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Abstract approved:

The stability of steady-state solutions of the equations governing two-

dimensional, homogeneous, incompressible fluid flow are analyzed in the con-

text of shear-flow in a channel. Both the linear and nonlinear theories are

reviewed and compared. In proving nonlinear stability of an equilibrium,

emphasis is placed on using the stability algorithm developed in Holm et al.

(1985). It is shown that for certain types of equilibria the linear theory is

inconclusive, although nonlinear stability can be proven.

Establishing nonlinear stability is dependent on the definition of a norm

on the space of perturbations. McIntyre and Shepherd (1987) specifically

define five norms, two for corresponding to one flow state and three to a

different flow state, and suggest that still others are possible. Here, the

norms given by McIntyre and Shepherd (1987) are shown to induce the same

topology (for the corresponding flow states), establishing their equivalence as

norms, and hence their equivalence as measures of stability. Summaries of the

different types of stability and their mathematical definitions are presented.
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Additionally, a summary of conditions on shear-flow equilibria under which

the various types of stability have been proven is presented.

The Hamiltonian structure of the two-dimensional Euler equations is

outlined following Olver (1986). A coordinate-free approach is adopted em-

phasizing the role of the Poisson bracket structure. Direct calculations are

given to show that the Casimir invariants, or distinguished functionals, are

time-independent and therefore are conserved quantities in the usual sense.
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Stability Analysis of Homogeneous Shear Flow:
The Linear and Nonlinear Theories

and a Hamiltonian Formulation

1. INTRODUCTION

A. Motivation for the present study

The transition from laminar to turbulent motion in fluids has been stud-

ied using various approaches since the middle of the last century. A few

comprehensive reviews of the literature have emerged over the past several

years (Drazin and Reid, 1981; Swinney and Gollub (editors), 1985; Chan-

drasekhar, 1961; Joseph, 1976 (vols. 1 and 2)). One of the continuing tasks

is to combine the results of various theoretical approaches with observations

to improve our intuition and direct research for the future. To accomplish

this a unified theory is essential. This study is an effort to link the relatively

new ideas and results of fluid dynamics in a fully nonlinear, Hamiltonian

framework with the classical results based on linear theory. While this has

been done in the literature in various contexts the mathematical tools neces-

sary have become increasingly sophisticated and there is a continuing need

to make these accessible to a wider audience. The present work is an at-

tempt to make a unified overview of these ideas in the specific context of

homogeneous shear flow.

There have been recent contributions in the general theory of Hamilto-

nian fluid dynamics which are useful both qualitatively and computationally

in atmospheric dynamics (see for example Holm et al., 1983, 1985; Hoim and

Long, 1988, Abarbanel et al., 1984, 1986; Olver 1982, 1986; Salmon, 1983).

Yet there are still various aspects which remain as interesting problems. For

example, it is not always clear how to extend rather specialized results to
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geophysical flows and is particularly difficult in the case of the atmosphere

where its particular thermodynamics, compressibility, and boundary condi-

tions tend to complicate the modeling.

The motivation for studying stability of homogeneous laminar flow is

more than just historical precedent. Laminar, steady (time-independent) so-

lutions to the equations of motion governing homogeneous flow are possible

and correspond to observed characteristics of real fluids. Since in some cases

there is an observed transition to turbulence and in other cases the flow re-

mains laminar, there is a desire to classify these flows according to whether

or not such a transition will occur. This has theoretical importance in un-

derstanding the mechanisms of generating turbulence and may eventually

have practical value in prediction of atmospheric events. Beyond any of this

is the pedagogic appeal of dealing with a relatively simpler case to learn the

mathematical framework necessary. The Hamiltonian formulation of fluid

dynamics is fairly involved but it unifies the theories of stability analysis for

unstratified and stratified flows. Of course the stability results can be rather

different, but the mathematical techniques are much the same. This study

is an attempt to present the theory in the homogeneous case with as few di-

gressions as possible. The ideas extend to the stratified case and references

will be given.

The original emphasis in the study of stability of (homogeneous) shear

flow was on the analysis of linearized equations of motion. This approach is

reviewed here in order to compare its results to more recent results based on

nonlinear theories. One important goal is to define carefully what is meant by

stability in these two cases (linear and nonlinear) as a means of comparison.

Stability of shear flow is the primary concern of this study, but there may be
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applications to convective stability by analyzing an appropriate model with

the same mathematical techniques. The nonlinear techniques and Hamilto-

nian formulation have been used in analyzing the stability of stratified shear

flow (Abarbanel et al., 1984, 1986; Abarbanel and Holm, 1987; Holm and

Long, 1989; Holm et al., 1983, 1985), modeling quasigeostrophic dynamics

(Blumen, 1968, 1971, 1978; Dikii, 1965a,b; Holm, 1986, 1988; Swaters, 1986;

Weinstein 1983; Andrews, 1984) and implemented in numerical schemes (eg.

Salmon, 1983). The main advantage of the nonlinear approach is that it has

the promise of giving more general stability criteria, and consequently will

be more realistic. However, we will see that since the nonlinear theory only

provides sufficient conditions for stability that there is always the need to

refine the estimates to include a wider class of flows to be analyzed. The

linear theory can essentially only establish criteria for instability while the

nonlinear theory can establish criteria for stability (Drazin and Reid, 1986)

examples which follow illustrate this point. Together these theories approach

a complete description of stability.

B. An overview of dynamic stability

A standard theory regarding stability of equilibrium points in dynamical

systems is now briefly reviewed. The terminology is appropriate for evolution

equations such as the Navier-Stokes equations or any of its approximations,

in particular the equations describing two-dimensional homogeneous shear

flow. Consider an evolution equation

=F(u)

where u is in some appropriate class of functions comprising a normed un-

ear space, and F is an operator, possibly nonlinear, defined on this space.
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Equilibrium, or stationary solutions Ue satisfy F(e) = 0. This equilibrium

is said to be Lyapunov stable if any solution u(t) beginning near tie at t = 0

stays near u for all time. That is,

VE>0, 8>0 suchthat uu(0)II <5 = Uu(t)M < E,Vt

The goal of an analysis of dynamic stability is to establish both necessary

and sufficient conditions under which an equilibrium is stable. Usually the

evolution equations for the motion of a perturbation linearized about the

equilibrium solution,

DF(tie)

are studied by looking at the spectrum' of the linear operator DF(ue). This

essentially now describes the dynamics of a "new" linear system which ap-

proximates the nonlinear system for ü near ue. Qualitatively, if the solution,

ü, to this equation decays in amplitude with time, this is an indication of the

stability of the original equilibrium. Formally, if the solution to the linearized

equation is Lyapunov stable then the equilibrium is said to be linearly stable.

A special case of linear stability is when the spectrum of DF(tie) consists

only of imaginary values 2, which is called neutral-(spectral) stability of the

equilibrium. In the broadest sense, spectral stability means that the spec-

trum of the linearized operator has no positive real part. This is the same as

neutral stability in the case of Hamiltonian systems since without dissipation

the spectrum can not have a negative real part. For detailed discussion of

1 The spectrum of a linear operator DF(e) is defined to be the set of
values, A, for which (DF(ue) A)i = 0 has nontrivial solutions. This
arises from assuming a separation of variables form for ü. Most geophys-
ical fluid dynamics references specify a specific type of solution such as
ü = exp ik(x ct), where k is real and c is complex, which additionally
specifies that ilcc is in the spectrum.

2 This would mean showing that the imaginary part of c is zero.
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linear techniques in various contexts of fluid dynamics see Drazin and Reid

(1981) and Chandrasekhar (1961). These points will be made again in the

specific context of homogeneous shear flow in what follows.

Another approach introduced by Arnold (1965, 1969) uses the idea that

if an equilibrium solution can be shown to be the minimum (or maximum)

of a conserved functional, say H, then it is stable in the sense of Lyapunov.

If for the moment we assume that the evolution equation is in Hamiltonian

form (which requires special characteristics of F and is defined in Chapter 4,

section B), then the method uses the second variation, 82H, of the conserved

functional H, and allows finite perturbations to the equilibrium. That is, ü

need not be close to u as in the linearized case. Definiteness of the second

variation is sufficient for linear stability, but not sufficient to prove nonlinear

stability (Arnold, 1969; Abarbanel et aL, 1986; Hoim et aL, 1985). However,

it is an indication of nonlinear stability and following Hoim et ad. (1985) we

will call this formal stability. Formal stability implies linear stability but the

converse is not true. See Holm et ad. (1985) and Abarbanel et al. (1986) for

discussion and proofs of these points. To prove nonlinear stability requires

further convexity estimates described below.

C. The Energy-Casimir Convexity Method

The approach taken here is one that can be classified as an energy

method and was first developed by Arnold (1965, 1969). The outline which

follows is a generalization of Arnold's approach due to Hoim et ad. (1985)

who refers to it as the "stability algorithm". (It appears in various papers

since then (Abarbanel et ad., 1986; Holm and Long, 1988). The outline

given below is left in a somewhat general form with comments related to the

application to follow.



1.) Equations of motion and Hamiltonian

We begin with an appropriate space F of functions u and the equations

governing the time evolution of u given as

=F(u). (1.1)

The function u will turn out to be the vorticity of a two-dimensional flow and

.F will be the class of possible solutions in a certain domain satisfying given

boundary conditions. The evolution equation will be the vorticity equation.

We associate a Poisson bracket structure with Y on the space of real-

valued functionals on T. The Poisson bracket of two functionals must be a

functional which depends bilinearly on the respective functional derivatives.

Using this structure we can write the evolution equation (1.1) in Hamiltonian

form as

= V 6H[u], (1.2)
at

where V is a differential operator with corresponding Poisson bracket given

by

{P,Q}

for functionals P and Q in jr H is a Hamiltonian of the equation(s) (1.1).

6H, 61' and SQ are the variational or functional derivatives of H, 1', and

Q respectively. The square bracket containing u is used to indicate that SH

may depend on u and derivatives of u. Refer to Chapter IV for definitions

and further details regarding the notation and construction of these relations.

Appendix B discusses the definition of functional derivatives.
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2.) Constants of the motion

There will be essentially two kinds of conserved quantities. One is the

Hamiltonian, H, which is necessarily given as part of the structure in the for-

going formulation. The other type of conserved quantities are distinguished

functionais or Casimirs.3 These are functionals C such that {C, G} = 0 for

all functionals G. As Holm et al. (1985) points out there may also be other

conserved functionals associated with symmetries of the Hamiltonian. In

the application considered here, these symmetries give rise to conservation

of angular momentum and energy. (For further discussion see Olver (1982,

1986).)

