
AN ABSTRACT OF THE THESIS OF

Sandeep Agarwal for the degree of Master of Science in Electrical and Computer

Engineering presented on April18, 2000. Title: Conserving Energy in TCP for

Mobile Ad-Hoc Networks.

Abstract Approved: _ ______ _

Suresh P. Singh

The widespread use of TCP as a transport layer protocol for mobile ad-hoc

networks and wireline networks has motivated the need to make its implementation

highly power efficient specially with respect to ad hoc radio networks. Over the

past years many researchers have developed energy efficient protocols for mobile

ad-hoc networks. This thesis deals with the various modifications and fine-tunings

in the TCP code which, when applied, help in conserving battery power at nodes by

saving on the software overhead at the mobile nodes. The various modifications

proposed have been tested with actual experiments done on two laptops with

Lucent WaveLan wireless cards. The results obtained from the experiments

indicate that with certain modifications made in the implementation of TCP code,

significant savings in power can be achieved along with an increase in the overall

efficiency of TCP over wireless links. Finally, a discussion of how other

modifications can be researched and tested as the hardware for mobile systems

change is proposed.

Redacted for Privacy

Conserving Energy in TCP for Mobile Ad-Hoc Networks

by

Sandeep Agarwal

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented April 18, 2000
Commencement June 2000

Master of Science thesis of Sandeep Agarwal presented on April18, 2000

APPROVED:

Major Pr6fessor, representing Electrical and Computer Engineering

d Computer Engineering

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature authorizes release of my thesis to any
reader upon request.

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Acknowledgements

I wish to thank my major professor, Dr. Suresh P. Singh, for his help and guidance

in developing the ideas in this thesis. I also wish to thank the other members of my

committee for giving so generously of their time. Finally I would like to thank the

members of the faculty of Electrical and Computer Engineering for their help and

support during the duration of my research.

TABLE OF CONTENTS

1. INTRODUCTION

11

Page

1

1.1 Overview of TCP -- 3

1.2 Overview of the MAC Layer Protocol- 802.11b ------------------ 4

2. Ft]jLJ\~D ~ORIC --- 7

3. ~CHNIQUES FOR GOING FJ\ST --- 13

3.1 Operating Systems Overhead -- 13

3.2 Better Table Lookup Techniques ------------------------·------------- 14

3.3 Reducing Checksum Costs --- 15

3.4 Header Prediction --- 17

4. CURFt]jNT IMPLEMENT J\ TION --- 21

4.1 Timestamp Option -- 22

4.2 ~indow Scale Option -- 24

4.3 SJ\CIC Option -- 24

4.4 Header Prediction --- 26

4.5 Cumulative and Delayed J\CIC Implementation -------------------- 28

4.6 M1'U Size -- 30

5. EXPERIMENTS J\ND VERIFICJ\TION ------------------------------------- 32

5.1 Varying the M1'U Size --- 3 5

5.2 SJ\CIC Option -- 35

5.3 ~indow Scale Option -- 37

5.4 Time Stamp Option -- 40

iii

TABLE OF CONTENTS(Continued)

5.5 Header Prediction Modification -------------------------------------- 42

5.6 Delayed ACK Implementation --------------------------------------- 43

5. 7 Enabled RTS/CTS -- 43

5. 8 Distance -- 46

5.9 Energy Saving at the Receiver -- 46

5.10 Errors at the TCP Layer --- 46

5.11 Interfering Traffic Case 48

6. CONCLUSIONS AND FUTURE WORK ------------------------------------- 50

13113LIOCJRAPIIl{ --- 53

iv

LIST OF FIGURES

Figure

3.1 TCP Header Fields that Change in an Established Connection

Page

18

18

32

36

3.2 TCP Header Fields that Change Unpredictably -------------------------

5.1

5.1a

5.1b

5.2a

5.2b

5.2c

5.2d

5.3

5.4

5.5

5.6

Experiment Setup ---­

Bytes Transmitted vs MSS- Normal -------------------------------------

LifeTime of Sender vs MSS- Normal ----------------------------------- 36

Bytes Transmitted vs MSS- SACK OFF -------------------------------- 38

LifeTime vs MSS -SACK OFF --- 38

Bytes Transmitted vs MSS- SACK -------------------------------------- 39

LifeTime vs MSS - SACK --- 39

Bytes Transmitted vs MSS- WSCALE ---------------------------------- 40

Bytes Transmitted vs MSS- TSTAMP ---------------------------------- 41

Bytes Transmitted vs MSS- Header Prediction -----------------------­

Bytes Transmitted vs MSS- Delayed ACK -----------------------------

42

43

5.7a Bytes Transmitted vs MSS -Best --- 45

5.7b Bytes Transmitted vs MSS- Best with RTS ----------------------------- 45

5.8 Bytes Transmitted vs MSS- Distance ------------------------------------ 47

5.9 Bytes Received vs MSS- RTS and MTU = 2296 ---------------------- 47

(TCP)

(IP)

(MAC)

(CSMNCA)

(RF)

(CPU)

(110)

(ACK)

(BER)

(T!TCP)

(RTT)

(SPT)

(UDP)

(FIFO)

(RISC)

(CISC)

(LAN)

(LPN)

(WAN)

(RTO)

(MSL)

(PAWS)

(SYN)

(SACK)

(MTU)

(MSS)

LIST OF ABBREVIATIONS

Transmission Control Protocol

Internet Protocol

Medium Access Control

Carrier Sense Multiple Access with Collision A voidance

Radio Frequency

Central processing Unit

Input/Output

Acknowledgement

Bit Error Rate

Transactionsffransmission Control Protocol

Round Trip time

Server Processing Time

User Datagram Protocol

First In First Out

Reduced Instruction Set Computer

Complex instruction Set Computer

Local Area Network

Long Fat Network

Wide Area Network

Retransmission Time Out

Maximum Segment Lifetime

Protection Against Wrapped Sequence Numbers

Synchronize Sequence Numbers flag

Selective Acknowledgement

Message Transmission Unit

Maximum Segment Size

v

(FDDI)

(IEEE)

(TTL)

(FIN)

(RAM)

(PCMCIA)

(FCC)

(RTS)

(CTS)

(LCD)

(WEP)

(PHY)

(DSSS)

(FHSS)

(GHz)

(AP)

(ELFN)

(TCP-F)

(BSS)

(ESS)

(ESSID)

(ISM)

LIST OF ABBREVIATIONS (Continued)

Fiber Distributed Data Interface

Institute of Electrical and Electronics Engineers

Time To Live

Finish flag

Random Access Memory

Personal Computer Memory Card International Association

Federal Communications Commission

Request To Send

Clear To Send

Liquid Chromium Display

Wired Equivalent Privacy

Physical

Direct Sequence Spread Spectrum

Frequency Hopping Spread Sequence

Giga-Hertz

Access Point

Explicit Link Failure Notification

Transmission Control Protocol - Feedback

Basic Service Set

Extended Service Set

Extended Service Set Identifier

Industrial, Scientific and Medical

vi

Conserving Energy in TCP for Mobile Ad-Hoc Networks

1. INTRODUCTION

As we continue to use computers to enhance life in our society, the need to

network computers for data sharing and access to the Internet becomes increasingly

important. Various different network topologies have emerged over the past years

and during the recent years the wireless local area network has gained increasing

importance. At the physical layer this network uses radio frequency (RF) to

communicate. At the routing layer IP is still predominantly used and at the

transport layer it is mainly TCP that is used.

Ad hoc networks are multi-hop wireless networks where all the nodes

cooperatively maintain network connectivity. This means that, all the mobile nodes

in the networked area act as routers and transmit data packets received from a

sender on to the receiver. The range of the networked area is effectively increased

as compared to the transmitting range of a single radio. These types of networks are

useful in any situation where temporary network connectivity is needed at short

notice, and no suitable infrastructure for wire line networks is available (or can be

established at such short notice).

For instance, consider the problem of establishing a temporary wireless

network in a huge region where an emergency search operation is on. An ad hoc

network here would enable the rescue/search agents in the field to retrieve maps

and weather forecasts from the Internet (assuming that one or more of the nodes of

the ad hoc network are connected to the Internet). It would allow them to exchange

photographs and similar data with other team members who would also be using

laptops. Other examples of such ad hoc networks include internetworking

2

participants in a meeting hall or building to enable them to exchange data, battlesite

networks, etc.

Nodes in an ad hoc network need to remain on battery power for extended

periods of time. These nodes need to be energy-conserving so that battery life is

maximized. Battery life imposes a severe constraint on the deployment and large

scale use of mobile computing technology in the future, and has prompted several

researchers to develop approaches for conserving power on mobile computers.

Several technologies are being developed to achieve these goals by targeting

specific components and optimizing their energy consumption. A significant

amount of power is consumed by the display, by spinning disks, by the CPU, by

YO devices and by the transceiver radio. Hence the motivation for low-power

displays [13], algorithms to reduce power consumption of disk drives [14,15,16],

and low power YO devices [17]. These, along with the development of low-power

CPUs (such as those used in laptops and other hand-held devices) and high capacity

batteries have all contributed to overall energy savings in the mobile nodes in ad

hoc networks.

Recently some researchers have begun studying the problem of reducing

power consumption during wireless data communication. Reducing power

consumption during file transfers between transmitting and receiving nodes is

clearly an important goal because battery life is not expected to increase

significantly in the coming years. In an ad hoc network, it is even more important

to reduce power consumption because these networks are typically established in

mission critical environments (such as disaster relief).

At the transport layer of the communication stack the TCP protocol is most

widely used. The implementation of this protocol can be fine-tuned to give

significant improvements in power consumption at the mobile nodes.

Since the MAC protocol used for wireless communications is IEEE 802.11,

a brief explanation of the protocol is also provided.

3

1.1 Overview of TCP

TCP provides a connection oriented, reliable, byte stream service. The

application data is broken into what TCP considers the best-sized segments to send.

