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EXOPOLYSACCHARIDE BIOSYNTHESIS BY A NATURAL  
LACTOCOCCAL ROPY ISOLATE  

INTRODUCTION AND LITERATURE REVIEW 

Research Topic 

Lactic acid bacteria have historically been used in foods such as cheeses, fermented 

milks, vegetables, breads, and continue to be an integral part of modem food production 

and processing. Many functional characteristics possessed by lactic acid bacteria are 

responsible for their abundant commercial use and have been the subject of many attempts 

to improve their behavior. Consumers are also becoming more interested in healthy, 

natural foods and recognize dairy foods produced with lactic acid bacteria as an important 

part of the diet. Some strains of Lactococcus have been used for fermented milk 

production in Scandinavian countries due to their expression of a thick, viscous 

exopolysaccharide. Interest in these exopolysaccharides as food additives has increased 

but before large scale utilization of these exopolysaccharides becomes possible, the gene 

operons coding for eps biosynthesis must be isolated and characterized. 

Definition of Lactic Acid Bacteria 

Lactic acid bacteria (LAB) are generally defined as non-spore forming, aero- and 

acid- tolerant, fastidious, Gram positive cells, that lack an electron transport chain and 

thus rely upon fermentation for energy production with lactic acid as the major 

end-product (1). As fastidious organisms, LAB are generally found in nutrient rich habitats 

such as food products, vegetables, and intestines and mucosal membranes of mammals. 

Although fastidious, most genes encoding enzymes important for amino acid biosynthesis 

are present but may be silent (1). Genome sizes of LAB range in size from 1.1 to 2.6 

megabases (5). Lactic acid bacteria are a very heterogeneous group and have been 

historically classified into different genera based on phenotypic characterization but 
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continue to go through taxonomic revision as better methods of differentiating the genera 

evolve. Current methods rely upon ribosomal RNA comparisons. Recent taxonomic 

revision includes the following genera in the LAB group: Aerococcus, Alliococcus, 

Carnobacterium, Dolosigranulum, Enterococcus, Globicatella,Lactobacillus, 

Lactococcus, Lactosphaera, Leuconostoc, Oenococcus. Pediococcus, Streptococcus, 

Tetragenococcus, Vagococcus and Weissella (1). LAB cluster with the low, less than 

55%, G + C group. The genera Bifidobacterium and Propionibacterium, often considered 

LAB, have been shown to have a high G + C content and are thus not included in the LAB 

taxonomic group (1). 

Commercially Important Characteristics of Lactic Acid Bacteria 

Several genera of LAB possess important physiological functions of interest to the 

dairy industry including production of lactic acid, protein hydrolysis, aroma synthesis, 

inhibitory substance formation, bacteriophage resistance, IS element activity, and 

exopolysaccharide biosynthesis. All of these functions are critical to the quality of the 

finished product and have been studied extensively. LAB used in the dairy industry can be 

broken down into two groups, mesophilic and thermophilic. The mesophiles have an 

optimum growth temperature of 30°C and are made up of species in the Lactococcus and 

Leuconostoc genera. Thermophiles exhibit optimum growth at 40-50°C and include 

Lactobacillus species and Streptococcus thermophilus (34). Regardless of the temperature 

group, LAB used in dairy processes exhibit similar functions. 

Acid Production 

Lactic acid production arising from lactose fermentation lowers the pH causing 

proteins to coagulate and is also the major factor inhibiting adventitious growth of 

spoilage organisms. The major sugar present in milk is lactose and is utilized by LAB for 

energy and lactic acid formation. In order to be utilized, lactose must first be transported 

across the cell wall. This is accomplished by means of the phosphoenol pyruvate 
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-phosphotransferase system. Lactose is phosphorylated to lactose phosphate and 

transported across the cell wall. Lactose can also be transported by ATP-dependent 

permeases (34). Once inside the cell, lactose is hydrolyzed into its glucose and 

galactose-6-phosphate constituents by phospho-fi-galactosidase and enters into another 

pathway determined by the individual sugar moiety. Glucose is catabolized by the 

glycolysis (Embden-Meyerhof-Parnas) pathway and galactose-6-phosphate is metabolized 

by the D-tagatose-6-phosphate pathway. Galactose is metabolized by the Leloir pathway 

(34) leading to an end product of lactic acid (1). 

