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Clostridium perfringens is an anaerobic, gram-positive, rod-shaped, spore-

forming bacterium that leads to a broad range of diseases in humans and animals [23, 

27, 50]. Among seven C. perfringens types (type A-G), type F is known to be the most 

common bacteria that is responsible for causing human food-borne disease outbreaks 

worldwide [23, 27, 50]. This pathogen becomes a problem for human health because 

of its ability to form metabolically dormant spores that can tolerate environmental 

stresses such as radiation, pH, osmotic stress, desiccation, and temperature [62, 63, 73, 

84]. As a result, spore resistance causes a broad range of harmful effects including 

food-poisoning (FP), food spoilage, and gastrointestinal diseases [50, 80]. However, in 

order to have these negative effects, dormant spores must undergo germination to 

become metabolically active cells [36, 50, 59]. Therefore, the germination process 

starts when the spores sense germinants through specific receptors located in the 

spore’s inner membrane [4, 28, 61, 86]. The germination process can be started through 



a different type of germinants including, cationic surfactants, amino acids, and enzymes 

[30, 66, 67, 83, 91].  

The previous study has shown that exogenous dipicolinic acid (DPA) chelated 

with calcium (Ca2+) (Ca-DPA) can significantly enhance spore germination in C. 

perfringens  [20, 60, 66, 83]. However, it is unclear whether Ca2+ or DPA alone is 

needed to enhance spore germination. Therefore, in the current study, we aimed to 

evaluate the possible role of Ca2+ and other divalent cations present in the spore’s core 

(Mn+2 and Mg+2) in germination of C. perfringens spores. To accomplish this, our study 

consists of three parts.  

The first part of this study evaluates the role of Ca2+ and DPA in the spore 

germination process. We found that Ca2+, but not DPA, is sufficient to trigger spore 

germination in C. perfringens FP isolates. All tested calcium salts (calcium-chloride, 

calcium-carbonate, or calcium-nitrate) induced germination of spores of C. perfringens 

FP isolates, indicating that exogenous Ca2+ ion is significant for spore germination.  

The second part of this study evaluates whether spore-specific divalent cations 

(Mn2+, and Mg+2) can induce spore germination. Our result suggested that all spore 

core-specific divalent cations (Ca2+, Mn2+ and Mg+2) contribute to spore germination 

in C. perfringens FP isolates with slight variations in the percentage of germination. In 

contrast, non-core-specific divalent cation Zn+2 did not induce germination of spores 

of C. perfringens FP isolates. 

The third part of this study evaluates whether the exogenous or endogenous 

spore-specific divalent cations (Ca2+, Mn2+ and Mg2+) are needed to induce C. 



perfringens spore germination. Our results indicated that endogenous Ca2+ and Mg2+ 

are not necessary to initiate the spore germination process. While exogenous and 

endogenous Mn+2 are needed to enhance spore germination.  

In conclusion, our results indicated that spore-specific divalent cations play a 

signaling role in C. perfringens (FP) spore germination. Further germination assay on 

spores of germinant receptor mutants and cortex-lytic enzyme mutants in the presence 

of spore-specific divalent cations should clarify the possible mechanism of divalent 

cation mediated spore germination. In addition, further experiments in food products is 

needed to evaluate whether this specific concentration and pH of divalent cations can 

also trigger the spore germination in food products. 
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The signaling role of divalent cations in Clostridium perfringens 
spore germination 

Chapter 1 

Introduction and Literature Review 

Clostridium perfringens is a gram-positive, anaerobic, spores forming, and 

rod-shaped bacterium that causes a broad range of diseases to humans and animals 

[23, 27, 50]. Current studies have identified approximately 152 species of the genus 

Clostridium. Some of these species are pathogenic including C. perfringens, C. 

difficile, C. tetani, C. botulinum, C. chauvoei and C. septicum [26]. The Clostridium 

genus leads to various diseases in humans such as food poisoning [8, 26]. In 

contrast, others have been used industrially such as Clostridium thermocellum, and 

Clostridium acetobutylicum [26].  

C. perfringens is distributed environmentally and can be found in soil,

water, food, spices and wastewater, on the other hand, it can be present naturally 

within both humans and animals intestinal normal flora [31, 48, 90]. The optimal 

conditions (temperature and pH) for C. perfringens growth have been demonstrated 

in studies. The optimal conditions for growth include temperature ranging from 35 

oC to 40 oC, and pH ranging between 6.0 to 7.0, which reflects the optimum 

condition in the food such as cooked meat and other meat products [12, 47, 55]. 

However, C. perfringens can be found in pH as low as 5.0 and as high as 8.0 [31, 
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47, 55]. C. perfringens growth requires lower water activity, ranging between 0.93 

and 0.97, depending on the solute [31, 47, 55]. 

 

The first identification of C. perfringens as a causative agent of food 

poisoning was in the 1940s in the UK [33]. While the British scientist knew this 

organism as a cause of food poisoning, there were few incidents before 1960 in the 

United States [33, 57]. The symptoms of C. perfringens food poisoning are 

abdominal cramping, vomiting, fever, symptoms which begin 8 to 18 hours after 

ingestion of contaminated food and continuing for 12 to 24 hours [31, 49, 50, 93]. 

Anyone is susceptible to C. perfringens food poisoning, but the most severe 

infection will be in elderly or sick individuals [31, 49]. This bacterium is the most 

common bacteria  that cause food poisoning in humans by ingestion contaminated 

food with vegetative followed by the sporulation of cells in the intestines and 

releasing Clostridium perfringens enterotoxin (CPE) [31, 50]. CPE toxin is rapidly 

released into the intestines and attaches to the epithelial cells receptors which lead 

to cause of food poisoning symptoms such as common diarrhea and abdominal 

cramping [31, 47].  

 

The pathogenicity of C. perfringens is dependent on three important 

properties of the organism. Firstly, C. perfringens can produce 17 toxins, and a 

specific subset for each toxin produced by individual bacteria allows it to cause 
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disease [90, 102]. Based on the production of six major toxins; alpha-, beta-, iota-, 

epsilon-, CPE- and NetB-toxins, C. perfringens strains are classified as seven 

toxino-types (Type A-G) (Rood et al 2018). Secondly, this bacteria can multiply in 

less than 10 minutes, leading to bacterial loads that are responsible for causing 

disease [45, 99]. Finally, C. perfringens has the unique feature of producing 

dormant spores that tolerate environmental stress and survive for hundreds of years 

[40, 50, 77].  

 

1.1. C. perfringens food poisoning 

C. perfringens is classified as the second most frequent bacteria responsible 

to cause food poisoning (FP) illnesses in the United States [34, 78]. The percentage 

of cases of food poisoning is estimated to be 70%, and C. perfringens is the most 

causative bacteria mostly type F, which is previously known as type A [34]. The 

shift of the strain type based on toxin productivity [34]. Type F has alpha- and CPE 

toxins, where type A has alpha-toxin only [34]. The infection  has considerable 

economic consequences including the loss of hundreds of million dollars per year 

as a result of medical care requirements and reductions in productivity [27, 50, 94].  

 

 
Most C. perfringens strains associated with human diseases such as, food 

poisoning and non-foodborne (NFB) gastrointestinal diseases (GI) are C. 
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perfringens type F [12, 48, 76]. C. perfringens FP isolates spores are  more resistant 

to different environmental factors such as osmotic stress, nitrite, pH, frozen storage 

and pressure-assisted thermal processing than are C. perfringens NFB isolates’ 

spores [77]. The high resistance of FP isolates spores is due to the ability to produce 

a different small acid-soluble protein (Ssp4), which binds to the DNA of the spores 

and protects them from being killed by various environmental stresses [42, 80, 87]. 

