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ABSTRACT

Direct numerical simulations are used to compare turbulent diffusivities of heat and salt during the
growth and collapse of Kelvin-Helmholtz billows. The ratio of diffusivities is obtained as a function of
buoyancy Reynolds number Re,, and of the density ratio R, (the ratio of the contributions of heat and salt
to the density stratification). The diffusivity ratio is generally less than unity (heat is mixed more effectively
than salt), but it approaches unity with increasing Re,, and also with increasing R,,. Instantaneous diffusivity
ratios near unity are achieved during the most turbulent phase of the event even when Re,, is small; much
of the Re, dependence results from the fact that, at higher Re,, the diffusivity ratio remains close to unity
for a longer time after the turbulence decays. An explanation for this is proposed in terms of the Batchelor
scaling for scalar fields. Results are interpreted in terms of the dynamics of turbulent Kelvin-Helmholtz
billows, and are compared in detail with previous studies of differential diffusion in numerical, laboratory,
and observational contexts. The overall picture suggests that the diffusivities become approximately equal
when Re, exceeds O(10%). The effect of R, is significant only when Re,, is less than this value.

1. Introduction

The density of seawater is controlled by a pair of
scalar quantities, temperature and salinity, whose mo-
lecular diffusivities differ by two orders of magnitude.
Despite this difference, we customarily assume that the
turbulent diffusivities of temperature and salinity are
the same. This assumption is grounded in the classical
theory of stationary turbulence in the limit of infinite
Reynolds number (e.g., Corrsin 1951). However, much
of the ocean interior is mixed by turbulent events for
which the Reynolds number is decidedly finite (e.g.,
Moum 1996b) and the turbulence is nonstationary. In a
mixing event of finite duration, vertically displaced
fluid parcels may return to an equilibrium configuration
after mixing only partially with the surrounding fluid.
The lower the molecular diffusivity, the greater the ten-
dency for incomplete mixing. The large difference be-
tween the molecular diffusivities of heat and salt there-
fore suggests that heat and salt could mix differently in
turbulent events of finite duration. In other words, tur-
bulent seawater may exhibit differential diffusivity. In
the present study, we assess the potential for differen-
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tial diffusivity via direct numerical simulations (DNS)
of turbulent Kelvin—-Helmholtz (KH) billows.

Several large-scale modeling studies (e.g., Gargett
and Holloway 1992; Merryfield et al. 1999) have re-
vealed that a difference in the assumed diffusivities of
heat and salt can lead to significant differences in com-
puted large-scale circulation, so the issue is potentially
important for the development of accurate turbulence
parameterizations.

Differential diffusion was first demonstrated in the
laboratory experiments of Turner (1968), who mea-
sured entrainment fluxes in a fluid where turbulence
was generated by an oscillating grid. The working fluid
was stratified by either temperature or salinity, but not
by both. A significant difference in turbulent diffusivi-
ties was evident. Altman and Gargett (1990) repeated
Turner’s experiments, this time using thermal and sa-
line stratification simultaneously. Like Turner, they
found diffusivity ratios significantly different from
unity. Individual entrainment rates were independent
of the presence of the other density component; that is,
no dependence on the density ratio was detected. In the
laboratory experiments of Jackson and Rehmann
(2003), a fluid stratified by both salinity and tempera-
ture was stirred by oscillating rods, with special care
taken to insulate the boundaries against heat loss. A
distinct dependence on the buoyancy Reynolds number
(defined below) was identified. Hebert and Ruddick
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(2003) measured differential diffusion of dynamically
passive chemical dyes in breaking internal gravity
waves and again found a dependence on the buoyancy
Reynolds number.

Nash and Moum (2002) have made a similar assess-
ment using in situ measurements of ocean microstruc-
ture. Statistical analysis of many turbulent events indi-
cated a tendency for heat to diffuse more rapidly than
salt, but the ratio of diffusivities was within experimen-
tal error of unity. No dependence upon the buoyancy
Reynolds number was evident.

In DNS, the resolution of weakly diffusive scalars
presents an extreme challenge. The first study to at-
tempt this was Merryfield et al. (1998) in which flow
was restricted to two dimensions to save memory.
Those simulations were successful in detecting differ-
ential diffusion and they served as an important prelude
to the first fully three-dimensional numerical realiza-
tions of the phenomenon, those of Gargett et al. (2003,
hereinafter GMH). To facilitate simulation in three di-
mensions, the diffusivity of salt was artificially in-
creased (as it has been in all subsequent DNS studies
including the present work). The results of GMH have
recently been extended by Merryfield (2005, this issue,
hereinafter M05) to include variation of the density ra-
tio and the important limit of zero net stratification. A
review of the subject has been provided by Gargett
(2003).

Here, we assess the potential for differential diffu-
sion in turbulent KH billows. We do so using DNS of
shear flows stratified by both heat and salt. Kelvin—
Helmholtz billows have proven to be a useful model for
shear-driven overturns observed in the ocean. Direct
observations by Woods (1968) showed billows forming
on the crests of larger-scale internal waves. Vivid im-
ages of KH-like billows have been obtained via echo-
sounder in flow over topography (e.g., Seim and Gregg
1994; Farmer and Armi 1999) and in large amplitude
internal waves (e.g., Moum et al. 2003). Smyth et al.
(2001) have compared turbulence statistics from DNS
of KH billows with measurements of turbulent events
in the thermocline, and found that the two are statisti-
cally indistinguishable (except for the generally lower
Reynolds numbers of the simulated flows, which re-
flects the limitations of existing computer technology,
not of the KH model). Given this evidence for the im-
portance of KH-like dynamics in ocean mixing events,
we are motivated to learn whether, and if so under what
conditions, turbulent KH billows exhibit differential
diffusion.

Section 2 describes the numerical model used for the
simulations. A general overview of the KH life cycle as
realized in these experiments is given in section 3. In
section 4, we describe the scalar fields in terms of gra-
dient spectra, and compare the results with both the
ocean observations of Nash and Moum (2002) and the
theoretical spectrum of Kraichnan (1968). The main
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results are in section 5, where potential energy compo-
nents, scalar variances and turbulent diffusivities for
the two scalars are examined. In section 6, results are
described in the context of previous work. A summary
is given in section 7.

2. Methodology

a. The mathematical model

The mathematical model is based on the field equa-
tions for nonrotating, incompressible flow in the Bouss-
inesq limit, together with advection—diffusion equations
for the two scalars; namely,

ou; ou;

— =~ 84 + Vu,

at i 9x, po X, NCREAAE

u;

ax; o
apr apr >
—_— = . — +

o ax, K1V Pr,

apS apS 2
W = —uja—xj + KSV Ps,» and

p=pot prtops (1)

The vector u; contains the components of the velocity
field and p and p represent pressure and density, re-
spectively. The constant p, is a reference density from
which deviations are assumed to be small (so that the
Boussinesq approximation applies and the equation of
state is linear). Accordingly, the thermal and saline con-
tributions to the density anomaly p — p, are repre-
sented by pr = —ap(T — Tp) and pg = Bpy(S — So),
where T, and S, refer to the reference state and « and
B are the (constant) expansion and contraction coeffi-
cients for heat and salt in water. The molecular diffu-
sivities of heat and salt in water are represented by the
constants k; and kg. The constants v and g represent
kinematic viscosity and gravitational acceleration.