3.) Equilibria as critical points of a conserved functional

The equilibrium solutions, Ue, of the evolution equations (1.1) can now

be associated with extremals of conserved functionals. This is done by re-

quiring that the first variation of Hc = H + C have a critical point at ue.

(That is, the first variation of Hc at Ue is zero.) We are trying to estab-

lish that the equilibrium states will occur where the energy functional has

a minimum (or maximum) and so its first variation is required to vanish

there. This places restrictions on C but there may remain a certain degree

of flexibility in C.

4.) Convexity estimates

If the second variation of H is definite (i.e. either strictly positive

or strictly negative) at the equilibrium solutions then the system is called

Olver (1986) uses the term "distinguished functions" which is in the
tradition of S. Lie. Sudarshan and Mukunda (1974) use "Casimir"
this is the earliest reference using this terminology of which I am aware.



formally stable. This is not sufficient to prove nonlinear stabilitysee Hoim

et al. (1985), and references mentioned there. This is related to the fact that

only the space consisting of smooth solutions is being considered, and it is

not complete. (That is, a sequence of smooth solutions may converge to a

discontinuous function which is no longer an allowed solution.)

To show nonlinear stability, convexity of H is used to estimate H for

finite perturbations (away from the equilibrium). This is accomplished by

finding quadratic forms on the solution space so that for finite perturbations

5tL = U

Qi(Su) <H(ue + u) H(ie) DH(ue) () (13)

Q2() <C(tLe + Su) C(tte) DC(e) (Su). (1.4)

It is required that Qi + Q2 be positive for all nonzero 6u in .T. Otherwise,

the same argument applies to He (see comments following (1.9)).

5.) A priori estimates

We can then show the following estimate on (Sn)

Qi(Su(t)) + Q2(Sn(t)) <H(u(0)) H(ue). (1.5)

The proof is the following argument. By adding the forms Qi and Q2,

noting that DHc(ue)(Su) = 0 by step (3), and noting that Hc is a constant

of motion (being the sum of two constants of motion) so that

H(tie) = H(u(0)) H(Ue)

the result is immediate (Holm et al., 1985).



9

6.) Nonlinear stability

If the quadratic form given by Qi + Q2 defines a norm4 on the space of

perturbations, we may write

II(Su)H2 = Q(6) + Q2(6u). (1.6)

If is continuous in this norm at Ue then ue is (Lyapunov) stable, in this

norm. This can be seen as follows. Continuity of Hc means that for every

there is a6> 0 such that

Su(t) <6 IIC(tLe + 6) H(tte) < E

for all t. Note that H at any t is the same as H at t = 0. Then the a

priori estimate (1.5) together with the above implication gives

I8u(t)l < lH(Ue + 6u(0)) H(e) <
for all t.

As Holm et al. (1985) shows, a sufficient condition for continuity of Hc

is that there are constants C1 and C2 so that

H(e +6u) H(ue)DH(e) (Su) <CiJj8u2 (1.7)

C(n + Stz) C(e) DC(e) . (Su) < C26uH2. (1.8)

In this case stability is given by the estimate in the sense that

= (Qi + Q2)(Su(t)) <(C1 + 2)H8u(0)j2. (1.9)

It may turn out that Qi and Q2 are not both be positive yet their sum

is positive, or that their sum is always negative (Hoim et al., 1985). In the

Recall that a norm on a linear space is a real-valued function denoted
by with the properties (i) huh 0, (ii) lull 0 if u 0, (iii)
lui + u211 <lluihI + 1u211, and (iv) hcu = cl huH for c a constant.
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latter case stability is proved using minus the sum of Qi and Q2 as the norm

and showing that H is continuous in this norm. That is, Ue becomes

a local minimum for He by showing Hc is convex. An example of the

former (Qi and Q2 not both positive, but Qi +Q2 is positive), first presented

by Arnold (1965), will be given where it is shown thatH is continuous at

the equilibrium in this case also.

The derivatives which appear here in "generic" form are the usual linear

maps in finite dimensions, but in the application to follow these become

variational derivatives of functionals. A brief overview is given in Appendix

B. For more details see Guenther and Lee (1988) and Olver (1986).
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2. LINEAR THEORY OF HOMOGENEOUS SHEAR FLOW

This review mainly consists of expressing known results without devel-

oping them from first principles. The linear theory has been covered exten-

sively in other literature (Drazin and Reid, 1981; Chandrasekhar, 1961) and

is reviewed here for completeness and to establish notational consistency for

comparison throughout this study.

A. Governing Equations

Consider the case of two-dimensional, unstratified (homogeneous) in-

compressible parallel shear flow (without viscosity). The approach has been

to decompose the flow into mean and perturbation parts and linearize the

governing equations using the Reynolds assumptions of averagingthat is,

products of perturbation quantities are neglected (cf. Stull, 1988).

Let U(y) be the equilibrium (mean) velocity of the fluid moving in the

x-direction, where y is the vertical coordinate. (Since gravitational effects

are hydrostatic in this setting, the actual orientation of the (x, y)-plane does

not affect the dynamics.) The perturbation velocities are denoted by u (in

the x-direction) and v (in the y-direction). The momentum equations are

then

Uj + Ut1 + vU' = -p (2.1)

Vt + Uv = -pt, (2.2)

where subscripts denote partial derivatives and' := on the mean van-

ables. The equation of mass continuity is

ux+vy=O (2.3)
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which allows the definition of a stream function ' so that

u= v= . (2.4)

The problem of stability is governed by equations (2.1)(2.3) and appropri-

ate boundary conditions. In principle we can pose appropriate initial value

problems and solve these equations to observe the evolution of an initial

perturbation. In this sense we can loosely define instability to be condi-

tions under which the perturbation quantities grow with time, and stability

otherwise.

The scalar vorticity of this system is defined to be w = k . V x (u, v) =

v u, and is referred to simply as vorticity. The equation governing the

evolution of the vorticity is obtained by taking 3/ox of equation (2.2) and

subtracting O/Oy of equation (2.1). The result is

Wt + Uw U'(u + v) U"v = 0 . (2.5)

The first term is the time evolution of vorticity, next is the change in w due

to horizontal advection of (perturbation) vorticity by the mean flow. The

third term represents vortex stretching (of the mean flow) due to convergence

(of the perturbation flowin this case zero) and the last term is "vertical"

advection (i.e. in the y-direction) of mean vorticity by the perturbation flow.

As mentioned, the third term is zero using the equation of continuity (2.3),

leaving

wt+UwU"v=0 . (2.6)

So any change in perturbation vorticity is due to the interaction of advection

by the mean flow (of perturbation vorticity) and advection by the pertur-

bation flow (of mean vorticity). Note that in terms of the stream function,



w = v U!,l = (-) = zL'. So equation (2.6) can be written

zb + U() U"b =0.

13

(2.7)

This equation, (2.7), can also be derived by linearizing the nonlinear vorticity

equation directly. The relationship between certain conventions followed in

two-dimensional fluid dynamics and Arnold's papers is discussed in Appendix

A.

We restrict our attention to a channel flow where there are rigid bound-

aries (parallel to the s-axis) at y = y and y = Yi The boundary conditions

will be no flow through the channel wall which may be characterized in any

one of the following ways.

(bc.1.) v(yo) v(yi) = 0

(bc.2.) '(yo) = constant, I'(yi) = (different) constant

(bc.3.) b(yo) = '2(Y1) = 0.

Additionally, in order to consider a finite domain and maintain conservation

of mass, the total flow across any two points and i along the channel

must be the same

fru() + u(x0, y; t)] dy = f[U(y) + tl(Xi, y; t)} dy.

For this last condition it suffices to assume the flow variables, either u or

are periodic ins, say of period L. In which case if we chooses1 = xo+L then

u(xi, y; t) = tt(x0 + L, y; t) = u(x0, y; t) and the total flow must be the same

at the endpoints of the channel. Though this assumption of periodicity is

made by Arnold (1965, 1969) for his development, it is somewhat restrictive

from a physical point of view. Unfortunately, it is rather closely tied to the

success of the approach (Holm et a]., 1986). This is covered in some detail

in Appendix A. part (iv).
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At this point note that the system (2.1)(2.4), (2.6) or (2.7) (with bound-

ary conditions) are all equivalent statements of the problem.

B. Normal Modes and the Rayleigh Equation

Consider solutions where all perturbation quantities are decomposable

into periodic modes which have the common factor eult) where k is real

and c is complex. This amounts to assuming a separable form of solution

(for (2.7)) which has a prescribed periodic structure. Specifically, let the

perturbation stream function have a normal mode decompostion as

=

and substitute into (2.7). The result is the Rayleigh equation

(U c)(/' k2) U" = 0 (2.8)

with zero boundary conditions

kq=0 on yyo, YY1
(The resulting equation is the same having had taken (2.1)(2.3) instead,

and appropriate normal mode expansions of u, v, and p.)

An equivalent nondimensional version of this equation may be obtained

by use of the new variables

- Y Yo (y) U(y) c
d Vd

U(y) , c = and c = dk.

Here V denotes a characteristic velocity scale in the x-direction, usually

thought of as the cross-chaimel average of the mean profile U. The charac-

teristic length scale is the cross channel width d = yj Yo The (dimensional)

Rayleigh equation (2.8) can then be written

(VU() V)("() a2()) VU"()() = 0
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where the prime' is now o/OQ. Factoring out the constant scale values

=0.

After dropping the tildes and dividing by the constant this leaves us with

the nondimensional Rayleigh equation

(U - c)(qY' a2q5) U"q = 0 (2.9)

with corresponding zero boundary conditions

aq=0 on y=O, y=1.

Note that the boundary conditions are unchanged when a is replaced by

a so the solutions will be independent of such a choice. Therefore assume

a 0. Also note that if (, c) is a solution of (2.9) (and boundary conditions)

then so also is the conjugate pair (*, c*). That is, to each unstable mode

there is a corresponding stable mode and vice versa (Drazin and Reid, 1981).

Adopting convention we say that if there is a solution for some c = Cr +

where c2 > 0, then the equilibrium is unstable. What this really means is

that in this case the notion of asymptotic stability (perturbations tending

toward an equilibrium with time) does not exist and the strongest notion of

stability possible is to say the equilibrium is stable if there are only modes

with c1 = 0. The convention is to say an unstable mode is one for which

c1 > 0 and ignore the corresponding conjugate solution.
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Arnold (1978) makes the more general observation that

for hamiltonian5 systems asymptotic stability is
impossible, so stability in a linear approximation is always
neutral and insufficient for a conclusion about the stability
of an equilibrium position of the nonlinear problem.

