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a  b  s  t  r  a  c  t

Growth  increment  widths  from  hard  structures  of  marine  and  freshwater  fish  and  bivalve  species  are
increasingly  used  to model  growth  and elucidate  relationships  with  environmental  variability.  Fully
characterizing  the  intrinsic  age-related  growth  variation  among  individuals  within  and  between  popula-
tions,  while  estimating  the  extrinsic  environmental  effects  simultaneously,  can  be  challenging.  Using  the
long-lived  bivalve  Pacific  geoduck  (Panopea  generosa),  we develop  an  integrated  approach  to analyze  the
relationship  between  growth  increment  data  and  climate  indices  using  Bayesian  hierarchical  methods.
Fitting  models  to growth  increment  data  from  multiple  individuals  over  two  sites,  we examined  different
covariance  structures  related  to  random  individual  effects,  long-  and  short-term  environmental  effects
and unexplained  errors.  The  best fitting  hierarchical  model  accounted  for  a site-specific  mean  growth
response,  individual  growth  variability  through  random  parameter  effects,  and  site-specific  error  vari-
ances.  Extrinsic  environmental  effects  on growth  were  also  significant  and  included  a random  year effect
ierarchical model
orth Pacific Ocean

and  the  Pacific  Decadal  Oscillation  (PDO)  as  a  predictor  of  mean  growth  across  both  individuals  and  sites.
Once intrinsic  age-related  growth  was  accounted  for,  PDO  accounted  for 18%  to total variability  in  growth
increment  data;  geoduck  shell  size  was  predicted  to  increase  as  a function  of  larger  PDO  anomalies.  How-
ever, the  greatest  variability  in  growth  increment  data  was  explained  by random  year  effects  (∼60–70%),
and  while  largely  unexplained,  sea surface  temperature  (SST)  is  a likely  determinant  on  geoduck  growth

grow
rates showing  a  positive  

. Introduction

The tendency for individuals from single or even multiple loca-
ions to exhibit synchronous growth patterns provides strong
vidence that environmental processes can have a mechanistic
nfluence on growth. For nearly a century, tree-ring science (den-
rochronology) has been at the forefront of developing proxies
or a range of climate and disturbance phenomena including tem-
erature, precipitation, and river discharge as well as fires, insect
utbreaks, and windstorms (Speer, 2010; Cook and Kairiukstis,
990). Reconstructions often span several hundred years, and
ven millennia when chronologies developed from living trees

re combined with dead-collected, preserved material (Ferguson,
968; Eronen et al., 2002). In recent years, these methods have
een adapted to biogenic calcified structures in marine organisms

∗ Corresponding author. Tel.: +1 206 526 4200; fax: +1 206 526 6723.
E-mail addresses: Thomas.helser@noaa.gov, thom hoster@yahoo.com

T.E. Helser).

304-3800/$ – see front matter. Published by Elsevier B.V.
ttp://dx.doi.org/10.1016/j.ecolmodel.2012.08.024
th–SST  response.
Published by Elsevier B.V.

including coral (Correge, 2006), bivalves (Butler et al., 2009), and
fish (Black et al., 2008a)  for reconstructing past environmental
variability in these aquatic environments. Morphological, chemi-
cal, and isotopic properties of annual growth increments formed in
marine organismal hard structures capture a wide range of environ-
mental variables including temperature, upwelling, growth, and,
productivity, among others (i.e., Goman et al., 2008; Killingley and
Berger, 1979; Krantz et al., 1987; Marchitto et al., 2000). Thus,
growth increments can yield valuable information concerning the
physical and biological processes that affect growth, and also serve
as proxies to reconstruct climate and environmental records in
these marine environments where observational records are rel-
atively scarce.

Methods of analyzing growth increment data have varied,
depending on the scientific discipline. In fisheries science, the focus
was traditionally on back-calculation methods to derive a past mea-

sure of body size predicted from growth increments in fish scales
and otoliths (Ricker, 1975), many of which involved regression
analysis (Francis, 1990). More recently, attention has turned to teas-
ing out environmental or physical effects suspected of influencing

dx.doi.org/10.1016/j.ecolmodel.2012.08.024
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:Thomas.helser@noaa.gov
mailto:thom_hoster@yahoo.com
dx.doi.org/10.1016/j.ecolmodel.2012.08.024


 Mode

g
t
a
e
g
e
v
r

t
i
d
i
i
o
m
a
b
p
s
m
A
g
b
b
c
e
c
d

g
B
g
m
a
t
m
V
r
t
2
o
t
o

f
a
a
l
a
m
o
a
p
a
i
s
c
m
a
t
v
g
c
r
e

T.E. Helser et al. / Ecological

rowth increment data during particular calendar years in addition
o modeling age-related growth using analysis of variance (Hagen
nd Quinn, 1991; Weisberg, 1993) and mixed effects (Weisberg
t al., 2010) models. Nevertheless, partitioning and estimating
rowth variation among intrinsic age- or size-related effects and
xtrinsic environmental effects, while fully characterizing growth
ariability within and between populations is an active area of
esearch in fisheries and ecology.

In dendrochronology, growth increment data are analyzed
hrough a process called detrending; each measurement time series
s fit with a function that models age-related growth declines and
ivides each measurement by the predicted value, thereby remov-

ng the non-stationary tree aging process into relative ring-width
ndices of unit mean and a constant variance. The entire ensemble
f detrended tree ring time series is then averaged to derive a com-
on  signal across the series for each calendar year and is referred to

 chronology (Fritz, 1976). The quality of the chronology is ensured
y crossdating which involves the matching of synchronous growth
atterns induced by climate variability among all samples of a given
pecies and site. In so doing, any missed or falsely added incre-
ents can be identified, guaranteeing annual resolution in the data.

 limitation of most detrending techniques is that processes of
reater duration than the measurement time series length cannot
e resolved (Cook et al., 1995), though methods have evolved that
etter preserve low-frequency signals, especially when datasets
ontain live- and dead-collected material (Esper et al., 2002; Bunn
t al., 2004). Nonetheless, techniques for detrending, averaging and
hronology development remain controversial topics in modern
endrochronology.

