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Conserving Energy in TCP for Mobile Ad-Hoc Networks 

1. INTRODUCTION 

As we continue to use computers to enhance life in our society, the need to 

network computers for data sharing and access to the Internet becomes increasingly 

important. Various different network topologies have emerged over the past years 

and during the recent years the wireless local area network has gained increasing 

importance. At the physical layer this network uses radio frequency (RF) to 

communicate. At the routing layer IP is still predominantly used and at the 

transport layer it is mainly TCP that is used. 

Ad hoc networks are multi-hop wireless networks where all the nodes 

cooperatively maintain network connectivity. This means that, all the mobile nodes 

in the networked area act as routers and transmit data packets received from a 

sender on to the receiver. The range of the networked area is effectively increased 

as compared to the transmitting range of a single radio. These types of networks are 

useful in any situation where temporary network connectivity is needed at short 

notice, and no suitable infrastructure for wire line networks is available (or can be 

established at such short notice). 

For instance, consider the problem of establishing a temporary wireless 

network in a huge region where an emergency search operation is on. An ad hoc 

network here would enable the rescue/search agents in the field to retrieve maps 

and weather forecasts from the Internet (assuming that one or more of the nodes of 

the ad hoc network are connected to the Internet). It would allow them to exchange 

photographs and similar data with other team members who would also be using 

laptops. Other examples of such ad hoc networks include internetworking 
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participants in a meeting hall or building to enable them to exchange data, battlesite 

networks, etc. 

Nodes in an ad hoc network need to remain on battery power for extended 

periods of time. These nodes need to be energy-conserving so that battery life is 

maximized. Battery life imposes a severe constraint on the deployment and large 

scale use of mobile computing technology in the future, and has prompted several 

researchers to develop approaches for conserving power on mobile computers. 

Several technologies are being developed to achieve these goals by targeting 

specific components and optimizing their energy consumption. A significant 

amount of power is consumed by the display, by spinning disks, by the CPU, by 

YO devices and by the transceiver radio. Hence the motivation for low-power 

displays [13], algorithms to reduce power consumption of disk drives [14,15,16], 

and low power YO devices [17]. These, along with the development of low-power 

CPUs (such as those used in laptops and other hand-held devices) and high capacity 

batteries have all contributed to overall energy savings in the mobile nodes in ad 

hoc networks. 

Recently some researchers have begun studying the problem of reducing 

power consumption during wireless data communication. Reducing power 

consumption during file transfers between transmitting and receiving nodes is 

clearly an important goal because battery life is not expected to increase 

significantly in the coming years. In an ad hoc network, it is even more important 

to reduce power consumption because these networks are typically established in 

mission critical environments (such as disaster relief). 

At the transport layer of the communication stack the TCP protocol is most 

widely used. The implementation of this protocol can be fine-tuned to give 

significant improvements in power consumption at the mobile nodes. 

Since the MAC protocol used for wireless communications is IEEE 802.11, 

a brief explanation of the protocol is also provided. 
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1.1 Overview of TCP 

TCP provides a connection oriented, reliable, byte stream service. The 

application data is broken into what TCP considers the best-sized segments to send. 

When TCP sends a segment it maintains a timer, waiting for the receiving end to 

acknowledge reception of the segment. If the acknowledgement isn't received in 

time, the segment is retransmitted. To determine when to retransmit a segment, 

TCP dynamically estimates the round-trip time by measuring the time it has taken 

for earlier segments to be acknowledged. Segments are uniquely numbered to 

identify them. When TCP receives data from the other end of the connection, it 

sends an acknowledgement. This acknowledgement is not sent immediately, but is 

normally delayed for a fraction of a second. TCP maintains a checksum on its 

header and data. This is an end to end checksum whose purpose is to detect any 

modification of the data in transit. If a segment arrives with an invalid checksum, 

TCP discards it and doesn't acknowledge receiving it. It expects the sender to time 

out and retransmit. TCP segments can arrive out of order since it does not assume 

reliability from its underlying layers. A receiving TCP re-sequences the data if 

necessary, passing the received data in the correct order to the application. A 

receiving TCP discards duplicate data. TCP also provides flow control. Each end of 

a TCP connection has a finite amount of buffer space. A receiving TCP allows the 

other end to only send as much data as the receiver has buffers for. This prevents a 

fast host from taking all the buffers on a slower host. There is a limit, known as the 

window size on the number of unacknowledged segments that may be outstanding 

at any time, to bound the amount of buffering of unacknowledged segments that 

must be done at the sender and receiver. 
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1.2 Overview of the MAC Layer Protocol- 802.1lb 

Two widespread standards today underpin much of the commercial 2.4 GHz 

wireless LAN market. They are the IEEE 802.11 standard and the OpenAir 2.4 

standard. The IEEE 802.11 specification is a wireless LAN standard developed by 

the IEEE (Institute of Electrical and Electronic Engineering) committee in order to 

specify an "over the air" interface between a wireless client and a base station or 

Access Point, as well as among wireless clients. First conceived back in 1990, the 

standard has evolved from various draft versions (Drafts 1 through 6), with 

approval of the final draft on June 26, 1997 . 

. Like the IEEE 802.3 Ethernet and 802.5 Token Ring standards, the IEEE 

802.11 specification addresses both the Physical (PHY) and Media Access Control 

(MAC) layers. At the PHY layer, IEEE 802.11 defines three physical 

characteristics for wireless local area networks: diffused infrared, direct sequence 

spread spectrum (DSSS), and frequency hopping spread spectrum (FHSS). While 

the infrared PHY operates at the base-band, the other two radio-based PHYs 

operate at the 2.4 GHz band. This latter frequency band is part of what is known to 

be the ISM band, a global band primarily set aside for industrial, scientific and 

medical use, but can be used for operating wireless LAN devices without the need 

for end-user licenses. In order for wireless devices to be interoperable they have to 

conform to the same PHY standard. All three PHY s specify support for 1, 2 and 11 

Mbps data rate. 

The 802.11 MAC layer, supported by an underlying PHY layer, is 

concerned primarily with the rules for accessing the wireless medium. Two 

network architectures are defined: the Infrastructure Network and the Ad Hoc 

Network. An Infrastructure Network is an architecture for providing 

communication between wireless clients and wired network resources. The 

transition of data from the wireless to the wired medium is via an Access Point. 

The coverage area is defined by an Access Point (AP) and its associated wireless 

clients, and together all the devices form a Basic Service Set. 
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An Ad Hoc network is an architecture that is used to support mutual 

communication among wireless clients. Typically created spontaneously, an ad hoc 

network does not support access to wired networks, and does not need an AP to be 

part of the network. 

The primary services provided by the MAC layer are as follows: 

• Data transfer 

Wireless clients use a Collision Sense Multiple Access with Collision 

Avoidance (CSMA/CA) algorithm as the media access scheme. 

• Association 

This service enables the establishment of wireless links between wireless 

clients and APs in Infrastructure Networks. 

• Re-association 

This takes place in addition to association when a wireless client moves 

from one Basic Service Set (BSS) to another. Two adjoining Basic Service 

Sets form an Extended Service Set (ESS) if they are defined by a common 

ESSID. 

If a common ESSID is defined, a wireless client can roam from one area to 

another. Although re-association is specified in 802.11, the mechanism that 

allows AP-to-AP coordination to handle roaming is not specified. 

• Authentication 

Authentication is the process of proving a client identity, and in IEEE 

802.11, this process takes place prior to a wireless client associating with an 

AP. By default, IEEE 802.11 devices operate in an Open System, where 

essentially any wireless client can associate with an AP without the 

checking of credentials. True authentication is possible with the use of the 

802.11 option known as Wired Equivalent Privacy or WEP, where a Shared 

Key is configured into the AP and its wireless clients. Only those devices 

with a valid Shared Key will be allowed to be associated to the AP. 

• Privacy 

By default, data is transferred "in the clear"; any 802.11-compliant device 
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can potentially eavesdrop PHY 802.11 traffic that is within range. The WEP 

option encrypts data before it is sent wirelessly, using a 40-bit encryption 

algorithm known as RC4. The same Shared Key used in authentication is 

used to encrypt or decrypt the data; thus only wireless clients with the exact 

Shared Key can correctly decipher the data. 

• Power management 

IEEE 802.11 defines two power modes, an Active Mode, where a wireless 

client is powered to transmit and receive, and Power Save mode, where a 

client is not able to transmit or receive, but consumes less power. Actual 

power consumption is not defined and is dependent upon the 

implementation. 

