
AN ABSTRACT OF THE THESIS OF  

Clayton R. Stanford for the degree of Master of Science in Electrical and Computer 

Engineering presented on December 6, 1996. Title: Guidelines for Implementing Real-

Time Process Control Using the PC. 

Abstract approved: 

James H. Herzog 

The application of the personal computer in the area of real-time process control 

is investigated. Background information is provided regarding factory automation and 

process control. The current use of the PC in the factory for data acquisition is 
presented along with an explanation of the advantages and disadvantages associated 

with extending the use of the PC to real-time process control. The use of interrupt-

driven and polled I/O to obtain real-time response is investigated and contrasted with 

the use of a real-time operating system. A unique compilation of information provides 

guidelines for selecting an implementation method for real-time control. Experimental 

work is performed to evaluate the access time and latency periods for the hard drive, 

video monitor, and I/O devices operating in a DOS environment. The execution speeds 

of C and assembly language programs are investigated. A method to estimate the 

performance of a real-time control system using polled or interrupt-driven I/O is 
developed. 

Redacted for Privacy



©Copyright by Clayton R. Stanford  
December 6, 1996  

All Rights Reserved  



Guidelines for Implementing Real-Time Process Control Using the PC 

by  

Clayton R. Stanford  

A THESIS  

submitted to  

Oregon State University  

in partial fulfillment of 
the requirements for the 

degree of 

Master of Science 

Presented December 6, 1996  
Commencement June 1997  



Master of Science thesis of Clayton R. Stanford presented on December 6, 1996 

APPROVED:  

Majorr-Wofessor, re g lectrical and Computer Engineering 

Head of Department of Elec rical and Computer Engineering 

Dean of Graduat chool 

I understand that my thesis will become part of the permanent collection of Oregon 
State University libraries. My signature below authorizes release of my thesis to any 
reader upon request. 

Clayton R. Stanford, Author 

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGMENTS  

I wish to thank my wife, Aninha Soule Brill, for her enduring support of my 

work on this research project. Without her guidance and motivation, this work would 

not have been possible. My children, Evan and Maya, have also been very 
understanding and patient during the long hours of research and editing in which I was 

unable to be with them. My family deserves the merits of this thesis as much as I. 

Professor James Herzog has provided excellent technical and editorial input on 

this thesis. His support and assistance were key to the successful completion of this 

effort. Jim provides the students of Oregon State University with a balance of 
theoretical and practical knowledge in electrical engineering, which is integral to 
success in the real world. 



TABLE OF CONTENTS 

Page 

1.0 INTRODUCTION 1 

1.1 Background 1  

1.2 Objectives 4  

1.3 Motivation 5  

1.4 History and Literature Review 5  

2.0 REAL-TIME SYSTEMS 12  

2.1 Purpose 12  

2.2 Response Time Classification 13  

2.3 Performance Measures 16  

2.4 Architecture 17  

2.5 Fault Tolerance 19  

3.0 THE PERSONAL COMPUTER IN REAL-TIME CONTROL 21  

3.1 Advantages 21  

3.2 Disadvantages 23  

4.0 SELECTING AN IMPLEMENTATION METHOD  
FOR REAL-TIME CONTROL 28  

4.1 Design Approach 28  



TABLE OF CONTENTS (Continued) 

Page 

4.2 Applying the PC to Real-Time Control 29  

4.2.1 Basic Limitations 29  
4.2.2 Local Control 30  
4.2.3 Supervisory Control 32  

4.3 Software Structures for Control 33  

4.3.1 Polled I/O 34  
4.3.2 Interrupt-Driven I/O 36  
4.3.3 Multitasking Operating Systems 42  

5.0 EXPERIMENTAL PROCEDURE 48  

5.1 Goals 48  

5.2 Controlling Peripherals 49  

5.2.1 Hard Drive Performance 52  
5.2.2 Video Monitor 54  
5.2.3 Parallel Port 54  
5.2.4 Serial Port 55  

5.3 Operating Overhead 56  

5.4 Program Execution Rates on the PC 58  

5.4.1 Execution Rate of C Code ... 59  
5.4.2 Execution Rate of Assembly Language 61  

5.5 Estimating the Performance of a Control System 68  

5.6 Design Example 70  



TABLE OF CONTENTS (Continued) 

6.0 CONCLUSION 

6.1 Summary 

6.2 Limitations 

6.3 Future Work 

REFERENCES 

APPENDIX 

Page 

79 

79 

80 

80 

82 

89 



LIST OF FIGURES  

Figure Page 

1.1 Process control 1  

1.2 Hierarchical design of factory control systems 3  

1.3 Data acquisition using the PC 6  

2.1 Typical RS-232 interface between the computer and the process 14  

2.2 Signals associated with process control 15  

2.3 Interrupt structure using programmable interrupt controller 18  

3.1 Relative performances of PC and minicomputer 22  

3.2 Price-Performance ratio of PC & minicomputer 22  

3.3 PC hardware/software architecture 25  

4.1 Polled I/O 35  

4.2 Interrupt-Driven I/O 37  

4.3 Interrupt structure of the personal computer 39  

4.4 Methods of installing ISR into memory 41  

4.5 Multitasking operating system 43  

5.1 Test setup used to measure access time of peripherals 50  

5.2 Test setup for measuring disabled hardware interrupts 51  

5.3 Test results for reading hard drive 53  

5.4 Test results for writing to hard drive 53  



LIST OF FIGURES (Continued) 

Figure Page 

5.5 Test results for writing to video monitor 54  

5.6 Test results for reading and writing to parallel port 55  

5.7 Execution rate of C code for various programs 60  

5.8 Instruction mix and clock cycle usage for Intel processors 62  

5.9 Assembly language code execution rate 65  

5.10 Measured execution rate of individual instructions on the 386 66  

5.11 Normalized performance of Intel architectures 68  

5.12 Flowchart-transmitter foreground program 72  

5.13 Flowchart-transmitter ISR 73  

5.14 Flowchart-receiver foreground program 74  

5.15 Flowchart-receiver ISR 75  

5.16 Estimated performance of 486DX 50 MHz 76  

5.17 Asynchronous processes of communication program 77  



GUIDELINES FOR IMPLEMENTING REAL-TIME 
PROCESS CONTROL USING THE PC 

CHAPTER 1 
INTRODUCTION 

1.1 Background 

The concept of process control (Figure 1.1) appears in every discipline of 
engineering. In many applications it is mandatory that the controller respond to external 

events within a limited time determined by the dynamics of the process. This type of 

controller is termed a real-time controller. When the response time of the controller 
must be minimized to keep pace with a high-speed process, stringent requirements are 

placed on the computer system implementing the control function. 

+Disturbances 

Manipulated
variables -111°. Process h_ Measured 

P'" outputs 

+ 
Unmeasured outputs 

Controller 

Set points + 

Figure 1.1. Process control. 
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Factory automation techniques make extensive use of real-time control [1-4]. 
The conventional approach for implementing a control system within a factory uses a 
hierarchical design (Figure 1.2). At the lowest level, a programmable logic controller 
(PLC) provides local control for a process. The PLC consists of an embedded 
microprocessor with multiple control ports and a single interface for high-level 
communication. The PLC is required to perform real-time process control while 
maintaining high reliability. 

The next layer of control is typically implemented using a minicomputer or 
workstation to provide supervisory control over the PLCs, forming a loosely-coupled 

system. The minicomputer is connected to the PLCs through a variety of interfaces 
with point-to-point communications commonly using RS-232 and network 

communications commonly using proprietary PLC protocols. Tasks performed at this 
level are more global in nature, such as orchestrating the start up and ongoing 
synchronization of an automated assembly line. The minicomputer must provide a 
reliable interface to all the processes of the production line simultaneously. This 
requirement of providing fault tolerant, real-time, multitasking control creates a 
technical and economic bottleneck that limits the application of process control to high 
production/high value processes. 

In the most advanced automated factories a mainframe computer will reside 
above the minicomputers, communicating with them using standard computer networks. 
This computer is involved in database management, performing tasks such as trend 
analysis. The mainframe is not required to possess real-time capabilities, and is not 
involved in the local process control. 

The involvement of the personal computer (where personal computer refers to 
the 486 and Pentium-based machine) in process control has been minimal up to this 
point. Less than 3% of the PCs in the factory are actually being used for process 
control, instead they are finding use in process monitoring [5]. An entire industry 
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Figure 1.2. Hierarchical design of factory control systems. 
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supports the use of the PC for process monitoring and data acquisition by providing 

software and plug-in cards which enable the PC to perform a wide variety of data 
acquisition functions at affordable prices. The use of the PC for data acquisition has 
been successful, but up until recently the limited computing power of the early PCs 
combined with a lack of a multitasking operating system has precluded the use of the 
PC in advanced control applications. This is changing rapidly. GM and Ford Motor 
Company recently announced massive plans to replace PLCs in their factories with PC-

based controllers[6]. PC-based control will permeate the control market for embedded 
systems and remain the dominant architecture until another desktop-computer 
architecture overcomes the PC's massive market foothold[7]. 

1.2 Objectives 

The objectives of this research project are to: 

Provide background material on real-time control in factory 

automation, investigating the current use of the PC in industrial 

control and limitations in the use of the PC for real-time control. 

Provide guidelines for implementing real-time process control 
using the personal computer. 

Perform tests on the DOS operating system to determine the 

access time and latency for the hard disk. video, I/O, and clock 

services. (Latency created by disabled interrupts is a significant 

impediment to real-time control user DOS.) 

Provide a quantitative method to estimate the performance of a 

real-time control system using the PC. 
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1.3 Motivation 

The motivation for this research is based on the desire to use the economic 
advantage of the PC to displace more expensive computer systems in control 
applications. A fully configured Pentium PC is selling for less than $2000 [8] as 
compared to workstations selling for $10,000 to $20,000. It has been estimated that 
reducing the cost of the computer for real-time multitasking control to less than $5000 
would provide 30,000 small businesses in the U.S. with access to the process 
automation they desire[5]. 

1.4 History and Literature Review 

The application of the PC for control has been an extension of using the PC for 
data acquisition (Figure 1.3). During the first half of the 1980s, the validity of data 
acquisition using the PC was established by companies such as National Instruments, 
Metrabyte, and Data Translation[9-11]. The first products to gain wide acceptance were 

plug-in modules that typically included A/D and D/A converters and several digital I/O 
lines. The performance of these products was only moderate, but their flexibility and 
price made them popular. For example, in 1984 Data Translation marketed the 
DT2801, a 12-bit, 13 KHz A/D converter combined with a 26 KHz D/A converter for 
$1195[12]. Previous to this, the least expensive method to implement computer-
controlled data acquisition was through the use of a minicomputer. The combination of 
the PC and a data acquisition board provided engineers with an inexpensive tool for 
monitoring laboratory experiments and production processes. Since that time the 
selection of data acquisition products has grown in both performance and variety. 
Today A/D conversion is readily available with 18-bit resolution, sampling rates of 100 
MHz, and multi-channel inputs[13-17]. 
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After fifteen years of development, the data acquisition industry has refined it's 
product offerings. Today there are plug-in modules to perform a wide variety of 
functions ranging from motor control to image processing. For the majority of data 
acquisition and control tasks, the availability of off-the-shelf modules offers a trouble-
free method to provide the hardware interface between the PC and the process. 

While the majority of issues involved in the physical connection of the PC have 
been resolved, there are several major weaknesses in PC-based data acquisition and 
control systems: the cost and complexity of systems integration, the inability of 
DOS/Windows to perform multitasking, the compatibility and stability of computer 
hardware, and the quality and reliability of PC platforms. 

Effort is needed in the industry to provide a simplified method to implement 
complex data acquisition and control systems. Presently the incompatibility between 

different vendor's products is impeding the application of the PC for data acquisition 
and control[7]. There is an IEEE standard (996) for the PC/AT bus, but it only covers 
the bus architecture and fails to address the system level standardization needed. 
Systems integrators are forced to write non-reusable software or eliminate additional 
features in order to keep costs down. The solution to this problem will require an open 
systems approach to product design and marketing[18]. The automotive industry is 
probably the largest user of factory automation equipment and is leading the way 
toward an open architecture [7, 19-20]. The open systems approach requires standard 
hardware and software interfaces from all vendors. In addition, programs are 
implemented in a modular, object-oriented manor. Included with each application 
program will be a configuration program. The configuration program allows the user to 
tailor the general purpose program to their application by selecting a subset of the 
functions provided. This method allows the vendor to market one program to a wider 
market and simultaneously allows the user to apply the program to specialized 
applications. 
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The lack of a multitasking operating system is the primary factor limiting wide 
spread use of PCs for real-time control. There has been a desire for a more robust 
operating system since the popularity of the PC was established in the early 1980s [6, 
21-22]. When multitasking systems started to appear on the market, most had evolved 

from home-grown code used to solve a particular problem which were then packaged to 
sell to the general public. These systems tended to be very limited in utilities and were 
only applicable to narrowly defined tasks [18]. There were two general approaches to 

implementing the multitasking function. To retain DOS compatibility and continue to 

use the large base of application programs, a shell program was written that presided 

over DOS. For higher performance applications, DOS compatibility was eliminated and 

a new multitasking operating system was created [22]. Since that time many 
multitasking operating systems have appeared on the market. Some of the more 
significant systems that have been developed over the years include iRMX by Intel, 
OS/2 by IBM, and several flavors of UNIX [23]. 

iRMX by Intel was one of the earliest multitasking operating systems to appear. 
In addition to being multitasking, iRMX provided real-time response capabilities and 
included a complete development and execution environment. It was used for 
embedded control applications but had no market value outside of the industrial arena 
since it was not compatible with DOS. iRMX was both complicated to use and 
expensive, limiting its popularity initially. Despite these limitations, iRMX is one of 
the key true real-time operating systems available today. In 1991, Intel released iRMX 
II which is capable of coexisting with Windows 3.11[6, 24]. 

