of 6 exam-

ples from Table 3.2 in Figures 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11. Each figure presents the

visualization of an original erroneous sample along its corrected version. These figures

clearly illustrate that fixing the erroneous words leads to producing correct attentions

over the sentences. This can be observed by comparing the attention for the erroneous

words and corrected words, e.g. “daschunds” and “dachshunds” in the premise of Fig-



39

_FOL_

Two

dogs

playing

together

.

_EOL_

_F
OL_ Tw

o

da
sc

hu
nd

s
pla

y
with a

re
d

ba
ll

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Erroneous sample (daschunds in premise).

_FOL_

Two

dogs

playing

together

.

_EOL_

_F
OL_ Tw

o

da
ch

sh
un

ds pla
y

with a
re

d
ba

ll

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Fixed sample (dachshunds in premise).

Figure 3.6: Visualization of the energy function for one erroneous sample (a) and the
fixed sample (b). The gold label is Entailment. Our model returns Contradiction for the
erroneous sample, but correctly classifies the fixed sample.

ures 3.6 and 3.7.

Finally we investigate the normalized attention weights of DR-BiLSTM and ESIM

for four samples that belong to Negation and/or Quantifier categories (Figures 3.12 -

3.15). Each figure illustrates the normalized energy function of DR-BiLSTM (left di-

agram) and ESIM (right diagram) respectively. Provided figures indicate that ESIM

assigns somewhat similar attention to most of the pairs while DR-BiLSTM focuses on

specific parts of the given premise and hypothesis.

3.5 Conclusion

We propose a novel natural language inference model (DR-BiLSTM) that benefits from

a dependent reading strategy and achieves the state-of-the-art results on the SNLI dataset.

We also introduce a sophisticated ensemble strategy and illustrate its effectiveness through



40

_FOL_

Two

dogs

playing

fetch

.

_EOL_

_F
OL_ Tw

o

da
sc

hu
nd

s
pla

y
with a

re
d

ba
ll

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Erroneous sample (daschunds in premise).

_FOL_

Two

dogs

playing

fetch

.

_EOL_

_F
OL_ Tw

o

da
ch

sh
un

ds pla
y

with a
re

d
ba

ll

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Fixed sample (dachshunds in premise).

Figure 3.7: Visualization of the energy function for one erroneous sample (a) and the
fixed sample (b). The gold label is Neutral. Our model returns Contradiction for the
erroneous sample, but correctly classifies the fixed sample.

experimentation. Moreover, we demonstrate the importance of a simple preprocess-

ing step on the performance of our proposed models. Evaluation results show that the

preprocessing step allows our DR-BiLSTM (single) model to outperform all previous

single and ensemble methods. Similar superior performance is also observed for our

DR-BiLSTM (ensemble) model. We show that our ensemble model outperforms the

existing state-of-the-art by a considerable margin of 0.7%. Finally, we perform an ex-

tensive analysis to demonstrate the strength and weakness of the proposed model, which

would pave the way for further improvements in this domain.



41

_FOL_

Froends

ride

in

an

open

top

vehicle

together

.

_EOL_

_F
OL_

Gro
up of

pe
op

le

wea
rin

g
bla

ck
sh

irt
s

rid
ing in an

op
en top

ve
hic

le .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Erroneous sample (Froends in hypothesis).

_FOL_

Friends

ride

in

an

open

top

vehicle

together

.

_EOL_

_F
OL_

Gro
up of

pe
op

le

wea
rin

g
bla

ck
sh

irt
s

rid
ing in an

op
en top

ve
hic

le .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Fixed sample (Friends in hypothesis).

Figure 3.8: Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Neutral. Our model returns Entailment for the
erroneous sample, but correctly classifies the fixed sample.

_FOL_

A

middle

easten

store

.

_EOL_

_F
OL_ A

midd
le

ea
ste

rn

mar
ke

tpl
ac

e .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Erroneous sample (easten in hypothesis).

_FOL_

A

middle

eastern

store

.

_EOL_

_F
OL_ A

midd
le

ea
ste

rn

mar
ke

tpl
ac

e .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Fixed sample (eastern in hypothesis).

Figure 3.9: Visualization of the energy function for one erroneous sample (a) and the
fixed sample (b). The gold label is Entailment. Our model returns Contradiction for the
erroneous sample, but correctly classifies the fixed sample.



42

_FOL_

a

singer

wearing

jacker

performs

on

stage

_EOL_

_F
OL_ A

sin
ge

r

wea
rin

g a

lea
the

r

jac
ke

t

pe
rfo

rm
s on

sta
ge with

dr
am

ati
c

lig
hti

ng

be
hin

d
him

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Erroneous sample (jacker in hypothesis).

_FOL_

a

singer

wearing

jacket

performs

on

stage

_EOL_

_F
OL_ A

sin
ge

r

wea
rin

g a

lea
the

r

jac
ke

t

pe
rfo

rm
s on

sta
ge with

dr
am

ati
c

lig
hti

ng

be
hin

d
him

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Fixed sample (jacket in hypothesis).

Figure 3.10: Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Entailment. Our model returns Neutral for the
erroneous sample, but correctly classifies the fixed sample.

_FOL_

There

is

a

sculture

_EOL_

_F
OL_ A

man

dr
es

se
d all in

bla
ck

pu
ts his

ha
nd

s on an ar
t

sc
ulp

tur
e .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Erroneous sample (sculture in hypothesis).

_FOL_

There

is

a

sculpture

_EOL_

_F
OL_ A

man

dr
es

se
d all in

bla
ck

pu
ts his

ha
nd

s on an ar
t

sc
ulp

tur
e .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Fixed sample (sculpture in hypothesis).

Figure 3.11: Visualization of the energy function for one erroneous sample (a) and
the fixed sample (b). The gold label is Entailment. Our model returns Neutral for the
erroneous sample, but correctly classifies the fixed sample.



43

_FOL_

The

horse

is

riding

gallantly

through

the

grass

.

_EOL_

_F
OL_ A

ho
rse ha

s
fal

len
do

wn on the
gr

ee
n
gr

as
s
an

d

joc
ke

y
rid

ing top is

try
ing his

ha
rd

es
t to no

t
fal

l
off

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Normalized attention of DR-BiLSTM.

_FOL_

The

horse

is

riding

gallantly

through

the

grass

.

_EOL_

_F
OL_ A

ho
rse ha

s
fal

len
do

wn on the
gr

ee
n
gr

as
s
an

d

joc
ke

y
rid

ing top is

try
ing his

ha
rd

es
t to no

t
fal

l
off

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Normalized attention of ESIM

Figure 3.12: Visualization of the normalized attention weights of DR-BiLSTM (a) and
ESIM (b) models for one sample from the SNLI test set. This sample belongs to the
Negation category. The gold label is Contradiction. Our model returns Contradiction
while ESIM returns Entailment.

_FOL_

The

horse

tripped

on

a

rock

.

_EOL_

_F
OL_ A

ho
rse ha

s
fal

len
do

wn on the
gr

ee
n
gr

as
s

an
d

joc
ke

y
rid

ing top is

try
ing his

ha
rd

es
t to no

t
fal

l
off

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Normalized attention of DR-BiLSTM.

_FOL_

The

horse

tripped

on

a

rock

.

_EOL_

_F
OL_ A

ho
rse ha

s
fal

len
do

wn on the
gr

ee
n
gr

as
s

an
d

joc
ke

y
rid

ing top is

try
ing his

ha
rd

es
t to no

t
fal

l
off

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Normalized attention of ESIM

Figure 3.13: Visualization of the normalized attention weights of DR-BiLSTM (a) and
ESIM (b) models for one sample from the SNLI test set. This sample belongs to the
Negation category. The gold label is Contradiction. Our model returns Contradiction
while ESIM returns Entailment.



44

_FOL_
The

statue
is

offensive
and

people
are

mad
that

it
on

display
.

_EOL_

_F
OL_ A

sta
tue at a

mus
eu

m tha
t no

se
em

s to be

loo
kin

g .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Normalized attention of DR-BiLSTM.

_FOL_
The

statue
is

offensive
and

people
are

mad
that

it
on

display
.

_EOL_

_F
OL_ A

sta
tue at a

mus
eu

m tha
t no

se
em

s to be

loo
kin

g .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Normalized attention of ESIM

Figure 3.14: Visualization of the normalized attention weights of DR-BiLSTM (a)
and ESIM (b) models for one sample from the SNLI test set. This sample belongs to
both Negation and Quantifier categories. The gold label is Neutral. Our model returns
Neutral while ESIM returns Contradiction.

_FOL_

A

human

not

wearing

any

clothes

is

in

a

room

.

_EOL_

_F
OL_ A

man

dr
es

se
d

on
ly in a

tow
el is

sa
un

a .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Normalized attention of DR-BiLSTM.

_FOL_

A

human

not

wearing

any

clothes

is

in

a

room

.

_EOL_

_F
OL_ A

man

dr
es

se
d

on
ly in a

tow
el is

sa
un

a .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Normalized attention of ESIM

Figure 3.15: Visualization of the normalized attention weights of DR-BiLSTM (a) and
ESIM (b) models for one sample from the SNLI test set. This sample belongs to both
Negation and Quantifier categories. The gold label is Entailment. Our model returns
Entailment while ESIM returns Contradiction.



45

_FOL_

A

girl

outside

plays

in

the

snow

.

_EOL_

_F
OL_ Girl in a

re
d

co
at ,

blu
e
he

ad
wra

p
an

d
jea

ns is

mak
ing

sn
ow

an
ge

l .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Instance 1 - Entailment relationship.

_FOL_
A

man
is

playing
an

instrument
on

the
street

near
other

people
.

_EOL_

_F
OL_ A

man is

pla
yin

g the

sa
xo

ph
on

e in
str

ee
t
an

d
so

me

pe
op

le ar
e

sit
tin

g on
cu

rb
ne

xt to byhim
.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Instance 2 - Entailment relationship.

_FOL_
A

girl
in
a

red
coat

makes
snow
angel

for
the

first
time

.
_EOL_

_F
OL_ Girl in a

re
d

co
at ,

blu
e
he

ad
wra

p
an

d
jea

ns is

mak
ing

sn
ow

an
ge

l .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(c) Instance 1 - Neutral relationship.

_FOL_
A

man
is

trying
to

earn
money

by
playing

for
other

people
on

the
street

.
_EOL_

_F
OL_ A

man is

pla
yin

g the

sa
xo

ph
on

e in
str

ee
t
an

d
so

me

pe
op

le ar
e

sit
tin

g on
cu

rb
ne

xt to by him
.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(d) Instance 2 - Neutral relationship.

_FOL_

Girl

in

a

black

coat

stays

indoors

away

from

the

snow

.

_EOL_

_F
OL_ Girl in a

re
d

co
at ,

blu
e
he

ad
wra

p
an

d
jea

ns is

mak
ing

sn
ow

an
ge

l .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(e) Instance 1 - Contradiction relationship.

_FOL_

A

woman

is

flying

crosscountry

.

_EOL_

_F
OL_ A

man is

pla
yin

g the

sa
xo

ph
on

e in
str

ee
t
an

d
so

me

pe
op

le ar
e

sit
tin

g on
cu

rb
ne

xt to byhim
.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(f) Instance 2 - Contradiction relationship.

Figure 3.16: Normalized attention weights for 6 data samples from the test set of SNLI
dataset. (a,c,e) and (b,d,f) represent the normalized attention weights for Entailment,
Neutral, and Contradiction logical relationships of two premises (Instance 1 and 2) re-
spectively. Darker color illustrates higher attention.



46

_FOL_

People

are

talking

underneath

a

covering

.

_EOL_

_F
OL_

Peo
ple ar

e

co
nv

er
sin

g at a

din
ing tab

le
un

de
r

ca
no

py
.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Instance 3 - Entailment relationship.

_FOL_

A

man

is

riding

a

motorcycle

.

_EOL_

_F
OL_ A

gu
y

rid
ing

a

moto
rcy

cle ne
ar

jun
k

ca
rs

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Instance 4 - Entailment relationship.

_FOL_

People

at

a

party

are

seated

for

dinner

on

the

lawn

.

_EOL_

_F
OL_

Peo
ple ar

e

co
nv

er
sin

g at a

din
ing tab

le
un

de
r

ca
no

py
.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(c) Instance 3 - Neutral relationship.

_FOL_
The

man
is

test
driving

a
motorcycle

to
decide

whether
or

not
he

will
buy

it
.

_EOL_

_F
OL_ A

gu
y

rid
ing

a

moto
rcy

cle ne
ar

jun
k

ca
rs

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(d) Instance 4 - Neutral relationship.

_FOL_

People

are

screaming

at

a

boxing

match

.

_EOL_

_F
OL_

Peo
ple ar

e

co
nv

er
sin

g at a

din
ing tab

le
un

de
r

ca
no

py
.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(e) Instance 3 - Contradiction relationship.

_FOL_
A

man
is

sitting
on

a
parked

motorcycle
waiting

for
his

friend
.

_EOL_

_F
OL_ A

gu
y

rid
ing

a

moto
rcy

cle ne
ar

jun
k

ca
rs

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(f) Instance 4 - Contradiction relationship.

Figure 3.17: Normalized attention weights for 6 data samples from the test set of SNLI
dataset. (a,c,e) and (b,d,f) represent the normalized attention weights for Entailment,
Neutral, and Contradiction logical relationships of two premises (Instance 3 and 4) re-
spectively. Darker color illustrates higher attention.



47

_FOL_

A

couple

is

walking

together

.

_EOL_

_F
OL_ A

co
up

le
walk

ha
nd in

do
wn a

str
ee

t .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(a) Instance 5 - Entailment relationship.

_FOL_

A

man

watches

bike

repairs

.

_EOL_

_F
OL_ A

man in a
bla

ck
sh

irt

ov
er

loo
kin

g
bik

e

main
ten

an
ce

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(b) Instance 6 - Entailment relationship.

_FOL_

The

couple

is

married

.

_EOL_

_F
OL_ A

co
up

le
walk

ha
nd in

do
wn a

str
ee

t .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(c) Instance 5 - Neutral relationship.

_FOL_

A

man

learns

bike

maintenance

.

_EOL_

_F
OL_ A

man in a
bla

ck
sh

irt

ov
er

loo
kin

g
bik

e

main
ten

an
ce

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(d) Instance 6 - Neutral relationship.

_FOL_

A

couple

is

walking

together

.

_EOL_

_F
OL_ A

co
up

le
walk

ha
nd in

do
wn a

str
ee

t .

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(e) Instance 5 - Contradiction relationship.

_FOL_

A

man

destroys

a

bike

.

_EOL_

_F
OL_ A

man in a
bla

ck
sh

irt

ov
er

loo
kin

g
bik

e

main
ten

an
ce

.

_E
OL_

Premise

H
yp

ot
he

si
s

0.00

0.25

0.50

0.75

1.00
Attention

(f) Instance 6 - Contradiction relationship.

Figure 3.18: Normalized attention weights for 6 data samples from the test set of SNLI
dataset. (a,c,e) and (b,d,f) represent the normalized attention weights for Entailment,
Neutral, and Contradiction logical relationships of two premises (Instance 5 and 6) re-
spectively. Darker color illustrates higher attention.



48

Chapter 4: Dependent gated reading for cloze-style question answering

This chapter describes the work in Ghaeini el al. (2018b) [22].

4.1 Introduction

Human language comprehension is an important and challenging task for machines that

requires semantic understanding and reasoning over clues. The goal of this general task

is to read and comprehend the given document and answer queries.

Recently, the cloze-style reading comprehension problem has received increasing at-

tention from the NLP community. A cloze-style query [88] is a short passage of text con-

taining a blank part, which we must fill with an appropriate token based on the reading

and understanding of a related document. The recent introduction of several large-scale

datasets of cloze-style question answering made it feasible to train deep learning sys-

tems for such task [67, 37, 36]. Various deep learning models have been proposed and

achieved reasonable results for this task [102, 19, 66, 15, 90, 44, 10, 16, 85]. The success

of recent models are mostly due to two factors: 1) Attention mechanisms [4], which al-

low the model to sharpen its understanding and focus on important and appropriate sub-

parts of the given context; 2) Multi-hop architectures, which read the document and/or

the query in multiple passes, allowing the model to re-consider and refocus its under-

standing in later iterations. Intuitively, both attention mechanisms and multi-hop reading



49

fulfill the necessity of considering the dependency aspects of the given document and

the query. Such a consideration enables the model to pay attention to the relevant in-

formation and ignore the irrelevant details. Human language comprehension is often

performed by jointly reading the document and query to leverage their dependencies

and stay focused in reading and avoid losing relevant contextual information. Current

state-of-the-art models also attempt to capture this by using the reading of the query

to guide the reading of the document [102, 19], or using the memory of the document

to help interpret the query [66]. However, these systems only consider uni-directional

dependencies. Our primary hypothesis is that we can gain further improvements by

considering bidirectional dependencies.

In this work, we present a novel multi-hop neural network architecture, called De-

pendent Gated Reading (DGR), which addresses the aforementioned gap and performs

dependent reading in both directions. Our model begins with an initial reading step

that encodes the given query and document, followed by an iterative reading module

(multi-hop) that employs soft attention to extract the most relevant information from the

document and query encodings to augment each other’s representation, which are then

passed onto the next iteration of reading. Finally, the model performance a final round

of attention allocate and aggregate to rank all possible candidates and make prediction.

We evaluate our model on well-known machine comprehension benchmarks such

as the Children’s Book Test (CBT-NE & CBT-CN), and Who DiD What (WDW, Strict

& Relaxed). Our experimental results indicate the effectiveness of DGR by achieving

state-of-the-art results on CBT-NE, WDW-Strict, and WDW-Relaxed. In summary, our

contributions are as follows: 1) we propose a new deep learning architecture to address



50

the existing gap of reading dependencies between the document and the query. The

proposed model outperforms the state-of-the-art for CBT-NE, WDW-Strict, and WDW-

Relaxed by 0.5%, 0.8%, and 0.3% respectively; 2) we perform an ablation study and

analysis to clarify the strengths and weaknesses of our model while enriching our un-

derstanding of the language comprehension task.

4.2 Related Work

The availability of large-scale datasets [67, 37, 36] has enabled researchers to develop

various deep learning-based architectures for language comprehension tasks such as

cloze-style question answering.

Sordoni et al. (2016) propose an Iterative Alternative Attention (IAA) reader. IAA

is a multi-hop comprehension model which uses a GRU network to search for correct

answers from the given document. IAA is the first model that does not collapse the

query into a single vector. It deploys an iterative alternating attention mechanism that

collects evidence from both the document and the query.

Kadlec et al. (2016) Introduce a single-hop model called Attention Sum Reader

(AS Reader) that uses two bi-directional GRUs (Bi-GRU) to independently encode the

query and the document. It then computes a probability distribution over all document

tokens by taking the softmax of the dot product between the query and the token rep-

resentations. Finally, it introduces a pointer-sum attention aggregation mechanism to

aggregate the probability of multiple appearances of the same candidate. The candidate

with the highest probability will be considered as the answer. Cui et al. (2017) introduce



51

a similar single-hop model called attention-over-attention (AOA) reader which uses a

two-way attention mechanism to allow the query and document to mutually attend to

one another.

Trischler et al. (2016) introduce EpiReader [90], which uses AS Reader to first

narrow down the candidates, then replaces the query placeholder with each candidate

to yield a different query statement, and estimate the entailment between the document

and the different query statements to predict the answer.

Munkhdalai and Yu (2017) (NSE) propose a computational hypothesis testing frame-

work based on memory augmented neural networks. They encode the document and

query independently at the beginning and then re-encode the query (but not the doc-

ument) over multiple iterations (hops). At the end of each iteration, they predict an

answer. The final answer is the candidate that obtains the highest probability over all

iterations.

Dhingra et al. (2017) extend the AS Reader by proposing Gated Attention Reader

(GA Reader). GA Reader uses a multi-hop architecture to compute the representation

of the documents and query. In each iteration the query is encoded independent of the

document and previous iterations, but the document is encoded iterative considering

the previous iteration as well as an attention mechanism with multiplicative gating to

generate query-specific document representations. GA reader uses the same mechanism

for making the final predictions as the AS reader. Yang et al. (2017) further extend

the GA Reader with a fine grained gating approach that uses external semantic and

syntactic features (i.e. NER, POS, etc) of the tokens to combine the word and character

level embeddings and produce a final representation of the words.



52

Among the aforementioned models, the GA Reader is the closest to our model in

that we use a similar architecture that is multi-hop and performs iterative reading. The

main distinct between our model and the GA Reader is the reading and encoding of the

query. Instead of performing independent reading of query in each iteration, our reading

and encoding of the query not only depends on the document but also the reading of

previous iterations.

Although cloze-style question answering task is well studied in the literature, the

potential of dependent reading and interaction between the document and the query is

not rigorously explored. In this work, we address this gap by proposing a novel deep

learning model (DGR). Experimental results demonstrate the effectiveness of our model.

4.3 Dependent Gated Reading

Figure 4.1 depicts a high-level view of our proposed Dependent Gate Reading (DGR)

model, which follows a fairly standard multi-hop architecture, simulating the multi-step

reading and comprehension process of humans.

The input to our model at the training stage can be represented as a tuple (D,Q,C, a),

where D = [d1, · · · , dn] is the document of length n, Q = [q1, · · · , qm] is the query of

length m with a placeholder, C = [c1, · · · , cg] is a set of g candidates and a ∈ C is the

ground truth answer. Here we assume di, qj are some form of embedding of the indi-

vidual tokens of document and query. At the testing stage, given the input document D,

query Q and candidate set C, the goal is to choose the correct candidate a among C for

the placeholder in Q.



53

B
i-G

R
U

B
i-G

R
U

Q
u
e
ry

D
o
cu

m
e
n
t

First R
e
a
d

in
g

B
i-G

R
U

B
i-G

R
U

S
e
co

n
d

 R
e
a
d

in
g

B
i-G

R
U

B
i-G

R
U

T
h

ird
 R

e
a
d

in
g

P
re

d
ictio

n

R
a
n
kin

g
 &

 P
re

d
ictio

n

Candidates
Occurrences 

A
te

n
tio

n
E
x
tra

ctio
n

Figure 4.1: A high-level view of dependent gated reading model (DGR). The data (doc-
ument d and query q, depicted with red and cyan tensors respectively) flows from left
to right. At the first (input) layer, the word representations are shown with black solid
borders while the character representations are shown with colored dashed borders. The
figure is color coded; relevant tensors and elements are shown with the same color. Note
that none of the elements share parameters. The purple matrices extract relevant infor-
mation between document and query representations. The black arrows between the
query Bi-GRUs (yellow ones) pass the final hidden state of a Bi-GRU to another one as
initialization value for its hidden state.

DGR can be divided to two major parts: Multi-hop Reading, and Ranking & Predic-

tion.

4.3.1 Multi-hop Reading of Document and Query

Recurrent networks provide a natural solution for modeling variable length sequences.

Consequently, we use bi-directional Gated Recurrent Units (Bi-GRUs) [13] as the main



54

building blocks for encoding the given document and query. For the initial step of our

multi-hop reading, the documentD and the query q are read with two separate Bi-GRUs

(Equations 4.1 and 4.2) where d̂0 ∈ Rn×r and q̂0 ∈ Rm×r are the first Bi-GRU reading

sequences of D and Q respectively. h0 consists of two parts, h0f and h0b , which record

the final output of forward and backward GRU reading of Q respectively. Note that “−”

in equations means that we do not care about the associated variable and its value.

d̂0,− = BiGRUd0(D, 0) (4.1)

q̂0, h0 = BiGRUq0(Q, 0) (4.2)

We use s ∈ [0, S] to denote the reading iteration, with S + 1 total iterations. For the

initial iteration (s = 0), both Bi-GRUs are fed with a zero vector for the initial hidden

state as shown in Equations 4.1 and 4.2. Once the document and query encodings

(d̂s and q̂s respectively) are computed, we employ a soft alignment method to associate

the relevant sub-components between the given document and query. In deep learning

models, this is often achieved with a soft attention mechanism. We follow the same

soft attention mechanism as used in the GA reader [19], which is described below for

completeness.

Given d̂s and q̂s, we first compute the unnormalized attention weights between the

i-th token of the document and the j-th token of the query as the similarity between the

corresponding hidden states with Equation 4.3 (energy function).

esij = (d̂si )
T q̂sj , ∀i ∈ [1, n],∀j ∈ [1,m],∀s ∈ [0, S − 1] (4.3)



55

For each document token and query token, the most relevant semantics from the

other context are extracted and composed based on esij ∈ Rn×m. Equations 4.4 and 4.5

provide the specific details of this procedure where d̃si ∈ Rr represents the extracted

information from the current reading of the query, q̂s, that is most relevant to the i-th

document token by attending to d̂si . Similarly q̃sj ∈ Rr represents, for the j-th query

token, the extracted relevant document information from d̂s by attending to q̂sj .

d̃si =
m∑
j=1

exp(esij)∑m
k=1 exp(esik)

q̂sj , ∀i ∈ [1, n],∀s ∈ [0, S − 1] (4.4)

q̃sj =
n∑
i=1

exp(esij)∑n
k=1 exp(eskj)

d̂si , ∀j ∈ [1,m],∀s ∈ [0, S − 1] (4.5)

To incorporate the context information, we use element-wise product of the tuples

(d̂si , d̃
s
i ) or (q̂sj , q̃

s
j ) to produce a new representation of the hidden states for the document

and the query as described in Equations 4.6 and 4.7.

usi = d̂si � d̃si , ∀s ∈ [0, S − 1] (4.6)

vsj = q̂sj � q̃sj , ∀s ∈ [0, S − 1] (4.7)

Here � stands for element-wise product, and us ∈ Rr and vs ∈ Rr are the new

encodings of the document and query respectively.Note that GA-reader uses the same

mechanism to update the document encoding but does not change the query representa-

tion according to the document.

We then pass the new document (us) and query (vs) embeddings to the Bi-GRUs for



56

the next iteration s + 1. Note that for query reading, we feed, hs, the final hidden state

of the previous reading (without document based updates) to the Bi-GRU of the next

iteration as the initial hidden state. Intuitively, hs provides a summary understanding

of the query from the previous iteration, without the document modulated updates. By

considering both hs and vs, this encoding mechanism provides a richer representation

of the query. This is formally described by Equations 4.8 and 4.9.

d̂s+1,− = BiGRUds(u
s, 0), ∀s ∈ [0, S − 1] (4.8)

q̂s+1, hs+1 = BiGRUqs(v
s, hs),∀s ∈ [0, S − 1] (4.9)

We should note that using the following configuration variations did not yield any

improvement to our model: 1) Other choices for gating aggregation strategy (Equa-

tions 4.6 and 4.7) like addition, concatenation, or applying a transformation function

on different sub-members of {element-wise product, concatenation and difference}. 2)

Residual connection.

4.3.2 Ranking & Prediction

Given the final document and query encodings, d̂S and q̂S , the final stage of our model

computes a score for each candidate c ∈ C. This part of our model use the same

point sum attention aggregation operation as introduced by the Attention Sum (AS)

reader [44], which is also used by the GA reader [19].

Let idx be the position of the the placeholder in Q, and q̂Sidx be the associated hidden



57

embedding of the placeholder in the given query. We first compute the probability of

each token in the document to be the desired answer by computing the dot product

between q̂Sidx and d̂Sj for j = 1, ..., n and then normalize with the softmax function:

y = softmax((q̂Sidx)
T d̂S) (4.10)

where y ∈ Rn gives us a normalized attention/probability over all tokens of the doc-

ument. Next, the probability of each particular candidate c ∈ C for being the answer

is computed by aggregating the document-level attentions of all positions in which c

appears:

p(c|D,Q) ∝
∑

i∈I(c,D)

yi, ∀c ∈ C (4.11)

where I(c,D) indicates the positions that candidate c appears in the documentD (Candi-

date Occurrences in Figure 4.1). Finally the prediction is given by a∗ = argmaxc∈C p(c|D,Q).

Key differences from the GA reader. Given the strong similarity between our model

and the GA reader, it is worth highlighting the three key differences between the two

models: (a) Document gated query reading: we compute a document-specific query rep-

resentations to pass to the next query reading step; (b) Dependent query reading: in each

iteration, the input to the query BiGRU comes from the document gated encoding of the

query from the last iteration whereas the GA Reader reads the queries independently in

all iterations; (c) Dependent query BiGRU initialization: the query BiGRU is initialized

with the final hidden states of the query BiGRU from the previous iteration. These key



58

differences in query encoding are designed to better capture the interdependences be-

tween query and document and produce richer and more relevant representations of the

query and enhance the comprehension and query answering performance.

4.3.3 Further Enhancements

Following the practice of GA reader, we included several enhancements which have

been shown to be helpful in previous work.

Question Evidence Common Word Feature. To generate the final document encod-

ing d̂S , an additional modification of uS−1 is introduced before applying Equation 4.8.

Specifically, an additional Question Evidence Common Word Feature (qe-comm) [54]

is introduced for each document token, indicating whether the token is present in the

query. Assume fi stands for the qe-comm feature of the i-th document token, therefore,

uS−1i = [uS−1i , fi].

Character-level embeddings. Word-level embeddings are good at representing the

semantics of the tokens but suffers from out-of-vocabulary (OOV) words and is inca-

pable of representing sub-word morphologies. Character-level embeddings effectively

address such limitations [56, 20]. In this work, we represent a token by concatenating

its word embedding and character embedding. To compute the character embedding of

a token w = [x1, · · · , xl], we pass w to two GRUs in forward and backward directions

respectively. Their outputs are then concatenated and passed through a linear transfor-

mation to form the character embedding of the token.



59

CBT-NE CBT-CN WDW-Strict WDW-Relaxed
# training set 108,719 120,769 127,786 185,978
# development set 2,000 2,000 10,000 10,000
# test set 2,500 2,500 10,000 10,000
# vocabulary 53,063 53,185 347,406 308,02
max document length 1,338 1,338 3,085 3,085

Table 4.1: Dataset statistics

4.4 Experiments and Evaluation

4.4.1 Datasets

We evaluate the DGR model on three large-scale language comprehension datasets,

Children’s Book Test Named Entity (CBT-NE), Common Noun (CBT-CN), and Who

Did What (WDW) Strict and Relaxed.

The first two datasets are formed from two subsets of the Children’s Book Test

(CBT) [37]. Documents in CBT consist of 20 contiguous sentences from the body of a

popular children’s book, and queries are formed by replacing a token from the 21st sen-

tence with a placeholder. We experiment on subsets where the replaced token is either

a named entity (CBT-NE) or common noun (CBT-CN). Other subsets of CBT have also

been studied previously but because simple language models have been able to achieve

human-level performance on them, we ignore such subsets [37].