When TCP sends a segment it maintains a timer, waiting for the receiving end to

acknowledge reception of the segment. If the acknowledgement isn't received in

time, the segment is retransmitted. To determine when to retransmit a segment,

TCP dynamically estimates the round-trip time by measuring the time it has taken

for earlier segments to be acknowledged. Segments are uniquely numbered to

identify them. When TCP receives data from the other end of the connection, it

sends an acknowledgement. This acknowledgement is not sent immediately, but is

normally delayed for a fraction of a second. TCP maintains a checksum on its

header and data. This is an end to end checksum whose purpose is to detect any

modification of the data in transit. If a segment arrives with an invalid checksum,

TCP discards it and doesn't acknowledge receiving it. It expects the sender to time

out and retransmit. TCP segments can arrive out of order since it does not assume

reliability from its underlying layers. A receiving TCP re-sequences the data if

necessary, passing the received data in the correct order to the application. A

receiving TCP discards duplicate data. TCP also provides flow control. Each end of

a TCP connection has a finite amount of buffer space. A receiving TCP allows the

other end to only send as much data as the receiver has buffers for. This prevents a

fast host from taking all the buffers on a slower host. There is a limit, known as the

window size on the number of unacknowledged segments that may be outstanding

at any time, to bound the amount of buffering of unacknowledged segments that

must be done at the sender and receiver.

4

1.2 Overview of the MAC Layer Protocol- 802.1lb

Two widespread standards today underpin much of the commercial 2.4 GHz

wireless LAN market. They are the IEEE 802.11 standard and the OpenAir 2.4

standard. The IEEE 802.11 specification is a wireless LAN standard developed by

the IEEE (Institute of Electrical and Electronic Engineering) committee in order to

specify an "over the air" interface between a wireless client and a base station or

Access Point, as well as among wireless clients. First conceived back in 1990, the

standard has evolved from various draft versions (Drafts 1 through 6), with

approval of the final draft on June 26, 1997 .

. Like the IEEE 802.3 Ethernet and 802.5 Token Ring standards, the IEEE

802.11 specification addresses both the Physical (PHY) and Media Access Control

(MAC) layers. At the PHY layer, IEEE 802.11 defines three physical

characteristics for wireless local area networks: diffused infrared, direct sequence

spread spectrum (DSSS), and frequency hopping spread spectrum (FHSS). While

the infrared PHY operates at the base-band, the other two radio-based PHYs

operate at the 2.4 GHz band. This latter frequency band is part of what is known to

be the ISM band, a global band primarily set aside for industrial, scientific and

medical use, but can be used for operating wireless LAN devices without the need

for end-user licenses. In order for wireless devices to be interoperable they have to

conform to the same PHY standard. All three PHY s specify support for 1, 2 and 11

Mbps data rate.

The 802.11 MAC layer, supported by an underlying PHY layer, is

concerned primarily with the rules for accessing the wireless medium. Two

network architectures are defined: the Infrastructure Network and the Ad Hoc

Network. An Infrastructure Network is an architecture for providing

communication between wireless clients and wired network resources. The

transition of data from the wireless to the wired medium is via an Access Point.

The coverage area is defined by an Access Point (AP) and its associated wireless

clients, and together all the devices form a Basic Service Set.

5

An Ad Hoc network is an architecture that is used to support mutual

communication among wireless clients. Typically created spontaneously, an ad hoc

network does not support access to wired networks, and does not need an AP to be

part of the network.

The primary services provided by the MAC layer are as follows:

• Data transfer

Wireless clients use a Collision Sense Multiple Access with Collision

Avoidance (CSMA/CA) algorithm as the media access scheme.

• Association

This service enables the establishment of wireless links between wireless

clients and APs in Infrastructure Networks.

• Re-association

This takes place in addition to association when a wireless client moves

from one Basic Service Set (BSS) to another. Two adjoining Basic Service

Sets form an Extended Service Set (ESS) if they are defined by a common

ESSID.

If a common ESSID is defined, a wireless client can roam from one area to

another. Although re-association is specified in 802.11, the mechanism that

allows AP-to-AP coordination to handle roaming is not specified.

• Authentication

Authentication is the process of proving a client identity, and in IEEE

802.11, this process takes place prior to a wireless client associating with an

AP. By default, IEEE 802.11 devices operate in an Open System, where

essentially any wireless client can associate with an AP without the

checking of credentials. True authentication is possible with the use of the

802.11 option known as Wired Equivalent Privacy or WEP, where a Shared

Key is configured into the AP and its wireless clients. Only those devices

with a valid Shared Key will be allowed to be associated to the AP.

• Privacy

By default, data is transferred "in the clear"; any 802.11-compliant device

6

can potentially eavesdrop PHY 802.11 traffic that is within range. The WEP

option encrypts data before it is sent wirelessly, using a 40-bit encryption

algorithm known as RC4. The same Shared Key used in authentication is

used to encrypt or decrypt the data; thus only wireless clients with the exact

Shared Key can correctly decipher the data.

• Power management

IEEE 802.11 defines two power modes, an Active Mode, where a wireless

client is powered to transmit and receive, and Power Save mode, where a

client is not able to transmit or receive, but consumes less power. Actual

power consumption is not defined and is dependent upon the

implementation.

Standardization and interoperability among devices utilizing the same PHY

is the intent of the IEEE 802.11 specification. (At the physical level, the three

modulation schemes are incompatible with each other, so an infrared wireless client

will not synchronize to a DSSS Access Point, for example). However, even among

devices with the same PHY, a few key ingredients necessary to achieve multi­

vendor interoperability are absent in the ratified standard.

1. AP-to-AP coordination for roaming

The standard does not specify the han doff mechanism to allow clients to

roam from one AP to another.

2. Data frame mapping

The standard does not state how an Access Point addresses data framing

between the wired and the wireless media.

3. Conformance test suite

There is no conformance test suite specified to verify that a device is

compliant with the IEEE 802.11 specification.

7

2. RELATED WORK

The design of efficient TCP for error-prone wireless links has received a lot

of attention by many researchers - but most of the solutions that have been

proposed deal with the alleviation of the poor end-to-end performance shown by

unmodified TCP implementation. The aim in this thesis is to fine-tune the

implementation of TCP (modified or unmodified) so as to get power efficiency at

the nodes. This can be achieved by reducing the TCP protocol processing (software

overhead) required at the nodes with no loss in the overall end-to-end performance.

Along with the proposed fine-tunings in this thesis, the other methods suggested by

various authors should be employed to conserve energy in transporting data. In fact

the proposed fine tunings in this thesis work best only when the other features of

previous research are also incorporated into TCP.

The research work in this field deals with modifying TCP to make it a

reliable protocol which can differentiate between motion-related and congestion­

related packet losses, and suggest how to adapt these protocols to perform better in

mobile cellular environments. A clear distinction has to be made between wireless

cellular networks and wireless ad hoc networks. Wireless cellular networks have

the problem of handoffs. Handoffs can cause excessive delay if they occur during a

TCP connection. This affects the throughput adversely. The handoff problem is

non-existent in mobile ad-hoc networks. So the problem of having excessive delays

due to handoffs during a TCP connection is not present in an ad-hoc environment.

However, in ad hoc networks there is a problem of link failures due to mobility.

This problem is addressed in [24, 28, 34] and the suggested methods of ELFN,

TCP-F, etc. can be used to overcome it.

The types of solutions suggested up to now for improving the TCP

throughput for mobile cellular networks basically fall into three categories:

a) end-to-end protocols, where loss recovery is performed by the sender

8

b) link-layer protocols, that provide local reliability by retransmissions

c) split-connection protocols, that break the end-to-end connection into two

parts at the base station.

Some of the solutions that have been developed by various researchers for

wireless cellular networks are discussed below briefly.

[1] explores the performance of reliable data communications in mobile

computing environments. Motion across wireless cell boundaries causes increased

delays and packet losses while the network learns how to route data to a host's new

location. TCP interprets these delays and losses as signs of network congestion. It

consequently throttles its transmission, further degrading performance. In this paper

the authors propose an end-to-end fast retransmission scheme that can reduce these

pauses. The fast retransmission is done at the TCP layer. The need to differentiate

between motion-related and congestion-related packet losses is made clear in this

paper.

[2] proposes Indirect TCP for mobile hosts which can tackle mobility and

wireless related performance problems without compromising backward

compatibility with TCP used over the wired network. Indirect TCP utilizes the

support of Mobility Support Routers to provide transport layer communication

between mobile hosts and those on the fixed network. In this solution the

connection is broken into two logical connections - one over the wired part and the

other over the wireless part. Loss over the wired part is treated as congestion

related loss whereas loss over the wireless part is treated as motion related loss.

However TCP semantics are not maintained.

[3] discusses the problems that frequently plague mobile networks such as­

high bit error rate (BER), frequent disconnections of the mobile user, and low

wireless bandwidth that may change dynamically. The authors propose a protocol

that addresses this problem in TCP and increases its throughput performance while

maintaining end-to-end TCP semantics.

9

[26] proposes a solution which does not break the semantics of TCP. This

solution works by making several modifications to the network layer code in the

base station. A snooping agent is added that observes and caches TCP segments

going out to the mobile host, and ACKs coming back from it. This snooping agent

does local retransmissions to the mobile host and also suppresses duplicate ACKs

being sent to the TCP sender. However, if the wireless link is very lossy, the TCP

sender may time out waiting for an ACK, and invoke the congestion control

algorithm. Thus it is advisable to have a conservative value for the RTO.

In [25] the authors conclude that a Link Layer scheme that is TCP aware

gives the best performance results. In this thesis we see that IEEE 802.11 MAC

layer is a reliable link layer scheme which provides good performance results.

These results can be further improved with some modifications in the TCP layer.