In this paper, we developed an integrated approach to analyzing
rowth increment data in a marine paleoclimate time series using
ayesian hierarchical methods. This approach represents a more
eneral statistical methodology for the analysis of growth incre-
ent data because it partitions and estimates both the intrinsic age

nd extrinsic climate effects on growth variability. We  demonstrate
his method using a data set of annual growth increment measure-

ents in Pacific geoduck (Panopea generosa) samples collected near
ancouver Island from a study by Black et al. (2009).  Geoduck can
each 150 years of age and have been studied as a proxy for recons-
ructing North Pacific sea surface temperatures (SST) (Strom et al.,
004). Our goal is not to dismiss other approaches used in the field
f dendrochronology but rather to add another tool for analyzing
he relationship between climate variability and growth in marine
rganisms.

Bayesian methods have often been used as the quantitative
ramework for employing meta-analysis, and numerous examples
re available in the ecological (Wade, 2000; Helser and Lai, 2004)
nd fisheries science (Punt and Hilborn, 1997; Helser et al., 2007)
iterature. In recent years, Bayesian hierarchical models have been
lso applied to tree-ring time series (Boreux et al., 2009). Bayesian
ethods (Gelman et al., 2004) in particular provide a direct means

f parameter estimation and quantification of uncertainty in vari-
nce components and model parameters, as well as functions of
arameters. By taking advantage of nested data structure, we fit an
llometric linear hierarchical growth function to detrend growth
ncrement data from all individuals simultaneously over several
ites from which geoduck were collected and test for different
ovariance structures among random individual effects, environ-
ental effects and residual error. A particular strength of this

pproach is that statistical properties of the observations related to
he chronology are well described. In addition, the approach pro-
ides a novel means by which to quantify uncertainty between

rowth–climate relationships. Specifically our goals were to: (i)
onstruct a geoduck growth model that estimates climate–growth
esponse and (ii) estimate the strength of the environmental
ffects by explicitly estimating the variance components and their
lling 247 (2012) 210– 220 211

appropriate variance structure within the model. Previous stud-
ies have implicated SSTs, especially at a local scale, and the Pacific
Decadal Oscillation (PDO), especially at a basin-wide scale, as envi-
ronmental factors affecting the growth response of animals in the
North Pacific Ocean (Francis and Hare, 1994; Black et al., 2009).
These climate indices were natural candidates for inclusion in the
geoduck modeling framework presented in this paper.

2. Materials and methods

Pacific geoduck are a long-lived bivalves distributed from
Kodiak, Alaska to southern California and are found in the seafloor
sediment from the intertidal zone to depths of 100 m (Coan et al.,
2000). Geoduck is a good candidate for examining environmen-
tal variability of growth and for historical climate reconstruction
because they can live more than 150 years (Strom et al., 2004; Black
et al., 2009) and occupy habitat in the mixed layer where they are
responsive to environmental variability (Bernard, 1983). This study
used Pacific geoduck that had been live-collected from two  differ-
ent sites: (1) Tree Nob, located along the northern coast of British
Columbia and (2) Barkley Sound, located along the southwestern
coast of Vancouver Island (Fig. 1). Tree Nob data are described in
Black et al. (2008b) while the Barkley Sound data are newly devel-
oped. Crossdated chronologies were generated for each of the sites
and crossdated estimates of total geoduck age were obtained for
each individual (Fig. 1). For the analysis presented in this study, 33
individuals were measured at the Tree-Nob site, spanning nearly
a century while 15 individuals were measured at Barkley Sound,
spanning more than 70 years (Fig. 2). When sorted as a function of
the age at which a particular growth increment was  formed, both
data sets exhibited the typical negative exponential decay begin-
ning with relatively large increment widths at young ages followed
by a continuous monotonic decline over subsequent ages (Fig. 2).
This intrinsic growth pattern is typical of the allometric relationship
between somatic body size and age in marine organisms.

2.1. Sample preparation and data development

In Pacific geoduck, the hinge plate (chondrophore) grows at
a rate proportional to that of the outer shell layer, but is pro-
tected from erosion and thus provides the most complete growth
record (Shaul and Goodwin, 1982). As such, shell preparations,
growth increment counts and growth increment measurements
were restricted to the hinge plate area, and followed the same gen-
eral methods as reported by Black et al. (2009).  A single sample
from each geoduck specimen was  cut on the dorso-ventral axis of
the valve through the umbro and hinge plate using a diamond blade
lapidary saw. The cut surface was polished with 600-grit sandpaper
and then etched with 2% hydrochloric acid. An impression (acetate
peel) was made by pressing the etched surface of the hinge plate
against a piece of acetate film softened with a drop of acetone. The
peel was  sandwiched between two glass slides and viewed either by
a microprojector or a dissecting microscope, both using transmitted
light.