Standardization and interoperability among devices utilizing the same PHY 

is the intent of the IEEE 802.11 specification. (At the physical level, the three 

modulation schemes are incompatible with each other, so an infrared wireless client 

will not synchronize to a DSSS Access Point, for example). However, even among 

devices with the same PHY, a few key ingredients necessary to achieve multi­

vendor interoperability are absent in the ratified standard. 

1. AP-to-AP coordination for roaming 

The standard does not specify the han doff mechanism to allow clients to 

roam from one AP to another. 

2. Data frame mapping 

The standard does not state how an Access Point addresses data framing 

between the wired and the wireless media. 

3. Conformance test suite 

There is no conformance test suite specified to verify that a device is 

compliant with the IEEE 802.11 specification. 
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2. RELATED WORK 

The design of efficient TCP for error-prone wireless links has received a lot 

of attention by many researchers - but most of the solutions that have been 

proposed deal with the alleviation of the poor end-to-end performance shown by 

unmodified TCP implementation. The aim in this thesis is to fine-tune the 

implementation of TCP (modified or unmodified) so as to get power efficiency at 

the nodes. This can be achieved by reducing the TCP protocol processing (software 

overhead) required at the nodes with no loss in the overall end-to-end performance. 

Along with the proposed fine-tunings in this thesis, the other methods suggested by 

various authors should be employed to conserve energy in transporting data. In fact 

the proposed fine tunings in this thesis work best only when the other features of 

previous research are also incorporated into TCP. 

The research work in this field deals with modifying TCP to make it a 

reliable protocol which can differentiate between motion-related and congestion­

related packet losses, and suggest how to adapt these protocols to perform better in 

mobile cellular environments. A clear distinction has to be made between wireless 

cellular networks and wireless ad hoc networks. Wireless cellular networks have 

the problem of handoffs. Handoffs can cause excessive delay if they occur during a 

TCP connection. This affects the throughput adversely. The handoff problem is 

non-existent in mobile ad-hoc networks. So the problem of having excessive delays 

due to handoffs during a TCP connection is not present in an ad-hoc environment. 

However, in ad hoc networks there is a problem of link failures due to mobility. 

This problem is addressed in [24, 28, 34] and the suggested methods of ELFN, 

TCP-F, etc. can be used to overcome it. 

The types of solutions suggested up to now for improving the TCP 

throughput for mobile cellular networks basically fall into three categories: 

a) end-to-end protocols, where loss recovery is performed by the sender 



8 

b) link-layer protocols, that provide local reliability by retransmissions 

c) split-connection protocols, that break the end-to-end connection into two 

parts at the base station. 

Some of the solutions that have been developed by various researchers for 

wireless cellular networks are discussed below briefly. 

[1] explores the performance of reliable data communications in mobile 

computing environments. Motion across wireless cell boundaries causes increased 

delays and packet losses while the network learns how to route data to a host's new 

location. TCP interprets these delays and losses as signs of network congestion. It 

consequently throttles its transmission, further degrading performance. In this paper 

the authors propose an end-to-end fast retransmission scheme that can reduce these 

pauses. The fast retransmission is done at the TCP layer. The need to differentiate 

between motion-related and congestion-related packet losses is made clear in this 

paper. 

[2] proposes Indirect TCP for mobile hosts which can tackle mobility and 

wireless related performance problems without compromising backward 

compatibility with TCP used over the wired network. Indirect TCP utilizes the 

support of Mobility Support Routers to provide transport layer communication 

between mobile hosts and those on the fixed network. In this solution the 

connection is broken into two logical connections - one over the wired part and the 

other over the wireless part. Loss over the wired part is treated as congestion 

related loss whereas loss over the wireless part is treated as motion related loss. 

However TCP semantics are not maintained. 

[3] discusses the problems that frequently plague mobile networks such as­

high bit error rate (BER), frequent disconnections of the mobile user, and low 

wireless bandwidth that may change dynamically. The authors propose a protocol 

that addresses this problem in TCP and increases its throughput performance while 

maintaining end-to-end TCP semantics. 
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[26] proposes a solution which does not break the semantics of TCP. This 

solution works by making several modifications to the network layer code in the 

base station. A snooping agent is added that observes and caches TCP segments 

going out to the mobile host, and ACKs coming back from it. This snooping agent 

does local retransmissions to the mobile host and also suppresses duplicate ACKs 

being sent to the TCP sender. However, if the wireless link is very lossy, the TCP 

sender may time out waiting for an ACK, and invoke the congestion control 

algorithm. Thus it is advisable to have a conservative value for the RTO. 

In [25] the authors conclude that a Link Layer scheme that is TCP aware 

gives the best performance results. In this thesis we see that IEEE 802.11 MAC 

layer is a reliable link layer scheme which provides good performance results. 

These results can be further improved with some modifications in the TCP layer. 

However, 802.11 is not TCP aware and hence some modifications can be done to 

make it TCP aware. The snoop protocol [25, 26] is the best suited for this job. The 

goal in this thesis is to assume reliable performance from the Link Layer and then 

modify the TCP layer to make it perform better over such a Link Layer. In theory 

TCP should be independent of the technology of the underlying layer - but in 

practice it does matter what layer TCP is operating over. The performance of TCP 

greatly depends on the underlying layer and ignoring this can lead to a TCP 

implementation that is logically correct but has horrendous performance. Thus the 

modifications suggested in this thesis work best with a Link Layer protocol which 

is similar to the snoop protocol or is at least a reliable, TCP aware protocol. Due to 

certain timer interactions between the Link Layer and the TCP layer, the TCP 

sender is not fully shielded from the wireless losses. The fast retransmissions by the 

TCP sender (due to duplicate ACKs from the receiver), in spite of the Link Layer 

retransmissions also add to this problem. This causes the performance of TCP to 

diminish - hence it is advisable to have a Link Layer that is reliable, free from 

timer interactions with the TCP layer and also TCP aware (it should suppress 

duplicate ACKs). This will ensure that competing and redundant retransmissions 

are avoided. As described in [29], a reliable Link Layer with a "mild" backoff 
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strategy would be helpful to ·prevent capture of the channel by certain nodes which 

occurs during bulk data transfers. Some suggestions for queue scheduling, per 

queue transmission scheduling and congestion control within the MAC layer are 

also made in [29]. For all the above categories of solutions we can incorporate the 

fine-tunings suggested in this thesis to increase the power efficiency at the nodes. 

As an extension to the work in this thesis the IEEE 802.11 MAC layer can be 

modified to make it TCP aware, suppress duplicate ACKs, have a mild backoff 

strategy, and have per queue transmission scheduling and congestion control. This 

will improve the performance of TCP greatly, and at the same time reduce the 

software overhead at the nodes, thus increasing their longevity. 

Another characteristic of wireless links is that the latency and bandwidth is 

variable [27, 30] and this causes certain problems in the exact calculation of the 

round trip time. Using TCP Timestamps option is not very helpful since the RTT 

can vary on a per packet basis hence it is always better to use the previous more 

conservative approach, i.e. srtt + 4*mdev. Other solutions to this problem are 

proposed in [27]. The significance of the RTT at the TCP layer is anyway reduced 

if we have a reliable Link Layer as described above. In [27] it is mentioned that due 

to asymmetry in the characteristics of the channel it is sometimes better to decrease 

the frequency of ACKs from the receiver to the sender. This idea can be exploited 

and we can have a decreased frequency of ACKs during the entire connection, so as 

to save protocol processing at the nodes and thus save energy. The side effects of 

this Stretch ACK Violation [32] phenomenon are that the sender becomes burstier, 

there is a slowdown in the window growth, a decrease in the effectiveness of the 

fast retransmit algorithm, and it may cause needless retransmission timeouts in 

lossy environments, as it increases the possibility that an entire window of ACKs is 

lost. However, the sender becoming burstier is not a big problem if we have a Link 

Layer protocol as described above and in [29]. A slow down in the window growth 

is not a problem for slow wireless links and is only a problem for high-speed links 

[32] - a simple solution for this is proposed in [27]. The other problems of the fast 

retransmit algorithm losing its effectiveness and increase in the number of 
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retransmissions are also not pronounced when we have a reliable Link Layer as 

described above. It should be noted that even TCP ACKs are transmitted reliably 

by the Link Layer. 

Another line of argument that some researchers have proposed to reduce the 

protocol over head of TCP is to do away with TCP altogether. A much simpler and 

liberal type of protocol is instead employed which is called Transaction TCP. 