The field equations (1) are solved in the computa-
tional box 0 = x =L, 0=y=1L,0=z=1L,.
Boundary conditions are periodic in the horizontal di-
rections; that is,

foe+ L,y z,0)=fx,y,z,) =flx,y + L, z,0), (2)

where frepresents any field variable. At the upper and
lower boundaries z = 0 and L, vertical velocity and
vertical fluxes of heat, salt, and horizontal momentum
are required to vanish.

b. Numerical methods

The numerical code is an extension of that described
by Winters et al. (2004). It uses Fourier pseudospectral
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discretization in all three dimensions. Time stepping is
via the third-order Adams-Bashforth operator, with
time step determined by a Courant-Friedrichs-Lewy
stability condition. Viscous and diffusive terms are in-
tegrated exactly. MPI routines are used for paralleliza-
tion.

The Winters model has been extended for use in
ocean DNS via the addition of a second active scalar,
here representing salinity. The second scalar is resolved
on a fine grid with spacing equal to one-half the spacing
used to resolve the other fields (as was done by GMH).
Interpolations and decimations between grids are ac-
complished using Fourier transforms. Aliasing errors
are reduced by applying to both grids at every time step
an isotropic filter having a cosine-bell shape that de-
creases gradually from amplitude 1 to 0.6 over the
range from 0.8 to 1 times the Nyquist wavenumber.
This gradual decrease minimizes the effect of dealiasing
on the resolved fields.

The multiple grid approach described above allows
the efficient resolution of weakly diffusive scalars such
as temperature and salinity in seawater. The memory
requirement is about 1/3 of that required if all fields are
resolved on the same grid. It is possible to increase
further the difference in resolution between the coarse
and fine grids, but further increases yield only small
improvements in efficiency.

c¢. Initial conditions and parameter values

For the present experiments, the initial conditions
describe a pair of water masses separated by a horizon-
tal transition layer:

u Pr _ Ps h(z - LZ/2> 3

A”__A_T__A_S:tan ho

Here h, is the initial half-depth of the transition layer,
and Au is the half velocity difference; A, and Ag are
minus the half differences of the density components p;-
and pg, respectively, so that the absolute half difference
of density across the layer is Ap = A, + Ag. With these
choices, the initial stratification is both statically and
diffusively stable. Dynamic (shear) instability depends
on the relative values of A, Au, A, and Ag as discussed
below.

The horizontal periodicity intervals were determined
according to the fastest-growing modes of linear theory.
The domain length L, was generally twice the wave-
length of the fastest-growing KH mode, though a single
wavelength was used for some experiments. For the
profiles (3) with the parameter values used here, the
fastest growing wavelength is closely approximated by
Arom = ho X 27/0.44. The domain width L, was Apgm/
2, which is approximately three times the spanwise
wavelength of the fastest-growing three-dimensional in-
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stability of KH billows in air as described by Klaassen
and Peltier (1991). (Note that this wavelength is partly
controlled by diffusion, so we expect it to be smaller in
seawater.)

In addition to the profiles described above, the initial
conditions included a two-part perturbation designed to
efficiently stimulate both the KH mode and its second-
ary instabilities. First, disturbances proportional to the
fastest-growing KH mode and the KH mode with twice
that wavelength were added. The amplitude of the fast-
est-growing mode was chosen so that its maximum ver-
tical displacement was 0.24,. The maximum vertical dis-
placement associated with the subharmonic mode was
0.1h,. These amplitudes are large enough to efficiently
stimulate primary and subharmonic modes, yet small
enough to be well described by linear perturbation
theory. The phases of the primary and subharmonic
modes were chosen to induce pairing at the streamwise
boundary of the (periodic) computational domain so
that the inner core would be easily visible in volume
renderings (e.g., Fig. 1). Second, a random velocity field
was added in order to excite three-dimensional mo-
tions. At each point in space, the three components of
the velocity increment were chosen from a list of ran-
dom numbers whose probability distribution was uni-
form between the limits +0.1Au. During the first time
step, the random motions were automatically made so-
lenoidal by the pressure gradient force.

The computations were done using mks units. To
represent flow in terrestrial oceans, the gravitation ac-
celeration, characteristic density, molecular viscosity,
and thermal diffusivity were set to g = 9.81 ms ™2, p, =
1027 kg m >, v=10X10°m?s" !, and k, = 1.43 X
10 m?s~ !, respectively. Note that the choices of v and
k7 correspond to a Prandtl number Pr = v/k, of 7, a
typical value for seawater. Approximate correspon-
dence to a typical turbulent patch in the thermocline
was achieved by setting the initial turnover time for the
shear layer Tg = hy/u, to the value 28.28 s. With this
choice, KH billows were found to grow and decay over
a time span of 1-3 h. (Results can be converted to any
other time scale as necessary.)

The remaining parameter values were determined
via choices of four nondimensional groups:

hoA
Sc = v/kg; Rig = & 123;
poAu
Auhy, Ag
€o = » 5 o= A_s 4)

The Schmidt number Sc for salt in seawater ranges
between 700 and 1000. To attain a significant level of
turbulence in the computed flows while maintaining
good spatial resolution, we have reduced this value to
50. Equivalently, one may express saline diffusivity in
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Fi1G. 1. Evolution of the salinity field pg for run 1. Values colored range from —0.4Ag (red) to 0.4Ag (dark blue). Values
outside this range are transparent. Times are as marked; note that the interval between frames is longer in the later part

of the life cycle.

terms of the inverse Lewis number, 7 = kg¢/k, which is
of order 107 in seawater but is 0.14 in these simula-
tions. (GMH used a similar value: Sc = 70, or 7 = 0.1.)
Even with this compromise, “salinity” still diffuses an
order of magnitude more slowly than does heat, so the
effects of the different molecular diffusivities ought to
be evident, although those effects are likely to be un-
derestimated. For simplicity we will refer to the scalar
corresponding to the density pg as “salinity,” even
though it actually represents a fictitious solute that dif-
fuses more rapidly than does sea salt.

The intensity of turbulence attained in the stratified
shear layer (3) is governed mainly by the initial Rich-
ardson and Reynolds numbers, Ri, and Re,. The pri-
mary KH mode is inviscidly unstable provided that Ri,
< 1/4 (Miles 1961; Howard 1961); for the present simu-
lations, Ri, was in the range 0.10-0.12. The initial Reyn-
olds number controls the range of scales in the resulting
flow. A standard compromise in DNS of geophysical
flows, occasioned by limitations of computer technol-
ogy, is that the Reynolds number cannot normally be
made as large as one would like. In this case, the slow
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TABLE 1. Parameters for numerical simulations; Re, and Ri, represent the initial Reynolds and Richardson numbers, and R, is the
density ratio. The variable 4, is the half thickness of the initial shear layer. The half changes in horizontal velocity and net density are
Au and Ap; L,, L, and L, are the domain dimensions in the streamwise, cross-stream, and vertical directions, respectively; and N,, N,,
and N, are the corresponding array sizes. The dimensions of the fine array are 2N,, 2N,, and 2N .. For all simulations, Pr = 7 and Sc
= 50.