Only those peels with annual growth increments (bands)
sufficiently clear that they could be measured were digitally photo-
graphed using a Leica DC300 3.2 megapixel camera interfaced
with a Leica stereomicroscope. These samples were then visually
crossdated to ensure that all increments were assigned the cor-
rect calendar year of formation. Crossdating assumes that some
aspect of the environment limits growth and induces synchronous

growth patterns among all individuals from a given site (Fritz, 1976;
Stokes and Smiley, 1996). Fundamental in all tree-ring studies,
crossdating is accomplished by matching this synchronous pattern
among samples, beginning at the marginal increment formed at



212 T.E. Helser et al. / Ecological Modelling 247 (2012) 210– 220

F rkley.
t SST an

t
i
t
s
i
f
i
z
a

F
B
i

ig. 1. Sampling sites of Pacific geoduck used in this study: (1) Tree Nob and (2) Ba
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he known year of capture and working toward the center. If an
ncrement is accidentally missed or falsely added, the growth pat-
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amples, thereby identifying the error. Once crossdated, growth
ncrement widths were measured along continuous transects that

ollowed the axis of growth using Image Pro Plus 6.0. Each growth
ncrement was delineated at the end of the winter line (translucent
one) and start of the new growing season (opaque zone) (Shaul
nd Goodwin, 1982).
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ox–Whisker plots of Pacific geoduck growth increment measurements plotted by age o
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To statistically verify the visual crossdating, measurement
time series were imported into the International Tree-Ring Data
Bank Dendrochronology Program Library program COFECHA writ-
ten in 1982 by Richard Holmes of the Laboratory of Tree-Ring
research at the University of Arizona (available through the Uni-

versity of Arizona Laboratory of Tree-Ring Research Web  site:
www.ltrr.arizona.edu/software.html). COFECHA removes low-
frequency variability from each measurement time series, thereby
isolating high-frequency, year-to-year growth patterns. Each

Year

1900 192 0 194 0 196 0 198 0 200 0

0

1

2

3

4

5

Growth in creme nt age ( years)

0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5 D

B

of growth from specimens taken from the Barkley Sound (A) and Tree Nob (B) sites.
f increment formation from the Barkley Sound (C) and Tree Nob (D) sites. Sold line
ere fitted by logarithmic transformation of growth increments).

http://www.ltrr.arizona.edu/software.html


 Mode

“
a
i
a
c
c
d
f
a

e
w
h
t
D
P
c
o
t
w
(
w
i

2

f
g
(
(
f
i
a
T
i
l
(
v
m

y

w
d
e

m
f
t

d

b
i
s
m
t
l
b
e
w

c
f
t

y

T.E. Helser et al. / Ecological

whitened” measurement time series is then correlated with the
verage of all others. Any individual with a low correlation (p < 0.01)
s visually inspected for possible errors and re-measured if any
re found. Detailed procedures for COFECHA as well as results of
rossdating for Tree Nob were reported in Black et al. (2009).  The
rossdated Pacific geoduck ages for Tree Nob were recently vali-
ated using bomb-radiocarbon 14C methods (Kastelle et al., 2011)
or further evidence that all geoduck growth increments were
nnual and had been exactly dated.

Sea surface temperatures (1942–2003) were obtained from
ight lighthouse stations along the British Columbia coast [http://
ww.pac.dfo-mpo.gc.ca/sci/osap/data/searchtools/Searchlight
ouse e.htm] as well as 2◦ × 2◦ gridded SST data available
hrough the International Comprehensive Ocean-Atmosphere
ata Set (ICOADS) (http://icoads.noaa.gov/index.shtml). The
acific Decadal Oscillation (PDO) is defined as the leading principal
omponent of North Pacific monthly SST variability (poleward
f 20◦N latitude). The PDO is a long-lived El Nino-like pat-
ern of Pacific climate variability with decadal-scale oscillatory
arm and cold temperature patterns (Mantua and Hare, 2002)

http://jisao.washington.edu/pdo/PDO.latest). To be consistent
ith the temporal duration associated with geoduck growth

ncrement data the PDO index for 1900–2003 was used.

.2. Statistical models

The growth increments at age and at the corresponding year
or geoducks sampled from Barkley Sound and Tree Nob showed
rowth variability between individuals and across the two sites
Fig. 2). An exploratory analysis showed that growth increments
Lijk) of each geoduck can be described by an allometric growth
unction of age (Tijk); that is, Lijk, where i = 1, 2, . . .,  nj growth
ncrements at age for individual specimen j = 1, 2, . . .,  Mk, and
t site k = 1, 2 sites for Tree Nob and Barkley sites respectively.
his function was linearized by log-transformation of growth
ncrement and age: yijk = ˛jk + ˇjkxijk, where yijk = ln(Lijk), xijk =
n(Tijk), ˛jk = ln(˛jk), and ˇjk = bjk. The estimated ˛jk and ˇjk

Fig. 3) showed that age related growth was different among indi-
iduals from the two sites. Therefore the baseline hierarchical
odel (Model 1) was expressed by:

ijk = ˛jk + ˇjkxijk + eijk, (1)

here the random errors (eijk) were assumed to be normally
istributed with mean zero and site-specific variance; that is,
ijk∼N(0, �2

e,k
). The variation of growth across individuals was

odeled by assuming that �1 = (˛j1, ˇj1, ˛j2, ˇj2) is a random draw
rom a multivariate normal distribution (MVN) with mean vec-
or � = (�˛1, �ˇ1, �˛2, �ˇ2) and variance–covariance matrix G =

iag(G1, G2), where Gk =
[

�2
˛,k

�˛ˇ,k

�ˇ˛,k �2
ˇ,k

]
for k = 1, 2 sites; sym-

olically, it is �1∼MVN(�, G). This model accounted for strictly
ntrinsic age-related growth processes. Thereafter, our modeling
trategy was to explore other possible effects from our baseline
odel on the growth increment data: first by incorporating year-

o-year random effects (Model 2); then by incorporating other
ow-frequency effects such as annual PDO (Model 3); and lastly
y a combination of these two effects (Model 4). The order of mod-
ling was unimportant except in the case where all possible effects
ere combined.