However, 802.11 is not TCP aware and hence some modifications can be done to

make it TCP aware. The snoop protocol [25, 26] is the best suited for this job. The

goal in this thesis is to assume reliable performance from the Link Layer and then

modify the TCP layer to make it perform better over such a Link Layer. In theory

TCP should be independent of the technology of the underlying layer - but in

practice it does matter what layer TCP is operating over. The performance of TCP

greatly depends on the underlying layer and ignoring this can lead to a TCP

implementation that is logically correct but has horrendous performance. Thus the

modifications suggested in this thesis work best with a Link Layer protocol which

is similar to the snoop protocol or is at least a reliable, TCP aware protocol. Due to

certain timer interactions between the Link Layer and the TCP layer, the TCP

sender is not fully shielded from the wireless losses. The fast retransmissions by the

TCP sender (due to duplicate ACKs from the receiver), in spite of the Link Layer

retransmissions also add to this problem. This causes the performance of TCP to

diminish - hence it is advisable to have a Link Layer that is reliable, free from

timer interactions with the TCP layer and also TCP aware (it should suppress

duplicate ACKs). This will ensure that competing and redundant retransmissions

are avoided. As described in [29], a reliable Link Layer with a "mild" backoff

10

strategy would be helpful to ·prevent capture of the channel by certain nodes which

occurs during bulk data transfers. Some suggestions for queue scheduling, per

queue transmission scheduling and congestion control within the MAC layer are

also made in [29]. For all the above categories of solutions we can incorporate the

fine-tunings suggested in this thesis to increase the power efficiency at the nodes.

As an extension to the work in this thesis the IEEE 802.11 MAC layer can be

modified to make it TCP aware, suppress duplicate ACKs, have a mild backoff

strategy, and have per queue transmission scheduling and congestion control. This

will improve the performance of TCP greatly, and at the same time reduce the

software overhead at the nodes, thus increasing their longevity.

Another characteristic of wireless links is that the latency and bandwidth is

variable [27, 30] and this causes certain problems in the exact calculation of the

round trip time. Using TCP Timestamps option is not very helpful since the RTT

can vary on a per packet basis hence it is always better to use the previous more

conservative approach, i.e. srtt + 4*mdev. Other solutions to this problem are

proposed in [27]. The significance of the RTT at the TCP layer is anyway reduced

if we have a reliable Link Layer as described above. In [27] it is mentioned that due

to asymmetry in the characteristics of the channel it is sometimes better to decrease

the frequency of ACKs from the receiver to the sender. This idea can be exploited

and we can have a decreased frequency of ACKs during the entire connection, so as

to save protocol processing at the nodes and thus save energy. The side effects of

this Stretch ACK Violation [32] phenomenon are that the sender becomes burstier,

there is a slowdown in the window growth, a decrease in the effectiveness of the

fast retransmit algorithm, and it may cause needless retransmission timeouts in

lossy environments, as it increases the possibility that an entire window of ACKs is

lost. However, the sender becoming burstier is not a big problem if we have a Link

Layer protocol as described above and in [29]. A slow down in the window growth

is not a problem for slow wireless links and is only a problem for high-speed links

[32] - a simple solution for this is proposed in [27]. The other problems of the fast

retransmit algorithm losing its effectiveness and increase in the number of

11

retransmissions are also not pronounced when we have a reliable Link Layer as

described above. It should be noted that even TCP ACKs are transmitted reliably

by the Link Layer.

Another line of argument that some researchers have proposed to reduce the

protocol over head of TCP is to do away with TCP altogether. A much simpler and

liberal type of protocol is instead employed which is called Transaction TCP.

TffCP has the best parts of both TCP and UDP combined. It provides sufficient

reliability with minimum protocol overhead for data transactions. With the

availability of TffCP the choice of an application designer is not restricted to TCP

orUDP only.

The main ideas behind the motivation of TffCP are:

1. The overhead of connection establishment and connection termination should

be avoided. When possible, send one request packet and receive one reply

packet.

2. The latency should be reduced to RTT plus SPT, where RTT is the round trip

time and SPT is the server processing time to handle the request.

3. The server should detect duplicate requests and not replay the transaction when

a duplicate request arrives. (A voiding the replay means the server does not

process the request again. The server sends back the saved reply corresponding

to that request.)

Today the choice an application designer has is either TCP or UDP. TCP

provides too many features for transactions, and UDP doesn't provide enough. As a

result, usually the application is built using UDP (to avoid the overhead of TCP

connections) but many of the desirable features (dynamic timeout and

retransmission, congestion avoidance, etc) are placed into the application, where

they are reinvented over and over again. A better solution is to provide a transport

layer that provides efficient handling of transactions. The definition of TffCP is

described in detail in [4] and [5].

12

However, it must be kept in mind that many applications still require TCP,

which is widely used, and hence the motivation to reduce the processing overhead

of TCP so as to conserve power at the nodes. The TCP protocol processing at the

nodes is highly power consuming~ this area needs to be researched so as to come up

with very efficient TCP implementations for the existing and future mobile

hardware. A part of the power consumed in data transport is the power consumed

by the transmitter or receiver, but a lot of power is also consumed in processing the

code of the TCP stack at the nodes. This can be fine-tuned for better power

performance with no significant loss in the overall performance efficiency of end­

to-end TCP. While trying to fine-tune TCP it must be kept in mind that it has

proved quite hard to find parts of TCP that could be eliminated without

compromising the protocol's capabilities.

13

3. TECHNIQUES FOR GOING FAST

A lot of research has been done in the area of improving TCP protocol

implementations, and a number of techniques have been developed as a result.

Some researchers have seriously investigated the various performance limitations

of TCP and come up with better implementations of the protocol code. Some of the

techniques that have been already implemented are reviewed below.

3.1 Operating Systems Overhead

Operating systems have to undergo a huge amount of overhead for a single

context switch, since the whole state of the previous context has to be saved before

the context can be switched. It would be in the best interests of energy and

throughput efficiency to reduce the number of context switches. One way of doing

this is to minimize the number of interrupts thrown at the operating system - since

an interrupt always requires a context switch from the current context to the context

of the interrupt service routine. This can be done by suppressing transmission

interrupts and by receiving multiple packets from the receive-FIFO in response to a

single interrupt. A certain number of packets can be coalesced at the receiver

(interface card on the receiving node) before interrupting the operating system. This

would, however, result in some throughput loss; but when implemented properly,

this throughput loss can be negligible.

Memory management - given the disparity in memory and processor speeds

(this huge gap is projected to widen even further in the future), copying data from

one piece of memory to another is one of the slowest operations a processor can be

asked to do. Clearly, minimizing the number of copies as data is passed up/down

the stack is a power saving feature. In fact it is suggested that transmitting and

receiving data should consist of no more than a single copy. Designing the stack in

14

such a way so as to have a single copy only as the data moves through the stack is

the main aim - this will greatly help in reducing the processing overhead, and thus

help in power saving.

3.2 Better Table Lookup Techniques

The TCP protocol architecture is such that there are several cases where a

piece of information has to be looked up in a table. For instance TCP must find the

connection block for each segment received. In the general case, each of these

lookups has a worst case cost of O(logk n), where n is the number of protocol

blocks in the table, and k is some base indicating the fraction of the blocks that can

be eliminated on average by each comparison. Lookups represent a very large

fraction of the cost of protocol processing, and finding ways to minimize lookup

costs is important to increase performance.

Two obvious ways to try to reduce lookup costs are:

a) use caches of frequently used information to minimize the number of

expensive lookups

b) find lookup algorithms with very good average running times.

An effective and efficient cache is one in which the hit rate is maximized

while the costs of searching and maintaining the cache is minimized. It is very

fortunate that computer data networks exhibit precisely the kind of traffic patterns

that are likely to make caches effective, and studies strongly suggest that caches of

just one control block may actually achieve very high hit rates. It has been shown

in [6, 7] that one-back (having only one entry) caches have reported significant

cache hit rates and performance improvements. It has been shown in [8] that a

cache consisting of 20 route entries is likely to yield a 90% hit rate. To get hit rates

beyond this the cache size has to be greatly increased and is not advisable. A 90%

15

hit rate means that out of ten table lookups only one of them would effectively be

very expensive, since only one would result in a cache miss.

It is described in [9] that the most effective table lookup scheme is hashing

using open chaining, where the head of each hashed link list keeps a cache of the

last accessed block. Hence if the hashing function is good we will get a very good

algorithm for table-lookup supplemented with the benefits of caching.

3.3 Reducing Checksum Costs

The first and foremost step to optimize a checksum algorithm is to try to do

the sum using the hosts machine's native word size (to optimize memory accesses)

and native byte order (to minimize byte swapping costs). The TCP checksum is a

sixteen-bit one's complement sum over the whole segment (data and header- with

odd lengths padded by a zero byte). This sum can be done independent of byte

order as shown below.

Consider the sequence of hex bytes:

Ox50, Ox51, Ox52, Ox53, Ox54, Ox55

which are added as sixteen-bit words into a sixteen-bit sum:

Ox5051 + Ox5253 + Ox5455 = Ox575A

where+ is one's complement addition.

Now compare this result with the sum when the bytes are reversed:

Ox5150 + Ox5352 + Ox5554 = Ox5A57

The sums are the same except that their bytes are reversed. To see why this is

always true, note that the carries are the same in both the cases: from bit 15 to bit 0,

and from bit 7 to bit 8 (recall that one's complement addition requires that carries

be added back into the lowest significant bit). This means that the checksum

calculation can be done in any byte order. It is best to do the checksum calculation

16

as the bytes are stored in memory, i.e. Big Endian or Little Endian- this saves us

the cost of unnecessary byte swapping that would be otherwise required.

The TCP checksum can be done using any word size of sixteen bits or

greater, depending on the host machine's native word size. For example, consider

summing 32-bit quantities. One can simply add the 32-bit numbers using one's

complement addition and, when the 32-bit sum has been computed, fold and add

the high 16-bits of the 32-bit sum to the low 16-bits and get the 16-bit sum. This

saves time wasted in doing 16 bit sums whereas most processors nowadays are

capable of doing 32-bit arithmetic operations. If we have 64-bit processors the

same approach can be applied, except that in this case, first the 64-bit sum has to be

folded to 32-bit and then the 32-bit sum has to be folded to give the 16-bit sum.

Another optimization for checksum calculation is also possible. RISC

(nowadays even CISC) processors have a super pipelined architecture. This

pipeline is stalled after a memory read or memory write operation due to the nature

of the pipeline. After a memory read or write operation there is a loss of one or two

(one for memory write and two for memory read) clock cycles during which no

new memory accessing instructions can be processed.