Parameter Unit 1 2 3 4 5 6 7 8 9 10
Re, 300 240 240 240 200 240 180 180 180 100
R, 1.0 0.2 1.0 5.0 0.2 1.0 0.2 1.0 5.0 1.0
Ri, 0.10 0.10 0.10 0.10 0.10 0.12 0.12 0.12 0.12 0.10
hy 103 m 92.0 82.4 82.4 82.4 75.0 82.4 71.3 71.3 71.3 532
Au 103 ms™! 332 2.96 2.96 2.96 2.66 291 2.52 2.52 2.52 1.88
Ap 1073 kg m™3 1.21 1.08 1.08 1.08 0.984 1.29 1.12 1.12 1.12 0.696
L, m 2.62 1.17 1.17 1.17 2.15 2.34 1.02 1.02 1.02 1.52
L, m 0.65 0.59 0.59 0.59 0.54 0.59 0.51 0.51 0.51 0.38
L. m 0.88 0.78 0.78 0.78 0.72 0.78 0.68 0.68 0.68 0.51
N, 512 192 192 192 384 384 192 192 192 256
N, 128 96 96 96 96 96 96 96 96 64
N. 192 128 128 128 128 128 128 128 128 96

n

diffusion of salinity requires that Re, be set to 300 or
smaller. Initial Richardson and Reynolds numbers in
this range lead to turbulent patches whose intensity (as
measured by the buoyancy Reynolds number to be de-
fined below) is within, but near the weak end of, the
range observed in the thermocline (Smyth et al. 2001).

The relative importance of heat and salt in determin-
ing the initial density stratification is expressed by the
density ratio R,,. There are several conventions in cur-
rent use for defining R, With the definition given in
(4), R, is positive when both thermal and saline com-
ponents of the stratification are stable. Turbulent
patches in the thermocline typically exhibit values of R,
between 0.2 and 5.

Choices for the parameter values are summarized in
Table 1. Most of the analysis will focus on runs 1-4; the
remaining runs are included to provided a more com-
prehensive view of the factors governing differential
diffusion.

3. Overview of flow evolution

The growth, breaking and decay of the KH billow in
run 1 is illustrated in Fig. 1 via volume renderings of the
ps field at selected times, and in Fig. 2 via the evolution
of three energy reservoirs that we now define.

The potential energy is given in nondimensional form
by

8

P(r) =
POA’/£2

<(Z — L.2)(pr + P5)>V - Py, 5)

in which angle brackets indicate a volume average over
the computational domain V and P, is the potential
energy of the initial profiles (3). Here P(¢) evolves in
response to both reversible and irreversible processes.
Irreversible potential energy changes will be examined

in section 5. The kinetic energy is partitioned into two-
and three-dimensional components:

Ko4(t) = ——5( g " Wpg),  and
polAu

Ksq(t) = (6)

ﬁ< Usg - “3d>v'
0

The velocity fields associated with two- and three-
dimensional motions are
Uyy(x, 7, 1) = (), — (u),, and

u3d(x’ y’ Z, t) =u- <u>y’
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FI1G. 2. Selected energy reservoirs for run 1: potential energy
(solid), kinetic energy of two-dimensional flow (dashed), and ki-
netic energy of three-dimensional flow (dotted). All energies are
nondimensionalized by p,Au? as described in the text. Potential
energy is shown minus its initial value.
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where subscripts on the angle brackets indicate spatial
averages over the specified dimensions. The velocity
field u,4 describes the primary KH billows and other
large-scale, wavelike motions, while u;, is associated
with longitudinal secondary instabilities (e.g., Klaassen
and Peltier 1991) and turbulence.

Figure 1a shows the salinity field from run 1 at ¢ = 0.
The transition layer was horizontal except for the small-
amplitude linear eigenfunction and the random noise
field. Subsequently, both the potential and two-
dimensional kinetic energy fields showed rapid growth
(Fig. 2, solid and dashed curves). By r = 610 s, the
primary KH billows had rolled up and were approach-
ing their maximum amplitude (Fig. 1b). In Fig. 1c, the
braid separating the billows at the center of the com-
putational domain is visibly longer than that crossing
the periodic streamwise boundary. This corresponds to
a merging of the primary billows across the periodic
boundary due to the subharmonic pairing instability
(e.g., Collins and Maslowe 1988). The merging process
was nearly complete at 1 = 1425 s (Fig. 1d). Also visible
at this time was the emergence of three-dimensionality
in the cores associated with the secondary instability
described by Klaassen and Peltier (1985a,b; 1991). Four
spanwise wavelengths of the Klaassen—Peltier (herein-
after KP) mode are visible near the right-hand side of
Fig. 1d. This instability was also manifested in rapid
growth of the three-dimensional kinetic energy (Fig. 2,
dotted curve).

Beyond this time, K,4 decreased sharply. Most of this
decrease was transferred to the mean flow as the quasi-
elliptical billow core rotated to a more nearly horizon-
tal orientation (Fig. 1e). The potential energy contin-
ued to grow for a short time after this because of the
rollup of streamwise vortices associated with the KP
instability (Figs. 1d,e); however, it too exhibited a rapid
decrease around ¢ = 2000 s that coincided with rapid
growth of three-dimensional structure (Fig. 1f, dotted
curve in Fig. 2). This phase is referred to as the “break-
ing” of the KH billow.

The breaking billow cores ejected jets of turbulent
fluid horizontally toward the center of the domain (Fig.
1f), where they engulfed the intervening braid. Figure
1g shows a second pair of jets being ejected from the
turbulent core. This ejection coincided with a second
rapid decrease in potential energy as the billow rotated
again into the horizontal orientation. The meeting of
the second pair of jets at the domain center (Fig. 1h)
induced an intense burst of turbulence. Shortly after
this, turbulence began to decay under the influence of
viscosity, as shown by the rapid decrease in both com-
ponents of the kinetic energy (Fig. 2). Because of its
low diffusivity, the salinity field retained significant
small-scale structure even in the late stages of turbu-
lence decay (Figs. 1i,j).

Ultimately, the decay process left behind a sheared,
two-layer flow similar to the initial condition, except
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FIG. 3. Selected energy reservoirs for runs 3 (dashed), 4 (solid),
and 5 (dotted): (a) potential energy, (b) kinetic energy of two-
dimensional flow, and (c) kinetic energy of three-dimensional
flow. All energies are nondimensionalized by p,Au” as described
in the text.

that the transition region had thickened because of mix-
ing. As a result of this thickening, the minimum Rich-
ardson number had increased to a value greater than
1/4, and the flow was therefore dynamically stable. This
irreversible thickening of the transition layer is evident
in Fig. 2 as a permanent increase in potential energy
after the disturbance kinetic energies have decayed.

The flow evolution in runs 2-4 (Fig. 3) was simpler
because of reduced Reynolds number and the suppres-
sion of pairing. The growth of the KP mode was in
general more rapid because it did not compete for en-
ergy with the pairing mode (also see Metcalfe et al.
1987). The growth rate of the primary KH instability
was independent of R, as is evident from the initial
evolution of P and K4 (Figs. 3a,b). In contrast, the
initial growth rate of the KP mode was a strong func-
tion of R, as shown by the divergence of the curves in
Fig. 3c near t = 1500 s. This variation with R, appears
to be related to the Pr dependence of the growth rate of
the KP mode described by Klaassen and Peltier
(1985a). When R, < 1 (dashed curve), the density was
dominated by the slowly diffusing salinity components,
and the density gradients that drive convection were
therefore sharper. In the R, > 1 case (dotted curve),
the converse was true: density was dominated by the
rapidly diffusing temperature field. Temperature domi-
nance also caused the damping action of buoyancy on
the primary KH billow to be reduced slightly, as shown
by the increased amplitude and duration of the peaks in
potential and two-dimensional kinetic energy (Figs.
3a,b; t ~ 800-1400 s).