As Drazin and Reid (1981) point out, the above formulation of the

problem would be entirely equivalent to solving the appropriate initial value

problem for a perturbation if the spectrum of modes were complete (cf.

comments following (2.4)). That is, an arbitrary disturbance could be written

as a superposition of modes and the linearity of the system would allow

analysis of each mode separately. The spectrum can be shown to be finite

in non-singular modes (modes where c U anywhere in the domain) and

continuous in singular modes (where U = c at some point in the domain)

together these constitute a complete spectrum. The continuous spectrum

is made up of modes which are stable (c is real) and can be disregarded if

seeking conditions for instability. To show these properties of the spectrum

is in itself somewhat involved and will not be considered here. For more

details see Drazin and Reid (1981), section 24.

By assuming c > 0 (instability), dividing equation (2.9) by (Uc), mul-

tiplying by , and integrating by parts we get Rayleigh's integral condition

for instability

1 1

I2dy=0f(lhI2 +a2II2)dy+f U"
Uc

0 0

Since the first term is real, the imaginary part is the imaginary part of the

second term and must be equal to zero. This yields Rayleigh's necessary

Arnold uses a lower-case "h" throughout his book (1978).
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condition for instability,

Instability implies U"(y) = 0 for some Yc E (0, 1).

The contrapositive yields

Theorem (2i) (Rayleigh's Theorem). U"(y) 0 for all y (0, 1)

implies stability.

Of course this is meant in the sense that the equilibrium profile, U,

is neutrally stable in that the spectrum of the operator linearized about U

is purely imaginary. (That is, stability means there are no eigenfunction-

eigenvalue pairs (, c) with c > 0 which satisfy the Rayleigh equation for

any a with the given U.)

C. Fjørtoft 's Extension of Rayleigh's Theorem

By taking the real and imaginary parts of Rayleigh's integral condition,

adding an appropriate constant times the imaginary part to the real part the

Rayleigh-Fjørtoft necessary condition for instability is obtained (Drazin and

Reid, 1981),

Instability implies U"(U) <0 for some y E (0, 1).

Let Yc E (0, 1) be the point where U" = 0, then by an appropriate Galilean

shift of U by a constant we may take U(y) = 0. Again using the contra-

positive a sufficient condition for spectral-linear stability of the mean state

is obtained which will be refered to as the Rayleigh-Fjørtoft theorem.

Theorem (2-2) (Rayleigh-Fjørtoft). Given that U"(y) = 0 and

U(y) = 0 then U"(U) 0 for all y E (0, 1) implies stability.
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3. NONLINEAR THEORY

Arnold (1965, 1969) addressed the question of Lyapunov stability of

fluid equilibria as outlined in the introduction. In this section his stability

results are derived and their relation to the linear results through certain

examples is shown. The development is done here to illustrate the stability

algorithm of Holm et a]. (1985) and put Arnold's results explicitly into this

framework. This was in fact done by Holm et al. (1985) but is restated

here to make certain aspects of this process explicit. It will be seen that this

brings out some of the subtle points in an application of the algorithm. This

topic is also developed in McIntyre and Shepherd (1987), without reference

to Holm's technique, where they point out some of the complications Arnold

did not address in detail. Comment on some of their results will also be

made.

A. Basic method; U/U" positive

1.) Equations of motion and a Hamiltonian

The flow is still partitioned into a mean (stationary) part and a pertur-

bation part but the nonlinear equations must now be considered. If variables

with an asterisk represent the total flow in dimensional form let

u*=U(y)+u(xy;t) and v*=v(x,y;t).

The equations of motion can then be written

u7 + u*tL: + v*u _p (3.la)

* * * * * *v + u + v v, ps,, (3.lb)



with mass continuity being

u + = 0.
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The vorticity equation is derived by taking ô/Ox of equation (3.lb) and sub-

tracting ô/ôy of equation (3.la). Using the continuity equation the vorticity

equation for the total flow is

w +*w +vw =0. (3.2)

The continuity equation implies the existence of a stream function for the

total flow which we denote by . Then equation (3.2) takes the form

()t + (z&), = 0, (3.3)

where z& = + is the Laplacian of the stream function. Since the

perturbations must also satisfy the continuity equation, define a perturbation

stream function, q, and a stream function for the equilibrium state, = 'I'(y)

giving = 'I'(y) + qf(x, y; t). As previously mentioned if we now linearized

(3.2) we would obtain (2.6) and linearizing (3.3) produces (2.7).

Following Arnold's examples we restrict our attention to flows which are

periodic in x, say of period L. That is, assume all flow variables, including

', derivatives of b and similarly for p, are periodic in x. The domain of the

flow may then be restricted to a section of channel D = {(x, y) : x0 < x

x1, Yo y Yi }. For convenience we will label the boundaries as follows

= {(x,yo) : xo x x1}

= {(x,y1) : xo x <x1}

= {(xo,y): Yo y Yi}

= {(xi,y): Yo y yi}



and denote the total boundary, uF1, by UD.

The total energy of the system

E()= 2ffD
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(3.4)

is conserved which follows readily from the assumed periodicity (see the fol-

lowing section). It turns out that E is the Hamiltonian and (3.3) is in Hamil-

tonian form (Olver, 1982, 1986). To show this requires further theoretical

development and is discussed in Chapter IV.

2.) Constants of the motion

Conservation of energy E is most easily shown by deriving the energy

equation directly. Begin by taking u* times (3.la) and adding v times

(3.lb), yielding

+ (V*)2)t = _(u*, v*) V((u*)2 + (v*)2) - (u* v*) Vp*

Now integrating over the domain, the left hand side becomes the time rate

of change of energy,

1

II
v*) V((u*)2 + (v*)2) dx dy fT (u v*) . Vp* dx dy.Dt2 D JD

The right hand side can be changed into an integral of a divergence by

recalling that V . (u*, v*) = 0 so that

lID

v*) V((u*)2 + (v*)2) dx dy

lID
v*) . Vp* dx

=
lID V

[((u*)2 + (v*)2)(u*, v*)] dx dy

2 lID
+ (v*)2)V (u*,v*)] dxdy

IL V v*)} dx dy + ff*v. (u* v*)} dx dy

*2

lID
{[((*)2 +(v ) )+p*](u*,v*)]} dxdy.
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Applying the divergence theorem this can be turned into a boundary integral,

{1
*\2- . ((u +(v*)2)+p*](u*,v*)]} dxdyfL{

=_[
1(

J8D2
)2 + (v*)2) +p*](tL*,v*)] ds

(where is an outward unit normal)

X1
1

=-JX=XO
((u )

f'
1[((u + (v*)2) +p*][v*](x,yl)

ro

'
1

+ (v*)2) +p*][_u*](zo,y) dy+

LYi 1 * 2 * 2 * *I(XY)dy}H((u) +(v ) )+p }[u_2
The first and second terms are zero since v*(x,yj) = 0. Since u*(xo,y) =

u*(x1,y) the last two terms maybe combined so that

ÔE -
'Y=Yo

{[((u*)2 + (v*)2) +p*](xl,y)_

[((u*)2 + (v*)2) + P*](xo,y) } u(xo, y) dy.

The terms in the braces cancel by the assumed periodicity of the flow van-

ables. Consequently we have conservation of energy.

Equation (3.2) (equivalently (3.3)) is the statement that the total vor-

ticity is conserved following the fluid motion. From this and boundary con-

ditions we get that for any smooth function

C()
ff

(w)dx dy ff () dx dy (3.5)

is also conserved. That is,

DC
= // dx dy

ff
(w*) [_u*w - v*w] dx dy

at JJD
(w*)__

If'() xy] dx dy,
D
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and integrating by parts this turns into

Yi

[()Y= dx] dy_f
+

xy d] dx =

C is a distinguished functional (Casimir) of the Hamiltonian system as de-

scribed in the introduction (section C, part 2). The proof of this is described

in Chapter IV and shown in Olver (1982, 1986).

Since the equilibrium state (described by W(y)) is time-independent,

equation (3.3) gives us

or restated this is

W) =0,

O('I',zW) =0
ô(x,y)

This means that stationary solutions are those for which VW and VLW are

collinear (i.e. streamlines are parallel to lines of constant vorticity). In other

words, stationary solutions are those for which vorticity advection is zero. A

sufficient condition for this to occur is the existence of a function A so that

= A(zW)

which in this particular case means that

= A(U') . (3.6)

A sufficient condition for A to be single-valued is that U" 0 for all y E

(yo, Yi) so that U' is monotonic in y. However, this functional relation still

holds in some cases where inflection points (U" = 0) are present. An example

of this is eonsidered later in this chapter. McIntyre and Shepherd (1987)

pursue the case where A is multi-valued which is not discussed further here.



23

3.) Equilibria as critical points of a conserved functional

Now define a new functional made by adding (3.4) and (3.5)

= E()+C()
2ffD

.Vdxdy+ff()dxdy. (3.7)

The arbitrary function will be determined so as to make the stationary

flows extremals of this functional. That is, consider the first variation of Hc

evaluated at the stationary flow W (see Appendix B),

SHc
IL

[V . Vq + '(W)} dx dy

lID [('() W)] dx dy.

(Recall 4 is a function of a single variable and ' is just its derivative with

respect to that dependence.)

Extremals of H are flows for which 6H = 0. If we choose '(zW)

'I' = A then the bracket in the preceding equation is zero and Hc = 0 at

W. That is, by specifying as that function for which

(3.8)

the stationary flow 'P then corresponds to a critical point of H. This step

of the algorithm determines to the extent that A is determined by the

stationary flow.

The second variation is found to be (see Appendix B)

S2Hc
lID

[II(W)()2 + (V)2] dx dy.

We can calculate " (in terms of the mean velocity) using the relation (3.6)

'P = A(U')

i.e. U = A'(U') (U")

dW- = A'(U')(U")
dy

U
= A'(U')=.



24

This gives us that

U= 'I"(U') A'(U') =
U"

We arrive at the second variation in the form

S2Hc
lID

[U()2 + (V)2] . (3.9)

From (3.9) it appears that with appropriate restrictions on U/U" we

could make the second variation positive (or possibly negative) definite. This

would prove formal stability and we could conclude that the equilibrium is

linearly stable. This suggests looking for convexity estimates is worthwhile

in an effort to show nonlinear stability.

Note that the Rayleigh-Fjørtoft theorem from the linear theory predicts

stability if U/U" is nonnegative, which would correspond to (3.9) being pos-

itive definite. In which case formal stability and spectral stability coincide.

But, as noted in the introduction, Hoim et a! (1985) discusses the fact that

this does not suffice to establish nonlinear stability.

Also worth noting at this point is that there is. the potential of showing

(3.9) to be negative definite, for cases where U/U" is negative, admitting

the possibility of showing stability in such cases. There is no result from the

linear theory in this situation (the linear theory does not apply to the case

U/U" negative). Further discussion and examples of this occur in material

to follow.