The resistance characteristics of spores of FP isolates help them to survive in meat 

products that are mostly involved in C. perfringens type F food poisoning outbreaks 

[50].  

 

Once these resistance spores sense a suitable environment, they become 

metabolically active and go through germination stages, outgrowth, and vegetative 

cells [50–52]. When the spores are germinated, they lose their resistance properties 

and start making harmful effects such as food spoilage and diseases [43, 83]. 

Therefore, after ingestion of contaminated food with infection dose of ~106 -107 

CFU/g of vegetative cells, the surviving cell within the stomach’s acidity will start 

sporulating in the intestinal tract and release CPE toxin, which leads to GI disease 

[50]. Additionally, CPE toxin has common association with different types of NFB 

humans and animal diarrhea, like antibiotic-associated diarrhea and chronic NFB 

diarrhea [46, 47]. The Clostridium perfringens enterotoxin gene (cpe) can be 
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located either on the chromosome or plasmid; however, most FP isolates carry cpe 

on the chromosome and NFB isolates carry on the plasmid [11]. 

 
 
1.2. C. perfringens spore resistance  

C. perfringens can produce dormant spores that are resistant to 

environmental stress such as temperature treatment, UV radiation, or desiccation 

[62, 63, 73, 84, 100]. However, C. perfringens strains show a significant difference 

in their heat-resistance depending on the isolate’s source. Studies have found that 

spores of C. perfringens FP isolates are more resistant to heat than spores of NFB 

isolates [73, 77]. This higher heat resistance helps C. perfringens FP isolates to 

survive in inappropriately cooked meat products, which are usually associated with 

food-borne illness in developed countries [25, 50, 57, 75].  

 
 

C. perfringens spores have different structural layers and each of them 

contributes to spore resistance properties [43, 54, 58]. The function and structure 

of the C. perfringens spore coat has not been clearly identified. However, in the 

gram-positive spore-forming bacteria, the spore coat suggests having more than 

fifty proteins that can protect the spores from different lysis chemicals and enzymes 

[39, 43, 84]. The spore cortex plays a significant role in the primary dehydration of 

the spore core, indicating a direct contribution to the environmental resistance [43]. 

The spore inner membrane is crucially pressed, which leads to highly immobile 
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lipids followed by low permeability of water, DNA damaging chemicals and other 

small molecules [43, 84, 103]. In addition, the spore core inner layer contains 

nucleic acids and most enzymes and has three elements, (a) the low level of water 

content (20% wet weight) of the core, (b) high rate of Ca-DPA (25% dry weight) 

in spore’s core and (c) the saturated DNA with small acid-soluble proteins (Ssp). 

These three elements together contribute to the spores’ resistance properties [43, 

80, 87].  

 

Studies have analyzed each of spore core, cortex, coat and size, which allow 

them to identify the most important connection between the structure of C. 

perfringens spores and their heat resistance. The low percentage of core volume, 

and peptidoglycan layer assist spores to be more heat resistance [43, 54, 58]. 

However, the ultrastructural features of other spore-forming bacteria have similar 

structure to C. perfringens spores [43]. Therefore, the main differences between C. 

perfringens spore’s resistance will be at the spore’s molecular action level rather 

than spore's structural level [43].  

 

 
 1.3. Bacterial spore germination 

C. perfringens is able to produce metabolically dormant spores that are 

significantly more resistant to environmental stress than are vegetative cells [70, 
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87, 88]. The spores of C. perfringens can remain dormant for hundreds of years in 

different harsh environments [56, 66, 87]. However, spores can be activated in a 

suitable environmental condition and grow in less than 10-20 minutes [19, 31, 49]. 

Spores are able to sense suitable germinants (such as amino acids or salts) through 

specific receptors located in the spore inner membrane, which later initiate the spore 

germination process and outgrowth stage that turns the germinated spores to the 

vegetative cells [28, 83, 88, 103].  

 
 

Spores germination is stimulated by different chemicals including nutrients, 

cationic surfactants and enzymes [66, 83]. Several studies show that nutrient 

germinants could trigger spore germination of Bacillus subtilis and C. perfringens 

[61, 66, 67]. The germinants that can trigger spore germination are purine 

nucleosides, amino acids, the combination of specific nutrients including mixing of 

L-asparagine, D-glucose, D-fructose, inosine and KCL (AGFK) triggers B. subtilis 

spore germination [51, 69, 83, 89]. In addition, water content is significant to the 

spore germination movements. The volume of the spores core of  B. subtilis 

increases from 2-fold to 2.5-fold through germination by water uptake [83].  

 
Once spores sense the germinants, they commit to germinate in less than a 

minute. There are five series of biophysical and biochemical events happening 

during spore germination:  
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I. Release of monovalent ions (H+, K,+ and Na+) from the spore’s core 

through an energy-independent mechanism. The release of  H+ alters pH 

from 6.5 to 7.7, this change is crucial for spore metabolism [83, 88, 92].  

II. Once the spore core is highly hydrated, spores release  (10% of the 

spore’s dry wt) large depot of pyridine-2, 6-dicarboxylic acid (dipicolonic 

acid [DPA]) as 1:1 chelated with divalent cations, predominantly Ca2+ (Ca-

DPA) followed by ion release [83, 88, 92].  

III. The release of Ca-DPA is substituted by water resulting in increased 

hydration of the spore core, although it is not sufficient for protein mobility 

that causes some decrease in wet-heat resistance [13, 81, 83, 88]. 

IV. The releasing of Ca-DPA causes some hydrolysis in the spore cortex 

peptidoglycan in B. subtilis [61, 83]. 

V. Breaking down of the spore cortex peptidoglycan removes the physical 

restrictions, which enable the core to expand and allow the absorbing water, 

similarly to the level of water that found in the vegetative cells and the 

recovery of metabolism [71, 83, 88]. 

 
 
1.4. Monovalent ions roles 

The role of the monovalent cations in spore germination was examined by 

various investigators. In Bacillus species, most commonly potassium ion (K+) is 

required as a co-germinant for nutrient germinant with different monovalent 
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cations, and only in a few cases (K+) salts alone were identified as cause of inducing 

spore germination [66, 74, 85]. In B. subtilis all monovalent cations can enhance 

spore germination at a lower concentration, however, higher concentration can have 

an opposite effect [53]. The specific commitment that leads to initiation of bacterial 

spore germination process has not been clearly identified. Although, the release of 

(H+, K+ and Na+) are related to a significant change in spore’s inner membrane 

permeability and possibly membrane structure [87]. Therefore, in Bacillus 

megaterium spore's monovalent released through the germination process, and this 

release perhaps happened before the release of the large amount of Ca-DPA   [82, 

92]. In the Table 1.1 below an approximate amount of monovalent ion that is 

present in the spore’s core. 

 
Table 1.1 Monovalent ion contents of Bacillus species (μM/mg of spores dry 

weight) [7]. 

Strain K+ Na+ 

B. megaterium 0.10 0.15 

B. subtilis niger 0.28 0.18 

B. stearothermopilhus 0.02 0.05 

 

Once spores sense a germinants via germinant receptors located in the inner 

membrane, the release of monovalent ions (H+, K+ and Na+) from the spore’s core 
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through an energy-independent mechanism takes place and lead to change of the 

pH from 6.5 to 7.7 due to the release of H+  [83, 88, 92]. 