As in run 1, the breaking billows transferred much of
their energy to the growing three-dimensional mode.
This transfer occurred in two stages. In the cases with
R, =1 (solid and dotted curves), the second stage was
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considerably longer than the first and resulted in con-
siderably greater growth in K,4. This is because (i) the
primary billows lost less energy to three-dimensional
motions during the first stage of collapse, and (ii) the
growth and subsequent rolling motion of the primary
billows was less constrained by gravity when density
was dominated by the rapidly diffusing temperature
field. The latter effect is illustrated by the large increase
of potential energy between ¢ = 1500 and 2000 s (dotted
curve on Fig. 3a). That potential energy was released as
three-dimensional kinetic energy between ¢ = 2000 and
2300 s. Therefore, despite the relatively low initial
growth rate of the KP mode, three-dimensional mo-
tions ultimately became strongest in the temperature-
dominated case.

We conclude this overview of KH breaking and tur-
bulence with an examination of kinetic energy dissipa-
tion via viscous friction. Since a substantial fraction of
our computational domain was occupied by laminar
flow above and below the mixing layer, higher-order
statistics such as the kinetic energy dissipation rate,
when computed using simple volume averages over the
domain, are not representative of the turbulent region.
Instead, we take advantage of the fact that the turbu-
lent layer coincides roughly with the transition layer
identified previously and is therefore delineated effec-
tively by two isosurfaces of the total density field, p +
ps. We choose isosurfaces upon which the density had
the values *=Ap tanh(1). The subvolume enclosed by
these surfaces is denoted V. Averages over V- contain
very little contribution from the laminar regions. At ¢ =
0, the mean half thickness of V. [denoted h(f)] was
equal to h, the initial half thickness of the transition
layer.

As each simulation progressed, /(f) increased mono-
tonically as a result of the irreversible mixing of density
(Fig. 4). The degree of thickening was greatest in cases
where mixing was most vigorous. It was this thickening
that caused the increase of the bulk Richardson number
to a stable value and hence the ultimate decay of the
turbulence.

The buoyancy Reynolds number provides a useful
description of the range of scales in stratified turbu-
lence. It is defined as the ratio of the squared Kolmo-
gorov eddy turnover rate, €/v, to the squared buoyancy
frequency N*:

<E>VT

Reb = T o
<VN2>VT

®)

where the subscripts indicate volume averages over the
turbulent subvolume V. The turbulent kinetic energy
dissipation rate e is defined locally as

€ =2vss; 9)

ijs

;1 [ou; N ou;
AD) ax;  ox;

1

in which

(10)
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F1G. 4. Evolution of the transition layer depth for simulations
1-4.

is the strain rate. Primes indicate fluctuations about the
horizontally averaged velocity (u),,. When Re, is large,
turbulent eddies are too energetic to be affected by
buoyancy. Run 1 reached a buoyancy Reynolds number
slightly in excess of 40 (Fig. 5, thick curve). The corre-
sponding flow state is illustrated in Fig. 6. The remain-
ing three runs shown in Fig. 5 were restricted to lower
Re,, in part because the pairing instability was sup-
pressed. Nevertheless, these runs are expected to give a
useful indication of the influence of the density ratio on
turbulent diffusion. Note the slight difference in the
evolution of Re, between the low and high density ra-
tios (dashed and dotted curves on Fig. 5).

Also shown in Fig. 5 is a histogram of Re,, taken from
observations in the thermocline off northern California
(Moum 1996b). A set of 994 profiles extending from
200 m to a maximum of 600-m depth was binned to
yield 144 246 1-m segments, from which the statistics of
Re, were computed. No attempt was made to isolate
overturns or other regions of elevated turbulence. Val-
ues generally ranged between 1 and 10% the median
was 29. Thus, the buoyancy Reynolds numbers attained
in the DNS runs reported here appear to be represen-
tative of weakly turbulent regions of the ocean ther-
mocline.

4. The scalar gradient spectrum

Power spectra of the scalar gradient fields provide a
sensitive test of numerical resolution, as well as insights
into the physics of turbulent mixing. Here, spectra are
computed for the high-Reynolds-number case (run 1)
at a time when turbulence was at its most intense (i.e.,
Re, was a maximum), and so the demand placed on
spatial resolution was high. Figure 6 shows the two sca-
lar fields from run 1 at this time, which is intermediate
between the times shown in Figs. 1f and 1g. The right-
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FiG. 5. (left) Evolution of the buoyancy Reynolds number for simulations 1-4. (right)

Probability distribution function (PDF) for buoyancy Reynolds number from observations in
the main thermocline.

F1G. 6. Partial densities (a) pg and (b) p; for run 1 at r = 2286 s. This flow state is intermediate between those

shown in Figs. 1e and 1f. Values colored range from —0.4A (red) to 0.4A (dark blue). Values outside this range are
transparent.
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going and left-going ends of the collapsing core are just
beginning to interact at the domain center. The p; field
(Fig. 6b) displays a structure similar to the salinity, but
with markedly less small-scale variability (cf. GMH’s
Fig. 2).

Figure 7 shows spectra of the scalar gradients dp,/dz
versus the vertical wavenumber k. Spectra were com-
puted in the vertical direction to facilitate comparison
with profiler measurements. The symbol 0 is used to
denote either temperature or salinity. Spectra were
computed from 500 vertical profiles sampled randomly
within the domain. For each profile, the turbulent re-
gion was selected, and p, was first-differenced, Hanning
windowed, and Fourier transformed to obtain the
power spectral density ¥, . A correction was applied to
recover variance lost by first differencing. Each spec-
trum was normalized prior to averaging, using the iso-
tropic variance dissipation rate,

Xo = Ko J WV, dk (11)

0

and the Batchelor scale k) = (e/vk3)'* (Batchelor
1959). Also shown on Fig. 7 are spectra computed from
observational data (Nash and Moum 2002) and the
theoretical spectral form of Kraichnan (1968).

The p; spectrum extends further into the small scales
than does the pg spectrum because the former field is
somewhat better resolved with respect to its Batchelor
scale (the ratio of Batchelor scales for the two scalars is
\/7 = 2.65; the ratio of grid spacings is 2.0). The spec-
tra of small-scale gradients determined from these
simulations agree very well with both the observations
and the theory. This indicates that the model is repro-
ducing the small-scale physics accurately, and in par-
ticular that the spatial grid resolution is adequate.

At larger scales, correspondence is not as close.
Large-scale gradients are strongly affected by the
evolving fields associated with gravity waves (GMH)
and with the KH instability. In contrast, the theory as-
sumes that the flow is in statistical equilibrium, and the
observations have considerably larger Reynolds num-
bers, thus less influence of the forcing scales in the
viscous—convective and viscous—diffusive subranges,
relative to the DNS. The DNS salinity spectrum peaks
at a higher value than the temperature spectrum, the
theory, or the observations. Both the salinity spectrum
and the observations are systematically higher than the
Kraichnan spectrum in the viscous—convective (k*')
range.

5. Potential energy, scalar variances, and turbulent
diffusivity

Our objective is to compare the turbulent diffusivi-
ties of the thermal and saline density components p;
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FiG. 7. Normalized vertical gradient spectra of temperature
(thick dashed curve) and salinity (thick solid curve) for run 1 at
t = 2286 s. Shown for comparison are gradient spectra of salinity
(triangles) and temperature (circles) from 350 ocean turbulence
patches (Nash and Moum 2002). The thin solid curve is the Kra-
ichnan (1968) universal form for the viscous convective and vis-
cous diffusive subranges. The value 7.3 was used for the constant
q (Smyth 1999).

and pg in various parameter regimes. Here, we describe
two approaches to this comparison, focusing first on the
evolution of the horizontally averaged scalar profiles
and later on an alternative approach that isolates irre-
versible mixing processes. Additional insight into the
physics of differential diffusion is gained through ex-
amination of scalar variances, whose dissipation rates
are used to estimate turbulent diffusivities in observa-
tional studies.

a. Component potential energies

In the context of vertical mixing of a scalar p, (which
may represent either p, or pg), computation of turbu-
lent diffusivity requires fitting the evolution of the sca-
lar field to a one-dimensional diffusion model, for ex-

ample,
9p,
K2

In (12), the diffusion model is expressed in terms of the
horizontally averaged profile py = (py),,.