As a result, in a copy loop of instructions of the following form:

load frO], r2 ; load the contents of the memory location pointed to by rO to r2

store r2, [r 1] ; store the contents of r2 into memory location pointed to by r 1

there is a space in between the two memory-accessing instructions for two non

memory accessing instructions. We can put the checksum instructions (non

memory-accessing) into the slots after these instructions to avoid the pipeline stalls:

load [rO], r2 ; load the contents of the memory location pointed to by rO to r2

add r5, r2, r5 ; add to running checksum in r5

addc r5, #0, r5 ; add carry into r5

store r2, [r 1] ; store the contents of r2 into memory location pointed to by r 1

17

Because these two slots would otherwise be unused (unless we have a very smart

compiler, which can put other non memory-accessing instructions there and still

maintain the logical program flow), this effectively means that performing the

checksum comes for free. It makes sense to replace data copy from user space to

interface buffers with a combined checksum and copy. As the data is copied the

checksum of the data is also calculated at no extra computational cost.

Other suggestions for improving checksum costs are to leave them out

completely (at least for LAN traffic), but this suggestion has its obvious drawbacks,

which TCP cannot afford to have due to its very characteristics. A second

suggestion is to move checksums to the end of the packet, a practice known as

trailing checksums or trailers. The advantage of doing this is that, if the checksum

is at the end, the sending machine can start sending the packet before the checksum

computation is finished. If the checksum is at the start of the packet, the sender

cannot release the packet until the checksum has been computed and put in the

header. However, trailers have one main disadvantage - they require that the

delivery of data to the sending interface be predictable. If the operating system is

somehow interrupted as it is passing data to the interface, and the interface is

already putting data onto the network, fragmented packets may result. We know for

a fact that fragmented packets will cause more software overhead.

3.4 Header Prediction

TCP behavior is highly predictable, and one can take advantage of this

predictability by optimizing the frequent path through the TCP code in both the

sending and receiving implementations.

18

0 16 31

Sequence Number

Acknowledgement Number

Window

Checksum Urgent Pointer

Figure 3.1: TCP Header Fields that Change in an Established Connection

Figure 3.1 shows the TCP header with the fields that do not change shaded.

The source and destination ports are set at connection setup, and because TCP

connections either always use or never use options, the data offset (Off) remains

constant, as do most of the control bits .

0 16 31

Checksum

Figure 3.2: TCP Header Fields that Change Unpredictably

19

Figure 3.2 shows the TCP header with fields that change unpredictably not

shaded. In situations in which no segments get lost or re-ordered (which is most of

the time), the sequence number changes by the amount of data in the last segment

received.

New Sequence Number = Last Segment Sequence Number + Amount of data

(bytes) in the Last Segment that was received.

The window size typically does not change, given that the receiving TCP passes the

data to the application and is immediately ready to receive new data. The urgent

pointer is only used if the urgent bit (U) is on, and it usually is not, and the PUSH

bit (P) can be ignored if the receiver passes data up to the application promptly.

These observations led Jacobson in [10] to develop an algorithm for TCP

receivers called header prediction. Header prediction looks for segments that fit the

profile of the segment the receiver expects to receive next; namely segments that

a) are for connections that have been established,

b) have only the acknowledgement bit (A) and optionally the push bit (P) set,

c) are the expected next segment in the sequence (i.e. the data in this segment

starts where the last segment left oft),

d) have not changed the window size,

e) are for connections that are not re-transmitting data (no error or segment loss

for this segment)

t) are either ACKs for data or new data arriving, but not both (unidirectional

flow).

Once the control block has been located (can be done efficiently if caches

are used and a good hashing algorithm is used), these above tests require just five

simple comparisons. A data packet that meets all the conditions (and most will if

there are no errors or loss) then requires very few instructions and can be passed up

20

to the application. Thus the incremental cost of receiving a TCP segment, after

connection lookup and performing the checksum, is very small. Header prediction

is an algorithm for the receiving TCP but similar prediction schemes work for

optimizing sending also.

On the sending side, an application typically writes its data to some sort of a

connection handle, a file descriptor or socket. This connection handle can be

designed to map directly to a control block (thus eliminating the control block

lookup). Just as the incoming segment can be predicted, so the TCP header of the

outgoing segment can be predicted. The sending TCP can keep a template TCP

header, whose sequence number is incremented as segments are sent and whose

acknowledgement number is updated as segments are received. As a result, sending

becomes a matter largely of copying the template header onto the front of the TCP

data, filling in the checksum (computed as the segment's data was copied), and

sending the segment. However, there are certain difficulties in having header

prediction for sending.

21

4. CURRENT IMPLEMENTATION

All the modifications discussed above have already been implemented in

the current implementation of TCP code in Linux. Along with the above

modifications currently TCP has certain options and extensions implemented which

are only useful for long fat networks i.e. very high-speed gigabit networks. These

options cause extra protocol processing both at the receiver and sender. This extra

protocol processing is justified for long fat networks (in which the bandwidth-delay

product is very high) but not for slower wireless networks. In the case of wireless

ad-hoc networks which now have a maximum data speed of 11 Mb/s (and so a low

delay-bandwidth product) this extra protocol processing is not justified.

We must keep in mind that for the bandwidth-delay product to be low, the

bandwidth of the medium must be low, and the propagation delay for the medium

must be low under normal (non- congestion) conditions. For LFN's we see that the

bandwidth is high (gigabit) and the delay of the medium is dependent on the

distance between the source and the destination (generally this is also very large

since gigabit networks are mostly used for WANs). Whereas in ad-hoc networks

the bandwidth is low (only llMbit/s), the propagation delay of the medium is low

since the distance between the source and destination is generally not very large.

We can comfortably say that the bandwidth-delay product of mobile ad-hoc

networks is much lower than that of LFNs. Also it must be kept in mind that in

mobile ad-hoc networks typically there are no handoffs like in cellular wireless

networks that can cause long intermittent delays. Th delays caused due to link

failures can be dealt with by the use ofELFN, TCP-F [24, 28, 34] etc.

With this knowledge we can say that the features and extensions which are

helpful for LFNs might not be as helpful for mobile ad-hoc networks due to the

significant characteristic difference in the delay-bandwidth product. With the

constraint of power, the extra protocol processing resulting in no extra benefit in

22

efficiency or throughput, is a problem for wireless ad-hoc nodes. These various

options, which are suitable only for gigabit networks and need to be modified for

slow wireless networks, are discussed below.

4.1 Timestamp Option

TCP implements reliable data delivery by re-transmitting segments that are

not acknowledged within some retransmission timeout (RTO) interval. Accurate

dynamic determination of an appropriate RTO is essential to TCP performance.

RTO is determined by estimating the mean and variance of the measured round-trip

time (RTT), i.e., the time interval between sending a segment and receiving an

acknowledgment for it [11]. Many TCP implementations base their RTT

measurements upon a sample of only one packet per window. While this yields an

adequate approximation to the RTT for small windows (used in mobile ad-hoc

systems), it results in an unacceptably poor RTT estimate for LFN which have very

large sized windows.

The timestamp option is one in which the sender uses 12 bytes of the TCP

options field to place a timestamp in every segment sent (including

retransmissions) to the receiver. The receiver echoes this timestamp value in the

ACK packet sent to the sender. By using this timestamp option in every packet the

sender is able to get a better value of the round trip time (RTT). The sender gets an

estimate of the RTT from every ACK received from the receiver by subtracting the

echoed timestamp value that it received from the receiver, from the current

timestamp.

This option is actually very useful for high-speed connections but has less

use for slower wireless connections. In wireless networks one sample of the RTT

per window is good enough for an accurate estimate of the RTT. Getting more

samples of the timestamp can in fact cause much more oscillations in the estimated

value of the RTO. Also, the sender as well as the receiver have to do more

23

processing in order to attach the timestamp in every packet and to calculate the

RTT after it receives the ACK for the particular segment. Hence this option only

causes more protocol processing at the nodes with no significant gain in the

accuracy of the RTO values calculated. With a reliable Link Layer the significance

of a very accurate RTO is also diminished. Also, due to the variations in the

propagation delay it is better to have a conservative estimate of the RTO.

Removing this option for mobile wireless systems would give us a slight gain, due

to the smaller header size and lower processing costs.

PAWS (Protection Against Wrapped Sequence Numbers) uses the same

TCP Timestamps option as the RTT mechanism described above, and assumes that

every received TCP segment (including data and ACK segments) contains a

timestamp whose values are monotone non-decreasing in time. The basic idea is

that a segment can be discarded as an old duplicate if it is received with a

timestamp, which has a value that is less than the last previous timestamp received

on this connection. This is again a very useful option for very high-speed networks.

This feature is not required for slower wireless networks, since the wrap around of

sequence numbers will not occur within the MSL (Maximum Segment Lifetime)

due to the lower transmission speeds of wireless links. It is clear that the sequence

number wrap around problem only occurs at gigabit speeds, and will never occur at

slow wireless speeds. It should be mentioned here that having the PAWS checking

is not much of a load on the nodes but still it would be better not to have them since

the case would never occur anyway. However, PAWS checking is the first step in

the frequent fast path of the TCP code, and it is best to get rid of it, as it has no

purpose for wireless networks. By removing this check we can make the frequent

fast path even more efficient.

24

4.2 Window Scale Option

The TCP header uses a 16-bit field to report the receive-window size to the

sender. Therefore, the largest window that can be used is 216 = 65K bytes. The

window scale extension expands the definition of the TCP window to 32 bits and

then uses a scale factor to carry this 32 - bit value in the 16-bit Window field of the

TCP header. The scale factor is carried in a new TCP option, called Window Scale.

This option is sent only in a SYN segment (a segment with the SYN bit on), hence

the window scale is fixed in each direction when a connection is opened. Again it

should be noted that very large windows are not necessary for slower wireless

connections, hence this option is not required by wireless TCP. However, it does

have a purpose in very high-speed connections as the window size will be a

limitation in those connections, so larger window sizes might have to be negotiated

in the SYN segment if allowed by both the receiver and the sender. Avoiding the

window scale option would save us some protocol processing at the receiver and

the sender (though this saving in protocol processing would be very little since a

simple shifting operation is not very expensive).