4.) Convexity estimates

Following the stability algorithm, consider step (4) and look at the right

hand sides of the inequalities (1.3) and (1.4).
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2ffD

2ffD {_ffDxdy}

2ffD lID
Vdxdy ff

= lL2dy+lD
by Green's identitysee Appendix A(i)

2ffD

So it is clear that if we choose

Q) := ff (V)2 dx dy (3.10)
2 D

then inequality (1.3) is satisfied (we just happen to have equality).

Similarly consider

lID
+ ) (W) '(] dx dy.

Now a condition on the convexity of must be used to find Q2. Assume

there is a constant c so that

0 < c "() for all [minz"I',maxz'P}

and extend the definition of () to all of the real line subject to this in-

equality. Then it follows (see Appendix C) that for any c in the class of

perturbations

C(2
(z + c) (AW)
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Consequently we may choose

Q2() := IL2 dx dy (3.11)

and satisfy the inequality (1.4).

5.) A priori estimates

It can now be shown that the a priori estimate (1.5) given by part (5) of

the stability algorithm is satisfied. That is, we will show that (corresponding

to (1.5))

Qi(c) + Q2(c) <Hc(W + co) Hc("J!) (3.12)

where ç means ç(x, y; t = 0). The following lemma is used.

lemma (3-1). The functional given by

ff
(V + [( + ) W) '(W)] dx

is constant with respect to t. That is,

H((x,y;t)) = H((x,y;0)).

Proof Consider that Hc(c) is independent of t. Then Hc(c) = Hc(W +

ç) H(1I1) is also independent of t. But

lID
[(vw + V)2 + + )

1()2
)] dx dy

IL [VW . V + '(W)A] dx dy

+ If
[V)2 + W + ) () (W)] dx dy

= H1() + Hc(),

by defining

ff
[VW . V + '(W)} dx
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Note that by Green's identity (cf. Appendix A.)

H1()
lID

V+ '(W)] dxdy

lID

[WLc + '(LW)Lç] dx dy +

But we have chosen ''(zW) = 'I' (by requiring the first variation ofHc to be

zero) so the first term on the right hand side is zero. Since 'I' is constant on

(connected components of) the boundary, the boundary integral will be zero

if we restrict perturbations to those for which the normal derivative of their

stream function is zero. This amounts to requiring that the perturbations

preserve total circulation of the mean flow (see Appendix A). Consequently

we have that Hc(q) = H() and since H() is independent of t, Hc(c6)

must be as well.

This is used to show the a priori estimate (3.12) as follows.

Q1() + Q() =
lID

[()2 + c()2] dx dy

2
lID [(V)2 + W + ) W) '(W)] dx dy

H(H(o)Hc(o)

HC(111 + co)

6.) Nonlinear stability

With some further restriction on U/U" nonlinear stability is proven if

it can be shown that H is continuous in the norm defined by

:= Qi() + Q2() = IL [(v)2 + c()2] dx dy. (3.13)

(This is equation (1.6) in the stability algorithm.) We are able to achieve the

sufficient conditions corresponding to (1.7) and (1.8) if there is a constant C



so that
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U,,

First find C1 so that (1.7) holds by using

E(W + ç) E()-8E() ()
= fL dx dy IL [(V)2 dx dy + c()2] dx dy

= Qi() + Q2() = IiI2

(In this case we may simply choose C1 1.) Next find C2 so that (1.8) holds

by using

C(+)C('I')-8C('I')(q)

[1 [( + ) (W) '()] dx dy
JJD

<
JJ()2

dx dy = £ f[ c()2 dx dy
D2 2CJJD

U [(V)2 +c()2J dxdyc2j D

C

(and choosing C2 = C/c).

As shown in stability algorithm part (6), this suffices to show continuity

of H and therefore Lyapunov (nonlinear) stability of in the given norm.

That is, given any > 0, by the continuity of Hc at 'I' we may find a 6 > 0

so that 6 implies H(W + ) Hc('I')I < for all time. Then from

the a priori estimate (3.12) we see that jj2 < Hc('I' + o) Hc('I')f <

for all time.

In summary, if there are constants c and C so that

0<c"-C<, (3.14)U,,
it is possible to show Lyapunov stability of the equilibrium (considered as the

flow profile U or its stream function 1P) in the normed space of perturbations
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q, which satisfy the basic boundary conditions and additionally leave the

total circulation unchanged, with norm defined by

If [(V)2 + c()2] dx dy.
2 JJD

Note that if U" is not zero (so it is of one sign throughout the channel)

we may add a constant to the mean flow (a Galilean transformation) so that

U and U" are of the same sign (the sign of U") and bounded away from zero.

Then (3.13) defines a norm and stability follows (provided C exists). This is

in the same sense as Rayleigh's theorem, (U" 0 implies spectral stability)

but stronger in that this shows Lyapunov stability.

If there is one point of inflection and U is antisymmetric with respect

to that point, we locate the x-axis at the inflection point (so y E [a, b] with

U"(0) = 0) and again through a Galilean transformation (location of the

y-axis) find a reference frame for which U(0) = 0. In this reference frame

U/U" is positive and the result still holds.

Of course, if the stability condition (3.14) does not hold then the flow

is not necessarily unstable. This is part of the weakness in finding sufficient

conditions for stability. However, in example (2) below, it will be seen that in

certain instances both necessary and sufficient conditions for stability have

been found.

Example 1.)

It is interesting to note a few subtleties regarding the above results.

Arnold (1965) gave as an example (a version of) the flow with U(y) = ,fly +

-yy3 which is stable for /9y > 0 but points out that Toilmien (see Drazin and

Reid, 1981) showed that the flow U(y) = y3 in the case where Yo Y1

is unstable (also see Meshalkin and Sinai, 1962). Tollmien's example is the
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limit of Arnold's as /3 0. The definition of the norm is dependent on /3

and as /3 becomes small the norm of a given perturbation becomes smaller.

In effect this only changes the "shape" of open neighborhoods (see part C to

follow). The stability argument breaks down for vanishing /3 in step (6)C2

fails to exist.

B. The case U/U" negative

One possibility we have not yet considered is that U(y) has one inflection

point but U/U" is negative. To do this we need to reconsider the stability

algorithm. If we assume there is a c so that

U0 < c < -."() -- for all [minL'I',maxL'I']
U,'

(extended to R) then it follows that

{(L'I' + ) - (z1I)

(as in Appendix C, but include the sign change). If we define

1 tI

lID
[c()2 (v)2] dx dy (3.15)

this will in fact be a norm on the space of perturbations provided that it is

positive definite. It turns out that a necessary and sufficient condition for

(3.15) to be positive definite is related to the size of the domain (McIntyre

and Shepherd, 1987). That is, the scale of the disturbance (defined as the

ratio of enstrophy to energy) must be restricted by the scale of the domain.

As shown below, this in essence means that for a given domain the choices

for c are limited.

To obtain as estimate for the scale of the disturbance, this scale and the

scale of the domain are characterized in terms of properties of the perturba-

tions. This is done in the following way. The least eigenvalue for the domain
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is characterized by considering the eigenvalue problem described by

zq + kth = 0 in D (3.16)

on

being in the class of perturbation stream functions restricted to those that

vanish on the boundary. If we multiply by and integrate over the domain

we have

fL+k221=0.
Integrating by parts (Green's identity, Appendix A) with the given boundary

conditions yields

k2fJ2dxdy=ff(V)2, dxdy.

We define the least eigenvalue k0 of the eigenvalue problem by the variational

formulation

k inf [ffD(V)2dxdY1
ffD2dxdy j

(3.17)

where the infimum is taken over a suitable class of functions (we eventually

will need this to contain functions whose "second derivatives", are square

integrable).

A rough scaling argument shows that the least eigenvalue is indeed re-

lated to the domain size. Let L be a characteristic scale of the domain. Then

ç/L, where is an appropriate scale for (e.g. the spatial average of

). Then k (ç/L)2/(ç)2 = 1/L2. This is mainly to note that a decrease

in the domain size results in a corresponding increase in the least eigenvalue.

We define the scale of the perturbation, 1/tc, as the ratio of its enstrophy

to energy,
ffD()2clxdy

. (3.18):= ff(v)2 dx dy
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By expanding in terms of the eigenfunctions defined by (3.16) the following

inequality, analogous to the Poincar inequality (cf. Guenther and Lee, 1988

pg.461) is established (Hoim et al., 1986; McIntyre and Shepherd, 1987)

lemma (3-2).

ic() k . (3.19)

Proof: Let = a,çb3 where {q5} is the (orthogonal) eigenbasis defined by

(3.15). Then

Lcb=A(>ajc5j)

where the basis is assumed to be C with convergence of its derivatives.

Now consider that

ff(z)2 dx dy = (, i) = ( akç)

That is,

= =

a k since k0 is the least eigenvalue

= = = k If 2dxdy.
JJD

lID k lID
(3.20)

Also, using the Schwarz inequality, (f fg) <f f2 f g, we have

ff(Vq)2 dx dy = fJ dx dy (Green's identity)

1/2 1/2

{IlD2dy} {IlD2dxdy}
(by Schwarz inequality)

{IID 2dd} {IL2y}1'2
(by (3.20))

= IL2dxdy.
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fL2 dx dy k ffD()2 dx dy. (3.21)

From this we get the desired result

ffD(tc)2dxdy
k2

ffD(V)2dxdy - 0

It is now apparent that if ckg > 1, then

lID
c(V)2 dx dy ck

lID
dx dy

lID
dx

This condition then suffices to make (3.15) positive, and zero only in the case

that = 0 identically. That is, if ck > 1 then (3.15) is positive definite.

However, this condition is also necessary, as shown in the following lemma.

lermna (3-3).

2lID
[()2 (v)2] dxdy >0 ck > 1.

Proof If we suppose that equality holds in (3.21) for some

lID
dx dy = k

lID
dx

and use Green's identity (Appendix A) on the right hand side, we have

lID
dx dy = k IL2 dx dy

= k IL () dx dy

= fID

which is true if and only if

k2ffD

/2 j2
r0

(using (3.16))
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That is, (3.15) is zero if and only if is proportional to the eigenfunction co

corresponding to k0. So we have that k is an infimum of the set of possible

fl's. Now suppose (3.15) is positive definite so that

ffD(1)dY 1

ffD(V)2dxdy c

Then 1/c is a lower bound for the set of n's, in which case it must be smaller

than the infimum. That is,

or ck>1

With these lemmas the following theorem is established.

Theorem (3-4).

1 tI
:=

liD
{c()2 (V)2] dx dy

is positive definite if and only if

ck > 1

This result can be viewed in two ways. If c is given, then by restricting

the domain size appropriately the least eigenvalue, k0, will be large and

satisfy the above inequality. Then the norm is legitimate and may seek

conditions for stability. Alternatively, if the domain is specified (as is usual

in most situations) then (3.15) can not be used as a norm unless there is some

large enough lower bound on the ratio of velocity and vorticity (that is, c

must be large enough to make (3.15) positive while maintaining c U/U").