There are a number of ways to invert (12) in order to
obtain a single, characteristic value for diffusivity at any
given time. Here, we begin by considering changes in
the specific potential energy associated with the evolu-
tion of each density component:

9P a<

at oz (12)

8
P()Ale

Py(t) = <(Z - LZ/Z)p6>V' (13)

In contrast to € and N* (cf. section 3), P, is a global
property of the flow. Accordingly, we make no attempt
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to isolate the turbulent region, but instead compute the
average over the entire computational domain.

Besides providing a route to the computation of K,
P, is in itself a useful descriptor of the flow physics.
Potential energy components associated with tempera-
ture and salinity for run 1 are shown by the thick curves
on Fig. 8. (Thin curves on Fig. 8 represent background
potential energies, to be defined below.) For each sca-
lar, the potential energy rose to a maximum, then de-
creased rapidly as the primary KH billows paired and
subsequently collapsed. The potential energy then os-
cillated a few times before settling down to an approxi-
mately steady state. The oscillations indicate reversible
transfers between the potential and kinetic energy res-
ervoirs, associated with interference between left-going
and right-going internal waves generated by the col-
lapsing KH billow (e.g., Figs. 1f,g and Fig. 6).

During the initial growth and pairing of the KH bil-
lows, the total potential energy stored in the tempera-
ture and salinity fields increased at nearly equal rates,
indicating that the two scalars were advected together.
As the billows collapsed (the phase of rapid decrease in
total potential energy), the component potential ener-
gies diverged. After turbulence had decayed, the tem-
perature field contained more potential energy than did
the salinity field. This indicates that salinity restratified
more completely than temperature or, equivalently,
that temperature mixed more thoroughly.

It can be shown that, if the mean density evolved
according to (12) with K, independent of z, then K,
would be proportional to the time derivative of the
component potential energy; namely,

L_poAu® d

Kl = =50

P,. (14)

As a definition of K,, (14) has a serious shortcoming:
the resulting diffusivity is negative during times when
P, is decreasing. Negative diffusivity implies “unmix-
ing” of a mixed fluid, an apparent violation of the sec-
ond law of thermodynamics. The real problem, of
course, is that the diffusion equation (12) is a poor
model for the evolution of the mean profiles because
that evolution reflects not only diffusion but also the
effects of gravity waves and other reversible processes.
The roll-up and subsequent breaking of the KH billows
is an example: breaking does not represent a reversal of
the diffusion process; in fact, it is a time of extraordi-
narily rapid diffusion, as we show in the next subsection.

b. Background potential energies and turbulent
diffusivities
We now describe an alternative definition for the
turbulent diffusivity that filters out reversible effects.
We begin by defining the reordered height coordinate
zi(x, v, z, t), which is the height a fluid parcel would end
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F1G. 8. Evolution of the scaled potential energy components for
run 1. Thick curves: component potential energy. Thin curves:
background potential energy. Solid curves: temperature compo-
nent. Dashed curves: salinity component.

up at if the partial density distribution p, was allowed to
relax adiabatically to a state where the corresponding
component potential energy was a minimum. (Note
that this reordering is done in three spatial dimensions,
not in one dimension as in the calculation of the Thorpe
scale—e.g., Thorpe 1977.) Changes in this state reflect
the effects of irreversible mixing alone (Winters et al.
1995; Scinocca 1995; Winters and D’Asaro 1996). A
diffusion model that describes the evolution of the
minimum potential energy state, p,(z4, t), contains only
irreversible effects:
9pg

dpe d
a GZZ‘<
The definition of the turbulent diffusivity implicit in
(15) has a number of appealing properties: K, is posi-
tive definite; in fact, its lower bound is the molecular
viscosity, achieved when partial density distribution is
statically stable and the fluid is motionless. The ratio of
turbulent to molecular diffusivity on any isosurface of
py 1s equal to the square of the ratio of the area of that
isosurface to its area in the stable, motionless state
(Winters and D’Asaro 1996). That ratio is also equal to
a ratio of gradients very similar in form to the Cox
number, which appears via the standard Osborn and
Cox (1972) formulation for stratified turbulence:

(15)

K, (IVpol®)z
Ko (Ipy/0z8)
Note, however, that the right-hand side of (16) differs
from the usual Cox number in that the squared gradient

is averaged not over coordinate planes but over isosca-
lar surfaces (since zj is a function of p, only). Also, the

(16)
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vertical gradient in the denominator pertains not to the
horizontal mean but to the background state. The sig-
nificance of these distinctions will be assessed below.
To invert (15) and thereby obtain a characteristic
value for K, describing only irreversible processes, we
first define the contribution to the minimum, or “back-
ground” potential energy, P, (Winters et al. 1995), as-
sociated with the density component p,, namely,

8 .
Pro(t) = —— (25 = L/2)po)y 17
poAu

where the subscript on the angle brackets indicates a
volume average taken over the background state (or,
equivalently, over isoscalar surfaces instead of coordi-
nate planes).

To distinguish it from P,,, the potential energy com-
ponent P, defined earlier is referred to as the “total”
potential energy due to the density component p,. The
difference P, — P, is called the available potential
energy, as it is available for conversion to kinetic en-
ergy. Note that P, is the “total” potential energy only in
the sense that it includes both the background and the
available potential energies; it nevertheless refers only
to the contribution of the density component p,. The
potential energy contained in the complete density field
(discussed in section 3) is given in terms of the compo-
nent potential energies by P = P, + Ps.

The background potential energy components P,
and P,g (thin curves on Fig. 8) respond only to irre-
versible processes, and they therefore increased mono-
tonically throughout run 1 (and all other runs). The
thermal component increased more rapidly than the
saline component right from the beginning of the pri-
mary growth phase. About one-half of the eventual di-
vergence of P,y and P, occurred before the transition
to turbulence was complete. For both scalars, the in-
crease in background potential energy was steepest
(i.e., irreversible mixing was most rapid) during the col-
lapse of the billow between ¢ = 1700 s and ¢ = 2100 s,
as indicated by the rapid loss of total potential energy.
Throughout this early period of differential diffusion,
the total potential energies stored in the temperature
and salinity fields (thick curves on Fig. 8) remained
nearly equal. This shows that the difference in the back-
ground potential energy increases was compensated in
the available potential energies. Vertically displaced
fluid parcels create background potential energy by
mixing with their surroundings, but at the same time
give up available potential energy. Only after parcels
lose their available potential energy via restratification
does the difference in the irreversible mixing of heat
and salt show up as a difference between the total po-
tential energies.

As turbulence decayed, the available potential en-
ergy stored in each scalar field due to waves and tur-
bulent eddies dropped to zero, and hence the total and
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FIG. 9. Evolution of the instantaneous turbulent diffusivities of
(a) temperature and (b) salinity for runs 1 (thick solid), 2
(dashed), 3 (thin solid), and 4 (dotted). Horizontal lines indicate
the molecular diffusivities.

background potential energies for each scalar became
equal. The temperature component of the background
potential energy increased more rapidly than the salin-
ity component throughout the run. The net amount of
temperature mixing, as indicated by the net change in
the associated background potential energy, was
greater than that due to salinity, signaling differential
diffusion.