The Who Did What (WDW) dataset [67] is constructed from the LDC English Giga-

word newswire corpus. Each sample in WDW is formed from two independent articles.

One article is considered as the passage to be read and the other article on the same

subject is used to form the query. Missing tokens are always person named entities. For



60

this dataset, samples that are easily answered by simple systems are filtered out, which

makes the task more challenging. There are two versions for the training set (Strict and

Relaxed) while using the same development and test sets. Strict is a small but focused/-

clean training set while Relaxed is a larger but more noisy training set. We experiment

on both of these training sets and report corresponding results on both settings. Statistics

of all the aforementioned datasets are summarized in Table 4.1.

Other datasets for this task include CNN and Daily Mail News [36]. Because pre-

vious models already achieved human-level performance on these datasets, following

Munkhdalai and Yu [66], we do not include them in our study.

4.4.2 Training Details & Experimental Setup

We use pre-trained 100-D Glove 6B vectors [70] to initialize our word embeddings

while randomly initializing the character embedding. All hidden states of BiGRUs have

128 dimensions (o = 100 and r = 128). The weights are learned by minimizing the

negative log-loss (Equation 4.12) on the training data via the Adam optimizer [48]. The

learning rate is 0.0005. To avoid overfitting, we use dropout [86] with rate of 0.4 and 0.3

for CBT and WDW respectively as regularization, which is applied to all feedforward

connections. While we fix the word embedding, character embeddings are updated

during the training to learn effective representations for this task. We use a fairly small

batch size of 32 to provide more exploration power to the model.

L =
∑
i

− log(p(a|D,Q)) (4.12)



61

Method Test Accuracy(%)
CBT-NE CBT-CN WDW-Strict WDW-Relaxed

AS Reader [44] 68.6% 63.4% 57.0% 59.0%
EpiReader [90] 69.7% 67.4% - -
IAA Reader [85] 68.6% 69.2% - -
AOA Reader [15] 72.0% 69.4% - -
GA Reader [19] 74.9% 70.7% 71.2% 72.6%
AS Reader (Ensemble) [44] 70.6% 68.9% - -
EpiReader (Ensemble) [90] 71.8% 70.6% - -
IAA Reader (Ensemble) [85] 72.0% 71.0% - -
AOA Reader (Ensemble) [15] 74.5% 70.8% - -
NSE (T=1) [66] 71.1% 69.7% 65.5% 65.3%
NSE Query Gating (T=2) [66] 71.5% 70.7% 65.1% 65.5%
NSE Query Gating (T=6) [66] 71.4% 72.0% 65.7% 65.8%
NSE Adaptive Comp. (T=2) [66] 72.1% 71.2% 65.4% 66.0%
NSE Adaptive Comp. (T=12) [66] 73.2% 71.4% 66.2% 66.7%
FG [102] 74.9% 72.0% 71.7% 72.6%
DGR 75.4% 70.7% 72.0% 72.9%

Table 4.2: Performance of proposed model (DGR) on the test set of CBT-NE, CBT-CN,
WDW-Strict, and WDW-Relaxed datasets.

4.4.3 Results

Table 4.2 shows the test accuracy of the models on CBT-NE, CBT-CN, WDW-Strict,

and WDW-Relaxed. We divide the previous models into four categories: 1) Single

models (rows 1-5), 2) Ensemble models (rows 6-9), 3) NSE models (rows 10-14), and

4) the FG model (row 15). Table 4.2 primarily focuses on comparing models that do

not rely on any NLP toolkit features (i.e. POS, NER, etc), with the exception of the FG

model which uses additional information about document tokens including POS, NER

and word frequency information to produce the embedding of the token.

From Table 4.2, we can see that DGR achieves the state-of-the-art results on all



62

aforementioned datasets expect for CBT-CN. The targets of CBT-NE, WDW-Strict, and

WDW-Relaxed are all Named Entities while the CBT-CN focuses on Common Noun.

We believe that our architecture is more suitable for Named Entity targeted comprehen-

sion tasks. This phenomenon warrants a closer look in future work. Comparing GA

Reader, FG, and DGR (the three models with similar architectures), we see that FG out-

perform the GA Reader on CBT-CN and WDW-Strict datasets while DGR outperforms

both FG and GA Reader results on CBT-NE, WDW-Strict, WDW-Relaxed datasets with

noticeable margins. This suggests that while the NLP toolkit features such as POS and

NER could help the performance of the comprehension models (specially in CBT-CN),

capturing richer dependency interaction between document and query appears to play a

more important role for comprehension tasks focusing on Named Entities.

Finally, For each of the three datasets on which our model achieves the state-of-the-

art performance, we conducted the one-sided McNemar’s test to verify the statistical

significance of the performance improvement over the main competitor (GA reader).

The obtained p-values are 0.03, 0.003, and 0.011 for CBT-NE, WDW-Strict, and WDW-

Relaxed respectively, indicating that the performance gain by DGR is statistically sig-

nificant.

4.4.4 Ablation Study

We conducted an ablation study on our model to examine the importance and the ef-

fect of proposed strategies. We investigate all settings on the development set of the

CTB-NE, CBT-CN, WDW-Strict, and WDW-Relaxed datasets. Consider the three key



63

Method Development Accuracy(%)
CBT-NE CBT-CN WDW-Strict WDW-Relaxed

1) DGR 77.90 73.80 71.78 72.26
2) DGR - (a) 75.60 72.25 71.04 71.82
3) DGR - (c) 77.50 72.45 71.29 71.93
4) DGR - (a) & (b) 77.85 73.05 71.67 72.20
5) DGR - (a) & (c) 76.00 72.85 71.37 72.13
6) DGR - (a) & (b) & (c) 77.65 73.00 71.61 72.16

Table 4.3: Ablation study results. Performance of different configurations of the pro-
posed model on the development set of the CBT-NE, CBT-CN, WDW-Strict, and WDW-
Relaxed datasets

differences of our method from the GA Reader: (a) Document gated query reading —

here we compute a document-specific query representations to pass to the next reading

layer; (b) Dependent query reading — the query readings are dependent from one layer

to the next as the input to the next reading layer comes from the output of previous layer;

(c) Dependent BiGRU initialization — query BiGRUs of a later layer are initialized with

the final hidden states of previous layer’s query BiGRU.

Table 4.3 shows the ablation study results on the development set of CBT-NE, CBT-

CN, WDW-Strict, and WDW-Relaxed for a variety of DGR configurations by removing

one or more of the key differences with GA reader. Note that by all removing all three

difference elements, configuration 6 reduces to the GA reader.

According to Table 4.3, DGR achieves the best development accuracy on all datasets

which indicates that collectively, the three elements lead to improved effectiveness.

Effect of document dependent reading. Configuration 2 removes the document de-

pendent reading, and retains the other two elements. Interestingly, this configuration



64

achieved the worst performance among all variations. Without proper guiding from the

document side, iteratively reading the query actually leads to worse performance than

independent query reading. This suggests that document dependent reading is a critical

element that helps achieve better reading of query.

Effect of Dependent Query BiGRU initialization. In Configuration 3, we remove the

dependent query BiGRU initialization, which results in a performance loss ranging from

0.33% (WDW-relaxed) to 1.35% (CBT-CN), suggesting that this connection provides

important information that helps the reading of the query. Note that simply adding

dependent query BiGRU initialization to GA reader (configuration 4) leads to a slight

improvement over GA reader, which again confirms the usefulness of this channel of

information.

Effect of dependent query reading. Unfortunately, we cannot only remove (b) from

our model because it will cause dimension mismatch between the document and query

representation preventing the gating operation for computing the document gated query

representation. Instead, we compare the GA reader (configuration 6) with configure

5, which adds dependent query reading to the GA reader. We can see that adding the

dependent query reading to the GA reader actually leads to a slight performance loss.

Note that further including document gated reading (configuration 3) improves the per-

formance on CBT-NE, but still fails to outperform GA reader. This points to a potential

direction to further improve our model by designing a new mechanism that is capable

of document dependent gating without the dependent query reading.



65

4.4.5 Rule-based Disambiguation Study

Here, we present a simple rule-based detection strategy for CBT-NE dataset which dis-

ambiguates about 30% and 18% of the samples in CBT-NE development and test sets.

For each query q, assume w is previous/next next word in the placeholder which start

with upper case character. If such a w exists, we look for w in the document d and

collect all words that could appears next/before w. After removing all collected words

that are not in the candidate list C, the samples is disambiguated and solved if we end

up with a single word (answer). We refer to the set of such samples as disambiguated

set. Table 4.4 shows the statistics of this rule-based strategy on the rule-based disam-

biguated test set of CBT-NE. Furthermore, Table 4.5 shows a data sample in CBT-NE

that is correctly disambiguated with our rule-based approach.

Set Correct Disambiguation(%) Wrong Disambig.(%) Total Disambig.
Development 29.65% 0.1% 595
Test 18.36% 0.12% 462

Table 4.4: Statistics and performance of the proposed rule-based strategy on CBT-NE
dataset.

Figure 4.2 shows the performance of DGR and its variations on the set of data sam-

ples in CBT-NE test set that could be disambiguated with the proposed rule-based strat-

egy. Although we use the lower case words in the training process, all models perform

substantially well on disambiguating such samples. This observation could demonstrate

the effectiveness of the general architecture.



66

doca 1 Instead of answering , Jimmy Skunk began to laugh .
2 “ Who ’s a bug ? ”
3 demanded Old Mr. Toad , more crossly than before .
4 “ There is n’t any bug , Mr. Toad , and I beg your pardon ,
” replied Jimmy , remembering his politeness .
5 “ I just thought there was .
6 You see , I did n’t know you were under that piece of bark .
7 I hope you will excuse me , Mr. Toad .
8 Have you seen any fat beetles this morning ? ”
9 “ No , ” said Old Mr. Toad grumpily , and yawned and rubbed his eyes .
10 “ Why , ” exclaimed Jimmy Skunk , “ I believe you have just waked up ! ”
11 “ What if I have ? ”
12 demanded Old Mr. Toad .
13 “ Oh , nothing , nothing at all , Mr. Toad , ” replied Jimmy Skunk , “
only you are the second one I ’ve met this morning who had just waked up . ”
14 “ Who was the other ? ”
15 asked Old Mr. Toad .
16 “ Mr. Blacksnake , ” replied Jimmy .
17 “ He inquired for you . ”
18 Old Mr. Toad turned quite pale .
19 “ I – I think I ’ll be moving along , ” said he .
20 XVII OLD MR. TOAD ’S MISTAKE If is a very little word to look at ,
but the biggest word you have ever seen does n’t begin to have so much
meaning as little “ if . ”

query 21 If Jimmy @placeholder had n’t ambled down the Crooked Little Path just
when he did ; if he had n’t been looking for fat beetles ; if he had n’t seen
that big piece of bark at one side and decided to pull it over ; if it had n’t
been for all these “ ifs , ” why Old Mr. Toad would n’t have made the
mistake he did , and you would n’t have had this story .

candsb Blacksnake, Jimmy, Mr., Skunk, Toad, XVII, bug, morning, pardon, second
ansc Skunk
predd Skunk
a doc, Document
b cands, Candidates
c ans, Answer
d pred, Prediction

Table 4.5: Example of a disambiguated sample in CBT-NE dataset with the proposed
rule-based approach.



67

98.27

98.27

98.05

98.27

97.62

98.7

DGR − (a) & (b) & (c)

DGR − (a) & (c)

DGR − (a) & (b)

DGR − (c)

DGR − (a)

DGR

96 97 98 99
Accuracy

M
od

el

Figure 4.2: Performance of DGR and its variations on the rule-based disambiguated test
set of CBT-NE.

4.4.6 Analysis

In this section, We first investigate the performance of DGR and its variations on two

attributes: the document length, and query length. Then we show a layer-wise visual-

ization of the energy function (Equation 4.3) for an instance from the CBT-NE dataset.

4.4.6.1 Length Study

Among the four datasets that we use in this work, WDW-Relaxed is the biggest and the

most noisy one which makes it as a good candidate for analyzing the trend and behavior

of our models.

Figure 4.3 depicts the performance of DGR and its variations against the length of

document (left), and the length of query (right). A bar on top of each diagram indicates

the frequency of samples in each intervals. Each data sample is added to the closet

interval.



68

3910 1559 1431 1048 716 551 374 410

60

65

70

75

200 300 400 500 600 700 800 900
Length of the document

A
cc

ur
ac

y

A
1592 4708 2811 888

70

71

72

73

20 30 40 50
Length of the query

B

Models DGR DGR − (a) & (b) & (c) DGR − (c) DGR − (a) & (b)

Figure 4.3: Test accuracy of DGR and its variations against the length of the docu-
ment (A), and length of the query (B) on the WDW-Relaxed dataset. The bar on top of
each figure indicates the number of samples in each interval. Darker color in the bars
illustrates more samples.

Overall Figure 4.3 suggests that DGR achieves highly competitive performance

across different document and query lengths in comparison to the other variations in-

cluding the GA reader. In particular, DGR perform better or similarly to the GA reader

(“DGR - (a) & (b) & (c)”) in all categories except when query length is between 30

and 40 where GA reader wins with a small margin. Furthermore, we see that “DGR

- (a) & (b)” wins over “DGR - (a) & (b) & (c)” in most document length categories.

This suggests the positive effect of the connection offered by (c), especially for longer

documents.



69

4.4.6.2 Attention Study

To gain insights into the influence of the proposed strategies on the internal behavior

of the model, we analyze the attention distribution at intermediate layers. We show a

visualization of layer-wise normalized aggregated attention weights (energy function,

Equation 4.3) for candidate set over the query (Figures 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10,

4.11, 4.12). In each figure, the top plots show the layer-wise attention of DGR and the

bottom plots show the layer-wise attention of the GA reader, i.e., “DGR - (a) & (b) &

(c)”. Moreover, the left and middle plot show the aggregated attention of candidates over

the whole query while the right plot depicts the aggregated attention of the candidates

for the placeholder in the query in the final layer.

ke
dd

ah
sa

hib
be

ate
rs

blo
tch

da
ys

jun
gle

−c
oc

kpic
ke

t−
pin

pla
ins

−d
riv

er
s

tra
ck

erun
de

rto
ne

sa
id

pe
ter

se
n

@
pla

ce
ho

lde
r ,

sm
ilin

g

un
de

rn
ea

th his

mus
tac

he
‘‘

an
d

why
did

st
tho

u
tea

ch thy

ele
ph

an
t

tha
t

tric
k ?

Query

C
an

di
da

te
s

ke
dd

ah
sa

hib
be

ate
rs

blo
tch

da
ys

jun
gle

−c
oc

kpic
ke

t−
pin

pla
ins

−d
riv

er
s

tra
ck

erun
de

rto
ne

sa
id

pe
ter

se
n

@
pla

ce
ho

lde
r ,

sm
ilin

g

un
de

rn
ea

th his

mus
tac

he
‘‘

an
d

why
did

st
tho

u
tea

ch thy

ele
ph

an
t

tha
t

tric
k ?

Query

ke
dd

ah
sa

hib
be

ate
rs

blo
tch

da
ys

jun
gle

−c
oc

kpic
ke

t−
pin

pla
ins

−d
riv

er
s

tra
ck

erun
de

rto
ne

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

ke
dd

ah
sa

hib
be

ate
rs

blo
tch

da
ys

jun
gle

−c
oc

kpic
ke

t−
pin

pla
ins

−d
riv

er
s

tra
ck

erun
de

rto
ne

sa
id

pe
ter

se
n

@
pla

ce
ho

lde
r ,

sm
ilin

g

un
de

rn
ea

th his

mus
tac

he
‘‘

an
d

why
did

st
tho

u
tea

ch thy

ele
ph

an
t

tha
t

tric
k ?

Query

C
an

di
da

te
s

ke
dd

ah
sa

hib
be

ate
rs

blo
tch

da
ys

jun
gle

−c
oc

kpic
ke

t−
pin

pla
ins

−d
riv

er
s

tra
ck

erun
de

rto
ne

sa
id

pe
ter

se
n

@
pla

ce
ho

lde
r ,

sm
ilin

g

un
de

rn
ea

th his

mus
tac

he
‘‘

an
d

why
did

st
tho

u
tea

ch thy

ele
ph

an
t

tha
t

tric
k ?

Query

ke
dd

ah
sa

hib
be

ate
rs

blo
tch

da
ys

jun
gle

−c
oc

kpic
ke

t−
pin

pla
ins

−d
riv

er
s

tra
ck

erun
de

rto
ne

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.4: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “sahib”.



70

A generic pattern observed in our study is that GA reader tends to generate more

uniform attention distributions while DGR produces more focused attention. In other

words, each layer of DGR tends to focus on different sub-parts and examine different

hypotheses, illustrating the significant impact of the proposed strategies on the attention

mechanism.

4.5 Conclusion

We proposed a novel cloze-style question answering model (DGR) that efficiently model

the relationship between the document and the query. Our model achieves the the state-

of-the-art results on several large-scale benchmark datasets such as CBT-NE, WDW-

Strict, and WDW-Relaxed. Our extensive analysis and ablation studies confirm our

hypothesis that using a more sophisticated method for modeling the interaction between

document and query could yield further improvements.



71

be
n

bu
tle

rmoo
reste

ph
en

str
on

g
da

ys

lef
t

rig
htsk

inf
lin

tste
ali

ng

so
meh

ow
,

ev
en in his

wor
st

da
ys be

n
bu

tle
r

ha
d

ne
ve

r
fel

t
ea

sy
whe

n he

moc
ke

d old

@
pla

ce
ho

lde
r .

Query

C
an

di
da

te
s

be
n

bu
tle

rmoo
reste

ph
en

str
on

g
da

ys

lef
t

rig
htsk

inf
lin

tste
ali

ng

so
meh

ow
,

ev
en in his

wor
st

da
ys be

n
bu

tle
r

ha
d

ne
ve

r
fel

t
ea

sy
whe

n he

moc
ke

d old

@
pla

ce
ho

lde
r .

Query

be
n

bu
tle

rmoo
reste

ph
en

str
on

g
da

ys

lef
t

rig
htsk

inf
lin

tste
ali

ng

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

be
n

bu
tle

rmoo
reste

ph
en

str
on

g
da

ys

lef
t

rig
htsk

inf
lin

tste
ali

ng

so
meh

ow
,

ev
en in his

wor
st

da
ys be

n
bu

tle
r

ha
d

ne
ve

r
fel

t
ea

sy
whe

n he

moc
ke

d old

@
pla

ce
ho

lde
r .

Query

C
an

di
da

te
s

be
n

bu
tle

rmoo
reste

ph
en

str
on

g
da

ys

lef
t

rig
htsk

inf
lin

tste
ali

ng

so
meh

ow
,

ev
en in his

wor
st

da
ys be

n
bu

tle
r

ha
d

ne
ve

r
fel

t
ea

sy
whe

n he

moc
ke

d old

@
pla

ce
ho

lde
r .

Query

be
n

bu
tle

rmoo
reste

ph
en

str
on

g
da

ys

lef
t

rig
htsk

inf
lin

tste
ali

ng

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.5: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “butler”.

kin
gpr

inc
equ

ee
n

thu
mbe

lin
a

cro
wn
gir

lho
us

emidd
le

ne
sts

oth
er

s

so sh
e

sa
id ‘

ye
s ' to the

no
ble

@
pla

ce
ho

lde
r .

Query

C
an

di
da

te
s

kin
gpr

inc
equ

ee
n

thu
mbe

lin
a

cro
wn
gir

lho
us

emidd
le

ne
sts

oth
er

s

so sh
e

sa
id ‘

ye
s ' to the

no
ble

@
pla

ce
ho

lde
r .

Query

kin
gpr

inc
equ

ee
n

thu
mbe

lin
a

cro
wn
gir

lho
us

emidd
le

ne
sts

oth
er

s

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

kin
gpr

inc
equ

ee
n

thu
mbe

lin
a

cro
wn
gir

lho
us

emidd
le

ne
sts

oth
er

s

so sh
e

sa
id ‘

ye
s ' to the

no
ble

@
pla

ce
ho

lde
r .

Query

C
an

di
da

te
s

kin
gpr

inc
equ

ee
n

thu
mbe

lin
a

cro
wn
gir

lho
us

emidd
le

ne
sts

oth
er

s

so sh
e

sa
id ‘

ye
s ' to the

no
ble

@
pla

ce
ho

lde
r .

Query

kin
gpr

inc
equ

ee
n

thu
mbe

lin
a

cro
wn
gir

lho
us

emidd
le

ne
sts

oth
er

s

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.6: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “prince”.



72

pe
ter

toa
d

wh−
wh−

whe
re

co
ur

seminu
tes

rig
ht

se
ar

ch
sp

ot
top
way

old mr.
toa

d
ha

d
go

ne
do

wn ,
an

d the sa
nd

fal
len

@
pla

ce
ho

lde
r

ba
ck

ov
er him

.

Query

C
an

di
da

te
s

pe
ter

toa
d

wh−
wh−

whe
re

co
ur

seminu
tes

rig
ht

se
ar

ch
sp

ot
top
way

old mr.
toa

d
ha

d
go

ne
do

wn ,
an

d the sa
nd

fal
len

@
pla

ce
ho

lde
r

ba
ck

ov
er him

.

Query

pe
ter

toa
d

wh−
wh−

whe
re

co
ur

seminu
tes

rig
ht

se
ar

ch
sp

ot
top
way

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

pe
ter

toa
d

wh−
wh−

whe
re

co
ur

seminu
tes

rig
ht

se
ar

ch
sp

ot
top
way

old mr.
toa

d
ha

d
go

ne
do

wn ,
an

d the sa
nd

fal
len

@
pla

ce
ho

lde
r

ba
ck

ov
er him

.

Query

C
an

di
da

te
s

pe
ter

toa
d

wh−
wh−

whe
re

co
ur

seminu
tes

rig
ht

se
ar

ch
sp

ot
top
way

old mr.
toa

d
ha

d
go

ne
do

wn ,
an

d the sa
nd

fal
len

@
pla

ce
ho

lde
r

ba
ck

ov
er him

.

Query

pe
ter

toa
d

wh−
wh−

whe
re

co
ur

seminu
tes

rig
ht

se
ar

ch
sp

ot
top
way

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.7: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “right”.

em
pe

ro
rmaje

sty
nig

hti
ng

ale
su

nd
ay

ba
nd

mas
terbr

ac
ele

tsplu
mag

e
sty

le

thi
rty

−f
ou

rth
walt

ze
s

the
y

sh
ou

ld
he

ar it
sin

g ,

co
mman

de
d the

@
pla

ce
ho

lde
r .

Query

C
an

di
da

te
s

em
pe

ro
rmaje

sty
nig

hti
ng

ale
su

nd
ay

ba
nd

mas
terbr

ac
ele

tsplu
mag

e
sty

le

thi
rty

−f
ou

rth
walt

ze
s

the
y

sh
ou

ld
he

ar it
sin

g ,

co
mman

de
d the

@
pla

ce
ho

lde
r .

Query

em
pe

ro
rmaje

sty
nig

hti
ng

ale
su

nd
ay

ba
nd

mas
terbr

ac
ele

tsplu
mag

e
sty

le

thi
rty

−f
ou

rth
walt

ze
s

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

em
pe

ro
rmaje

sty
nig

hti
ng

ale
su

nd
ay

ba
nd

mas
terbr

ac
ele

tsplu
mag

e
sty

le

thi
rty

−f
ou

rth
walt

ze
s

the
y

sh
ou

ld
he

ar it
sin

g ,

co
mman

de
d the

@
pla

ce
ho

lde
r .

Query

C
an

di
da

te
s

em
pe

ro
rmaje

sty
nig

hti
ng

ale
su

nd
ay

ba
nd

mas
terbr

ac
ele

tsplu
mag

e
sty

le

thi
rty

−f
ou

rth
walt

ze
s

the
y

sh
ou

ld
he

ar it
sin

g ,

co
mman

de
d the

@
pla

ce
ho

lde
r .

Query

em
pe

ro
rmaje

sty
nig

hti
ng

ale
su

nd
ay

ba
nd

mas
terbr

ac
ele

tsplu
mag

e
sty

le

thi
rty

−f
ou

rth
walt

ze
s

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.8: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “bandmaster”.



73

co
rd

eli
asm

ile
s

tutch
ild

re
nhu

ng
er

milk
pic

nic

sc
ho

olm
a'a

m
sp

itetw
ink

le

whil
e the

ch
ild

re
n

de
vo

ur
ed the

ir
lun

ch
miss

co
rd

eli
a
fou

nd

he
rse

lf

tel
lin

g mr.

@
pla

ce
ho

lde
r all

ab
ou

t
old na

p
an

d
he

r
litt

le

pr
oje

ct .

Query

C
an

di
da

te
s

co
rd

eli
asm

ile
s

tutch
ild

re
nhu

ng
er

milk
pic

nic

sc
ho

olm
a'a

m
sp

itetw
ink

le

whil
e the

ch
ild

re
n

de
vo

ur
ed the

ir
lun

ch
miss

co
rd

eli
a
fou

nd

he
rse

lf

tel
lin

g mr.

@
pla

ce
ho

lde
r all

ab
ou

t
old na

p
an

d
he

r
litt

le

pr
oje

ct .

Query

co
rd

eli
asm

ile
s

tutch
ild

re
nhu

ng
er

milk
pic

nic

sc
ho

olm
a'a

m
sp

itetw
ink

le

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

co
rd

eli
asm

ile
s

tutch
ild

re
nhu

ng
er

milk
pic

nic

sc
ho

olm
a'a

m
sp

itetw
ink

le

whil
e the

ch
ild

re
n

de
vo

ur
ed the

ir
lun

ch
miss

co
rd

eli
a
fou

nd

he
rse

lf

tel
lin

g mr.

@
pla

ce
ho

lde
r all

ab
ou

t
old na

p
an

d
he

r
litt

le

pr
oje

ct .

Query

C
an

di
da

te
s

co
rd

eli
asm

ile
s

tutch
ild

re
nhu

ng
er

milk
pic

nic

sc
ho

olm
a'a

m
sp

itetw
ink

le

whil
e the

ch
ild

re
n

de
vo

ur
ed the

ir
lun

ch
miss

co
rd

eli
a
fou

nd

he
rse

lf

tel
lin

g mr.

@
pla

ce
ho

lde
r all

ab
ou

t
old na

p
an

d
he

r
litt

le

pr
oje

ct .

Query

co
rd

eli
asm

ile
s

tutch
ild

re
nhu

ng
er

milk
pic

nic

sc
ho

olm
a'a

m
sp

itetw
ink

le

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.9: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “cordelia”.

ali
cegr

yp
ho

n
tur

tlean
sw

er
ee

ls
firs

tmor
nin

gpo
rp

ois
esu

rp
ris

e
us

e

so

@
pla

ce
ho

lde
r

be
ga

n

tel
lin

g
the

m he
r

ad
ve

ntu
re

s
fro

m the tim
e

whe
n

sh
e

firs
t

sa
w

whit
e

ra
bb

it .

Query

C
an

di
da

te
s

ali
cegr

yp
ho

n
tur

tlean
sw

er
ee

ls
firs

tmor
nin

gpo
rp

ois
esu

rp
ris

e
us

e

so

@
pla

ce
ho

lde
r

be
ga

n

tel
lin

g
the

m he
r

ad
ve

ntu
re

s
fro

m the tim
e

whe
n

sh
e

firs
t

sa
w

whit
e

ra
bb

it .

Query

ali
cegr

yp
ho

n
tur

tlean
sw

er
ee

ls
firs

tmor
nin

gpo
rp

ois
esu

rp
ris

e
us

e

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

ali
cegr

yp
ho

n
tur

tlean
sw

er
ee

ls
firs

tmor
nin

gpo
rp

ois
esu

rp
ris

e
us

e

so

@
pla

ce
ho

lde
r

be
ga

n

tel
lin

g
the

m he
r

ad
ve

ntu
re

s
fro

m the tim
e

whe
n

sh
e

firs
t

sa
w

whit
e

ra
bb

it .

Query

C
an

di
da

te
s

ali
cegr

yp
ho

n
tur

tlean
sw

er
ee

ls
firs

tmor
nin

gpo
rp

ois
esu

rp
ris

e
us

e

so

@
pla

ce
ho

lde
r

be
ga

n

tel
lin

g
the

m he
r

ad
ve

ntu
re

s
fro

m the tim
e

whe
n

sh
e

firs
t

sa
w

whit
e

ra
bb

it .

Query

ali
cegr

yp
ho

n
tur

tlean
sw

er
ee

ls
firs

tmor
nin

gpo
rp

ois
esu

rp
ris

e
us

e

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.10: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “first”.



74

ke
dd

ahke
dd

ah
s

na
g

sa
hib

too
maiac

cid
en

t
ba

ll−
ro

om
s

did
st

ele
ph

an
t−

ca
tch

er
s

sw
ee

tm
ea

ts

big

too
mai

pr
od

de
d

ka
la

@
pla

ce
ho

lde
r

sp
ite

ful
ly

,
for he was

ve
ry

an
gr

y bu
t

litt
le too

ha
pp

y to

sp
ea

k .

Query

C
an

di
da

te
s

ke
dd

ahke
dd

ah
s

na
g

sa
hib

too
maiac

cid
en

t
ba

ll−
ro

om
s

did
st

ele
ph

an
t−

ca
tch

er
s

sw
ee

tm
ea

ts

big

too
mai

pr
od

de
d

ka
la

@
pla

ce
ho

lde
r

sp
ite

ful
ly

,
for he was

ve
ry

an
gr

y bu
t

litt
le too

ha
pp

y to

sp
ea

k .

Query

ke
dd

ahke
dd

ah
s

na
g

sa
hib

too
maiac

cid
en

t
ba

ll−
ro

om
s

did
st

ele
ph

an
t−

ca
tch

er
s

sw
ee

tm
ea

ts

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

ke
dd

ahke
dd

ah
s

na
g

sa
hib

too
maiac

cid
en

t
ba

ll−
ro

om
s

did
st

ele
ph

an
t−

ca
tch

er
s

sw
ee

tm
ea

ts

big

too
mai

pr
od

de
d

ka
la

@
pla

ce
ho

lde
r

sp
ite

ful
ly

,
for he was

ve
ry

an
gr

y bu
t

litt
le too

ha
pp

y to

sp
ea

k .