Model (2) added random year-to-year effects into Model (1) to
apture all of the unspecified potential environmental factors (e.g.,

ood availability, temperature, water circulations, calcium concen-
ration, etc.) that affect geoduck growth:

ijk = ˛jk + ˇjkxijk + �t,k + eijk, (2)
lling 247 (2012) 210– 220 213

where �t,k denotes year-to-year environmental effects for t = 1,
. . .,  T years in k = 1, 2 sites. Year-to-year environmental effects
are modeled as random draws from a normal distribution
with mean zero and variance �2

h,k
across T years in two  sites

(Weisberg et al., 2010). That is, �t,k∼N(0, �2
h,k

) for t = 1, . . .,  T
years and k = 1, 2 sites. This model can be equivalently described
by �t,k = 0 + ε2 and ε∼N(0, �2

h,k
) for all years and sites. The

predicted random year effect coefficients �t,k provided an inte-
grative measure of annual growth variability and were compared
to environmental indices to explore climate–growth relation-
ships. The model for year-to-year environmental effects described
above can be alternatively expressed by �2 = (�t,k)∼MVN(0, H)
for all T years and two sites, where H is a 2T × 2 T diagonal
variance–covariance matrix whose diagonal elements are �2

h,k
and

off-diagonal are zero. Identical to the Model (1), assume that
�1∼MVN(�, G) and eijk∼N(0, �2

e,k
).

As an alternative to Model (2), systematic effects such as annual
PDO were explicitly incorporate into Model (1) using the following
equation:

yijk = ˛jk + ˇjkxijk + �jkZt|ijk + eijk, (3)

where Zt|ijk was  the value of PDO in year t that corresponded to the
ith growth increment of the individual j in site k and eijk∼N(0, �2

e,k
).

The coefficient (�jk) expressed the long term climate effects of the
mean growth response (linear) across both individuals and sites.
Because PDO and SST are highly correlated, inclusion of both PDO
and SST in the same model may  lead to computational difficulties
due to colinearity. The PDO was  chosen because of its long time
series to which growth could be modeled. Similar to Model (1)

�1 = (˛j1, ˇj1, �j1, ˛j2, ˇj2, �j2)′∼MVN(�, G), where

� = (�˛1, �ˇ1, ��1, �˛2, �ˇ2, ��2)′ and

Gk =

⎡
⎢⎣

�2
˛,k

�˛ˇ,k �˛�,k

�
 ̌ ˛,k �2

ˇ,k
�ˇ�,k

�� ˛,k �� ˇ,k �2
�,k

⎤
⎥⎦ .

To evaluate both PDO and random year-to-year effects on
growth, Model (1) was expanded to include both factors:

yijk = ˛jk + ˇjkxijk + �jkzt|ijk + �t,k + eijk (4)

where �t,k as that of Model (2), ˛jk, ˇjk and �jk were that of Model (3),
and eijk∼N(0, �2

e,k
). We  assumed the random errors eijk of each indi-

vidual in Models (1)–(4) were uncorrelated. However, additional
covariance structure addressing within animal correlation may  be
specified, and may  be particularly useful for growth increment data
which represents a time series. For simplicity, the first-order auto-
correlation, or AR1 dependence, in the error eijk was assumed:

eijk = �jkei−1,jk + uijk

where uijk∼N(0, �2
u,k

) was the normally distributed independent
random errors, �jk was correlation coefficient for the growth incre-
ment series of geoduck j in site k, and subscript i − 1 indicates the
age prior to age i. We used the Cochrane–Orcutt transformation
(Cochrane and Orcutt, 1949), and applied a stationary AR1 error
model (Congdon, 2006; Section 8.5) to Model (4):

yijk = ˛jk + ˇjkxijk + �jkzt|ijk + �t,k + �jk(yi−1,jk − ˛jk − ˇjkxi−1,jk

− �jkzt|i−1,jk − �t,k) + uijk (5)
It was assumed that �jk∼N(��,k�2
�,k

) and ��,k∼U(−1, 1) for
k = 1, 2 site, where U(−1, 1) is a uniform distribution in [−1, 1].

http://www.pac.dfo-mpo.gc.ca/sci/osap/data/searchtools/Searchlighthouse_e.htm
http://www.pac.dfo-mpo.gc.ca/sci/osap/data/searchtools/Searchlighthouse_e.htm
http://www.pac.dfo-mpo.gc.ca/sci/osap/data/searchtools/Searchlighthouse_e.htm
http://icoads.noaa.gov/index.shtml
http://jisao.washington.edu/pdo/PDO.latest
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.3. Computational aspects using Bayesian inference

In Bayesian statistics, the parameters of hierarchical models can
e categorized into model parameters (�) which include �1 and/or
2 depending on the model of interest and hyperparameters (�)
hich are the parameters of prior distributions for �. The joint
osterior distribution for (�, �) given a set of data y is defined as:

(�, �|y) ∝ p(�, �)p(y|�, �) = p(�)p(�|�)p(y|�, �)

here (�, �) = p(�)p(�|�) is the joint prior distribution of vector
�, �) and p(y|�, �) is known as likelihood (Gelman et al., 2004).