 

1.5. The role of divalent cations  

  Studies have shown the link between divalent cations and the effectiveness 

of bacterial spore germination [18, 24, 32]. Generally, spores contain a higher 

concentration of cations relative to vegetative cells, especially in Ca2+ [14, 24]. In 

a study of Bacillus species shows different levels of divalent cations between spores 

and vegetative cells (Table 1.2)  [15]. In Bacillus species, ions can inhibit spore 

germination, but divalent ions specially DPA-chelated ions such as Mg2+ and Ca2+ 

can increase spore germination [17, 24]. In addition, in Bacillus species such as B. 

stearothermophilus, and B. cereus, Mg2+ led to significant enhancement in spore 

germination, while Cu2+ , Mn2+ and Fe2+ inhibited the outgrowth of these 

spores  [18, 24]. Another study in B. subtilis demonstrated that Mg2+ and Ca2+ have 

been involved in the stimulation of cortex-lytic enzymes through the process of 

spore germination [29]. Mn2+ also has some role in the growth of bacterial spores 

by enhancing a variety of enzymes that are essential for B. megatherium spores 

germination  [41]. Similarly, in Clostridium difficile bacteria, divalent cations have 

an essential signaling role in initiating spore germination [35, 36, 91].  
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 In C. perfringens S40 spores, the lytic enzymes needed 1mM of divalent 

cations including, Ca2+, Mg2+ and Mn2+, to be activated but 1mM of Zn2+ and Hg+ 

have the ability to inactivate the enzyme [9]. The lytic enzyme could be activated 

without adding divalent cations, due to the remaining amounts of endogenous 

divalent ions that are sufficient to sustain the activity of the enzyme [9]. Some 

studies have shown that nutrients such as alanine, inosine, and glucose compounds 

help to enhance ions, which result in effecting the spore germination [17, 74]. The 

other possible function of divalent cations probably changing coat proteins in the 

bacterial spore [24]. 

 
 

However, some studies demonstrated an increase in spore thermal 

resistance due to adding of extra Ca2+ or Mn2+ in the sporulation medium [1]. Other 

studies also showed that different metal ions are capable of providing different 

protections to the spores from wet heat, such as Ca2+ providing significant spores 

protection or resistance than other divalent ions or monovalent ions [6, 7, 79, 104]. 

In Table 1.3 studies show that, the concentrations of divalent ions and DPA for 

different strains of C. perfringens bacteria are varied, whereas the higher 

concentration contributes to enhancing spores' heat resistance [58]. 

 

Overall, the spore core has high levels of divalent ions, including Ca2+ , 

Mn2+, and Mg2+, which are mostly chelated with DPA, and each level of particular 
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cations or ions can significantly impact spore resistance or in other cases enhance 

spore germination [7, 9, 21, 29]. 

 

Table 1.2 Divalent ion contents of Bacillus species μmol/g spores dry weight, (-) 

not specify volume [15]. 

Strain DPA Ca2+ Mg2+ Mn2+ 

Bacillus Species spores 410-470 380-916 86-120 27-56 

Bacillus Species Cells < 0.1 - - - 
 
 

Table 1.3 Divalent ion content of C. perfringens spore expressed in fmol/μm3 all 

values are averages ± SDs [58]. 

Strain DPA Ca2+ Fe2+ Mg2+ 

NCTC 8239 49.7 ± 1.3 41.8 ± 5.0 1.8 ± 0.2 6.1 ± 2.3 

NCTC 8679 196.6 ± 3.0 130.6 ± 15.6 2.31 ± 0.1 18.8 ± 1.1 

SM101 18.9 ± 1.1 23.5 ± 1.9 0.9 ± 0.1 2.1 ±1.0 

NCTC10240 28.9 ±1.0 22.5 ±0.9 0.6 ±0.1 4.3 ±1.3 

3663 33.1 ±1.4 25.8 ±1.1 0.8 ±0.1 3.7 ±0.9 

FD1 9.0 ±0.9 10.5 ±1.3 0.3 ±0.1 1.2 ±0.1 

 

 1.6. Ca-DPA release 
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Spores of Clostridium and Bacillus species have a unique feature by 

containing a major level of pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]), 

which approximately contain ~20% of the spores dry weight [15, 61, 92]. In B. 

subtilis spores within a minute of initiating the spore germination process, a major 

abundance of dipicolinic acid 1:1 chelated with Ca2+ are released which leads to a 

significant flaw through SpoVA proteins located in the inner membrane [22, 66, 

92].  

 

SpoVA genes are present in most spore-forming Bacillus and Clostridium 

species, but only a few were preserved in all species [88]. Remarkably, SpoVA 

proteins are much superior to the germinant receptors, which reflect only ∼25 

molecules out of ∼15,000 molecules of SpoVAD [61, 97]. There are higher 

percentages of SpoVA proteins than germinant receptors indicating possible 

significant increase of the germinant signal to activate the rare germinant receptors, 

which later unlock a DPA flow channel consisting of numerous SpoVA 

proteins  [97].  

 

There is evidence that shows SpoVA proteins contributed to releasing Ca-

DPA through spore germination process [88]. First, mutant spoVA spores (heat 

sensitive) can take up Ca-DPA at affordable temperature during sporulation, but 

(Ca-DPA) do not release when the spores cannot tolerate temperature [88, 96]; 
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second, spores which have high SpoVA protein levels release Ca-DPA quicker 

during germination with various germinants [88, 98]; third, in E. coli, dodecylamine 

turns on the SpoVAC channel in lipid vesicles or makes changes in membrane 

tension [88, 95]; fourth, spores of B. subtilis which have no SpoVAEa take up Ca-

DPA as usual, but release Ca-DPA slowly during germination due to dependent in 

germinant receptors [68, 88]; lastly, the convertible factor containing spoVA 

homologs and other protein inner membrane result in reducing germination 

percentage with nutrients and dodecylamine [38, 88]. 

 

1.7. Applications of bacterial spore germination 

Controlling bacterial spore germination is an effective method in order to 

reduce the harmful effect of them. It has been known that C. perfringens spore’s 

germination has a significant role in causing illness and food spoilage. Therefore, 

identifying germinants that are efficient to trigger C. perfringens spore germination  

is highly needed to develop strategies such as enhancing spore germination, then 

inactivating germinated spores followed by using conventional treatments. 

Furthermore, understanding the mechanism of spore germination should help 

identifying food-garde chemicals/compounds that would prohibit spore 

germination completely, which would prevent the progression of the disease. 
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The objective of this study 

C. perfringens have the ability to produce metabolically dormant spores. 

These dormant spores must germinate through germination process to become 

metabolically active in order to cause diseases. Therefore, identifying germinants 

that effectively trigger spore germination in a wide range of FP isolates should lead 

to developing novel strategies to inactivate spores. Such as, turning dormant spores 

into vegetative cells and then easily inactivate them by using mild treatments. 

Therefore, knowing the mechanisms of bacterial spore germination is highly 

needed to eliminate harmful effects. In this study, we will assist to underline the 

significant role of divalent cations during spore germination of C. perfringens FP 

isolates. The specific aims of this research are: 

1- Evaluating spore germination from different C. perfringens FP isolates with 

CaCl2, DPA, or Ca-DPA at optimum pH and concentration.  