4.3 SACK Option

Any packet losses in an LPN can have a catastrophic effect on throughput.

This happens because the time taken for the sender to get feedback about the loss is

very high due to the high bandwidth-delay product. This effect is exaggerated by

the simple cumulative acknowledgment of TCP. Whenever a segment is lost, the

transmitting TCP will eventually time out and retransmit the missing segment.

However, the sending TCP has no information about segments (after the lost

segment) that may have reached the receiver and been queued, because they were

not at the left window edge. So the sender may be forced to retransmit these

segments (after receiving three duplicate ACKs) unnecessarily unless a new

25

updated ACK is received, which would send one after receiving the lost packet. In

the case of slower wireless connections this is not the case, since many segments

after the lost segment would not have been transmitted to the receiver (because the

propagation delay is not very high). Hence the number of needless retransmissions

would be very small.

If the sender is bursty then the number of segments retransmitted obviously

increases. TCP may experience poor performance when multiple packets are lost

from one window of data. With the limited information available from cumulative

acknowledgments, a TCP sender can only learn about a single lost packet per round

trip time. An aggressive sender could choose to retransmit packets early (fast

retransmit and fast recovery), but such retransmitted segments may have already

been successfully received. A Selective Acknowledgment (SACK) mechanism,

combined with a selective repeat retransmission policy, can help to overcome these

limitations. The receiving TCP sends back SACK packets to the sender informing

the sender of data that has been received. The sender can then retransmit only the

missing data segments. This is not useful for wireless links in which the round trip

time is not very high as compared to WANs which use high speed links.

If SACK is implemented there is a benefit of not re-transmitting needlessly

at all, but the extra protocol processing involved in implementing SACK might

overcome this small benefit gained. There is a certain trade off between the amount

of power required by the sender to retransmit the packets and the power required to

do the SACK protocol processing. SACK protocol processing power is significant;

in fact we see in the results of our experiments that there is less power consumed

when we tum off the SACK option. In the non-LFN regime, selective

acknowledgements reduce the number of packets retransmitted (not a whole lot),

but do not otherwise improve performance, making their complexity (and extra

power consumed due to this complexity) of questionable value. SACKs are much

more important in the LFN regime and are not very helpful in the power

constrained slower wireless networks. SACKs are only useful if there are multiple

packet losses in a single window.

26

It must be kept in mind that SACKs are only useful if the physical medium

is highly error-prone and there is a general tendency of getting more than a single

packet loss in a particular window. But since the wireless MAC protocol standard

used is 802.11, which is more reliable as compared to Ethernet, the wireless link

appears to be quite error-free to the TCP layer. Therefore we are able to justify not

having the SACK option implemented to save on energy at the nodes.

4.4 Header Prediction

"Header prediction" [10] is a high-performance transport protocol

implementation technique that is most important for high-speed links. This

technique optimizes the code for the most common case, receiving a segment

correctly and in order. Using header prediction, the receiver asks the question, "Is

this segment the next in sequence?" This question can be answered in much fewer

machine instructions than the question, "Is this segment within the window?"

Adding header prediction to the timestamp procedure leads to the following

sequence for processing an arriving TCP segment- this is also the implementation

in Linux:

HI) Check timestamp: this means check to see if the packet is not a delayed packet

by checking the timestamp value with the most recent· timestamp value received

earlier.

H2) Do header prediction: if the segment is next in sequence (checked by using the

frequent path code which basically has about five comparisons) and if there are no

special conditions requiring additional processing, accept the segment, record its

timestamp, and skip H3.

H3) Process the segment normally: (this is the slow path, which would only be

taken if there are errors etc). This includes dropping segments that are outside the

27

window and possibly sending acknowledgments, and queuing in-window, out-of­

sequence segments.

In the above algorithm the modification that we can make would be to

interchange steps H 1 and H2, i.e., to perform the header prediction step H2 first,

and perform H1 and H3 only when header prediction fails. This can be done

because H2 basically also checks for H 1 except for the case when the packet

received is exactly the same packet (i.e. next in sequence with the same headers)

but from the previous window. This could be a performance improvement, since

the timestamp check in step H1 is very unlikely to fail, and it requires interval

arithmetic on a finite field, which is a relatively expensive operation [10]. To

perform this timestamp check on every single segment is contrary to the philosophy

of header prediction and speeding up the frequent path.

However, putting H2 first would create a hazard: a segment from 232 bytes

in the past might arrive at exactly the wrong time and be accepted mistakenly by

the header-prediction step. The following reasoning has been introduced in [12] to

show that the probability of this failure is negligible. If all segments are equally

likely to show up as old duplicates, then the probability of an old duplicate exactly

matching the left window edge is the maximum segment size (MSS) divided by the

size of the sequence space. This ratio must be less than 2-16
, since MSS must be less

than 216 (MTU is only 2296 bytes at the most for IEEE802.1lb); for example, it

will be

(211)/(232
) = 2-21 for the 802.11 protocol.

However, the older a segment is, the less likely it is to be retained in the network

(due to TTL - time to live, and it being rejected by some intermediate router).

Under any reasonable model of segment lifetime the probability of an old duplicate

arriving exactly at the left window edge must be much smaller than 2-16
• The 16-bit

TCP checksum also allows a basic unreliability of one part in 216
• A protocol

28

mechanism whose reliability exceeds the reliability of the TCP checksum should be

considered "good enough", i.e., it won't contribute significantly to the overall error

rate. From the above reasoning it can be concluded that we can ignore the problem

of an old duplicate being accepted by doing header prediction (step H2) before

checking for the timestamp (step Hl).

But it has been argued that any reasoning based on a probability theory is

not a good enough reason for removing the PAWS check. As the mobile hardware

improves we can change the relatively expensive PAWS operation into not too

expensive an operation and thus be able to have this check as it is. If we do not

have the Timestamp option then we do not save anything further by modifying the

header prediction algorithm - since the PAWS checking is anyway disabled. At the

TCP sender the modification of the header prediction algorithm has very little

effect.

4.5 Cumulative and Delayed ACK Implementation

Currently the Linux implementation of TCP is such that for every two full

packets received the receiver sends a cumulative ACK (acknowledges both the

packets) to the sender. This scheme is useful for very high- speed networks so as to

get instant feedback (instant feedback is necessary because the delay-bandwidth

product is very high) on the network status and also to get more samples of the

RTT (due to the timestamp option). However this scheme does not make good use

of the window size advertised by the receiver to the sender. Also it does not make

good use of the delayed and cumulative acknowledgements allowed by TCP. The

receiver sends an ACK for every two full segments received from the sender and

this greatly increases the protocol processing at the receiver. The protocol

processing at the sender also increases due to this, as it has to update its status

based on these frequent (one in every two full segments) ACKs received from the

receiver. If we change the implementation of TCP to instead send delayed ACKs

29

(say every 500ms) instead of sending ACKs for every two full segments received,

then we would receive less number of ACKs for a file transfer (if the file is longer

than 2 full packets). This would obviously result in some improvement in the

power efficiency of the code. This implementation will cause us to get less samples

of the RTT but that will not cause a problem as we expect our RTT estimation to be

quite accurate. One may argue here that the response time for small sized file

transfers would become longer but this is not the case as explained below. The

response time for small sized file transfers will not be affected because the ACK

will anyway be received in 500ms.

Let us see why this is the case with an example:

Suppose the server sends a small sized packet (say 500 bytes) and does not want to

send any more data. The server will set the FIN flag in the packet header of the

TCP data packet. This will cause the receiver to respond immediately (instead of

waiting for 500ms) with an ACK.

We see that changing the implementation of the cumulative delayed ACK

does not cause an effect in the response time of small data transfers, whereas, it

does give us an improvement in the power efficiency of the protocol processing at

the nodes. The power savings would be at the receiver and sender- the receiver

would save by having to send fewer ACKs, and the sender would save by having to

respond to fewer ACKs. The contention and collisions at the MAC layer would be

less thus contributing to the power savings. TCP receivers, which implement this

type of Delayed Acknowledgement (called Stretch ACK Violation as explained in

[32]) behavior will cause TCP senders to generate burstier traffic, which can

improve performance in non-congested environments. Generating fewer ACKs

increases the amount of time needed by the slow start algorithm to open the

congestion window to an appropriate point, which diminishes performance in

environments with large bandwidth-delay products (not in wireless ad hoc

networks). Finally, generating fewer ACKs may cause needless retransmission

timeouts in lossy environments, as it increases the possibility that an entire window

of ACKs is lost, forcing a retransmission timeout. The 802.11 MAC protocol takes

30

care of this and does not allow the number of retransmissions to increase

excessively.

Another point to bear in mind is that nowadays, wireless cards with support

for IEEE802.11 MAC protocol are widely available. This MAC protocol is more

reliable as compared to Ethernet and has link layer acknowledgements and

retransmissions. Hence the assumption of having an error prone wireless link is not

entirely true from the point of view of the TCP layer. The TCP layer in fact can

view the link to be quite error-free and so should be tuned accordingly to get better

power and throughput performance.

4.6 MTU Size

As we know Ethernet supports a maximum MTU (message transfer unit)

size of 1500 bytes. For wireless transmissions the MAC protocol used is the

IEEE802.11 b standard. The IEEE802.11 b standard defines the maximum MTU

size to be 2296 bytes and allows all protocols running above it to use this size as its

MTU. Hence the IP layer above 802.11 MAC protocol will not fragment datagrams

that it receives from the transport layer which are within 2296 bytes. So, the TCP

layer can negotiate a MSS (maximum segment size) of 2296 bytes and send

datagrams with a maximum size of 2296 bytes without the fear of having the IP

layer fragment them and thus increase processing costs. It is obvious that for data

transmissions, which are longer than one segment, it is better to send longer

segments - this saves us protocol processing and also saves us the header overhead.