TffCP has the best parts of both TCP and UDP combined. It provides sufficient 

reliability with minimum protocol overhead for data transactions. With the 

availability of TffCP the choice of an application designer is not restricted to TCP 

orUDP only. 

The main ideas behind the motivation of TffCP are: 

1. The overhead of connection establishment and connection termination should 

be avoided. When possible, send one request packet and receive one reply 

packet. 

2. The latency should be reduced to RTT plus SPT, where RTT is the round trip 

time and SPT is the server processing time to handle the request. 

3. The server should detect duplicate requests and not replay the transaction when 

a duplicate request arrives. (A voiding the replay means the server does not 

process the request again. The server sends back the saved reply corresponding 

to that request.) 

Today the choice an application designer has is either TCP or UDP. TCP 

provides too many features for transactions, and UDP doesn't provide enough. As a 

result, usually the application is built using UDP (to avoid the overhead of TCP 

connections) but many of the desirable features (dynamic timeout and 

retransmission, congestion avoidance, etc) are placed into the application, where 

they are reinvented over and over again. A better solution is to provide a transport 

layer that provides efficient handling of transactions. The definition of TffCP is 

described in detail in [4] and [5]. 
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However, it must be kept in mind that many applications still require TCP, 

which is widely used, and hence the motivation to reduce the processing overhead 

of TCP so as to conserve power at the nodes. The TCP protocol processing at the 

nodes is highly power consuming~ this area needs to be researched so as to come up 

with very efficient TCP implementations for the existing and future mobile 

hardware. A part of the power consumed in data transport is the power consumed 

by the transmitter or receiver, but a lot of power is also consumed in processing the 

code of the TCP stack at the nodes. This can be fine-tuned for better power 

performance with no significant loss in the overall performance efficiency of end­

to-end TCP. While trying to fine-tune TCP it must be kept in mind that it has 

proved quite hard to find parts of TCP that could be eliminated without 

compromising the protocol's capabilities. 
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3. TECHNIQUES FOR GOING FAST 

A lot of research has been done in the area of improving TCP protocol 

implementations, and a number of techniques have been developed as a result. 

Some researchers have seriously investigated the various performance limitations 

of TCP and come up with better implementations of the protocol code. Some of the 

techniques that have been already implemented are reviewed below. 

3.1 Operating Systems Overhead 

Operating systems have to undergo a huge amount of overhead for a single 

context switch, since the whole state of the previous context has to be saved before 

the context can be switched. It would be in the best interests of energy and 

throughput efficiency to reduce the number of context switches. One way of doing 

this is to minimize the number of interrupts thrown at the operating system - since 

an interrupt always requires a context switch from the current context to the context 

of the interrupt service routine. This can be done by suppressing transmission 

interrupts and by receiving multiple packets from the receive-FIFO in response to a 

single interrupt. A certain number of packets can be coalesced at the receiver 

(interface card on the receiving node) before interrupting the operating system. This 

would, however, result in some throughput loss; but when implemented properly, 

this throughput loss can be negligible. 

Memory management - given the disparity in memory and processor speeds 

(this huge gap is projected to widen even further in the future), copying data from 

one piece of memory to another is one of the slowest operations a processor can be 

asked to do. Clearly, minimizing the number of copies as data is passed up/down 

the stack is a power saving feature. In fact it is suggested that transmitting and 

receiving data should consist of no more than a single copy. Designing the stack in 
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such a way so as to have a single copy only as the data moves through the stack is 

the main aim - this will greatly help in reducing the processing overhead, and thus 

help in power saving. 

3.2 Better Table Lookup Techniques 

The TCP protocol architecture is such that there are several cases where a 

piece of information has to be looked up in a table. For instance TCP must find the 

connection block for each segment received. In the general case, each of these 

lookups has a worst case cost of O(logk n), where n is the number of protocol 

blocks in the table, and k is some base indicating the fraction of the blocks that can 

be eliminated on average by each comparison. Lookups represent a very large 

fraction of the cost of protocol processing, and finding ways to minimize lookup 

costs is important to increase performance. 

Two obvious ways to try to reduce lookup costs are: 

a) use caches of frequently used information to minimize the number of 

expensive lookups 

b) find lookup algorithms with very good average running times. 

An effective and efficient cache is one in which the hit rate is maximized 

while the costs of searching and maintaining the cache is minimized. It is very 

fortunate that computer data networks exhibit precisely the kind of traffic patterns 

that are likely to make caches effective, and studies strongly suggest that caches of 

just one control block may actually achieve very high hit rates. It has been shown 

in [6, 7] that one-back (having only one entry) caches have reported significant 

cache hit rates and performance improvements. It has been shown in [8] that a 

cache consisting of 20 route entries is likely to yield a 90% hit rate. To get hit rates 

beyond this the cache size has to be greatly increased and is not advisable. A 90% 
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hit rate means that out of ten table lookups only one of them would effectively be 

very expensive, since only one would result in a cache miss. 

It is described in [9] that the most effective table lookup scheme is hashing 

using open chaining, where the head of each hashed link list keeps a cache of the 

last accessed block. Hence if the hashing function is good we will get a very good 

algorithm for table-lookup supplemented with the benefits of caching. 

3.3 Reducing Checksum Costs 

The first and foremost step to optimize a checksum algorithm is to try to do 

the sum using the hosts machine's native word size (to optimize memory accesses) 

and native byte order (to minimize byte swapping costs). The TCP checksum is a 

sixteen-bit one's complement sum over the whole segment (data and header- with 

odd lengths padded by a zero byte). This sum can be done independent of byte 

order as shown below. 

Consider the sequence of hex bytes: 

Ox50, Ox51, Ox52, Ox53, Ox54, Ox55 

which are added as sixteen-bit words into a sixteen-bit sum: 

Ox5051 + Ox5253 + Ox5455 = Ox575A 

where+ is one's complement addition. 

Now compare this result with the sum when the bytes are reversed: 

Ox5150 + Ox5352 + Ox5554 = Ox5A57 

The sums are the same except that their bytes are reversed. To see why this is 

always true, note that the carries are the same in both the cases: from bit 15 to bit 0, 

and from bit 7 to bit 8 (recall that one's complement addition requires that carries 

be added back into the lowest significant bit). This means that the checksum 

calculation can be done in any byte order. It is best to do the checksum calculation 
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as the bytes are stored in memory, i.e. Big Endian or Little Endian- this saves us 

the cost of unnecessary byte swapping that would be otherwise required. 

The TCP checksum can be done using any word size of sixteen bits or 

greater, depending on the host machine's native word size. For example, consider 

summing 32-bit quantities. One can simply add the 32-bit numbers using one's 

complement addition and, when the 32-bit sum has been computed, fold and add 

the high 16-bits of the 32-bit sum to the low 16-bits and get the 16-bit sum. This 

saves time wasted in doing 16 bit sums whereas most processors nowadays are 

capable of doing 32-bit arithmetic operations. If we have 64-bit processors the 

same approach can be applied, except that in this case, first the 64-bit sum has to be 

folded to 32-bit and then the 32-bit sum has to be folded to give the 16-bit sum. 

Another optimization for checksum calculation is also possible. RISC 

(nowadays even CISC) processors have a super pipelined architecture. This 

pipeline is stalled after a memory read or memory write operation due to the nature 

of the pipeline. After a memory read or write operation there is a loss of one or two 

(one for memory write and two for memory read) clock cycles during which no 

new memory accessing instructions can be processed. 

As a result, in a copy loop of instructions of the following form: 

load frO], r2 ; load the contents of the memory location pointed to by rO to r2 

store r2, [ r 1] ; store the contents of r2 into memory location pointed to by r 1 

there is a space in between the two memory-accessing instructions for two non 

memory accessing instructions. We can put the checksum instructions (non 

memory-accessing) into the slots after these instructions to avoid the pipeline stalls: 

load [rO], r2 ; load the contents of the memory location pointed to by rO to r2 

add r5, r2, r5 ; add to running checksum in r5 

addc r5, #0, r5 ; add carry into r5 

store r2, [ r 1] ; store the contents of r2 into memory location pointed to by r 1 
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Because these two slots would otherwise be unused (unless we have a very smart 

compiler, which can put other non memory-accessing instructions there and still 

maintain the logical program flow), this effectively means that performing the 

checksum comes for free. It makes sense to replace data copy from user space to 

interface buffers with a combined checksum and copy. As the data is copied the 

checksum of the data is also calculated at no extra computational cost. 