If the background density evolved according to (15)
with K, independent of z}, then K, would be given by

(18)

We adopt (18) as our definition of the instantaneous
turbulent diffusivity. Figure 9 shows the instantaneous
turbulent diffusivities for runs 1-4. Initially, the diffu-
sivities for the different runs increased together, reflect-
ing the very similar values of KH growth rate in the
four cases. As the billows reached large amplitude,
however, the results diverged. In the three cases where
pairing was suppressed the thermal diffusivity rose to
about 25 times its molecular value near ¢ = 1400 s, then
decreased. In run 1, thermal diffusivity continued to
rise due mainly to additional mixing resulting from the
pairing instability, eventually peaking at 40 times its
molecular value near t = 2200 s. Note that this time
coincides with the time of maximum buoyancy Reyn-
olds number (cf. Figs. 5 and 6). The saline diffusivity
was generally smaller, though larger in proportion to its
molecular value.

The ratio of instantaneous diffusivities (Fig. 10) in-
creased initially from its molecular value of 0.14 toward
values near unity. This increase occurred mostly during
a dramatic jump that coincided roughly with the ap-
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F1G. 10. Ratio of instantaneous turbulent diffusivities for runs 1
(thick solid), 2 (dashed), 3 (thin solid), and 4 (dotted). Horizontal
lines indicate unity and the molecular diffusivity ratio 0.14.

pearance of the KP instability (Figs. 2, 3). In run 1, the
increase was spread out, presumably owing to the in-
fluence of the pairing mode. The maximum value of
K /K7 depended heavily on R, exceeding unity for the
case R, = 5. In all cases, K (/K eventually decreased.
(Simulations continued to very long times have con-
firmed that K¢/K, eventually returns to its molecular
value.)

The high-Reynolds-number case (run 1) did not
achieve the highest maximum K¢/K; however, the ra-
tio remained close to unity long after it had begun to
decrease in the other cases. We will see below that this
difference tended to reduce the difference in the cumu-
lative diffusion rates of heat and salt in the higher Re,
case. To understand the differences in the decay of K/
K in the four cases shown in Fig. 10, we must first
explore the physics of scalar mixing in terms of tem-
perature and salinity variances.

c. Scalar variances

In these simulations, volume-averaged scalar vari-
ances evolve according to

do

E = AG - X(’% (19)

where
@ = (P 0/AG, Ay = —2(w'pi)/A;,  and
Xo = 26(IVpyl*) /A%

represent the variance, production rate, and dissipation
rate of the scalar p,. Primes indicate fluctuations about
the horizontal mean. All quantities are normalized by
A? to facilitate comparison between temperature and
salinity variance budgets.
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In the Osborn-Cox formulation (Osborn and Cox
1972), turbulent diffusivities are proportional to scalar
variance dissipation rates. This relationship requires
that the scalar field be in statistical equilibrium, so that
Ay = x4, and that the scalar flux represented by A obey
a flux-gradient relationship. This formulation is used to
estimate turbulent diffusivities from ocean microstruc-
ture measurements, and the ratio

Xs

d, = - R, (20)
was used as a surrogate for K¢/K in the observational
analyses of Nash and Moum (2002). A more general
formulation by Winters and D’Asaro (1996) resulted in
(16), which relates the irreversible scalar flux (and
hence K,) to the dissipation rate averaged on isoscalar
surfaces without the need for an equilibrium assump-
tion. The Winters—D’Asaro formulation is applicable to
three-dimensional solutions but cannot be realized di-
rectly from field data, as the latter is generally one-
dimensional. However, results given below suggest that
d, is actually a useful estimate of the diffusivity ratio for
irreversible mixing processes regardless of the validity
of the Osborn-Cox theory.

The temperature and salinity variances in run 1
evolved in very similar fashion (Fig. 11). Early in the
run, d®/dt increased rapidly because of strong produc-
tion. The dissipation term became important gradually
as gradients sharpened. A second peak in the produc-
tion rate corresponded to the pairing instability. The
two breaking events (rapid decreases in potential en-
ergy in Fig. 2) were characterized by strong negative
production as the rolling of the KH vortex reduced
scalar fluctuations about the horizontal mean. The dis-
sipation rate reached a maximum during this time. The
late evolution was dominated by dissipative decay, with
only weak and fluctuating production rates.

In Fig. 12 we show the scaled ratio of dissipation
rates, d,, along with the instantaneous diffusivity ratio
and the buoyancy Reynolds number. Here, the dissipa-
tion rates xg and x, are computed using the full scalar
fields (including mean profiles) to ensure that their ra-
tios remain well defined when turbulence is weak. Note
first that dissipation and diffusivity ratios remained
very nearly equal over most of each run, diverging only
by ~10% as the flow reached its most turbulent state.
This is somewhat surprising since Fig. 11 shows that the
production—dissipation balance assumed in the Os-
born-Cox formulas is satisfied only when averaged
over the whole event; the instantaneous production and
dissipation rates show no relationship whatsoever. Re-
call, however, that the relationship between dissipation
rates and diffusivities (16) does not require the fields to
be in equilibrium if the latter represents irreversible
processes only, as it does here. The relationship re-
mains imperfect because y is averaged over coordinate
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FiG. 11. Terms in the variance Eq. (19) for (a) temperature and (b) salinity.

planes rather than isoscalar surfaces as in (16), but that
discrepancy is evidently important only during a brief
phase when turbulence is strongest.

Note also that the ratios remain close to their maxi-
mum values for a significant time after turbulence in-
tensity, as measured by Re,, has begun to decrease. As
was seen for the diffusivity ratio in Fig. 10, there is a

marked difference among runs in the time taken for the
ratios to drift away from their maximum values. In par-
ticular, the scalar fields in run 1 retained the character-
istic that d,, ~ K¢/K7 ~ 1 long after turbulence had
decayed. The fact that the scalar field retains the char-
acteristics of turbulence for a time after turbulence has
decayed is not surprising since both scalars diffuse less
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FIG. 12. Comparison of the scaled dissipation ratio d, (solid curve) with the buoyancy Reynolds number
(dashed curve) and the ratio of turbulent diffusivities (dotted curve) for runs (a) 2, (b) 3, (c) 4, and (d) 1.
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rapidly than does momentum. However, the origin of
the differences between runs is less obvious.

To understand the fact that the diffusivity ratios re-
main high for so long in run 1, consider the following
thought experiment. Suppose that, at some time that we
arbitrarily designate as ¢ = 0, a turbulent flow with
energy dissipation rate € carries a passive scalar whose
gradient spectrum obeys the Batchelor (1959) scaling
(cf. Fig. 7 and the accompanying discussion):

0 172 k
v () = = (%) flags ap= (29" 5. @1

0
Kokp, b

where f'is an unspecified nondimensional function. The
superscript “0” on €, W9 (k), and X9 indicates evalua-
tion at t = 0. Now suppoée that, at + = 0, all motion is
brought instantaneously to a halt, leaving the scalar
field to diffuse with no turbulent straining. Scalar evo-
lution is now governed by a simple, linear diffusion
equation. Each Fourier mode decays exponentially, and
the gradient spectrum therefore evolves according to

W, (k1) = W (k)e ok, (22)
We may then calculate the evolution of the dissipation
rate x,(¢) using (11), which under the Batchelor scaling
becomes

0 (e
X o2
Xo(t) = ?9 f flage o doy, (23)
0

where

1 /)12
Ye = q < v ) (24)
is the effective compressive strain rate of turbulent ed-
dies (e.g., Smyth 1999) just prior to the arrest of motion
at t = 0. This turbulent strain rate controls the rate of
diffusion by controlling the Batchelor scale (ky/y,) %
stronger strain generates fluctuations on smaller spatial
scales, which then diffuse more rapidly when the strain
is switched off.