Proteolysis 

Due to the fastidious nature of LAB, a large amount of peptides and amino acids 

must be present in the media for satisfactory growth. In general, lactococci have been 

shown to be auxotrophic for isoleucine, valine, leucine, histidine, methionine, arginine, and 

proline (61). Milk is an excellent growth medium for lactococci containing large amounts 

of casein and smaller amounts of other proteins and amino acids. Through the combined 

action of proteinases and peptidases, LAB are able to break down casein into peptides and 

amino acids that are then transported across the cell wall via specific transport systems. 

Proteinases have been shown to be attached to the cell wall via a C-terminus anchor and 

evidence suggests that plasmid DNA may code for the production of certain proteinases 

(67). The peptidases are intracellular enzymes that hydrolyze short peptide chains into 

amino acids freeing them for use by the cell. Protein hydrolysis has also been linked to 

texture and taste in cheese production (34). 

Aroma Synthesis 

Several flavor and aroma compounds have been shown to be produced in cheese 

manufacture by members of the Lactococcus genera. Lactic acid, acetic acid, and the 

citrate hydrolysis products, diacetyl, acetaldehyde, 2-3 butylene-glycol, and acetoin, all 

contribute to aroma. Pyruvate, derived from citrate by citratelyase, is toxic to the cell in 
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high concentrations and it has been suggested that these aroma compounds are generated 

as a way of avoiding the accumulation of high levels of pyruvate within the cell (34). 

Studies suggest that citrate utilization is plasmid borne (67). Additional flavor and aroma 

compounds may be generated by lactococci via the indirect formation of di- and tri-

peptides and free amino acids that are further metabolized into volatile compounds (34). 

Inhibitory Compounds 

The primary inhibitory compounds produced by lactococci are the organic acids 

arising from sugar fermentation and the resulting drop in pH. Additional small molecular 

weight, thermostable molecules with a narrow range of action called bacteriocins are 

produced by lactococci and have been intensely studied. Nisin has been shown to be active 

against spoilage organisms such as Clostridium botulinum and Listeria monocytogenes. 

Conversely, diplococcin is only active against Lactococcus lactis species (34). 

Bacteriophage Resistance Mechanisms 

Phage that infect Lactococcus lactis strains are ubiquitous in cheese plants and are 

a constant potential for destructive financial losses. Phage resistance is a desired trait in 

cheese starter cultures (27, 31). Several mechanisms of phage resistance have been 

elucidated and some of the most prevalent are the restriction-modification systems. These 

systems cleave unmodified foreign DNA rendering it useless to the cell and have been 

shown to be plasmid borne (39, 51). Other phage resistance mechanisms include inhibition 

of adsorption, blocking of DNA penetration, and abortive infection mechanisms. All of 

these mechanisms have been linked to plasmids (27). Another possible phage resistance 

mechanism may be linked to exopolysaccharide biosynthesis. One research group noted a 

correlation with exopolysaccharide production and phage resistance. When a plasmid 

conferring exopolysaccharide biosynthesis was transferred to a phage sensitive, 

non-exopolysaccharide producing host, the host became resistant to that particular phage 

(64). Conversely, another research group showed that an exopolysaccharide producing 
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strain was a host for many different phage and non-exopolysaccharide producing mutants 

of that strain were resistant to phage attack (50). 