OS/2 by IBM received a great deal of attention when it was introduced in 1987. 
While most vendors working on multitasking attempted to provide a solution that was 

compatible with the current design of the PC, IBM redesigned the entire PC, naming the 

new architecture Microchannel and the new operating system OS/2. The new design 

was a vast improvement over the original PC and though IBM's target was geared 
toward the business market, the controls industry was just as excited about the new 
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platform [25-28]. OS/2 and Microchannel together provided a solid design base for the 
development of the next generation of multitasking personal computers. The 

architecture of Microchannel separated the hardware from the software so that future 
hardware improvements could be implemented without affecting the software. 

Microchannel provided the first implementation of the plug and play concept, with plug 
in boards not requiring any jumper or switch settings. There was one major 
shortcoming in the OS/2 operating system. OS/2 could only run one DOS application at 

a time. This was due to IBM's decision to write OS/2 for the 286 processor instead of 
the 80386 which supports the virtual 8086 mode. OS/2 did not sell as well as was 
anticipated due to a combination of its inability to run multiple DOS applications, high 

cost, introduction of Windows 3.0, and the competition of other bus architectures such 

as VESA local bus and PCI. Today OS/2 has a small but dedicated following in the 
real-time control arena[29]. 

UNIX has been ported to the PC platform by many vendors over the years 
including IBM (AIX), Microsoft (Xenix), AT&T (V/386), Santa Cruz Operations (SCO 
UNIX) and Quantum (QNX). The merits of UNIX are well known. Some analysts 
predicted that PC based UNIX would become the dominant operating system as the 
386/486 architecture provided enough computing power needed for these systems[30]. 
This never occurred principally due to the hostile user interface and the high cost of the 
hardware. Standard UNIX has a poor real-time response but several vendors including 

Santa Cruz Operations and Quantum have modified the UNIX scheduler to create real-
time versions of UNIX[31-33]. These operating systems offer high quality real-time 
performance applicable to high-end applications. 

Though not technically operating systems, Windows 3.11 and Windows 95 
present the most tempting approach in which to base a control system architecture. 

Unfortunately, neither interface provides the response time or robustness necessary for 

any serious control application [34]. If one application within Windows hangs up, the 
entire system freezes. This lack of a recovery routine excludes Windows from use in 
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any high performance real-time application. Nevertheless, several vendors have used 
the attractive GUI of Windows as a high level executive and embedded a real-time 
application running under Windows [35-39]. These embedded real-time programs 
typically have major shortcomings when applied to advanced control applications. 

Windows NT is also receiving a lot of attention from the controls industry. 
Though Microsoft states that NT is not a real-time operating system, many of the real-
time OS vendors have NT up and running in the lab for evaluation [6]. NT has true 
multitasking capability and is understood to have more robust error recovery routines. 
Windows NT does carry a lot of operating overhead, but for slower real-time 
requirements, this overhead may be tolerable. An interesting point was made by Mike 
Gonzalez, president of Wonderware [7]. Gonzalez speculated that in two years a PC 
with a desktop operating system may be able to outperform the currently available PLCs 

with respect to response time and deterministic behavior. If this occurs, it would then 
be a rather straight-forward task to use the PC for control applications. 

From the hardware end, the most important changes for control applications 
have to do with I/O rates currently being limited by the system bus. Up until 1987, the 
ISA bus was the only bus standard. The ISA bus is incredibly slow, yet has endured an 

amazing number of years. With the arrival of 386 based machines, it was necessary to 
expand that 16-bit bus to 32 bits. Nine clone vendors joined together to create a 

backward-compatible bus that supported the 80386 and also solved other limitations of 
the PC-AT bus [40-42]. The Extended Industry Standard Architecture (EISA) was the 
result. When introduced, EISA appeared that it would play a significant role in the 
development of the PC for control applications. The most significant improvement 
effecting data acquisition and control applications was the increase in the DMA transfer 
rate from 0.8 to 33 Mbytes/second. As is common in the PC industry, EISA has 
received competition from other bus architectures and has never attained significant 
popularity. 
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The most recent bus architecture to hit the PC market, PCI appears to be making 

a significant improvement in the archaic data rate of the ISA bus [43]. With data rates 

of 132 Mbytes/sec, the PCI bus will allow transfer of data from I/O cards into system 

memory without the need for on-card storage facilities. This improves the data capture 

performance of I/O cards while also reducing the price. 

The latest interface method, PC-MCIA was first introduced into the notebook 

market. This interface has received good market acceptance and it is estimated that by 

1998, 70% of desktop PCs will contain the PC-MCIA interface [44]. PC-MCIA offers 
the option of a small, low power interface which can be valuable for embedded PC 
applications. 

The use of embedded PCs is expanding rapidly. This solves one of the earlier 
physical constrains of attempting to install industrial PCs into harsh environments. 

Applications that were once the domain of the PLC are quickly being invaded by 
embedded PCs [45]. Diskless DOS and packaging standards like the PC/104 bus are 

helping engineers apply the power of the PC into embedded control applications. The 

PC/104 bus is a miniature 104 pin stackable bus architecture coming on strong as a 
standard method to package the PC for small harsh applications[45]. Diskless versions 
of DOS provide PC compatible operating systems for use in industrial environments 
previously reserved for PLCs[46]. 

Today the hardware portion of a PC-based control system can be purchased for 

under $5000. A systems integrator can buy a Pentium PC developed for the personal 

computer market that has enough computing power for almost any control application. 

Plug-in cards can be purchased off-the-shelf from the data acquisition industry to 
interface the PC to most any process. But in comparison, the performance of software 

packages for control is lacking [21, 33, 48]. The systems integrator is faced with 
relying on software from a selection of relatively immature real-time operating system 

products, or developing custom programs; an expensive proposition. 



12 

CHAPTER 2  
REAL-TIME SYSTEMS  

2.1 Purpose 

The purpose for using a real-time control system is to provide the ability to 

interact with the real world in a predictable and bounded manner. Digital control 

systems are characterized by feedback loops in which states of the process are sampled 

and fed to the control computer for processing. The computer then calculates the 
control signal to input into the process in order to obtain the desired output. The delay 

between the sampling of the state and the output of the control signal has a direct effect 

on the control characteristics. If that delay is unpredictable, then the process control is 

also unpredictable. 

As an example of the importance of predictable and bounded response time, one 

may consider a computer controlling two tasks simultaneously. Task 1 requires 

servicing every 1.0 +/- 0.1 second. The control computer completes service of task 1 at 

t = 0, and then waits in a loop until task 1 or 2 needs servicing. At t=.9 seconds, an 

interrupt is asserted requesting service of task 1. If the computer is busy servicing task 

2 and does not get to task 1 within .2 second, the timing requirement is violated. This 

failure may result in a degradation or destruction of the materials involved in the 
process. 

A time-sharing system such as UNIX is unacceptable for real-time control 

because there is no provision to preempt system calls[32]. If the second task in the 
example above executes an extended system call such as file creation, interrupts are 

disabled while the system call is being executed. This type of instruction can take 
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several seconds to complete, and in the example above would cause a failure in the 
timing of task 1. It is only with a preemptive kernel that a predictable response time can 
be assured. 

2.2 Response Time Classification 

Real-Time systems are driven by the external world which imposes demands on 
the controller to meet time deadlines. The controller can be given a speed classification 
based on these response time constraints[3]. 

Low-speed applications are characterized by a control system that does not need 
to hurry in order to service the process. Inefficient programming techniques suffice to 
meet process deadlines which are in the range of seconds to minutes. Room 
temperature control is an example of a low speed application. 

Medium-speed applications require some optimization of program execution in 
order to keep up with the process. The computer is kept busy servicing the process and 
prioritizing of tasks may be required. Response times are in the milliseconds to seconds 
range. 

High-speed applications require response times nearly equal to the capacity of 
the computer. The program must be completely optimized and servicing of the process 
is often very simple out of necessity. Response times in the microseconds to 
milliseconds range are common. Applications include digital signal processing and 
servo loops. 

The response time classifications above are relative to the throughput of the 
controlling computer. This indicates that the response time of a controller can be 
improved by using a faster computer to execute the control function. This is a valid 



14 

assumption to an extent, but I/O often limits controller throughput. Figure 2.1 

illustrates a typical interface between a process and a control computer in which the I/O 

is the limiting factor determining throughput. In this example the 1200 baud I/O link 

passes one 16-bit word every 17 mS, not including idle time. If the computer can 

calculate the new value to send to the input before the next output sample arrives, then 

the controller response time will be limited by the data link and not the computer. 

Therefore both the CPU throughput and 110 bandwidth are important in high-speed 

applications. 

The speed classifications above are also dependent on the complexity of the 

control algorithm. For example, in Figure 2.2 the controller samples the error signal 

and then calculates an appropriate control signal to drive the output to the desired set 

SensorInterface circuit Output 
D/A Converter 
WEI Circuit Signal conditioningFilters A/D ConverterDriver Interface circuitry 

1200 baud 1200 baud 
Serial data link Serial data link 

_ _ RS-232 UART 
(1 of 4 places) 

Figure 2.1. Typical RS-232 interface between the computer and the process. 
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point. The rate at which the samples must be taken is dependent on the process time 

constant. A common method to derive the control signal from the error signal is 

proportional-integral-derivative (P1D) control in which the control signal is defined as: 

control signal = Kp*error + Ki*ferror dt + Kd*d(error)/dt. 

The constant K controls the proportional feedback, Ki controls the integral feedback, 

and Kd the differential feedback. This method minimizes the error but requires a 

minimum of three multiplications, three additions, and one subtraction[49]. 

For applications in which the process time constant is short, it may be difficult to 

perform the computations within the allocated sample period. In contrast the simplest 

Output 
Process 

Control  
signal  Error 

signal 

HController 

Set  
point  

Figure 2.2. Signals associated with process control. 
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control algorithm, on-off control, determines the control signal by executing the 
following code: 

if ( error > 0 )  

control_signal = K;  

else  

control_signal = 0;  

Thus in this example, the computation has been reduced to one conditional branch in 
exchange for less sophisticated control. Therefore it may be possible to ease the speed 

requirement of the system by reducing the control algorithm complexity. 

2.3 Performance Measures 

To quantify the performance of a real-time system, the following three 
performance measures are used: 

Interrupt-response time or interrupt latency: The time required from the 
receipt of an interrupt until the interrupt service routine (ISR) is invoked is called the 

interrupt-response time. This includes the time to save the program counter, vector to 

the ISR, and begin execution. The worst-case value would include the longest period in 

which interrupts are disabled. 

Context-switching or Task-switching time: The time required to switch 
between two tasks in a multitasking operating system is called the context switching 

time. This is the overhead time associated with the time multiplexing of several tasks 

and includes the time to save the state of the current task, locate the new task, and load 

the new task. The worst-case time must include the longest period in which interrupts 

are disabled. 
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Task-response time: The time spent from receipt of a hardware interrupt until 

the operating system dispatches the high priority task requested is called the task-
response time. Task-response time includes the interrupt-response time, the time to 

process the ISR, the time to evaluate the priority level, and the task-switching time. 

This is the most important measure of a real-time system. The task-response time must 
be predictable to insure the integrity of a real-time system. 

These performance measures provide a quantitative method to evaluate real-time 

operating systems. Each vendor may use slightly different definitions of these indices; 

therefore, when evaluating an operating system it is important to understand the exact 

definition used. In particular, close attention must be paid to average values versus 

worst-case values, where the worst-case values are typically of greatest significance. It 

is also important to understand that for some systems, the latencies are a function of the 
number of tasks being executed. Evaluating real-time operating systems is a difficult 
and time consuming task [50]. Performing a thorough evaluation for a particular 
application may require experimentation with sample programs. 

2.4 Architecture 

Many real-time applications use standard computer hardware with the 
specialization incorporated into the software. Nevertheless, certain architectural forms 

are desirable. 