The important observation here is that the integral in
(23) is independent of the molecular diffusivity. There-
fore, if x, is independent of k4 at t = 0, it will remain so
as the scalar fluctuations diffuse. More generally, the
ratio of the dissipation rates of two scalars having dif-
ferent molecular diffusivities will not change as the fluc-
tuations diffuse.

The foregoing argument rests on the assumption that
the scalars in question are passive; that is, buoyancy
effects are not important. In the present experiments,
buoyancy effects are present and become increasingly
dominant as turbulence decays. Buoyancy adds a new
time scale, N™!, to the problem, invalidating the Batch-
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elor scaling and with it the above analysis. The mean
shear also adds a time scale, but mean shear is nearly
proportional to N during the decay phase since the bulk
Richardson number remains nearly constant (Smyth
and Moum 2000b). The two effects therefore become
important at about the same time.

The ability of buoyancy and shear to influence the
dynamics depends on the ratio of the decay rate v, to N,
which is proportional to the square root of the buoy-
ancy Reynolds number. Therefore, when Re,, is small
(as in runs 2-4), we expect that 4, will drift rapidly
away from the value it had before turbulence began to
decay. Conversely, d, should remain close to its turbu-
lent value for longer when the turbulent phase is char-
acterized by larger Re,, as in run 1.

The above argument pertains entirely to the dissipa-
tion rates. We know of no corresponding argument to
explain the fact that the ratio of turbulent diffusivities
remains high for longest when Re,, is large, other than
to note the evident fact that the two ratios were very
similar during the decay phases of these simulations
(Fig. 12).

d. Cumulative diffusivities

From a parameterization perspective, we care less
about the instantaneous diffusivity than about a net
diffusivity that characterizes the whole mixing event.
For this reason, we define the cumulative diffusivity of
po in terms of the net change in the associated back-
ground potential energy, P,,. Because the “end” of the
event is chosen arbitrarily, we first let the cumulative
diffusivity be a function of time:

LZPOAU2 Ppo(t) = Ppo(0) — Dyt
2gA, t '

Kec(t) = (25)

The constant ®, = 2gk,Ay/L_p,Au” is the rate at which
potential energy would increase if the fluid remained in
the stable motionless state. This rate is determined en-
tirely by the potential energy fluxes at the upper and
lower boundaries (Winters et al. 1995; Winters and
D’Asaro 1996), and therefore remains steady as long as
the mean densities on the upper and lower boundaries
do not change appreciably, as is the case in the present
simulations. By subtracting out this relatively small in-
crease, we isolate potential energy changes due to fluid
motions. We next define the ratio of the cumulative
turbulent diffusivities:

Ksc _ A_T Ps(t) = Pps(0) — Oyt
Kpe  Ag Poy(t) = Ppy(0) — oyt

(26)

This ratio (Fig. 13) was undefined at early times, rose as
mixing proceeded, then approached an asymptote as
turbulence decayed. The asymptotic value of Kgo/K ¢
provides a useful metric for differential diffusion:
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. Ksc)

IR0 >
Note that, had we not subtracted @ from the potential
energies in (25) and (26), this asymptotic limit would
not exist and the cumulative diffusivity ratio would not
be well defined. [In contrast, we did not subtract k,
when defining the instantaneous diffusivities in (18).
Had we done so, the instantaneous diffusivities would
have approached zero at early and late times, and their
ratio d would then have been undefined.]

The cumulative diffusivity ratio d was about 0.82 for
the high-Re case (Fig. 13, solid curve). The maximum
ratio was significantly lower for the lower-Re cases, and
varied by 14% over the range of R, in runs 2-4 with the
lower values corresponding to R, < 1. The latter varia-
tion is in agreement with M05. In these experiments,
the dependence on R, was due mainly to differing time
intervals over which instantaneous K¢/K; remained
large (Figs. 10, 12, and the accompanying discussion).

The diffusivity ratio shows a close correlation with
the maximum value of Re,, as illustrated in Fig. 14. This
is in accord with GMH as well as with other studies as
detailed below. Figure 14 includes results from all ten
DNS runs listed in Table 1. The runs covered about an
order of magnitude of variation in Re,, and exhibited d
values ranging from 0.51 to 0.82. Evident again is the
tendency for d to increase with increasing density ratio.
Runs 7,8, and 9 had R, = 0.2, 1.0, and 5.0, respectively.
The buoyancy Reynolds number reached 7 in each
case, so that the three cases line up vertically at that
value on Fig. 14. The difference in d among these three
cases was 20%. The difference between this result and
the results of runs 2-4 described above indicates that
the effect of R, is most marked at low Reynolds num-
ber, consistent with the expectation that d should ap-
proach unity at high Reynolds number for all R,
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6. Comparison with previous work

In this section we survey results from previous labo-
ratory, observational and DNS studies of differential
diffusion. Figure 15 shows values of d and Re,, from the
present work along with representative results from
previous studies.

a. Laboratory experiments

The initial laboratory experiments of Turner (1968)
have been reanalyzed by Nash and Moum (2002) in
order to estimate the buoyancy Reynolds number.
Equating the ratio of entrainment fluxes with the dif-
fusivity ratio, Nash and Moum obtained the relation
shown by the thick curve in Fig. 15. The diffusivity ratio
increases with increasing Re, until it reaches a value
near unity at Re, =~ 10% The thickness of the curve
represents the uncertainty in the estimation of Re,
from the original data.

In the laboratory experiments of Jackson and Reh-
mann (2003), the work done on the fluid was measured
in order to infer the kinetic energy dissipation rate and
hence Re,. Beginning and ending profiles of tempera-
ture and salinity yielded the diffusivity ratio. The re-
sults, indicated by crosses on Fig. 15, fell into two broad
groups based on buoyancy Reynolds number. In the
upper group, Re, ranged from 500 to about 25 000, and
K was generally larger than K, by a few percent. In the
lower group, Re, was within a factor of 3 of 10* and
K /K ranged between 0.56 and 0.87.

Hebert and Ruddick (2003) measured differential
diffusion in internal gravity waves generated by a
paddle in a uniformly stratified fluid. To avoid the ef-
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Jackson and Rehmann (2003) (pluses), and Gargett et al. (2003) (gray bullets).

fects of heat losses from the sidewalls, they measured
differential diffusion of a pair of chemical dyes having
different molecular diffusivities in place of heat and
salt. The flows lay in a very different region of param-
eter space from the other results surveyed here (and are
therefore not shown on Fig. 15), but the general trend
of increasing K¢/K, with increasing Re, was repro-
duced.

b. Ocean observations

Nash and Moum (2002) analyzed 350 turbulent
patches measured over the continental shelf off Or-
egon. Using a fast-response conductivity/temperature
probe on a slowly falling profiler, they obtained the first
in situ estimates of the salinity dissipation rate. Assum-
ing a production—dissipation balance in the scalar vari-
ance budgets, they estimated the diffusivity ratio as d,.

Three unique aspects of these field observations are
pertinent. First, in contrast with laboratory and numeri-
cal experiments, it is very difficult to follow a turbulent
event through its cycle of growth and decay (in fact, this
has yet to be accomplished in the field). Therefore,
each observational estimate of d is based on the instan-
taneous characteristics of a turbulent event at some un-
known stage in its evolution. This has been identified as
a source of scatter in observational estimates of d,, al-
though the present results suggest that d, may be rela-

tively insensitive to the stage of the event at which it is
measured (at least at high values of Re, after turbu-
lence has been fully established).