This decreases the protocol processing at the nodes although it will increase the

cost of retransmissions. The protocol processing required at the nodes for a single

segment is the same no matter what the segment size. Hence for large file

transmissions using longer segment size reduces the power consumed for the

transmission. However, the number of retransmissions increases, since the

31

probability of a single segment being in error now increases. The probability of a

single bit being erroneous in a 2296-byte segment is obviously higher than the

probability of a single bit being erroneous in a 1500-byte segment. If we have a

single bit error in a segment, that particular segment has to be retransmitted. Going

by this logic we can say that the number of retransmissions per segment is going to

increase. Also if we have smaller sized segments, then the power consumed in

retransmissions would be less since the size of the retransmitted segments would be

small. This causes us to limit the maximum size of the MTU accordingly so as to

have good power efficiency along with good throughput, good channel utilization

and at the same time not have very high retransmission costs. We see that in

wireless ad-hoc networks using IEEE802.11 b as a MAC protocol the number of

errors at the TCP layer is low and so it makes more sense to use larger packets.

TCP is designed to find out the path MTU for a certain connection and generally it

is seen that the path MTU is fixed to 536 bytes for non-local transmissions. But in

an ad-hoc network since all the systems would be using IEEE802.11 b protocol we

can always use 2296 bytes as MSS even for non-local transmissions. However, it

should be noted that for connections to the Internet the MSS negotiated would be

1500 bytes because Ethernet supports a MTU of 1500.

Finally, we observe that most of the TCP options discussed above are

important for LFN's and/or very high-speed networks. For low-speed wireless ad­

hoc networks, which have a low delay-bandwidth product, it would be a

performance optimization to NOT use these above-mentioned options. A TCP user

concerned about optimal performance over low-speed wireless paths would

consider turning these extensions and options off for low-speed wireless paths.

32

4. EXPERIMENTS AND VERIFICATION

We ran experiments to see the actual performance results of the above

modifications made in the code implementation of TCP in Linux.

The experimental setup consisted of two Samsung SENS 800 laptops with

Pentium-90Mhz processors and 24MB RAM. The operating system installed on the

laptops was RedHat Linux v6.1. The wireless PCMCIA cards used were Lucent

WaveLAN TURBO 11Mb SILVER with 64-bit encryption capability at the

hardware level.

The power characteristics of the WaveLAN cards was the following:

Doze Mode

Receive Mode

Transmit Mode

Power Supply

lOrnA

180mA

280mA

5V

Transmitter Receiver

Figure 5.1: Experiment Setup

33

These wireless PC cards used the IEEE 802.11 b standard as the MAC

(CSMA/CA) protocol and the transmit range varied depending on the transmit

speed. They supported 4 transmit speeds, namely 11Mb/s, 5.5Mb/s, 2Mb/s and

1Mb/s. The R-F Frequency band was 2.4GHz and the number of usable channels

was 11 as specified by the FCC.

For these cards we used the driver developed by Andreas Neuhaus and the

version of the driver [18] was WaveLAN/IEEE802.11 driver v1.0.3. The driver was

available for Linux Kernel v2.x.x. This driver allowed us to modify the segment

MTU size used in transmissions. In ad-hoc mode the driver allowed us to setup the

speed of transmission and also the channel to be used. For our experiments we

selected channel 1 (the default) and also set the speed to its maximum i.e. 11Mb/s.

The hardware 64-bit encryption was turned off as we did not want any encryption.

The RTS/CTS mechanism of the 802.11 protocol was turned off, as this was not

required for our setup.

These two laptops were placed about one inch from each other and the

distance between the two wireless cards (antenna's) was about 13 inches as shown

in Figure 5.1. For all the experiments one of the laptops was used as a sender and

the other as a receiver. The battery for the sender was always fully charged for 2

hours to full capacity with the laptop in off/charge mode. It should be noted that

the charge of the battery would be generally restored to its full capacity in about 1.5

hours but the laptop would be kept in the same mode (off/charge) for another 0.5

hours. The receiver was constantly connected to a power source since we wanted to

test the power characteristics of the transmitter.

For all experiments the setup of the laptops was changed so that no power

saving feature would be on. All the various devices (disk, display, 110 devices etc)

of the laptop would be in full power consumption mode as long as the battery

lasted. Before the start of the experiments the monitor (LCD) display of the sender

would be turned off and the experiment would be started by disconnecting the

power connector from the sending node, and the sender would be operating on its

fully charged battery. This was done because we wanted to use most of the battery

34

power for transmitting packets rather than executing other processes in the laptop.

To verify that a significant amount of power was consumed for transmission we did

a simple experiment. We first drained the battery with no processes running on the

laptop. In this condition the sender (it wasn't sending any data) lasted for 223

minutes. Then we configured the sender to continuously send data and this time it

lasted for 110 minutes. Thus we concluded that transmission did use up a

significant amount of battery power hence any changes in the battery power

consumption for transmission would be noticeable.

The actual experiment itself consisted of the sender transmitting a 1MB

buffer of data continuously to the receiver. This data when received at the receiver

would be discarded and the receiver would be ready immediately for the next

packet. Hence the sender was in an endless loop sending data and the receiver

would discard the data received and wait for the next segment of data (this ensures

that the window size does not change).

Tcpdump with appropriate filter setting was run on the receiver to record

the time the sender was alive (the sender's battery would discharge completely and

the sender would die), and also the number of bytes the receiver had received from

the sender. Each set of experiments was run 5 times and the average was recorded.

The deviation among the various runs of the experiments was insignificant within

experimental limits (not more than 1 minute for the lifetime of the sender). The

readings of the lifetime of the sender were rounded off to the nearest minute.

Some facts that should be kept in mind about the experimental setup are the

following:

a) We are using 802.11 as the MAC protocol, which provides link-level

acknowledgements and retransmissions so we have a relatively error-free

wireless link.

b) We are assuming roaming of the nodes but since it is an ad-hoc environment

there are no disconnections and reconnections from base stations - hence no

handoffs etc.

35

c) The experimental setup has only one hop, but a multi-hop ad-hoc network

would behave similarly.

5.1 Varying the MTU Size

Four different sizes of MSS were chosen namely 2296, 1500, 1000 and 500

bytes. Figure 5.la shows the results of the number of bytes transported during the

lifetime of the sender. Figure 5.lb shows the number of minutes for which the

sender was alive for the different MSS sizes. As we can see the number of bytes

transported increases as the MSS size increases. It should also be noted here that

even though the lifetime of the sender decreases as the MSS increases, still the total

number of bytes transmitted by the sender during its lifetime is greater. This shows

that the protocol overhead greatly reduces at the sender as the MSS increases.

Going by the same logic we can see that the protocol processing per packet at the

receiver would also decrease. We get power savings at both the receiver and sender

by increasing the MSS. It would be a good idea to try and find out the maximum

MTU for which we get a significant improvement in the energy consumed at the

nodes.

5.2 SACK Option

Figures 5.2a and 5.2b show the effect doing away of the SACK option has

on the number of bytes transmitted and lifetime of the sender. As we can see in the

graph turning the SACK option off causes us to be able to transport more number

of bytes. This shows that the protocol processing required by the SACK option in

fact causes us to expend more power than the savings achieved by having the

SACK option (less number of retransmissions). Again the savings would be of a

similar order at the receiver also. In this graph it is seen that the actual savings are

4.5

4

~3.5

~ 3
~
-~ 2.5
c::
~
I- 2
!3
>.
Ill 1.5

0.5

140

120

"@"100
"S
c:: .E
iii 80

"C c::
(])

rn
0 60
(])

E
l=
5 40

20

Bytes Transmitted vs MSS

500 1000 1500 2000
MSS(bytes)

Figure 5.1a: Bytes Transmitted vs MSS- Normal

Life Time of Sender vs MSS

OL----
0 500 1000 1500 2000

MSS(bytes)

Figure 5.lb: LifeTime of Sender vs MSS- Normal

36

2500

2500

37

only for a MSS of 2296. For all other MSSs we get better performance by having

the SACK option on. This can be explained by the fact that the SACK option only

increases efficiency when there are multiple losses in a single window. As the MSS

increases we see that a single window size consists of less number of packets and

hence the probability of having multiple packets lost in a single window decreases.

This causes SACKs to provide less increase in efficiency as the MSS increases. So

for a large MSS it is in fact better to have the SACK option off and save power by

not having to undergo the SACK protocol processing instead.

Figure 5.2c shows the comparison between having the SACK option off and

having the SACK option on. However, we should keep in mind that given multiple

packet loss in a single window (due to congestion etc) it is better to have the SACK

option on. In the case of congestion and subsequent packet droppings by the nodes

it is always better to have the SACK option on. But the routing layer can control

congestion and hence if our sole aim is to save energy at the TCP layer then we can

tum the SACK option off. It can be argued that turning the SACK option on or off

depends very much on the given situation and traffic patterns. However, we must

not forget that the bit error rate is not a very significant factor because the MAC

802.11 b will take care of that by doing retransmissions at the MAC layer. Figure

5.2c and 5.2d show the comparison between the cases for which SACK is off and

SACK is on. We should note that by turning SACK off we get an increase both in

the lifetime and number of bytes transmitted. This shows that the efficiency has not

increased.

5.3 Window Scale Option

Figure 5.3 shows the effect turning the window scale option off has on the

bytes transmitted by the sender. As explained previously this option does not cost

much protocol processing and so the improvement by not having this option is

minimal. Since the effect of this option is minimal and it does not cost much power

38

Bytes Transmitted vs MSS -SACK OFF

5

500 1000 1500 2000 2500
MSS(bytes)

Figure 5.2a: Bytes Transmitted vs MSS - SACK OFF

Life Time of Sender vs MSS
140

120

1{f100
"S
c::
].
w 80
"0 c::
Q)

Cl)

0 60
Q)

E
i=
2 40
:::i

20

0
0 500 1000 1500 2000 2500

MSS(bytes)

Figure 5.2b: LifeTime of Sender vs MSS - SACK OFF

39

Bytes Transmitted vs MSS- SACK

- SACKON
- SACKOFF

5

oc___ __ _
0 500 1000 1500 2000 2500

MSS(bytes)

Figure 5.2c: Bytes Transmitted vs MSS - SACK

LifeTime vs MSS- SACK
140

- SACKON
- SACKOFF

120

100

Ul
Q)

:; 80 c: .E
Q)
E

60 i=
~
:.::i

40

20

0
0 500 1000 1500 2000 2500

MSS(bytes)

Figure 5.2d: LifeTime of Sender vs MSS- SACK

<n

9

4.5 X 10

4

3.5

.Sl 3
};
:0
~ 2.5
.E
(/)

ai 2
~
ID
>,1.5
co

0.5

Bytes Transmitted vs MSS- WSCALE: MTU = 1500

- WSCALEOFF
- WSCALEON

OL-------~-------L------
0 500 1000 1500 2000

MSS(bytes)

Figure 5.3: Bytes Transmitted vs MSS- WSCALE

40

2500

in not having this option hence it is better to have this option. Also larger window

sizes can help in reducing congestion etc which has not been taken into

consideration in our experiments. The lifetime of the sender for both the cases is

almost similar also.