2- Evaluating the germination of C. perfringens FP isolates with other divalent 

cations within the spore’s core (Mg2+, Mn2+) at optimum pH and concentration.  

3- Identifying the essential signaling of exogenous or endogenous divalent cations 

in spore germination. 
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Chapter 2 

 
The signaling role of divalent cations in Clostridium perfringens 

spore germination 
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2.1Abstract: 

Clostridium perfringens is an anaerobic bacterium that is able to produce 

metabolically dormant spores, which can tolerate environmental stresses and 

survive for many years. When the environment is favorable, C. perfringens spores 

germinate and cause the disease. The germination process is initiated when 

bacterial spores sense a variety of chemicals, including salts, amino acids, cations, 

and enzymes. Previous study has shown that dipicolinic acid (DPA) chelated with 

calcium (Ca-DPA) can stimulate significantly spore germination in C. perfringens. 

However, it is unclear whether Ca2+ or DPA alone can induce spore germination. 

Therefore, in this study we aimed to evaluate the possible role of Ca2+ and other 

divalent cations present in spore core (Mn2+ and Mg2+) in germination for C. 

perfringens spores. Our study demonstrates that, i) Ca-DPA, but DPA alone, 

induced germination of spores of C. perfringens, suggesting that Ca2+ might have 

signaling role in spore germination; ii) all tested calcium salts (calcium-chloride, -

carbonate, or -nitrate) induced spore germination, indicating that Ca2+ ion is critical 

for spore germination; (iii) other spore-specific divalent cations (Mn2+, and Mg2+), 

but not Zn+2, could induce spore germination, suggesting that all spore core-specific 

divalent cations are involved in C. perfringens spore germination; (iv) endogenous 

Ca2+ and Mg2+ is not needed it to induce C. perfringens spore germination; 

surprisingly, exogenous and partly endogenous Mn+2  is needed to induce spore 

germination. 
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2.2. Introduction: 

C. perfringens is obligate anaerobe, Gram-positive, encapsulated, spore-

forming bacteria that can cause significant diseases to humans and animals [23, 27, 

50]. The virulence of this bacterium is due to its ability to produce 17 toxins, which 

lead to the cause of serious diseases  [90, 102]. The most common diseases 

associated with C. perfringens type A are; food poisoning (FP), antibiotic-

associated diarrhea, and gas gangrene in humans, and necrotic enteritis, and 

enterotoxemia in animals [8]. C. perfringens FP is the second most commonly 

reported bacterial food-borne disease in USA  [49, 50]. The Symptoms of C. 

perfringens FP are abdominal cramping, vomiting, fever, and diarrhea start after 8 

to 18 hours of ingestion of contaminated food and continue for 12 to 24 hours [49, 

93]. Anyone can get infected with C. perfringens FP, but the most severe infection 

occurs in elderly or sick individuals [49]. However, during spore's dormancy, 

spores are not able to cause these diseases, but they can sense their environmental 

signals and opportunistically take a chance to grow [85]. Therefore, spores should 

go through the germination process to cause the disease, initiated with spore 

germination, outgrowth, and transform into the vegetative cells  [50–52]. 

 

To initiate spore germination process, spores have to get in contact with 

germinants such as, amino acids, sugars, purine nucleosides, inorganic salts, or 

combinations of them [65, 83]. Followed by binding to the germinant receptor (GR) 
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located in the inner membrane of the spores, followed by the release of monovalent 

cations and large depot of DPA-chelated with divalent cations [65, 83, 88]. After 

releasing cations and other molecules, water is uptaken inside the spore’s core 

leading to increase in the spore’s core water activity. In Bacillus species, these 

cations activate the enzymatic action such as cortex-lytic enzyme (CLEs) on the 

spore’s cortex peptidoglycan (PG) [65, 83, 88]. The activation of CLEs leads to 

degradation of the spore’s cortex peptidoglycan, which enables the rehydration of 

spore’s core followed by enzymatic and metabolic resumption [3, 5, 65, 86]. 

 

Studies have demonstrated a correlation between divalent cations and the 

effectiveness of bacterial spore germination [18, 24, 32]. In Bacillus species, ions 

can inhibit spore germination, but divalent ions specially DPA-chelated ions such 

as Mg2+ and Ca2+ can increase spore germination [20]. Previous study has shown 

that exogenous Ca-DPA can stimulate significantly spore germination in C. 

perfringens [66]. However, it is unclear whether Ca2+ or DPA alone can induce 

spore germination. There was in need to understand whether DPA or it’s associated 

divalent cations are responsible for induction of germination and track internal and 

external signal pathways. Consequently, in this study, we found that the divalent 

cations at pH 6.0 are able to stimulate germination alone without the need for DPA, 

and the endogenous signal most importantly can stimulate spore’s germination 

rather than endogenous. 
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2.3 Material and Methods: 

Strains used in this study. Three C. perfringens food-borne isolates [SM101, 

NCTC10239, NCTC 8239] [10, 101] were used and maintain them in  cooked meat 

media (Difco, BD Diagnostic Systems, Sparks, MD, USA) and stored at -20°C. 

Spore preparation and purification. Sporulating cultures of C. perfringens were 

prepared as described previously by (Paredes-Sabja) [63]. Briefly, C. perfringens 

isolates were prepared by inoculating 0.1- 0.2 ml from the cooked meat culture into 

10 ml fresh fluid thioglycollate media (FTG) vegetative medium, incubated at 37°C 

for 24 hours [37]. Next,  we inculcated 0.4 ml from the previous FTG culture to a 

new 10 ml FTG and incubated at 37°C for 9 to 12 hours [37]. For sporulation 

cultures, we inoculate 0.4 ml from the previous fresh active  FTG culture into 10 

ml fresh Duncan-Strong (DS) sporulation medium (1.5% protease peptone, 0.4% 

yeast extract, 0.1% sodium thioglycolate, 0.5% sodium phosphate dibasic 

(Na2HPO4) (andydrous), 0.4% soluble starch) and incubate at 37°C for 16-18 hours 

[16]. Then the percentage of spore formation was confirmed by phase-contrast 

microscopy (Leica MDLS, Leica microsystems).    

 However, if the spore percentage is less than 80%, we have to restart the 

spore preparation processes again from first FTG. Large scale spore preparation 

was performed by scaling up the culture volume and following the same small scale 

procedure.  
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Spore purification was done by repeated washing with autoclaved cold 

sterile distilled water, centrifuging at least 10 times and sonicating several times for 

10 second until the spore suspensions were 99% free of sporulating cells and cell 

debris. After that, we suspended the spores into autoclaved distilled water and 

adjusted an optical density at 600 nm (OD600) of ~ 6 by using SmartspecTM 3000 

Spectrophotometer (Bio-Rad Laboratories, Hercules, CA, USA), and stored at -20 

°C until used [63].  