This begins to show that flows for which we may be able to establish stability

can be characterized by such bounds.

We flO\V proceed to the a priori estimate corresponding to (1.5) for Hc,

assuming we have ck > 1 and thus a norm given by (3.15). The following



35

inequalities hold from previous computations and lemma (3-1) with a change

of sign. Also recall the bound on

0 < c < -I"() for all E R

0< jj2 =

lID
[c()2 (V)2] dx dy

lID

[_(w + )
W) '(W)) - (V)2] dx dy

= -Hc((x,y;t)) = -Hc((x,y;0))

= -H(o) = -[H(W + o)

(See proof of lemma(3-1) for notation.) This is the a priori estimate corre-

sponding to (1.5) in general and (3.12) of the previous case (U/U" > 0). To

show stability we need to prove that -Hc is continuous in this norm at '1'.

To do this we assume there is a constant C so that

for all real . From this bound we have that

H(W + ) + H()I = -H() = -H() (3.22a)

IID{2

+ {(W + ) () ')}} dx dy

lL{- + )
W)

- 1(V)2}dxdY

llD2
- '(V)2}dxdy (3.22b)

Employing the facts contained in theorem (3-4) and lemma (3-2), which are

(i) ck>1
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(ii) fL2 dx dy k
lID

dx dy,

the last term, (3.22b), can be bounded as follows.

IID{22} dxdy

2(ck
1 ff {C()2 (V)2} dxdy (3.23a)

D1)

1

2(ck 1) fL2 ck(V)2 C()2 + (V)2} dx dy
1

2(ck-1) ff {Ck[c()2
D

1()2] + [1 ck](V)2} dxdy
k0

1

2(ckg-1) ff {Ck[c()2
D

1()2]} dxdy (by (i))

1

2(ck-1) ff {Ck[c()2
D

(V)2}} dxdy (by (ii))

Ck
2(ck-1) ff {e()2 (V)2}dxdy. (3.23b)

D

Writing (3.22a)(3.23b) together to consolidate the result,

I Hc(W + ç) + Hc()I = Hc(W + q') + Hc(W)

That is, we have

IL2 - '(V)2} dxdy

Ckg

2(ck 1) lID
{c()2 (V)2 } dx

III.2(ckg 1)

Ck'
Hc(W + ) + H('I')j ; 2(ck-1)

expressing the continuity of H at the equilibrium 'I'.

Summarizing (the case U/U" 0), it was shown that if there are con-

stants c and C so that

U"
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and the domain is small enough so that the least eigenvalue of (3.16) satisfies

ck > 1, then the equilibrium 111 is Lyapunov stable in the norm given by

:= IL
[c()2 (V)2] dx dy.

This represents a substantial departure from the linear theory in that it

shows stability of certain equilibrium flows where the linear theory is indeter-

minate. Recall that Rayleigh's theorem only shows stability in the absence of

an inflection point (U" 0), and the RayleighFjørtoft theorem only covers

the additional case where U/U" is positiveneither of these are met in this

case, where U/U" 0. Furthermore, the structure of the perturbations are

completely arbitrary (up to satisfying boundary conditions).

Example 2.)

The example which follows might be considered as a "standard example"

since it has been shown in several papers (Arnold, 1965; Holm et al., (1985);

Dra2in and Reid, 1981). We present it again here since it illustrates so well

the foregoing ideas, and additionally some observations not dealt with in the

literature.

We still consider a channel flow confined between walls at yo and Yl with

Yo <0 <yi (the width of the channel being d = Yi yo) and periodic in the

x-coordinate of period L. The domain D is again confined to the rectangle

between x = 0 and x = L.

Let U(y) = sin y be the equilibrium velocity profile. Note that U/U" =

1 for all y in [yo, Yl }. This clearly falls into the category considered in sec-

tion B above and as noted the Rayleigh and the Rayleigh-Fjørtoft theorems

do not apply. Then to choose c and C so that

O<cU/U"C<oo,



that is, 0 <c 1 C < oo, the best estimates will be given by c = C = 1.

With appropriate restrictions on the size of the domain (channel width)

we can establish stability with respect to arbitrary perturbations within an

appropriate class.

It is shown in Appendix A, part (iv), that the least eigenvalue de-

termined by (3.16) is ir/d. Consequently, if c(ir/d)2 = (ir/d)2 > 1 then

ck = k > 1 and we have Lyapunov stability of U subject to perturbations

which preserve the total flow rate, have period L in the x-coordinate, and

preserve circulations on F!J. Viewing this inequality in a slightly different

way, if d < r then we have stability.

Drazin and Reid (1981), using the linear theory, demonstrate that the

flow is unstable for d > r (see their references) which complements the

above Lyapunov stability result. This raises a few important questions. It

first appears that the problem is completely specified and the problem of

stability of U is resolved. That is, d < ir is both a necessary and sufficient

condition for stability of the equilibrium U. Consider the configuration shown

in figure 3.1 (next page). The left profile is (Lyapunov) stable since d < ir.

Notice in particular that the inflection point is included and also the critical

point of U (where U'(y) = 0). Compare this to the configuration shown on

the right. No characteristics of the flow have changed, that is, the inflection

point and the critical point are still present, but now d> r. This raises the

question as to why one configuration is stable and the other is not.
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Figure 3.1 Lyapunov stable configuration, d < ir (left).

Linearly unstable configuration, d> ir (right).

Based on these two figures, one might hope to show the second profile (in

fig. 3.1) is also stable. Yet, the linear theory has established that this profile

is unstable. It appears here (and in other results such as Chandrasekhar

(1961)) that the scale of the domain is a determining factor of stability.

C. Stability in other norms

Since in general there may be more than one way to find quadratic

forms Q and Q2 in step 4 of the stability algorithm, we may end up with

various possible norms on the space of perturbations. Furthermore, it is not

entirely evident that we have a uniquely defined problem from the point of

view of choices of distinguished functions (step 2) So the question arises as

to how much difference this choice can make, and where the differences are

important.

The norm plays the role of defining a topology on the space of

perturbationsthat is, the nature of open sets. We need not go into the

details of definitions in topology. Instead, it is easy to use a simple finite

dimensional analogy to see how using different norms changes the "shape"

of open sets. If we construct a neighborhood of a "point", x0 (in our case a
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function in the space of perturbations) by defining it to be all points x which

are within p of x0, i.e. {x : Jx xoI < p}, and do this for different norms,

the shape of the neighborhood changes. A simple illustration is to consider

the (x, y)-plane with two norms given by

/x2 +y2

IKx, y)IJb = max(JxI, I)

The neighborhoods are given by circles and squares, respectively. The same

is true in function spaces, but we can no longer draw the results and compare.

Recall that to show stability in step 6 we must show continuity of the

conserved functional Hc. Continuity is essentially a property described in

terms of open sets (a function is continuous if the inverse image of open

sets are open) and so we might expect that showing continuity in one norm

may be different than in another norm. There is a situation where it does

not make a differenceif we can show, roughly speaking, for each point x0

that for any neighborhood of x0 in one norm we can find a neighborhood in

the other which is entirely inside the first, then do the same vice versa, the

topologies are equivalent. This means that showing continuity of Hc in the

one norm is entirely equivalent to showing continuity in the other norm.

In what follows the equivalence of several specific topologies on the space

of perturbations is shown. The method of proof will be the following. Given

two norms, Il 1a and
1

JIb, show there are constants K and 1(2 so that

JJa1'lIJJJb and lIIIa2JlIlb.

It can then be concluded that, since continuity is equivalent using these

norms, that stability is independent of the choice between those specific

norms.
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Consider the case where U/U" is positive. McIntyre and Shepherd

(1987) give the following as two possible norms which can be used to show

stability in this case.

IL[(v)2 + c()2] dx dy,

and

lID

[()2 + C()2] dx dy.

Since c C, it is immediate that i . Furthermore, since C/c 1,

= I lID [(v)2 + C()2] dx dy

=
lID

[(V)2 + c()2] dx dy

< lID
[(vc)2 + c(Lcb)2] dx dy

=
lID

[(V)2 + c()2] dx dy =

Therefore, these two norms generate equivalent topologies and showing sta-

bility in one is equivalent to the other.

In the case U/U" negative, Arnold (1969) suggests that if we assume

that (3.14) is positive definite, then we can define a norm by

II2 = ff ()2 dx dy,
JJD

(see also McIntyre and Shepherd (1987)). The a priori estimate (step 5)

follows easily from the above calculations and the continuity of Hc in this

norm follows from

Hc(W + ) + H('I') =

{E(W + ç) E(W) DE(W)]

[C(W+)C(I')DC(W)]

i lID
dx dy +

lID
dx
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What remains unclear is whether or not this norm generates a topology equiv-

alent to that of (3.15) and another norm given by McIntyre and Shepherd

(1987) (listed below). To investigate this let

:= ff(z)2dxdy,

:=
lID

[c()2 (V)2] dxdy

and

1 ft
ii lic

:=
JJD

[C(zcb)2 (V)2] dx dy.

It is immediate that lcj so continuity in the norm
II la

implies continuity in the norm
II lb. We need to show the other direction.

II lb is a norm only in the case that its defining integral is positive

definite which depends on the least eigenvalue k0 (Theorem 3-4). Then we

anticipate that the equivalence of these norms, a and b, is also dependent on

the least eigenvalue. Recall that in the setting we consider, a lower bound

on the least eigenvalue is 7r/d and we have the following string of inequalities

Then

k0>>1.

IL{c()2 (V)2] dx dy

1 ft
dxdy by (3.21)

2 JID
ckg-1 /[()2dxdy

2k0 diD
ckg

k2
0

Thus, if we show continuity of H in norm we can show it in norm a. So

the two norms are equivalent, at least in this context, and showing stability

in one is equivalent to showing stability in the other.
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The fact that is equivalent to a is precisely the same calculation

using C in place of c. We can conclude that stability determined by any one

of these is equivalent to stability determined by any of the others.

Arnold (1965, 1969) originally showed stability by bounding the pertur-

bation by its initial condition. This is the most generic notion of stability

of an equilibrium. McIntyre and Shepherd (1987) restate Arnold's results in

this same way. Hoim et al. (1985) showed that what this really amounts to

is showing that the conserved functional H (or Hc) is continuous at the

equilibrium, with the definition of continuity being in terms of a norm de-

termined by the problem. McIntyre and Shepherd (1987) point out that the

perturbation can be shown to be bounded in more than one norm. It turns

out that the norms they give generate equivalent topologies, and therefore

showing continuity (or boundedness) in one is just as good as another. Their

point, however, is that we can also try to show that any finite perturbation

no matter how large is bounded for all time. Consider the definition of

Lyapunov stability given in the introduction.