5.4 Time Stamp Option

Figure 5.4 shows the effect turning the time stamp option off has on the

number of bytes transmitted by the sender. In this we see that the effect of turning

this option off is quite significant. But this significant effect can be explained by

the fact that turning this option off in fact causes the frequent fast path to be much

faster. This is because if there is no time stamp then there is no processing for

PAWS checking which is in the fast path. This causes a significant saving.

41

However when combined with modified header prediction in which the PAWS

checking is anyway done away with we will not get as much improvement by

having this option off. Still there will be an improvement due to the saving in the

header and also due to the calculation of the RTT for every ACK received. The

header prediction modification is actually not required since PAWS checking will

not be done anyway if the timestamp option is off. The best saving is achieved by

having the timestamp option off. The lifetime of the sender with the TimeStamp

option off is 115 minutes and with the option it is 111 minutes. Hence we see that

there is some energy conserved by having this option off.

6
x 109 Bytes Transmitted vs MSS- TSTAMP

r-=-:-==------,

5

o~------~------~------~--------~--
0 500 1000 1500 2000 2500

MSS(bytes)

Figure 5.4: Bytes Transmitted vs MSS - TSTAMP

42

5.5 Header Prediction Modification

Figure 5.5 shows the effect of header prediction modification on the number

of bytes transmitted by the sender. As mentioned before the saving is due to the

fact that the PAWS checking is moved out of the frequent fast path. As explained it

is better to have the time stamp option off and at the same time not modify the

header prediction so as to get more savings in the energy consumed at the node.

Actually header prediction modification will cause most of its effect only at the

receiver and will not affect the power savings as much at the sender. With normal

header prediction the lifetime of the sender is 111 minutes whereas with modified

header prediction it is 114 minutes. Again we see that there is some energy

conserved by having a modified header prediction algorithm.

6
x 10

9 Bytes Transmitted vs MSS- Modified Header Prediction

- Header Prediction Modified
- Header Prediction not Modified

5

500 1000 1500 2000 2500
MSS(bytes)

Figure 5.5: Bytes Transmitted vs MSS -Header Prediction

43

5.6 Delayed ACK Implementation

Figure 5.6 shows the effect of implementation of delayed ACK based on

time on the number of bytes transmitted by the sender. This saving is due to the fact

that less number of ACKs are sent by the receiver to the sender and less number of

ACKs have to be received and processed by the sender. Hence the savings are at

both the receiver and the sender. We see actually that without the modification one

ACK is sent for every two packets received but with the modification there is a

delayed ACK every 500ms if there are no errors in transmission. The lifetime of

the sender in both the cases was 106 minutes. This tells us that the efficiency

increases when we reduce the frequency of ACKs from the receiver. A similar

effect is achieved at the reciever.

Bytes Transmitted vs MSS- Delayed ACK Modified

- Delayed ACK based on packet count
- Delayed ACK based on time

5

OL-------~------~--------~------~---
0 500 1000 1500 2000 2500

MSS(bytes)

Figure 5.6: Bytes Transmitted vs MSS -Delayed ACK Modified

44

5.7 Enabled RTS/CTS

Figure 5.7a shows the comparison between no changes made to the current

Linux TCP code and with all the significant optimizations incorporated. From the

above we see that the optimizations that should be incorporated are MSS increased

to 2296, SACK option off, header prediction not modified, timestamp option off,

and delayed ACK implemented based only on time. This graph shows that the

energy efficiency achieved is almost about 29%. The lifetime of the sender with no

changes to TCP is 122 minutes and for the case with all changes it is 113 minutes.

So we see that although the lifetime of the sender decreases with all the changes

still the number of bytes transferred increases, which means that the efficiency

increases greatly.

Figure 5.7b is the same as Figure 5.7a with RTS/CTS enabled. As we know

that in the MAC 802.11 protocol there is a provision for media reservation by using

initial handshaking. For all the above experiments as mentioned we had this feature

turned off but for this experiment we had this featured turned on. For a packet of

size greater than 1000 bytes there would be an initial RTS/CTS handshake

performed between the two MAC layers to ensure that the media is reserved. By

choosing the size as 1000 bytes for mandatory handshaking we ensure that the

initial handshaking is required only for data packets and not for ACKs. This figure

shows us that there is higher saving in energy with the RTS/CTS feature on. This

can be partially attributed to the larger MSS which results in less number of

RTS/CTS packets exchanged between the sender's and receiver's MAC layers.

There is some gain because of the less number of errors caused due to the fact that

the medium is reserved before and data is transmitted. In this the lifetime of the

sender is 113 minutes for the case when all changes are made to TCP and it is 114

minutes when no changes are made. This tells us that enabling RTS/CTS increases

the lifetime of the sender relatively. The difference in the lifetime of the sender

between the two cases is much less when RTS/CTS is enabled which tells us that

6
x 1 o9 Bytes Transmitted vs MSS - No RTS/CTS

5

4.5

4

1if3.5
>.
e 3 -g
=
-~ 2.5
s::::
~
I- 2
ID
~1.5

0.5

500 1000 1500 2000
MSS(bytes)

Figure 5.7a: Bytes Transmitted vs MSS- Best

Bytes Transmitted vs MSS - RTS/CTS enabled

OL-------~------~--------
0 500 1000 1500 2000

MSS(bytes)

2500

2500

Figure 5.7b: Bytes Transmitted vs MSS- Best with RTS

45

46

the efficiency does not increase as much as it does for the case when RTS/CTS is

disabled.

5.8 Distance

For this experiment we increased the distance between the sender and

receiver to 10 meters. However within experimental limits (not more than 1 minute

for the lifetime of the sender) we found the results to be similar to the results

obtained when the distance between the sender and receiver was 1 inch.

5.9 Energy Saving at the Receiver

As mentioned we also expect a significant saving of energy at the receiver

due to the modifications made. Hence this time we test for the savings on the

receiver. Figure 5.9 shows the comparison between the bytes received when all the

optimizations were turned on and with none of the optimizations enabled. In this

experiment we kept the MTU=2296 for both the cases to see the effect of the other

optimizations on the receiver and also enabled RTS/CTS handshaking. The lifetime

of the receiver was 121 minutes with no changes and 120 minutes with all the

changes.

5.10 Errors at the TCP layer

We measured the total number of retransmissions at the TCP layer of the

sender during its lifetime. This gave us a measure of the quality of the wireless link.

The number of retransmissions for an MTU of 1500 was found to be about 50. This

47

6
x 1 o9 Bytes Transmitted vs MSS - No RTS/CTS;1 Ometers

5

QL-------~------~--------
0 500 1000 1500 2000 2500

MSS(bytes)

Figure 5.8: Bytes Transmited vs MSS- Distance

6
x 109 Bytes Received vs MSS- RTS/CTS enabled:

5

0 500 1000 1500 2000 2500
MSS(bytes)

Figure 5.9: Bytes Received vs MSS- RTS and MTU = 2296

48

is quite a high error rate considering the fact that the MAC protocol is considered to

be reliable. However the number of retransmissions is generally high because of the

timer interactions between the TCP and the MAC layers and also because of the

competing and redundant retransmissions by the TCP Layer since duplicate ACKs

are not suppressed by the MAC layer.

5.11 Interfering Traffic Case

To verify our results for the case of interfering traffic we ran some

experiments. A total of 8 sets of experiments were run. Table 5.1 shows the results

that we obtained. In this table continuous traffic means that there was another node

continuously sending data to the receiver. Intermittent traffic was the case when the

interfering node would send about 5MB of data every 5 minutes. In this we had all

the modifications made to TCP and we used an MTU of 1500 bytes. RTS on means

that all the three nodes had the setting for RTS/CTS handshaking to be on for

packet exchanges in excess of 1000 bytes. From the table we can see that for the

case of continuous traffic the lifetime of the sender was generally high but the bytes

transmitted was generally low. Also there is a significant difference between the

SACK on and SACK off case when RTS/CTS is off. This shows that a huge

amount of power is expended in executing the code for SACK and hence the total

number of bytes transmitted is lower during the lifetime of the sender. This is not

the case with intermittent load though - this tells us that when we have no initial

handshaking and the traffic load is high it is better not to have the SACK option on

- since a lot of power would be consumed in going through the SACK code. Again

it should be noted that depending on the traffic conditions a decision about having

the SACK option on or off has to be made. Other than that the table shows results

that are intuitive.

49

Time(mins) Bytes
RTS on; SACK OFF,Continuous Traffic 128 2970847921
RTS on; SACK ON, Continuous Traffic 132 3058387131
RTS off; SACK OFF,Continuous Traffic 124 3811377004
RTS off; SACK ON, Continuous Traffic 117 3647866576
RTS off; SACK OFF,Intermittent Traffic 106 4183867981
RTS off; SACK ON, Intermittent Traffic 109 4185749921
RTS on; SACK OFF,Intermittent Traffic 111 3646355620
RTS on; SACK ON, Intermittent Traffic 112 3631339254

Table 5.1: Interfering Traffic Case

50

6. CONCLUSIONS AND FUTURE WORK

As can be seen by the results of the experiments, we do get quite a

significant improvement in the energy efficiency of TCP by undertaking certain

modifications in the way the protocol is implemented. First of all the MSS

negotiated should be the maximum allowed by the path from the sender to the

receiver and should not be 576 bytes for non-local connections. It should preferably

be 2296 bytes since the MAC 802.11 protocol supports this size and could indeed

be larger if the MAC 802.11 protocol supported it. Another improvement is by

changing the implementation of delayed ACK to be dependent on time rather than

the packet count of 2 packets. This makes more effective use of the window and

thus causes power savings. The other improvement is by turning the timestamp

option off- this causes saving by removing the PAWS checking from the frequent

fast path of the TCP code. The SACK option is questionable and highly dependent

on the traffic patterns and the number of nodes present etc. For our experiments we

see that turning the SACK option off does give us an improvement but this might

not be the case if there were variations in traffic which caused packets to be

dropped. Hence it is always better to experiment with the SACK option before

deciding whether to tum it on/off given the situation it is being used in. It must be

noted that for connections to the Internet the MSS negotiated by TCP would be

1500 as the Internet mostly consists of Ethernet based interfaces which only allow a

MTU of 1500 bytes. However, for ad hoc transmissions the MSS negotiated would

be 2296 and thus the energy savings would be greater.