Spore germination. The free purified spores’ suspensions were heat-activated for 

10 min at 80°C and then cooled down at water bath room temperature 21°C for 5 

minutes. The spore germination was measured by mixing heat-activated 33 µl of 

spores (OD600 of 1)  suspension with 167 µl  of the  pre-warmed germinant 

solutions, 50mM Ca-DPA pH: 8.0, and 50 mM of each of CaCl2, C6H10CaO6, Ca 

(NO3) 2, MgCl2, MnCl2, MgSO4 , and ZnCl2 adjusted to pH 6.0 with  25mM Tris 

HCL buffer, and 100mM of KCL pH: 6.0 and 25 mM Tris-HCl buffer pH: 6.0 in 

96-well microtiter plate and incubated at 37 °C for 60 min. Spore germination was 

routinely monitored by measuring OD600 changes using a SynergyTM MX multi-

mode microplate reader (BioTek® Instruments, Inc., Winooski, VT, USA). The 

∼60% decrease in OD600 indicates complete spore germination as found in our 

previous studies [66]. The level of spore germination was also confirmed by phase-

contrast microscopy (Leica MDLS, Leica microsystems) after 60 min post-
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inoculation, as fully germinated spores’ changes from phase-bright to phase-dark. 

The extent of germination was calculated by measuring the percentage decrease in 

OD600 and express as percentage of initial. The rate of germination was determined 

by measuring the OD600 of germinating spores every 2.5 minutes and the maximum 

rate was expressed as a percentage of maximal loss of OD600 per minute, relative to 

the initial value of spore suspension. All values at least consist of two experiments 

with at least two independent spore preparations. 

To examine the effects of pH on the germination rate, germinants were 

prepared in a 25mM Tris-HCl buffer (pH 6.0) at 37°C. Similar with previous 

experiments that we did, all values at least two experiments with at least two 

independent spore preparations.  

All solutions were prepared at 50 mM in 25 mM Tris-HCl buffer (pH 6.0). 

For ionic chelators (EDTA, and EGTA) were prepared firstly at 50 mM with 25 

mM Tris.HCl buffer (pH 9.0) to make it dissolve and then adjust to the pH to 6.0.  

 

Confirmation of spore germination using colony formation assay. C. 

perfringens SM101 spore germinated with various germinants (CaCl2, Ca-DPA, 

and DPA) were heat-treated and plated onto BHI agar to confirm the spore’s 

germination ability. Each germinated sample contained 50µl of spore concentration 

(33µl/200µl) with 950µl of distasted water and heated it at 100 °C for 20 minutes. 
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Each sample aliquots of serial dilutions were plated onto BHI agar and were 

incubated at 37 °C anaerobically for 24 h and colonies were counted.  

In heat-treated sample, if the spores are fully germinated, they will become 

heat sensitive, so we can expect no colonies on the plate, and in contrast if the 

spores are not germinated, we can expect colonies in the plate because spores are 

heat resistant and get activated by heat. 

 

2.3.5 Statistical analyses. The student’s t-test was used for specific comparisons 
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2.4. Results:  

Germination of spores of C. perfringens SM101 with Ca-DPA, DPA and Ca2+. 

Previous studies have shown that in Bacillus and Clostridium species 

exogenous Ca-DPA significantly induce spores germination  [36, 66, 83]. 

However, it is unclear whether Ca-DPA or single Ca2+ or DPA, can induce bacterial 

spore germination. Recent studies on C. difficile demonstrated that exogenous Ca2+ 

with co-germinant taurocholate can efficiently induce spore germination  [36]. We 

assumed this could also be true for C. perfringens spores. To confirm our 

hypothesis, we first tested germination of spores of C. perfringens FP wild type 

strain SM101 in the presence of 50mM Ca-DPA (pH 8.0), 50 mM DPA (pH 6.0), 

and 50 mM CaCl2 (pH 6.0). Similar germination was also carried out with 100 mM 

KCl (pH 6.0) as a positive control and with 25mM Tris HCL buffer (pH 6.0) as a 

negative control.  

As expected, C. perfringens SM101 spores germinated well with KCL, i.e., 

a significant OD600 decrease (~60%) was observed when SM101 spores was 

incubated with 100 mM KCl (pH 6.0) at 37 °C for 1.5 h. However, under similar 

germination assay, SM101 spores did not germinate with 25mM Tris-HCL (pH 

6.0), as ~10-15% OD600 decrease was observed (Fig. 2.1). Interestingly, when 

SM101 spores incubated with Ca-DPA or CaCl2, ~ 50% or 55% OD600 decrease, 

respectively, was observed. These results indicated that either Ca-DPA or CaCl2 

can induce significant level of spore germination in C. perfringens SM101, 
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although not at the level with KCl. In contrast, DPA alone did not induce 

germination of spores of SM101, as no significant difference in OD600 decrease was 

observed between SM101 incubated with DPA versus 25mM Tris-HCL (pH 6.0). 

These results are confirmed by using phase-contrast microscopy, ~ 80-95% of 

SM101 spores became phase-dark after 90 minutes of incubation with KCl, Ca-

DPA or CaCl2, while ~ 90% of SM101 spores remained phase bright in the presence 

of  25mM Tris-HCL (pH 6.0) or DPA (data not shown).  

For further confirmation of germination, we evaluated the colony formation 

by heat-treated germinated samples. As vegetative cells are heat sensitive, fully-

germinated spores should be killed at 100 °C and thus should not produce any 

colonies after plating onto brain heart infusion (BHI) plate and incubated at 37 °C 

overnight. As expected, Ca-DPA- or CaCl2-germinated samples treated at 100 °C 

for 20 min did not form any colony on the agar plate (data not shown), indicating 

that the spores in the samples were 100% germinated and thus killed at 100 °C. In 

contrast, DPA-germinated samples heated at 100 °C for 20 min generated colonies 

on BHI agar at a level similar to that should be generate from non-germinated 

original spores in the sample, indicating that the spores in the sample remained un-

germinated. Collectively, these findings indicated that CaCl2 alone is sufficient to 

induce spore germination in C. perfringens SM101. 
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Germination of C. perfringens SM101 spore with different pH and 

concentration of CaCl2.  

In order to identify optimum pH and concentration of CaCl2 that can induce 

maximum rate of germination of C. perfringens spores. The CaCl2 germination was 

tested at pH ranging from 4.0 to 9.0 with 25mM Tris HCL buffer [ Fig.2.2A-B]. 

According to our results, pH 6.0 at 50mM CaCl2 was the optimum condition for 

CaCl2 germination [ Fig.2.2A]. The extent of germination was significantly (P < 

0.05) higher at pH 6.0 and no significant (P > 0.05) germination was observed at 

below pH 6.0 [Fig.2.2B]. These results are confirmed by using phase-contrast 

microscopy, as ~ 90% of SM101 spores became phase-dark after 60 minutes of 

incubation with CaCl2 at pH 6.0 (data not shown).  

C. perfringens SM101 spores were able to germinate significantly after 60 

minutes with CaCl2 concentrations at 50 mM and 100 mM [Fig. 2.2C]. The extent 

of germination was significantly (P < 0.05) higher with 50 mM CaCl2 and no 

significant germination was observed at below or above 50 mM CaCl2 [Fig.2.1D]. 

These results are confirmed by using phase-contrast microscopy; ~ 90% of SM101 

spores became phase-dark after 60 minutes of incubation with 50 mM CaCl2 (pH 

6.0) (data not shown). Collectively, these results show that 50mM CaCl2 at pH 6.0 

is the optimum condition to induce best germination of C. perfringens SM101 

spores.  
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Germination of C. perfringens SM101 spores with different calcium salts.  

We initially found that 50 mM CaCl2 (pH 6.0) is able to induce highest level 

of C. perfringens SM101 spore germination. To determine if other exogenous Ca+2, 

not chloride can induce C. perfringens SM101 spore germination, spores were 

incubated with 50mM (pH 6.0) of each of CaCl2, C6H10CaO6, and Ca (NO3) 2, and 

DPA; 50mM Ca-DPA (pH 8.0) , 100mM KCl (pH 6.0), and 25mM Tris-HCl (pH 

6.0). 