Lactococcal IS Elements 

IS elements have been defined as DNA sequences that contain no detectable genes 

other than those required for transposition and are able to transpose from a donor location 

to a recipient location. IS sequences are typically 750-1500 base pairs in size and represent 

the simplest class of insertional elements (52). Four insertional sequence elements have 

been identified and characterized in Lactococcus,ISS1,1S904,1S946 (47), and 1S981 

(48). These insertion sequences are usually associated with important traits useful for 

growth in a milk media such as lactose and sucrose metabolism, proteinase activity, nisin 

production, bacteriophage resistance, and conjugal transfer abilities and may play a role in 

the phenotypically unstable expression of these genes (48). In lactococci, IS elements have 

been found in multiple copies on the chromosome and on plasmids. One research group 

found ISS/ on the chromosome of 47 of 49 strains tested and on plasmids in 17 of 17 

strains tested (44). IS elements have also been found to be part of larger transposons, 

which often flank a gene that is not able to transpose by itself. IS elements have been 

shown to have the ability to form cointegrates with other plasmids or integrate plasmids 

into the chromosome creating novel genetic combinations (48). One group demonstrated 

that the insertional element IS946 could integrate plasmids successfully into the 

chromosome (47). As a virtue of being present in multiple copies on plasmids as well as 

the chromosome, novel DNA combinations can result from transposition or homologous 

recombination. In one case, a plasmid free strain was shown to conjugally transfer the 

lactose fermenting (Lac+) phenotype to a me' recipient strain suggesting a chromosomally 

inserted location for the Lac+ plasmid DNA (48). The abundance of IS elements present 

on the chromosome as well as plasmids leads to the prediction that due to the sheer 

number of IS elements present in lactococci, they have a significant effect on commercially 

important genotypic and phenotypic trait stability (44). 
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Exopolysaccharide Biosynthesis 

Historically, exopolysaccharide producing strains have been used in Scandinavian 

countries to produce a thick, viscous fermented milk called "villi", "langfil", and "filmjolk" 

(34, 68). Recently, exopolysaccharide producing strains are finding increased usage in 

yogurt, sour cream, and whipped toppings to improve rhealogical properties, prevent 

syneresis, and replace stabilizers. As a result of consumer demands for natural foods, 

exopolysaccharides have recently begun to be studied more intensely for their potential 

use as natural stabilizers in other food products such as bakery fillings, canned foods, dry 

mixes, frozen foods, pourable dressings, sauces, gravies, processed cheeses, and juice 

drinks (12, 53). Chemical stabilizers can have a negative effect on yogurt taste, aroma, and 

mouthfeel obviating the potential use for exopolysaccharide producing LAB (7). 

Bacterial Polysaccharides 

LAB are capable of producing several different polysaccharides. These 

polysaccharides can be found in the cytoplasm as carbon and energy sources, components 

of the bacterial cell wall, or external to the cell (9). Exopolysaccharides (eps) are defined 

as the polysaccharides that are found external to the cell, either attached or excreted as 

free polysaccharides (58). Many different types of microorganisms from Gram positive 

and Gram negative bacteria to algae produce eps (9). Ambiguity concerning nomenclature 

describing these eps exists as they have been described as mucoidy, slime producing, and 

ropy. One strain of Lactococcus lactis ssp. cremoris has been shown to produce at least 

two distinct forms of eps, ropy and mucoidy, driven by environmental conditions (13). 

Ropy exopolysaccharide (ropy eps) is distinguished by viscous ropes greater than five mm 

in length originating from the colony when the colony is touched. Conversely mucoidy eps 

imparts a slimy appearance to the colony but does not produce viscous ropes. Another 

research group suggests that environmental signals may trigger two modes of eps 

production resulting in the biosynthesis of mixed polymers (17). The roles of substrate, 

temperature, and oxygen requirements in the regulation of eps biosynthesis is varied and 
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does not provide a definitive answer to regulation of eps expression. One recent study 

showed the presence of a Lon-like protein in several lactococcal strains (14). Lon protease 

is a regulatory protease responsible for degrading short-lived regulatory proteins, such as 

RcsA, which activates colanic acid polysaccharide biosynthesis in Escherichia coli (57). 

The study showed less of the lon-like protein in ropy eps strains than in non-ropy eps 

strains of Lactococcus suggesting a regulatory role in lactococcal ropy eps biosynthesis 

for this highly conserved enzyme (14). 