We were interested in two types of inference: (i) the posterior
istribution of the parameters describing the growth curve for each

ndividual with data in the analysis and (ii) inferences for indi-
iduals or segments of growth increment data not included in the
urrent analysis (Minte-Vera et al., 2005). For the first inference:

(�i|y) ∝
∫

�

p(�i, �|y)d�. (6)

By integrating out the hyperparameters, which depend on the
ata for all of the individuals within a site, this model framework

ends strength of inference across individuals or individuals within
roups. The predictive posterior distribution specified above is con-
itional on the observed data or probability of the likelihood, and
an be used to check whether the model is consistent with the
bserved data (Gelman et al., 2004). Here, we computed the pos-
erior p-value given as P(D(yrep,�) > D(y,�)|y) as a goodness-of-fit

easure (Meng, 1994), where D(yrep,�) and D(y,�)|y are the distri-
utions of the replicated and observed data, respectively. Posterior
-values around 0.5 indicate that the distributions of replicated and
ctual data are close, while values near zero or one indicate discrep-
ncy between them. The posterior distribution of the parameters
or a new set of growth increment measurements not used in the

odel 	 was:

(�̃|y) ∝
∫

�

∫
	

p(�̃|�)p(�, �|y)d� d�. (7)

The formulation of the posterior prediction accounts for all
ncertainty associated with hyperparameters, parameters and like-

ihood. Specifically this formulation of the posterior predictive
istribution can be used to cross-validate the model when a subset
f the data are withheld and the model prediction is generated and
ompared to observations of growth increment data and environ-
ental indices.
To fit the model to the data using a Bayesian approach, prior

robability distributions for the hyperparameters need to be
pecified. Smith and Wakefield (1994) suggest priors should be
oninformative to ensure that the likelihood dominates the prior.
e endorsed this approach since no study to date had elicited

rior information on the growth increment hyperparameters. As
uch, the priors for � were diffuse multivariate normal distri-
utions, with zero mean and covariance matrix with diagonal
lements equal to 1000, and off-diagonal elements equal to zero.
he prior for G was specified by an inverted Wishart distribution
Von Rosen, 1997), with mean matrix of 0.1I and precision matrix
f 10−6I, where I was the identity matrix. Instead of using flat
amma  priors for �−2

e,k
and �−2

e,k
as recommended by Spiegelhalter

t al. (2003),  uniform priors with lower and upper boundaries of 0
nd 100 respectively are specified to �h,k and �e,k (Kery, 2010).
he uniform distribution as been recommended as an alternative
rior since the inverse gamma  distribution has a spike near zero

nd can create problems for low values of �2

e,k
or �2

h,k
(Browne

nd Draper, 2006). We  found that the Markov Chain Monte Carlo
MCMC) simulation traversed the sample space more efficiently
ith the uniform prior.
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WinBUGS (Lunn et al., 2000) was  used to fit the model to the
data. The estimates of parameters were evaluated based on 500,000
samples after 5000 burn-in samples, thinning to one draw every
20th sample, from MCMC  simulation of the joint posterior distri-
bution. Multiple Bayesian diagnostic procedures were performed to
evaluate convergence of the MCMC  simulation to a stationary pos-
terior distribution for all estimated quantities in the model (Cowles
and Carlin, 1996; Brooks and Gelman, 1997). We monitored auto-
correlation at various lags to assess whether adequate burn-in and
stationarity of the mean had been achieved (Geweke, 1992; Gelman
et al., 2004).

The deviance information criterion (DIC), which is conceptu-
ally described as goodness of model fit plus model complexity
(Spiegelhalter et al., 2002) was  used for comparing the competing
models. WinBUGS provides DIC with its three computational com-
ponents, Dbar, pD and Dhat. The deviance, D(�) = −2 log(p(y|�)), is
commonly used to measure the goodness of fit (Dempster, 1974),
where y are the data, � are the parameters of model, and p(y|�)
is the likelihood function. Dbar is the posterior mean deviance
denoted by D̄ = E[D(�)], which is a measure of how well the model
fits the data in Bayesian analysis; the larger this is, the worse the fit.
Model complexity (pD) is measured by effective number of param-
eters, i.e., pD = D̄ − D(�̄), where D(�̄) is the deviance evaluated
at the posterior mean of the parameters. Dhat (D̃(�̄)) is a point esti-
mate of D(�) obtained by substituting � with the posterior mean
�̄, that is, D̃(�̄) = −2 log(p(y|�̄)). In summary, DIC = D̃(�̄) + 2pD =
D̄ + pD. Models with smaller DIC are better supported by the data.
Spiegelhalter et al. (2002) suggest that an absolute difference of
DIC (
DIC), greater than 5 would constitute a substantive differ-
ence between two competing models. Spiegelhalter (2006) states
that negative DIC is allowed and only 
DIC is important in model
comparison.

3. Results

Growth patterns were strongly synchronous within each of the
two sites, facilitating the crossdating process. A statistical check
using the program COFECHA verified that dating was accurate and
that each increment had been assigned the correct calendar years
of formation. After low-frequency processes had been removed,
the mean correlation between each individual measurement time
series and the average of all others was  0.65 for Barkley and 0.74
for Tree Nob, underscoring the high level of growth synchrony at
each site.

The parameters describing the change in growth increment
width as a function of age were notably different between the
Barkley Sound and Tree Nob (Fig. 3 and Tables 1 and 2). Also,
between-individual growth variability within a site and within-
site variances was notably greater at Barkley Sound in comparison
to Tree Nob (Table 1). For example, once age-related growth was
accounted for in the model, remaining variability in growth incre-
ment data was  twice as large at Barkley Sound (�2

e,1 = 0.256)

than at Tree Nob (�2
e,2 = 0.122) (Table 2). These results sug-

gested that the initial hierarchical model structure (i.e., Model
(1)) of treating site-specific mean growth parameters ˛k and ˇk,
variance–covariance matrix (�2

˛, �2
ˇ

), and within-error variance

(�2
e,k

) was a good starting point for more complex model devel-
opment. Although not shown in Table 1, this model had a 
DIC of
2300 when compared to a reduced grand mean model that treated
all geoduck from the same site.