Our result indicated that SM101 spores were germinated, as expected, in the 

presence of two positive controls, KCL, and Ca-DPA, (~60% and 40% decrease in 

OD600 expressed as a percentage of initial, respectively [Fig.2.3A]. Under similar 

experimental conditions, all tested Ca2+ ions [CaCl2, Ca (NO3)2, and C6H10CaO6] 

induced germination of SM101 spores although at variable levels; 55%, 50% and 

35% decrease in OD600 expressed as a percentage of initial, respectively. While, as 

expected, SM101 spores did not germinate with negative control buffer or DPA 

alone (8% and 10%, respectively, decrease in OD600 expressed as a percentage of 

initial) [Fig.2.3A]. These results are confirmed by using phase-contrast 

microscopy; ~ 90% of SM101 spores became phase-dark after 60 minutes of 

incubation with 50 mM of CaCl2, Ca (NO3)2, and C6H10CaO6 at pH 6.0 (data not 

shown).  
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 To determine if Ca2+ can induce spore germination in other FP isolates, we 

tested two other FP strains [NCTC10239, and NCTC 8239] using a similar 

experimental condition [Fig2.3B]. Our results showed that spores of both strains 

germinated with different Ca2+ ions similarly as with SM101 spores, as 35-40% 

decrease of OD600 expressed as a percentage of initial. These results are confirmed 

by using phase-contrast microscopy ~ 85-90% of both FP strains’ spores became 

phase-dark after 60 minutes of incubation with 50 mM of each [ CaCl2, Ca (NO3)2, 

and C6H10CaO6] at pH 6.0 (data not shown). Collectively, these results suggest that 

different Ca2+ ions are able to induce spore germination in most C. perfringens FP 

strains. 

 

Germination of C. perfringens SM101 spores with other spore core-specific 

divalent cations.  

 Previous studies demonstrated that, in C. botulinum, magnesium 

sulfate increases the rate of spore germination and plays a minor role in inducing 

C. difficile spore germination [36, 72]. Other studies suggested that minerals have 

a role in accelerating germination process in Bacillus megaterium spore 

germination by 93% very rapidly in the presence of MnCl2 [41]. In addition, studies 

demonstrated that in C. difficile Mn+2 has no role in spore germination, while other 

studies with C. perfringens NCTC 8238 spores found minor germination with Mn+2 

(16% loss in OD600) without adjusting pH [2, 36]. 
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To test whether other spore core-specific divalent cations can induce C. 

perfringens spore germination, we incubated C. perfringens SM101 spores with 

50mM (pH6.0) of each of MgCl2, MgSO4, MnCl2, ZnCl2, CaCl2; and with 100mM 

KCL (pH 6.0) (as a positive control), with 25mM Tris-HCL (pH 6.0) and 50mM 

DPA (pH 6.0)  (as a negative controls).  

Our results show that, i) C. perfringens SM101 spores germinated in the 

presence of MgCl2, MnCl2 and MgSO4; 40%, 50% and 35% loss of OD600 expressed 

as a percentage of initial, respectively [Fig.2.4]. These results are confirmed by 

using phase-contrast microscopy ~ 80-85% of SM101 spores became phase-dark 

after 60 minutes of incubation (data not shown). However, C. perfringens SM101 

spores did not germinate in the presence of ZnCl2 and Tris-HCL buffer; 13% and 

10% loss of OD600 expressed as a percentage of initial, respectively [Fig.2.4]. These 

results are confirmed by using phase-contrast microscopy ~ 90% of SM101 spores 

remained phase-bright after 60 minutes of incubation with ZnCl2 and Tris-HCL 

buffer (data not shown). Collectively, these results indicated that spore core-

specific divalent cations can trigger spore germination in C. perfringens. 

 
 
Germination of C. perfringens spores with different pH and concentration of 

MgCl2 and MnCl2.  

In order to identify optimum pH and concentrations that can induce 

germination of C. perfringens spores in the presence of MgCl2 and MnCl2, the 
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germinant solution was tested at pH ranging from 4.0 to 9.0 [ Fig.2.5A-B]. Our 

results indicated that the optimum conditions for Mg+2 and Mn+2 were at pH 6.0 

(50mM) [ Fig.2.2A]. The extent of germination was significantly (P < 0.05) higher 

at pH 6.0 [ Fig.2.5B]. These results are confirmed by using phase-contrast 

microscopy ~ 85-90% of SM101 spores became phase-dark after 60 minutes of 

incubation with 50 mM of MgCl2, or MnCl2 at pH 6.0 (data not shown). Overall, 

MgCl2 and MnCl2 can efficiently induce SM101 spore germination similarly as 

with CaCl2. These results confirm that divalent cations are sufficient to induce C. 

perfringens spore germination at pH 6.0. 

 
In order to identify optimum concentration of MgCl2 and MnCl2 that can 

induce germination of C. perfringens spores, the germinant solution was tested at 

various concentrations ranging from 5mM to 250mM [ Fig.2.5C-D]. C. perfringens 

SM101 spores were able to germinate significantly after 60 minutes of incubation 

with 50 mM of each of MgCl2 or MnCl2 [Fig. 2.5C]. The extent of germination was 

significantly (P < 0.05) higher at 50 mM and no significant germination was 

observed with higher or less than 50 mM [ Fig.2.5D]. These results are confirmed 

by using phase-contrast microscopy ~ 85-90% of SM101 spores became phase-dark 

after 60 minutes of incubation with 50 mM of MgCl2 or MnCl2 at pH 6.0 (data not 

shown). These results show that the optimum concentration to induce SM101 spore 

germination of both Mg+2 and Mn+2 were at 50mM, pH 6.0.   
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To investigate whether Mg2+ and Mn2+ can also induce germination of 

spores of other FP strains, we incubated spores of FP strains NCTC10239 or NCTC 

8239 with 50 mM of MgCl2. MgSO4 or MnCl2 for 60 mins at 37 C and OD600 

decrease measured [Fig2.6]. Our result found that both strains germinated well with 

Mg2+ and Mn2+ similarly to each other with slight differences; 30% and 35% 

decrease of OD600. These results are confirmed by phase-contrast microscopy, ~ 

75-80% spores became phase-dark after 60 minutes of incubation with 50 mM of 

MgCl2, MgSo4 and MnCl2 at pH 6.0 (data not shown). There was a significant 

difference in spore germination between SM101 versus NCTC10239 and 

NCTC8239. SM101 spores germinated better with [ MgCl2, MgSo4 and MnCl2] 

compared to that of NCTC10239 and NCTC8239; 20% more germination with 

SM101 spores than that of NCTC10239 and NCTC8239 spores. Interestingly, 

SM101 and NCTC10239 spores germinated very well with MnCl2 comparing to 

MgCl2 and MgSo4.  

 
 
Exogenous Ca2+ is essential for C. perfringens SM101 spore germination.  

As our results showed that exogenous Ca2+ alone is able to induce spore 

germination in all FP isolates [Fig.2.3A-B], we aimed to understand the role of 

endogenous Ca2+ in the germination process. To examine if the endogenous or 

exogenous Ca2+ is needed to induce spore germination, spores of wild-type SM101 
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were incubated with 100 mM KCl (pH 6.0) and mixtures of [100mM KCL and 

50mM EGTA], [100mM KCL and 50mM CaCl2-EGTA], and [50mM CaCl2-

EGTA], where EGTA is calcium specific chelator [Fig.2.7].  