Other suggestions for improving checksum costs are to leave them out 

completely (at least for LAN traffic), but this suggestion has its obvious drawbacks, 

which TCP cannot afford to have due to its very characteristics. A second 

suggestion is to move checksums to the end of the packet, a practice known as 

trailing checksums or trailers. The advantage of doing this is that, if the checksum 

is at the end, the sending machine can start sending the packet before the checksum 

computation is finished. If the checksum is at the start of the packet, the sender 

cannot release the packet until the checksum has been computed and put in the 

header. However, trailers have one main disadvantage - they require that the 

delivery of data to the sending interface be predictable. If the operating system is 

somehow interrupted as it is passing data to the interface, and the interface is 

already putting data onto the network, fragmented packets may result. We know for 

a fact that fragmented packets will cause more software overhead. 

3.4 Header Prediction 

TCP behavior is highly predictable, and one can take advantage of this 

predictability by optimizing the frequent path through the TCP code in both the 

sending and receiving implementations. 
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Figure 3.1: TCP Header Fields that Change in an Established Connection 

Figure 3.1 shows the TCP header with the fields that do not change shaded. 

The source and destination ports are set at connection setup, and because TCP 

connections either always use or never use options, the data offset (Off) remains 

constant, as do most of the control bits . 
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Figure 3.2: TCP Header Fields that Change Unpredictably 
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Figure 3.2 shows the TCP header with fields that change unpredictably not 

shaded. In situations in which no segments get lost or re-ordered (which is most of 

the time), the sequence number changes by the amount of data in the last segment 

received. 

New Sequence Number = Last Segment Sequence Number + Amount of data 

(bytes) in the Last Segment that was received. 

The window size typically does not change, given that the receiving TCP passes the 

data to the application and is immediately ready to receive new data. The urgent 

pointer is only used if the urgent bit (U) is on, and it usually is not, and the PUSH 

bit (P) can be ignored if the receiver passes data up to the application promptly. 

These observations led Jacobson in [10] to develop an algorithm for TCP 

receivers called header prediction. Header prediction looks for segments that fit the 

profile of the segment the receiver expects to receive next; namely segments that 

a) are for connections that have been established, 

b) have only the acknowledgement bit (A) and optionally the push bit (P) set, 

c) are the expected next segment in the sequence (i.e. the data in this segment 

starts where the last segment left oft), 

d) have not changed the window size, 

e) are for connections that are not re-transmitting data (no error or segment loss 

for this segment) 

t) are either ACKs for data or new data arriving, but not both (unidirectional 

flow). 

Once the control block has been located (can be done efficiently if caches 

are used and a good hashing algorithm is used), these above tests require just five 

simple comparisons. A data packet that meets all the conditions (and most will if 

there are no errors or loss) then requires very few instructions and can be passed up 
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to the application. Thus the incremental cost of receiving a TCP segment, after 

connection lookup and performing the checksum, is very small. Header prediction 

is an algorithm for the receiving TCP but similar prediction schemes work for 

optimizing sending also. 

On the sending side, an application typically writes its data to some sort of a 

connection handle, a file descriptor or socket. This connection handle can be 

designed to map directly to a control block (thus eliminating the control block 

lookup). Just as the incoming segment can be predicted, so the TCP header of the 

outgoing segment can be predicted. The sending TCP can keep a template TCP 

header, whose sequence number is incremented as segments are sent and whose 

acknowledgement number is updated as segments are received. As a result, sending 

becomes a matter largely of copying the template header onto the front of the TCP 

data, filling in the checksum (computed as the segment's data was copied), and 

sending the segment. However, there are certain difficulties in having header 

prediction for sending. 
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4. CURRENT IMPLEMENTATION 

All the modifications discussed above have already been implemented in 

the current implementation of TCP code in Linux. Along with the above 

modifications currently TCP has certain options and extensions implemented which 

are only useful for long fat networks i.e. very high-speed gigabit networks. These 

options cause extra protocol processing both at the receiver and sender. This extra 

protocol processing is justified for long fat networks (in which the bandwidth-delay 

product is very high) but not for slower wireless networks. In the case of wireless 

ad-hoc networks which now have a maximum data speed of 11 Mb/s (and so a low 

delay-bandwidth product) this extra protocol processing is not justified. 

We must keep in mind that for the bandwidth-delay product to be low, the 

bandwidth of the medium must be low, and the propagation delay for the medium 

must be low under normal (non- congestion) conditions. For LFN's we see that the 

bandwidth is high (gigabit) and the delay of the medium is dependent on the 

distance between the source and the destination (generally this is also very large 

since gigabit networks are mostly used for WANs). Whereas in ad-hoc networks 

the bandwidth is low (only llMbit/s), the propagation delay of the medium is low 

since the distance between the source and destination is generally not very large. 

We can comfortably say that the bandwidth-delay product of mobile ad-hoc 

networks is much lower than that of LFNs. Also it must be kept in mind that in 

mobile ad-hoc networks typically there are no handoffs like in cellular wireless 

networks that can cause long intermittent delays. Th delays caused due to link 

failures can be dealt with by the use ofELFN, TCP-F [24, 28, 34] etc. 

With this knowledge we can say that the features and extensions which are 

helpful for LFNs might not be as helpful for mobile ad-hoc networks due to the 

significant characteristic difference in the delay-bandwidth product. With the 

constraint of power, the extra protocol processing resulting in no extra benefit in 
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efficiency or throughput, is a problem for wireless ad-hoc nodes. These various 

options, which are suitable only for gigabit networks and need to be modified for 

slow wireless networks, are discussed below. 

4.1 Timestamp Option 

TCP implements reliable data delivery by re-transmitting segments that are 

not acknowledged within some retransmission timeout (RTO) interval. Accurate 

dynamic determination of an appropriate RTO is essential to TCP performance. 

RTO is determined by estimating the mean and variance of the measured round-trip 

time (RTT), i.e., the time interval between sending a segment and receiving an 

acknowledgment for it [ 11]. Many TCP implementations base their RTT 

measurements upon a sample of only one packet per window. While this yields an 

adequate approximation to the RTT for small windows (used in mobile ad-hoc 

systems), it results in an unacceptably poor RTT estimate for LFN which have very 

large sized windows. 

The timestamp option is one in which the sender uses 12 bytes of the TCP 

options field to place a timestamp in every segment sent (including 

retransmissions) to the receiver. The receiver echoes this timestamp value in the 

ACK packet sent to the sender. By using this timestamp option in every packet the 

sender is able to get a better value of the round trip time (RTT). The sender gets an 

estimate of the RTT from every ACK received from the receiver by subtracting the 

echoed timestamp value that it received from the receiver, from the current 

timestamp. 

This option is actually very useful for high-speed connections but has less 

use for slower wireless connections. In wireless networks one sample of the RTT 

per window is good enough for an accurate estimate of the RTT. Getting more 

samples of the timestamp can in fact cause much more oscillations in the estimated 

value of the RTO. Also, the sender as well as the receiver have to do more 
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processing in order to attach the timestamp in every packet and to calculate the 

RTT after it receives the ACK for the particular segment. Hence this option only 

causes more protocol processing at the nodes with no significant gain in the 

accuracy of the RTO values calculated. With a reliable Link Layer the significance 

of a very accurate RTO is also diminished. Also, due to the variations in the 

propagation delay it is better to have a conservative estimate of the RTO. 

Removing this option for mobile wireless systems would give us a slight gain, due 

to the smaller header size and lower processing costs. 

PAWS (Protection Against Wrapped Sequence Numbers) uses the same 

TCP Timestamps option as the RTT mechanism described above, and assumes that 

every received TCP segment (including data and ACK segments) contains a 

timestamp whose values are monotone non-decreasing in time. The basic idea is 

that a segment can be discarded as an old duplicate if it is received with a 

timestamp, which has a value that is less than the last previous timestamp received 

on this connection. This is again a very useful option for very high-speed networks. 

This feature is not required for slower wireless networks, since the wrap around of 

sequence numbers will not occur within the MSL (Maximum Segment Lifetime) 

due to the lower transmission speeds of wireless links. It is clear that the sequence 

number wrap around problem only occurs at gigabit speeds, and will never occur at 

slow wireless speeds. It should be mentioned here that having the PAWS checking 

is not much of a load on the nodes but still it would be better not to have them since 

the case would never occur anyway. However, PAWS checking is the first step in 

the frequent fast path of the TCP code, and it is best to get rid of it, as it has no 

purpose for wireless networks. By removing this check we can make the frequent 

fast path even more efficient. 
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4.2 Window Scale Option 

The TCP header uses a 16-bit field to report the receive-window size to the 

sender. Therefore, the largest window that can be used is 216 = 65K bytes. The 

window scale extension expands the definition of the TCP window to 32 bits and 

then uses a scale factor to carry this 32 - bit value in the 16-bit Window field of the 

TCP header. The scale factor is carried in a new TCP option, called Window Scale. 