Addition of unspecified year-to-year variability, �2
h,k

, as a ran-

dom effect resulted in the greatest change in 
DIC; compared to the
Model (1), 
DIC was 2501 and 482 for Models (2) and (3), respec-
tively (Table 1). Expressed as the proportion of variance explained
by additional covariates, 1 − (�2

e,F /�2
e,R) where F and R refer to full



T.E. Helser et al. / Ecological Modelling 247 (2012) 210– 220 215

Table  1
Bayesian estimates of mean and standard deviation (SD) for the coefficients in Models (1)–(5). �2

e,k
is the variance of residual errors eijk for Models (1)–(4) and �2

u,k
is the

variance of uijk for Model (5), where k = 1 (Barkley Sound), 2 (Tree Nob) sites.

Coefficient Model (1) Model (2) Model (3) Model (4) Model (5)

Mean SD Mean SD Mean SD Mean SD Mean SD

Barkley sound
˛1 2.032 0.294 2.478 0.335 2.007 0.295 2.452 0.329 2.344 0.309
ˇ1 −0.858 0.081 −0.972 0.090 −0.851 0.081 −0.964 0.089 −0.932 0.084
�1 – – – – 0.118 0.040 0.140 0.064 0.105 0.056
�1 – – – – – – – – 0.666 0.053
�2

˛,1 1.166 0.505 1.415 0.594 1.172 0.485 1.435 0.577 1.155 0.491
�2

ˇ,1
0.088 0.038 0.101 0.043 0.088 0.037 0.102 0.041 0.082 0.035

�2
�,1 – – – – 0.018 0.008 0.016 0.007 0.010 0.004

�2
�,1 – – – – – – – – 0.015 0.016

�2
h,1

– – 0.186 0.028 – – 0.175 0.027 0.123 0.025
�2

e,1 or �2
u,1 0.256 0.011 0.077 0.004 0.240 0.010 0.071 0.003 0.051 0.002

Tree  Nob
˛2 2.182 0.173 2.808 0.209 2.319 0.170 2.662 0.200 2.597 0.189
ˇ2 −0.794 0.048 −0.979 0.056 −0.837 0.047 −0.937 0.054 −0.917 0.051
�2 – – – – 0.176 0.023 0.196 0.036 0.185 0.036
�2 – – – – – – – – 0.356 0.039
�2

˛,2 0.804 0.264 0.991 0.288 0.782 0.249 0.949 0.280 0.785 0.246
�2

ˇ,2
0.059 0.020 0.068 0.020 0.057 0.019 0.065 0.020 0.054 0.017

�2
�,2 – – – – 0.012 0.004 0.010 0.003 0.010 0.003

�2
�,2 – – – – – – – – 0.017 0.014

�2
h,2

– – 0.083 0.013 – – 0.056 0.009 0.052 0.008
0.1

a
t
a
w
t
t

S

T

l
g
w

b
c
g
s

F
c
w

�2
e,2 or �2

u,2 0.122 0.004 0.051 0.002 

DIC 2861.9 360.7

nd reduced models, Model (2) accounted for 70% and 58% of the
otal variability in growth increment data from the base model
t Barkley Sound and Tree Nob, respectively. Variances associated
ith random year effects (�2

h,k
), which some authors have referred

o as an environmental variance term, at both sites were substan-
ially greater than residual within-error variances (�2

e,k
); Barkley

ound (�2
h,1 = 0.185; �2

e,1 = 0.077) being more than twice that of

ree Nob (�2
h,2 = 0.082; �2

e,2 = 0.051) (Table 1). Intraclass corre-

ation, �2
h,k

/[�2
h,k

+ �2
e,k

], which represents the correlation between
rowth increments measured among all individuals in the sample,
as 0.72 and 0.62 for Tree Nob and Barkley Sound, respectively.

Annual growth increment variability is illustrated in Figs. 4 and 5
y plotting the credible interval of the random year effect

oefficients from the Bayesian hierarchical Model (2). Geoduck
rowth at both Barkley Sound and Tree Nob showed reasonably
trong coherence with climate variables, SST and PDO anomaly

Intece pt 
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-0.4
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0.0

Barkley Soun d

Tree N ob

ig. 3. Bayesian hierarchical geoduck growth increment model parameter
oefficients (˛k ,ˇk) by site of collection illustrates a better fit to the data is achieved
hen the model explicitly accounts for site differences.
00 0.004 0.048 0.002 0.044 0.002
2380.4 212.4 −276.7

(Figs. 4 and 5). In general, geoduck growth was below average dur-
ing periods of low PDO and SST, while growth was greater than
average during high PDO and SST. This coherence was particularly
evident during the sustained cool regime in the North Pacific start-
ing at about 1945, followed by a shift to a warm regime during
the late 1970s (Figs. 4 and 5). While geoduck growth from the two
sites seemed to track each other fairly well, there were notable
exceptions such as a period of below average growth at Tree Nob
between 1908 and 1920, corresponded to a brief period of low PDO.
The Tree Nob growth increment index also seemed to capture the
rapid high-low and low-high transitions in PDO regimes over the
last half century better than geoduck at Barkely Sound.