Query

C
an

di
da

te
s

ke
dd

ahke
dd

ah
s

na
g

sa
hib

too
maiac

cid
en

t
ba

ll−
ro

om
s

did
st

ele
ph

an
t−

ca
tch

er
s

sw
ee

tm
ea

ts

big

too
mai

pr
od

de
d

ka
la

@
pla

ce
ho

lde
r

sp
ite

ful
ly

,
for he was

ve
ry

an
gr

y bu
t

litt
le too

ha
pp

y to

sp
ea

k .

Query

ke
dd

ahke
dd

ah
s

na
g

sa
hib

too
maiac

cid
en

t
ba

ll−
ro

om
s

did
st

ele
ph

an
t−

ca
tch

er
s

sw
ee

tm
ea

ts

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.11: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a) & (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “toomai”.

da
rn

ing
−n

ee
dle

go
od

−t
em

pe
r

rig
ht

sa
tis

fac
tio

n
sin

k
sto

ne
str

aw
tra

ve
ls

tw
irl

tw
ist

on
e

da
y

so
meth

ing thi
ck lay ne

ar he
r

whic
h

gli
tte

re
d so

br
igh

tly tha
t

the

@
pla

ce
ho

lde
r

tho
ug

ht it
mus

t be a

dia
mon

d .

Query

C
an

di
da

te
s

da
rn

ing
−n

ee
dle

go
od

−t
em

pe
r

rig
ht

sa
tis

fac
tio

n
sin

k
sto

ne
str

aw
tra

ve
ls

tw
irl

tw
ist

on
e

da
y

so
meth

ing thi
ck lay ne

ar he
r

whic
h

gli
tte

re
d so

br
igh

tly tha
t

the

@
pla

ce
ho

lde
r

tho
ug

ht it
mus

t be a

dia
mon

d .

Query

da
rn

ing
−n

ee
dle

go
od

−t
em

pe
r

rig
ht

sa
tis

fac
tio

n
sin

k
sto

ne
str

aw
tra

ve
ls

tw
irl

tw
ist

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

da
rn

ing
−n

ee
dle

go
od

−t
em

pe
r

rig
ht

sa
tis

fac
tio

n
sin

k
sto

ne
str

aw
tra

ve
ls

tw
irl

tw
ist

on
e

da
y

so
meth

ing thi
ck lay ne

ar he
r

whic
h

gli
tte

re
d so

br
igh

tly tha
t

the

@
pla

ce
ho

lde
r

tho
ug

ht it
mus

t be a

dia
mon

d .

Query

C
an

di
da

te
s

da
rn

ing
−n

ee
dle

go
od

−t
em

pe
r

rig
ht

sa
tis

fac
tio

n
sin

k
sto

ne
str

aw
tra

ve
ls

tw
irl

tw
ist

on
e

da
y

so
meth

ing thi
ck lay ne

ar he
r

whic
h

gli
tte

re
d so

br
igh

tly tha
t

the

@
pla

ce
ho

lde
r

tho
ug

ht it
mus

t be a

dia
mon

d .

Query

da
rn

ing
−n

ee
dle

go
od

−t
em

pe
r

rig
ht

sa
tis

fac
tio

n
sin

k
sto

ne
str

aw
tra

ve
ls

tw
irl

tw
ist

@
pla

ce
ho

lde
r

Token

0.00

0.25

0.50

0.75

1.00
Attention

Figure 4.12: Layer-wise normalized attention visualization of “DGR” (top) and “DGR -
(a)& (b) & (c)” (bottom) for a sample from the CBT-NE test set. Darker color illustrates
higher attention. Figures only show the aggregated attention of candidates. The gold
answer is “darning-needle”.



75

Chapter 5: Interpreting Recurrent and Attention-based Neural Models: A

Case Study on NLI

This chapter describes the work in Ghaeini et al. (2018c) [25].

5.1 Introduction

Deep learning has achieved tremendous success for many NLP tasks. However, unlike

traditional methods that provide optimized weights for human understandable features,

the behavior of deep learning models is much harder to interpret. Due to the high di-

mensionality of word embeddings, and the complex, typically recurrent architectures

used for textual data, it is often unclear how and why a deep learning model reaches its

decisions.

There are a few attempts toward explaining/interpreting deep learning-based mod-

els, mostly by visualizing the representation of words and/or hidden states, and their

importances (via saliency or erasure) on shallow tasks like sentiment analysis and POS

tagging [52, 3, 53, 75]. In contrast, we focus on interpreting the gating and attention

signals of the intermediate layers of deep models in the challenging task of Natural

Language Inference. A key concept in explaining deep models is saliency, which deter-

mines what is critical for the final decision of a deep model. So far, saliency has only

been used to illustrate the impact of word embeddings. In this work, we extend this



76

concept to the intermediate layer of deep models to examine the saliency of attention as

well as the LSTM gating signals to understand the behavior of these components and

their impact on the final decision. We make two main contributions. First, we introduce

new strategies for interpreting the behavior of deep models in their intermediate layers,

specifically, by examining the saliency of the attention and the gating signals. Second,

we provide an extensive analysis of the state-of-the-art model for the NLI task and show

that our methods reveal interesting insights not available from traditional methods of

inspecting attention and word saliency.

In this work, our focus was on NLI, which is a fundamental NLP task that requires

both understanding and reasoning. Furthermore, the state-of-the-art NLI models employ

complex neural architectures involving key mechanisms, such as attention and repeated

reading, widely seen in successful models for other NLP tasks. As such, we expect our

methods to be potentially useful for other natural understanding tasks as well.

5.2 Task and Model

In NLI [7], we are given two sentences, a premise and a hypothesis, the goal is to decide

the logical relationship (Entailment, Neutral, or Contradiction) between them.

Many of the top performing NLI models [26, 87, 71, 61, 30, 99, 11] are variants

of the ESIM model [11], which we choose to analyze in this work. ESIM reads the

sentences independently using LSTM at first, and then applies attention to align/contrast

the sentences. Another round of LSTM reading then produces the final representations,

which are compared to make the prediction. Detailed description of ESIM can be found



77

P
ro

je
cto

r

M
LP

B
i-LS

T
M

B
i-LS

T
M

P
ro

je
cto

r

B
i-LS

T
M

B
i-LS

T
M

M
a
x
&

A
v
g

-Po
o
lin

g

P
re

m
ise

H
y
p
o
th

e
sis

Input Encoding InferenceAttention

Figure 5.1: A high-level view of ESIM model.

in the next subsection.

Using the SNLI [7] data, we train two variants of ESIM, with dimensionality 50 and

300 respectively, referred to as ESIM-50 and ESIM-300 in the remainder of this work.

5.2.1 ESIM

Here we describe the ESIM model. We divide ESIM to three main parts: 1) input

encoding, 2) attention, and 3) inference. Figure 5.1 demonstrates a high-level view of

the ESIM framework.

Let u = [u1, · · · , un] and v = [v1, · · · , vm] be the given premise with length n and



78

hypothesis with length m respectively, where ui, vj ∈ Rr are word embeddings of r-

dimensional vector. The goal is to predict a label y that indicates the logical relationship

between premise u and hypothesis v. Below we briefly explain the aforementioned

parts.

5.2.1.1 Input Encoding

It utilizes a bidirectional LSTM (BiLSTM) for encoding the given premise and hypoth-

esis using Equations 5.1 and 5.2 respectively.

û = BiLSTM(u) (5.1)

v̂ = BiLSTM(v) (5.2)

where û ∈ Rn×2d and v̂ ∈ Rm×2d are the reading sequences of u and v respectively.

5.2.1.2 Attention

It employs a soft alignment method to associate the relevant sub-components between

the given premise and hypothesis. Equation 5.3 (energy function) computes the unnor-

malized attention weights as the similarity of hidden states of the premise and hypothe-

sis.



79

eij = ûiv̂
T
j , i ∈ [1, n], j ∈ [1,m] (5.3)

where ûi and v̂j are the hidden representations of u and v respectively which are com-

puted earlier in Equations 5.1 and 5.2. Next, for each word in either premise or hypoth-

esis, the relevant semantics in the other sentence is extracted and composed according

to eij . Equations 5.4 and 5.5 provide formal and specific details of this procedure.

ũi =
m∑
j=1

exp(eij)∑m
k=1 exp(eik)

v̂j, i ∈ [1, n] (5.4)

ṽj =
n∑
i=1

exp(eij)∑n
k=1 exp(ekj)

ûi, j ∈ [1,m] (5.5)

where ũi represents the extracted relevant information of v̂ by attending to ûi while ṽj

represents the extracted relevant information of û by attending to v̂j . Next, it passes

the enriched information through a projector layer which produce the final output of

attention stage. Equations 5.6 and 5.7 formally represent this process.

ai = [ûi, ũi, ûi − ũi, ûi � ũi]

pi = ReLU(Wpai + bp)

(5.6)

bj = [v̂j, ṽj, v̂j − ṽj, v̂j � ṽj]

qj = ReLU(Wpbj + bp)

(5.7)

Here� stands for element-wise product whileWp ∈ R8d×d and bp ∈ Rd are the trainable



80

weights and biases of the projector layer respectively. p and q indicate the output of

attention devision for premise and hypothesis respectively.

5.2.1.3 Inference

During this phase, it uses another BiLSTM to aggregate the two sequences of computed

matching vectors, p and q from the attention stage (Equations 5.8 and 5.9).

p̂ = BiLSTM(p) (5.8)

q̂ = BiLSTM(q) (5.9)

where p̂ ∈ Rn×2d and q̂ ∈ Rm×2d are the reading sequences of p and q respectively.

Finally the concatenation max and average pooling of p̂ and q̂ are pass through a multi-

layer perceptron (MLP) classifier that includes a hidden layer with tanh activation and

softmax output layer. The model is trained in an end-to-end manner.

5.3 Visualization of Attention and Gating

In this work, we are primarily interested in the internal workings of the NLI model. In

particular, we focus on the attention and the gating signals of LSTM readers, and how

they contribute to the decisions of the model.



81

Alitt
le

kid
ispla

yin
g
in
aga

rde
n

Pr
em

ise
(a) Contradiction Sample

A kid is
tak

ing a
na

p in a
ga

rde
n

Hypothesis (h1)

Alitt
le

kid
ispla

yin
g
in
aga

rde
n

Pr
em

ise
(b) Neutral Sample

A kid is
ha

vin
g fun in a

ga
rde

n
with he

r
fam

ily

Hypothesis (h2)

(c) Entailment Sample

A kid is
ha

vin
g fun in a

ga
rde

n

Hypothesis (h3)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: Normalized attention and attention saliency visualization. Each column
shows visualization of one sample. Top plots depict attention visualization and bottom
ones represent attention saliency visualization. Predicted (the same as Gold) label of
each sample is shown on top of each column.

5.3.1 Attention

Attention has been widely used in many NLP tasks [22, 19, 4] and is probably one

of the most critical parts that affects the inference decisions. Several pieces of prior

work in NLI have attempted to visualize the attention layer to provide some understand-

ing of their models [26, 69]. Such visualizations generate a heatmap representing the

similarity between the hidden states of the premise and the hypothesis (Equation 5.3).

Unfortunately the similarities are often the same regardless of the decision.

Let us consider the following example, where the same premise “A kid is playing in

the garden”, is paired with three different hypotheses:

h1: A kid is taking a nap in the garden



82

h2: A kid is having fun in the garden with her family

h3: A kid is having fun in the garden

Note that the ground truth relationships are Contradiction, Neutral, and Entailment, re-

spectively.

The first row of Figure 5.2 shows the visualization of normalized attention for the

three cases produced by ESIM-50, which makes correct predictions for all of them.

As we can see from the figure, the three attention maps are fairly similar despite the

completely different decisions. The key issue is that the attention visualization only

allows us to see how the model aligns the premise with the hypothesis, but does not

show how such alignment impacts the decision. This prompts us to consider the saliency

of attention.

5.3.1.1 Attention Saliency

The concept of saliency was first introduced in vision for visualizing the spatial support

on an image for a particular object class [83]. In NLP, saliency has been used to study

the importance of words toward a final decision [52] .

We propose to examine the saliency of attention. Specifically, given a premise-

hypothesis pair and the model’s decision y, we consider the similarity between a pair of

premise and hypothesis hidden states eij as a variable. The score of the decision S(y) is

thus a function of eij for all i and j. The saliency of eij is then defined to be |∂S(y)
∂eij
|.

The second row of Figure 5.2 presents the attention saliency map for the three ex-

amples acquired by the same ESIM-50 model. Interestingly, the saliencies are clearly



83

different across the examples, each highlighting different parts of the alignment. Specif-

ically, for h1, we see the alignment between “is playing” and “taking a nap” and the

alignment of “in a garden” to have the most prominent saliency toward the decision of

Contradiction. For h2, the alignment of “kid” and “her family” seems to be the most

salient for the decision of Neutral. Finally, for h3, the alignment between “is having

fun” and “kid is playing” have the strongest impact toward the decision of Entailment.

From this example, we can see that by inspecting the attention saliency, we effec-

tively pinpoint which part of the alignments contribute most critically to the final pre-

diction whereas simply visualizing the attention itself reveals little information.

5.3.1.2 Comparing Models

In the previous examples, we study the behavior of the same model on different inputs.

Now we use the attention saliency to compare the two different ESIM models: ESIM-50

and ESIM-300.

Consider two examples with a shared hypothesis of “A man ordered a book” and

premise:

p1: John ordered a book from amazon

p2: Mary ordered a book from amazon

Here ESIM-50 fails to capture the gender connections of the two different names and

predicts Neutral for both inputs, whereas ESIM-300 correctly predicts Entailment for

the first case and Contradiction for the second.



84

Joh
nord

ere
d

a
bo

ok
fro

mam
azo

n

Pr
em

ise
 (p

1)
(a) Attention, ESIM-50 (b) Attention, ESIM-300 (c) Saliency, ESIM-50 (d) Saliency, ESIM-300

A
man

ord
ere

d a
bo

ok

Hypothesis

Maryord
ere

d

a
bo

ok
fro

mam
azo

n

Pr
em

ise
 (p

2)

A
man

ord
ere

d a
bo

ok

Hypothesis

A
man

ord
ere

d a
bo

ok

Hypothesis

A
man

ord
ere

d a
bo

ok

Hypothesis

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Normalized attention and attention saliency visualizations of two examples
(p1 and p2) for ESIM-50 (a) and ESIM-300 (b) models. Each column indicates visual-
ization of a model and each row represents visualization of one example.

In the first two columns of Figure 5.3 (column a and b) we visualize the attention of

the two examples for ESIM-50 (left) and ESIM-300 (right) respectively. Although the

two models make different predictions, their attention maps appear qualitatively similar.

In contrast, columns 3-4 of Figure 5.3 (column c and d) present the attention saliency

for the two examples by ESIM-50 and ESIM-300 respectively. We see that for both

examples, ESIM-50 primarily focused on the alignment of “ordered”, whereas ESIM-

300 focused more on the alignment of “John” and “Mary” with “man”. It is interesting

to note that ESIM-300 does not appear to learn significantly different similarity values

compared to ESIM-50 for the two critical pairs of words (“John”, “man”) and (“Mary”,

“man”) based on the attention map. The saliency map, however, reveals that the two

models use these values quite differently, with only ESIM-300 correctly focusing on



85

them.

5.3.1.3 More Attention Study

Here we provide more examples on the NLI task which intend to examine specific be-

havior in this model. Such examples (Figures 5.4, 5.5, 5.6, 5.7, 5.8) indicate interesting

observation that we can analyze them in the future works. Table 1 shows the list of all

example.

ID Premise Hypothesis Gold Prediction Category

1
Six men, two with shirts and four Seven men, two with shirts and

Contradiction Contradiction Countingwithout, have taken a break from four without, have taken a break
their work on a building. from their work on a building.

2
two men with shirts and four Six men, two with shirts and four

Entailment Entailment Countingmen without, have taken a break without, have taken a break from
from their work on a building. their work on a building.

3
Six men, two with shirts and four Six men, four with shirts and two

Contradiction Contradiction Countingwithout, have taken a break from without, have taken a break from
their work on a building. their work on a building.

4
A man just ordered a book

A man ordered a book yesterday. Neutral Neutral Chronology
from amazon.

5
A man ordered a book from

A man ordered a book yesterday. Entailment Entailment Chronology
amazon 30 hours ago.

Table 5.1: Examples along their gold labels, ESIM-50 predictions and study categories.

5.3.2 LSTM Gating Signals

LSTM gating signals determine the flow of information. In other words, they indicate

how LSTM reads the word sequences and how the information from different parts is

captured and combined. LSTM gating signals are rarely analyzed, possibly due to their

high dimensionality and complexity. In this work, we consider both the gating signals



86

Se
ve

n
men ,

tw
o
with

shi
rtsan

d
fou

r

with
ou

t,
ha

ve
tak

en a
bre

akfro
m
the

ir
workon a

bu
ildi

ng

Hypothesis

Six
men

,tw
owithshi

rts
an

dfou
r

with
ou

t
,ha

vetak
en
abre

akfro
mthe
irwork

on
a

bu
ildi

ng

Pr
em

ise
(a) Attention

0.0

0.2

0.4

0.6

0.8

1.0

Se
ve

n
men ,

tw
o
with

shi
rtsan

d
fou

r

with
ou

t,
ha

ve
tak

en a
bre

akfro
m
the

ir
workon a

bu
ildi

ng

Hypothesis

Six
men

,tw
owithshi

rts
an

dfou
r

with
ou

t
,ha

vetak
en
abre

akfro
mthe
irwork

on
a

bu
ildi

ng
(b) Attention Saliency

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Normalized attention (a) and saliency attention (b) visualizations of Exam-
ple 1. The gold relationship for this example is Contradiction. ESIM-50 also predicts
Contradiction for this example.

Sixmen ,
tw

o
with

shi
rtsan

d
fou

r

with
ou

t,
ha

ve
tak

en a
bre

akfro
m
the

ir
workon a

bu
ildi

ng

Hypothesis

tw
omenwithshi

rts
an

dfou
rmenwith

ou
t
,ha

vetak
en
abre

akfro
mthe
irwork

on
a

bu
ildi

ng

Pr
em

ise

(a) Attention

0.0

0.2

0.4

0.6

0.8

1.0

Sixmen ,
tw

o
with

shi
rtsan

d
fou

r

with
ou

t,
ha

ve
tak

en a
bre

akfro
m
the

ir
workon a

bu
ildi

ng

Hypothesis

tw
omenwithshi

rts
an

dfou
rmenwith

ou
t
,ha

vetak
en
abre

akfro
mthe
irwork

on
a

bu
ildi

ng
(b) Attention Saliency

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.5: Normalized attention (a) and saliency attention (b) visualizations of Exam-
ple 2. The gold relationship for this example is Entailment. ESIM-50 also predicts
Entailment for this example.



87

Sixmen ,
fou

r
with

shi
rtsan

dtw
o

with
ou

t,
ha

ve
tak

en a
bre

akfro
m
the

ir
workon a

bu
ildi

ng

Hypothesis

Six
men

,tw
owithshi

rts
an

dfou
r

with
ou

t
,ha

vetak
en
abre

akfro
mthe
irwork

on
a

bu
ildi

ng

Pr
em

ise
(a) Attention

0.0

0.2

0.4

0.6

0.8

1.0

Sixmen ,
fou

r
with

shi
rtsan

dtw
o

with
ou

t,
ha

ve
tak

en a
bre

akfro
m
the

ir
workon a

bu
ildi

ng

Hypothesis

Six
men

,tw
owithshi

rts
an

dfou
r

with
ou

t
,ha

vetak
en
abre

akfro
mthe
irwork

on
a

bu
ildi

ng
(b) Attention Saliency

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.6: Normalized attention (a) and saliency attention (b) visualizations of Exam-
ple 3. The gold relationship for this example is Contradiction. ESIM-50 also predicts
Contradiction for this example.

A
man

ord
ere

d a
bo

ok

ye
ste

rda
y

Hypothesis

A

man

jus
t

ord
ere

d

a

bo
ok

fro
m

am
azo

n

Pr
em

ise

(a) Attention

0.0

0.2

0.4

0.6

0.8

1.0

A
man

ord
ere

d a
bo

ok

ye
ste

rda
y

Hypothesis

A

man

jus
t

ord
ere

d

a

bo
ok

fro
m

am
azo

n

(b) Attention Saliency

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.7: Normalized attention (a) and saliency attention (b) visualizations of Example
4. The gold relationship for this example is Neutral. ESIM-50 also predicts Neutral for
this example.



88

A
man

ord
ere

d a
bo

ok

ye
ste

rda
y

Hypothesis

A
manord
ere

d

a
bo

ok
fro

mam
azo

n

30
ho

urs
ag

o

Pr
em

ise
(a) Attention

0.0

0.2

0.4

0.6

0.8

1.0

A
man

ord
ere

d a
bo

ok

ye
ste

rda
y

Hypothesis

A
manord
ere

d

a
bo

ok
fro

mam
azo

n

30
ho

urs
ag

o

(b) Attention Saliency

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.8: Normalized attention (a) and saliency attention (b) visualizations of Exam-
ple 5. The gold relationship for this example is Entailment. ESIM-50 also predicts
Entailment for this example.

and their saliency, which is computed as the partial derivative of the score of the final

decision with respect to each gating signal.

Instead of considering individual dimensions of the gating signals, we aggregate

them to consider their norm, both for the signal and for its saliency. Note that ESIM

models have two LSTM layers, the first (input) LSTM performs the input encoding and

the second (inference) LSTM generates the representation for inference.

In Figure 5.9 we plot the normalized signal and saliency norms for different gates

(input, forget, output)1 of the Forward input (bottom three rows) and inference (top three

rows) LSTMs. These results are produced by the ESIM-50 model for the three examples

of Section 3.1, one for each column.
1We also examined the memory cell but it shows very similar behavior with the output gate and is

hence omitted.



89

0

1
ou

tp
ut

(a) Contradiction Sample

0

1

In
fe

re
nc

e 
LS

TM

fo
rg

et

0

1

in
pu

t

0

1

ou
tp

ut

0

1

In
pu

t L
ST

M

fo
rg

et

A kid is
tak

ing a
na

p in a
ga

rde
n

Hypothesis (h1)

0

1

in
pu

t

0

1
(b) Neutral Sample

0

1

0

1

0

1

0

1

A kid is
ha

vin
g fun in a

ga
rde

n
with he

r
fam

ily

Hypothesis (h2)

0

1

0

1
(c) Entailment Sample

0

1

0

1

0

1

0

1

A kid is
ha

vin
g fun in a

ga
rde

n

Hypothesis (h3)

0

1

Saliency Vector Norm Vector Norm

Figure 5.9: Normalized signal and saliency norms for the input and inference LSTMs
(forward) of ESIM-50 for three examples. The bottom (top) three rows show the signals
of the input (inference) LSTM. Each row shows one of the three gates (input, forget and
output).

0

1

ou
tp

ut

(a) Contradiction Sample

0

1

In
fe

re
nc

e 
LS

TM

fo
rg

et

0

1

in
pu

t

0

1

ou
tp

ut

0

1

In
pu

t L
ST

M

fo
rg

et

A kid is
tak

ing a
na

p in a
ga

rde
n

Hypothesis (h1)

0

1

in
pu

t

0

1
(b) Neutral Sample

0

1

0

1

0

1

0

1

A kid is
ha

vin
g fun in a

ga
rde

n
with he

r
fam

ily

Hypothesis (h2)

0

1

0

1
(c) Entailment Sample

0

1

0

1

0

1

0

1

A kid is
ha

vin
g fun in a

ga
rde

n

Hypothesis (h3)

0

1

Saliency Vector Norm Vector Norm

Figure 5.10: Normalized signal and saliency norms for the input and inference LSTMs
(backward) for three examples, one for each column. The bottom (top) three rows show
the signals of the input (inference) LSTM, where each row shows one of the three gates
(input, forget and output).



90

From the figure, we first note that the saliency tends to be somewhat consistent across

different gates within the same LSTM, suggesting that we can interpret them jointly to

identify parts of the sentence important for the model’s prediction.

Comparing across examples, we see that the saliency curves show pronounced dif-

ferences across the examples. For instance, the saliency pattern of the Neutral example

is significantly different from the other two examples, and heavily concentrated toward

the end of the sentence (“with her family”). Note that without this part of the sen-

tence, the relationship would have been Entailment. The focus (evidenced by its strong

saliency and strong gating signal) on this particular part, which presents information not

available from the premise, explains the model’s decision of Neutral.

Comparing the behavior of the input LSTM and the inference LSTM, we observe in-

teresting shifts of focus. In particular, we see that the inference LSTM tends to see much

more concentrated saliency over key parts of the sentence, whereas the input LSTM sees

more spread of saliency. For example, for the Contradiction example, the input LSTM

sees high saliency for both “taking” and “in”, whereas the inference LSTM primarily fo-

cuses on “nap”, which is the key word suggesting a Contradiction. Note that ESIM uses

attention between the input and inference LSTM layers to align/contrast the sentences,

hence it makes sense that the inference LSTM is more focused on the critical differences

between the sentences. This is also observed for the Neutral example as well.

It is worth noting that, while revealing similar general trends, the backward LSTM

can sometimes focus on different parts of the sentence (Figure 5.10), suggesting the

forward and backward readings provide complementary understanding of the sentence.



91

5.4 Conclusion

We propose new visualization and interpretation strategies for neural models to under-

stand how and why they work. We demonstrate the effectiveness of the proposed strate-

gies on a complex task (NLI). Our strategies are able to provide interesting insights not

achievable by previous explanation techniques. Our future work will extend our study

to consider other NLP tasks and models with the goal of producing useful insights for

further improving these models.



92

Chapter 6: Attentional Multi-Reading Sarcasm Detection

This chapter describes the work in Ghaeini et al. (2018d) [24].

6.1 Introduction

Recently, dialogue systems have received a lot of attention from researchers. Unfor-

tunately, existing approaches often fail to detect sarcastic user comments in order to

provide proper responses.

Sarcasm detection is an important and challenging task for natural language under-

standing. The goal of sarcasm detection is to determine whether a sentence is sarcastic

or non-sarcastic. Sarcasm is a type of phenomenon with specific perlocutionary effects

on the hearer [33], such as to break their pattern of expectation. Consequently, correct

understanding of sarcasm often requires a deep understanding of multiple sources of in-

formation, including the utterance, the conversational context, and, frequently some real

world facts. Table 6.1 shows three different sarcastic samples from the SARC dataset

[47], each of which requires a different source of information for disambiguation.

Existing approaches for sarcasm detection primarily focus on lexical, pragmatic cues

(e.g. interjections, punctuations, sentimental shift etc.) found in utterance [49, 41]. In

contrast, the natural language understanding aspect of sarcasm detection could be more

robust, interesting and challenging. Moreover, most sarcasm detection systems have



93

Type Sample

U.S.a
Cd

just don’t. if you are telling anyone else what they can and can’t put
on their bodies, just don’t

Re we’re on Reddit, don’t you know we control everything people do?

C.D.b
C

who else thinks that javascript alert is an annoying, lazy, and ugly
way to notify me of something on your site.

R it’s a useful debugging tool

E.K.D.c
C

till that some cattle ranchers in south dakota lost between 20% -
50% of their livestock in winter storm atlas, and may not be eligible
for insurance due to the expiration of the farm bill and federal
government shutdown.

R
this is clearly barrack hussein obama’s fault, since he refuses to
modify the aca and obamacare.

aU.S., Utterance Sufficient.
bC.D., Conversation Dependent.
cE.K.D., External Knowledge Dependent.
dC, Comment.
eR, Response.

Table 6.1: Different types of sarcastic examples from the SARC dataset. Each data
sample contains a comment and response. Important and influential tokens are shown
in blue.

considered utterances in isolation [17, 31, 55, 79, 60, 42, 29, 43, 27, 73, 2, 34]. How-

ever, even humans have difficulty in recognizing sarcastic intent when considering an

utterance in isolation [96]. There are some limited attempts toward taking the conversa-

tional context into account [28] by using a variety of LSTMs [39] to encode both context

and reply sentences. Still such approaches only focuses on the conversation dependent

samples.

In this work, we propose an end-to-end model that combines information from both

the utterance and the conversational context to detect sarcasm. Considering the utterance

beside the conversational context enables the model to (1) properly handle utterance-



94

sufficient samples, (2) automatically extract lexical and grammatical features from the

utterance. First, We demonstrate the effectiveness of our model through empirical eval-

uations on the SARC dataset [47], the largest available dataset for sarcasm detection.

Next, we illustrate the impact of different aspects of the proposed model through an

ablation study. Finally, we present an extensive data analysis to (1) provide explana-

tions regarding our model’s decisions and behavior by visualizing attention and atten-

tion saliency[25]; (2) study the impact and effect of utterance and the conversational

context on our model’s final prediction. In summary, our contributions are as follows:

• Proposing a novel end-to-end and interpretable deep learning model that combines

information from both the utterance and conversational context in parallel.

• Illustrating the impact of the proposed model’s component through an extensive

ablation study.

• Explaining the model’s behavior and predictions by visualization of the attention

and attention saliency.

• Examining the impact of utterance and conversational context on the model’s final

predictions.

6.2 Related Work

Automatic sarcasm detection is a relatively recent field of research. Early studies use

small datasets and leverage lexical and syntactic features for sarcasm detection [41].



95

Here we classify the previous works into three categories, isolate-utterance based, contextual-

feature based, and conversation based sarcasm detection models.

• Isolate-utterance based: Most existing sarcasm detection systems consider the

utterances in isolation [17, 31, 55, 79, 60, 42, 29, 43, 27]. Methods in this category

commonly rely on hand-designed features, syntactic patterns, and lexical cues.

• Contextual-feature based: Wallace et al. (2014) illustrates the necessity of using

contextual information in sarcasm detection by showing how traditional classifiers

fail in instances where humans also require additional context. Consequently, re-

searchers recently started to exploit contextual information for sarcasm detection.

In particular, contextual information about authors, topics or conversational con-

text have been considered [46, 5, 95, 74, 73, 105, 2, 34]. Such techniques rely on

either feature engineering or embedding-based representation via deep learning.

These approaches benefit from contextual information in a pipelined and feature

based manner. We should note that user profiling has been shown to have no-

ticeable impact on sarcasm detection [34]. However, user profiling is not always

possible. In this work, we are primarily interested in the language side of the sar-

casm detection and aim to provide an end-to-end user/author independent system

that could be used in a variety of applications, especially dialogue systems and

chat boxes.