This option is sent only in a SYN segment (a segment with the SYN bit on), hence 

the window scale is fixed in each direction when a connection is opened. Again it 

should be noted that very large windows are not necessary for slower wireless 

connections, hence this option is not required by wireless TCP. However, it does 

have a purpose in very high-speed connections as the window size will be a 

limitation in those connections, so larger window sizes might have to be negotiated 

in the SYN segment if allowed by both the receiver and the sender. Avoiding the 

window scale option would save us some protocol processing at the receiver and 

the sender (though this saving in protocol processing would be very little since a 

simple shifting operation is not very expensive). 

4.3 SACK Option 

Any packet losses in an LPN can have a catastrophic effect on throughput. 

This happens because the time taken for the sender to get feedback about the loss is 

very high due to the high bandwidth-delay product. This effect is exaggerated by 

the simple cumulative acknowledgment of TCP. Whenever a segment is lost, the 

transmitting TCP will eventually time out and retransmit the missing segment. 

However, the sending TCP has no information about segments (after the lost 

segment) that may have reached the receiver and been queued, because they were 

not at the left window edge. So the sender may be forced to retransmit these 

segments (after receiving three duplicate ACKs) unnecessarily unless a new 
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updated ACK is received, which would send one after receiving the lost packet. In 

the case of slower wireless connections this is not the case, since many segments 

after the lost segment would not have been transmitted to the receiver (because the 

propagation delay is not very high). Hence the number of needless retransmissions 

would be very small. 

If the sender is bursty then the number of segments retransmitted obviously 

increases. TCP may experience poor performance when multiple packets are lost 

from one window of data. With the limited information available from cumulative 

acknowledgments, a TCP sender can only learn about a single lost packet per round 

trip time. An aggressive sender could choose to retransmit packets early (fast 

retransmit and fast recovery), but such retransmitted segments may have already 

been successfully received. A Selective Acknowledgment (SACK) mechanism, 

combined with a selective repeat retransmission policy, can help to overcome these 

limitations. The receiving TCP sends back SACK packets to the sender informing 

the sender of data that has been received. The sender can then retransmit only the 

missing data segments. This is not useful for wireless links in which the round trip 

time is not very high as compared to WANs which use high speed links. 

If SACK is implemented there is a benefit of not re-transmitting needlessly 

at all, but the extra protocol processing involved in implementing SACK might 

overcome this small benefit gained. There is a certain trade off between the amount 

of power required by the sender to retransmit the packets and the power required to 

do the SACK protocol processing. SACK protocol processing power is significant; 

in fact we see in the results of our experiments that there is less power consumed 

when we tum off the SACK option. In the non-LFN regime, selective 

acknowledgements reduce the number of packets retransmitted (not a whole lot), 

but do not otherwise improve performance, making their complexity (and extra 

power consumed due to this complexity) of questionable value. SACKs are much 

more important in the LFN regime and are not very helpful in the power 

constrained slower wireless networks. SACKs are only useful if there are multiple 

packet losses in a single window. 
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It must be kept in mind that SACKs are only useful if the physical medium 

is highly error-prone and there is a general tendency of getting more than a single 

packet loss in a particular window. But since the wireless MAC protocol standard 

used is 802.11, which is more reliable as compared to Ethernet, the wireless link 

appears to be quite error-free to the TCP layer. Therefore we are able to justify not 

having the SACK option implemented to save on energy at the nodes. 

4.4 Header Prediction 

"Header prediction" [10] is a high-performance transport protocol 

implementation technique that is most important for high-speed links. This 

technique optimizes the code for the most common case, receiving a segment 

correctly and in order. Using header prediction, the receiver asks the question, "Is 

this segment the next in sequence?" This question can be answered in much fewer 

machine instructions than the question, "Is this segment within the window?" 

Adding header prediction to the timestamp procedure leads to the following 

sequence for processing an arriving TCP segment- this is also the implementation 

in Linux: 

HI) Check timestamp: this means check to see if the packet is not a delayed packet 

by checking the timestamp value with the most recent· timestamp value received 

earlier. 

H2) Do header prediction: if the segment is next in sequence (checked by using the 

frequent path code which basically has about five comparisons) and if there are no 

special conditions requiring additional processing, accept the segment, record its 

timestamp, and skip H3. 

H3) Process the segment normally: (this is the slow path, which would only be 

taken if there are errors etc). This includes dropping segments that are outside the 



27 

window and possibly sending acknowledgments, and queuing in-window, out-of­

sequence segments. 

In the above algorithm the modification that we can make would be to 

interchange steps H 1 and H2, i.e., to perform the header prediction step H2 first, 

and perform H1 and H3 only when header prediction fails. This can be done 

because H2 basically also checks for H 1 except for the case when the packet 

received is exactly the same packet (i.e. next in sequence with the same headers) 

but from the previous window. This could be a performance improvement, since 

the timestamp check in step H1 is very unlikely to fail, and it requires interval 

arithmetic on a finite field, which is a relatively expensive operation [10]. To 

perform this timestamp check on every single segment is contrary to the philosophy 

of header prediction and speeding up the frequent path. 

However, putting H2 first would create a hazard: a segment from 232 bytes 

in the past might arrive at exactly the wrong time and be accepted mistakenly by 

the header-prediction step. The following reasoning has been introduced in [12] to 

show that the probability of this failure is negligible. If all segments are equally 

likely to show up as old duplicates, then the probability of an old duplicate exactly 

matching the left window edge is the maximum segment size (MSS) divided by the 

size of the sequence space. This ratio must be less than 2-16
, since MSS must be less 

than 216 (MTU is only 2296 bytes at the most for IEEE802.1lb); for example, it 

will be 

(211)/(232
) = 2-21 for the 802.11 protocol. 

However, the older a segment is, the less likely it is to be retained in the network 

(due to TTL - time to live, and it being rejected by some intermediate router). 

Under any reasonable model of segment lifetime the probability of an old duplicate 

arriving exactly at the left window edge must be much smaller than 2-16
• The 16-bit 

TCP checksum also allows a basic unreliability of one part in 216
• A protocol 
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mechanism whose reliability exceeds the reliability of the TCP checksum should be 

considered "good enough", i.e., it won't contribute significantly to the overall error 

rate. From the above reasoning it can be concluded that we can ignore the problem 

of an old duplicate being accepted by doing header prediction (step H2) before 

checking for the timestamp (step Hl). 

But it has been argued that any reasoning based on a probability theory is 

not a good enough reason for removing the PAWS check. As the mobile hardware 

improves we can change the relatively expensive PAWS operation into not too 

expensive an operation and thus be able to have this check as it is. If we do not 

have the Timestamp option then we do not save anything further by modifying the 

header prediction algorithm - since the PAWS checking is anyway disabled. At the 

TCP sender the modification of the header prediction algorithm has very little 

effect. 

4.5 Cumulative and Delayed ACK Implementation 

Currently the Linux implementation of TCP is such that for every two full 

packets received the receiver sends a cumulative ACK (acknowledges both the 

packets) to the sender. This scheme is useful for very high- speed networks so as to 

get instant feedback (instant feedback is necessary because the delay-bandwidth 

product is very high) on the network status and also to get more samples of the 

RTT (due to the timestamp option). However this scheme does not make good use 

of the window size advertised by the receiver to the sender. Also it does not make 

good use of the delayed and cumulative acknowledgements allowed by TCP. The 

receiver sends an ACK for every two full segments received from the sender and 

this greatly increases the protocol processing at the receiver. The protocol 

processing at the sender also increases due to this, as it has to update its status 

based on these frequent (one in every two full segments) ACKs received from the 

receiver. If we change the implementation of TCP to instead send delayed ACKs 
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(say every 500ms) instead of sending ACKs for every two full segments received, 

then we would receive less number of ACKs for a file transfer (if the file is longer 

than 2 full packets). This would obviously result in some improvement in the 

power efficiency of the code. This implementation will cause us to get less samples 

of the RTT but that will not cause a problem as we expect our RTT estimation to be 

quite accurate. One may argue here that the response time for small sized file 

transfers would become longer but this is not the case as explained below. The 

response time for small sized file transfers will not be affected because the ACK 

will anyway be received in 500ms. 