V > 0, 28 > 0 such that Ike u(0)II <8 hUe u(t)hI <

We may instead define another type of stability as follows.

VS and Vu(0) such that hUe u(0)JJ < S

3 >0 such that hUe tt(t)hl < ,Vt

That is, any initial perturbation is bounded for all time.

A particle in static equilibrium in an infinite potential well, or any situ-

ations analogous to this, will be stable in this sense. An important question

is whether or not there are any configurations where a steady fluid flow

represents an equilibrium "in an infinitely deep potential well" (quote from

McIntyre and Shepherd, 1987). We do not address this question here but
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merely point out that this seems physically implausiblelarge enough per-

turbations should change the equilibrium in the inviscid setting, and likely

most other settings concerning fluids.
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4. HAMILTONIAN EVOLUTION EQUATIONS

The point of view taken here follows closely that given by Olver (1986).

There are several ways to approach Hamiltonian mechanics and only one is

presented in what follows. The first topic to be addressed is in what sense

the vorticity equation, (3.2) or (3.3), can be thought of as a Hamiltonian

system. Following this, the ways in which this structure can be used to find

conserved quantities and study stability are presented.

The key to applying Hamiltonian techniques to evolution equations, and

doing so with the least amount of knowledge of differential geometry, is to

use a coordinate-free approach. This is done by highlighting the Poisson

bracket (defined below) which contains the structural information necessary

to determine the useful results of a Hamiltonian formulation. While the

counterparts to all of the definitions and theorems in the infinite dimensional

setting exist in the finite dimensional setting, there is no need here to consider

the details of how these two settings fit together. Mainly this chapter is an

exposition of terminology and statements of results using that terminology.

(See Olver (1986) for more details on both the finite and infinite dimensional

cases in a general setting.)

A. Differential functions

In order to consider in what way a differential operator is Hamiltonian,

it must be established what is meant by a differential operator, and on what

space these operators act. The terminology will be given primarily in terms

of the example of two-dimensional flow governed by the vorticity equation



(3.2) (or (3.3)) that has been considered.

Let D be the domain defined in Chapter 3, that is, D = {(x,y) : x0

x x1,y0 <y <y}. Let M= (DxIR)xUbeanopenconnectedsubset of

the space of independent and dependent variables. A typical element of this

space is of the form (x, y, t; u). u represents a place-holder, or coordinate,

to be "filled" by any suitable dependent variable such as a stream function

fitting the physical setting (riot a velocity component). A typical partial

differential equation (such as the vorticity equation) will involve an element

ç e U (a stream function) and derivatives of with respect to x, y, and t. Let

U1 denote the space whose elements consist of (ui, ui,,, Ut) where u U. That

is, Ui is the space which has the same number of coordinates as there are

possible first derivatives of u. Similarly, U2 will denote the space consisting

of elements of the type That is, U2 is the space

which has the same number of coordinates as there are second derivatives of

U.

From these form the space = U x U1 x U2 whose coordinates repre-

sent all derivatives of order up to two (including no derivative) of functions

= c(x, y; t). An element of U will be denoted u(2).

Finally, let Al2 = (D x IR) x U2 be the space whose coordinates repre-

sent independent and dependent variables and derivatives of the dependent

variables up to order two. (This is called the second order jet space of the

space M. It can be extended easily to include higher order derivatives.)

Let A denote the space of smooth real-valued functions P : M2 i.'

JR. The functions in A are called differential functions and are denoted

P(x,u'2) or P{UJ, where the square bracket is used to remind us that the

functional may depend on the independent and dependent variables as well
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as the derivatives of the dependent variable. For example, x, u, and xu

are differential functions, as well as uu, Ut, and u2u + u11. This space of

functions A is the one on which the differential operator will act.

Finally, let F denote the space of functionals whose elements are given

by

1'
ID

whenever P E A. 6

B. Hamiltonian operators and Poisson brackets

Let V A i-* A be a linear differential operator on the space of differ-

ential functions. For example, if we consider (3.3) written as

Wt =

the right hand side can be thought of as V(i') where V = wD wD
and ' A. Notice that V includes physically nonlinear effects though it is

applied in a linear fashion to functions in A. That is, given q and 2 in A,

V(1 + 2) = V(1) + D(c2).

From Appendix B, if 2 = f P for P E A, the functional derivative of

2 is denoted 82 or S2/Su. Corresponding to the operator V is a Poisson

bracket defined on F given by

{2,Q}=f8P8Qdxdy (4.1)

for any two functionals P and Q in F. Note that 82 and V8Q are functions

(since in this case there is only one dependent variable) so that 8P V6Q is

6 Notice that two integrands P and Q may lead to the same functional
P if they differ by a total divergence. A careful definition of F would
involve equivalence classes based on this relation.



a differential function and {P, Q} defined by (4.1) is a functional in .F. We

call V a Hamiltonian operator if its Poisson bracket (4.1) is skew-symmetric

{2,Q} = {Q,2} (4.2)

and satisfies the Jacobi identity

{{P, Q},Rj + {{R,2}, Q} + {{Q,7?j,2} = 0. (4.3)

For a given Hamiltonian operator V, it is shown in Olver (1986) that to

each functional 7- = fH in T, there corresponds an evolution equation of

the form
3u

(4.4)

7-1 is called the Hamiltonian corresponding to equation (4.4). Furthermore,

given any other functional 2, its rate of change following the motion along

solutions u is given by

= {7-1,2} (4.5)

The converse is the setting which is of more interest. That is, consider

a given evolution equation such as (3.3) written in the form

Wt = (4.6)

We wish to show this is in Hamiltonian form so we must write it in the form

(4.4) and show that the candidate operator

V = wD wD

is Hamiltonian (by showing properties (4.2) and (4.3)) and find an appropri-

ate Hamiltonian functional 7-1 so that (4.4) holds. To show that this operator

is Hamiltonian by directly confirming (4.2) and (4.3) can be difficult. There



are further results regarding the relation between these properties and prop-

erties of the operator V which help. These are formulated in subsequent

sections.

C. Skew-adjoint operators and their relation to Poisson brackets

Given an operator V : A '- A, V can be thought of as having the form

V=>Pj[u]Dj P'eA, (4.7)

where the sum is taken over all unordered 3-tuples J = (jl,j2,j3), with

0 < j2 < k. The order of the derivative is #J = ii + j + j3 and D

represents a derivative up to #Jth order. That is,

k = 0 J (0, 0, 0) D = D(o,o,o) (no derivative)

k= 1: J =(1,0,0),(O,1,0),(0,0,1), Dj = D,D,or D

k=2: J=(2,0,0),(1,2,0),..., Dj=DD,D D2 etc.z

The following example will clarify the notation.

Let V = = DD be a differential operator on the space A. V is

of the form (4.7) where J = (0,2,0), P(o,2,o) = 1 and D(0,2,0) =

Similarly, V = D + uD + D is of the form (4.7) where

tion,

lL, P0,2,o[uJ 1, PO,0,l{u] = 1

D(i,o,o) = D D(o,2,0) = D D(o,o,1) = D

The (formal) adjoint of V, denoted V is defined by the following rela-

fPV(Q) dx dy = f QV*(P) dx dy (4.8)

for every pair P, Q E A which are zero when u = 0, every domain S2 C D x IR

and every function u = f(x, y) of compact support in ft
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Integrating by parts (in a generalized sensesee Olver (1986)) shows

= Dj(Pj.).

That is, for any function Q E A

Vis

V*(Q) = DJ(PJQ).

Continuing with the above example, V = D + uD + D, the adjoint

= [Du + Del] = D uD u

V is called skew-adjoint if V* = V. Note that the operator in the

preceding example is not skew-adjoint.

Olver (1986) shows that an operator being skew-adjoint and its corre-

sponding Poisson bracket being skew-symmetric (property (4.2)) are equiv-

alent. This is extremely useful in the cases where showing an operator is

skew-adjoint is relatively easy.

Consider the vorticity equation in operator form. That is,

= V() where V = wD (4.9)

This can be thought of as being in form (4.7) where

P(l,o,o)[u} = -wy, = w, P(o,o,1)[u} 0

D(1,0,o) = D D(o,1,0) D D(0,o,1) = D

Then the adjoint of V may be calculated,

= [D(l,o,o)P(l,Q,o) + D(o,1,o)P(o,l,o)]

= [D(w) + D(w)]

= wD + Wyx wD Wjy

= wD + wD = V
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It is therefore shown that V = wD wD of (4.9) is a skew-adjoint

operator and so its corresponding Poisson bracket will be skew-symmetric.

In order that V be a Hamiltonian operator it remains to show that

(4.3) holds for the Poisson bracket. With further theoretical development

(peripheral to the interests of this study) Olver shows that (4.3) does in fact

hold. Then to complete the process of showing that (4.9) is in Hamiltonian

form we need a functional 1( whbse functional derivative with respect to

w will be a stream function . Simply note that the kinetic energy of the

system given by (3.4),

2f

can be written equivalently (using Green's identity) as

7-(_2.
2 JD

So we can say the differential functions H1 . V& and H2 =

are equivalent, since they give rise to the same functional 7-(. The calculation

of 8?-/8w follows as

That is,

N(w + f() where (=
ldi P

=
ID

+ L(i' + c)dx dy

= -J+x
f dxdy
JD

= / dxdy.
JD

67-1

ow
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Finally, we can say that the operator D, shown to be Hamiltonian, and the

functional fl give rise to an evolution equation of the form (4.4) which turns

out to be the vorticity equation (4.9).

D. Conserved functionals and Casimirs

Olver (1986) defines a distinguished functional (or Casimir) for a Hamil-

tonian operator V as a functional C E .F satisfying V(SC) = 0 for all x, y,

t, and u. It then follows that C is a distinguished functional if and only if

{c, } = 0 for all functionals , which is how it was defined in the introduc-

tion. For the case of the vorticity equation (4.9) the distinguished functionals

are those for which

V(SC) = wD(c5C) wD(8C) = 0

Let P[ç] be a differential function for which V(P) = 0, that is,

wDP wDP = 0 or

= wDP

This is the statement that the determinant of the Jacobian of the functions

P and w is zero. Consequently, P and w are functionally related, that is

P = P(w). Furthermore, this implies that P can not depend on x, y, t, or

derivatives of w except through the direct dependence on w (Olver, 1986).

The complete class of distinguished functionals is therefore given by

C(w)=fC(w)dxd,

where C is any smooth function of w.