• Conversation-based: The last category of methods aims to detect sarcasm based

on the understanding of the conversation (other than simply extracting features

from the context). To the best of our knowledge, there is just one conversation



96

dependent sarcasm detection system [28], which focuses on modeling conver-

sational context using a variety of LSTMs to help sarcasm detection. They ef-

fectively demonstrated the importance and impact of considering conversational

context for sarcasm detection.

Among all previous works, Ghosh et al. (2017) and our system share similar intuition

and motivation. However, we utilize a different deep learning architecture to address

sarcasm detection. Furthermore, we consider the utterance in both isolation and conver-

sation dependent settings. Such a strategy allows the model to (1) extract lexical and

grammatical features from the utterance, and (2) selectively attend to the proper source

of information. Finally, we evaluate our system with a much larger and broader dataset

that could lead to more robust and unbiased evaluation.

6.3 Model

The inputs to our model are u = [u1, · · · , un] and v = [v1, · · · , vm], which are the

given comment (length n) and response (length m) respectively. Here ui, vj ∈ Rr are

r-dimensional word embedding vectors. The goal is to predict a label y that indicates

whether the response v is sarcastic or non-sarcastic.

Our proposed model (Attentional Multi-Reading system; AMR) consists of an utterance-

only (left side) part and a conversation-dependent (right side) part, formulated with the

following major components: input encoding, attention, re-reading, and classification.

Figure 6.1 demonstrates a high-level view of our proposed AMR framework.



97

B
i-LS

T
M

B
i-LS

T
M

B
i-LS

T
M

B
i-LS

T
M

B
i-LS

T
M

R
e
sp

o
n
se

C
o
m

m
e
n
ts

Input Encoding Re-Reading ClassificationAttention

P
ro

je
c
to

r
P
ro

je
c
to

r

M
a
x
-P

o
o
lin

g
M

a
x
-P

o
o
lin

g
M

a
x
-P

o
o
lin

g

+

Figure 6.1: A high-level view of our model (AMR). The data (comment u and response
v, depicted with red and cyan/blue tensors respectively) flows from bottom to top. Rel-
evant tensors are shown with the same color and elements with the same colors share
parameters. The left part shows the utterance-only part and the right part represents the
conversation-dependent part of AMR.

6.3.1 Input Encoding

RNNs provide a natural solution for modeling variable length sequences and have shown

to be successful in various NLP tasks [22, 26, 4, 21]. Consequently, we utilize a bidirec-

tional LSTM (BiLSTM) [39] for encoding the given comment and response. Here we

simply read and encode the comment and response using a BiLSTM. Equations 6.1 and

6.2 formally represent this component.



98

ū = BiLSTM(u) (6.1)

v̄ = BiLSTM(v) (6.2)

where ū ∈ Rn×2d and v̄ ∈ Rm×2d are the BiLSTM reading sequences of u and v respec-

tively.

6.3.2 Attention

Here we employ a soft alignment method to associate the relevant sub-components be-

tween the given comment and response. The unnormalized attention weights are com-

puted as the similarity of the hidden states of the comment and response as shown in

Equation 6.3 (energy function).

eij = ūiv̄
T
j , i ∈ [1, n], j ∈ [1,m] (6.3)

where ūi and v̄j are the hidden representations of u and v respectively which are com-

puted earlier in Equations 6.1 and 6.2 respectively. Next, for each word in either com-

ment or response, the relevant semantics in the other sentence is extracted and composed

according to eij as shown in Equations 6.4 and 6.5.

ũi =
m∑
j=1

exp(eij)∑m
k=1 exp(eik)

v̄j, i ∈ [1, n] (6.4)



99

ṽj =
n∑
i=1

exp(eij)∑n
k=1 exp(ekj)

ūi, j ∈ [1,m] (6.5)

where ũi represents the extracted relevant information of v̄ by attending to ūi while ṽj

represents the extracted relevant information of ū by attending to v̄j .

6.3.2.1 Attention Augmentation and Projection

To utilize the collected attentional information ũj and ṽj , a trivial next step would be

to concatenate them with ūi and v̄j respectively. More over, it is often interesting to

compare and contrast the information from the comment and the response in order to

detect sarcasm. Hence, we calculate the element-wise difference and element-wise and

include these vectors for further consideration. We concatenate all the vectors and rep-

resent the comment and response as [ūi, ũi, ūi − ũi, ūi� ũi] and [v̄j, ṽj, v̄j − ṽj, v̄j � ṽj]

with i = 1, ..., n and j = 1, ...,m respectively. Finally, a feed-forward neural layer with

the ReLU activation function projects the concatenated vectors from the 8d-dimensional

vector space into a d-dimensional vector space (Equations 6.6 and 6.7). This projection

layer serves the dual purpose of both helping the model to capture deeper dependencies

between the comment and response and lowering the complexity of vector representa-

tions.

pi = ReLU(Wc([ūi, ũi, ūi − ũi, ūi � ũi]) + bc) (6.6)



100

qj = ReLU(Wc([v̄j, ṽj, v̄j − ṽj, v̄j � ṽj]) + bc) (6.7)

Here� stands for element-wise product whileWc ∈ R8d×d and bc ∈ Rd are the trainable

weights and biases of the projector layers respectively.

6.3.3 Re-Reading

During this phase, two BiLSTMs are used. First, we use a shared BiLSTM (BiLSTMc)

to aggregate the sequences of computed matching vectors, p and q from the Attention

stage. This aggregation is performed in a sequential manner to ensure that sequential in-

formation in the latent variables is retained. Second, We use another BiLSTM to re-read

and re-encode the previous encoding of the response from the Input Encoding section

(v̄). Such a re-reading process is helpful toward achieving a deeper and more mean-

ingful representation for the response when considered in isolation. The Re-Reading

procedure is done through Equations 6.8, 6.9, and 6.10.

p̄ = BiLSTMc(p) (6.8)

q̄ = BiLSTMc(q) (6.9)

x̄ = BiLSTMu(v̄) (6.10)



101

Finally, we convert p̄ ∈ Rn×2d, q̄ ∈ Rm×2d and x̄ ∈ Rm×2d to fixed-length vectors

using a max pooling layer (Equations 6.11, 6.12, and 6.13).

p̃ = MaxPooling(p̄) (6.11)

q̃ = MaxPooling(q̄) (6.12)

x̃ = MaxPooling(x̄) (6.13)

where p̃ ∈ R2d, q̃ ∈ R2d are the final and fixed representations of the comment and

the response produced via conversation-dependent reading (the right part of the model),

and x̃ ∈ R2d is a separate representation of the response produced by the utterance-only

reading (the left portion of the model).

6.3.4 Classification

To make final prediction, we consider both the utterance-only representation as well

as the conversation dependent representations. Equation 6.14 represents a feed-forward

layer that computes the utterance-only prediction from x̃. For the conversation-dependent

part, we enrich the extracted information from the comment and response by incorpo-

rating the difference and element-wise product of p̃ and q̃ respectively. Equation 6.15

formally describes the prediction procedure for the conversation-dependent part.



102

ou = Uux̃+ au (6.14)

oc = Uc([p̃, q̃, p̃− q̃, p̃� q̃]) + ac (6.15)

where Uu ∈ R2d×2, Uc ∈ R8d×2, au ∈ R2 and ac ∈ R2 are the trainable weights and

biases of the prediction layers respectively. Finally, we combine both predictions (i.e. ou

and oc) using a trainable weight α (Equation 6.16).

output = Softmax(ou + αoc) (6.16)

The model is trained in an end-to-end manner. More detailed information about the

architecture and training can be found in the following section.

6.4 Experiments and Evaluation

6.4.1 Dataset

SARC1 [47] is a self-annotated corpus for sarcasm detection. SARC is the largest

available sarcasm detection dataset for this task and contains more than a million of

sarcastic/non-sarcastic samples extracted from Reddit2. Every instance in SARC is a re-

sponse to a set of comments. The response is annotated by its author as either sarcastic

or non-sarcastic. In this work, we concatenate all of the available comments for each
1http://nlp.cs.princeton.edu/SARC/
2https://www.reddit.com/

http://nlp.cs.princeton.edu/SARC/
https://www.reddit.com/


103

non-sarcastic sarcastic

Train
Data Size 128,541 128,541

# Avg. Comment 60.9 60.9
# Avg. Response 55.0 54.5

Test
Data Size 32,333 32,333

# Avg. Comment 60.8 60.8
# Avg. Response 55.8 54.7

Vocabulary 95,043

Table 6.2: SARC main balanced V2.0 statistics.

response in chronological order into a single comment.

We evaluate our system on the latest version of the balanced SARC (SARC V2.0,

Main balanced). Due to the lack of a pre-defined validation set, we randomly hold out

10% of the training set data as our validation set. All hyper-parameters are tuned based

on the performance on the validation set. Table 6.2 shows the SARC (V2.0) dataset

statistics.

The motivation behind using the SARC dataset as our primary benchmark is three-

fold: (1) SARC is the largest available dataset for sarcasm detection. Consequently,

SARC is the most appropriate dataset for training a sophisticated deep-learning based

model. Also, due to its size, the evaluation results could be considered more robust

and unbiased. (2) SARC is specifically developed to investigate the necessity of con-

textual information in sarcasm detection in realistic settings. This characteristic aligns

well with the motivation of our work. (3) This dataset is author-annotated and has a

small false-positive rate for the sarcastic labels [47], thus providing reliable annotations.

Importantly, its self-annotation characteristic avoid annotation errors induced by third-

party annotators.



104

6.4.2 Experimental Setup

We use the pre-trained 300-D Glove 840B vectors [70] to initialize our word embedding

vectors. All hidden states of BiLSTMs for both input encoding and re-reading have

300 dimensions (r = 300 and d = 300). The weights are learned by minimizing the

log-loss (Equation 6.17) on the training data via the Adam optimizer [48]. The initial

learning rate is 0.0001. To avoid overfitting, we use dropout [86] with the rate of 0.5

for regularization, which is applied to all feedforward connections. During training, the

word embeddings are updated to learn effective representations for the sarcasm detection

task. We use a fairly small batch size of 32 to provide more exploration power to the

model. We consider 200 and 100 as the maximum acceptable length of the comment

and response respectively (n ≤ 200 and m ≤ 100). In other words, only 200 and 100

words of the given comment and response is processed and the rest (in case of existence)

are thrown away.

y∗i = argmax(outputi)

l = − 1

N

N∑
i=0

(yi log(y∗i ) + (1− yi) log(1− y∗i ))
(6.17)

6.4.3 Results

Here we evaluate our model based on two versions of SARC. (1) [34] is the most recent

work that use SARC dataset for evaluation. It is not clear which version of SARC is



105

Model Test Set
F1 Accuracy

(1) Bag of Words 64% 63%
(2) CNN 66% 65%
(3) CASCADE − Personality Feature 66% 68%
(4) CNN-SVM [73] 68% 68%
(5) CUE-CNN [2] 69% 70%
(6) CASCADE [34] 77% 77%
(7) Ours (AMR) 68% 70%

Table 6.3: F1-measures and Accuracies of models on the test set of SARCcsd. The
second three (4,5, and 6) models benefit from personality feature (their results are shown
in blue). Whereas the first three models (1,2, and 3), similar to our model; only rely on
response or response and comment. Our models (AMR) achieves the F1-measure and
accuracy of 68% and 70% respectively, the best results observed on SARCcsd among
similar methods which does not use personality features.

used, but they have released their train and test sets3. We refer to this dataset as SARCcsd

in the rest of this work. In this sub-section (Results), we use SARCcsd to compare our

system with the reported performances in [34]. (2) We use the SARC V2.0 in next

section (Ablation and Configuration Study) to report standard results on SARC V2.0

and compare the performance of different configurations of our model.

Table 6.3 shows the F1-measures and accuracies of models on the test set of SARCcsd.

The first row shows the results of a baseline classifier using the bag-of-words method.

All other listed models are deep learning based. The second model is a simple CNN

applied to the given utterance/response. The third system is the CASCADE model [34]

without using the personality features. This system use the context in a pipeline manner

via a discourse feature vector. The next three reported models benefit from stylometric

3https://github.com/SenticNet/CASCADE–Contextual-Sarcasm-Detection

https://github.com/SenticNet/CASCADE--Contextual-Sarcasm-Detection


106

and personality features (The result of such methods are shown in blue).

Bag-of-words approach obtained the lowest performance whereas all deep learning

based models outperform it. Among all deep learning ones, the CNN baseline has the

lowest performance. The CNN baseline only relies on the given utterance/response

highlighting the impact and importance of considering both comment and response in

the disambiguation process.

Comparing methods that benefit from personality features and user profiling (4,5,

and 6) with the ones that do not (1,2, and 3), it is clear that such features are very helpful

for sarcasm detection. However, user profiling helps a model primarily by providing

information about the user’s behavior or how the user forms sarcastic sentences. In

other words, it does not really enrich the model’s capability toward understanding what

constructs sarcasm in general. More over, user history and information may not always

be available for extracting such features. Importantly, one of the main goals of this

work is to move toward solving the sarcasm understanding issue in a dialog system.

In particular, we are mainly interested in the language understanding aspect of sarcasm

detection. As such, we aim to build an end-to-end system that does not depend on any

additional information or assumption (user profiling, topic modeling, etc.) other that

the sequence of the sentences (the conversation). Due to these considerations, the fair

comparison would be comparing the results of our system with the fist three models in

Table 6.3, which demonstrates the effectiveness of our models.

From Table 6.3 we can see that AMR achieves an F1-measure and accuracy of 68%

and 70% respectively on the test set of SARCcsd, which are the best reported results

among the existing comparable baselines for sarcasm detection. Here we obtain 2% im-



107

Models SARC V2.0 Test Set
Precision Recall F1-Measure Accuracy

(01) AMR 69.33% 69.64% 69.48% 69.45%
(02) Conversation-dependent 70.23% 66.36% 68.24% 69.11%
(03) Utterance-only 70.86% 64.66% 67.62% 69.04%
(04) AMR − Attention 69.39% 68.79% 69.09% 69.22%
(05) AMR − Re-Reading 72.93% 60.20% 65.96% 68.93%
(06) AMR − Re-Reading − Attention 74.76% 55.31% 63.58% 68.32%
(07) AMR − difference 70.07% 67.53% 68.78% 69.34%
(08) AMR − Element-Wise product 70.41% 67.01% 68.67% 69.42%
(09) AMR − E-W product − difference 71.19% 65.50% 68.23% 69.45%
(10) AMR with only E-W product 70.75% 65.05% 67.78% 69.07%
(11) AMR − train embedding 67.22% 69.68% 68.43% 67.85%

Table 6.4: Ablation study results. Precision, Recall, F1-Measure, and Accuracy of
different models on the test set of SARC V2.0.

provement on both F1-measure and accuracy on the test data of SARCcsd in comparison

with the previous state-of-the-art system; CASCADE without personality feature (row 3

in the Table 6.3). It is interesting to note that although we do not employ user profiling,

our performance is similar and competitive with several baselines that use user profiling

(CNN-SVM [73] and CUE-CNN [2]).

6.4.4 Ablation and Configuration Study

In this section, we conduct an ablation and configuration study of our model to examine

the importance and effect of each major component. We report the performance (Preci-

sion, Recall, F1-Measure, and Accuracy) of different variants of our model on the test

set of SARC V2.0 in Table 6.4.

The first row shows the performance of the proposed model, AMR. Rows 2 and 3



108

study the impact of the conversation-dependent and utterance-only parts of the models.

Rows 4-6 examine the impact of attention and re-reading stages by removing either

one (rows 4 and 5) or both components (row 6). Rows 7-10 investigate the effect of

data augmentation in attention and classification of conversation-dependent part of the

proposed model. Specifically, we consider removing the different data augmentations

shown in Equation 6.6, 6.7, and 6.15. Finally, row 11 shows the result of our model

without fine-tuning the word embedding during the training procedure.

First, we compare the models based on their F1-Measure and Accuracy. The results

show that removing any part of our model leads to reduced test set performance both

in terms of F1-Measure and accuracy (expect for row 9 where accuracy remained the

same), indicating the usefulness of these components in general.

We observe that AMR performs noticeably better than both Utterance-only and

Conversation-dependent configurations, validating the intuition of our design. It is note-

worthy that Conversation-dependent model performs better than the other one, suggest-

ing the importance of considering the conversation and context for this task. Compar-

ison of rows 4, 5, and 6 suggests that although both of Attention and Re-Reading are

important, but Re-Reading has a more significant impact on the performance of AMR.

A closer look into the precisions and recalls of the different models suggests an inter-

esting trend — removing different components of the model typically leads to improved

precision in sarcasm detection but suffers from significantly reduced recall. This is evi-

denced by the results of the first 10 rows. Comparing the first three rows, it is interesting

to note that either part of the model (conversation-dependent or utterance-only) individ-

ually achieves slightly higher precision but significantly lower recall. The fact that by



109

combining the two our model was able to achieve significantly improved recall suggests

that the two parts were able to detect different types of sarcasms, which is consistent

with our intuition.

Removing fine-tuning of the word embedding during the training has an opposite

effect with reduced precision but little or no impact on the recall. This suggests that

by fine tuning the word embeddings for the sarcasm detection task, we were able to

increase the specificity of the sarcasm detector without sacrificing the sensitivity.

6.5 Analysis

In this section, we first show visualization of the energy functions (i.e. attention) in

the attention stage (Equation 6.3) and its saliency for an instance from the SARC V2.0

test set. Next, we study the performance of our system (Utterance-only, Conversation-

dependent and AMR) against the length of comment and response.

6.5.1 Attention Study

Here we show a visualization of the normalized attention (Equation 6.3) and normalized

attention saliency4 in Figure 6.2.

We show a comment and response pair, where the comment is “man accidentally

shoots himself when concealed weapon goes off in movie theater.”, and the response is

“just another responsible gun owner exercising his rights under the 2nd amendment.”

which is a sarcastic response and AMR identifies it as sarcastic response as well. At-
4For more details refer to Ghaeini et al. (2018c)[25]



110

man

acc
ide

nta
lly
sho

ots

him
sel

f
whe

n

con
cea

led

wea
po

n
go

es off in
mov

ie

the
ate

r

Comment

jus
tan

oth
er

res
po

nsi
ble
gu

now
ne

r
ex

cer
cis

ing
his

rig
hts

un
de

r
the
2n

d
am

en
dm

en
t

Re
sp

on
se

(a) Attention

0.0

0.2

0.4

0.6

0.8

1.0

man

acc
ide

nta
lly
sho

ots

him
sel

f
whe

n

con
cea

led

wea
po

n
go

es off in
mov

ie

the
ate

r

Comment

jus
tan

oth
er

res
po

nsi
ble
gu

now
ne

r
ex

cer
cis

ing
his

rig
hts

un
de

r
the
2n

d
am

en
dm

en
t

(b) Attention Saliency

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2: Normalized attention (a, top) and normalized attention saliency (b, bottom)
visualization for a sarcastic instance from the test set of SARC V2.0.

tention visualization in Figure 6.2 indicates that the model could successfully attend to

relevant pairs of words like <gun, shoots>, <gun, concealed>, <gun, weapon>, <his,

himself>, etc. However, still we cannot clearly explain the model’s prediction. Thus we

use the attention saliency to visualize the impact of each word pair toward the model’s

prediction. Attention saliency is the absolute value of the partial derivative of the model

prediction respect to the attention. Larger saliency indicates stronger impact on the

model’s prediction. According to the attention saliency visualization in Figure 6.2 (b),

the phrase pair of <another responsible gun, man accidentally shoots> has the highest

impact toward identifying the aforementioned example as sarcastic, which is consistent

with human intuition. This demonstrates and verifies the model’s ability in understand-

ing comment and response and then utilizing the crucial relationships between the com-

ment and response for identifying sarcastic responses. The word “responsible” in the



111

60

65

70

 10  20  30  40  50  60  70  80  90 100
Length of the Comment

A
cc

ur
ac

y
A

70

80

90

 10  20  30  40  50  60  70  80  90 100
Length of the Response

B

Models Utterance Prediction Conversational Prediction AMR Prediction

Figure 6.3: Test accuracy of AMR and its sub-parts (Utterance-only and Conversation-
dependent) against the length of the comment (A) and response (B).

response appears to be the key phrase that deliver the sarcastic intent of the response

— when paired with the phrase “man accidentally shoots” we see the highest saliency,

suggesting the most significant impact toward the final prediction.

6.5.2 Length Study

One of the advantage of our model is its prediction interpretability. AMR contains two

major parts; Utterance-only and Conversation-dependent. Each part makes its own pre-

diction. Then AMR combines utterance-only and conversation-dependent predictions

using a trainable variable α to obtains its final prediction. Consequently, the impact of

each part toward the final prediction can be computed. In other words, we can determine

which part affects the final prediction the most.

Figure 6.3 depicts the performance of AMR (green line), Utterance-only part (red



112

line), and Conversation-dependent part (blue lines) against length of the comment (A,

left), and length of the response (B, right) respectively.

According to Figure 6.3, the utterance-only part provides more accurate predictions

for short comments (n ≤ 50). We believe that the utterance-only part of AMR is capable

of automatically extracting useful lexical and grammatical cues from utterance which

could be beneficial for detecting sarcastic utterances/responses. Consequently, among

samples with short comment; thus less contextual information, the utterance-only part

shows better performance. It is noteworthy that the performance of AMR is almost

always higher than both utterance-only and conversation-dependent parts. However, the

conversation-dependent part performs better for longer comments (50 < n ≤ 200).

This observation is consistent with our expectation because long comments are more

likely to have relevant and crucial information for determining the sarcastic intent of the

response. Such an analysis verifies the intuition behind the design our model.

Despite of the plot A in Figure 6.3, plot B does not reflect a very coherent behav-

ior and trend among the reported settings. Interestingly, for the very short responses

category (m ≤ 10) which is also the most frequent response category, the conversation-

dependent part performs better than the utterance-only part. Due to lack of information

in very short responses, disambiguation of such samples are usually reliant on the com-

ment. If we ignore the aforementioned category (m ≤ 10), plot B illustrates similar

behavior and trend for utterance-only and conversation-dependent parts. The utterance-

only part perform better for short responses (10 < m ≤ 50) and the conversation-

dependent part beats the utterance-only part for long responses (50 < m ≤ 100).

Overall, Figure 6.3 suggests that the conversation-dependent part performs better



113

when (1) we do not have enough information in the response (m ≤ 10) or (2) the

response or the comment is too long (n,m > 50). We believe that in case of dealing

with long comment or response, we require some guidance for attending to the important

and influential sub-parts of the comment or response. Such a goal can be achieved by

utilizing an attention mechanism on both comment and response.

6.6 Conclusion

We propose a novel interpretable end-to-end sarcasm detection model that benefits from

both the utterance and the conversational context in parallel. Our evaluations success-

fully demonstrate the effectiveness of the proposed model. We provide an extensive

oblation study that illustrates and justifies the importance and impact of different com-

ponents of the proposed model. Moreover, we study the model’s behavior by visualizing

attention and attention saliency. Finally, we present an interesting data analysis to ex-

amine the impact of utterance and conversational context on the model’s predictions.

Our future work will extend our study to include the world fact information in the dis-

ambiguation procedure to produce more robust and accurate predictions.



114

Chapter 7: Gated BERT: Toward Interpreting and Understanding BERT

This chapter describes an unpublished work done during an internship at Microsoft Re-

search in 2019.

7.1 Introduction

BERT (Bidirectional Encoder Representation from Transformers) [18] is a bidirectional

variant of Transformer networks [91]. BERT can be fine-tuned for a wide range of NLP

tasks such as natural language inference, sentiment analysing, and paraphrase identifi-

cation without substantial modification. One of the main baselines for evaluating perfor-

mance of BERT is the GLUE (General Language Understanding Evaluation) benchmark

[97]. The GLUE benchmark contains a variety of sentence- or sentence-pair language

understanding tasks such as Linguistic Acceptability, Sentiment Analysing, Paraphrase

Identification, Natural Language Inference, etc. The noticeable performance improve-

ment of BERT on the GLUE benchmark compared to previous state-of-the-art methods

has attracted a lot of attention to BERT. However, it is unclear how and why it actually

works.

There are a few attempts toward studying the behavior of BERT [93, 62, 76, 40, 89].

Voita et al. (2019) and Michel et al. (2019) focus on studying the necessity having all

attention heads and layers. Their observations suggest that many of attention heads can



115

be eliminated without a noticeable drop in performance of specific tasks [93, 62]. Co-

enen et al. (2019), Jawahar et al. (2019), and Tenney et al. (2019) investigate capability

of BERT in capturing different linguistic features. Coenen et al. (2019) find evidence

of a fine-grained geometric representation of word senses [76]. Jawahar et al. (2019)

provide evidences that BERT intermediate layers encode a rich hierarchy of linguistic

information, with surface features at the bottom, syntactic features in the middle and

semantic features at the top [40]. Finally, Tenney et al. (2019) demonstrate that BERT

is capable of extracting linguistic features such as POS tagging, parsing, NER, semantic

roles, and coreference [89].

In this work, borrowing from ELMo [71], we introduce a variation of BERT named

Gated BERT. The intuition behind Gated BERT is to shed a light on the behaviour

of BERT to help us in obtaining more powerful and more reliable method in future.

To achieve this goal, we changed the task disambiguation part of BERT – which is

simply passing the vector representation of “[CLS]” token of the last layer to a linear

feedforward layer – to a layer-wise gated mechanism. Here, we introduce a weight for

every layer of the BERT which determines how much that specific layer should influence

input of the task disambiguation part (The linear feedforward layer). Each task has its

own set of layer weights, so by looking at the values and their update trends, we can

approximately identify the purpose and importance of different layers for different tasks.

Moreover, we observe improvement on BERT performance on the development and test

sets of most GLUE tasks. In parallel, we study the necessity of having all 24 layers

of the BERT (large version). We would like to shrink the model while preserving its

performance and capability to make BERT feasible to be used in real-world applications.



116

Finally, we describe the implemented demo for this work which provides a variety of

interpretation features to this work.

7.2 Preliminary: BERT

Figure 7.1 depicts a high-level view of the BERT model for classification and regression

tasks. BERT for classification and regression tasks could be divided to three major

components: Embedding, Transformer Layers, and Prediction.

7.2.1 Embedding

For a given token, its embedding is constructed by summing the corresponding token,

segment, and position embeddings. BERT is not a sequential model and it is not capable

of distinguishing occurrence of a token in different positions. To simulate the sequential

nature of textual data, BERT uses position embeddings. Moreover, the segment embed-

ding enables BERT model to handle cases when we have different segments of data in

the input. For example, when the input source is a sentence-pair (e.g. natural language

inference that we have “premise” and “hypothesis”). So, each sentence can have a dif-

ferent segment id and embedding which help distinguishing tokens and occurrences in

different sentences and segments. Equation 7.1 describes the embedding construction

of BERT model.

et = wt + pt + st; wt, pt, st ∈ Rd (7.1)



117

Token Embd Segment Embd Position Embd

Embd

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

BERT POOLER

Linear FeedForward

Layer 1

Layer 2

Layer 3

Layer 4

Layer 24

Figure 7.1: A high-level view of BERT model.

where wt, pt, st ∈ Rd are token embedding, position embedding, and segment embed-

ding of token ”t” respectively and d is the embedding size and dimension.

7.2.2 Transformer Layer

BERT has two main variation; BERT-base and BERT-large (we use the BERT-large vari-

ation in this work). BERT-base and BERT-large have 12 and 24 layers of Transformer



118

network [91] respectively. We omit an exhaustive explanation of Transformer network

but in short, Equations 7.2 and 7.3 represent the Transformer network. The Transformer

network is a Multi-Head Attention (as shown in Equation 7.2) and each attention head

is a Scaled Dot-Product Attention (as shown in Equation 7.3) 1.

MultiHead(Q,K, V ) = Concat(head1, · · · , headh)WO

where headi = Attention(QWQ
i , KW

K
i , V W

V
i )

(7.2)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7.3)

Here, Q,K, V are the query, key, and value representation respectively. But in

BERT, all these representation are the same (Q = K = V ). Also, the projections

are parameter matrices WQ
i ∈ Rd×dk ,WK

i ∈ Rd×dk ,W V
i ∈ Rd×dk , and WO ∈ Rhdk×d.

7.2.3 Prediction

The first token of every input sequence is always a special classification token (“[CLS]”).

The final hidden state corresponding to this token is used as the aggregate sequence rep-

resentation for disambiguation and decision making of downstream tasks. This special

token is feed into a linear feedforward layer. Equation 7.4 describes the prediction pro-

cess.
1Please refer to Vaswani et al. (2017) [91] for more details.



119

Token Embd Segment Embd Position Embd

Embd

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Weighted SUM

Linear FeedForward

Layer 1

Layer 2

Layer 3

Layer 4

Layer 24 W24

W4

W3

W2

W1

Figure 7.2: A high-level view of Gated BERT (G-BERT) model.

Prediction = FF(hL0 ); L = 24, |Prediction| = #classes (7.4)

7.3 Gated BERT

Here, we propose a simple modification to BERT which could potentially yield better

performance and also shed a light on behavior of the BERT. As described in Section

7.2.3, BERT uses the final hidden state corresponding to “[CLS]” token (hL0 ) for disam-



120

Sentence Label
Rusty talked about himself only after Mary did talk about him. Correct
Here’s a knife with which for you to cut up the onions. Incorrect

Table 7.1: Two data samples from the CoLA corpus.

biguation and decision making. Here, we introduce a set of weights associated to each

layer of BERT (αi ∈ R) and then modify the prediction mechanism of BERT (Equation

7.4) to Equation 7.5. According to Equation 7.5, the weighted sum of “[CLS]” tokens of

all layers is passed into the linear feedforward layer for disambiguation. Therefore, cap-

tured information in each layer could influence the disambiguation and decision making

process. Such a method introduces an interpretability capability to the proposed method

(Gated BERT). Figure 7.2 illustrates the proposed Gated BERT model.

Prediction = FF(
L∑
i=1

αih
i
0); L = 24 (7.5)

7.4 Experiments and Evaluation

7.4.1 Dataset

We evaluate BERT and Gated BERT on multiple tasks from the GLUE benchmark;

CoLA, MNLI, MRPC, QNLI, RTE, SST-2, STS-B. Below we describe these tasks and

datasets in details:

• CoLA (The Corpus of Linguistic Acceptability): CoLA is a set of 10,657 English

sentences labeled as grammatical or ungrammatical from published linguistics

literature [100]. The public version contains 9594 sentences belonging to training



121

ID Sentence Label

1

He said the foodservice pie business doesn’t fit the

Paraphrase
company’s long-term growth strategy.
The foodservice pie business does not fit our
long-term growth strategy.