From the above discussion we can summarize the following:

MSS - maximum power saving.

TimeStamp Option - significant power saving.

Header Prediction Modification - significant power saving (comparable to

the TimeStamp Option case).

51

Delayed ACKS (500ms)- significant power saving.

SACK Option - significant power saving but might not be the case

depending on traffic and load on the network.

WindowScale Option - no power saving.

Data compression can also be considered as a method of saving energy. If

we have a good compression algorithm and very fast low energy consuming

processors then maybe sending compressed data would cause us to save some

power. We did run experiments in which the sender sent compressed data to the

receiver but the results we got were negative - i.e. more battery power was

consumed in compressing the data and sending it rather than sending uncompressed

data directly. This loss could be attributed to the high consumption of battery

power in data compression since the processor we used was 90Mhz Pentium.

Hence as the hard ware of our mobile systems changes data compression can also

be considered a good option. In a newer version of the WaveLan driver there is

provision for WEP encryption which can be turned on to see the effect of

encryption on the power consumption. Also there is a power save mode of the

WaveLan card which can cause some savings in power when the card is idle and

not transmitting or receiving data. The effect of the above modifications in the TCP

layer can be verified for more than one hop. Also various traffic patterns can be

tested to see the effects of congestion etc.

There are two possible areas of future work. One is at the MAC layer. Some

modifications can be made in the 802.11 layer itself in order to ensure that it

transmits an error free and in sequence data to the next hop. The interactions

between the MAC Layer and TCP Layer timers must be reduced. The duplicate

ACKs received by the sender for which local retransmissions have been done, can

be suppressed by the MAC layer. These will cause a decrease in the number of

competing and redundant retransmissions by the TCP sender. The backoff strategy

at the MAC layer can be made less aggressive eg: MACAW. Congestion control

can be added to the MAC layer. Selective queue scheduling can also be

52

implemented at the MAC layer to avoid congestion and capture of the channel by a

certain node. Another area that can be researched is the support of higher MTU by

the MAC layer - this will at least help in energy conservation for transfers over

purely mobile environments with similar hardware.

The other area where future work is possible is the TCP layer. Here the

ELFN scheme can be implemented to take care of the link failures due to mobility.

Route failure and re-establishment packets can also be used for this. Some steps

can be taken to reduce the side effects of the Stretch ACK Violation. The TCP

sender can be limited in its burstiness depending on the traffic patterns. The

increase in the congestion window can be dependent on the bytes acknowledged

instead of the number of ACKs received. Also the implementation of Stretch ACK

Violation can be dynamic and we can send an ACK every certain number (more

than 2) of packets depending on the traffic. Another area of TCP that can be

experimented with is the fast retransmit and duplicate ACK algorithm. Here we can

try to suppress TCP sender fast retransmit when we know that the underlying MAC

layer will take care of the packet losses.

53

BIBLIOGRAPHY

1. Ramon Caceres and Liviu Iftode, "Improving the Performance of Reliable
Transport Protocols in Mobile Computing Environments", IEEE Journal in
Selected Areas in Communications Vol.13, No.5, June 1995 (also in Mobile
Computing, Eds. T. Imielinski and H. Korth, Kluwer Academic Publishers,
Boston, 1997).

2. Ajay V. Bakre and B. R. Badrinath, "Indirect Transport Layer Protocols for
Mobile Wireless Environment", Mobile Computing, Eds. T. Imielinski and
H. Korth, Kluwer Academic Publishers, Boston, 1997.

3. Kevin Brown and Suresh Singh, "M-TCP: TCP for Mobile Cellular
Networks", ACM Computer Communications Review, Oct. 1997, pp. 19-
43.

4. R. T. Braden, "Extending TCP for Transactions- Concepts", RFC 1379, 38
pages (Nov.) 1992.

5. R. T. Braden, "Extending TCP for Transactions-Functional Specification",
Internet Draft, 32 pages (Dec.) 1992.

6. V. Jacobson, "Tutorial Notes from ACM SIGCOMM '90", ACM,
Philadelphia, Sept. 1990.

7. C. Partridge and S. Pink, "A Faster UDP," IEEE/ACM Trans. On
Networking, Vol. 1, No.4, August 1993.

8. D. C. Feldmeier, "Multiplexing Issues in Communications System design,"
Proc. ACM SIGCOMM '90, Philadelphia, Sept. 1990, pp.209-219.

9. P. McKenny and K. Dove, "Efficient Demultiplexing of Incoming TCP
Packets," Proc. ACM SIGCOMM '92, Baltimore, 17-20 August 1992, pp.
269-279.

10. V. Jacobson, "4BSD Header Prediction," ACM Computer Communication
Review, Vol. 20, No. 1, April 1990, pp. 13-15.

11. V. Jacobson, "Congestion Avoidance and Control", SIGCOMM '88,
Stanford, CA., August 1988.

54

12. V. Jacobson, R. Braden, and L. Zhang, "TCP Extension for High-Speed
Paths", RFC-1185, LBL and USC/Information Sciences Institute, October
1990.

13. E. P. Harris and K. W. Warren, "Low Power Technologies: A System
Perspective", 3rd International Workshop on Mobile Multimedia
Communications, Princeton, NJ, September 25-27, 1996.

14. F. Douglis, F. Kaashoek, B. Marsh, R. Caceres, K Lai and J. Tauber,
"Storage Alternatives for Mobile Computers", ACM SIGCOMM '97,
Cannes, France, Sept. 14-18, 1997.

15. K. Li, R. Kumpf, P. Horton and T. Anderson," A Quantitative Analysis of
Disk Drive Power Management in Portable Computers", Proceedings 1994
USENIX, San Francisco, CA, pp. 279-291, 1994.

16. S. Zdonik, M. Franklin, R. Alonso and S. Acharya, "Are "disks in the air"
just pie in the sky?", IEEE Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CA, pp.l2-19, December 1994.

17. A. Chandrakasan, T. Simon, J. Goodman and W. Rabiner, "Signal
Processing for an ultra low power Wireless Video Camera", 3rd
International Workshop on Mobile Multimedia Communications, Princeton,
NJ, September 25-27, 1996.

18. andy's Homepage - Linux - WaveLAN/IEEE802.11 driver,
http://www.fasta.fh-dortmund.de/users/andy/wvlan/

19. W. Richard Stevens, "TCPIIP Illustrated", Volume 1, The Protocols,
Addison-Wesley, 1994.

20. Craig Partridge, "Gigabit Networking", Addison-Wesley, 1993.

21. H. M. Chaskar, T.V. Lakshman and U. Madhow, "TCP Over Wireless with
Link Level Error Control: Analysis and Design Methodology", IEEE/ ACM
Transactions on Networking, Volume 7, October 1999.

22. Bikram S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan,
"Improving Performance of TCP over Wireless Networks", 17'h
International Conference on Distributed Computing Systems, Baltimore,
May 1997.

23. Cellular Digital Packet Data System Specification: Release 1.0, CDPD
Forum Inc 1995.

55

24. Gavin Holland and Nitin Vaidya, "Analysis of TCP Performance over
Mobile Ad Hoc Networks", Fifth Annual International Conference on
Mobile Computing and Networking (MOBICOM), Seattle, August 1999.

25. H. Balakrishnan, Venkata N. Padmanabhan, S. Seshan and Randy H. Katz,
"A Comparison of Mechanisms for Improving TCP Performance over
Wireless Links", ACM SIGCOMM 1996.

26. H. Balakrishnan, S. Seshan and Randy H. Katz, " Improving Reliable
Transport and Handoff Performance in Cellular Wireless Networks," Proc.
ACM Mobile Computing and Networking Conf,. ACM, pp 2-11, 1995.

27. H. Balakrishnan, V. N. Padmanabhan and R. H. Katz, "The Effects of
Asymmetry on TCP Performance," Proceedings of the IEEE Mobicom'97,
pp 77-89. Sept 1997.

28. K. Chandran, S. Raghunathan, S. Venkatesan and R. Prakash, "A Feedback
based scheme for improving TCP Performance in ad-hoc wireless
networks", in Proceedings of International Conference on Distributed
Computing Ssytems, Amsterdam, May 26-29, 1998.

29. Mario Gerla, K. Tang and R. Bagrodia, "TCP Performance in Wireless
Multi-hop Networks",in Proceedings of IEEE WMCSA'99, Feb 1999.

30. T. V. Lakshman, U. Madhow, and B. Suter, "Window based Error
Recovery and Flow Control with a Slow Acknowledgement Channel: A
study ofTCPIIP Performance", In Proc. Infocom'97, April 1997.

31. L. Zhang, S. Shenker, and D. D. Clark, "Observations and Dynamics of a
Congestion Control Algorithm: The Effects of Two-Way Traffic", In Proc.
ACM SIGCOMM'91, pages 133-147, 1991.

32. V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Grinner, I. Heavens, K.
Lahey, J. Semke and B. Volz, "Known TCP Implementation Problems",
RFC 2525.

33. Andrew S. Tanenbaum, "Computer Networks", Third Edition, 1997,
Prentice-Hall, Inc., Upper Saddle River, New Jersey.

34. J. Liu and S. Singh, "ATCP: TCP for Mobile Ad Hoc Networks",
INFOCOM'OO (submitted).