Let us see why this is the case with an example: 

Suppose the server sends a small sized packet (say 500 bytes) and does not want to 

send any more data. The server will set the FIN flag in the packet header of the 

TCP data packet. This will cause the receiver to respond immediately (instead of 

waiting for 500ms) with an ACK. 

We see that changing the implementation of the cumulative delayed ACK 

does not cause an effect in the response time of small data transfers, whereas, it 

does give us an improvement in the power efficiency of the protocol processing at 

the nodes. The power savings would be at the receiver and sender- the receiver 

would save by having to send fewer ACKs, and the sender would save by having to 

respond to fewer ACKs. The contention and collisions at the MAC layer would be 

less thus contributing to the power savings. TCP receivers, which implement this 

type of Delayed Acknowledgement (called Stretch ACK Violation as explained in 

[32]) behavior will cause TCP senders to generate burstier traffic, which can 

improve performance in non-congested environments. Generating fewer ACKs 

increases the amount of time needed by the slow start algorithm to open the 

congestion window to an appropriate point, which diminishes performance in 

environments with large bandwidth-delay products (not in wireless ad hoc 

networks). Finally, generating fewer ACKs may cause needless retransmission 

timeouts in lossy environments, as it increases the possibility that an entire window 

of ACKs is lost, forcing a retransmission timeout. The 802.11 MAC protocol takes 
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care of this and does not allow the number of retransmissions to increase 

excessively. 

Another point to bear in mind is that nowadays, wireless cards with support 

for IEEE802.11 MAC protocol are widely available. This MAC protocol is more 

reliable as compared to Ethernet and has link layer acknowledgements and 

retransmissions. Hence the assumption of having an error prone wireless link is not 

entirely true from the point of view of the TCP layer. The TCP layer in fact can 

view the link to be quite error-free and so should be tuned accordingly to get better 

power and throughput performance. 

4.6 MTU Size 

As we know Ethernet supports a maximum MTU (message transfer unit) 

size of 1500 bytes. For wireless transmissions the MAC protocol used is the 

IEEE802.11 b standard. The IEEE802.11 b standard defines the maximum MTU 

size to be 2296 bytes and allows all protocols running above it to use this size as its 

MTU. Hence the IP layer above 802.11 MAC protocol will not fragment datagrams 

that it receives from the transport layer which are within 2296 bytes. So, the TCP 

layer can negotiate a MSS (maximum segment size) of 2296 bytes and send 

datagrams with a maximum size of 2296 bytes without the fear of having the IP 

layer fragment them and thus increase processing costs. It is obvious that for data 

transmissions, which are longer than one segment, it is better to send longer 

segments - this saves us protocol processing and also saves us the header overhead. 

This decreases the protocol processing at the nodes although it will increase the 

cost of retransmissions. The protocol processing required at the nodes for a single 

segment is the same no matter what the segment size. Hence for large file 

transmissions using longer segment size reduces the power consumed for the 

transmission. However, the number of retransmissions increases, since the 
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probability of a single segment being in error now increases. The probability of a 

single bit being erroneous in a 2296-byte segment is obviously higher than the 

probability of a single bit being erroneous in a 1500-byte segment. If we have a 

single bit error in a segment, that particular segment has to be retransmitted. Going 

by this logic we can say that the number of retransmissions per segment is going to 

increase. Also if we have smaller sized segments, then the power consumed in 

retransmissions would be less since the size of the retransmitted segments would be 

small. This causes us to limit the maximum size of the MTU accordingly so as to 

have good power efficiency along with good throughput, good channel utilization 

and at the same time not have very high retransmission costs. We see that in 

wireless ad-hoc networks using IEEE802.11 b as a MAC protocol the number of 

errors at the TCP layer is low and so it makes more sense to use larger packets. 

TCP is designed to find out the path MTU for a certain connection and generally it 

is seen that the path MTU is fixed to 536 bytes for non-local transmissions. But in 

an ad-hoc network since all the systems would be using IEEE802.11 b protocol we 

can always use 2296 bytes as MSS even for non-local transmissions. However, it 

should be noted that for connections to the Internet the MSS negotiated would be 

1500 bytes because Ethernet supports a MTU of 1500. 

Finally, we observe that most of the TCP options discussed above are 

important for LFN's and/or very high-speed networks. For low-speed wireless ad­

hoc networks, which have a low delay-bandwidth product, it would be a 

performance optimization to NOT use these above-mentioned options. A TCP user 

concerned about optimal performance over low-speed wireless paths would 

consider turning these extensions and options off for low-speed wireless paths. 
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4. EXPERIMENTS AND VERIFICATION 

We ran experiments to see the actual performance results of the above 

modifications made in the code implementation of TCP in Linux. 

The experimental setup consisted of two Samsung SENS 800 laptops with 

Pentium-90Mhz processors and 24MB RAM. The operating system installed on the 

laptops was RedHat Linux v6.1. The wireless PCMCIA cards used were Lucent 

WaveLAN TURBO 11Mb SILVER with 64-bit encryption capability at the 

hardware level. 

The power characteristics of the WaveLAN cards was the following: 

Doze Mode 

Receive Mode 

Transmit Mode 

Power Supply 

lOrnA 

180mA 

280mA 

5V 

Transmitter Receiver 

Figure 5.1: Experiment Setup 
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These wireless PC cards used the IEEE 802.11 b standard as the MAC 

(CSMA/CA) protocol and the transmit range varied depending on the transmit 

speed. They supported 4 transmit speeds, namely 11Mb/s, 5.5Mb/s, 2Mb/s and 

1Mb/s. The R-F Frequency band was 2.4GHz and the number of usable channels 

was 11 as specified by the FCC. 

For these cards we used the driver developed by Andreas Neuhaus and the 

version of the driver [18] was WaveLAN/IEEE802.11 driver v1.0.3. The driver was 

available for Linux Kernel v2.x.x. This driver allowed us to modify the segment 

MTU size used in transmissions. In ad-hoc mode the driver allowed us to setup the 

speed of transmission and also the channel to be used. For our experiments we 

selected channel 1 (the default) and also set the speed to its maximum i.e. 11Mb/s. 

The hardware 64-bit encryption was turned off as we did not want any encryption. 

The RTS/CTS mechanism of the 802.11 protocol was turned off, as this was not 

required for our setup. 

These two laptops were placed about one inch from each other and the 

distance between the two wireless cards (antenna's) was about 13 inches as shown 

in Figure 5.1. For all the experiments one of the laptops was used as a sender and 

the other as a receiver. The battery for the sender was always fully charged for 2 

hours to full capacity with the laptop in off/charge mode. It should be noted that 

the charge of the battery would be generally restored to its full capacity in about 1.5 

hours but the laptop would be kept in the same mode (off/charge) for another 0.5 

hours. The receiver was constantly connected to a power source since we wanted to 

test the power characteristics of the transmitter. 

For all experiments the setup of the laptops was changed so that no power 

saving feature would be on. All the various devices (disk, display, 110 devices etc) 

of the laptop would be in full power consumption mode as long as the battery 

lasted. Before the start of the experiments the monitor (LCD) display of the sender 

would be turned off and the experiment would be started by disconnecting the 

power connector from the sending node, and the sender would be operating on its 

fully charged battery. This was done because we wanted to use most of the battery 
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power for transmitting packets rather than executing other processes in the laptop. 

To verify that a significant amount of power was consumed for transmission we did 

a simple experiment. We first drained the battery with no processes running on the 

laptop. In this condition the sender (it wasn't sending any data) lasted for 223 

minutes. Then we configured the sender to continuously send data and this time it 

lasted for 110 minutes. Thus we concluded that transmission did use up a 

significant amount of battery power hence any changes in the battery power 

consumption for transmission would be noticeable. 

The actual experiment itself consisted of the sender transmitting a 1MB 

buffer of data continuously to the receiver. This data when received at the receiver 

would be discarded and the receiver would be ready immediately for the next 

packet. Hence the sender was in an endless loop sending data and the receiver 

would discard the data received and wait for the next segment of data (this ensures 

that the window size does not change). 

Tcpdump with appropriate filter setting was run on the receiver to record 

the time the sender was alive (the sender's battery would discharge completely and 

the sender would die), and also the number of bytes the receiver had received from 

the sender. Each set of experiments was run 5 times and the average was recorded. 