2
No dates have been set for the civil or the criminal trial.

Non-ParaphraseNo dates have been set for the criminal or civil cases,
but Shanley has pleaded not guilty.

Table 7.2: Two data samples from the MRPC corpus.

ID Sentence Label

1
What came into force after the new constitution was herald?

EntailmentAs of that day, the new constitution heralding the Second
Republic came into force.

2
What is the minimum required if you want to teach in Canada?

Non-EntailmentIn most provinces a second Bachelor’s Degree such as a
Bachelor of Education is required to become a qualified teacher

Table 7.3: Two data samples from the QNLI corpus.

Sentence Label
it’s a charming and often affecting journey. Positive
or doing last year’s taxes with your ex-wife. Negative

Table 7.4: Two data samples from the SST-2 corpus.

ID Sentence Score

1
A man with a hard hat is dancing.

5.00
A man wearing a hard hat is dancing.

2
A panda is climbing.

1.60
A man is climbing a rope.

3
A woman is taking a picture.

0.25
A man is playing a guitar.

4
A man is playing a flute.

0.00
A man is playing a flute.

Table 7.5: Four data samples from the STS-B corpus.



122

and development sets, and excludes 1063 sentences belonging to a held out test

set. Table 7.1 shows two examples from this corpus.

• MNLI (Multi-Genre Natural Language Inference): MultiNLI is a crowd-sourced

collection of 433k sentence pairs annotated with textual entailment information

[101]. MNLI is modeled on the SNLI corpus (see section 3.4.1 for more details),

but differs in covering a range of genres of spoken and written text, and supports

a distinctive cross-genre generalization evaluation.

• MRPC (Microsoft Research Paraphrase Corpus): MRPC corpus is a paraphrase

identification dataset. The goal of this task is to identify if two sentences are

paraphrases of each other. The evaluation metric for MRPC is accuracy and F1.

Table 7.2 shows two examples from this corpus.

• QNLI (Question Natural Language Inference): QNLI task is similar to MNLI

in nature. Given a question and a sentence, the goal of QNLI is to determine

if the question can be answered by the given sentence (entailment) or not (non-

entailment). Table 7.3 shows two examples from this corpus.

• RTE (Recognizing Textual Entailment): The goal of RTE is the same as MNLI

and SNLI.

• SST-2 (The Stanford Sentiment Treebank): This is a sentiment analysing task.

SST-2 contains fine grained sentiment labels for 215,154 phrases in the parse trees

of 11,855 sentences [84]. Table 7.4 shows two examples from this corpus.



123

Set CoLA MNLI MRPC QNLI RTE SST-2 STS-B
Train 8,551 392,702 3,668 104,743 2,490 67,349 5,749
Dev 1,043 19,647 408 5,463 277 872 1,500
Test 1,063 19,643 1,725 5,463 3,000 1,821 1,379

Table 7.6: GLUE benchmark Data Statistics

• STS-B (Semantic Textual Similarity Benchmark): This is a semantic textual sim-

ilarity task and it measures the relatedness of two sentences. The evaluation crite-

rion for this task is Pearson correlation. Table 7.5 shows four examples from this

corpus. This is the only regression task in this work.

Finally, Table 7.6 illustrates data statistics of the described datasets.

7.4.2 Training

BERT and Gated BERT (embeddings and 24 transformer layers) are initialized using

the pre-trained weights. We train the BERT and Gated BERT with the same settings and

compare their results when (1) embeddings and 24 layers weights are fixed (first cate-

gory; Fixed BERT and G-BERT) and when (2) we fine-tune whole parameters (second

category; BERT and G-BERT + Fine-Tuning). Figure 7.3 and 7.4 demonstrate fixed

parameters and trainable parameters of Fixed BERT and Gated BERT respectively. The

gray parts are fixed and the blue parts are trainable and will be updated during the train-

ing. Also, Figure 7.5 represents a high-level illustration of Fixed BERT and Gated BERT

training procedure and parts.

We use two initialization methods for the introduced weights (αi ∈ R). The first

method is called average initialization (“avg” for short). In this method, all weight are



124

Token Embd Segment Embd Position Embd

Embd

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

BERT POOLER

Linear FeedForward

Layer 1

Layer 2

Layer 3

Layer 4

Layer 24

Figure 7.3: Demonstration of fixed and trainable parts of the Fixed BERT. Gray parts
are fixed and Blue parts are trainable and will be updated during the training.

uniformly sampled from [ 1
L
− 0.001, 1

L
+ 0.001] distribution where L is the number of

transformer layers (Figure 7.6). The second one is called last initialization (“last” for

short). In this method, last layer weight (αL) is set to 1.0 and the rest of them (αi, i ∈

{1, · · · , L− 1}) are uniformly sampled from [−0.001, 0.001] distribution (Figure 7.7).



125

Token Embd Segment Embd Position Embd

Embd

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Weighted SUM

Linear FeedForward

Layer 1

Layer 2

Layer 3

Layer 4

Layer 24 W24

W4

W3

W2

W1

Figure 7.4: Demonstration of fixed and trainable parts of the Gated BERT. Gray parts
are fixed and Blue parts are trainable and will be updated during the training.

7.4.3 Experimental Results

Tables 7.7 and 7.8 shows the development results of Fixed BERT, Gated BERT (average

initialization), Gated BERT (last initialization), BERT, Gated BERT (average initializa-

tion) + Fine-Tuning, and Gated BERT (last initialization) + Fine-Tuning on development

set and test set of GLUE benchmark respectively.

According to Tables 7.7 and 7.8, the general trend indicates that Gated BERT per-

forms better than BERT (with and without fine-tuning). Moreover, Gated BERT (aver-



126

Experiment Setting
• Evaluating BERT and G-BERT on a variety of NLP tasks

33

BERT

Task 1

Task 2

Task n

Linear 1

Linear 2

Linear n

BERT

Task 1

Task 2

Task n

Layer Ws 1

Layer Ws 2

Layer Ws n

Linear 1

Linear 2

Linear nG
at

ed
 B

ER
T

Fi
xe

d 
BE

RT

Fine-Tuning 
Parameters

Figure 7.5: High-level demonstration of fixed and trainable parts of the Fixed BERT and
Gated BERT. G-BERT (avg init)

Token Embd Segment Embd Position Embd

Embd

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Weighted SUM

Linear FeedForward

Layer 1

Layer 2

Layer 3

Layer 4

Layer 24 W24

W4

W3

W2

W1

36

Token Embd Segment Embd Position Embd

Embd

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Weighted SUM

Linear FeedForward

Layer 1

Layer 2

Layer 3

Layer 4

Layer 24 W24

W4

W3

W2

W1

↵i s U(
1

24
� 0.001,

1

24
+ 0.001);

i 2 {1, 2, · · · , 24}
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 7.6: Layer weights average initialization visualization.

age initialization) performs better than Gated BERT (last initialization). This observa-

tion suggests that average initialization yields higher weight exploration and capability



127G-BERT (avg init)

Token Embd Segment Embd Position Embd

Embd

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Weighted SUM

Linear FeedForward

Layer 1

Layer 2

Layer 3

Layer 4

Layer 24 W24

W4

W3

W2

W1

36

Token Embd Segment Embd Position Embd

Embd

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Attention Head 1 Attention Head 2 Attention Head 16…

Weighted SUM

Linear FeedForward

Layer 1

Layer 2

Layer 3

Layer 4

Layer 24 W24

W4

W3

W2

W1

↵i s U(
1

24
� 0.001,

1

24
+ 0.001);

i 2 {1, 2, · · · , 24}
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 7.7: Layer weights last initialization visualization.

Model
CoLA MNLI MRPC QNLI RTE SST-2 STS-B (pearson
(mcc) (m/mm) (f1/acc) (acc) (acc) (acc) /spearman)

Fixed BERT 49.3 67.3/68.4 84.1/75.5 80.3 59.9 90.7 84.5/84.6
G-BERT(avg) 46.9 74.0/74.5 84.0/75.0 85.0 64.3 91.4 86.5/86.1
G-BERT(last) 43.9 71.4/72.5 84.5/75.7 82.5 60.6 90.9 84.9/84.9

BERT 59.2 86.6/86.6 87.9/82.8 92.4 67.5 94.6 87.9/91.6
G-BERT(avg)

64.3 86.6/86.5 91.9/88.5 92.4 74.7 93.6 90.6/90.3
+ Fine-Tuning
G-BERT(last)

61.4 86.3/86.2 90.9/86.8 92.4 72.2 94.0 90.8/90.5
+ Fine-Tuning

Table 7.7: Performance of Fixed BERT and Gated BERT models on the development
set of GLUE tasks.

to obtain better performance. We believe Gated BERT (last initialization) stuck in a local

minimum and forced using mostly last layer for disambiguation and decision making.



128

Model
CoLA MNLI MRPC QNLI RTE SST-2 STS-B

Score
(mcc) (m/mm) (f1/acc) (acc) (acc) (acc) (S/P)

Fixed BERT 43.7 67.6/68.2 82.6/74.0 79.9 60.5 91.9 77.2/74.1 69.5
G-BERT(avg) 41.8 74.0/73.7 83.2/74.7 84.5 63.9 92.1 80.5/77.7 71.3
G-BERT(last) 43.4 71.7/72.1 82.6/74.0 82.4 61.4 91.3 78.8/75.9 70.4

BERT 59.8 86.0/85.4 87.4/82.4 92.1 67.1 94.5 86.0/84.8 77.4
G-BERT(avg)

60.6 86.0/85.2 89.0/85.0 92.3 69.0 94.3 87.4/86.3 78.1
+ Fine-Tuning
G-BERT(last)

57.1 85.5/85.2 89.2/84.9 92.4 68.8 94.2 87.5/86.5 77.7
+ Fine-Tuning

Table 7.8: Performance of Fixed BERT and Gated BERT models on the test set of GLUE
tasks.

7.4.4 Analysis

7.4.4.1 Layer Influence and Understanding

Here, we visualize the normalized layer gate weights for Gated BERT (average initial-

ization) and Gated BERT (average initialization) + Fine-Tuning across different tasks

(Figures 7.8 and 7.9 respectively). Among all GLUE tasks, STS-B is the only regres-

sion one and we observe different pattern and behavior for this task. For the rest of tasks

(classification ones) we have a similar trends suggesting that top 8 layers are the most ef-

fective layers for disambiguation and decision making. This observation and hypothesis

is verified by the trends and behavior of layer gate weights for Gated BERT + Fine-

Tuning in Figure 7.9. Note that after fine-tuning, all weights are changed and behavior

of the models are not comparable across GLUE tasks, but still, Figure 7.9 demonstrates

that fine-tuning all parameters yields even more attention on the top layers of the model

across all tasks.

This observation suggests an interesting approach for model size reduction and speed



129

L1L2L3L4 L5L6L7L8L9L1
0
L1

1
L1

2
L1

3
L1

4
L1

5
L1

6
L1

7
L1

8
L1

9
L2

0
L2

1
L2

2
L2

3
L2

4

ST
S-

B

QNLI

RTE

M
NLI

M
RPC

SS
T-

2

CoL
A

T
a
sk

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7.8: Normalized layer gate weights of Gated BERT model (average initialization)
for GLUE tasks. Darker color illustrates higher weight value.

L1L2L3L4 L5L6L7L8L9L1
0
L1

1
L1

2
L1

3
L1

4
L1

5
L1

6
L1

7
L1

8
L1

9
L2

0
L2

1
L2

2
L2

3
L2

4

ST
S-

B

QNLI

RTE

M
NLI

M
RPC

SS
T-

2

CoL
A

T
a
sk

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7.9: Normalized layer gate weights of Gated BERT (average initialization) +
Fine-Tuning for GLUE tasks. Darker color illustrates higher weight value.

up in inference. Theoretically, we can model the behavior of the first 14 layers of BERT

or Gated BERT by one or two layers using student-teacher methods [38, 9].



130

Model
CoLA MNLI MRPC QNLI RTE SST-2 STS-B (pearson
(mcc) (m/mm) (f1/acc) (acc) (acc) (acc) /spearman)

0 Layer Drop 42.2 72.6/73.1 83.8/74.0 83.9 62.8 90.1 85.8/85.6
1 Layer Drop 42.2 72.2/72.9 83.5/74.0 83.8 63.5 90.1 85.9/85.6
2 Layer Drop 42.2 70.1/71.4 83.6/74.0 83.8 63.2 89.9 84.8/85.6
6 Layer Drop 38.4 70.8/71.9 83.9/74.3 83.8 65.0 87.5 85.5/85.3
12 Layer Drop 0.0 59.1/60.5 82.6/71.3 77.8 65.0 79.5 75.1/75.9
18 Layer Drop 0.0 56.3/56.5 81.2/68.4 65.6 60.6 78.7 15.4/13.2

Table 7.9: Performance of Gated BERT model on the development set of GLUE tasks
when 0, 1, 2, 6, 12, and 18 top layers of the Gated BERT model are dropped.

7.4.4.2 Layer Importance

Here, we study the impact of removing top layers of the Gated BERT. Table 7.9 shows

performance of Gated BERT on the development set of GLUE tasks when 0, 1, 2, 6,

12, and 18 top layers of the Gated BERT are dropped (different initialization seed is

used for this experiment). According to Table 7.9, removing more than two layers from

the top of the Gated BERT model yields a noticeable drop in performance on GLUE

tasks. Figures 7.10, 7.11, 7.12, 7.13, and 7.14 indicates normalized layer gate weights

for Gated BERT (average initialization) when 0, 1, 2, 6, and 12 top layers of the Gated

BERT are dropped respectively. Aforementioned figures suggest that removing up to

6 layers does not yield a significant change in the behavior and trend of normalized

layer gate weights of the Gated BERT model (while causing noticeable impacts on the

performance) but removing 12 layers yields a drastic change of the behavior and trend,

again, verifying the importance of the top layers of the model.



131

L1L2L3L4 L5L6L7L8L9L1
0
L1

1
L1

2
L1

3
L1

4
L1

5
L1

6
L1

7
L1

8
L1

9
L2

0
L2

1
L2

2
L2

3
L2

4

ST
S-

B

QNLI

RTE

M
NLI

M
RPC

SS
T-

2

CoL
A

T
a
sk

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7.10: Normalized layer gate weights of Gated BERT model (average initializa-
tion) for GLUE tasks when none of the layers are dropped. Darker color illustrates
higher weight value.

L1L2L3L4 L5L6L7L8L9L1
0
L1

1
L1

2
L1

3
L1

4
L1

5
L1

6
L1

7
L1

8
L1

9
L2

0
L2

1
L2

2
L2

3
L2

4

ST
S-

B

QNLI

RTE

M
NLI

M
RPC

SS
T-

2

CoL
A

T
a
sk

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7.11: Normalized layer gate weights of Gated BERT model (average initial-
ization) for GLUE tasks when the last top layer (layer 24) is dropped. Darker color
illustrates higher weight value.



132

L1L2L3L4 L5L6L7L8L9L1
0
L1

1
L1

2
L1

3
L1

4
L1

5
L1

6
L1

7
L1

8
L1

9
L2

0
L2

1
L2

2
L2

3
L2

4

ST
S-

B

QNLI

RTE

M
NLI

M
RPC

SS
T-

2

CoL
A

T
a
sk

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7.12: Normalized layer gate weights of Gated BERT model (average initializa-
tion) for GLUE tasks when the last two top layers (layers 23 and 24) are dropped. Darker
color illustrates higher weight value.

L1L2L3L4 L5L6L7L8L9L1
0
L1

1
L1

2
L1

3
L1

4
L1

5
L1

6
L1

7
L1

8
L1

9
L2

0
L2

1
L2

2
L2

3
L2

4

ST
S-

B

QNLI

RTE

M
NLI

M
RPC

SS
T-

2

CoL
A

T
a
sk

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7.13: Normalized layer gate weights of Gated BERT model (average initializa-
tion) for GLUE tasks when the last six top layers (layers 19 to 24) are dropped. Darker
color illustrates higher weight value.



133

L1L2L3L4 L5L6L7L8L9L1
0
L1

1
L1

2
L1

3
L1

4
L1

5
L1

6
L1

7
L1

8
L1

9
L2

0
L2

1
L2

2
L2

3
L2

4

ST
S-

B

QNLI

RTE

M
NLI

M
RPC

SS
T-

2

CoL
A

T
a
sk

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7.14: Normalized layer gate weights of Gated BERT model (average initializa-
tion) for GLUE tasks when the last 12 top layers (layers 13 to 24; second half of the
model) are dropped. Darker color illustrates higher weight value.

7.5 Demo

Here, we describe the demo that is implemented for this work. This demo is capable

of effectively visualizing the behavior of BERT and Gated BERT for all layers and

components. In other words, we can potentially examine and study the behavior of any

layer and components of these models. Figure 7.15 shows a screenshot of the demo for

a sample from SST-2 corpus. The given sample and sentence in Figure 7.15 is “or doing

last year taxes with your ex-wife.”. Figure 7.16 is a screenshot of the result page of the

demo. Here, the system has predicted that the given sentence is Negative. The demo

can help us to obtain a better understanding of the intuition behind the model prediction.

Figure 7.17 illustrates inspection of the embedding layer for the given sentence. The

first row from bottom shows the normalized embedding weight values. The middle row



134

Figure 7.15: First page of the demo for the sentiment analysing task (SST-2)

Figure 7.16: Result page of the demo for the sentiment analysing task (SST-2)

depicts the normalized gradient/saliency of the embeddings. Lastly, the third row from

bottom indicates the normalized Taylor score of the embeddings. The Taylor score is

defined as the multiplication of weight value and the gradient/saliency. Figure 7.17

suggests that “taxes” has the highest weight value, gradient/saliency, and Taylor score.

Therefore, “taxes” could be considered as the key point and main factor for making the

Negative prediction in this example.



135

Figure 7.17: Visualization of word embeddings weights, gradient/saliency of word em-
beddings, and Taylor value of word embeddings for a sample from SST-2 corpus.

To test this hypothesis, we can use the “Word Analyses” component of the demo.

The “Word Analysis” component provides the capability of modifying words in auto-

matic (e.g. removal, zeroing out, unknown replacement, wordnet sampling, and n-gram

sampling) and manual ways. Figures 7.18 and 7.19 demonstrate model behavior be-

fore and after removing the word “taxes”. Change of model prediction from “Negative”

to “Positive” after removing “taxes” confirms the importance of “taxes” in the model

prediction.

Finally, the “Layer and Attention Head Analyses” component delivers capabilities

to modify the structure of the model (turning different parts off and on) to study impact

of different parts on the model prediction. A screenshot of this component and page is

shown in Figure 7.20.

This demo is generally model and task-independent. So, it can be adjusted to vi-

sualize other models and tasks. The implemented demo could be considered as a good

toolbox for interpreting and debugging the behaviour of deep models.



136

Figure 7.18: Word analysis page of the demo for a sample from SST-2 corpus.

Figure 7.19: Word analysis page of the demo for a sample from SST-2 corpus when the
work “taxes” has been removed and the sentiment has been changed from Negative to
Positive.



137

Figure 7.20: Layer and attention analysis page of the demo for a sample from SST-2
corpus.

7.6 Conclusion

We propose an interesting modification to the BERT which add interpretability features

to this well-known model. While providing insights for the impact of different layers of

the BERT for disambiguation and decision making of a variety of tasks, the proposed

structure yield better performance with and without fine-tuning the embeddings and

transformer layer weights. We evaluate BERT and Gated BERT on a wide range of NLP

tasks using GLUE benchmark. Moreover, we implement an effective demo for this work

which provides many practical features for debugging, understanding, and studying the

behavior of BERT, Gated BERT, and potentially other deep models.



138

Chapter 8: Saliency Learning: Teaching the Model Where to Pay Attention

This chapter describes the work in Ghaeini et al. (2019) [23].

8.1 Introduction

It is unfortunate that our data is often plagued by meaningless or even harmful statistical

biases. When we train a model on such data, it is possible that the classifier focuses

on irrelevant biases to achieve high performance on the biased data. Recent studies

demonstrate that deep learning models noticeably suffer from this issue [1, 94, 32].

Due to the black-box nature of deep models and the high dimensionality of their in-

herent representations, it is difficult to interpret and trust their behaviour and predic-

tions. Recent work on explanation and interpretation has introduced a few approaches

[83, 77, 51, 52, 53, 25, 78] for explanation. Such methods provide insights toward the

model’s behaviour, which is helpful for detecting biases in our models. However, they

do not correct them. Here, we investigate how to incorporate explanations into the learn-

ing process to ensure that our model not only makes correct predictions but also makes

them for the right reason.

Specifically, we propose to train a deep model using both ground truth labels and

additional annotations suggesting the desired explanation. The learning is achieved via

a novel method called saliency learning, which regulates the model’s behaviour using



139

saliency to ensure that the most critical factors impacting the model’s prediction are

aligned with the desired explanation.

Our work is closely related to Ross el al. (2017) [81], which also uses the gra-

dient/saliency information to regularize model’s behaviour. However, we differ in the

following points: 1) Ross el al. (2017) [81] is limited to regularizing model with gradi-

ent of the model’s input. In contrast, we extend this concept to the intermediate layers of

deep models, which is demonstrated to be beneficial based on the experimental results;

2) Ross el al. (2017) [81] considers annotation at the dimension level, which is not ap-

propriate for NLP tasks since the individual dimensions of the word embeddings are not

interpretable; 3) most importantly, Ross el al. (2017) [81] learns from annotations of

irrelevant parts of the data, whereas we focus on positive annotations identifying parts

of the data that contributes positive evidence toward a specific class. In textual data, it is

often unrealistic to annotate a word (even a stop word) to be completely irrelevant. On

the other hand, it can be reasonably easy to identify group of words that are positively

linked to a class.

We make the following contributions: 1) we propose a new method for teaching

the model where to pay attention; 2) we evaluate our method on multiple tasks and

datasets and demonstrate that our method achieves more reliable predictions while de-

livering better results than traditionally trained models; 3) we verify the sensitivity of our

saliency-trained model to perturbations introduced on part of the data that contributes to

the explanation.



140

8.2 Background: Saliency

The concept of saliency was first introduced in vision for visualizing the spatial support

on an image for particular object class [83]. Considering a deep model prediction as a

differentiable model f parameterized by θ with input X ∈ Rn×d. Such a model could

be described using the Taylor series as follow:

f(x) = f(a) + f
′
(a)(x− a) +

f
′′
(a)

2!
(x− a)2 + . . . (8.1)

By approximating that a deep model is a linear function, we could use the first order

Taylor expansion.

f(x) ≈ f
′
(a)x+ b (8.2)

According to Equation 8.2, the first derivative of the model’s prediction respect to its

input (f ′
(a) or ∂f

∂x
|x=a) describes the model’s behaviour near the input. To make it

more clear, bigger derivative/gradient indicates more impact and contribution toward

the model’s prediction. Consequently, the large-magnitude derivative values determine

elements of input that would greatly affect f(x) if changed.

8.3 Saliency-based Explanation Learning

Our goal is to teach the model where to pay attention in order to avoid focusing on

meaningless statistical biases in the data. In this work, we focus on positive explana-

tions. In other words, we expect the explanation to highlight information that contributes



141

positively towards the label. For example, if a piece of text contains the mention of a

particular event, then the explanation will highlight parts of the text indicating the event,

not non-existence of some other events. This choice is because positive evidence is more

natural for human to specify.

Formally, each training example is a tuple (X, y, Z), where X = [X1, X2, . . . , Xn]

is the input text (length n), y is the ground-truth label, and Z ∈ {0, 1}n is the ground-

truth explanation as a binary mask indicating whether each word contributes positive

evidence toward the label y.

Recent studies have shown that the model’s predictions can be explained by exam-

ining the saliency of the inputs [83, 35, 81, 52] as well as other internal elements of the

model [25]. Given an example, for which the model makes a prediction, the saliency of

a particular element is computed as the derivative of the model’s prediction with respect

to that element. Saliency provides clues as to where the model is drawing strong evi-

dence to support its prediction. As such, if we constrain the saliency to be aligned with

the desired explanation during learning, our model will be coerced to pay attention to

the right evidence.

In computing saliency, we are dealing with high-dimensional data. For example,

each word is represented by an embedding of d dimensions. To aggregate the contribu-

tion of all dimensions, we consider sum of the gradients of all dimensions as the overall

vector/embedding contribution. For the i-th word, if Z[i] = 1, then its vector should

have a positive gradient/contribution, otherwise the model would be penalized. To ac-

complish this, we incorporate a saliency regularization term to the model cost function

using hinge loss. Equation 8.3 describes our cost function evaluated on a single example



142

(X, y, Z).

C(θ,X, y, Z) = L(θ,X, y) + λ
n∑
i=1

max

(
0,−Zi

d∑
j=1

∂fθ(X, y)

∂Xi,j

)
(8.3)

where L is a traditional model cost function (e.g. cross-entropy), λ is a hyper parameter,

f specifies the model with parameter θ, and ∂f
∂Xi,j

represents the saliency of the j-th

dimension of wordXi. The new term in the C penalizes negative gradient for the marked

words in Z (contributory words).

Since C is differentiable respect to θ, it can be optimized using existing gradient-

based optimization methods. It is important to note that while Equation 8.3 only regular-

izes the saliency of the input layer, the same principle can be applied to the intermediate

layers of the model [25] by considering the intermediate layer as the input for the later

layers.

Note that if Z = 0 then C = L. So, in case of lacking proper annotations for

a specific sample or sequence, we can simply use 0 as its annotation. This property

enables our method to be easily used in semi-supervised or active learning settings.

8.4 Tasks and Datasets

To teach the model where to pay attention, we need ground-truth explanation annotation

Z, which is difficult to come by. As a proof of concept, we modify two well known real

tasks (Event Extraction and Cloze-Style Question Answering) to simulate approximate

annotations for explanation. Here, we first describe the main and real Event Extraction

and Close-Style Question Answering tasks (before our modification). Next, we illustrate



143

the modified tasks and provide data statistics of the modified version of ACE, ERE,

CBT-NE, and CBT-CN datasets in Table 8.1.

The real Event Extraction and Close-Style Question Answering tasks are defiend as

follow:

• 1) Event Extraction: Given a set of ontologized event types (e.g. Movement,

Transaction, Conflict, etc.), the goal of event extraction is to identify the mentions

of different events along with their types from natural texts [12, 21, 68].

• 2) Cloze-Style Question Answering: Documents in CBT consist of 20 contigu-

ous sentences from the body of a popular children book and queries are formed

by replacing a token from the 21st sentence with a blank. Given a document, a

query, and a set of candidates, the goal is to find the correct replacement for blank

in the query among the given candidates. To avoid having too many negative ex-

amples in our modified datasets, we only consider sentences that contain at least

one candidate. To be more clear, each sample from the CBT dataset is split to at

most 20 samples – each sentence of the main sample as long as it contains one of

the candidates [90, 44, 15, 19, 22].

We define the modified tasks as follows:

• 1) Event Extraction: Given a sentence, the goal is to determine whether the

sentence contains an event. Note that event extraction benchmarks contain the an-

notation of event triggers, which we use to build the annotation Z. In particular,

the Z value of every word is annotated to be zero unless it belongs to an event trig-



144

Dataset
Sample Count

Train Test
P.a N.b P. N.

ACE 3.2K 15K 293 421
ERE 3.1K 4K 2.7K 1.91K

CBT-NE 359K 1.82M 8.8K 41.1K
CBT-CN 256K 2.16M 5.5K 44.4K
a Positive Sample Count
b Negative Sample Count

Table 8.1: Dataset statistics of the modified tasks and datasets.

ger. For this task, we consider two well known event extraction datasets, namely

ACE 2005 and Rich ERE 2015.

• 2) Cloze-Style Question Answering: Given a sentence and a query with a blank,

the goal is to determine whether the sentence contains the correct replacement

for the blank. Here, annotation of each word is zero unless it belongs to the gold

replacement. For this task, we use two well known cloze-style question answering

datasets: Children Book Test Named Entity (CBT-NE) and Common Noun (CBT-

CN) [37].

Here, we only consider the simple binary tasks as a first attempt to examine the ef-

fectiveness of our method. However, our method is not restricted to binary tasks. In

multi-class problems, each class can be treated as the positive class of the binary clas-

sification. In such a setting, each class would have its own explanation and annotation

Z.

Note that for both tasks if an example is negative, its explanation annotation will be

all zero. In other words, for negative examples we have C = L.



145

Sentence

Conv-W3 Conv-W5

Max-Pooling

Dim & Seq Max-Pooling

Sentence

Conv-W3 Conv-W5

Max-Pooling

Dim & Seq Max-Pooling

Query

Conv-W3 Conv-W5

Max-Pooling

Max-Pooling

(a) (b)

Figure 8.1: A high-level view of the models used for event extraction (a) and question
answering (b).

8.5 Model

We use simple CNN based models to avoid complexity. Figure 8.1 illustrates the models

used in this work. Both models have a similar structure. The main difference is that

QA has two inputs (sentence and query). We first describe the event extraction model

followed by the QA model.

Figure 8.1 (a) shows the event extraction model. Given a sentenceW = [w1, . . . , wn]

where wi ∈ Rd, we first pass the embeddings to two CNNs with feature size of d and

window size of 3 and 5. Next we apply max-pooling to both CNN outputs. It will give us

the representation I ∈ Rn×d, which we refer to as the intermediate representation. Then,

we apply sequence-wise and dimension-wise max-poolings to I to capture Dseq ∈ Rd

and Ddim ∈ Rn respectively. Ddim will be referred as decision representation. Finally

we pass the concatenation of Dseq and Ddim to a feed-forward layer for prediction.



146

Figure 8.1 (b) depicts the QA model. The main difference is having query as an extra

input. To process the query, we use a similar structure to the main model. After CNNs

and max-pooling we end up with Q ∈ Rm×d where m is the length of query. To obtain

a sequence independent vector, we apply another max-pooling to Q resulting in a query

representation q ∈ Rd. We follow a similar approach to in event extraction for the given

sentence. The only difference is that we apply a dot product between the intermediate

representations and query representation (Ii = Ii � q).

As mentioned previously, we can apply saliency regularization to different levels of

the model. In this work, we apply saliency regularization on the following three levels:

1) Word embeddings (W ). 2) Intermediate representation (I). 3) Decision representa-

tion (Ddim). Note that the aforementioned levels share the same annotation for training.