The importance of finding distinguished functionals is that they imme-

diately give rise to conservation laws. Recall that the change in C following
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a solution is given by {7-,C} which is zero, meaning that C is a constant of

the motion. Furthermore, if we consider the functional 1i + C = 71c, then

for any functional P

{lc,P} = {7-+C,P}

= {7-t,P}+{C,2}

= {7,P}.

Consequently, the system witli Hamiltonians given by 7- and 7-t are equiva-

lent. This is another way of viewing the fact that the distinguished functional

C given by (3.5) can be added to the energy (3.4) to give a functional which

describes the same dynamics. The addition of the distinguished functional is

a way of expanding the number of possible equilibrium solutions correspond-

ing to extremals of a functional.

To summarize, the significance of uncovering a Hamiltonian structure to

the vorticity equation is that it facilitates the identification of an appropriate

functional for which the equilibrium solutions correspond to extremals of this

functional. Furthermore, it sets the stage for the same type of analysis in the

three-dimensional case and the stratified cases. As might be anticipated, the

Poisson bracket theory for the stratified case turns out to be more compli-

cated and a deeper understanding of what is called the Lie-Poisson structure

is needed. For discussions related to this see, for example, Abarbanel et a].

(1986), Hoim et a]. (1985), Hoim et al. (1986), and references contained in

these.
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5. SUMMARY

This chapter contains two sections. The first section contains a sequence

of tables intended to summarize the definitions and results of stability anal-

ysis as it applies to shear-flow as it has been discussed in the foregoing

chapters. The last section is a short discussion of the applicability of these

results to geophysical flows.

A. Summary of definitions and results

Table 5.1 summarizes the four basic notions of what is meant by an equi-

librium (i.e. steady flow) being stable. The notation corresponds to that used

in Chapters 2 and 3 to describe two-dimensional shear flow. "Linearization"

means that the equations have been linearized about a mean state, taken to

be the stationary velocity profile.

Table 5.2 lists the conditions under which the various types of stability

have been proven. The conditions are sufficient in each case, but as indicated

in Chapter 3, for certain examples both necessary and sufficient conditions

have been found.

Table 5.3 shows the hierarchy of the various types of stability. Note that

the equivalence between linear and spectral stability only holds in the case

of conservative systems.

Table 5.4 lists the norms considered in this work for which Lyaunov

stability has been proven. They are listed according to the case to which

they have been applied (either U/U" positive or U/U" negative).
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Table 5.1

Type of stability Definition/Characterization

Lyapunov Stability VE6 s.t. l(0) 'I'( < S
W < f Vti.e. a small per-

turbation of the mean flow will stay
"near" the mean flow for all time

Formal Stability Second variation, SHc, positive or
negative definiteused to prove Lin-
ear Stability

Linear (Lyapunov) Stability Equilibrium is Lyapunov stable as an
equilibrium of the linearized equations

Spectral Stability Normal modes of the linearized equa-
tions are purely oscillatory(i.e. c2 =

0)



Table 5.2

Type of stability Sufficient Conditions

Lyapunov Stability

Formal Stability

Linear (Lyapunov) Stability

Spectral Stability

56

(a) U" 0
(b) c, Cs.t. 0<cU/U" <C<cc
(c) c,Cs.t. 0<c U/U" C<oo

(a) U" 0
(b) 2c s.t. 0< c <U/U"
(c) c s.t. 0< c < U/U" andc < 1/ks

Shown by proving Formal stabilityi.e.
holds for the same cases

(a) U" 0 (Rayleigh's Theorem)
(b) UU" 0 (Rayleigh-Fjørtoft Theo-

rem)
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Table 5.3

Lyapunov Stability

P1

Formal Stability

Linear Stability

III

Spectral Stability



Table 5.4

Norms on the space of perturbations

Case one:O<c <C<oo

1 1"

lID
[(V)2 + c(L)2] dx dy

1

liD
[2

+ C(A4)2] dx dy

Case two:O<c<rC<cKD

12

IIUa
[f ()2dxdy

2JD
IL[c()2 (V)2J dx dy

:= Jf [C()2 (V)2] dx dy
2 D
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B. Discussion of assumptions

The assumptions used to formulate the model of channel flow analyzed

in Chapters 2 and 3 are that the flow must be

1.) strictly two-dimensional (iJ= (u(x,y),v(x,y), etc.),

2.) incompressible (dp/dt = 0),

3.) homogeneous (p = constant),

4.) with free-slip boundary condition on the channel walls, and

5.) the total flow at the two ends of the channel must be the same.

Additionally, in order that the first variation of Hc vanish at the steady-

state velocity profile defined by W = 'I1(y) is it assumed that the perturba-

tions, given by stream functions , must satisfy all of the above as well as

either

6.) requiring the (perturbation) flow variables to be periodic in x, or

7.) J, W(y)(0q5/ôn)(xo,y)dy = Jr1 'I'(y)(O/5n)(xi,y)dy.

Several discussions on the applicability of assuming a flow to be two

dimensional can be found in most fluid dynamics texts. The main limitation

that this presents here is that vorticity is not tilted or stretched which are

identified as mechanisms for instability. This does not rule out the possibility

of concentrating vorticity through advection which may be associated with

growth of perturbations (See Drazin and Reid (1981) for further discussion of

both of these points.) Note that Abarbanel et al. (1986) apply the stability

algorithm to three-dimensional flows.

The assumption of incompressibility (item 2) leads immediately to the

velocity being nondivergent and (with assumption 1) is enough for the exis-

tence of a stream function (see Appendix A, part (iii)). There are situations



where atmospheric flows may be considered nondivergent (though not nec-

essarily incompressible)for example, the Boussinesque approximation (see

L. Mahrt (1986): On the shallow motion approximation. Jour. Atm. Sci.

43 (10), 1036-1044).

One of the more restrictive assumptions is that of homogeneity (item

3). Then the body force due to the action of gravity is balanced by the

hydrostatic pressure so that these terms are dropped leaving only the re-

maining "modified pressure" due to the fluid motion. The resulting neglect

of bouyancy effects is a fairly severe limitation as far as modeling any atmo-

spheric flows. However, Holm et al. (1985) and Abarbanel et al. (1986), as

well as others have applied the Energy-Casimir Convexity Method to strati-

fied flows. The analysis becomes considerably more complicated.

The free-slip condition at the walls (item 4) is a usual sort of boundary

condition since the viscous boundary layer may be considered to be extremely

small. (In any true fluid the velocity must be zero on the boundary, at least

above the molecular scale, so that the velocities must remain somewhat low

to keep the boundary layer negligible.)

Requiring that the flow into the channel be the same as the flow out

(item 5) is not so restrictive, and is necessary if the fluid is incompressible

and homogeneous.

Restricting the flow to be periodic in x (item 6) means that this is flow

"on a cylinder". This requires that any "passive" flow feature which remains

intact for a long enough period of time will advect out of the up-stream

boundary and simultaneously back in through the down-stream boundary.

For example, a nonstationary vortex patch may advect through the domain

several times. This seems physically restrictive if what we wish to model is a
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portion of some "real" channel. One potential relief to this problem is that

the periodicity required throughout the analysis is entirely arbitrary.

One way to lessen this restriction somewhat is to require item 7. These

are not circulations since the paths defining F, are not circuits (see Appendix

A, part (ii)). This might be interpreted as the balance of the flux (i.e.

total flux is zero) of perturbation kinetic energy. This seems not to be an

improvement over assuming periodicity.

In conclusion, there are several ways of reducing the restrictions that

are apparent in the particular situation studied here. Generalizations and

applications of the stability algorithm may be found in the references cited.

It appears that the biggest limitation in applying the stability algorithm to

geophysical flows is in defining boundary conditions which have the desired

properties for the theory to apply, while maintaining some realistic model

for actual flows. A careful study of how this approach may apply using some

kind of radiative boundary conditions may be useful.

The definition of the norm in which stability is proven is determined

by the problem, but there is some flexibility. In the case of U/U" positive,

two norms were defined and shown to be equivalent. In the case of U/U"

negative, three different norms were defined and shown to be equivalent.

(The norms are listed in Table 5.4.) Recall that if two norms are equivalent,

then continuity is independent of the choice between those norms. This leads

to the conclusion that stability can be proven in either norm.

The equivalence of the norms in the case where U/U" is negative is

especially interesting. The norm IIcbJJa can be interpreted as a measure of

the perturbation enstrophy, or rotational energy. Whereas IJlb is the resid-

ual amount of perturbation enstrophy over perturbation kinetic energy. By
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showing these induce equivalent topologies suggests that in the case of two-

dimensional (homogeneous) flow it is the rotational energy which is the most

important factor in determining stability.

In order to establish that the "quadratic forms" listed in Table 5.4 qual-

ify as norms, there must exist a c > 0 so that either c U/U" (in the case

U/U" positive), or c U/U" (in the case U/U" negative). This essentially

says that it suffices that the curvature of the mean velocity profile must be

bounded in order to establish a norm on the space of perturbations (using

these quadratic forms).

To then establish stability using one of these norms, continuity of H at

the equilibrium must be shown. It suffices that there is a constant, 0 < C <

, such that either U/U" C (in the case U/U" positive), or U/U" C

(in the case U/U" negative). This means that for a given curvature, velocity

must be bounded, or for a given finite but nonzero velocity, curvature of the

velocity is bounded away from zero.

One point of interest is to note that in the case of constant shear, say

U(y) 3y, the stability algorithm breaks down. There is no way to make

this steady flow correspond to a minimum of Hc. Recall that is determined

such that

6H lID [('(zW) W)q} dx dy 0.

But for this example, W U"(y) 0 and thus '(W) cannot be a
function of y, while 'I' is a function of y. There is no way to choose 1 so that

- W = '1'(0) (1/2)/3y2 = 0.

This work has concentrated on finding sufficient conditions for stability

of steady-state flows. By contrast, there is still the need to analyze nonlinear

evolution of unstable fluids.
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APPENDIX A

Preliminaries

(i) Green's (first) identity

Let D C R2 be a bounded normal domain (one in which the Gauss

divergence theorem holds) with boundary 0D. If u and v are functions which

have continuous second derivatives on D and continuous first derivatives on

the closure of D then,

r 3tt
11Ivu+VvVu]d= vds,
JJD J8D

where n is a unit outward normal and ds a "surface" element (in this dimen-

sion simply a line element).

This of course holds in a much broader context, see Guenther and Lee

(1988) for further details. The domain considered in the case of a channel

flow satisfies the requirements for being a normal domaina region of R2

bounded by four piecewise-smooth curves.