Roles of Exopolysaccharides 

Several functions of eps have been suggested such as protection from desiccation 

and phagocytosis, adhesion, increasing oxygen tension, and facilitation of nutrient uptake 

(9). Protection from bacteriophage has been hypothesized as another function of eps but in 

the case of mesophilic Lactococcus strains, that hypothesis remains unsolved (50, 64). It is 

apparent that eps does not act as an energy source in lactococci. One research group 

observed that a species of Streptococcus salivarius ssp. thermophilus possess enzymes 

capable of degrading the eps but no such data exists for lactococci (17). In any case, eps is 

not necessary for survival and eps biosynthetic mutants are easily isolated (9). 

Exopolysaccharide Composition and Structure 

Exopolysaccharides can be broken down into two types, homo- and hetero-

polymers. Homopolymers are composed of a single type of sugar monomer. Specific 

substrates are required for the production of some homopolymers. Sucrose is the required 

sugar source for the production of dextrans, levans, and mutans (9, 53). Although 

homopolymers are made of similar sugar moieties, different repeating unit sizes, 

structures, and molecular weights are common (9, 24, 53). Compositional and structural 

data of an eps isolated from a Lactococcus lactis ssp. cremoris strain revealed a 

homopolymer composed of galactose with the structure (24): 
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44)-fi-D-Gal p-(143)-fl-D-Gal p-(144)-a -D-Gal p-(14  
3  

1 

fi-D-Gal p 
3 

1 

X13 -D-Gal p 

Heteropolymers consist of many different monomers such as glucose, galactose, 

arabinose, mannose, and rhamnose, and no correlation between carbon source and final 

eps composition has been made (9). Of all the differing lactococcal heteropolymers 

examined, no similarities in composition or structure has been observed yet all give a 

thick, ropy consistency to fermented milk (6, 9, 10, 56). Exopolysaccharide isolated from 

a Lactococcus lactis ssp. cremoris strain was reported to be composed of rhamnose, 

glucose, and galactose in molar concentrations of 1:1.45:1.75 respectively, had a 

molecular weight of 1.7x106 and the following structure (36, 63): 

44)-fi-D-Glc p-(144)-fi-D-Gal p-(144)-fi-D-Glc p-(14  
2  

1 

a-L-Rha p  
3  

PO4-
T  
1 

a-D-Gal p 

Other compositions of eps isolated from Lactococcus lactis ssp. cremoris strains were 

found to be galactose and glucose in molar ratio of 2:1 (24) and predominantly galactose 

and glucose, but also including small amounts of rhamnose, arabinose, and mannose (10). 

http:1:1.45:1.75
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Commercial Uses of Exopolysaccharides 

The commercial usefulness of eps arise from their wide range of functions and is 

readily exploitable due to their hydrophilic nature and solubility in water. Important 

functions include high viscosity at low concentrations, gelling, antifreeze behavior, 

stability in high shear, pH, and temperature changes, surface-active dispersing and 

flocculating capacity, adhesive and film-forming properties, binding capacity for metal 

ions, proteins and lipids, and biodegradability (30). Exopolysaccharides have applications 

in a wide range of industries such as the dairy, food, cosmetic, chemical, medical, waste 

treatment, and oil. Their useful functions include thickeners, viscosifiers, drag reducing 

agents, and matrix for flavor compounds, enzymes, cells, and biomedical material 

immobilization (53). One author notes that due to the specific ordering of many differing 

sugar residues, they are capable of forming ordered chain conformations often in dilute 

solutions allowing gel formation and stabilization (9). One study showed a drastic increase 

in moisture retention within a low-fat cheese matrix made with an eps producing strain 

(43). Several studies show ropy eps strands interacting with the bacterial cells and protein 

matrix of fermented milk and casein in yogurt (62). This interaction provided an increase 

in viscosity even after stirring and shearing the eps from the bacterial cell (58). One group 

suggests that strains maintaining their eps as capsules rather than excreting the eps, 

provides better characteristics to low-fat cheeses (43). Currently the only microbial eps 

used to any appreciable extent in industry are dextran, produced by Leuconostoc 

mesenteroides, xanthan gum, produced by Xanthomonas campestris, and recently, gellan 

gum, produced by Aureomonas elodea ATCC31461 (12). Xanthan gum was approved by 

the U. S. Food and Drug Administration (FDA) for use in foods in 1969. Today it is used 

in many foods such as bakery fillings, canned foods, dry mixes, frozen foods, pourable 

dressings, sauces, gravies, processed cheeses, and juice drinks but is best known for its use 

in oil recovery (12,53). 