For training details please refer to Section 8.7.

8.6 Experiments and Analysis

8.7 Training

All hyper-parameters are tuned based on the development set. We use pre-trained

300 − D Glove 840B vectors [70] to initialize our word embedding vectors. All hid-

den states and feature sizes are 300 dimensions (d = 300). The weights are learned

by minimizing the cost function on the training data via Adam optimizer. The initial

learning rate is 0.0001 and λ = 0.5, 0.7, 0.4, and 0.35 for ACE, ERE, CBT-NE, and

CBT-CN respectively. To avoid overfitting, we use dropout with a rate of 0.5 for reg-



147

ularization, which is applied to all feedforward connections. During training, the word

embeddings are updated to learn effective representations for each task and dataset. We

use a fairly small batch size of 32 to provide more exploration power to the model. Fi-

nally, Equation 8.4 indicates the the cost function that is used for the training where

W , I , and Ddim are the word embeddings, Intermediate representation, and Decision

representation respectively.

C(θ,X, y, Z) = L(θ,X, y)

+ λ
n∑
i=1

max

(
0,−Zi

d∑
j=1

∂fW (W, y)

∂Wi,j

)

+ λ
n∑
i=1

max

(
0,−Zi

d∑
j=1

∂fI(I, y)

∂Ii,j

)

+ λ
n∑
i=1

max

(
0,−Zi

∂fDdim
(Ddim, y)

∂Ddim,i

)
(8.4)

8.7.1 Performance

Table 8.2 shows the performance of the trained models on ACE, ERE, CBT-NE, and

CBT-CN datasets using the aforementioned models with and without saliency learning.

The results indicate that using saliency learning yields better accuracy and F1 measure

on all four datasets. It is interesting to note that saliency learning consistently helps the

models to achieve noticeably higher precision without hurting the F1 measure and ac-

curacy. This observation suggests that saliency learning is effective in providing proper

guidance for more accurate predictions – Note that here we only have guidance for



148

Dataset Saliency Learning (S) Precision Recall F1 Accuracy

ACE
No 66.0 77.5 71.3 74.4
Yes 70.1 76.1 73.0 76.9

ERE
No 85.0 86.6 85.8 83.1
Yes 85.8 87.3 86.6 84.0

CBT-NE
No 55.6 76.3 64.3 75.5
Yes 57.2 74.5 64.7 76.5

CBT-CN
No 47.4 39.0 42.8 77.3
Yes 48.3 38.9 43.1 77.7

Table 8.2: Performance of trained models on multiple datasets using traditional method
and saliency learning.

positive prediction. To verify the statistical significance of the observed performance

improvement over traditionally trained models without saliency learning, we conducted

the one-sided McNemar’s test. The obtained p-values are 0.03, 0.03, 0.0001, and 0.04

for ACE, ERE, CBT-NE, and CBT-CN respectively, indicating that the performance

gain by saliency learning is statistically significant.

8.7.2 Saliency Accuracy

In this section, we examine how well does the saliency of the trained model aligns

with the annotation. To this end, we define a metric called saliency accuracy (sacc),

which measures what percentage of all positive positions of annotation Z indeed obtain

a positive gradient. Formally, sacc = 100
∑

i δ(ZiGi>0)∑
i Zi

whereGi is the gradient of element

i and δ is the indicator function.

Table 8.3 shows the saliency accuracy at different layers of the trained model with

and without saliency learning. According to Table 8.3, our method achieves a much



149

Dataset S. W.a I.b D.c

ACE
No 61.60 66.05 63.27
Yes 99.26 77.92 65.49

ERE
No 51.62 56.71 44.37
Yes 99.77 77.45 51.78

CBT-NE
No 52.32 65.38 68.81
Yes 98.17 98.34 95.56

CBT-CN
No 47.78 53.68 45.15
Yes 99.13 98.94 97.06

aWord Level Saliency Accuracy.
bIntermediate Level Saliency Accuracy.
cDecision Level Saliency Accuracy.

Table 8.3: Saliency accuracy of different layer of our models trained on ACE, ERE,
CBT-NE, CBT-CN.

higher saliency accuracy for all datasets indicating that the learning was indeed effective

in aligning the model saliency with the annotation. In other words, important words will

have positive contributions in the saliency-trained model, and as such, it learns to focus

on the right part(s) of the data. This claim can also be verified by visualizing the saliency,

which is provided in the next section.

8.7.3 Saliency Visualization

Here, we visualize the saliency of three positive samples from the ACE dataset for both

the traditionally trained (Baseline Model) and the saliency-trained model (saliency-

trained Model). Table 8.4 shows the top 6 salient words (words with highest salien-

cy/gradient) of three positive samples along with their contributory words (annotation

Z), the baseline model prediction (PB), and the saliency-trained model prediction (PS).



150

id Baseline Model Saliency-trained Model Z PB PS
1 The judge at Hassan’s The judge at Hassan ’s extradition 1 1

extradition hearing said extradition hearing said hearing
that he found the French that he found the French said
handwriting report very handwriting report very
problematic, very confusing, problematic, very confusing,
and with suspect conclusions. and with suspect conclusions.

2 Solana said the EU would help Solana said the EU would help attack 1 1
in the humanitarian crisis in the humanitarian crisis
expected to follow an expected to follow an
attack on Iraq. attack on Iraq .

3 The trial will start on The trial will start on trial 1 1
March 13 , the court said . March 13 , the court said.

Table 8.4: Top 6 salient words visualization of data samples from ACE for the baseline
and the saliency-trained models.

Darker red color indicates more salient words. According to Table 8.4, both models

correctly predict 1 and the saliency-trained model successfully pays attention to the ex-

pected meaningful words while the baseline model pays attention to mostly irrelevant

ones. More analyses are provided in section 8.7.5.

8.7.4 Verification

Up to this point, we show that using saliency learning yields noticeably better precision,

F1 measure, accuracy, and saliency accuracy. Here, we aim to verify our claim that

saliency learning coerces the model to pay more attention to the critical parts. The

annotation Z describes the influential words toward the positive labels. Our hypothesis

is that removing such words would cause more impact on the saliency-trained models

since by training, they should be more sensitive to these words. We measure the impact



151

Dataset S. TPRa
0 TPRb

1 ∆TPRc

ACE
No 77.5 52.2 32.6
Yes 76.1 45.0 40.9

ERE
No 86.6 73.2 15.4
Yes 87.3 70.6 19.1

CBT-NE
No 76.3 30.2 60.4
Yes 74.5 28.5 61.8

CBT-CN
No 39.0 16.6 57.4
Yes 38.9 15.4 60.4

aTrue Positive Rate (before removal).
bTPR after removing the critical word(s).
cTPR change rate.

Table 8.5: True positive rate and true positive rate change of the trained models before
and after removing the contributory word(s).

as the percentage change of the model’s true positive rate. This measure is chosen

because negative examples do not have any annotated contributory words, and hence

we are particularly interested in how removing contributory words of positive examples

would impact the model’s true positive rate (TPR).

Table 8.5 shows the outcome of the aforementioned experiment, where the last col-

umn lists the TPR reduction rates. From the table, we see a consistently higher rate

of TPR reduction for saliency-trained models compared to traditionally trained models,

suggesting that the saliency-trained models are more sensitive to the perturbation of the

contributory word(s) and confirming our hypothesis.

It is worth noting that we observe less substantial change to the true positive rate for

the event task. This is likely due to the fact that we are using trigger words as simulated

explanations. While trigger words are clearly related to events, there are often other

words in the sentence relating to events but not annotated as trigger words.



152

8.7.5 More Saliency Visualization

In this section, we empirically analyze the traditionally trained (Baseline Model) and the

saliency-trained model (saliency-trained Model) behaviour by observing the saliency of

19 positive samples from ACE and ERE datasets. Tables 8.6 and 8.7 show the top 6

salient words (words with highest saliency/gradient) of positive samples from ACE or

ERE dataset along with their contributory word(s) (Z), the baseline model prediction

(PB), and the saliency-trained model prediction (PS). Darker red color indicates more

salient words. Our observations could be divided into six categories as follow:

• Samples 1-4 (and also samples in Table 8.4): Both models correctly predict 1

for these samples. The saliency-trained model successfully pays attention to the

expected meaningful words while the baseline model pays attention to mostly

irrelevant ones.

• Samples 5-8: Both models correctly predict 1 and pays attention to the contrib-

utory words. Yet, we observe lower saliency for important words and higher

saliency for irrelevant ones.

• Samples 9-10: Here, the baseline model fails to pay attention to the contribu-

tory words and predicts 0 while the saliency-trained model one successfully pays

attention to them and predicts 1.

• Samples 11-14: Although the models have high saliency for the contributory

words, still they could not correctly disambiguate these samples. This observation

suggests that having high saliency for important words does not guarantee positive



153

prediction. High saliency for these words indicate their positive contribution to-

ward the positive prediction but still, the model might consider higher probability

for negative prediction.

• Samples 15-17: Here, only the baseline model could correctly predict 1. However,

the baseline model does not pay attention to the contributory words. In other

words, the explanation does not support the prediction (unreliable).

• Samples 18-19: Not always the saliency-trained model could pay proper atten-

tion to the contributory words. In these examples, the baseline model has high

saliency for contributory words. It is worth noting that when the saliency-trained

model does not have high saliency for contributory words, it does not predict

1. Such observation could suggest that the saliency-trained model predictions are

more reliable. The aforementioned claim is also verified by consistently obtaining

noticeably higher precision for all datasets and tasks (Section 8.7.1 and Table 8.2).

8.8 Conclusion

In this work, we proposed saliency learning, a novel approach for teaching a model

where to pay attention. We demonstrated the effectiveness of our method on multiple

tasks and datasets using simulated explanations. The results show that saliency learn-

ing enables us to obtain better precision, F1 measure and accuracy on these tasks and

datasets. Further, it produces models whose saliency is more properly aligned with the

desired explanation. In other words, saliency learning gives us more reliable predictions



154

id Baseline Model Saliency-trained Model Z PB PS
1 India ’s has been reeling India ’s has been reeling killed 1 1

under a heatwave since under a heatwave since
mid-May which has mid-May which has
killed 1,403 people. killed 1,403 people .

2 Retired General Electric Co. Retired General Electric Co. Retired 1 1
Chairman Jack Welch is Chairman Jack Welch is divorce
seeking work-related seeking work-related
documents of his estranged documents of his estranged
wife in his high-stakes wife in his high-stakes
divorce case . divorce case .

3 The following year, he was The following year, he was acquitted 1 1
acquitted in the Guatemala acquitted in the Guatemala case
case, but the U.S. continued case , but the U.S. continued
to push for his prosecution. to push for his prosecution .

4 In 2011, a Spanish National In 2011, a Spanish National issued 1 1
Court judge issued arrest Court judge issued arrest slaying
warrants for 20 men , warrants for 20 men, arrest
including Montano,suspected including Montano,suspected
of participating in the of participating in the
slaying of the priests. slaying of the priests.

5 Slobodan Milosevic’s wife will Slobodan Milosevic’s wife will trial 1 1
go on trial next week on go on trial next week on charges
charges of mismanaging state charges of mismanaging state former
property during the former property during the former
president’s rule, a court said president ’s rule, a court said
Thursday. Thursday .

6 Iraqis mostly fought back Iraqis mostly fought back fought 1 1
with small arms, pistols, with small arms, pistols,
machine guns and machine guns and
rocket-propelled grenades . rocket-propelled grenades.

7 He will then stay on for a He will then stay on for a heading 1 1
regional summit before regional summit before summit
heading to Saint Petersburg heading to Saint Petersburg
for celebrations marking the for celebrations marking the
300th anniversary of the 300th anniversary of the
city’s founding . city’s founding.

Table 8.6: Top 6 salient words visualization of samples from ACE and ERE for the
baseline and the saliency-trained models.



155

id Baseline Model Saliency-trained Model Z PB PS
8 But the Saint Petersburg But the Saint Petersburg summit 1 1

summit ended without any summit ended without any
formal declaration on Iraq . formal declaration on Iraq .

9 From greatest moment of From greatest moment of divorce 0 1
his life to divorce in 3 his life to divorce in 3
years or less. years or less.

10 The student, who was 18 at The student, who was 18 at testified 0 1
the time of the alleged the time of the alleged
sexual relationship, testified sexual relationship , testified
under a pseudonym . under a pseudonym.

11 U.S. aircraft bombed Iraqi U.S. aircraft bombed Iraqi bombed 0 0
tanks holding bridges close tanks holding bridges close
to the city . to the city.

12 However , no blasphemy However, no blasphemy executed 0 0
convict has ever been convict has ever been
executed in the country . executed in the country .

13 Gul ’s resignation had Gul ’s resignation had resignation 0 0
been long expected . been long expected .

14 aside from purchasing aside from purchasing purchasing 0 0
alcohol, what rights alcohol , what rights
don’t 18 year olds have? don’t 18 year olds have?

15 He also ordered him to He also ordered him to ordered 1 0
have no contact with have no contact with contact
Shannon Molden. Shannon Molden .

16 This means your account is This means your account is wrote 1 0
once again active and once again active and
operational, Riaño wrote operational , Riaño wrote
Colombia Reports. Colombia Reports .

17 I am a Christian as is I am a Christian as is divorced 1 0
my ex husband yet my ex husband yet ex
we are divorced. we are divorced .

18 Taylor acknowledged in his Taylor acknowledged in his testimony 1 0
testimony that he ran up testimony that he ran up followed
toward the pulpit with a toward the pulpit with a ran
large group and followed large group and followed
the men outside. the men outside.

19 The note admonished Jasper The note admonished Jasper note 0 0
Molden , and his then-fiancée, Molden , and his then-fiancée ,
Shannon Molden . Shannon Molden.

Table 8.7: Top 6 salient words visualization of samples from ACE and ERE for the
baseline and the saliency-trained models.



156

while delivering better performance than traditionally trained models. Finally, our ver-

ification experiments illustrate that the saliency-trained models show higher sensitivity

to the removal of contributory words in a positive example. For future work, we will

extend our study to examine saliency learning on NLP tasks in an active learning setting

where real explanations are requested and provided by a human.



157

Chapter 9: Summary

This dissertation describes methods and solutions for improving and understanding deep

models with a special focus on Natural Language Comprehension (NLC) tasks. First,

we attempt to improve a model’s language comprehension/understanding by enriching

the structure of the model to enhance its capability in learning the latent rules of the lan-

guage. More specifically, we focus on pairwise input source tasks like Natural Language

Inference (NLI) and Cloze-Style Question Answering and propose the idea of condi-

tional/dependent encoding and reading. The intuition behind the proposed methodol-

ogy is to efficiently model the relationships between input sources (e.g. “premise and

hypothesis” or “document and query”). We demonstrate the positive impact of condi-

tional/dependent encoding by obtaining better empirical performances, However, due to

the black-box nature of deep learning, we can not conclude that the proposed methods

yield better language understanding. This motivates us to study methods for “peaking

inside” the black-box deep models to provide explanation and understanding of the mod-

els’ behaviour. The proposed method (a.k.a. saliency) takes a step toward explaining

deep models based on gradient of the model output with respect to different compo-

nents like the input layer and intermediate layers. We demonstrate the effectiveness

of the proposed explanation method on a complex task (NLI). Saliency reveals inter-

esting insights and identifies critical information contributing to the model decisions.

Besides proposing a model-agnostic interpretation method (saliency), we study model-



158

dependent/model-embedded interpretation solutions and propose two interpretable de-

signs and structures; Attentional Multi-Reading Sarcasm Detection and Gated BERT.

Our evaluations successfully demonstrate the superiority of the proposed interpretable

models by obtaining better performance while delivering explanation and interpretation.

Moreover, we develop and release an interesting demo/toolkit which could be easily ad-

justed for other tasks and structures. The developed demo/toolkit provides many helpful

insights for understanding and debugging a model. Finally, we introduce saliency learn-

ing; a novel approach for teaching a model where to pay attention to make the right

prediction for the right reason. Our experimental results on multiple tasks and datasets

demonstrate the effectiveness of the proposed method, which produce more reliable pre-

dictions while delivering better results compared to traditionally trained models.

Interpretation and explanation is a new line of research and we are yet far behind the

perfection. The future works of this study could be categorized as below:

1. Investigating faithfull explanation strategies which unlike saliency do not require

the linear approximation.

2. Incorporating explanation and interpretation into models’ design and structure in

order to obtain better and more reliable results.

3. Examining saliency learning in active learning and semi-supervised setting where

real explanations are requested and provided by a human.



159

Bibliography

[1] Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyzing the behavior of
visual question answering models. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 1955–1960, 2016.

[2] Silvio Amir, Byron C. Wallace, Hao Lyu, Paula Carvalho, and Mário J. Silva.
Modelling context with user embeddings for sarcasm detection in social media.
In Proceeding of CoNLL, 2016., pages 167–177, 2016.

[3] Leila Arras, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek.
Explaining recurrent neural network predictions in sentiment analysis. In Pro-
ceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, WASSA@EMNLP 2017, Copenhagen, Den-
mark, September 8, 2017, pages 159–168, 2017.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

[5] David Bamman and Noah A. Smith. Contextualized sarcasm detection on twitter.
In Proceeding of ICWSM, 2015., pages 574–577, 2015.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A
neural probabilistic language model. Journal of Machine Learning Research,
3:1137–1155, 2003.

[7] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. A large annotated corpus for learning natural language inference. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 632–
642, 2015.

[8] Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christo-
pher D. Manning, and Christopher Potts. A fast unified model for parsing and
sentence understanding. In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers, 2016.



160

[9] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compres-
sion. In Proceedings of the Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23,
2006, pages 535–541, 2006.

[10] Danqi Chen, Jason Bolton, and Christopher D. Manning. A thorough examination
of the cnn/daily mail reading comprehension task. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.

[11] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen.
Enhanced LSTM for natural language inference. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics, ACL 2017, Van-
couver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1657–1668,
2017.

[12] Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. Event extrac-
tion via dynamic multi-pooling convolutional neural networks. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 167–176, 2015.

[13] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical Machine Translation. Em-
pirical Methods in Natural Language Processing, pages 1724–1734, 2014.

[14] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: deep neural networks with multitask learning. ICML, pages 160–167,
2008.

[15] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu.
Attention-over-attention neural networks for reading comprehension. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages
593–602, 2017.

[16] Yiming Cui, Ting Liu, Zhipeng Chen, Shijin Wang, and Guoping Hu. Consensus
attention-based neural networks for chinese reading comprehension. In COL-



161

ING 2016, 26th International Conference on Computational Linguistics, Pro-
ceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka,
Japan, pages 1777–1786, 2016.

[17] Dmitry Davidov, Oren Tsur, and Ari Rappoport. Semi-supervised recognition of
sarcasm in twitter and amazon. In Proceeding of CoNLL, 2010., pages 107–116,
2010.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186, 2019.

[19] Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, and Ruslan
Salakhutdinov. Gated-attention readers for text comprehension. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages
1832–1846, 2017.

[20] Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick, Michael Muehl, and
William W. Cohen. Tweet2vec: Character-based distributed representations for
social media. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-
ume 2: Short Papers, 2016.

[21] Reza Ghaeini, Xiaoli Z. Fern, Liang Huang, and Prasad Tadepalli. Event nugget
detection with forward-backward recurrent neural networks. Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume 2: Short Papers, 2016.

[22] Reza Ghaeini, Xiaoli Z. Fern, Hamed Shahbazi, and Prasad Tadepalli. Dependent
gated reading for cloze-style question answering. In Proceedings of the 27th
International Conference on Computational Linguistics, COLING 2018, Santa
Fe, New Mexico, USA, August 20-26, 2018, pages 3330–3345, 2018.

[23] Reza Ghaeini, Xiaoli Z. Fern, Hamed Shahbazi, and Prasad Tadepalli. Saliency
learning: Teaching the model where to pay attention. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational



162

Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4016–4025,
2019.

[24] Reza Ghaeini, Xiaoli Z. Fern, and Prasad Tadepalli. Attentional multi-reading
sarcasm detection. CoRR, abs/1809.03051, 2018.

[25] Reza Ghaeini, Xiaoli Z. Fern, and Prasad Tadepalli. Interpreting recurrent and
attention-based neural models: a case study on natural language inference. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 4952–
4957, 2018.

[26] Reza Ghaeini, Sadid A. Hasan, Vivek V. Datla, Joey Liu, Kathy Lee, Ashequl
Qadir, Yuan Ling, Aaditya Prakash, Xiaoli Z. Fern, and Oladimeji Farri. Dr-
bilstm: Dependent reading bidirectional LSTM for natural language inference.
NAACL HLT 2018, The 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
2018.

[27] Aniruddha Ghosh and Tony Veale. Fracking sarcasm using neural network. Pro-
ceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, WASSA@NAACL-HLT, 2016., pages 161–169,
2016.

[28] Debanjan Ghosh, Alexander Richard Fabbri, and Smaranda Muresan. The role of
conversation context for sarcasm detection in online interactions. In Proceeding
of SIGdial Meeting on Discourse and Dialogue, 2017., pages 186–196, 2017.

[29] Debanjan Ghosh, Weiwei Guo, and Smaranda Muresan. Sarcastic or not: Word
embeddings to predict the literal or sarcastic meaning of words. In Proceeding of
EMNLP, 2015., pages 1003–1012, 2015.

[30] Yichen Gong, Heng Luo, and Jian Zhang. Natural language inference over inter-
action space. CoRR, abs/1709.04348, 2017.

[31] Roberto I. González-Ibáñez, Smaranda Muresan, and Nina Wacholder. Identi-
fying sarcasm in twitter: A closer look. In Proceeding of ACL, 2011., pages
581–586, 2011.



163

[32] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz,
Samuel R. Bowman, and Noah A. Smith. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Vol-
ume 2 (Short Papers), pages 107–112, 2018.

[33] Henk Haverkate. A speech act analysis of irony. Journal of Pragmatics.,
14(1):77–109, 1990.

[34] Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla, Erik Cambria, Roger
Zimmermann, and Rada Mihalcea. CASCADE: contextual sarcasm detection in
online discussion forums. In Proceeding of COLING, 2018., pages 1837–1848,
2018.

[35] Yotam Hechtlinger. Interpretation of prediction models using the input gradient.
CoRR, abs/1611.07634, 2016.

[36] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt,
Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read
and comprehend. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 1693–1701, 2015.

[37] Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks
principle: Reading children’s books with explicit memory representations. CoRR,
abs/1511.02301, 2015.

[38] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in
a neural network. CoRR, abs/1503.02531, 2015.

[39] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[40] Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah. What does BERT learn about
the structure of language? In Proceedings of the 57th Conference of the Associ-
ation for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 3651–3657, 2019.

[41] Aditya Joshi, Pushpak Bhattacharyya, and Mark James Carman. Automatic sar-
casm detection: A survey. ACM Comput. Surv., 50(5):73:1–73:22, 2017.



164

[42] Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya. Harnessing context
incongruity for sarcasm detection. In Proceeding of ACL, 2015., pages 757–762,
2015.

[43] Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya, and
Mark James Carman. Are word embedding-based features useful for sarcasm
detection? In Proceeding of EMNLP, 2016., pages 1006–1011, 2016.

[44] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text un-
derstanding with the attention sum reader network. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.

[45] Divyansh Kaushik, Eduard H. Hovy, and Zachary C. Lipton. Learning the dif-
ference that makes a difference with counterfactually-augmented data. CoRR,
abs/1909.12434, 2019.

[46] Anupam Khattri, Aditya Joshi, Pushpak Bhattacharyya, and Mark James Car-
man. Your sentiment precedes you: Using an author’s historical tweets to predict
sarcasm. Proceedings of the 6th Workshop on Computational Approaches to Sub-
jectivity, Sentiment and Social Media Analysis, WASSA@EMNLP, 2015., pages
25–30, 2015.

[47] Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. A large self-annotated
corpus for sarcasm. In Proceeding of LREC, 2018., 2018.

[48] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[49] Roger J Kreuz and Gina M Caucci. Lexical influences on the perception of sar-
casm. Proceedings of the Workshop on computational approaches to Figurative
Language., pages 1–4, 2007.

[50] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything:
Dynamic memory networks for natural language processing. In Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, pages 1378–1387, 2016.

[51] Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. Rationalizing neural predic-
tions. In Proceedings of the 2016 Conference on Empirical Methods in Natural



165

Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016,
pages 107–117, 2016.

[52] Jiwei Li, Xinlei Chen, Eduard H. Hovy, and Dan Jurafsky. Visualizing and un-
derstanding neural models in NLP. In NAACL HLT 2016, The 2016 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego California, USA, June 12-17, 2016,
pages 681–691, 2016.

[53] Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through
representation erasure. CoRR, abs/1612.08220, 2017.

[54] Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying Cao, Jie Zhou, and Wei Xu.
Dataset and neural recurrent sequence labeling model for open-domain factoid
question answering. arXiv preprint arXiv:1607.06275, 2016.

[55] Christine Liebrecht, Florian Kunneman, and Antal van den Bosch. The perfect
solution for detecting sarcasm in tweets #not. Proceedings of the 4th Workshop on
Computational Approaches to Subjectivity, Sentiment and Social Media Analysis,
WASSA@NAACL-HLT, 2013., pages 29–37, 2013.

[56] Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso, Ramon Fermandez,
Silvio Amir, Luı́s Marujo, and Tiago Luı́s. Finding function in form: Composi-
tional character models for open vocabulary word representation. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1520–1530,
2015.

[57] Pengfei Liu, Xipeng Qiu, Jifan Chen, and Xuanjing Huang. Deep fusion lstms
for text semantic matching. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers, 2016.

[58] Yang Liu, Chengjie Sun, Lei Lin, and Xiaolong Wang. Learning natural lan-
guage inference using bidirectional LSTM model and inner-attention. CoRR,
abs/1605.09090, 2016.

[59] Bill MacCartney and Christopher D. Manning. Modeling semantic containment
and exclusion in natural language inference. In COLING 2008, 22nd Interna-
tional Conference on Computational Linguistics, Proceedings of the Conference,
18-22 August 2008, Manchester, UK, pages 521–528, 2008.



166

[60] Diana Maynard and Mark A. Greenwood. Who cares about sarcastic tweets? in-
vestigating the impact of sarcasm on sentiment analysis. In Proceeding of LREC,
2014., pages 4238–4243, 2014.

[61] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 6297–6308,
2017.

[62] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better
than one? In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-
14 December 2019, Vancouver, BC, Canada, pages 14014–14024, 2019.

[63] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems 26: 27th Annual Confer-
ence on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119,
2013.

[64] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Human Language Technologies: Con-
ference of the North American Chapter of the Association of Computational Lin-
guistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,
Georgia, USA, pages 746–751, 2013.

[65] Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. Natural lan-
guage inference by tree-based convolution and heuristic matching. In Proceed-
ings of the 54th Annual Meeting of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 2: Short Papers, 2016.

[66] Tsendsuren Munkhdalai and Hong Yu. Reasoning with memory augmented neu-
ral networks for language comprehension. ICLR, abs/1610.06454, 2017.

[67] Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel, and David A.
McAllester. Who did what: A large-scale person-centered cloze dataset. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language



167

Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 2230–
2235, 2016.

[68] John Walker Orr, Prasad Tadepalli, and Xiaoli Z. Fern. Event detection with
neural networks: A rigorous empirical evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages 999–1004, 2018.

[69] Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A de-
composable attention model for natural language inference. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 2249–2255, 2016.

[70] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, 2014.

[71] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume
1 (Long Papers), pages 2227–2237, 2018.

[72] Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia
Hockenmaier, and Svetlana Lazebnik. Flickr30k entities: Collecting region-to-
phrase correspondences for richer image-to-sentence models. In 2015 IEEE Inter-
national Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015, pages 2641–2649, 2015.

[73] Soujanya Poria, Erik Cambria, Devamanyu Hazarika, and Prateek Vij. A deeper
look into sarcastic tweets using deep convolutional neural networks. In Proceed-
ing of COLING, 2016., pages 1601–1612, 2016.

[74] Ashwin Rajadesingan, Reza Zafarani, and Huan Liu. Sarcasm detection on twit-
ter: A behavioral modeling approach. In Proceeding of ACM International Con-
ference on Web Search and Data Mining, WSDM, 2015., pages 97–106, 2015.

[75] Marek Rei and Anders Søgaard. Zero-shot sequence labeling: Transferring
knowledge from sentences to tokens. In Proceedings of the 2018 Conference of



168

the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers), pages 293–302, 2018.

[76] Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B. Viégas, Andy Coenen,
Adam Pearce, and Been Kim. Visualizing and measuring the geometry of BERT.
In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pages 8592–8600, 2019.

[77] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should I trust
you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1135–1144, 2016.

[78] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-
precision model-agnostic explanations. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Appli-
cations of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Edu-
cational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 1527–1535, 2018.

[79] Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva, Nathan Gilbert,
and Ruihong Huang. Sarcasm as contrast between a positive sentiment and neg-
ative situation. In Proceeding of EMNLP, 2013, A meeting of SIGDAT, a Special
Interest Group of the ACL., pages 704–714, 2013.

[80] Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský,
and Phil Blunsom. Reasoning about entailment with neural attention. CoRR,
abs/1509.06664, 2015.

[81] Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez. Right for
the right reasons: Training differentiable models by constraining their explana-
tions. In Proceedings of the Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages
2662–2670, 2017.

[82] Lei Sha, Baobao Chang, Zhifang Sui, and Sujian Li. Reading and thinking: Re-
read LSTM unit for textual entailment recognition. In COLING 2016, 26th In-
ternational Conference on Computational Linguistics, Proceedings of the Con-



169

ference: Technical Papers, December 11-16, 2016, Osaka, Japan, pages 2870–
2879, 2016.

[83] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
CoRR, abs/1312.6034, 2013.

[84] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Man-
ning, Andrew Y. Ng, and Christopher Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2013,
18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting
of SIGDAT, a Special Interest Group of the ACL, pages 1631–1642, 2013.

[85] Alessandro Sordoni, Phillip Bachman, and Yoshua Bengio. Iterative alternating
neural attention for machine reading. CoRR, abs/1606.02245, 2016.

[86] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[87] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. A compare-propagate archi-
tecture with alignment factorization for natural language inference. CoRR,
abs/1801.00102, 2018.

[88] Wilson L Taylor. “cloze procedure”: a new tool for measuring readability. Jour-
nalism Bulletin, 30(4):415–433, 1953.

[89] Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP
pipeline. In Proceedings of the 57th Conference of the Association for Computa-
tional Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 4593–4601, 2019.