Second, each observation represents a single profile
at a single horizontal location whose relationship to the
horizontal extent of the turbulence is unknown. In con-
trast, laboratory and numerical estimates of d, repre-
sent spatial averages. This is likely to be a major source
of scatter in the observational results.

Third, determination of d, requires sufficiently
strong signal to noise ratio in the raw data to resolve
dissipation rates. This required that the Nash and
Moum (2002) analyses be restricted to regions where
values of Re, were higher than is common in the main
thermocline (Moum 1996a). For the bulk of the turbu-
lent patches analyzed in Nash and Moum (2002), Re,
was between O(10%) and O(10%), whereas measure-
ments described in section 3 of the present study yield
a median value of 29.

The Nash and Moum (2002) analyses yielded a mean
diffusivity ratio between 0.6 and 1.1. These limits, and
the corresponding range of Re,, are represented on Fig.
15 by the lightly shaded ellipse. It was not possible to
rigorously differentiate the mean value of d from unity,
or to detect any trend with respect to Re,,. This is due
both to scatter and to the fact that the signal to noise
requirement effectively restricted the analysis to a re-
gion of parameter space where d is close to unity and
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independent of Re, (according to laboratory and nu-
merical results, e.g., Fig. 15). The determination of K/
K, in low Re, regimes is the object of another field
study.

c. Direct numerical simulations

The DNS experiments of GMH were comparable to
those described here, albeit with some significant dif-
ferences. As in Merryfield et al. (1998), the initial con-
dition consisted of uniform stratification and no mean
shear. Turbulence was driven by the impulsive forcing
of a finite-amplitude random velocity field (as opposed
to the small-amplitude perturbations used here to cata-
lyze the generation of turbulence via dynamic instabil-
ity). As in the present case, turbulence intensity grew
and decayed in time. In contrast to the present case,
GMH’s flows were spatially homogeneous in a triply
periodic computational domain. (Both methods have
advantages. GMH’s approach offers efficient access to
higher Reynolds numbers because the entire computa-
tional domain is occupied by turbulence, whereas the
present approach is more realistic in the sense that tur-
bulence is generated via a physically realizable flow
instability known to be important in the ocean.)

GMH quantified differential diffusion in various
ways that did not include the ratio of turbulent diffu-
sivities employed here. They did, however, compute the
ratio of the time-integrated buoyancy fluxes due to heat
and salt. Because the integrated buoyancy flux is
equivalent to the potential energy gain and taking ac-
count of GMH’s buoyancy scaling, the ratio of fluxes
should be equivalent to the ratio of diffusivities. For
buoyancy Reynolds numbers ranging from 0.4 to ap-
proximately 10°, GMH’s results give diffusivity ratios
between 0.32 and 0.94, as shown by the shaded circles
on Fig. 15.

GMH found that differential diffusion becomes more
pronounced at lower Re,, (shaded circles on Fig. 15), as
have we in the present study. For Re,, less than about
100, both GMH and the present DNS study found lev-
els of differential diffusion that were generally less pro-
nounced than the comparable results from the labora-
tory experiments (shaded band and crosses). This could
be due to the fact that the difference in molecular dif-
fusivities was artificially reduced in both DNS studies.

MOS5 has extended the computations of GMH to in-
clude variation of R, and the limit of zero stratification.
In the latter limit, MOS has found diffusivity ratios in
excess of unity, and has given a physical explanation for
this result. As in the present study, Merryfield finds that
d increases with increasing R,,. This work has also re-
vealed a close correlation between differential diffusion
and restratification, the latter being quantified in terms
of Lagrangian particle displacements. Unfortunately,
we cannot duplicate that calculation with the present
data as it does not include particle trajectories. A simi-
lar calculation using potential energy evolution to
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quantify restratification revealed no consistent correla-
tion.

7. Summary

We have described a sequence of direct computa-
tions of the growth and decay of turbulence driven by
KH instability. The flows were stratified by a combina-
tion of two active scalars representing temperature and
salinity. All parameter values were consistent with
weak mixing events in the thermocline, except that the
diffusivity of salt was increased to facilitate resolution
of the smallest fluctuation scales with the available
memory. Flow evolution has been analyzed in terms of
scalar gradient spectra, the buoyancy Reynolds number
Re,, scalar variances, and total and background poten-
tial energies associated with each density component.
We have calculated both instantaneous and net turbu-
lent diffusivities for each scalar in order to test the hy-
pothesis that the two scalars would mix at different
rates. This anticipated difference is a consequence of
the difference in molecular diffusivities, and conflicts
with the predictions of high Reynolds number turbu-
lence theory.

The ratio d describing the relative degrees of mixing
of the two scalars (specifically, the ratio of the cumu-
lative turbulent diffusivity of salt to that of tempera-
ture) was tested for dependence on Re, and on the
density ratio R,,. For all cases, d was less than unity, but
that ratio increased toward unity with increasing Re,
and also with increasing R,,. The dependence on Re,, is
largely due to differences in the duration over which
instantaneous K¢/K, is large. Even weakly turbulent
flows attain K¢/K; ~ 1 at maximum Re,, but when the
peak Re, is larger, K¢/K, remains close to unity long
after turbulence has subsided. This finding suggests that
the role of nonstationarity in differential diffusion is
more complex than was previously thought. We have
proposed an explanation for the persistence of K (/K in
terms of the Batchelor (1959) scaling for scalar gradi-
ents.

The results were compared with results from previ-
ous laboratory, observational and numerical studies.
Considering the wide range of flow geometries, param-
eter values, and experimental techniques, the results
summarized in Fig. 15 present a remarkably consistent
picture. The diffusivity ratio is near unity for Re, > 10,
and some studies have suggested that this ratio actually
exceeds unity for high Re, (e.g., M05). For buoyancy
Reynolds numbers below O(10%), heat diffuses more
rapidly than salt. For Re, < 10, a circumstance that is
common in the thermocline (see Fig. 5), the difference
is greater than a factor of 2. The results of the present
study are consistent with this picture, and we may
therefore add KH billows to the list of turbulent flows
exhibiting differential diffusion. As in GMH and MO5,
the present levels of differential diffusion represent an
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underestimate because of the artificially increased dif-
fusivity of salt.

These findings reinforce the impression that Re, ~
107 is a useful estimate of the lower limit of the “high
Reynolds number” regime of stratified turbulence, in
which theoretical results valid in the limit of infinite
Reynolds number remain accurate. Similar results have
been found by Smyth (1999) for the Re, dependence of
the Batchelor “constant” ¢, and by Itsweire et al. (1993)
and Smyth and Moum (2000a) for various statistical
relationships dependent on the assumption of local isot-
ropy. If generally valid, this observation has important
implications for the interpretation of microstructure
measurements, as that science relies heavily on high
Reynolds number theory.

It is possible that the majority of ocean mixing is
accomplished by high-Reynolds-number events. At any
given time, however, large volumes of the ocean inte-
rior experience mixing weak enough (Fig. 5) that pref-
erential diffusion of heat over salt should be anticipated
(Fig. 15). The importance of such weak mixing events
to the large scale circulation remains to be quantified.
We are now working to extend the results of Nash and
Moum (2002) via more extensive observations of mi-
crostructure in low-Reynolds-number mixing events, in
combination with further analyses of the DNS experi-
ments described here.

We have so far confined our attention to the diffu-
sively stable case in which both the thermal and saline
components of density are stably stratified. In much of
the ocean, one or the other of these components is
unstably stratified, leading to the possibility of double
diffusive instability and hence vastly more complex
flow physics. The diffusively unstable case is now under
investigation.
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