The most important hardware attribute of a real-time computer is a flexible, 

multilevel interrupt structure since interrupts are the main method of interfacing the 
CPU to the process. The interrupt structure is usually implemented using a 
programmable interrupt controller or PIC (Figure 2.3). The PIC accepts multiple 
interrupts from the I/O devices and processes the interrupts according to a priority rating 

before allowing an interrupt to divert execution of the CPU. The lower priority 
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interrupts are held in a queue for processing if the CPU is busy with a higher priority 
interrupt. The programmable nature of the PIC also allows the user to mask off 
interrupts and rearrange the priority levels. In conventional computers there are usually 

eight to sixteen interrupt lines entering the PIC. If the computer must interface with 

more devices than there are interrupt lines, the interrupts are chained to allow two 

devices to share one interrupt line. During the interrupt service routine each device is 

polled to determine which device requested servicing. Chained interrupts are 
undesirable in real-time systems due to the added time required to service the interrupts 

and the variability in the interrupt-response time. It is therefore desirable to have 
individual interrupt lines for each device that the computer will control. This can be 
accomplished by incorporating multiple PICs in a hierarchical configuration. 

Memory protection is used to provide security against accidental corruption of 

data or program code in a multitasking environment. The protection consists of 
hardware that prohibits a task from writing to any memory outside of its allocated 
address space. With this hardware protection, an error in one software module can not 
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damage the operating system or any other task in the computer. This improves system 

integrity by eliminating a potential cause of a system crash and helps to contain errors 

within a restricted area. 

A real-time clock is used in process control to schedule events at fixed times. 

There are two common methods to schedule events: either the clock is programmed 

with the desired time and supplies an interrupt to the CPU to implement the task, or the 

clock is used only to supply the current time and event scheduling is handled by the 

CPU directly. The first method unloads some of the real-time task scheduling from the 

CPU and places the responsibility on the clock, but requires a more complex clock. The 

second method forces the operating system to monitor time in case an event requires 
initiation. 

2.5 Fault Tolerance 

The controllers just discussed are often involved in governing processes of 
significant value or processes that operate with hazardous materials. For this reason the 

issue of fault tolerance is of concern to the control engineer[51]. In any computer 

system hardware or software failures can result in an abrupt end to the computer 
operation. Real-Time systems have an added failure mechanism if they do not meet the 
time deadlines imposed by the process time constant. In this case the result will be a 
degradation or loss of control. 

To increase the reliability of control systems, hardware and software redundancy 

is employed. Hardware redundancy uses multiple computer systems operating in 

parallel with a voting mechanism at the output. Software redundancy is implemented 

by independently developing two or three control programs and then executing them in 

parallel and voting on the output. As long as the failures are independent, hardware and 

software redundancy can improve the fault tolerance of the system. 
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Transients such as power line noise or EMI can cause correlated failures for 

which parallel redundancy is unable to provide protection. Fault tolerance in the event 

of correlated failures requires the use of time redundancy. In this type of fault tolerance 

the system design allows for the transient event to occur, and then implements a 
recovery algorithm to bring the system back under control. For time redundancy to 
work the system design must allow for slack time so that the controller can regain 
control. 
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CHAPTER 3  
THE PERSONAL COMPUTER IN  

REAL-TIME CONTROL  

3.1 Advantages 

The use of the personal computer for process control is worthy of consideration 

because of the economic benefits it can provide. The high volume production of the 
personal computer along with intense competition between clone vendors promotes 

technological innovation while simultaneously driving prices down. Today the 
performance gap between the PC and the workstation has narrowed to the extent that the 

distinction between the two is difficult to discern (Figure 3.1) [52]. At the same time 

the price-performance ratio of the PC and associated peripherals is superior to that of 
the workstation, making the use of the PC in new applications very attractive (Figure 

3.2) [53]. When considering the personal computer for real-time control applications, 

there are definite advantages the PC can offer: 

Inexpensive computing power: The availability of inexpensive computing 
power can be used as a new means to solve difficult control problems. In the past it was 

necessary for the engineer to spend a considerable amount of time optimizing code in 

the critical paths of a high-speed control application. As software costs increase, the 
engineer may find it economical to buy a more powerful computer to solve speed 
problems. In the future, an inexpensive fault-tolerant computer system might be created 

using three PCs with a voting mechanism. The economical PC would be particularly 

advantageous in this application since hardware redundancy tends to drive the system 
price up but would not be a big factor in a PC-based system. 
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Figure 3.1. Relative performances of PC and minicomputer. 
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Maintainability: Whether or not fault-tolerant techniques are employed, a goal 

of all systems is to minimize down time, and in this regard a system based on the PC 
has the advantage of easy maintenance. In the case of a computer failure, the modular 

design of the PC combined with its prevalence in the work place makes it a simple 

matter for a technician to swap components in order to get the main system up and 
running quickly. This can lead to significant time and cost savings as compared to 
having to maintain a service contract with the minicomputer manufacturer. 

Software development costs: The popularity of the PC provides the benefit 

that software costs are reduced due to mass marketing. As the sophistication of control 

systems has increased, the software costs are becoming the major expense. The PC 
offers the following software advantages: inexpensive development tools, a large base 

of application programs available, the convenience of being able to develop applications 

on the target machine, and a greater availability of computer programmers for the PC as 

compared to other platforms. 

Data acquisition interface modules: The other major advantage to using the 

PC comes from the development work already performed by the data acquisition 
industry which offers interface cards for virtually any application. These include 
motion control cards, A/D and D/A boards, and communication cards for GPIB, 
Ethernet, and RS-232 protocols. 

3.2 Disadvantages 

The personal computer also has some disadvantages that affect its applicability 

to control tasks: 

DOS operating system: The single-tasking operating system of the personal 

computer creates the biggest obstacle in the application of the PC for control. While the 
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hardware portion of the PC has steadily increased in performance, little change has 

occurred in DOS. The 286 microprocessor, which incorporated memory protection to 

facilitate multitasking was implemented into the IBM AT in 1984, yet only recently has 

significant use of multitasking occurred. 

Nonreentrant code: Many of the service routines within DOS contain 
segments of nonreentrant code. A service routine that is nonreentrant stores variables in 

memory instead of on the stack or in registers. If the service routine is called again 
while the current routine is active, the second routine will become nested within the 

first. Due to this method of storing variables, the context of the first routine will be 
overwritten by the second, usually resulting in a system crash. (For a more detailed 
discussion of reentrancy refer to [22, 54-56].) As a single-tasking operating system this 

was not a significant problem. Now that there is interest in multitasking, the non-
reentrancy of DOS creates a significant functional limitation. To avoid reentrancy 
conflicts, interrupts must be disabled during system calls. This can result in long, 
unpredictable periods of latency before an external interrupt is serviced, thereby 
violating one of the basic requirements of a real-time system. 

Operating system support: The PC is arranged with the lowest level of 
programming services stored in ROM-BIOS and the next higher level incorporated into 

DOS (Figure 3.3). Operating system services should be designed to support the 
applications programmer by providing a buffer to separate the hardware from the 
program for portability. The services that were provided in the original PC were 

inadequate to support hardware such as the video display and the serial port. This has 
caused programmers to write directly to the hardware in order to achieve higher 
performance. Having to support the hardware within application programs adds a 
significant burden to the programmer's job, and consequently increases development 

costs. Windows 3.11 and 95 have attempted to solve this problem, but at the cost of 

added complexity and slower speed. 
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System integrity: The PC is assembled from subsystems manufactured by many 
different vendors. Considering that there are few specifications defining the hardware 

and software interfaces, these subsystems fit together surprisingly well. For high 
reliability applications, the lack of a tightly integrated system creates certain risks. The 
typical user of a PC in an office environment can select software and hardware from a 
wide range of sources and combine them together with a good probability that the system 
will work. If an interface problem occurs, the user can find a different combination of 
resources to perform the task. In process control more assurance is needed that the 
system will perform without errors. In contrast to the PC, companies like Hewlett 
Packard have an advantage in that they control all aspects of their minicomputer 

development from architectural design to the coding of the operating system. This 

provides them with more confidence that their system will work without failures. 

Number of interrupts: A basic hardware limitation facing the PC when applied 

to process control is a lack of interrupts. The ISA bus has eleven edge-triggered 
interrupt lines which EISA modified to be configurable as edge- or level- triggered. An 
advantage of level triggering is that multiple sources can use a single interrupt line by 
tying all the interrupts together, creating a logical OR function. This is an 
improvement, but still creates limitations since it becomes necessary to poll each 
possible interrupt source to find the requesting unit, causing a delay in servicing. 

Radiated EMI: The last hardware issue of importance is regarding the noise 
EMI problem of the PC. Microprocessor systems are notorious for radiating EMI. The 

original PC design did not properly address radiated noise in the physical configuration 

of the bus. Strict EMI requirements such as the European CE mark[57] will help 

address the environment external to the PC, but do nothing for the environment internal 

to the PC chassis. Low level signals that are processed using plug-in modules inside the 

PC are susceptible to corruption due to the high levels of EMI within the chassis. It is 

common to see Faraday shields mounted on plug-in boards to protect sensitive signals 

from corruption. Another method to solve this problem is to provide external 
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amplification of the signals to raise the noise level above the internal noise of the PC. 

Either method adds cost, complexity, and in some cases compromises system 
performance. 
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CHAPTER 4  
SELECTING AN IMPLEMENTATION METHOD  

FOR REAL-TIME CONTROL  

4.1 Design Approach 

The design approach for a control system must start with an analysis of the 
process needs and end with the selection of a computer system. A common mistake is 

to specify a hardware platform without giving careful consideration to the software 

details necessary to complete the system. The following guide may be used to 
determine the best approach to a particular control problem. 

Define the process and operator needs: This should be the first objective. 
Consult with the process engineers and the plant floor operators to determine the 
important variables and controls in the process. 

Select a control architecture: The design should address the process interface 

as a high priority. In implementing the control hierarchy of Figure 1.1, consider that the 

number of levels of control can vary from one to six or more. If the control system is 
implemented with multiple layers, the design will provide for a graceful degradation in 

performance if there is equipment failure, but the communication needs will be more 

involved. A tradeoff between the extent to which the supervisory computer is involved 

in the control function of each node and the number of nodes the supervisor oversees 
must be made. It is usually best to balance the loads on a controller so each task 
requires a similar amount of computer involvement and time. All control options 
including manual control, smart sensors, PLCs, single-board computers, specialty 

controllers, plug-in boards, coprocessors, PCs, and workstations should be kept in 
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mind when selecting an architectural form. (Refer to [58] for an overview of the 
various controllers available.) 

Select control hardware: The selection should be based principally on the 
availability of software that will perform the required functions. Writing custom 
software has become very expensive and should be avoided. Unless the application is 

very simple, highly specialized, or will be installed in many locations, the use of 
commercial software is important in order to keep costs down. The second 
consideration in hardware selection should be an analysis of the communication 
requirements of the project. The lower layers of the hierarchy, where real-time response 
is critical require a predictive communication network such as a token passing network 
like IEEE 802.4 [59]. This type of network, though possibly slower than a network 
such as Ethernet, provides a known worst case response time. In addition, factory 
control systems need to be flexible and expandable. It is important to have a method of 
expansion available with either reserved computing power or a method to add more 
processors as necessary. 

4.2 Applying the PC to Real-Time Control 

During the design phase, consideration of the personal computer for a particular 
application will need to be addressed. When selecting the PC as a candidate, the 
following guidelines will help evaluate whether the PC is an appropriate choice. 

4.2.1 Basic Limitations 

Before discussing general guidelines for using the personal computer in process 

control, it is necessary to address some applications for which the PC is not suited. 
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Life critical applications: The reliability of the PC does not warrant use in any 

application where endangerment to life could occur. In any control application it is 

important to ensure that a hazardous condition does not develop in the event of a 
computer failure. 

High-reliability processes: The personal computer can not be depended on for 

the more demanding fault-tolerant applications in which a failure in the control system 

would be disastrous to the control of a process. 

Hostile environments: The packaging of the conventional PC precludes 
operation in unprotected factory environments. For more demanding applications an 

industrial PC can be used, but these units tend not to differ significantly from consumer 

PCs. (Refer to [60] for a detailed discussion of hardened personal computers.) If the 

local process I/O is handled by a PLC which is hardened, the PC can be located in a 

protected environment a distance from the process. 

Technically demanding applications: If the best technology available in the 

controls industry to perform the desired process control is marginal or insufficient, then 

the PC should not be considered for the application. The ability of the PC to perform 

control functions is only average as compared to specialized controllers, therefore the 

PC is not a good choice when technological limits are being pushed. 

4.2.2 Local Control 

The PC has the ability to fit into the control hierarchy at several levels, from 

local cell controller to higher level supervisory positions. There may be one or more 

places in which the PC can provide a viable solution. The following guidelines may be 

utilized to assess whether the PC is appropriate for local process control. 