[90] Adam Trischler, Zheng Ye, Xingdi Yuan, Philip Bachman, Alessandro Sordoni,
and Kaheer Suleman. Natural language comprehension with the epireader. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 128–
137, 2016.

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you



170

need. In Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 5998–6008, 2017.

[92] Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings
of images and language. CoRR, abs/1511.06361, 2015.

[93] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Ana-
lyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest
can be pruned. In Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers, pages 5797–5808, 2019.

[94] Soumya Wadhwa, Varsha Embar, Matthias Grabmair, and Eric Nyberg. Towards
inference-oriented reading comprehension: Parallelqa. CoRR, abs/1805.03830,
2018.

[95] Byron C. Wallace, Do Kook Choe, and Eugene Charniak. Sparse, contextually
informed models for irony detection: Exploiting user communities, entities and
sentiment. In Proceeding of ACL, 2015., pages 1035–1044, 2015.

[96] Byron C. Wallace, Do Kook Choe, Laura Kertz, and Eugene Charniak. Humans
require context to infer ironic intent (so computers probably do, too). In Proceed-
ing of ACL, 2014., pages 512–516, 2014.

[97] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[98] Shuohang Wang and Jing Jiang. Learning natural language inference with LSTM.
In NAACL HLT 2016, The 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, San
Diego California, USA, June 12-17, 2016, pages 1442–1451, 2016.

[99] Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective match-
ing for natural language sentences. In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017, pages 4144–4150, 2017.



171

[100] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network ac-
ceptability judgments. TACL, 7:625–641, 2019.

[101] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broadcoverage
challenge corpus for sentence understanding through inference. CoRR,
abs/1704.05426, 2017.

[102] Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, and Rus-
lan Salakhutdinov. Words or characters? fine-grained gating for reading compre-
hension. ICLR, abs/1611.01724, 2017.

[103] Hong Yu and Tsendsuren Munkhdalai. Neural semantic encoders. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computa-
tional Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long
Papers, pages 397–407, 2017.

[104] Hong Yu and Tsendsuren Munkhdalai. Neural tree indexers for text understand-
ing. In Proceedings of the 15th Conference of the European Chapter of the As-
sociation for Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7,
2017, Volume 1: Long Papers, pages 11–21, 2017.

[105] Meishan Zhang, Yue Zhang, and Guohong Fu. Tweet sarcasm detection using
deep neural network. In Proceeding of COLING, 2016., pages 2449–2460, 2016.

[106] Kai Zhao, Liang Huang, and Mingbo Ma. Textual entailment with structured
attentions and composition. In COLING 2016, 26th International Conference
on Computational Linguistics, Proceedings of the Conference: Technical Papers,
December 11-16, 2016, Osaka, Japan, pages 2248–2258, 2016.



172

APPENDICES



173

Appendix A: Source Code for Gated BERT (G-BERT)

The source code for major parts of the Gated BERT (G-BERT) and the demo are de-

scribed here for reference. In the hope that future researchers will be able to build from

the work, the full source code has also been published and made completely open source

at: https://github.com/rezaghaeini/Gated BERT

A.1 pyencoder/modeling bert.py

1 class BertModel(BertPreTrainedModel):

2 def __init__(self, config):

3 super(BertModel, self).__init__(config)

4 self.config = config

5 self.embeddings = BertEmbeddings(config)

6 self.encoder = BertEncoder(config)

7 self.pooler = BertPooler(config)

8 self.head_mask_size = (config.num_hidden_layers, config.

num_attention_heads)

9 self.layer_mask_size = (config.num_hidden_layers,)

10 self.head_init_limit = math.sqrt(6. / (self.head_mask_size[0]

+ self.head_mask_size[1]))

11 self.layer_init_limit = math.sqrt(6. / (self.layer_mask_size

[0] + 1))

12 self.gate_dropout = nn.Dropout(config.hidden_dropout_prob)

https://github.com/rezaghaeini/Gated_BERT


174

13 self.eps = 1e-6

14 self.temp = 0.33

15 self.gamma = -0.1

16 self.zeta = 1.1

17 self.layer_fix_mask = None

18 self.gamma_zeta_ratio = math.log(-self.gamma / self.zeta)

19 if config.freeze_encoder:

20 if not config.keep_part_grads:

21 for p in self.embeddings.word_embeddings.parameters()

:

22 p.requires_grad = False

23 for p in self.embeddings.token_type_embeddings.

parameters():

24 p.requires_grad = False

25 for p in self.embeddings.position_embeddings.

parameters():

26 p.requires_grad = False

27 for layer in self.encoder.layer:

28 for p in layer.parameters():

29 p.requires_grad = False

30 if config.smart_head:

31 if type(config.num_labels) == list:

32 self.head_weights = nn.ParameterList()

33 for _ in range(len(config.num_labels)):

34 self.head_weights.append(self._init_gate_weights(

config.shm_reg_type, self.head_mask_size, self.head_init_limit))

35 else:



175

36 self.head_weights = self._init_gate_weights(config.

shm_reg_type, self.head_mask_size, self.head_init_limit)

37 if config.smart_pooling:

38 if type(config.num_labels) == list:

39 self.layer_weights = nn.ParameterList()

40 for _ in range(len(config.num_labels)):

41 self.layer_weights.append(self._init_gate_weights

(config.lp_reg_type, self.layer_mask_size, self.layer_init_limit,

config.lp_init_method, True))

42 else:

43 self.layer_weights = self._init_gate_weights(config.

lp_reg_type, self.layer_mask_size, self.layer_init_limit, config.

lp_init_method, True)

44 self.keep_part_grads = config.keep_part_grads

45 self.layer_mask_weight = None

46 self.apply(self.init_weights)

47

48 def gate_mask(self, w, strategy, mask_size, device, hard=None):

49 def clipped_concrete(x):

50 return torch.min(torch.max(x, torch.zeros_like(x)), torch

.ones_like(x))

51 if strategy == 'L0':

52 if self.training and (not self.config.noiseless_L0):

53 u = Variable(torch.zeros(mask_size, device=device).

uniform_(self.eps, 1-self.eps), requires_grad=False).view(-1)

54 concrete = torch.sigmoid((torch.log(u) - torch.log(1

- u) + w.view(-1)) / self.temp)



176

55 else:

56 concrete = torch.sigmoid(w.view(-1) / self.temp)

57 stretched_concrete = concrete * (self.zeta - self.gamma)

+ self.gamma

58 clipped_concrete = clipped_concrete(stretched_concrete)

59 if self.config.hard_L0 or (hard is not None and hard):

60 hard_concrete = Variable(torch.gt(clipped_concrete,

0.5).to(dtype=torch.float32, device=device), requires_grad=False)

61 clipped_concrete = clipped_concrete + Variable((

hard_concrete-clipped_concrete), requires_grad=False)

62 return clipped_concrete.view(mask_size)

63 else:

64 if hard is not None and hard:

65 hard_w = Variable(torch.gt(w, 0.5).to(dtype=torch.

float32, device=device), requires_grad=False)

66 return w + Variable((hard_w - w), requires_grad=

False)

67 else:

68 return w

69

70 def _init_gate_weights(self, strategy, mask_size, init_limit,

init_method='norm', is_layers=False):

71 if strategy == 'L0':

72 return nn.Parameter(

73 torch.zeros(mask_size).uniform_(-2*(self.config.

L0_start_mask)*init_limit, 2*(1-self.config.L0_start_mask)*

init_limit))



177

74 else:

75 if is_layers:

76 if init_method == 'norm':

77 center = 1.0 / self.config.num_hidden_layers

78 t = torch.zeros(mask_size).uniform_(center-0.001,

center+0.001)

79 return nn.Parameter(t)

80 else:

81 init_part = init_method.split('_')

82 one_idx = -1 if len(init_part) < 2 else int(

init_part[-1])

83 t = torch.zeros(mask_size).uniform_(-0.001,

0.001)

84 t[one_idx] = 1.0

85 return nn.Parameter(t)

86 else:

87 return nn.Parameter(

88 torch.ones(mask_size))

89

90 def _resize_token_embeddings(self, new_num_tokens):

91 old_embeddings = self.embeddings.word_embeddings

92 new_embeddings = self._get_resized_embeddings(old_embeddings,

new_num_tokens)

93 self.embeddings.word_embeddings = new_embeddings

94 return self.embeddings.word_embeddings

95

96 def _prune_heads(self, heads_to_prune):



178

97 """ Prunes heads of the model.

98 heads_to_prune: dict of {layer_num: list of heads to

prune in this layer}

99 See base class PreTrainedModel

100 """

101 for layer, heads in heads_to_prune.items():

102 self.encoder.layer[layer].attention.prune_heads(heads)

103

104 def _prune_layers(self, layer_mask):

105 self.layer_fix_mask = layer_mask

106

107 def forward(self, input_ids, token_type_ids=None, attention_mask=

None, position_ids=None, head_mask=None, task_id=None, layer_mask=

None):

108 if self.config.smart_head:

109 if task_id is None:

110 head_mask = self.gate_mask(

111 self.head_weights,

112 self.config.shm_reg_type,

113 self.head_mask_size,

114 input_ids.device) if head_mask is

None else (self.gate_mask(self.head_weights, self.config.

shm_reg_type, self.head_mask_size, input_ids.device) * head_mask)

115 else:

116 head_mask = self.gate_mask(

117 self.head_weights[task_id],

118 self.config.shm_reg_type,



179

119 self.head_mask_size,

120 input_ids.device) if head_mask is

None else (self.gate_mask(self.head_weights[task_id], self.config.

shm_reg_type, self.head_mask_size, input_ids.device) * head_mask)

121 if self.config.gate_dropout == 1:

122 head_mask = self.gate_dropout(head_mask)

123 if attention_mask is None:

124 attention_mask = torch.ones_like(input_ids)

125 if token_type_ids is None:

126 token_type_ids = torch.zeros_like(input_ids)

127

128 # We create a 3D attention mask from a 2D tensor mask.

129 # Sizes are [batch_size, 1, 1, to_seq_length]

130 # So we can broadcast to [batch_size, num_heads,

from_seq_length, to_seq_length]

131 # this attention mask is more simple than the triangular

masking of causal attention

132 # used in OpenAI GPT, we just need to prepare the broadcast

dimension here.

133 extended_attention_mask = attention_mask.unsqueeze(1).

unsqueeze(2)

134

135 # Since attention_mask is 1.0 for positions we want to attend

and 0.0 for

136 # masked positions, this operation will create a tensor which

is 0.0 for



180

137 # positions we want to attend and -10000.0 for masked

positions.

138 # Since we are adding it to the raw scores before the softmax

, this is

139 # effectively the same as removing these entirely.

140 extended_attention_mask = extended_attention_mask.to(dtype=

next(self.parameters()).dtype) # fp16 compatibility

141 extended_attention_mask = (1.0 - extended_attention_mask) *

-10000.0

142

143 # Prepare head mask if needed

144 # 1.0 in head_mask indicate we keep the head

145 # attention_probs has shape bsz x n_heads x N x N

146 # input head_mask has shape [num_heads] or [num_hidden_layers

x num_heads]

147 # and head_mask is converted to shape [num_hidden_layers x

batch x num_heads x seq_length x seq_length]

148 if head_mask is not None:

149 if head_mask.dim() == 1:

150 head_mask = head_mask.unsqueeze(0).unsqueeze(0).

unsqueeze(-1).unsqueeze(-1)

151 head_mask = head_mask.expand(self.config.

num_hidden_layers, -1, -1, -1, -1)

152 elif head_mask.dim() == 2:

153 head_mask = head_mask.unsqueeze(1).unsqueeze(-1).

unsqueeze(-1) # We can specify head_mask for each layer



181

154 head_mask = head_mask.to(dtype=next(self.parameters()).

dtype) # switch to fload if need + fp16 compatibility

155 else:

156 head_mask = [None] * self.config.num_hidden_layers

157

158 embedding_output = self.embeddings(input_ids, position_ids=

position_ids, token_type_ids=token_type_ids)

159 encoder_outputs = self.encoder(embedding_output,

160 extended_attention_mask,

161 head_mask=head_mask)

162 sequence_output = encoder_outputs[0]

163 if self.config.smart_pooling:

164 if task_id is None:

165 layer_weight = self.gate_mask(self.layer_weights,

self.config.lp_reg_type, self.layer_mask_size, input_ids.device)

166 else:

167 layer_weight = self.gate_mask(self.layer_weights[

task_id], self.config.lp_reg_type, self.layer_mask_size, input_ids

.device)

168 if self.layer_fix_mask is not None:

169 layer_weight = layer_weight * torch.FloatTensor(self.

layer_fix_mask).to(device=input_ids.device)

170 if layer_mask is not None:

171 layer_weight = layer_weight * torch.FloatTensor(

layer_mask).to(device=input_ids.device)

172 # layer_mask.to(dtype=next(self.parameters()).dtype)

173 if self.config.gate_normalize == 1:



182

174 layer_weight = nn.Softmax(dim=-1)(layer_weight)

175 if self.keep_part_grads and (layer_mask is None):

176 self.layer_mask_weight = layer_weight

177 self.layer_mask_weight.retain_grad()

178 if self.config.gate_dropout == 1:

179 layer_weight = self.gate_dropout(layer_weight)

180 layer_weight = layer_weight.unsqueeze(-1).unsqueeze(-1).

expand(self.config.num_hidden_layers, -1, self.config.hidden_size)

181 sequence_output = torch.sum((torch.stack(encoder_outputs

[-1]) * layer_weight), dim=0).unsqueeze(1)

182 pooled_output = self.pooler(sequence_output)

183 outputs = (sequence_output, pooled_output,) + encoder_outputs

[1:] # add hidden_states and attentions if they are here

184 return outputs # sequence_output, pooled_output, (

hidden_states), (attentions)

185

186 class BertForSequenceClassification(BertPreTrainedModel):

187 def __init__(self, config):

188 super(BertForSequenceClassification, self).__init__(config)

189 self.num_labels = config.num_labels

190 self.bert = BertModel(config)

191 self.dropout = nn.Dropout(config.hidden_dropout_prob)

192 self.classifier = nn.Linear(config.hidden_size, self.config.

num_labels)

193 self.prediction_vals = None

194 self.apply(self.init_weights)

195



183

196 def forward(self, input_ids, token_type_ids=None, attention_mask=

None, labels=None, position_ids=None, head_mask=None, layer_mask=

None):

197 outputs = self.bert(input_ids, position_ids=position_ids,

token_type_ids=token_type_ids, attention_mask=attention_mask,

head_mask=head_mask, layer_mask=layer_mask)

198 pooled_output = outputs[1]

199 pooled_output = self.dropout(pooled_output)

200 logits = self.classifier(pooled_output)

201 self.prediction_vals = logits

202 outputs = (logits,) + outputs[2:] # add hidden states and

attention if they are here

203 if labels is not None:

204 if self.num_labels == 1:

205 # We are doing regression

206 loss_fct = MSELoss()

207 loss = loss_fct(logits.view(-1), labels.view(-1))

208 else:

209 loss_fct = CrossEntropyLoss()

210 loss = loss_fct(logits.view(-1, self.num_labels),

labels.view(-1))

211 outputs = (loss,) + outputs

212

213 return outputs

A.2 demo/async demo.py



184

1 # -*- coding: utf-8 -*-

2 import json

3 import argparse

4 import numpy as np

5 import time, sys, os

6 from random import randrange

7 from nltk.corpus import wordnet

8 from .demo_model_bridge import Bridge

9 from flask import Flask, render_template, request

10 from flask_socketio import SocketIO, emit, disconnect

11

12 ngram_distribution = None

13 mask_spec_chars = False

14 head_count, layer_count = 0, 0

15 args, model_bridge = None, None

16 model_width = 1210

17 model_height = 5280

18

19 app = Flask(__name__)

20 app.config['SECRET_KEY'] = 'secret'

21 socketio = SocketIO(app)

22 model_type = 'player_norm'

23

24 def extract_ngrams():

25 def add_to_dict(key_str, _dict):

26 if key_str in _dict:

27 _dict[key_str] += 1



185

28 else:

29 _dict[key_str] = 1

30 return _dict

31 def add_ngram(key_cat, token, _dict):

32 if key_cat in _dict:

33 _dict[key_cat] = add_to_dict(token, _dict[key_cat])

34 else:

35 _dict[key_cat] = add_to_dict(token, {})

36 return _dict

37 ngram_dict = {'2gram': {}, '3gram': {}, 'vocab': {}}

38 for line in open(args.ngram_source):

39 tokens = line.rstrip().lower().split(" ")

40 if len(tokens) == 1:

41 if ('-' not in tokens[0]) and ('_' not in tokens[0]):

42 ngram_dict['vocab'] = add_to_dict(tokens[0],

ngram_dict['vocab'])

43 ngram_dict['2gram'] = add_ngram("b_", tokens[0],

ngram_dict['2gram'])

44 ngram_dict['2gram'] = add_ngram("a_", tokens[0],

ngram_dict['2gram'])

45 ngram_dict['3gram'] = add_ngram("_", tokens[0],

ngram_dict['3gram'])

46 else:

47 for i in range(len(tokens)):

48 if ('-' not in tokens[i]) and ('_' not in tokens[i]):

49 ngram_dict['vocab'] = add_to_dict(tokens[i],

ngram_dict['vocab'])



186

50 if i == 0:

51 ngram_dict['2gram'] = add_ngram("a_", tokens[0],

ngram_dict['2gram'])

52 ngram_dict['2gram'] = add_ngram("b_%s"%tokens[1],

tokens[0], ngram_dict['2gram'])

53 ngram_dict['3gram'] = add_ngram("_%s"%tokens[1],

tokens[0], ngram_dict['3gram'])

54 elif i == len(tokens)-1:

55 ngram_dict['2gram'] = add_ngram("a_%s"%tokens[i

-1], tokens[i], ngram_dict['2gram'])

56 ngram_dict['2gram'] = add_ngram("b_", tokens[i],

ngram_dict['2gram'])

57 ngram_dict['3gram'] = add_ngram("%s_"%tokens[i

-1], tokens[i], ngram_dict['3gram'])

58 else:

59 ngram_dict['2gram'] = add_ngram("a_%s"%tokens[i

-1], tokens[i], ngram_dict['2gram'])

60 ngram_dict['2gram'] = add_ngram("b_%s"%tokens[i

+1], tokens[i], ngram_dict['2gram'])

61 ngram_dict['3gram'] = add_ngram("%s_%s"%(tokens[i

-1], tokens[i+1]), tokens[i], ngram_dict['3gram'])

62 with open(args.ngram_distribution ,'w') as f:

63 json.dump(ngram_dict, f)

64

65 def mask_special_chars(data, idx, mask=False):

66 if mask:

67 if data.min() < 0:



187

68 data = data - data.min()

69 if len(data.shape) == 1:

70 for i in idx:

71 data[i] = 0

72 elif len(data.shape) == 2:

73 for i in idx:

74 data[i,:] = 0

75 data[:,i] = 0

76 return data

77 else:

78 return data

79

80 def normalization(v, ax=None, zero_one=True, doAbs=False):

81 if v is None:

82 raise RuntimeError("array is None!")

83 v = np.array(v, dtype='float32')

84 assert len(v.shape) <= 2

85 if doAbs:

86 v = np.abs(v)

87 max_value = np.max(v, axis=ax)

88 min_value = np.min(v, axis=ax)

89 if ax is None:

90 det = (max_value - min_value)

91 det = det if det > 0 else 1

92 v = (v - min_value) / det

93 elif ax == 1 or ax == -1:

94 det = (max_value - min_value)[:,None]



188

95 det = np.where(det==0, 1, det)

96 v = (v - min_value[:,None]) / det

97 else:

98 det = (max_value - min_value)[None,:]

99 det = np.where(det==0, 1, det)

100 v = (v - min_value[None,:]) / det

101 if not zero_one:

102 v = (2 * v) - 1

103 return v.flatten().tolist()

104

105 # General run of the model

106 def interpretation_extraction(inp1, inp2, pairwise, task, user,

mask_special=None):

107 if mask_special is None:

108 mask_special = mask_spec_chars

109 data_list = [inp1, inp2] if pairwise else [inp1]

110 data_batch, input_text = model_bridge.parse(data_list, task)

111 special_idx = [0]

112 for i in range(len(input_text)):

113 if input_text[i] == '[SEP]':

114 special_idx.append(i)

115 model_info = model_bridge._demo_run(task, data_batch, user)

116

117 max_word_len = (max([len(w) for w in input_text]))

118 json_dict = {

119 "head_names": ["Head %d"%i for i in range(head_count)],

120 "layer_names": ["Layer %d"%i for i in range(layer_count)],



189

121 "head_count": head_count,

122 "y_margin": 9*max_word_len,

123 "x_margin": int(5.5*max_word_len),

124 "len": len(input_text),

125 "x": ["%d_%s"%(i, input_text[i]) for i in range(len(

input_text))],

126 "classes": model_bridge.get_class_names(task),

127 "logit": normalization(model_info['logit']),

128 "prediction": model_bridge.get_prediction_string(task,

model_info["prediction"]),

129 "layers": [],

130 "layers_impact_W": normalization(model_info['

layer_weight_impact']['w']),

131 "layers_impact_G": normalization(model_info['

layer_weight_impact']['g']),

132 "layers_impact_T": normalization(np.multiply(model_info['

layer_weight_impact']['w'], model_info['layer_weight_impact']['g'

])),

133 "embedding_W_main": normalization(mask_special_chars(

134 np.abs(model_info['embedding']['w']).sum(axis=-1),

special_idx, mask_special)),

135 "embedding_G_main": normalization(mask_special_chars(

136 np.abs(model_info['embedding']['g']).sum(axis=-1),

special_idx, mask_special)),

137 "embedding_T_main": normalization(mask_special_chars(

138 np.abs(np.multiply(model_info['embedding']['w'],

model_info['embedding']['g'])).sum(axis=-1), special_idx,



190

mask_special)),

139 "sub_embedding_WG": []

140 }

141 if user == "Developer":

142 for i in range(layer_count):

143 layer_dict = {"idx": i,

144 "W_output": normalization(

mask_special_chars(np.abs(model_info['attetion_layer_%d'%i]['

output']['w']).sum(axis=-1), special_idx, mask_special)),

145 "G_output": normalization(

mask_special_chars(np.abs(model_info['attetion_layer_%d'%i]['

output']['g']).sum(axis=-1), special_idx, mask_special)),

146 "T_output": normalization(

mask_special_chars(np.abs(np.multiply(model_info['attetion_layer_%

d'%i]['output']['w'], model_info['attetion_layer_%d'%i]['output'][

'g'])).sum(axis=-1), special_idx, mask_special)),

147 "W_Head": [],

148 "G_Head": [],

149 "T_Head": []

150 }

151 W_impact, G_impact, T_impact = [], [], []

152 for j in range(head_count):

153 layer_dict["W_Head"].append(normalization(

mask_special_chars(np.abs(model_info['attetion_layer_%d'%i]['head_

%d_probs'%j]['w']), special_idx, mask_special)))

154 W_impact.append(mask_special_chars(model_info['

attetion_layer_%d'%i]['head_%d_probs'%j]['w'], special_idx,



191

mask_special).sum())

155 layer_dict["G_Head"].append(normalization(

mask_special_chars(np.abs(model_info['attetion_layer_%d'%i]['head_

%d_probs'%j]['g']), special_idx, mask_special)))

156 G_impact.append(mask_special_chars(model_info['

attetion_layer_%d'%i]['head_%d_probs'%j]['g'], special_idx,

mask_special).sum())

157 layer_dict["T_Head"].append(normalization(

mask_special_chars(np.abs(np.multiply(model_info['attetion_layer_%

d'%i]['head_%d_probs'%j]['w'], model_info['attetion_layer_%d'%i]['

head_%d_probs'%j]['g'])), special_idx, mask_special)))

158 T_impact.append(mask_special_chars(np.abs(np.multiply

(model_info['attetion_layer_%d'%i]['head_%d_probs'%j]['w'],

model_info['attetion_layer_%d'%i]['head_%d_probs'%j]['g'])),

special_idx, mask_special).sum())

159 layer_dict["W_impact"] = normalization(np.array(W_impact)

)

160 layer_dict["G_impact"] = normalization(np.array(G_impact)

)

161 layer_dict["T_impact"] = normalization(np.array(T_impact)

)

162 json_dict["layers"].append(layer_dict)

163

164 json_dict["sub_embedding_WG"] = [

165 {"name": "Word",

166 "W": normalization(

mask_special_chars(np.abs(model_info['words_embedding']['w']).sum(



192

axis=-1), special_idx, mask_special)),

167 "G": normalization(

mask_special_chars(np.abs(model_info['words_embedding']['g']).sum(

axis=-1), special_idx, mask_special)),

168 "T": normalization(

mask_special_chars(np.abs(np.multiply(model_info['words_embedding'

]['w'], model_info['words_embedding']['g'])).sum(axis=-1),

special_idx, mask_special))

169 },

170 {"name": "Position",

171 "W": normalization(

mask_special_chars(np.abs(model_info['position_embedding']['w']).

sum(axis=-1), special_idx, mask_special)),

172 "G": normalization(

mask_special_chars(np.abs(model_info['position_embedding']['g']).

sum(axis=-1), special_idx, mask_special)),

173 "T": normalization(

mask_special_chars(np.abs(np.multiply(model_info['

position_embedding']['w'], model_info['position_embedding']['g']))

.sum(axis=-1), special_idx, mask_special))

174 },

175 {"name": "Type",

176 "W": normalization(

mask_special_chars(np.abs(model_info['token_type_embedding']['w'])

.sum(axis=-1), special_idx, mask_special)),

177 "G": normalization(

mask_special_chars(np.abs(model_info['token_type_embedding']['g'])



193

.sum(axis=-1), special_idx, mask_special)),

178 "T": normalization(

mask_special_chars(np.abs(np.multiply(model_info['

token_type_embedding']['w'], model_info['token_type_embedding']['g

'])).sum(axis=-1), special_idx, mask_special))

179 }

180 ]

181 return json_dict

182

183 # Automatic word modifications

184 def wordnet_token(org_input, idx):

185 synonyms = []

186 for syn in wordnet.synsets(org_input[idx].lower()):

187 for l in syn.lemmas():

188 w = l.name()

189 if w not in synonyms and (w.lower()!=org_input[idx].lower

()) and (len(w.split(' ')) == 1) and (len(w.split('_')) == 1) and

(len(w.split('-')) == 1):

190 synonyms.append(w.lower())

191 if len(synonyms) == 0:

192 return org_input[idx]

193 random_value = randrange(len(synonyms))

194 return synonyms[random_value]

195

196 def sampling_token(org_input, idx):

197 global ngram_distribution

198 if ngram_distribution is None:



194

199 with open(args.ngram_distribution ,'r') as f:

200 ngram_distribution = json.load(f)

201 previous_word, next_word = '', ''

202 if (idx > 0) and (org_input[idx-1] != '[CLS]') and (org_input[idx

-1] != '[SEP]'):

203 previous_word = org_input[idx-1]

204 if (idx < len(org_input)) and (org_input[idx+1] != '[CLS]') and (

org_input[idx+1] != '[SEP]'):

205 next_word = org_input[idx+1]

206 candidate_list = {}

207 if "a_%s"%previous_word in ngram_distribution['2gram']:

208 candidate_list = ngram_distribution['2gram']["a_%s"%

previous_word]

209 if "b_%s"%next_word in ngram_distribution['2gram']:

210 tmp = ngram_distribution['2gram']["b_%s"%next_word]

211 for k in tmp.keys():

212 if k in candidate_list:

213 candidate_list[k] += tmp[k]

214 else:

215 candidate_list[k] = tmp[k]

216 if "%s_%s"%(previous_word,next_word) in ngram_distribution:

217 tmp = ngram_distribution['3gram']["%s_%s"%(previous_word

,next_word)]

218 for k in tmp.keys():

219 if k in candidate_list:

220 candidate_list[k] += tmp[k]

221 else:



195

222 candidate_list[k] = tmp[k]

223 elif "b_%s"%next_word in ngram_distribution['2gram']:

224 candidate_list = ngram_distribution['2gram']["b_%s"%next_word

]

225 if org_input[idx] in candidate_list:

226 del candidate_list[org_input[idx]]

227 elim_list = []

228 for k in candidate_list.keys():

229 if ('-' in k) or ('_' in k):

230 elim_list.append(k)

231 for k in elim_list:

232 del candidate_list[k]

233 if len(candidate_list) > 0:

234 freq_sum = 0

235 for k in candidate_list.keys():

236 freq_sum += candidate_list[k]

237 random_value = randrange(freq_sum) + 1

238 counter = 0

239 for k in candidate_list.keys():

240 counter += candidate_list[k]

241 if counter >= random_value:

242 return k

243 else:

244 freq_sum = 0

245 for k in ngram_distribution['vocab'].keys():

246 freq_sum += ngram_distribution['vocab'][k]

247 random_value = randrange(freq_sum) + 1



196

248 counter = 0

249 for k in ngram_distribution['vocab'].keys():

250 counter += ngram_distribution['vocab'][k]

251 if counter >= random_value:

252 return k

253

254 def _word_modification(method, org_input, idx):

255 if method == 'Remove':

256 return '[REMOVED]'

257 elif method == 'Zero Out':

258 return '[ZERO]'

259 elif method == 'Unknown':

260 return '[UNK]'

261 elif method == 'Wordnet':

262 return wordnet_token(org_input, idx)

263 elif method == 'Sampling':

264 return sampling_token(org_input, idx)

265 else:

266 raise RuntimeError('The modification method is not defined.')