Explicitly accounting for climate variability in growth showed
that PDO was a good predictor of the geoduck growth increment
data. We  focused on PDO, rather than SST, because PDO had a
much longer historical record consistent with the geoduck time
series, and both environmental indices were highly correlated. As
a relative change from Model (1), the 
DIC was 481.5 suggest-
ing that PDO explained significantly more growth variability than
intrinsic age-related effects alone (Table 1). Correlations between
PDO index and predicted growth increments (Figs. 4 and 5) from
Model (2) illustrate this relationship. Model (3) includes PDO as
a predictor with the expected linear mean response positively
related to the PDO anomaly at both Barkley Sound and Tree Nob
(�1 = 0.118, �2 = 0.176, respectively) (Table 1). With no poste-
rior density on zero, as indicated by Bayesian credibility intervals,
these results indicate these relationships (slopes) are significantly
different from zero (Table 2). The PDO series was  a better predictor
of geoduck growth at Tree Nob than Barkley Sound; total variabil-
ity in the growth increment was 6% and 19% for Barkley Sound and
Tree Nob, respectively. It should be noted, however, that Model
(3) explained comparatively less of the total variability in geoduck
growth increment data than Model (2).

We further evaluated whether improvements in fit could be

obtained by including both the random year effect and long-term
climate effects (PDO), once age-related growth was accounted for
(i.e., Model (4)). This model showed significant improvement in
fit to the data when compared to either Model (2) or Model (3)
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with 
DIC = 148.3 and 2168.0, respectively (Table 1). The variance
associated with the climate effect, PDO (�2

�,k
), was estimated to be

0.016 and 0.010 at Barkley sound and Tree Nob sites, respectively
(Table 2). Climate induced variability in the growth increment data
accounted for approximately 18% of the remaining residual within-
error variance �2

�,k
/[�2

�,k+�2
e,k

] at both Barkley Sound and Tree Nob

sites. While random year-to-year variability was the dominant vari-
ance component at these sites, comparatively more variability was
explained with the addition of the climate term in the model at
Tree Nob than compared to Barkley Sound. Again growth incre-
ment variation as a function of age was strongly related to the PDO
anomaly, with the Tree Nob site showing a comparatively stronger
positive response (�2 = 0.196) than Barkley Sound (�1 = 0.141). In
other words, the rate of change in shell increment width as a func-
tion of age (slope) was less negative during years with greater PDO
values. The inclusion of an AR1 error structure to Model (4) (i.e.,
Model (5)) resulted in a 
DIC = 489.1. While this change in model’s
error structure did produce a relatively large reduction in DIC, the
differences in model parameter and variance estimates were small
(Table 2).

The MCMC  simulation using the Gibbs sampler was compu-
tationally efficient, yielding approximately 25,000 samples with
which to compute summary statistics and develop a framework
for model building and hypothesis tests. Initial testing of the MCMC
simulation showed burn-in was  achieved after only 5000 samples
and between-sample autocorrelation of estimated parameters was
non-significant after a lag of 20 sample parameter sets. Thus, a sam-
ple retention rate of 1 in every 20 MCMC  draws was more than
adequate to ensure independence. While not shown for all parame-
ters, trace plots for selected variance components (i.e., year-to-year
variability, �2

h,k
) showed good mixing and reasonable evidence that

the chain had converged to a stationary distribution (Fig. 6). Kernel
densities appeared uni-modal and relatively smooth, suggesting
that MCMC  sampling traversed the parameter space effectively.
Further evidence of convergence was shown by the Geweke (1992)
test statistics.

The posterior predictive distribution derived from the MCMC
sample showed that the model (i.e., Model (4)) was  consistent
with the observed growth increment data. Rather than summa-
rizing the posterior to a test quantity and comparing it to the same
quantity of the observed data, we simply calculated the distribu-
tion of tail probabilities (posterior p-values) corresponding to the
integral of the posterior predictive distribution up to the observed
value. Unusually large numbers of small or large tail probabilities
would suggest model misfit. In this instance, the greatest density of
tail probabilities centered on 0.5–0.55 and monotonically declined
toward zero and 1.0 (Fig. 7). In fact, the number of tail probabilities
less than 0.05 and greater than 0.95 was approximately the num-
ber expected to deviate outside of the posterior credible interval
by chance alone. Overall, these results suggested that the model fit
the data well.

4. Discussion

The modeling approach presented here uses contemporary
statistical methods and software to analyze growth increment
data in marine organisms. In particular, we advocate the use of
Bayesian hierarchical methods to model the intrinsic age-related
and extrinsic environmental effects on growth. The number of stud-
ies analyzing growth increment data in fish, bivalves and other
marine animals and its relationship to environmental variability

has increased (Boehlert et al., 1989; Strom et al., 2004; Black et al.,
2009) in recent years. Statistically integrated modeling approaches,
such as hierarchical Bayesian or mixed-effects models, produce
advantages that include hypothesis testing, exploration of age and
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PDO)  anomalies are overlaid with the predicted growth increment to show cohere

limate effects on both short- and long-term growth, and explicit
stimation of all relevant variance components. The hierarchical
odel allows for conditional mean response in age-related growth

ver all individual times series at different sites (or species), explic-
tly captures the low-frequency climate forcing on the intrinsic
rowth rates, and is able to preserve trends in excess of the lengths
f any individual time series through the statistical process known
s “shrinkage”.