(ii) Circulation

A circuit is a continuous, piecewise-smooth, oriented curve (in R2)

which has "connected endpoints". This circuit is representable in terms

of a parameter,s E [0, 1] as

7(3) = (x(s), y(s)),

with 7(0) = 7(1). The circuit is simple if it does not cross itself, that is,

0 < i < 2 < 1 implies 7(si) 1 7(32). A circuit is reducible if it can be

continuously transformed (collapsed) to a point.
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If is a vector field defined on some domain D, and -Y is a circuit

contained in D then the circulation of the circuit -Y is defined as

F() f. d=

(Note that it is oniy required that -y be a circuit and not necessarily simple.)

Consider the domain of interesta channel with solid walls at Yo and Yl,

with the flow of the fluid being periodic in x of period L. Then the domain

D may be taken to be as given at the beginning of Chapter 3. Let -y be

the path defined by

YYO() = (x0 +Ls,yo)

(This is the circuit given by moving from (x0,y0) to (x0 + L,yo) along the

x-axis.) Then 'Yyo actually defines a circuit since

= (x0,y0) = (x0 +L,yo) =

but this is not a reducible circuit. (In order to reduce this circuit we would

need to shrink
yo to a point, but to do this would mean shrinking away

from at least one of the endpoints and this breaks the circuit.)

Similarly,

yi(S) = (XO + L(1

= (xo,yos + Yi(l .$)), and

yxj(8) = (xi,yo(1 s) + y1s)

are all paths with y being an irreducible circuit. (y0 and 'YXi are not cir-

cuits.) The direction that the path is traversed is built in to the parametriza-

tion, and finally note that any circuit completely contained in D is reducible

(D is simply connected).



(iii) Existence of a stream function

From the equation for incompressibility, which amounts to the vector

field of the velocity being nondivergent,

V7=V(u,v)=u+v =0,

we see that u = vi,. Using results from calculus this means,

v3+u=v

for some b defined on D (provided D is simply connected). That is,

u=/ and v=b.

(It is usual to use the orientation described here, though it is entirely possible

to have usedb instead ofL' for the defining property.) is called the stream

function of the flow and is unique up to an additive constant.

Let y(s) be any path in D, with unit tangent r and unit normal n. For

such an arbitrary path in R2 it is possible to choose two different directions

for n. If y(s) is a circuit on ÔD then it makes sense to choose ri so that it

is an outward normal (in the event we wish to apply the Gauss divergence

theorem). However, depending on the direction of ' in relation to the domain

(clockwise/counterclockwise) it is necessary to specify different directions of

n for -y arid y (traversing in the opposite direction). (That is, n points

outward in either case, yet n X T changes sign.) It is still possible to derive

some desired properties of b.

Consider y(s) to be in the interior of D and, without loss of generality,

choose n so that n x r is in the k direction (the other possible choice being

k). Denote the transformation which rotates vectors by a by T. Then

T..(n) = r, and T_..(r) = n.



Consequently,

Similarly,

r = T..(Vq).T(r)= T..(v,u).

=(u,v).n=.n

n = T_(Vq). T_f(n) = T_(v,u). r

= (u, v) T - r
If the other direction for the normal was chosen it would change only the

sign in these calculations. So we have the properties

V'çbrl=+ilT

Since is tangent to F1 (i = 1,2), i ?i = 0 on I. Then

0=n=±Vçr
implies that V is orthogonal to Thus, bIr'. is constant. Moreover,

since (x0,y) = (xo + L,y), V is also periodic in x. Then 1b must be

periodic up to an additive constant. But since (x0, y) = '(x0 + L, y), the

constant must be zero which yields 4'(xo,y) = (x0 + L,y) for any y. That

is, i1'(x, y) is periodic in x of period L.

There is one final property which follows from the above considerations.

Suppose that W is a stream function corresponding to the equilibrium flow

and is a stream function for a perturbation flow. Then both satisfy the

above properties so that

Ids = tVç6.nds

=±j
cvi

=
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That is, j, ds is a constant times the circulation of the circuit F.

When the perturbation is required to preserve the circulations on r, this is

equivalent to requiring that

= 0.j a

(iv) Least eigen value for in D

Let D be given as above. Consider the

(zq+k2q5 = 0
(EVP)

I
(xo,y) = q(xo + L,y)

Since the domain is geometrically suitable,

solve the problem. Let

igenvalue problem

in D
on and
for all y

use separation of variables to

q(x,y) = X(x)Y(y)

The boundary conditions may then be expressed as

Y(y) = 0 for i = 1,2 and X(xo + L) X(xo)

Substitution of (Al) with these boundary conditions into (EVP) yields two

eigenvalue problems.

(EVPa)
{

Y" + t2Y = 0 for y E [yo, y']
Y(yo) = Y(yi) = 0

and

I X"+v2X=0 forxE[xo,x1](EVPb)
X(xo + L) = X(xo),

where v2 = k2

The general solution of (EVPa) is

Y(y) = Asinpy + Bcos1iy.
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To satisfy the boundary conditions and with some simplification it is appar-

ent that B = 0, A is arbitrary, and sin (y' Yo) = sin(td) = 0. This will

be satisfied for the eigenvalues given by

nir
un =

Now consider the second problem (EVPb). The boundary conditions only

require that the solution be periodic. Let be a constant (so it is periodic)

and ii = 0. This is a nontrivial solution to (EVPb) and so the least eigenvalue

is v = 0.

Then the eigenvalues of the original problem, (EVP), are given by the

relation
2

k = + u, = +

The lowest eigenvalue is
2

k2
ir

1-a.

Let q5 = A1 sin(niry/d) be the eigenfunction corresponding to k1. That

is, the pair (q1,ki) satisfies (EVP),

Lq1 + kq = 0.

Multiplying by , integrating over D yields

ID
+ k} d 0

or, applying Green's identity,

Solving for k,

_L12+IDd=o.

2_ fD1)
I' 2y-
JD 1 (LX
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Since, by construction, k? is the smallest eigenvalue, its Rayleigh quotient

(the above equation) is smaller than any other Rayleigh quotient correspond-

ing to any other eigenvalue. So k? is the least eigenvalue in the same sense

as defined by equation (3.17). That is, k1 k0.
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APPENDIX B

Some caiculus of variations

(I) Variational Derivatives

Only the essentials are presented here in order to provide a key to the

notation used and to give some idea of the computational aspects of the

calculus of variations. The definitions and theorems presented follow closely

those given in Olver (1986). For a good introduction and other applications

see Guenther and Lee (1988), Chapter 11.

Let l be an open connected domain in IR" with smooth boundary ôft

Let the space of dependent variables u = (u',. . . u) be ] (Olver (1986)

comments that the following ideas can be extended to variational problems

over smooth manifoldssee Olver (1986) for references.)

A variational problem consists of trying to maximize or minimize a

functional

£[u] = fL(x,u)d,

over some class of functions, u = f(x), defined on . L (called the La-

grangian for, or sometimes the density of £) is a smooth function of x, u

and derivatives, u, of u. That is, L is a differential function as defined in

Chapter 4. The particular specification of this class depends on boundary

conditions and differentiability conditions on the minimizing function. For

a given class a minimizing function for a given variational problem need not

exist.

Let £[uJ be a variational problem. The variational derivative (sometimes
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referred to as the functional derivative) of £ is the unique q-tuple

for which

812[u] = (SiC[u],. ..

+ o] f SC[f(x)}
(x) d, (B.1)

wheneveru = f(x)is a smooth function on I, and i(x) = (i'(x),.. .,77(x))

is smooth with compact support in
. f + must satisfy any boundary

conditions imposed on the class over which £ is to be minimized. The varia-

tional (or functional) derivative of C with respect to u is the th component.

SaC = SC/Sua, of SC.

The expression on the left hand side of (B.1) is called the first variation

of C (with respect to u) and is denoted by either SC, SC(), or SC(f) i. It

may be thought of as the "directional derivative" of C in the "direction" of

i at the "point" f (see Guenther and Lee, 1988).

In the Introduction, section C, where the stability algorithm first ap-

pears, the derivatives were left in a generic form. Once the setting of the

problem is specified the notation can be suitably specialized. For example,

DE(e) (u Ue) in equation (1.3) becomes SE(4') (q) for calculations

leading up to (3.10).

If f is an extremum of £[u], then for each ij with compact support in

such that f + z is in the desired class of functions, £[f + E77] is a smooth

function of and thus has an extremum at f = 0. Observing this, along with

(B.1) and a short argument establishes the following theorem.

Theorem Bi. If u = f(x) is an extremal of £[uJ, then

SC[f(x)] = 0 for x E l . (B.2)

This is the condition required in step 3 of the stability algorithm.
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In a similar fashion higher order variational derivatives are defined. We

only need the second order variational derivative denoted, 82.C, which is

easily calculated by extending (B.2) using the second order derivative with

respect to E.

(ii) Calculation of SHc and 82H

As given in Chapter 3, equation (3.7), Hc is

Hc() = E() + C() = ff V V dx dy
+ff

)dx dy. (B.3)

The first variation of Hc at 'I' is found by computing

d
That is,

8Hc() = [H(W + fc)]f=0

=
[ff

+ + ) + + )J dx dY]

[ffD
+ + + )] dx d] (B.4)

lID
V + '()] dx dy

lID
W]zq5dxdy (using Green's identity).

To find the second variation,

d2

is computed. By picking up the calculation at equation (B.4),

d [lID
+ + '( + )} dx dY]

[IL
+ "((w + )2]] dx d]0

lID
(V)2] dx dy.
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APPENDIX C

An application of Taylor's theorem

One form of Taylor's theorem in one dimension is the following (see most

any Calculus book; eg. H. Thurston, Intermediate Mathematical Analysis,

Oxford (New York), 1988).

Theorem. If((x) exists for x E [x0 h,x0 + h] then there is a 9, 0 E

[xo,xo +h] so that

k-i
h3(i)(xo)

+
hi(k)(8)

j=o

Now consider that we have 0 < c < "(x) on Ift. So this inequality

holds on every closed interval, and in particular on [x0 h, x0 + h]. Then by

Taylor's theorem there is a 8, 8 E [x0, xo + h], so that

(x0 + h) = (x0) + h'(xo) +

But 0 < c < "(x) on [x0, hJ implies 0 < c < "(8). So

That is,

h2 h2

2
<

= (XO + h) (x0) h'(xo)

h2
<(x0 + h) (x0) h''(xo) . (C.1)

This can be extended to the case where h and x0 are real-valued, bounded

functions by observing that it must hold pointwise. Specifically, if W and

Lq are real-valued and bounded, then for each (x, y)

W + ) = (W) + '(W) + "(8), (C.2)
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where 8 is between L1I and and (C.1) follows in the form

()2
2

< (z + Lç)

Similarly, if "(x) < C < c: on IR, then it holds on each closed interval

in JR and (C.2) still holds. Then,

+ ) W)
()2