267 return org_input[idx]

268

269 def word_modification_process(inp1, inp2, pairwise, task, method=None

, modif_inp1=None, modif_inp2=None):

270 data_list = [inp1, inp2] if pairwise else [inp1]

271 word_modification = True if (method is not None) and (method in [

'Remove', 'Zero Out', 'Unknown']) else False

272 modif_data_list = None



197

273 if word_modification:

274 modif_data_list = [modif_inp1, modif_inp2] if pairwise else [

modif_inp1]

275 elif method is not None:

276 data_list = [modif_inp1, modif_inp2] if pairwise else [

modif_inp1]

277 data_batch, input_text = model_bridge.parse(data_list, task,

word_modification, modif_data_list, word_analyses=True)

278 if word_modification:

279 input_text = ['[CLS]'] + ((modif_inp1.split(' ') + ['[SEP]']

+ modif_inp2.split(' ')) if pairwise else modif_inp1.split(' ')) +

['[SEP]']

280 model_info = model_bridge._demo_word_change_run(task, data_batch)

281 return input_text, model_info['prediction'], normalization(

model_info['logit'])

282

283 # Structure modification

284 def structure_modification_process(inp1, inp2, pairwise, task,

head_mask=None, layer_mask=None):

285 data_list = [inp1, inp2] if pairwise else [inp1]

286 data_batch, input_text = model_bridge.parse(data_list, task)

287 model_info = model_bridge._demo_structure_change_run(task,

data_batch, head_mask=head_mask, layer_mask=layer_mask)

288 return input_text, model_info['prediction'], normalization(

model_info['logit'])

289

290 # Main Templates



198

291 @app.route("/")

292 def index():

293 info = {

294 "task_set": model_bridge.task_list,

295 "task_pair": model_bridge.task_pair_list,

296 "task_count": len(model_bridge.task_list),

297 "selected_task_id": 0,

298 "selected_user": "Developer",

299 "input01": "",

300 "input02": ""

301 }

302 return render_template("async_demo.html", info=info)

303

304 @app.route("/", methods=['POST'])

305 def my_from_post():

306 inp1 = request.form['input01'].lower()

307 inp2 = request.form['input02'].lower()

308 task = request.form['taskcombo']

309 user = request.form['usercombo']

310 pairwise = (model_bridge.task_pair_list[model_bridge.task_list.

index(task)] == "1")

311 if request.form['submit'] == 'Submit':

312 json_dict = interpretation_extraction(inp1, inp2, pairwise,

task, user)

313 info = {

314 "task_set": model_bridge.task_list,

315 "task_pair": model_bridge.task_pair_list,



199

316 "task_count": len(model_bridge.task_list),

317 "selected_task_id": model_bridge.task_list.index(task),

318 "selected_user": user,

319 "input01": inp1,

320 "input02": inp2,

321 "prediction": json_dict["prediction"],

322 "head_count": head_count if len(json_dict["layers"]) > 0

else 0,

323 "layer_idx": range(len(json_dict["layers"])-1, -1, -1),

324 "sub_embedding_WG": ["Word", "Position", "Type"] if len(

json_dict["sub_embedding_WG"]) > 0 else [],

325 "json": json_dict

326 }

327 return render_template("async_lazy_response_d3.html", info=

info)

328 elif request.form['submit'] == 'Word Analyses':

329 token_list, prediction, logit = word_modification_process(

inp1, inp2, pairwise, task)

330 info = {

331 "task": task,

332 "pairwise": pairwise,

333 "token_list": token_list,

334 "token_list_len": len(token_list),

335 "token_list_cat": ['static' if (x == '[CLS]' or x == '[

SEP]') else 'multi' for x in token_list],

336 "original_input": ' '.join(token_list),

337 "input01": inp1,



200

338 "input02": inp2,

339 "classes": model_bridge.get_class_names(task),

340 "org_prediction": model_bridge.get_prediction_string(task

, prediction),

341 "org_logit_vector": logit

342 }

343 return render_template("async_word_analyze_d3.html", info=

info)

344 elif request.form['submit'] == 'Layer and Attention Head Analyses

':

345 token_list, prediction, logit =

structure_modification_process(inp1, inp2, pairwise, task)

346 info = {

347 "model_width": model_width,

348 "model_height": model_height,

349 "task": task,

350 "classes": model_bridge.get_class_names(task),

351 "original_input": ' '.join(token_list),

352 "org_prediction": model_bridge.get_prediction_string(task

, prediction),

353 "org_logit_vector": logit

354 }

355 return render_template("async_structure_analyze_d3.html",

info=info)

356

357 # Word Analyses Template

358 @socketio.on('change_modification_type', namespace='/word_analyze')



201

359 def change_modification_type_message(message):

360 task = message['task']

361 method = message['type']

362 org_input = message['org_input'].split(' ')

363 cur_input = message['cur_input'].split(' ')

364 pairwise = (model_bridge.task_pair_list[model_bridge.task_list.

index(task)] == "1")

365 inps, modif_inps, idx = [[], []], [[], []], 0

366 for i, [ow, cw] in enumerate(zip(org_input, cur_input)):

367 if ow != '[CLS]' and ow != '[SEP]':

368 if ow == cw:

369 inps[idx].append(ow)

370 modif_inps[idx].append(ow)

371 else:

372 inps[idx].append(ow)

373 modif_inps[idx].append(_word_modification(method,

org_input, i))

374 elif ow == '[SEP]':

375 idx += 1

376 token_list, prediction, logit = word_modification_process(' '.

join(inps[0]), ' '.join(inps[1]), pairwise,

377 task, method, ' '.join(

modif_inps[0]), ' '.join(modif_inps[1]))

378 response = {'text': ' '.join(token_list),

379 'prediction': model_bridge.get_prediction_string(task

, prediction),

380 'logit': logit}



202

381 emit('auto_response', response)

382

383 @socketio.on('change_words', namespace='/word_analyze')

384 def change_words_message(message):

385 task = message['task']

386 method = message['type']

387 word_idx = int(message['word_idx'].split('_')[1])

388 org_input = message['org_input'].split(' ')

389 cur_input = message['cur_input'].split(' ')

390 pairwise = (model_bridge.task_pair_list[model_bridge.task_list.

index(task)] == "1")

391 inps, modif_inps, idx = [[], []], [[], []], 0

392 for i, [ow, cw] in enumerate(zip(org_input, cur_input)):

393 if cw != '[CLS]' and cw != '[SEP]':

394 if i != word_idx:

395 inps[idx].append(ow)

396 modif_inps[idx].append(cw)

397 else:

398 inps[idx].append(ow)

399 if ow == cw:

400 modif_inps[idx].append(_word_modification(method,

org_input, i))

401 else:

402 modif_inps[idx].append(ow)

403 elif cw == '[SEP]':

404 idx += 1



203

405 token_list, prediction, logit = word_modification_process(' '.

join(inps[0]), ' '.join(inps[1]), pairwise,

406 task, method, ' '.join(

modif_inps[0]), ' '.join(modif_inps[1]))

407 response = {'text': ' '.join(token_list),

408 'prediction': model_bridge.get_prediction_string(task

, prediction),

409 'logit': logit}

410 emit('auto_response', response)

411

412 @socketio.on('new_input', namespace='/word_analyze')

413 def new_input_message(message):

414 task = message['task']

415 pairwise = (model_bridge.task_pair_list[model_bridge.task_list.

index(task)] == "1")

416 inp1 = message['input01'].lower()

417 inp2 = message['input02'].lower() if pairwise else ""

418 _, prediction, logit = word_modification_process(inp1, inp2,

pairwise, task)

419 response = {'prediction': model_bridge.get_prediction_string(task

, prediction),

420 'logit': logit}

421 emit('manual_response', response)

422

423 # Structure Analyses Template

424 @socketio.on('connect', namespace='/structure_analyze')

425 def structure_analyze_connect():



204

426 graph = model_bridge.get_model_graph()

427 emit('connect_response', graph)

428

429 @socketio.on('change_structure', namespace='/structure_analyze')

430 def structure_change_message(message):

431 task = message['task']

432 _input = message['input'].split(' ')

433 pairwise = (model_bridge.task_pair_list[model_bridge.task_list.

index(task)] == "1")

434 inps, idx = [[], []], 0

435 if pairwise:

436 for w in _input:

437 if w != '[CLS]' and w != '[SEP]':

438 inps[idx].append(w)

439 elif w == '[SEP]':

440 idx += 1

441 else:

442 inps[0] = _input[1:-1]

443 head_status = message['head_status']

444 head_mask = [[1]*head_count]*layer_count

445 active_heads = True

446 for i in range(layer_count):

447 for j in range(head_count):

448 if ("Layer_%d_Head_%d"%(i,j) in head_status) and (

head_status["Layer_%d_Head_%d"%(i,j)] == 0):

449 head_mask[i][j] = 0

450 active_heads = False



205

451 if active_heads:

452 head_mask = None

453 layer_status = message['layer_status']

454 layer_mask = []

455 active_layers = True

456 for i in range(layer_count):

457 if ("Layer_%d_Collector"%(i) in layer_status) and (

layer_status["Layer_%d_Collector"%(i)] == 0):

458 layer_mask.append(0.)

459 active_layers = False

460 else:

461 layer_mask.append(1.)

462 if active_layers:

463 layer_mask = None

464 _, prediction, logit = structure_modification_process(' '.join(

inps[0]), ' '.join(inps[1]), pairwise, task, head_mask, layer_mask

)

465 response = {'prediction': model_bridge.get_prediction_string(task

, prediction),

466 'logit': logit}

467 emit('change_response', response)

468

469 @app.after_request

470 def add_header(r):

471 """

472 Add headers to both force latest IE rendering engine or Chrome

Frame,



206

473 and also to cache the rendered page for 10 minutes.

474 """

475 r.headers["Cache-Control"] = "no-cache, no-store, must-revalidate

"

476 r.headers["Pragma"] = "no-cache"

477 r.headers["Expires"] = "0"

478 r.headers['Cache-Control'] = 'public, max-age=0'

479 return r

480

481 def main(inp_args):

482 global model_bridge, args, head_count, layer_count

483 args = inp_args

484 if args.ngram_extraction:

485 extract_ngrams()

486 else:

487 if args.model_type != "":

488 model_type = args.model_type

489 model_bridge = Bridge(model_type)

490 head_count = model_bridge.head_count

491 layer_count = model_bridge.layer_count

492 socketio.run(app, host=args.ip, port=args.port)

A.3 demo/demo model bridge.py

1 import re

2 import torch

3 import numpy as np



207

4 from run_tasks import (compute_metrics, convert_examples_to_features,

output_modes, processors, InputExample, InputFeatures)

5 from pyencoder import (BertConfig, BertForSequenceClassification,

BertForMultiSequenceClassification)

6 from pytorch_transformers import (WEIGHTS_NAME, BertTokenizer)

7 from torch.utils.data import (DataLoader, RandomSampler,

SequentialSampler, TensorDataset)

8

9 class Bridge(object):

10 def pre_process_modif(self, main_text, modif_text):

11 main_text = main_text.split(' ')

12 modif_text = modif_text.split(' ')

13 assert len(main_text) == len(modif_text)

14 for i in range(len(main_text)):

15 if modif_text[i] == '[REMOVED]':

16 main_text[i] = ''

17 text = ' '.join(main_text)

18 text = re.sub(r" +", r" ", text)

19 return text

20

21 def parse(self, data_list, task, word_modification=False,

modif_data_list=None, word_analyses=False):

22 if word_modification:

23 data_list[0] = self.pre_process_modif(data_list[0],

modif_data_list[0])

24 if len(data_list)>1:



208

25 data_list[1] = self.pre_process_modif(data_list[1],

modif_data_list[1])

26 examples = [InputExample(guid=0, text_a=data_list[0], text_b

=(data_list[1] if len(data_list)>1 else None), label="0")]

27 tokenizer = self.model_list[task][1]

28 token_count = 4 + len(data_list[0].split(' ')) + ((1 + len(

data_list[1].split(' '))) if len(data_list)>1 else 0)

29 features, tokens = convert_examples_to_features(examples, [],

-1, tokenizer, "regression", cls_token_at_end=False, cls_token=

tokenizer.cls_token, sep_token=tokenizer.sep_token,

cls_token_segment_id=0, pad_on_left=False, pad_token_segment_id=0,

pass_text=True, only_split=word_analyses)

30 # Convert to Tensors and build dataset

31 all_input_ids = torch.tensor([f.input_ids for f in features],

dtype=torch.long)

32 all_input_mask = torch.tensor([f.input_mask for f in features

], dtype=torch.long)

33 all_segment_ids = torch.tensor([f.segment_ids for f in

features], dtype=torch.long)

34 if word_modification:

35 modif_tokens = ['[CLS]'] + ((modif_data_list[0].split(' '

) + ['[SEP]'] + modif_data_list[1].split(' ')) if len(

modif_data_list)>1 else modif_data_list[0].split(' ')) + ['[SEP]']

36 if '[ZERO]' in modif_tokens:

37 for i in range(len(modif_tokens)):

38 if modif_tokens[i] == '[ZERO]':

39 all_input_mask[0][i] = 0



209

40 all_input_ids[0][i] = tokenizer.

_convert_token_to_id(tokenizer.mask_token)

41 elif '[UNK]' in modif_tokens:

42 for i in range(len(modif_tokens)):

43 if modif_tokens[i] == '[UNK]':

44 all_input_ids[0][i] = tokenizer.

_convert_token_to_id(tokenizer.unk_token)

45

46 batch = [all_input_ids, all_input_mask, all_segment_ids]

47 return batch, tokens

48

49 # RUN MODELS

50 def _demo_run(self, task, batch, user):

51 self.model_list[task][2].eval()

52 batch = tuple(t.to(self.device) for t in batch)

53 inputs = {'input_ids': batch[0],

54 'attention_mask': batch[1],

55 'token_type_ids': batch[2],

56 'labels': None}

57 outputs = self.model_list[task][2](**inputs)

58 logits = outputs[0]

59 pred = logits.detach().cpu().numpy()[0]

60 dy_dl = torch.ones((1,1)).to(self.device)

61 tmp_model = self.model_list[task][2].module if hasattr(self.

model_list[task][2], 'module') else self.model_list[task][2]

62 # compute the gradient of the output respect to desired units

and components of the model



210

63 if task != "STS-B":

64 tmp_model.prediction_vals[:,pred[0]].backward(dy_dl)

65 else:

66 tmp_model.prediction_vals.backward(dy_dl)

67 info = {'prediction': pred[0],

68 'logit': logits.detach().cpu().numpy()[0],

69 'embedding': {'w': tmp_model.bert.embeddings.

embeddig_list[3].detach().cpu().numpy()[0],

70 'g': tmp_model.bert.embeddings.

embeddig_list[3].grad.cpu().numpy()[0]

71 }

72 }

73 if tmp_model.bert.layer_mask_weight is None:

74 info['layer_weight_impact'] = {'w': np.array([0]*(self.

layer_count-1)+[1]),

75 'g': np.array([0]*(self.

layer_count-1)+[1])}

76 else:

77 info['layer_weight_impact'] = {'w': tmp_model.bert.

layer_mask_weight.detach().cpu().numpy(),

78 'g': tmp_model.bert.

layer_mask_weight.grad.cpu().numpy()}

79 if user == 'Developer':

80 info['words_embedding'] = {

81 'w': tmp_model.bert.embeddings.

embeddig_list[0].detach().cpu().numpy()[0],



211

82 'g': tmp_model.bert.embeddings.

embeddig_list[0].grad.cpu().numpy()[0]

83 }

84 info['position_embedding'] = {

85 'w': tmp_model.bert.embeddings.

embeddig_list[1].detach().cpu().numpy()[0],

86 'g': tmp_model.bert.embeddings.

embeddig_list[1].grad.cpu().numpy()[0]

87 }

88 info['token_type_embedding'] = {

89 'w': tmp_model.bert.embeddings.

embeddig_list[2].detach().cpu().numpy()[0],

90 'g': tmp_model.bert.embeddings.

embeddig_list[2].grad.cpu().numpy()[0]

91 }

92 for _layer in range(self.layer_count):

93 info['attetion_layer_%d'%_layer] = {}

94 info['attetion_layer_%d'%_layer]['output'] = {

95 'w':

tmp_model.bert.encoder.layer[_layer].attention.self.context_output

.detach().cpu().numpy()[0],

96 'g':

tmp_model.bert.encoder.layer[_layer].attention.self.context_output

.grad.cpu().numpy()[0]

97 }

98 att_probs = tmp_model.bert.encoder.layer[_layer].

attention.self.att_probs.detach().cpu().numpy()[0]



212

99 att_probs_grad = tmp_model.bert.encoder.layer[_layer

].attention.self.att_probs.grad.cpu().numpy()[0]

100 for _head in range(self.head_count):

101 info['attetion_layer_%d'%_layer]['head_%d_probs'%

_head] = {

102 'w':

att_probs[_head],

103 'g':

att_probs_grad[_head]

104 }

105 return info

106

107 def _demo_word_change_run(self, task, batch):

108 self.model_list[task][2].eval()

109 batch = tuple(t.to(self.device) for t in batch)

110 with torch.no_grad():

111 inputs = {'input_ids': batch[0],

112 'attention_mask': batch[1],

113 'token_type_ids': batch[2],

114 'labels': None}

115 outputs = self.model_list[task][2](**inputs)

116 logits = outputs[0]

117 pred = np.squeeze(logits.detach().cpu().numpy())

118 info = {'prediction': pred,

119 'logit': logits.detach().cpu().numpy()[0],}

120 return info

121



213

122 def _demo_structure_change_run(self, task, batch, head_mask=None,

layer_mask=None):

123 self.model_list[task][2].eval()

124 batch = tuple(t.to(self.device) for t in batch)

125 with torch.no_grad():

126 inputs = {'input_ids': batch[0],

127 'attention_mask': batch[1],

128 'token_type_ids': batch[2],

129 'labels': None,

130 'head_mask': None if head_mask is None

else torch.FloatTensor(head_mask).to(device=self.device),

131 'layer_mask': None if layer_mask is None

else layer_mask}

132 outputs = self.model_list[task][2](**inputs)

133 logits = outputs[0]

134 pred = np.squeeze(logits.detach().cpu().numpy())

135 info = {'prediction': pred,

136 'logit': logits.detach().cpu().numpy()[0],}

137 return info

A.4 HTML Script

1 <script>

2 var json = {{info["json"]|safe}}

3

4 var margin = {top: 5, right: 5, bottom: {{info["json"]["

x_margin"]|safe}}, left: {{info["json"]["y_margin"]|safe}} },



214

5 width = 35*{{info["json"]["len"]|safe}},

6 height = 35*{{info["json"]["len"]|safe}},

7 vector_height = 35;

8

9 // Labels of row and columns

10 var sentence = {{ info["json"]["x"]|safe }}

11 var classes = {{info["json"]["classes"]|safe}}

12 var heads = {{info["json"]["head_names"]|safe}}

13 var layers = {{info["json"]["layer_names"]|safe}}

14

15 // Build X scales and axis:

16 var x = d3.scaleBand()

17 .range([ 0, width ])

18 .domain(sentence)

19 .padding(0.01);

20

21 // Build X scales and axis:

22 var c_x = d3.scaleBand()

23 .range([ 0, width ])

24 .domain(classes)

25 .padding(0.01);

26

27 var l_x = d3.scaleBand()

28 .range([ 0, width ])

29 .domain(layers)

30 .padding(0.01);

31



215

32 // Build X scales and axis:

33 var h_x = d3.scaleBand()

34 .range([ 0, width ])

35 .domain(heads)

36 .padding(0.01);

37

38 // Build X scales and axis:

39 var y = d3.scaleBand()

40 .range([ height, 0 ])

41 .domain(sentence)

42 .padding(0.01);

43

44 var v_y = d3.scaleBand()

45 .range([ vector_height, 0 ])

46 .domain([''])

47 .padding(0.01);

48

49 // Build color scale

50 var myColor = d3.scaleLinear()

51 .range(["white", "#250082"])

52 .domain([0,1])

53

54 function draw_vector(id_str, data_array, x_axis, x_lbls){

55 var svg = d3.select(id_str)

56 .append("svg")

57 .attr("width", width + margin.left + margin.right)



216

58 .attr("height", vector_height + margin.top + margin.

bottom)

59 .append("g")

60 .attr("transform", "translate(" + margin.left + "," +

margin.top + ")");

61 svg.append("g")

62 .attr("transform", "translate(0," + vector_height + ")")

63 .call(d3.axisBottom(x_axis))

64 .selectAll("text")

65 .style("text-anchor", "end")

66 .attr("transform", "rotate(-35)");

67 var vector = svg.selectAll()

68 .data(data_array, function(d, i) {return x_lbls[(i%x_lbls.

length)]+':'+'';})

69 .enter()

70 .append("rect")

71 .attr("x", function(d, i) { return x(x_lbls[(i%x_lbls.

length)]) })

72 .attr("y", function(d, i) { return v_y('') })

73 .attr("width", x.bandwidth() )

74 .attr("height", v_y.bandwidth() )

75 .style("fill", function(d, i) { return myColor(d)} )

76

77 vector.append("title")

78 .text(function(d) { return "value: " + d; });

79 }

80 function draw_matrix(id_str, data_array){



217

81 var svg = d3.select(id_str)

82 .append("svg")

83 .attr("width", width + margin.left + margin.right)

84 .attr("height", height + margin.top + margin.bottom)

85 .append("g")

86 .attr("transform",

87 "translate(" + margin.left + "," + margin.top + ")");

88 svg.append("g")

89 .attr("transform", "translate(0," + height + ")")

90 .call(d3.axisBottom(x))

91 .selectAll("text")

92 .style("text-anchor", "end")

93 .attr("transform", "rotate(-35)");

94 svg.append("g")

95 .call(d3.axisLeft(y));

96 var heatmap = svg.selectAll()

97 .data(data_array, function(d, i) {return sentence[(i%

sentence.length)]+':'+sentence[Math.floor(i/sentence.length)];})

98 .enter()

99 .append("rect")

100 .attr("x", function(d, i) { return x(sentence[(i%sentence

.length)]) })

101 .attr("y", function(d, i) { return y(sentence[Math.floor(

i/sentence.length)]) })

102 .attr("width", x.bandwidth() )

103 .attr("height", y.bandwidth() )

104 .style("fill", function(d, i) { return myColor(d); })



218

105

106 heatmap.append("title")

107 .text(function(d) { return "value: " + d; });

108 }

109

110 function draw_layer_weight_impact(){

111 draw_vector("#W_layers_impact_div", json.layers_impact_W, l_x

, layers);

112 draw_vector("#G_layers_impact_div", json.layers_impact_G, l_x

, layers);

113 draw_vector("#T_layers_impact_div", json.layers_impact_T, l_x

, layers);

114 }

115 function remove_layer_weight_impact(){

116 $("#W_layers_impact_div").empty();

117 $("#G_layers_impact_div").empty();

118 $("#T_layers_impact_div").empty();

119 }

120 function draw_main_embedding(){

121 draw_vector("#W_Embd", json.embedding_W_main, x, sentence);

122 draw_vector("#G_Embd", json.embedding_G_main, x, sentence);

123 draw_vector("#T_Embd", json.embedding_T_main, x, sentence);

124 }

125 function remove_main_embedding(){

126 $("#W_Embd").empty();

127 $("#G_Embd").empty();

128 $("#T_Embd").empty();



219

129 }

130 function draw_sub_embedding(){

131 json.sub_embedding_WG.forEach(function(d){

132 draw_vector("#W_Subembd_"+d.name+"_div", d.W, x, sentence)

133 draw_vector("#G_Subembd_"+d.name+"_div", d.G, x, sentence)

134 draw_vector("#T_Subembd_"+d.name+"_div", d.T, x, sentence)

135 });

136 }

137 function remove_sub_embedding(){

138 json.sub_embedding_WG.forEach(function(d){

139 $("#W_Subembd_"+d.name+"_div").empty();

140 $("#G_Subembd_"+d.name+"_div").empty();

141 $("#T_Subembd_"+d.name+"_div").empty();

142 });

143 }

144 function draw_layer_output(_dict, idx){

145 draw_vector("#W_L_"+idx+"_output_div", _dict.W_output, x,

sentence);

146 draw_vector("#G_L_"+idx+"_output_div", _dict.G_output, x,

sentence);

147 draw_vector("#T_L_"+idx+"_output_div", _dict.T_output, x,

sentence);

148 }

149 function remove_layer_output(idx){

150 $("#W_L_"+idx+"_output_div").empty();

151 $("#G_L_"+idx+"_output_div").empty();

152 $("#T_L_"+idx+"_output_div").empty();



220

153 }

154 function draw_layer_impact(_dict, idx){

155 draw_vector("#W_L_"+idx+"_impact_div", _dict.W_impact, h_x,

heads);

156 draw_vector("#G_L_"+idx+"_impact_div", _dict.G_impact, h_x,

heads);

157 draw_vector("#T_L_"+idx+"_impact_div", _dict.T_impact, h_x,

heads);

158 }

159 function remove_layer_impact(idx){

160 $("#W_L_"+idx+"_impact_div").empty();

161 $("#G_L_"+idx+"_impact_div").empty();

162 $("#T_L_"+idx+"_impact_div").empty();

163 }

164 function draw_attention_head(_dict, layer_idx){

165 var i;

166 for (i = 0; i < json.head_count; i++) {

167 draw_matrix("#W_L_"+layer_idx+"_head_"+i+"_div", _dict.

W_Head[i]);

168 draw_matrix("#G_L_"+layer_idx+"_head_"+i+"_div", _dict.

G_Head[i]);

169 draw_matrix("#T_L_"+layer_idx+"_head_"+i+"_div", _dict.

T_Head[i]);

170 }

171 }

172 function remove_attention_head(layer_idx){

173 var i;



221

174 for (i = 0; i < json.head_count; i++) {

175 $("#W_L_"+layer_idx+"_head_"+i+"_div").empty();

176 $("#G_L_"+layer_idx+"_head_"+i+"_div").empty();

177 $("#T_L_"+layer_idx+"_head_"+i+"_div").empty();

178 }

179 }

180

181 draw_vector("#logit_div", json.logit, c_x, classes);

182 draw_layer_weight_impact();

183

184 $(function(){

185 $(".collapsible").click(function(e){

186 this.classList.toggle("active");

187 var parent = this.parentElement;

188 var content = this.nextElementSibling;

189 if (content.style.maxHeight){

190 content.style.maxHeight = null;

191 console.log($(e.target).attr("cat"))

192 if ($(e.target).attr("cat") == "main_embedding"){

193 remove_main_embedding();

194 } else if ($(e.target).attr("cat") == "sub_embedding"){

195 remove_sub_embedding();

196 } else if ($(e.target).attr("cat") == "layer_output"){

197 idx = $(e.target).attr("layer_idx")

198 remove_layer_output(idx);

199 } else if ($(e.target).attr("cat") == "layer_impact"){

200 idx = $(e.target).attr("layer_idx")



222

201 remove_layer_impact(idx);

202 } else if ($(e.target).attr("cat") == "head_output"){

203 idx = $(e.target).attr("layer_idx")

204 remove_attention_head(idx);

205 }

206 } else {

207 if ($(e.target).attr("cat") == "main_embedding"){

208 draw_main_embedding();

209 } else if ($(e.target).attr("cat") == "sub_embedding"){

210 draw_sub_embedding();

211 } else if ($(e.target).attr("cat") == "layer_output"){

212 idx = parseInt($(e.target).attr("layer_idx"), 10);

213 draw_layer_output(json.layers[idx], idx);

214 } else if ($(e.target).attr("cat") == "layer_impact"){

215 idx = parseInt($(e.target).attr("layer_idx"), 10);

216 draw_layer_impact(json.layers[idx], idx);

217 } else if ($(e.target).attr("cat") == "head_output"){

218 idx = parseInt($(e.target).attr("layer_idx"), 10);

219 draw_attention_head(json.layers[idx], idx);

220 }

221 content.style.maxHeight = content.scrollHeight + "px";

222 if (parent.className == "content"){

223 parent.style.maxHeight = parent.scrollHeight + content.

scrollHeight + "px";

224 } else if (parent.className == "embd_content"){

225 var superparent = parent.parentElement;



223

226 superparent.style.maxHeight = superparent.scrollHeight

+ content.scrollHeight + "px";

227 }

228 }

229 });

230 });

231 $(function() {

232 $("#taskcombo").on("change", function(e) {

233 var s2_sts = $("option:selected", this).attr("s2_sts");

234 if (s2_sts == "1"){

235 $(input02_div).show();

236 } else {

237 $(input02_div).hide();

238 }

239 }).change();

240 });

241 $(function() {

242 $("#usercombo").on("change", function(e) {

243 var utype = $("option:selected", this).text();

244 if (utype == "Developer"){

245 $("div[cat=devop]").show()

246 } else {

247 $("div[cat=devop]").hide()

248 }

249 }).change();

250 });

251 $(function(){



224

252 $("a[item-id]").click(function(e){

253 this.classList.toggle("select");

254 $("div[item-id="+$(e.target).attr("item-id")+"]").toggle()

255 });

256 });

257 </script>

Listing A.1: JavaScript for a HTML file (async lazy response d3.html) of the Demo




	Introduction
	Background and Preliminaries
	Artificial Neural Networks
	Word Embedding
	Recurrent Neural Networks
	Gated Recurrent Unit
	Long Short-Term Memory


	DR-BiLSTM: Dependent Reading Bidirectional LSTM for NLI
	Introduction
	Related Work
	Model
	Input Encoding
	Attention
	Inference
	Classification

	Experiments and Evaluation
	Dataset
	Experimental Setup
	Ensemble Strategy
	Preprocessing
	Results
	Ablation and Configuration Study
	Analysis

	Conclusion

	Dependent gated reading for cloze-style question answering
	Introduction
	Related Work
	Dependent Gated Reading
	Multi-hop Reading of Document and Query
	Ranking & Prediction
	Further Enhancements

	Experiments and Evaluation
	Datasets
	Training Details & Experimental Setup
	Results
	Ablation Study
	Rule-based Disambiguation Study
	Analysis

	Conclusion

	Interpreting Recurrent and Attention-based Neural Models: A Case Study on NLI
	Introduction
	Task and Model
	ESIM

	Visualization of Attention and Gating
	Attention
	LSTM Gating Signals

	Conclusion

	Attentional Multi-Reading Sarcasm Detection
	Introduction
	Related Work
	Model
	Input Encoding
	Attention
	Re-Reading
	Classification

	Experiments and Evaluation
	Dataset
	Experimental Setup
	Results
	Ablation and Configuration Study

	Analysis
	Attention Study
	Length Study

	Conclusion

	Gated BERT: Toward Interpreting and Understanding BERT
	Introduction
	Preliminary: BERT
	Embedding
	Transformer Layer
	Prediction

	Gated BERT
	Experiments and Evaluation
	Dataset
	Training
	Experimental Results
	Analysis

	Demo
	Conclusion

	Saliency Learning: Teaching the Model Where to Pay Attention
	Introduction
	Background: Saliency
	Saliency-based Explanation Learning
	Tasks and Datasets
	Model
	Experiments and Analysis
	Training
	Performance
	Saliency Accuracy
	Saliency Visualization
	Verification
	More Saliency Visualization

	Conclusion

	Summary
	Bibliography
	Appendices
	Source Code for Gated BERT (G-BERT)