31 

The PC may be employed for local control of process variables by interfacing 

the PC to the process with plug-in modules from the data acquisition industry. This 

approach provides the least expensive solution to simple control problems. The 

interface boards typically have low point counts and rely on the PC to provide each 
operation. The following issues will need to be addressed: 

Number of controllable points: The number of points a PC can control is 
dependent on the time constant of the process, the amount of computation required, the 

data rate and resolution of the interface, the computer throughput, and the control 

method selected. For a high-speed application, a single variable will be all that can be 
controlled. For a low-speed application such as temperature control, perhaps up to 
twenty points may be controlled. A method to estimate the number of points a PC can 
control is presented in chapter 5. 

Hardware/software integration: Difficulties in integrating hardware and 
software subsystems is a leading cause of problems in the implementation of a control 
system. Careful attention must be paid to the compatibility between the products of 

various vendors. In particular, the requirements for integrating device drivers into the 

selected application program should be noted; writing new device drivers can be 
expensive. 

Sensor interfacing: The sensor signals in a local control configuration are 

brought into the PC chassis for processing. If any of the signals contain low-level 
analog information it is necessary to take precautions to insure that these signals are not 

corrupted by radiated EMI from the PC. Signal shielding will be required and in the 
more sensitive applications external preprocessing may be necessary. The 

preprocessing would consist of amplification to raise the noise level of the signal above 

that in the PC, or performing the A/D conversion externally. In the case of external A/D 

conversion, a sharp reduction in sampling rate may occur if DMA is not employed. In 

either case the added expense will be significant due to the external hardware. 
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Environmental considerations: It is generally necessary for the PC to be 
located close to the process to avoid the expense of running long sensor wires. This 

means that a protected area must exist for the PC or the use of an industrial PC is 
required. 

When the use of the PC for direct control creates a situation in which some 
aspect of the control application can not be implemented due to a limitation in 
performance of the PC, the addition of a PLC, dedicated controller, or a coprocessor 

should be considered. For example, if the control application consists of two low-speed 

processes and one high-speed process, by using a dedicated controller for the high-speed 

process the load on the PC can be balanced and it may then be possible to perform the 

control functions at the rate desired. The off-loading of responsibilities to local 
controllers leads to the use of the PC for supervisory control. 

4.2.3 Supervisory Control 

In Figure 1.1 the upper layer of the control hierarchy uses a supervisory 
controller to oversee the actions of multiple local controllers. The supervisor provides 

the local controllers with information like start times, set points, and process recipes, 
and receives information like process status and alarm conditions. While the local 
controllers are positioned close to the process, the supervisor is typically located some 

distance away and communicates with the local controllers via RS-232, GPIB, and 
proprietary computer networks. The characteristics of the PC make it more suitable for 
supervisory control than for local control. The following topics address the important 

issues in evaluating the use of the PC for supervisory control: 

Number of controllable points: When operating as a supervisor, the PC can 
oversee more points than when operating as a local controller. The supervisor is 
relieved from the intense I/O and stringent response-time requirement associated with 
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local process control. Depending on the scan rate required, this allows the PC to 
oversee between five and thirty local controllers. Refer to chapter 5 for a method to 
estimate the number of local controllers the PC can supervise. 

Hardware/software integration: With supervisory control, the principal 
interfacing is between the PC and the local controllers through plug-in communication 

cards. Compatibility issues between the equipment of different vendors should be 
anticipated. Each PLC vendor uses a different communication network commonly 

referred to as a data highway. The vendor will supply a plug-in card for the PC which 

provides the hardware link and a device driver for the software link, but a compatibility 

problem may occur if the control software running on the PC does not support 
communications on the data highway of the PLC vendor. In addition, the low-speed 

nature of the RS-232 serial protocol, which is the most common method to connect 

general purpose equipment, may limit the throughput of control functions. 

Environmental considerations: In supervisory control the environmental 
requirements are relaxed because the computer can be located away from the process in 
a protected area. In most applications a standard PC can be used without the need of 
protective measures. 

4.3 Software Structures for Control 

There are three basic choices in software structure for implementing real-time 

control on the personal computer: polled I/O, interrupt-driven I/O, and the real-time 

operating system. Each method has inherent advantages and disadvantages that affect 

the application of the PC for process control. 
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4.3.1 Polled I/O 

The simplest software structure for real-time control is polled I/O. This method 

implements a software loop which continuously interrogates (polls) each of its inputs to 

determine if service is required (Figure 4.1). Each input reads the status of a process to 

determine if service is requested. If servicing is necessary, the program provides the 

service before continuing the polling loop. 

Application: Polled I/O is most appropriate for low-speed systems or systems 
in which the PC is only servicing a few points. In the case where the PC is dedicated to 

servicing a single point, polled I/O is very efficient. As the control complexity 
increases, polled I/O becomes inefficient and results in a highly variable response time. 

For these reasons, polled I/O is not suited for applications involving higher point counts. 

An exception to this may be an application in which the PC is servicing a system with 

multiple points wherein each point requires an equal and fixed service time. 

Simplicity of implementation: Polled I/O has the advantage of being the most 

straight-forward control method to code. Standard programming practices can be used 
and polled I/O can be implemented in DOS without difficulty. It is not necessary to 
understand the details of the operation of the PC to work with polled I/O systems. 

Overhead: Polled I/O generally makes poor use of computer resources. As the 
program loops around, polling each point to inquire if service is needed, CPU time is 

being wasted. It is usually necessary to keep the CPU under utilized in order to have the 
capacity to service the worst-case situation in which all points need attention 
simultaneously. Therefore a large amount of time is often wasted with the CPU looking 

for work, rather then performing a control function. It should be noted that polled I/O is 

an efficient method of control for one high-speed task. In the case of a high-speed 

application, servicing is needed nearly 100% of the time, making the overhead of 
polling minimal. 
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Variable response time: As the program goes through its polling loop, the 
fastest response occurs when only one point needs servicing and the slowest response 
occurs when all the points need servicing. The response time variation is a function of 
the number of points in the loop and their complexity, so that there is a tradeoff between 

consistent response time and the size of the loop. In most applications the 
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Management  
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Figure 4.1. Polled I/O. 
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system must be designed for the worst-case response time, so the majority of the time 

the computer is under utilized. If an application can tolerate occasional late servicing of 

its control points, then the use of polled I/O without reserve computer power may be 
acceptable. 

Lack of synchronization: The polled I/O program does not offer an efficient 

method to synchronize external events. This makes it unusable for applications needing 

real-time synchronization. In the case that internal program timing is important, such as 

with a sampled data system, a method to create consistent timing is required. For 

slower applications, use of the system clock may be acceptable. Some applications 

require the various loops of the program to be balanced using NOP statements to create 
a fixed sampling period. This method is tedious and the sample period becomes a 

function of the execution speed of the microprocessor. 

4.3.2 Interrupt-Driven I/O 

The interrupt-driven (also known as foreground/background) method is probably 

the most generally useful software structure. A foreground program executes a low 
priority program the majority of the time but is interrupted periodically by a higher 
priority background program (Figure 4.2). The interruption is implemented using a 
hardware interrupt line in conjunction with an interrupt service routine (ISR). When an 

interrupt occurs, control is transferred to the ISR. The ISR maintains control of the 

CPU until the servicing is complete and then returns control to the foreground program. 

Interrupt-driven I/O has the advantage that good real-time performance can be obtained 

from DOS. A common application of this structure uses the background program to 

provide real-time service to a communication channel and places the incoming data into 

a buffer. The foreground program operating in a non-real-time mode can then pull data 

off the buffer for processing. This is how most I/O is handled in conventional computer 
systems. 
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Application: Interrupt-driven I/O is suited for applications in which there are a 

small number of tasks that require fast servicing using a priority ranking. The tasks 

should not require extended CPU time and the use of disk or video services should be 

minimized. Interrupt-driven I/O is the most efficient method to implement real-time 

response because the only overhead is associated with saving the registers of the 
foreground program. This method is also compatible with DOS so that standard 
applications can run in the foreground while the ISR operates in the background. 

Response time: The response time of an ISR is generally very fast, typically 

less then 10 uS for a modern 486 or Pentium PC. There are two exceptions that can 

delay servicing. If the program running in the foreground disables the interrupts, most 

likely during a system call, then the ISR will not be executed until after the interrupts 

have been reenabled. During some of the longer system calls this extends to 10 mS 

more. This problem degrades the performance of an otherwise excellent response time. 

To alleviate this problem it is necessary to control the instructions that are executed in 

the foreground program to insure that an extended system call does not disable the 
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Figure 4.2. Interrupt-Driven I/O. 
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interrupts for an excessive period of time. Avoiding the use of system calls limits the 
functionality of the foreground program. It is also difficult to know when extended 
DOS services are being executed if the foreground program is written in a high-level 

language since the compiled assembly code is not visible to the programmer. The other 

time that servicing of an ISR can be delayed is when there is already a higher priority 

ISR being executed. The higher priority routine always runs to completion, thereby 

delaying the execution of any other program. If there are multiple ISRs, the worst-case 

response will occur if all the tasks request service simultaneously. For this reason it is 

desirable to keep ISRs as short as possible. The minimum necessary to service the 
interrupt should be performed in the ISR, and the remainder of the task performed in the 

lower priority foreground program. 

Preemptive/priority execution: The structure of the interrupt system on the PC 

(Figure 4.3) allows an ISR to preempt CPU execution based on a priority system. As 
long as interrupts are enabled, a hardware interrupt can preempt program execution. If 
an ISR is already executing when a second hardware interrupt occurs, the higher priority 

interrupt receives immediate control. The PIC maintains a queue, and all ISRs will 
eventually execute. Interrupt 0 (IRQO) has highest priority and IRQ8 lowest priority. A 

slave PIC was added to later models of the PC and the slave interrupts all have priority 

over IRQ3 -8. 

Complexity: ISRs are implemented at the lowest level of the PC architecture 
and require care to insure correct system operation. To implement an ISR it is 
necessary to thoroughly understand the microprocessor operation, the interrupt structure 

operation, system calls and reentrancy, and the sequence of events that occur during an 

interrupt in order to successfully save the context of the current program, execute the 

ISR, and then reinstate the preempted program. Errors made while attempting to 
implement an ISR will usually crash the system without leaving a clue as to the cause of 

the error. To add to the complexity, ISRs are usually written in assembly language for 

speed and hardware manipulation. For these reasons, implementing a control function 
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using the interrupt-driven method is more complex than the polled method and added 

development time should be anticipated. 

Maximum number of tasks: The number of tasks that can be serviced using 

interrupt processing is limited. Installing more than five ISRs becomes difficult because 

of the complexity involved, the limit of five available interrupts on the PC, and the 

increase in response time in the event that all of the ISRs are requested simultaneously. 

Limited ISR programming resources: It is difficult to use DOS services from 

within an ISR. The execution of an ISR can occur at any time and may occur while the 

foreground program is executing a DOS service. The fact that DOS contains 
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Figure 4.3. Interrupt structure of the personal computer. 



40 

nonreentrant code means that if one DOS service becomes nested inside another DOS 

service, the system can crash. If the ISR uses a DOS service after interrupting the 

execution of a DOS service by the foreground program, a reentrancy violation will 

occur, possibly causing the system to crash. Disk and video services are the most 

valuable DOS services affected by the reentrancy problem. To use a DOS service 

within an ISR it is necessary to test for a reentrancy conflict prior to executing the 

service by checking the value of the in-DOS flag [21, 55]. This flag is an 
undocumented feature of DOS and is therefore risky to use because the feature could be 

dropped on future versions of DOS and there may be undocumented side effects from 

using this flag. If the in-DOS flag is set, it indicates that the ISR interrupted a DOS 

service. The ISR will not be able to use any DOS services during this interrupt and 

must have an alternative method to complete the ISR. The BIOS services are available, 

but are too primitive to be of value for advanced programming. If possible, it is better 

to write data to a buffer and after exiting the ISR store or display the information as 

necessary. The lack of DOS services, use of assembly language, and the requirement 

that the ISR execute quickly limits the complexity of functions that can be implemented 

via interrupt-driven I/O. 

Implementation method: Before an ISR can be executed it must be installed 

into memory (Figure 4.4). The ISR can reside in memory in four different forms: as 

part of the foreground program, as a terminate-and-stay-resident program (TSR) [21, 

55], as a device driver [61], or as a BIOS routine [62]. The most common approach is 

to include the ISR with the foreground program. This is the easiest method and has the 

advantage that the ISR always follows the application, not needing to be loaded 
separately during setup or removed after execution. The TSR approach is the simplest 

way to install the ISR separately from the application program. The device driver is a 

more complex method of installing the ISR, but has the benefit that device drivers have 

been standardized by Microsoft as the official method to install software interfaces. The 

device driver has two disadvantages: access to the ISR occurs in two stages and is thus a 

little slower to execute, and it is never possible to use DOS services from within the 
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driver because the device driver is itself a DOS service. The last method to install the 

ISR is by incorporating it into the ROM-BIOS. The design of the PC anticipated user 

expansion of the BIOS and dedicated a memory address block for this purpose. To 
physically install the ROM would require the use of a custom plug-in card. The BIOS 

approach would find application in a diskless controller and might have the benefit of 

higher reliability. The TSR, device driver, and BIOS methods have the advantage that 

once they are installed, they can continue to service the process even when the user 

needs to access the foreground program to download data or modify the program. In 
comparison, if the ISR is part of the foreground program or polled I/O is used, the 
process has to be shut down in order to access the program. 