Our results showed that, in the presence of mixtures [KCl and EGTA], 

SM101 spores germinated well, meaning that the release of Ca2+ from the spore-

core was not required for inducing spore germination. However, in the presence 

of a mixture of [CaCl2-EGTA and KCL], a reduced level spore germination was 

observed, meaning that the extra calcium in the present of EGTA decreasing fall of 

OD600 after 20 minutes of incubation. Finally, in the presence of a mixture of [Ca+2-

EGTA], SM101 spore germination is blocked, meaning that the extra calcium is 

needed to initiate spore germination. Collectively, our results indicated that the 

exogenous, but not the endogenous, Ca2+ is essential to initiate spore germination.  

 

Exogenous Mg2+ and both exogenous and endogenous Mn2+ are essential for 

C. perfringens SM101 spore germination.  

To examine if the endogenous or exogenous Mg2+ is needed to induce spore 

germination, spores of wild-type SM101 were incubated with 100 mM KCL, or 

mixtures of [100mM KCl and 50mM EDTA], [100mM KCL and 50mM MgCl2-

EDTA], [50mM MgCl2-EDTA], where EDTA is a general metal ion chelator 

[Fig.2.8A].  
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Our results showed that, SM101 spore germinated well in the presence of 

mixtures [KCl and EDTA] (40% decrease of OD600), meaning the release of Mg+2 

from the core spores is not required for inducing SM101 spore germination. 

However, in the presence of a mixtures of [KCL and MgCl2-EDTA], SM101 spores 

just stopped germinating after 30 minutes by (22% decrease of OD600), and with 

mixtures of [MgCl2-EDTA-50mM] spores germination is completely blocked, 

meaning that the extra magnesium is needed to initiate spore germination. 

Collectively, our results indicated that the exogenous, but not the endogenous, Mg2+ 

is essential to initiate spore germination. 

  

To examine if the endogenous or exogenous Mn2+ is needed to induce spore 

germination, spores of wild-type SM101 were incubated with 100mM KCL, and a 

mixtures of [100mM KCl and 50mM EDTA], [100mM KCL and 50mM MnCl2- 

EDTA], and [50mM MnCl2-EDTA] [Fig.2.8B]. Our results indicated that in the 

presence a mixture of [KCl and EDTA], spores germinated well reducing by ~40% 

decrease of OD600, meaning that the release of Mn2+ from the spore-core is not 

required for start inducing SM101 spore germination. Surprisingly, in the presence 

of [KCL and MnCl2-EDTA] or [MnCl2 and EDTA] SM101 spores completely 

stopped germinating, which is different than Mg2+ and Ca2+ pathway. These results 

suggested that both exogenous and endogenous Mn2+ is essential to initiate spore 

germination.  
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2.5 Discussion 

The previous studies indicated that the ability of FP isolates to be adapted 

to the environment much higher than other isolates of C. perfringens [54, 62]. In 

addition, the great ability of FP isolates to grow in meat products may be due to the 

presence of appropriate ionic media, for example potassium is found as a higher 

percentage then the sodium, magnesium, manganese and zinc, respectively with 

different proportions depending on the type of meat [34, 54]. Therefore, the 

significance of studying and understanding FP isolates’ germination pathways 

should limit their consequences. Recent studies have shown that bacterial spores 

from Bacillus and Clostridium species are capable of germinating in an ionic 

medium [17, 28, 36, 41].  In C. difficile, calcium ions have been known to enhance 

spore's germination more than any other divalent or monovalent cations in the 

presence of taurocholate, which is needed as a co-germinant for C. difficile spores 

[28]. While in C. perfringens potassium ion, sodium ion, and calcium chelated DPA 

are able to trigger spore’s germination either as germinants or co-germinants [51, 

54]. Generally, there is a broad range of ionic types that are able to enhance spore 

germination possibly because ions have some catalytic or physical function [17]. 
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However, we did not clarify if the calcium ion or DPA alone is able to trigger C. 

perfringens spore germination. There might be some role of divalent cations, that 

present in the meat products or in the spore core, in spore germination.  

 The results of this study suggested that the spore core-specific, but not non-

spore specific, divalent cations contributed to stimulating spore germination. The 

possible explanation for that is the divalent cations could be essential to activate 

cortex-lytic enzymes, which is important to initiate spore germination [41]. Another 

explanation could be that specific spore core-specific divalent cation such as Ca2+ 

and Mg2+ are needed to release DPA from the spore core, which is also important 

in the germination process [2].  Nevertheless, the effect of ions on spore 

germinating tend to differ greatly between spore-forming bacteria. For instance, 

Mn2+ shows real enhancement in B. megatherium spores’ germination [41] and in 

C. perfringens, while in C. difficile there is no effect of Mn2+ [36]. We do not have 

a comprehensive explanation of about the reason behind these differences between 

spore-forming bacteria.  

In several studies spore germination stages of Bacillus species have been 

studied well [83, 88, 92]. However, we still do not have detailed knowledge about 

molecular signals that can initiate bacterial spore germination process. So, the other 

objective of this study is to understand the endogenous and exogenous molecule 

signal specifically divalent cations. Our results indicated that the internal calcium 
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and magnesium signal is not important to complete germination, but the external 

signals of them are needed to induce spore germination. Interestingly, both internal 

and external signals of manganese play important role in inducing spores’ growth. 

The possible reason for the different sign of manganese during the stage of 

induction of spore germination is due to the importance of manganese in cortex-

lytic enzymes necessary for completing the spore germination process. Further 

studies are needed at molecular and protein levels to help to understand this 

difference in these ionic pathways during the germination process. 
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Figures  

Fig.2.1 Germination of spores of C. perfringens SM101with DPA, Ca-DPA, 

CaCl2. 

 

 

 

 

 

 

 

 

 

Fig.2.1 Germination of spores of C. perfringens SM101 with DPA, Ca-DPA, and 

CaCl2. Heat-activated spores of strain SM101 were germinated for 90 min at 37°C 

with 25mM Tris-HCl buffer (pH 6.0) (filled circle), 50mM DPA (pH 6.0)  (open 

circle), 50mM Ca-DPA (pH 8.0) (open diamonds), 100mM KCl (pH 6.0) (filled 

triangles), 50mM CaCl2 (pH 6.0) (open triangles).  Error bars represent standard 

deviations from the mean of at least duplicate experiments with three independent 

spore preparations. 
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Fig 2.2 A-D Effect of pH and concentration on CaCl2 induced germination of C. 

perfringens spores. 

 

 

 

 

 

 

 

 

 

 

Fig 2.2 A-D Effect of pH and concentration on CaCl2 germination of C. perfringens 

SM101. Heat-activated spores of SM101 were incubated with 50 mM CaCl2 in 25 

mM Tris-HCl at various adjusted pHs. The extents of germination (A) after 60 min 

of incubation at 37 °C and maximum rates of germination (B) were calculated as 

described in Material and methods. Error bars represent standard deviations from 

the mean of triplicate experiments with three independent spore preparations, (C, 

D) calcium chloride (pH 6.0) at various concentrations and extent of germination 

after 60 min (C) and maximum rates of germination (D) were calculated as 
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described in materials and methods. Error bars represent standard deviations from 

the mean of triplicate experiments with three independent spore preparations.  
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Fig.2.3 A-B Germination of spores of C. perfringens FP isolates with different 

calcium salts.  