The deviation among the various runs of the experiments was insignificant within 

experimental limits (not more than 1 minute for the lifetime of the sender). The 

readings of the lifetime of the sender were rounded off to the nearest minute. 

Some facts that should be kept in mind about the experimental setup are the 

following: 

a) We are using 802.11 as the MAC protocol, which provides link-level 

acknowledgements and retransmissions so we have a relatively error-free 

wireless link. 

b) We are assuming roaming of the nodes but since it is an ad-hoc environment 

there are no disconnections and reconnections from base stations - hence no 

handoffs etc. 
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c) The experimental setup has only one hop, but a multi-hop ad-hoc network 

would behave similarly. 

5.1 Varying the MTU Size 

Four different sizes of MSS were chosen namely 2296, 1500, 1000 and 500 

bytes. Figure 5.la shows the results of the number of bytes transported during the 

lifetime of the sender. Figure 5.lb shows the number of minutes for which the 

sender was alive for the different MSS sizes. As we can see the number of bytes 

transported increases as the MSS size increases. It should also be noted here that 

even though the lifetime of the sender decreases as the MSS increases, still the total 

number of bytes transmitted by the sender during its lifetime is greater. This shows 

that the protocol overhead greatly reduces at the sender as the MSS increases. 

Going by the same logic we can see that the protocol processing per packet at the 

receiver would also decrease. We get power savings at both the receiver and sender 

by increasing the MSS. It would be a good idea to try and find out the maximum 

MTU for which we get a significant improvement in the energy consumed at the 

nodes. 

5.2 SACK Option 

Figures 5.2a and 5.2b show the effect doing away of the SACK option has 

on the number of bytes transmitted and lifetime of the sender. As we can see in the 

graph turning the SACK option off causes us to be able to transport more number 

of bytes. This shows that the protocol processing required by the SACK option in 

fact causes us to expend more power than the savings achieved by having the 

SACK option (less number of retransmissions). Again the savings would be of a 

similar order at the receiver also. In this graph it is seen that the actual savings are 



4.5 

4 

~3.5 

~ 3 
~ 
-~ 2.5 
c:: 
~ 
I- 2 
!3 
>. 
Ill 1.5 

0.5 

140 

120 

"@"100 
"S 
c:: .E 
iii 80 

"C c:: 
(]) 

rn 
0 60 
(]) 

E 
l= 
5 40 

20 

Bytes Transmitted vs MSS 

500 1000 1500 2000 
MSS(bytes) 

Figure 5.1a: Bytes Transmitted vs MSS- Normal 

Life Time of Sender vs MSS 

OL----
0 500 1000 1500 2000 

MSS(bytes) 

Figure 5.lb: LifeTime of Sender vs MSS- Normal 

36 

2500 

2500 



37 

only for a MSS of 2296. For all other MSSs we get better performance by having 

the SACK option on. This can be explained by the fact that the SACK option only 

increases efficiency when there are multiple losses in a single window. As the MSS 

increases we see that a single window size consists of less number of packets and 

hence the probability of having multiple packets lost in a single window decreases. 

This causes SACKs to provide less increase in efficiency as the MSS increases. So 

for a large MSS it is in fact better to have the SACK option off and save power by 

not having to undergo the SACK protocol processing instead. 

Figure 5.2c shows the comparison between having the SACK option off and 

having the SACK option on. However, we should keep in mind that given multiple 

packet loss in a single window (due to congestion etc) it is better to have the SACK 

option on. In the case of congestion and subsequent packet droppings by the nodes 

it is always better to have the SACK option on. But the routing layer can control 

congestion and hence if our sole aim is to save energy at the TCP layer then we can 

tum the SACK option off. It can be argued that turning the SACK option on or off 

depends very much on the given situation and traffic patterns. However, we must 

not forget that the bit error rate is not a very significant factor because the MAC 

802.11 b will take care of that by doing retransmissions at the MAC layer. Figure 

5.2c and 5.2d show the comparison between the cases for which SACK is off and 

SACK is on. We should note that by turning SACK off we get an increase both in 

the lifetime and number of bytes transmitted. This shows that the efficiency has not 

increased. 

5.3 Window Scale Option 

Figure 5.3 shows the effect turning the window scale option off has on the 

bytes transmitted by the sender. As explained previously this option does not cost 

much protocol processing and so the improvement by not having this option is 

minimal. Since the effect of this option is minimal and it does not cost much power 
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in not having this option hence it is better to have this option. Also larger window 

sizes can help in reducing congestion etc which has not been taken into 

consideration in our experiments. The lifetime of the sender for both the cases is 

almost similar also. 

5.4 Time Stamp Option 

Figure 5.4 shows the effect turning the time stamp option off has on the 

number of bytes transmitted by the sender. In this we see that the effect of turning 

this option off is quite significant. But this significant effect can be explained by 

the fact that turning this option off in fact causes the frequent fast path to be much 

faster. This is because if there is no time stamp then there is no processing for 

PAWS checking which is in the fast path. This causes a significant saving. 
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However when combined with modified header prediction in which the PAWS 

checking is anyway done away with we will not get as much improvement by 

having this option off. Still there will be an improvement due to the saving in the 

header and also due to the calculation of the RTT for every ACK received. The 

header prediction modification is actually not required since PAWS checking will 

not be done anyway if the timestamp option is off. The best saving is achieved by 

having the timestamp option off. The lifetime of the sender with the TimeStamp 

option off is 115 minutes and with the option it is 111 minutes. Hence we see that 

there is some energy conserved by having this option off. 
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Figure 5.4: Bytes Transmitted vs MSS - TSTAMP 
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5.5 Header Prediction Modification 

Figure 5.5 shows the effect of header prediction modification on the number 

of bytes transmitted by the sender. As mentioned before the saving is due to the 

fact that the PAWS checking is moved out of the frequent fast path. As explained it 

is better to have the time stamp option off and at the same time not modify the 

header prediction so as to get more savings in the energy consumed at the node. 

Actually header prediction modification will cause most of its effect only at the 

receiver and will not affect the power savings as much at the sender. With normal 

header prediction the lifetime of the sender is 111 minutes whereas with modified 

header prediction it is 114 minutes. Again we see that there is some energy 

conserved by having a modified header prediction algorithm. 
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5.6 Delayed ACK Implementation 

Figure 5.6 shows the effect of implementation of delayed ACK based on 

time on the number of bytes transmitted by the sender. This saving is due to the fact 

that less number of ACKs are sent by the receiver to the sender and less number of 

ACKs have to be received and processed by the sender. Hence the savings are at 

both the receiver and the sender. We see actually that without the modification one 

ACK is sent for every two packets received but with the modification there is a 

delayed ACK every 500ms if there are no errors in transmission. The lifetime of 

the sender in both the cases was 106 minutes. This tells us that the efficiency 

increases when we reduce the frequency of ACKs from the receiver. A similar 

effect is achieved at the reciever. 
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5.7 Enabled RTS/CTS 

Figure 5.7a shows the comparison between no changes made to the current 

Linux TCP code and with all the significant optimizations incorporated. From the 

above we see that the optimizations that should be incorporated are MSS increased 

to 2296, SACK option off, header prediction not modified, timestamp option off, 

and delayed ACK implemented based only on time. This graph shows that the 

energy efficiency achieved is almost about 29%. The lifetime of the sender with no 

changes to TCP is 122 minutes and for the case with all changes it is 113 minutes. 

So we see that although the lifetime of the sender decreases with all the changes 

still the number of bytes transferred increases, which means that the efficiency 

increases greatly. 

Figure 5.7b is the same as Figure 5.7a with RTS/CTS enabled. As we know 

that in the MAC 802.11 protocol there is a provision for media reservation by using 

initial handshaking. For all the above experiments as mentioned we had this feature 

turned off but for this experiment we had this featured turned on. For a packet of 

size greater than 1000 bytes there would be an initial RTS/CTS handshake 

performed between the two MAC layers to ensure that the media is reserved. By 

choosing the size as 1000 bytes for mandatory handshaking we ensure that the 

initial handshaking is required only for data packets and not for ACKs. This figure 

shows us that there is higher saving in energy with the RTS/CTS feature on. This 

can be partially attributed to the larger MSS which results in less number of 

RTS/CTS packets exchanged between the sender's and receiver's MAC layers. 