Foreground OP Foregroundprogram 

ISR 4-110. I/O TSR110 41 I/OISR 
DOS 

DOS 
BIOS 

BIOS 

ISR as part of ISR as a TSR programforeground program 

Foreground Foreground  
program program  

Device110 I/Odriver 411-
DOS DOS  

ISR 411-10. I/O 
BIOS 

BIOS 

ISR as a device driver ISR as part of BIOS 

Figure 4.4. Methods of installing ISR into memory. 
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Data sharing: A disadvantage of interrupt-driven systems is that the sharing 
and protection of data is difficult. Data must usually be made public to the entire 
system and this opens the door to accidental corruption. 

4.3.3 Multitasking Operating Systems 

For applications that only involve a few tasks, interrupt-driven and polled I/O 

are the best methods to implement the control function. As the number of tasks increase 

these simplistic methods become too restrictive, limiting the functionality of the control 

program and making program maintenance difficult. The solution for more 
sophisticated control applications is to replace DOS with a real-time multitasking 
operating system (Figure 4.5). A multitasking operating system relieves the 

programmer from having to be concerned about the timing of task execution and instead 

allows the programmer to concentrate on the functionality of the individual tasks. 

The key element of a multitasking operating system is the task dispatcher which 

is responsible for scheduling the execution of tasks. There are many different 
algorithms used to implement multitasking, but they typically use a routine similar to 
the following: as tasks are created in response to external interrupts or in response to 

internal requests, they are placed on the execution queue which determines the order in 

which tasks will run. The task dispatcher is responsible for scheduling tasks according 

to their priority ranking. When a new task is created, the task manager places the new 

task on the queue in front of all tasks which have a lower priority. Meanwhile the CPU 

executes all tasks with equal priority in a round-robin manner via time multiplexing, 

thus preventing a long task from preventing quick response to other equally important 

tasks. 

In order to insure a predictable response time, a multitasking operating system 

must be able to perform preemptive scheduling. If the task currently being executed is 
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of lower priority than the task which has just arrived, the operating system should 

terminate execution of the current task and replace it with the higher priority task. It is 

the use of preemptive scheduling that insures predictable and bounded response to 

external events. Not all multitasking operating systems perform preemptive scheduling. 

If preemptive scheduling is not employed the response time will suffer because a lower 

priority task may retain control of the CPU for an extended period of time while a 

higher priority task waits. 

I I 
Utility and application programs  

Task Task Task Task Task  
A B C D E  

Command interpreter 

File system 

Logical I/O
Memory management 

Device Drivers 
Kernel: I/O Interrupt 
Multi-tasking operations servers 

Task Queue A B A B A C D E D E 

Task 

A 1 

Priority 

(highest) nn 
Time 

B 1 
Task B Task C Task E 

C 2 complete complete complete 
Task A 

D 10 complete 

E 10 (lowest) 

Figure 4.5. Multitasking operating system. 



44 

In a real-time operating systems interrupts are processed in two stages. The 

immediate servicing of an interrupt is handled with an ISR in the same manor that 
interrupt-driven I/O services interrupts. Once the interrupt request has entered the 

computer, the task dispatcher evaluates the priority level of the request. If the request is 

of low priority, it is simply placed on the queue and execution continues with the task 

that was in progress prior to the interrupt. If the request is of high priority, the task 

manager suspends the current task and begins executing the task requested via the 
interrupt. 

For the highest performance, care is taken to insure that interrupts are not 
disabled for extended periods of time. In operating systems like DOS and UNIX, 
interrupts can be disabled for tens of milliseconds while extended system calls like 

string operations or block moves are executed. If this is allowed to occur in a real-time 

operating system the requirement for fast, predictable response time is destroyed. To 

avoid long periods of latency, these extended services are broken down into stages. The 

extended service checks back with the operating system after executing each stage to 

see if a higher priority task must preempt the current execution. In this way the 
operating system can maintain fast response to high priority tasks. 

The various tasks executing in the PC require a method to communicate among 

themselves in order to share data and synchronize the execution of inter-related tasks. 

Data sharing between tasks is implemented by allocating a common block of memory 

for the data. Access to this block is controlled by the memory protection hardware to 

allow the specified tasks to read and/or write to the block, while prohibiting access by 

unauthorized tasks. Since time multiplexing of task execution is occurring, a task may 

start to modify the memory block but not finish the modification during one time slice. 

If a subsequent task attempted to read this memory, the task would receive invalid data. 

To prevent this, the operating system uses semaphores as flags to indicate the condition 

of the data. If the semaphore is zero, the memory is being accessed by another task and 

the requesting task is placed on a queue. Message passing, another form of the 
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semaphore construct, is used to provide a method of synchronization between tasks. 

Messages are placed in a queue called a mailbox while they wait to be received. If tasks 

are waiting for messages they are placed into a separate queue. The operating system 

matches up the tasks with the messages, providing a method for one task to signal 

another in order to synchronize their execution. 

Real-Time process control requires the programmer to be able to implement 

functions that are not included in standard high-level languages. The unique features 

that are required of a real-time programming language are: 

timely response to real world events 

direct manipulation of hardware resources 

running synchronous processes that must communicate with each 

other 

having extraordinary error processing and recovery mechanisms 

for high reliability [59]. 

To address these needs several real-time multiprocessing languages have 
evolved. Modula2 is an extension of Pascal and is one of the older multitasking 
languages. It introduced the concept of the module which encapsulated the data and the 

procedure to provide security and a higher level of abstraction. Ada, developed for the 

Department of Defense, is based on Modula2 and was intended for embedded real-time 

systems. It is a large and complex language with many desirable features and benefits 

from being defined by a formal specification. The major criticism of Ada is that only 

experienced programmers can use it safely due to its complexity. The features of C that 

have made it popular for conventional programming have also made it popular for 

multitasking operations. But unlike the multitasking languages discussed so far, C does 

not contain any instructions to handle the unique needs of real-time multitasking. 

Instead, it is necessary to provide instructions directly to the operating system for these 

functions. This is a disadvantage because it creates more opportunity for error. 
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Application: Using a personal computer in combination with a real-time 
operating system offers the highest performance for control applications. This approach 

should be considered for applications in which the number of tasks, inter-task 
communication, and task synchronization requirements are beyond the abilities of the 
polled and interrupt-driven methods. The advantages offered by a real-time operating 

system can quickly outweigh the simplicity of polled and interrupt-driven I/O methods 

for applications of only moderate complexity. (Refer to the difficulties encountered by 
[59]). If the application appears to border between the use of a real-time operating 
system and the simpler methods, it would be wise to select the real-time operating 

system to anticipate unforeseen complexity and to provide the ability to allow for 
expansion of the control functions. 

Complexity: Implementing a control function using a real-time operating 
system is certain to be more complex than using interrupt-driven I/O. There is always a 
learning curve associated with a new operating system, and a multitasking system is 
more complex then conventional systems. Depending on the product selected, the 
operator interface may be elaborate using a menu system as in the case of OS/2, or very 
rudimentary like some of the less developed operating systems[63, 64]. The added 
complexity of using a real-time system is offset by the improved performance that will 
result. 

Response time: Most vendor data sheets rate the response times in the low 
microseconds. Comparing different operating systems is very difficult as there are no 
standard methods used. For the highest performance, the best choice is an operating 
system that does not provide DOS compatibility. If DOS compatibility is important, 

expect the response time to suffer greatly. This occurs because of the basic limitations 

present in DOS service routines. Real-Time operating systems compatible with DOS 

can create the best performance by rewriting the DOS system calls. This approach then 

leads to a new problem, a lack of true DOS compatibility. 
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Maximum number of controllable tasks: The use of a real-time operating 
system should be considered as the number of tasks that require concurrent processing 

exceeds five. For applications with ten or more tasks, a real-time system is probably the 

only method to consider. The maximum number of tasks controllable on the PC is 
limited by the capability of the operating system, typically in the range of 64 to 128 
tasks. 

Overhead: The use of a real-time operating system adds significant overhead to 

the process control as compared to implementations under DOS. It has only been with 

the introduction of more powerful processors like the Pentium that the use of the PC for 

higher performance control has been feasible. The overhead will be inversely 
proportional to the services provided. An operating system like OS/2 that supplies good 

hardware support is also one of the larger and slower systems. 

Evaluating operating system choices: The selection of an operating system for 

a particular application is very difficult, yet it is one of the most critical decisions in the 

design process[65]. In addition to evaluating the response time and system resources 

such as disk services, consider the development tools that are available. With software 

costs being the number one expense in control applications, the lack of good 
programmer's aids can significantly effect project cost. Another major difficulty in 

system development concerns the lack of software support of hardware modules. Pay 

particular attention to the quality of the device drivers supplied with hardware. 
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CHAPTER 5  
EXPERIMENTAL PROCEDURE  

5.1 Goals 

In order to select the computer system for a particular control application 
requires a comparison between the throughput of the computer and the control needs of 
the process. The work presented here is an analysis of the time required to execute 
programs and the time to perform various storage and I/O functions on the PC. With 
this analysis, it will be possible to estimate the attainable performance of a process 
control application running on a PC. 

This analysis has focused on three aspects of the personal computer: the 
performance of peripheral devices controlled by the DOS operating system, the amount 
of time that is consumed in overhead functions, and the execution rate of C and 
assembly language programs. 

The results consist mainly of measured execution times for various tasks 
performed by the PC. These measurements are directly related to the hardware platform 
on which the tests were run. Testing has been performed on 386, 486, and Pentium 

platforms. (Detailed information on the hardware configurations is contained in the 
appendix.) To apply these results to a particular application will require a scaling of 
these performance measures to the new platform. 
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5.2 Controlling Peripherals 

This section focuses on the performance of three common PC peripherals: the 
hard drive, video monitor, and the parallel port. The access time and the maximum time 

period that interrupts are disabled has been measured as they relate to applications in 
real-time control. The results that are presented here are a function of the performance 

of the peripheral hardware, the performance of the DOS operating system, the speed of 
the microprocessor, and in some cases, the efficiency of the C compiler that generated 
the test code. The test programs were all compiled as .COM files; both the code and the 

data were contained within a single 64 Kbyte segment. 

The test setup shown in figure 5.1 was designed to measure the access time of 
the peripheral under test. The PC was programmed in a loop to continuously exercise a 
peripheral such as the hard drive. As a means to provide test points to external timing 
equipment, pin 5 of the parallel port was toggled during each pass of the loop. Pin 5 
(peripheral_busy) indicated when the peripheral started an I/O function by going high 
and indicated the completion of the I/O by going low again. When the peripheral_busy 
signal was high, the I/O function was in process. The time in which the peripheral_busy 
signal was high was equivalent to the time necessary for the peripheral to perform an 
I/O function. The looping program then provided a repetitive signal to display on an 
oscilloscope. For example, when testing the time to write to the hard drive, the 
following sequence of events occurs: 

write peripheral_busy to high 

start writing to hard drive 

end writing to hard drive 

write peripheral_busy to low 

repeat above. 
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To test for disabled interrupts the test setup of figure 5.2 was used. The PC was 

operated similar to the setup of figure 5.1 but in addition, an ISR was resident in the test 

program. A rising edge on hardware interrupt 7 (IRQ7) caused the CPU to vector to the 

ISR. The ISR executed a small program that output a pulse on pin 3 of the parallel 

port. Using this test setup it was possible to investigate when hardware interrupts were 

disabled. With the test program exercising the peripheral in a continuous loop, the 

oscilloscope displayed the time window in which the peripheral was performing an I/0 
function on channel 1. Starting with zero delay, channel 2 displayed the isr_on signal, 

indicating that the ISR was executing and hardware interrupts were enabled. As the 

delay was increased, the ISR executed at a later time within the peripheral_busy 
window. As long as hardware interrupts were enabled, the isr_on signal was present. 

As the ISR was scanned across the window, there were periods of time when the isr_on 

signal would disappear, indicating that IRQ7 was not being recognized and therefore 

hardware interrupts were disabled. The maximum length of time that interrupts were 

disabled, or the "dead time" was the most important quantity being measured. Of 
secondary importance was the percentage of time that hardware interrupts were 

disabled. 