       (A)                                                       (B)  

 

Fig.2.3 A-B Germination of spores of C. perfringens SM101 (A) and other FP 

strains (NCTC10239 and NCTC8239) (B) with DPA and various Ca2+. Heat-

activated spores of strains SM101, NCTC10239 and NCTC8239 were germinated 

at 37°C  with 100 mM KCl (pH6.0)  (filled triangles, white bars), 50 mM CaCl2 

(pH 6.0) (open triangles, dark gray bar), 50 mM Ca(NO3)2  (pH 6.0) (filled squares, 

light gray bar), 50 mM C6H10CaO6  (pH 6.0) (open squares, medium gray bar), 50 

mM Ca-DPA (pH 8.0) (open diamonds, strips bar), 50 mM DPA (pH 6.0) (open 

circle, dot bar), and 25mM Tris-HCl (pH 6.0) (filled circle, black bar). At various 

times, the OD600 was measured as described in Methods. Error bars represent 

standard deviations from the mean of at least duplicate experiments with three 

independent spore preparations. 
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Fig. 2.4 Germination of C. perfringens SM101 spores with other divalent cations.  

 

 

 

 

 

 

 

Fig. 2.4 Germination of C. perfringens SM101 spores with other divalent cations. 

Heat-activated spores of SM101 were incubated in 25mM Tris-HCl buffer (pH 6.0) 

with 100mM KCl (pH 6.0) (filled triangle), 50 mM CaCl2 (pH 6.0) (open triangle), 

50 mM MnCl2 (pH 6.0) (filled square), 50 mM MgCl2 (pH 6.0) (open diamond), 50 

mM MgSO4 (pH 6.0) (filled diamond), 25mM Tris-HCL buffer (pH 6.0) (filled 

circle), 50 mM ZnCl2 (pH 6.0) (open square). Error bars represent standard 

deviations from the mean of at least duplicate experiments with three independent 

spore preparations.  
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Fig 2.5 Effect of pH and concentration on MgCl2- and MnCl2-germination of C. 

perfringens spores.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.5 A-B Effect of pH and concentration on MgCl2- and MnCl2-germination of 

C. perfringens SM101 spores. (A-B) Heat-activated spores of SM101 incubated 

with 50mM MnCl2 (grey bar and filled square) and 50mM MgCl2 (black bar and 

filled circle) at various adjusted pHs. The extents of germination (A) after 60 min 

of incubation at 37°C and maximum rates of germination (B) were calculated as 

described in Material and methods. Error bars represent standard deviations from 

the mean of triplicate experiments with three independent spore preparations. (C-

D) Heat-activated spores of SM101 incubated at pH 6.0 with various concentrations 

of MnCl2 (filled square) and MgCl2 (filled circle). The extents of germination (C) 
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after 60 min of incubation at 37°C and maximum rates of germination (D) were 

calculated as described in Material and methods. Error bars represent standard 

deviations from the mean of triplicate experiments with three independent spore 

preparations. 
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Fig. 2.6 Germination of spores of C. perfringens FP isolates with divalent cations.  

 

 

 

 

 

 

Fig. 2.6 Germination of spores of C. perfringens FP isolates with Mg2+ and Mn2+ 

cations. Heat-activated spores incubated with 50 mM prepared with Tris HCL 

buffer at pH 6.00 buffer (black bars), 100mM KCL pH 6.0 (white bar), 50 mM 

MnCl2  pH 6.0 (large grid bar), 50mM MgSo4 pH 6.0 (light gray bar), 50mM MgCl2 

pH 6.0 (diamond bar), 50mM ZnCl2 pH 6.0 (dark gray bar).Error bars represent 

standard deviations from the mean of at least duplicate experiments with three 

independent spore preparations.  
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Fig.2.7 Germination of C. Perfringens SM101 spore in the presence of Ca2+ and 

specific Ca2+ blocker (EGTA).  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.7 Germination of C. perfringens SM101 spores in the presence of Ca2+ 

and specific Ca2+ blocker (EGTA). Heat-activated spores were incubated for 60 

min at 37°C with 50 mM Tris-HCl buffer (pH 6.0) (filled circle), 100 mM KCl 

(filled triangle), 50mM EGTA-100mMKCl (open circle), 50 mM CaCl2 (open 

squares), 50 mM EGTA-CaCl2 and 100 mM KCl (filled diamond), 50 mM CaCl2-

EGTA (open diamond) and OD600 was measured. Error bars represent standard 

deviations from the mean of at least duplicate experiments with two independent 

spore preparations.  
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Fig.2.8 Germination of C. perfringens SM101 spores in the presence of the MgCl2, 

MnCl2, and general metal ion blocker (EDTA). 

Fig.2.8 Germination of C. perfringens SM101 spores in the presence of MgCl2, 

MnCl2, and general metal ion blocker (EDTA).  Heat-activated spores incubated 

with 50 mM prepared with Tris HCL buffer at pH 6.00 for 60 min at 37°C. (A) 

KCL (filled triangle), 50mM EDTA- 100mM KCL (open circle), 50mM MgCl2 

(open squares), 50mM EDTA-MgCl2 and 100mM KCL (filled diamond), 50mM 

MgCl2-EDTA (open diamond), and 25mM Tris HCL buffer (filled circle), (B) 

100mM KCL (filled triangle), 50mM EDTA- 100mM KCL (open circle), 50 mM 

MnCl2 (open squares), 50mM EDTA-MnCl2 and 100mM KCL (filled diamond), 

50mM MnCl2-EDTA (open diamond), and 25mM Tris HCL buffer (filled circle). 

Error bars represent standard deviations from the mean of at least duplicate 

experiments with two independent spore preparations.  
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Fig.2.9 Possible model of divalent cations induced germination pathway in C. 
perfringens FP isolates.   
 
 
 
 
 
 
 

      

 

 

 

 



 

 

48 

Chapter 3  

Conclusion  

 
Clostridium perfringens is an anaerobic bacterium that is able to produce 

metabolically dormant spores, which can tolerate environmental stresses and 

survive for many years. When the environment is favorable, C. perfringens spores 

germinate and cause the disease. The germination process is initiated when 

bacterial spores sense a variety of chemicals, including salts, amino acids, cations 

and enzymes. Previous study has shown that dipicolinic acid (DPA) chelated with 

calcium (Ca-DPA) can stimulate significantly spore germination in C. perfringens. 

However, it is unclear whether Ca2+ or DPA alone can induce spore germination. 

Therefore, in this study we aimed to evaluate the possible role of Ca2+ and other 

divalent cations present in spore core (Mn2+ and Mg2+) in germination of C. 

perfringens spores.  

Our study demonstrates that (i) Ca-DPA, but DPA alone, induced 

germination of spores of C. perfringens, suggesting that Ca2+ might have signaling 

role in spore germination; ii) all tested calcium salts (calcium-chloride, -carbonate, 

or -nitrate) induced spore germination, indicating that Ca2+ ion is critical for spore 

germination; (iii) other spore-specific divalent cations (Mn2+, and Mg2+), but not 

Zn2+, could induce spore germination, suggesting that all spore core-specific 
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divalent cations are involved in C. perfringens spore germination. (iv) endogenous 

Ca2+ and Mg2+ are not necessary for C. perfringens spore germination; surprisingly, 

exogenous and partly endogenous Mn+2 is needed to induce spore germination. 
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