There is a straight-forward connection between the “standard”
hronology developed in dendrochronology procedures (ARSTAN
rogram) (Cook, 1985) and the random year effect coefficients
�t,k∼N(0, �2

h,k
)) from the Bayesian hierarchical model, which

aturally includes posterior prediction intervals that are gener-
ted without further calculations. This was confirmed by a high
orrelation (r > 0.90) between our estimate using the Bayesian hier-
rchical approach and the chronology of Black et al. (2009) using
raditional dendrochronology methods. Also, explicitly modeling
on-stationary effects on growth (i.e., PDO), while accounting for
ge-related effects and random year effects, such as Model (4),
reserves long-term trends that might otherwise be lost and is
ssentially the analog to Regional Curve Standardization (RCS) in
ree-ring Science (Esper et al., 2002). Furthermore, the hierarchical
ayesian model also estimates the intraclass correlation (Gelman

t al., 2004), �2

h,k
/[�2

h,k
+ �2

h,k
], which is equivalent to series inter-

orrelation generated from ARSTAN.
Application of hierarchical methods is very natural since growth

ncrement data are inherently grouped into different levels of
 the random year effect estimates, �t,k∼N(0, �
h,k

), from the Bayesian hierarchical
te indices of annual sea surface temperature (SST) and Pacific Decadal Oscillation
tween geoduck growth and climate factors.

organization (repeated growth increment measurements within
subject, subject within population or species), and covariates are
available at different levels of variation (Gelman et al., 2004). Such
types of data sets are ubiquitous in the natural sciences where a
record of historical annual growth is contained in discrete and often
highly identifiable increments, including tree xylem (Fritz, 1976),
coral calcium carbonate (Correge, 2006), fish otoliths (Campana and
Thorrold, 2001), and bivalve shells (Noakes and Campbell, 1992).
Fisheries science has a long tradition of growth increment analy-
sis that has focused on the back-calculation of growth histories of
fishes (Whitney and Carlander, 1956), including a diverse array of
statistical procedures to fit the growth data (Francis, 1990). More
recently, fisheries scientists have increasingly used more sophis-
ticated hierarchical approaches for estimating growth variability
in fish, both at the individual (Pilling et al., 2002) and population
levels (Helser and Lai, 2004). Tree-ring scientists have also begun
using integrative statistical methods to quantify the contribution
of a common high frequency signal hidden among ring-width time
series (Boreux et al., 2009; Li et al., 2010). The approach presented
in this paper bears some resemblance to Weisberg et al. (2010)
who analyzed growth increment data using factorized linear mixed
effects models. However, the Bayesian hierarchical methods used in
our approach allows for both linear and nonlinear growth related

effects, explicitly models changes in growth as influenced by cli-
mate processes, fully characterized uncertainty from both intrinsic
and extrinsic (environmental effects) through MCMC  integration,
and has the ability to use latent variables to capture prediction
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odel (model (2)) and is expressed as the credible interval of that effect. Climate
nomalies are overlaid with the predicted growth increment to show coherence be

ncertainty for historical environmental reconstruction. The lat-
er advantage has been demonstrated by Li et al. (2010).  Equipped
ith these statistical tools ecologists have a rigorous framework to

tudy the relationship between environmental and climate vari-
bility and their effects on animal growth over diverse taxa in
arine systems.
To account for autocorrelation in the error structure of the

odel, we assumed a first-order autoregressive process (AR1) in
he error structure and found little change in parameter and vari-
nce estimates even though a much smaller 
DIC was  observed.
ittle difference between estimates of model effects suggests the
odel is robust to the covariance structure assumed (Zeger and

iang, 1986). However, this study does not address the question
n whether or not to consider a high-order autocorrelation ARp
rrors, for p ≥ 2. During the course of analysis, we found the inclu-
ion of AR1 error structure in the models takes substantially more
omputational time and longer MCMC  iterations to reach conver-
ence. Computational resources may  need to be weighed against
ore complicated error structures. Also, models may  be over-

arameterized if higher-order autocorrelated errors are involved.
here are many other ways to formulize AR1 error into models (see
ongdon, 2006) that have not been explored in this article. It is of

nterest in the future to explore the differences caused by various
ormulizations.

Pacific geoduck growth increment widths, and potentially iso-

opic properties, represent a valuable climate archive (Strom et al.,
004; Goman et al., 2008; Hallmann et al., 2008). In the analy-
is presented here we concur with previous studies that climate
ariability through PDO exerts a significant influence on geoduck
t,k h,k

es of annual sea surface temperature (SST) and Pacific Decadal Oscillation (PDO)
 geoduck growth and climate factors.

growth rates. While not explicitly tested in the hierarchical mixed
effects model, SST probably accounts for much of this variability
since positive correlations in the growth of other marine bivalves
and water temperature have been demonstrated in the labora-
tory (Cerrato, 2000). Specifically for geoduck, correlations between
growth increment width in the shells and water temperature have
been found in field studies (Noakes and Campbell, 1992).

Variances associated with PDO were comparatively less than
interannual variance components, but nevertheless indicated that
PDO had a strong impact on average age-related growth rates of
geoduck. These findings indicate that, in addition to high-frequency
variation in regional sea surface temperatures, basin-scale pro-
cesses such as the Pacific Decadal Oscillation are strong controlling
factors of geoduck metabolic rates and shell accretion. Geoduck
growth rates at Tree Nob, in particular, showed greater telecon-
nections to regional and basin-scale oceanographic processes than
Barkley Sound. Black et al. (2009) found a similar lack of corre-
lation between SST and geoduck at Cape Mark and Brady’s Beach
sites, which are in close proximity to Barkley Sound. Some sites
may  be more heavily influenced by local environmental processes,
as would be expected in the heterogeneous nearshore environment
of the British Columbia coast (Black et al., 2009). Yet, despite de-
coupling between regional temperature and growth at interannual
timescales at Barkley, Pacific geoduck contain residual variance that
corresponds with multidecadal “regime shifts” from warm to cool

phases of the PDO. This may  reflect PDO-related influences over
ocean circulation or productivity, which could amplify climate sig-
nals in geoduck growth. Regardless of the mechanism, geoduck
captures local and broad-scale patterns of climate variability in the
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