OSCILLOSCOPE 

CH1 0  

CH2 0 } / PARALLEL PORT 

Figure 5.1. Test setup used to measure access time of peripherals. 
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Figure 5.2. Test setup for measuring disabled hardware interrupts. 
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5.2.1 Hard Drive Performance 

The test setups of figures 5.1 and 5.2 were assembled in order to measure the 
performance of the hard drive. Reading from the hard drive was tested by executing the 

test program FILEREAD.C. (Refer to program listings in the appendix.) This program 
continually read files from the drive while also generating the test signal 

peripheral_busy. The hard drive performance was tested with file sizes of 1K, 100K, 
and 895K bytes. The results of those tests are displayed in Figure 5.3. 

In order for this program to properly test the hard drive performance it was 

necessary to insure that the file being read was actually residing on the hard drive, and 

not resident in drive cache memory. If a single file were read repeatedly, the hard drive 

would pull the file into the cache and then access it directly from the cache. In order to 
avoid this, DISKREAD.0 read ten different files sequentially. For comparison purposes, 
the time to read a 1 Kbyte file resident in cache memory was 9.6 mS (386 platform). 
Data is located in a somewhat random order on hard drives due to track and sector 
locations. To handle this variable, test results show minimum, maximum, and average 

access times. The time period hardware interrupts are disabled was also measured and 
is displayed in figure 5.3. 

The time required to write a file was also measured using the test program 
FILE WRT.C. In this program files were opened, written to, and then closed again. 
Files from 1 byte to 1 Mbyte in length were measured. The results are given in figure 
5.4. The write time for different files did not show as much variation as the read time, 
but the write time was much longer than the read time. The test for disabled interrupts 

found interrupts disabled for much longer periods and more often than when reading 
files as summarized in figure 5.4. 

These results give a quantitative measure of the amount of time that will be 
required to allow reading or writing to the hard drive. For example, as can be seen from 
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File Time Required to Read Hard Drive 
Size 386 (20 MHz) Pentium (75 MHz) 

(bytes) Min. Max. Avg. Min. Max. Avg. 
1K 10.0 mS 100.0 mS 35.6 mS :3.5 mS' 9.0 mS2 8.0 mS 

10K 1.0 S 2.0 S 1.4 S 10 mS3 32 mS 25 mS 
985K 9.8 S 11.2 S 10.4 S 2.0 S 2.2 S 2.1 S 

Interrupt Performance (10 Kbyte file) 386 (20 MHz) Pentium (75 MHz) 
Longest Period Interrupts Disabled 15 uS 15 uS 
Percent Time Interrupts Disabled 5 % 3 % 

Notes: 
Drive cache memory in use 

2 First file, therefore no use of cache memory 
3 Estimate, unable to observe fastest file access due to test equipment limitation 

Figure 5.3. Test results for reading hard drive. 

File Time Required to Write Hard Drive 
Size 386 (20 MHz) Pentium (75 MHz) 

(bytes) Min. Max. Avg. Min. Max. Avg. 
1 300 mS 350 mS 325 mS 680 mS 780 mS 720 mS 
1K -- mS' -- mS' -- mS' 620 mS 420 mS 550 mS2 

10K 300 mS 600 mS 450 mS 380 mS 420 mS 400 mS2 
985K 3750 mS 4250 mS 4000 mS 2300 mS 2900 mS 2700 mS 

Interrupt Performance (1 byte file) 386 (20 MHz) Pentium (75 MHz) 
Longest Period Interrupts Disabled 1.7 mS <2 mS 
Percent Time Interrupts Disabled 60 % 5 % 

Notes: 
1 Unable to measure due to failure of 386 motherboard. 
2 Unexplained decrease in access time as files become larger. 

Figure 5.4. Test results for writing to hard drive. 
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the results, it takes about two seconds to read a 1 Mbyte file from the hard drive on the 
Pentium system, but interrupts are only disabled for 15 uS periods. This time period 
needs to be contrasted with the requirements of the process control to determine how the 
PC will perform all tasks in a timely manner. 

5.2.2 Video Monitor 

The performance of the VGA video monitor was also measured. Using the same 
test setups as in figures 5.1 and 5.2, the test program SCREEN.0 was executed. This 
program wrote 80 characters to the screen. The results are summarized in figure 5.5. 
Again the time periods measured here must be contrasted with the requirements of the 
control system to determine if both tasks can be carried on simultaneously. 

Video Performance 386 (20 MHz) Pentium (75 MHz) 
Video Write Time (80 Characters) 21.5 mS 13.4 mS 
Longest Period Interrupts Disabled 10 mS 0 mS 
Percent Time Interrupts Disabled 20 % 0 % 

Figure 5.5. Test results for writing to video monitor. 

5.2.3 Parallel Port 

The parallel port is mapped as a register within the I/O space. For control 
applications the parallel port can be used as an inexpensive method to provide parallel 
I/O. The performance measures given here for the parallel port would also apply to any 
device that is accessed as a register in the I/O space. 
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The test programs PORT_WRT.0 AND PORTREAD.0 were used to test the 

parallel port. This test program was written in C. As a comparison of the time necessary 

to perform the same task in assembly language, the test programs PRTRDASM.0 and 

PRTWRAS.0 were used to write and read the parallel port using assembly language. The 

interrupts were not disabled during these I/O functions. The results, given in both 

elapsed time and processor clock cycles, are summarized in figure 5.6. From the Pentium 

results, it appears that the I/O bus bandwidth is limiting the performance. This access 

time, though taking many CPU clock cycles, is very fast and not likely to be the limiting 

factor in simple control problems. 

5.2.4 Serial Port 

The serial port is the most common interface used in PCs. Unlike the peripherals 

above, the I/O rate is determined by the baud rate selected for communication. Once a 

serial port is configured, transmission occurs simply by writing bytes to a register in the 

I/O space. The time required to write to this register is equivalent to the access time for 

the parallel port as just discussed. The baud rate is the number of bits per second 
transmitted and is the rate that the bits are serially shifted out of the I/O register. 
Standard serial communication requires a header and tail on each 

Language Parallel Port Read and Write Time 
386 (20 MHz) Pentium (75 MHz) 

Read Write Read Write 
C 5 uS 5.5 uS 2 uS 2 uS 

(100 clocks) (110 clocks) (150 clocks) (150 clocks) 
Assembly 1 uS 1.1 uS 1.8 uS 1.8 uS 

(20 clocks) (22 clocks) (135 clocks) (135 clocks) 

Figure 5.6. Test results for reading and writing to the parallel port 
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byte transmitted creating an overhead of 2 to 4 bits (depending on parity and stop bit 

protocol) for every byte of data. For example, if an interface used 19.2 Kbaud, 8 data 

bits, no parity, 1 stop bit, one bit would be transmitted every 52 uS. When the overhead 

is taken into account, the transfer rate is: 

RS-232 19.2 Kbaud serial transfer rate = 

19.2 K bits/second * 1 byte data/ ( 8 + 2 ) total bits = 

1920 bytes/second or 1 byte/521 uS. 

In this example, the control program would need to write to the serial port one byte 

every 521 uS in order to keep the serial line from going idle. The CPU has plenty of 

time to perform other tasks. Therefore, in this example the baud rate is limiting the I/O 

rate of the computer system. This is an example of how the serial port is an extremely 

slow transfer method. The serial port can not be used for demanding, high speed 
applications. 

5.3 Operating Overhead 

There are two miscellaneous functions performed routinely by the PC that could 

have an effect on applications involving real-time control: the servicing of the timer and 

the amount of time needed to perform a context switch. 

The time-of-day clock used in personal computers is implemented with a 
combination of hardware and software functions. The 8253-5 clock/timer chip provides 

a countdown lasting 54.9 mS. Each time the timer completes a countdown, it interrupts 

the CPU using hardware interrupt number 8. The CPU services the timer using an ISR 

that resets the counter and adds 54.9 mS to the memory location storing the time of day. 

This is continuously occurring during normal computer operation. Therefore 18.2 times 

per second (1/54.9 mS) this ISR is executed by the PC. This ISR took 48 uS to execute 

on the 386 and 21 uS on the Pentium platform (refer to TIMER.C). In applications 
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involving high speed control it would be necessary to consider how this ISR will affect 

system timing and if a conflict exists, the timer may need to be disabled. 

Whenever a computer is required to execute an ISR, the current state of the CPU 

must be stored in order for the CPU to be able to return to the current task upon 

completion of the ISR. This change of state is referred to as a "context switch". The 
time required to perform a context switch can be of importance if the context switch 
time approaches the execution time of the ISR. 

In the personal computer when a hardware interrupt is received, the sequence 

of events leading up the context switch involves a series of handshakes between the 
microprocessor and the programmable interrupt controller (PIC). The following 
sequence of events occurs: 

1) The 8259A PIC screens the interrupt for masking and priority as 

predefined during initialization of the PIC. If the interrupt line 
within the PIC has been enabled (unmasked) during initialization, 

and there are no higher interrupts pending, the interrupt is relayed to 

the interrupt (INT) line of the microprocessor. 

2) If interrupts are enabled within the CPU, the CPU checks the 
interrupt status at the end of each instruction. 

3) If an interrupt is present, the CPU pushes the flags register onto the 
stack. 

4) The CPU disables further interrupts within the CPU. 

5) The CPU pushes the code segment (CS) and instruction pointer (IP) 

onto the stack. 

6) The CPU acknowledges the interrupt by raising the interrupt 
acknowledge (INTA) line of the PIC. 

7) The PIC places the interrupt number on the data bus. 

8) The CPU reads the interrupt number off the data bus. 
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9) The CPU calculates the entry number for the interrupt vector table 

based on the interrupt number received (entry number = interrupt 
number * 4). 

10) The CPU reads the address contained in the interrupt vector table 
corresponding to the interrupt number. 

11) The CPU loads the new address into the CS and IP registers. 

12) The CPU jumps to the ISR located at CS:IP. 

13) The ISR is now executing and the first task of the ISR is to save the 

current state of the machine by pushing the registers onto the stack. 

The entire sequence above must occur before any servicing within the ISR can 
occur. The time to perform the above tasks was measured using the test program 
CONTEXT.C. This test program measures the time to enter the ISR including the time 
to save the registers of the machine. The test does not measure the time to save the 
context which is performed within the ISR code. The 386 took 6.5 uS and the Pentium 
3.4 uS. (For this test, overhead needed to toggle the parallel port used for timing 
purposes was significant and was subtracted out of the results. The overhead was 
measured using the test program CONTXTOH.C.) 

5.4 Program Execution Rates on the PC 

Another issue that affects the performance of the PC-based control system is the 
rate at which lines of program code can be executed. A typical control program will 
collect a measurement from the controlled process and then compute the next output 
value based on a mathematical or logical algorithm. Therefore, in addition to 
performing fast I/O the control computer must be able to execute program code quickly. 

The analysis presented here provides a method to estimate the time required to execute 

program code written in either C or assembly language. 
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A well known problem present when measuring the performance of processors is 

selecting an instruction mix for testing. The actual instruction mix selected can skew 
the results in either direction based on the complexity of the instructions used. For 

example, an instruction set biased toward instructions such as moves and logical 
manipulations will execute much faster than a set containing a majority of floating point 

operations. The goal of the instruction mix should be to simulate code used in real-
world applications. Unfortunately, this goal is not easily met due to the variation of 
instruction content in real world programs. This variation is perhaps even more 
pronounced in control applications. 

5.4.1 Execution Rate of C Code 

The ideal method to calculate the execution rate of C code on the PC would be 
to obtain the assembly language translation of each C instruction, and then analyze the 

execution rate of the resulting assembly code. Unfortunately, the manufacturers of C 
compilers do not provide this information. Therefore, a different approach must be 
taken. The method chosen here was to count the lines of C code in a sample program 
and then measure the time required to execute that program. This provides a simple 
measure of the computer performance while avoiding the problem of access to compiler 

translation code. 

Obtaining a measure of the code execution rate for a high level language in this 

method is complicated by both the instruction mix problem and the method of counting 

the lines of code. One example of the line counting problem is evident when a loop 
instruction is encountered. If the loop instruction is counted as a single line of code, the 

execution rate is a function of the number of loops, and for an infinite loop, which is 
common in control application, the execution rate would be zero. The solution for 
counting lines of code that involve loops is to count each pass through the loop 
separately. Another variable that enters the calculation of the number of lines of code 
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occurs when a library function is used. Here, one line of code will cause the compiler to 

link an external procedure to the program. In the case of linked library functions, the 
software vendor does not provide the source code of the library function, and therefore 

the size of the function can not be determined. These library calls add significant 
execution time to the program, but appear as a single line of code. In this instance, the 
most appropriate solution is to count the library function as a single line of code, 
realizing that this adds an unavoidable variable to the measurements. 

Figure 5.7 presents the results of C execution rates for several programs. The 
description column defines what was present in each program. Program 1 and 2 were 
essentially the same program with the library functions removed for program 2. 
Therefore, the increase in execution rate was due to the removal of the library function. 