There is some gain because of the less number of errors caused due to the fact that 

the medium is reserved before and data is transmitted. In this the lifetime of the 

sender is 113 minutes for the case when all changes are made to TCP and it is 114 

minutes when no changes are made. This tells us that enabling RTS/CTS increases 

the lifetime of the sender relatively. The difference in the lifetime of the sender 

between the two cases is much less when RTS/CTS is enabled which tells us that 



6 
x 1 o9 Bytes Transmitted vs MSS - No RTS/CTS 

5 

4.5 

4 

1if3.5 
>. 
e 3 -g 
= 
-~ 2.5 
s:::: 
~ 
I- 2 
ID 
~1.5 

0.5 

500 1000 1500 2000 
MSS(bytes) 

Figure 5.7a: Bytes Transmitted vs MSS- Best 

Bytes Transmitted vs MSS - RTS/CTS enabled 

OL-------~------~--------
0 500 1000 1500 2000 

MSS(bytes) 

2500 

2500 

Figure 5.7b: Bytes Transmitted vs MSS- Best with RTS 

45 



46 

the efficiency does not increase as much as it does for the case when RTS/CTS is 

disabled. 

5.8 Distance 

For this experiment we increased the distance between the sender and 

receiver to 10 meters. However within experimental limits (not more than 1 minute 

for the lifetime of the sender) we found the results to be similar to the results 

obtained when the distance between the sender and receiver was 1 inch. 

5.9 Energy Saving at the Receiver 

As mentioned we also expect a significant saving of energy at the receiver 

due to the modifications made. Hence this time we test for the savings on the 

receiver. Figure 5.9 shows the comparison between the bytes received when all the 

optimizations were turned on and with none of the optimizations enabled. In this 

experiment we kept the MTU=2296 for both the cases to see the effect of the other 

optimizations on the receiver and also enabled RTS/CTS handshaking. The lifetime 

of the receiver was 121 minutes with no changes and 120 minutes with all the 

changes. 

5.10 Errors at the TCP layer 

We measured the total number of retransmissions at the TCP layer of the 

sender during its lifetime. This gave us a measure of the quality of the wireless link. 

The number of retransmissions for an MTU of 1500 was found to be about 50. This 
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is quite a high error rate considering the fact that the MAC protocol is considered to 

be reliable. However the number of retransmissions is generally high because of the 

timer interactions between the TCP and the MAC layers and also because of the 

competing and redundant retransmissions by the TCP Layer since duplicate ACKs 

are not suppressed by the MAC layer. 

5.11 Interfering Traffic Case 

To verify our results for the case of interfering traffic we ran some 

experiments. A total of 8 sets of experiments were run. Table 5.1 shows the results 

that we obtained. In this table continuous traffic means that there was another node 

continuously sending data to the receiver. Intermittent traffic was the case when the 

interfering node would send about 5MB of data every 5 minutes. In this we had all 

the modifications made to TCP and we used an MTU of 1500 bytes. RTS on means 

that all the three nodes had the setting for RTS/CTS handshaking to be on for 

packet exchanges in excess of 1000 bytes. From the table we can see that for the 

case of continuous traffic the lifetime of the sender was generally high but the bytes 

transmitted was generally low. Also there is a significant difference between the 

SACK on and SACK off case when RTS/CTS is off. This shows that a huge 

amount of power is expended in executing the code for SACK and hence the total 

number of bytes transmitted is lower during the lifetime of the sender. This is not 

the case with intermittent load though - this tells us that when we have no initial 

handshaking and the traffic load is high it is better not to have the SACK option on 

- since a lot of power would be consumed in going through the SACK code. Again 

it should be noted that depending on the traffic conditions a decision about having 

the SACK option on or off has to be made. Other than that the table shows results 

that are intuitive. 
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Time(mins) Bytes 
RTS on; SACK OFF,Continuous Traffic 128 2970847921 
RTS on; SACK ON, Continuous Traffic 132 3058387131 
RTS off; SACK OFF,Continuous Traffic 124 3811377004 
RTS off; SACK ON, Continuous Traffic 117 3647866576 
RTS off; SACK OFF,Intermittent Traffic 106 4183867981 
RTS off; SACK ON, Intermittent Traffic 109 4185749921 
RTS on; SACK OFF,Intermittent Traffic 111 3646355620 
RTS on; SACK ON, Intermittent Traffic 112 3631339254 

Table 5.1: Interfering Traffic Case 
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6. CONCLUSIONS AND FUTURE WORK 

As can be seen by the results of the experiments, we do get quite a 

significant improvement in the energy efficiency of TCP by undertaking certain 

modifications in the way the protocol is implemented. First of all the MSS 

negotiated should be the maximum allowed by the path from the sender to the 

receiver and should not be 576 bytes for non-local connections. It should preferably 

be 2296 bytes since the MAC 802.11 protocol supports this size and could indeed 

be larger if the MAC 802.11 protocol supported it. Another improvement is by 

changing the implementation of delayed ACK to be dependent on time rather than 

the packet count of 2 packets. This makes more effective use of the window and 

thus causes power savings. The other improvement is by turning the timestamp 

option off- this causes saving by removing the PAWS checking from the frequent 

fast path of the TCP code. The SACK option is questionable and highly dependent 

on the traffic patterns and the number of nodes present etc. For our experiments we 

see that turning the SACK option off does give us an improvement but this might 

not be the case if there were variations in traffic which caused packets to be 

dropped. Hence it is always better to experiment with the SACK option before 

deciding whether to tum it on/off given the situation it is being used in. It must be 

noted that for connections to the Internet the MSS negotiated by TCP would be 

1500 as the Internet mostly consists of Ethernet based interfaces which only allow a 

MTU of 1500 bytes. However, for ad hoc transmissions the MSS negotiated would 

be 2296 and thus the energy savings would be greater. 

From the above discussion we can summarize the following: 

MSS - maximum power saving. 

TimeStamp Option - significant power saving. 

Header Prediction Modification - significant power saving (comparable to 

the TimeStamp Option case). 
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Delayed ACKS (500ms)- significant power saving. 

SACK Option - significant power saving but might not be the case 

depending on traffic and load on the network. 

WindowScale Option - no power saving. 

Data compression can also be considered as a method of saving energy. If 

we have a good compression algorithm and very fast low energy consuming 

processors then maybe sending compressed data would cause us to save some 

power. We did run experiments in which the sender sent compressed data to the 

receiver but the results we got were negative - i.e. more battery power was 

consumed in compressing the data and sending it rather than sending uncompressed 

data directly. This loss could be attributed to the high consumption of battery 

power in data compression since the processor we used was 90Mhz Pentium. 

Hence as the hard ware of our mobile systems changes data compression can also 

be considered a good option. In a newer version of the WaveLan driver there is 

provision for WEP encryption which can be turned on to see the effect of 

encryption on the power consumption. Also there is a power save mode of the 

WaveLan card which can cause some savings in power when the card is idle and 

not transmitting or receiving data. The effect of the above modifications in the TCP 

layer can be verified for more than one hop. Also various traffic patterns can be 

tested to see the effects of congestion etc. 

There are two possible areas of future work. One is at the MAC layer. Some 

modifications can be made in the 802.11 layer itself in order to ensure that it 

transmits an error free and in sequence data to the next hop. The interactions 

between the MAC Layer and TCP Layer timers must be reduced. The duplicate 

ACKs received by the sender for which local retransmissions have been done, can 

be suppressed by the MAC layer. These will cause a decrease in the number of 

competing and redundant retransmissions by the TCP sender. The backoff strategy 

at the MAC layer can be made less aggressive eg: MACAW. Congestion control 

can be added to the MAC layer. Selective queue scheduling can also be 
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implemented at the MAC layer to avoid congestion and capture of the channel by a 

certain node. Another area that can be researched is the support of higher MTU by 

the MAC layer - this will at least help in energy conservation for transfers over 

purely mobile environments with similar hardware. 

The other area where future work is possible is the TCP layer. Here the 

ELFN scheme can be implemented to take care of the link failures due to mobility. 

Route failure and re-establishment packets can also be used for this. Some steps 

can be taken to reduce the side effects of the Stretch ACK Violation. The TCP 

sender can be limited in its burstiness depending on the traffic patterns. The 

increase in the congestion window can be dependent on the bytes acknowledged 

instead of the number of ACKs received. Also the implementation of Stretch ACK 

Violation can be dynamic and we can send an ACK every certain number (more 

than 2) of packets depending on the traffic. Another area of TCP that can be 

experimented with is the fast retransmit and duplicate ACK algorithm. Here we can 

try to suppress TCP sender fast retransmit when we know that the underlying MAC 

layer will take care of the packet losses. 
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