Program 3 was a completely different program, and although it contained 2 library 
functions, ran considerably faster. This difference is an example of the variation 
resulting from differing instruction mixes. The results are given in clock cycles per line 
of C code. Using clock cycles/line removes the clock rate parameter from the 
performance measure. Therefore, the differences in the average execution rate are due 
to improved microprocessor architecture in the more advanced designs. While these 
three programs exhibit a wide ranged of execution rates, the results are still useful for 
estimating the time needed to perform an algorithm computation in a control 

File Name File Description Execution Rate 
(Clock cycles per line of C code) 

386 486SX Pentium 
(20 MHz) (33 MHz) (75 MHz) 

C_ RATE 1 File transfer program with library calls I 250 166 87 
C_ RATE 2 File transfer program with no library calls 208 58 38 
C_ RATE 3 Drystone benchmark 73 17 9.5 

Average Execution rate I 177 80 45 
Normalized Execution rate 100% 45% 25% 

Figure 5.7. Execution rate of C code for various programs. 
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application. It should be noted that these programs did not perform any I/O functions. 

I/O was purposely omitted from these test programs due to the work presented early 
giving I/O times. 

5.4.2 Execution Rate of Assembly Language 

Calculating the execution rate of assembly language provides the opportunity to 

perform more accurate studies than are possible with high level languages since the 

uncertainty associated with the high level compiler is eliminated. For this analysis an 

instruction mix was selected and then the theoretical execution rate was calculated 

based on clock cycle usage information provided by Intel. To check the results, test 

programs were written that implemented the instruction mix. 

When measuring the execution rate of assembly language programs, the 
selection of the instruction mix is still an issue just as in the C timing presented earlier. 

For this testing the instruction mix selected was based on work by Adams and 
Zimmerman[66]. In their work, Adams and Zimmerman monitored the execution of 

Turbo C, MASM, and Lotus programs running on the PC and tabulated the instruction 

usage. This is probably a good approach to defining an instruction mix for an office 

environment, but one would wonder how this compares to an instruction mix used in 
control applications. Nevertheless, Adam and Zimmerman's instruction mix was used 
for this analysis. 

Figure 5.8 lists the most commonly used instructions and gives the average 

instruction usage of all three programs as calculated by [66]. The clock cycle usage for 

each instruction per Intel's Programmer's Reference Manual[67] is given in the third 

column. The clock cycle usage includes two numbers for conditional instructions: one 

for the branch taken and the other for the branch not taken. The m in several entries is 

associated with the conditions under which the current instruction is being executed. 



Notes: 
1.	 Average clock cycle usage is based on work by [66]. 

List includes instructions used more often than 1.5%. 
2.	 Average clock cycle usage = (average usage) X 

(instruction clock cycle usage). 
3. "m" is dependent on conditions in which instructions 

are executed.  
Consult [68] for details.  

4.	 "r/m" refers to ratio of register usage to memory usage. 
5. The theoretical performance is for the 386 processor 

and assumes the following test conditions: 
instruction has been prefetched and decoded and 
is ready for execution 
bus cycles do not require wait states 

no logical bus hold requests delaying processor 
access to bus 
no exceptions are detected during instruction 
execution 
memory operands are aligned 
if an effective address is calculated, it uses use 2 
general purpose registers (see [46?], Volume II, 
p. 5-380) 
operating in real mode (note: task switching takes 
a long time) 
all branch/jump destinations are coded as 
immediate data 

Figure 5.8a. Instruction Mix and Clock Cycle Usage for Intel Processors 



Instruction Avg. 
Usage' 

Clock Cycle Usage 
m = memory, r = register 

Average Clock Cycle Usage Assumptions' 

JCC 
(jmp conditional) 

10% 7+m (m=2)4 if taken 
3 not taken 

(5% X 9) + (5% X 3) = .60 1/2 conditional jumps taken, 
1/2 conditional jumps not taken 

CALL, CALLF 4% 7+m (m=2) (4% X 9) = .36 1/2 taken, 1/2 not taken 
RET, RETF 4% 10+m (m=1) (4% X 11) = .44 
LOOP 4% 11 + m (m = 2) (4% X 13) = .52 
JMP 2% 7 + m (m = 2) (2% X 9) = .18 
CMP 7% r/m 5= 2/5 (4% X 2) + (3% X 5) = .23 4/7 register compare 

3/7 memory compare 
SAL, SHR, RCR 5% SAL & SHR r/m = 3/7 SAL/SHR (2% X 3) + (I% X 7) = .13 instruction mix ratio: 

RCR r/m = 9/10 (1% X 9) + (1% X 10) =.19 3/5 SAL & SHR, 2/5 RCR 
register/memory usage 
SAL & SHR 2/3 r, 1/3 m 
RCR 1/2 r, 1/2 m 

ADD 3% r/m = 2/7 (2% X 2) + (1% X 7) = .11 register/memory usage 
2/3 r, 1/3 m 

OR, XOR 3% 6 (3% X 6) = .18 r to m ORing 
INC, DEC 3% 2 (3% X 2) = .06 register usage only 
SUB 2% r/m = 2/7 I% X 2) + (1% X 7) = .09 1/2 immediate to r 

1/2 immediate to m 
CBW 1% 3 (1% x 3) = .03 
TEST 1% 2 (1% X 2) = .02 immediate to r 
MOV 27% r/m =2/4 (13 X 2)+(I4 X 4)=.82 13/27 rtor, 14/27 m tor 
LES 3% 7 (3% x 7) = .21 
PUSH 7% r/m = 2/5 (4% X 2) + (3% X 5) = .23 4/7 r, 3/7 m 
POP 5% 5 (5% X 5) = .25 100% m 
TOTALS 91% of 

instruction 4.65 clocks per instruction (considering 91 % of instruction usage) 
usage 

4.65 X 100/91 = 5.11 clocks per instruction (average) 

Figure 5.8b. Instruction Mix and Clock Cycle Usage for Intel Processors 
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Consult the Intel data book [68] for details. The clock cycle usage quoted by Intel is 
valid under conditions that in essence create a "best case" condition. The notes given at 
the bottom of figure 5.8 specify the conditions under which the Intel values are valid. 

The forth column gives the average clock cycle usage and is derived by 
multiplying the average usage times the clock cycle usage. This is the theoretical 
percentage of time the PC would be executing each particular instruction. 

Several assumptions concerning the ratio of taken to not taken branches, register 
versus memory usage, and the ratio of each instruction within a particular instruction 
category were necessary for this testing. These assumptions are defined in column 5 of 
figure 5.8. 

The instructions listed account for 91% of the execution time in this instruction 
mix, with the remaining time using instructions with less than 1.5% occurrence. The 
average clock cycle usage of the 91% is obtained by summing column four of figure 5.8. 
The result, 4.65 clock cycles per instruction, is adjusted up to 100% by multiplying by 
100/91. 

4.65 X (91/100) = 5.11 clock cycles per instruction. 

This performance measure is a function of the efficiency of the processor 
architecture and does not include the clock rate. Therefore these results are easily scaled 
to any processor clock rate. The clock cycles per instruction information is from the Intel 
386 data book and only applies to that processor architecture. Testing has been 
performed that will compare the 386 architecture to the 486 and Pentium processors. 

To compare the calculated performance to the measured performance, the test 
program INST_MIX.ASM was used. For the instructions in table 5.8, INST_MIX.ASM 

executes each instruction repeatedly up to the value corresponding to average instruction 
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usage. The program executes 91 instructions total, and the execution time was measured 

in order to calculate the execution rate. For more accuracy, the overhead used by the test 

program to signal the start and stop of testing was subtracted out. The results are shown 

in figure 5.9. From the results it shows that the measured performance was almost a 
factor of two poorer than the theoretical performance. 

In order to take a closer look at why the measured performance did not compare to 

the calculated performance, a more detailed test method was used. This revised test 

presented in figure 5.10 measured the performance of each instruction separately. For 

each instruction, a test program was written that executed that instruction 100 times in a 

row. This approach was used for two reasons. The first concern was that the instruction 

pipeline wa§ not being used efficiently. Intel's conditions for calculating the performance 

assume an uninterrupted pipeline. The second reason for testing each instruction 
separately was to allow an instruction-by-instruction analysis of the measured vs. 

theoretical performance. 

Looking more closely at figure 5.10, the instruction set and the average 

instruction usage values from figure 5.8 are repeated in columns one and two. The 

execution time was measured, the equivalent clock cycle usage calculated, and the 

Architecture Performance (disturbed pipeline) 
(average clk. cycles per assy. instruction) 

386 theoretical performance 5.1 (51%) 
386 measured performance 9.9 (100%) 
486SX measured performance 4.2 (42%) 
Pentium measured performance 3.2 (32%) 

Figure 5.9 Assembly language code execution rate. 



Instruction Average 386DX 386DX 486SX 486SX Pentium Pentium Test Program
Usage' Measured Avg. Measured Avg. Measured Avg. Clock 

Clock Cycle Clock Clock Cycle Clock Clock Cycle Cycles 
Usage Cycle Usage Cycles Usage 

JCC 10% 7.2 .72 12.5 1.3 7.5 .75 COND JMP.ASM 
(jmp conditional) 
CALL, CALLF 4% 9.3 .37 4.6 .18 1.6 .06 CALL&RET.ASM 
RET, RETF 4% 9.3 .37 4.6 .18 1.6 .06 note 2 
LOOP 4% 12.5 .50 6.9 .23 10.5 .42 LOOP.ASM 
JMP 2% 10.8 .22 5.0 .10 1.9 .04 JMP.ASM

7%CMP 6.45 .45 2.0 .14 2.0 .14 CMP_MIXD.ASM 
SAL, SHR, RCR 5% 10.0 .50 5.6 .28 4.0 .20 SHIFT.ASM 
ADD 3% 3.7 .11 5.0 .15 4.8 .14 ADD_MIXD.ASM 
OR, XOR 3% 21 .63 2.0 .06 7.5 .22 OR.ASM 
INC, DEC 3% 2.0 .06 1.1 .03 4.8 .14 INC.ASM 
SUB 2% 11.6 .23 5.4 .11 5.0 .10 SUB.ASM 
CBW 1% 2.9 .03 3.2 .03 3.1 .03 CBW.ASM 

1%TEST 2.2 .02 1.2 .01 0.6 .01 TEST.ASM 
MOV 27% 2.2 .60 1.1 .30 1.1 .30 MOV.ASM 
LES 3% 8.5 .26 5.9 .18 4.2 .13 LES.ASM 
PUSH 7% 2.5 .18 0.8 .06 0.4 .03 PUSH&POP.ASM 
POP 5% 2.5 .12 0.8 .04 0.4 .02 note 3 
TOTALS 91% of 5.37 X (100/91) 3.38X (100/91) 2.79X (100/91) 

instruction = 5.9 clock = 3.7 clock cycles = 3.1 clock cycles 
usage cycles per per instruction per instruction 

instruction (ave.) (ave.) (63%) (ave.) (52%) 
(100%) 

Notes: 
1. Instruction mix is per [86] as in figure 5.8. 2. Measurements for call and return were combined. 3. Measurements for push and pop were combined. 

Figure 5.10. Measured execution rate of individual instructions on the 386. 
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resulting measured clock cycle usage was obtained as presented in column three. To 
calculate the average clock cycle usage for this instruction mix, the average usage was 

multiplied by the measured clock cycle usage and entered in column four. As in figure 

5.8, the average clock cycle usage is summed, and adjusted up to 100% and a new 
measured average clock cycle usage of 5.9 clocks per instruction was obtained. 

As can be seen from the test results in figure 5.10, the measured execution rate 

of 5.9 clock cycles per instruction compared well with the theoretical value of 5.11 

cycles per instruction. The improved correlation is believed to be a result of using the 
pipeline more efficiently. Also of interest is the higher performance of the 486 and 
Pentium architectures. 

The normalized performance is summarized in figure 5.11. There are two 
interesting points to notice. The 386 performance improves significantly going from the 

disturbed to the undisturbed pipeline while the Pentium shows little change. This 

indicates the Pentium pipeline design is more robust and tolerant of disturbances. Also 

note that the C code performance tracks the disturbed assembly code performance, 

indicating typical C code also disturbs the pipeline. 

The calculations presented in figure 5.8 provide a method to calculate the 
execution rate of assembly language programs for control applications. The testing 
presented in figures 5.9 and 5.10 verify this performance and bring up a practical aspect 
of the Intel performance. When the pipeline was not fully utilized, as in the testing of 

figure 5.9, the performance decreased by a factor of 2 for the 386. The lower 
performance is probably more typical of real world performance and certainly needs to 

be anticipated in a control application. 
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Architecture Performance  
(execution time normalized to 386 )  

Disturbed Undisturbed C Code 
Pipeline Pipeline 

386 theoretical performance 100% 100% - - --

386 measured performance 194% 116% 100% 
486SX measured performance 82% 72% 45% 
Pentium measured performance 63% 61% 25% 

Figure 5.11. Normalized performance of Intel architectures. 

5.5 Estimating the Performance of a Control System 

With the work that has been presented in this chapter, it is now possible to 
estimate the performance of a PC-based real-time control application. The performance 

measure will be dependent on the application and since each application uses a different 

performance measure, the method of analyzing the performance will also vary. 

Guidelines are presented here that will provide a general approach for estimating 

the performance of a PC-based control system. Because the method to estimate the 
expected performance will depend on the specific control application, it would be 
difficult to provide a single formula for all applications. Instead guidelines will be 
given and an example will demonstrate the method. 

1. Identify the basic computational requirement of the system: The first 

quantity to identify is a basic requirement of the control system that must be performed. 

There will be some aspect of the control function that must be performed that is fixed 

and is not available for modification. For example, in a communications application, 

there might be a required manipulation of the communication packet. In a DSP 
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application, there might be a required frequency response of the digital filter. In a 
multi-point control application, the complexity of the control algorithm may be fixed. 

2. Identify the performance measure that is a function of the control 
computer: The next aspect to identify is the performance measure that will be 
dependent on the control computer. This is the quantity that will vary depending on 

how fast the computer can perform the basic requirements identified in guideline 1. In 

the communications example, the performance would be measured by the data transfer 

rate. In the DSP example, the performance would be based on the complexity of the 

filter that can be implemented. In the multi-point control example, the performance 

would be based on the number of controllable points. 

3. Scale these performance measures to the new platform: Since the 
computer used for the control application will differ from the one used in this research, 

the execution speed of the new computer must be estimated. For each function needed 

in the control application, scale the execution times to the new platform. With the 

results of the 386 and Pentium testing, it is possible to interpolate or extrapolate the data 

as necessary to apply to other platforms. If more accurate correlation is needed, the 

actual testing performed here can be repeated on the platform in question. 

4. Estimate the maximum performance attainable: Using the scaled 
performance measures, calculate the time required to perform the computations 
identified under guideline 1. Using the performance measure identified in guideline 2, 

calculate the estimated performance. This is typically the inverse of the execution time. 

In the communication example, after calculating the execution time to input the packet, 

perform the required packet manipulation, and output the packet, the data transfer rate 

can be obtained as the inverse of the execution time. In the DSP example, after 

calculating the time required to update the filter coefficients, the maximum sample rate 

is the inverse of the update rate. For the feedback loop example, after estimating the 

time required to calculate the new control values and update the feedback signal, the 
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performance would be the inverse of the execution time. It is suggested that a 
computing safety margin of 5 to 10 be maintained at the early design stage to 
compensate for the inaccuracies of the performance analysis and to allow room for 

incorporating unexpected tasks or design improvements. 

For synchronous applications, once the computational time is known, a 
relatively exact estimate of the performance can be obtained. On the other hand, many 

applications involve an asynchronous response to a system. In this case an additional 

performance variable arises. In asynchronous systems, the analysis must go beyond the 

execution time and consider the probability of completing the computation, the average 

idle time waiting for request for service, the consequence of missing a response, etc. 

This is beyond the scope of this work but is important to consider in real-world 
applications. 

Any particular control application can be approached in a variety of ways. For 
example, in the DSP application the engineer could select the filter order (complexity) 

to be the basic computational requirement and allow the frequency response to be the 

performance measure. The point here is that there are many approaches to a control 
problem. The intent of these guidelines is to present a concept, and not attempt to 
define an exact method. 

5.6 Design Example 

As a demonstration of the method proposed for estimating the performance of 

the PC in a control application, a communication task between two PCs will be 
analyzed. The data transfer rate will be estimated and the result will be compared to the 

measured performance. 
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In this example, it is desirable to provide communication between two PCs via 
their parallel ports. This communication link will have programs running 
simultaneously on two machines, with one machine configured as a transmitter and the 
other as a receiver. The transmitting machine will use a foreground task (figure 5.12) to 
generate data and store the data in a circular buffer, calling an ISR (figure 5.13) via a 
software-generated interrupt. The ISR handles low-level transmission, pulling data off 
of the circular buffer, sending it to the parallel port, and triggering the receiver IRQ7. 

The receiver foreground task (figure 5.14) will read the data from the circular buffer and 
display it on the screen after the ISR residing on the receiver (figure 5.15) captures the 
data and places it on a circular buffer. 

1. Identify the basic computational requirement of the system: The first step 
in the analysis is to identify the basic physical limitations of the application that are not 

available for modification. For this example, it will be assumed that using the parallel 

port, generating the data on the transmission side, and displaying the data on the 
receiver side is required. 

2. Identify the performance measure that is a function of the control 
computer: In this application the performance measure will be the rate at which data 
can be transferred between machines. 

3. Scale the performance measures to the new platform: In this application 
the transmitter will use a 50 MHz 486DX based PC. It is therefore necessary to scale 
the measured performance parameters to this new platform. Figure 5.16 provides a 
summary of the performance measures of interest and an estimation of the 486DX 

performance based on performance of 386, 486SX, and Pentium platforms. 

The receiver will use a 75 MHz Pentium based PC. Therefore it will not be 
necessary to scale performance for this platform. 
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Figure 5.12. Flowchart-transmitter foreground program. 
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Figure 5.13. Flowchart-transmitter ISR. 
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Figure 5.14. Flowchart-receiver foreground program. 
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Performance Measure 

C code execution rate  
(lines/c1k)  

Assy. code execution  
rate (inst./elk)  

Parallel port access time  
(uS)  

Video write time (80  
char.) (mS)  

ISR context switch  
(uS)  

386  
(20 MHz)  

177 

5.9 

1.1 

21.5 

6.5 

486 SX  
(33 MHz) 

80 

3.7 

486 DX Pentium 
(50 MHz) (75 MHz) 
Estimated 

80 45 

3.7 3.1 

2 1.8 

15 13.4 

5 3.4 

Figure 5.16. Estimated performance for 486DX 50 MHz. 

4. Estimate the Maximum Performance Attainable: In order to estimate the 
performance of an application such as this communication program requires an analysis 
of each of the simultaneous processes occurring in the computers. There are four 
asynchronous processes running together as depicted graphically in figure 5.17. The 
transmitter foreground program is generating data and placing bytes on the circular 
buffer. The transmitter ISR is pulling bytes off of the circular buffer and sending them 
to the parallel port. The receiver ISR is capturing data from the parallel port and placing 
them on the circular buffer and the receiver foreground program is pulling data off of 
the circular buffer and displaying the results. 

In order to estimate the performance, the execution time of each of these 
processes must be estimated as follows: 

Transmitter foreground program:  

100 lines of C code X 80 clocks/line X 1/50 MHz clock = .16 mS  

20 characters to screen X 15 mS/80 char. (interpolated) = 3.75 mS  

TOTAL 3.9 mS  
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Execution Time  
Estimated 3.9 mS  

Transmitter Measured 1.6 mS 
Foreground Execution Time 

Program Estimated 15 uS 
Measured 15 uS 

-I,Transmitter ISR Receiver ISR11---

Execution Time 
Estimated 20 uS 
Measured -- uS 1 

Receiver 
Foreground 

Program 

Execution Time 
Estimated 6.6 mS 
Measured 7.0 mS 

Figure 5.17. Asynchronous processes of communication program. 
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Transmitter ISR: 

context switch = 5 uS 
100 lines assy code X 3.7 clks/instr. X 1/50 MHz clock = 7.4 uS 

4 parallel port accesses X 2 uS/port access = 8 uS 

TOTAL 20 uS 

Receiver foreground program:  

100 lines of C code X 45 clocks/line X 1/75 MHz clock = .06 mS  

40 characters to screen X 13 mS/80 char. (interpolated) 6.5 mS  
TOTAL 6.6 mS  

Receiver ISR:  

context switch = 3.4 uS  

100 lines assy code X 3.1 clks/instr. X 1/75 MHz clock = 4.1 uS  
4 parallel port accesses X 1.8 uS/port access = 7.2 uS  

TOTAL 15 uS.  

With each of the four execution times estimated, it is now possible to estimate 
the maximum obtainable performance. From figure 5.17, it is obvious that the 
execution times of the ISR are insignificant. Therefore the foreground programs will 
dominate the performance. Based on the receiver execution time of 6.6 mS, the 
maximum transfer rate is estimated at 150 nibbles/second (1/6.6 mS). 

The measured transmission rate was 120 nibbles/second. For a more detailed 
analysis of the accuracy of the estimates, the performance of each of the processes in 
figure 5.17 was measured to compare with the estimated performance. The largest error 

was a factor of 2.4 in the transmitter foreground program. This is within the expected 

accuracy of this technique and points to the requirement of allowing a factor of 5 to 10 

in computer performance headroom during the design phase. 

The programs used throughout this section along with detailed documentation 

are available from the author for any interested parties. 
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CHAPTER 6  
CONCLUSION  

6.1 Summary 

The work presented here has been an attempt to provide a method to estimate PC 

performance during the design phase of a process control project. With this analysis, it 
is possible to determine what functions of a process can be controlled and at what 
performance levels. Designers will have a good grasp of the timing issues in a PC-
based control application prior to entering the lab to start prototype testing. This 
method will be most applicable when a small number of I/O points needs to be 
controlled with a relatively high bandwidth as compared to using a real-time operating 
system. 

This method differs from conventional performance analysis in that basic 
computer functions are measured to form a building block approach. With these 
building blocks, performance estimates of complex applications can be analyzed by 
assembling a group of basic computer functions. There is an added benefit in that it 
provides the designer with more insight into PC performance. With the performance of 
each basic function of the PC quantified, the designer can modify the control approach 

as necessary to avoid computing bottlenecks that might otherwise limit overall 
performance. This method of viewing PC performance will give the designer a new 
tool for evaluating throughput issues. The designer can compare measured performance 

to estimated performance and pinpoint which functions are consuming more CPU time 
than anticipated. This can be particularly helpful during the debugging phase, when 
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unexpected delays in software modules can be traced to malfunctions and 
misconceptions about computing rates. 

The work presented here highlights the common problem of I/O bottlenecks in 

computer architectures. This can be seen in the of the performance of the Pentium as 
compared to the 386. The code execution rate of the 75 MHz Pentium is 15 times 
faster than the 20 MHz 386, but both computers write to the parallel port at 
approximately the same rate. The PC industry is addressing I/O performance with faster 
busses and smarter I/O chips, but for control applications it appears that I/O bandwidths 
will continue to limit the ultimate performance. 

6.2 Limitations 

This work will have limitations in more complex control applications. As the 
size of tasks becomes larger, the estimates necessary for this approach will not have the 

accuracy to provide meaningful results. This method can still be useful for providing a 

first cut at estimating performance and then, along with laboratory measurements, the 
estimates can be corrected to keep the accuracy within reasonable limits. 

6.3 Future Work 

This thesis work has provided the basic foundation for a new approach to sizing 

a control application to the PC. From the work presented here, opportunities for further 

research in this area have become evident. Some of the more interesting areas are 

summarize below: 
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Provide a more comprehensive set of software and hardware 
characterizations. For example, graphics, DMA transfers, BIOS 
performance, and a wider selection of PC platforms. 

Create a standard test for PC platforms that could be universally used to 

allow market-wide evaluation of vendor products. Integrate testing into 
an application program for automated performance measurement. 

Compare these measurements with other benchmark tests and vendor 
data sheets to provide correlation of results. Standard Performance 

Evaluation Corporation (SPEC) [69] and PC magazine provide test suites 
for quantifying computer performance. 

Investigate the use of the PC for high-reliability redundant computer 

systems. The low cost of the PC solves a significant hurdle typically 
found in redundant system design.  

Perform analysis of instruction mixes used in control applications.  

Contrast this instruction mix with that commonly used in the office  
environment and investigate the differences in performance that can be 
expected. 

Use the techniques of chapter 5 to investigate the architectural 

performance of different processor families. 
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Test Platform Hardware Summary 

Platform 1 Platform 2 Platform 3 Platform 4 
Processor: Pentium 486DX 386DX 486SX 
Clock speed: 75 MHz 50 MHz 20 MHz 33 MHz 
Cache 256 KB 256 KB 0 KB 256 KB 
memory: 
Motherboard: Trenton unknown unknown unknown 

Terminals 
Memory: 16 MB 4 MB 2 MB 8 MB 
BIOS: AMI 10/10/94 AMI 11/11/92 AMI AMI 
System bus ISA VESA Local ISA ISA 
type: Bus 
Video card: Headland Intergra Headland Trident 

Technology Technology 
Video RAM: 256 KB 1 MB 256 KB 1 MB 
Hard drive: Maxtor 540 MB Maxtor 340 MB Seagate 20 MB Maxtor 540 

MB 

Program Listings 

Program listings are too long for print out in this document. The referenced programs 

are available from the author at 103063.47@CompuServe.com. 
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