Current health trends are providing a strong stimulus for finding new and more 

natural food additives, such as lactococcal eps. Consumers demand fresh, minimally 

processed foods without chemical additives that are low in fats and sugars as well as 
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providing potential remedies to such ailments as heart disease, osteoporosis, fatigue, and 

memory loss (70). Two potential concepts relating to these types of healthy foods are 

probiotics and prebiotics. Probiotics work on the concept that establishing a healthy flora 

of intestinal microbes through eating foods rich with these microbes causes the host to be 

more resistant to disease causing organisms. Prebiotics accomplish this same goal using 

specific nutrients targeted to the desirable microbes already present in the intestinal tract 

(70). As result, one study tested fermented milks using Lactobacillus acidophilus, 

Lactobacillus casei ssp. casei and Bifidobacterium isolated from human intestine (62). 

Other studies are underway to examine the benefits of LAB eps in healthy foods. One 

study utilizing eps producing lactococcal strains showed a drastic increase in moisture 

retention and meltability in low-fat mozzarella cheese that is typically dry and hard. This 

low fat mozzarella cheese would be similar in quality to normal mozzarella cheese without 

the fat content and without unnatural fat replacers (43). Other researchers have noted that 

eps produced by ropy lactococci can play a role in reducing serum cholesterol levels (37), 

and an eps produced by a Lactobacillus strain exhibits anti-tumor activity (62). Another 

group studied eps producing strains in yogurt production and found that yogurts made 

with eps producing strains retained an increase in viscosity after stirring (7) and in yogurts 

produced with less total milk solids of 12% (68). Normal yogurt is made with 17% total 

milk solids. Additional sensory studies revealed that yogurt made from a ropy eps strain 

had a smoother mouthfeel than yogurt made with a non-ropy eps strain. An encouraging 

result was that the sensory panel preferred the yogurt made with the ropy strain in less 

total milk solids (12%) rather than the normally used total milk solids (17%). This is 

significant because quality yogurt can be made with less total milk solids in countries such 

as Mexico where shortages of milk supply occur (68). Ropy eps strains could thus be 

financially lucrative in developing countries for dairy food production as consumption of 

these foods is steadily rising. Mexico experienced a 153% rise in yogurt consumption from 

1980-1990 (68). A study of Scandinavian fermented milks showed that a mixture of 

60-70% eps producing to 30-40% non-eps producing cells was ideal for making a 

desirable consumer product but is difficult to maintain due to the instability of eps 

production (32). Increased eps production is not always a beneficial trait. Yogurts made 
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with ropy eps strains in 14-17% total milk solids were found to be unacceptable due to the 

unpleasant mouthfeel of excessive ropiness (68). Another study showed that fermented 

milk made with Lactobacillus kefiranofaciens K1 had excessive ropiness and was also 

unacceptable (62). 

Commercial uses of lactococcal eps have been limited due to the fact that eps 

production has been shown to be unstable and lost at higher temperatures or with repeated 

transfers (64, 10). This instability is typical of plasmid encoded traits. Several research 

groups have linked eps biosynthesis with plasmids of various sizes: 4.5-megadaltons 

(mDa) (65), 17 mDa (38), 18.5 (64), 26.5 mDa (63), and 30 mDa (38, 66). One group 

noted that the instability of eps production in a plasmid free strain may be due to reversible 

DNA rearrangements (17, 48). Another problem associated with lactococcal eps use is 

low yields typically less than 500 mg/L (12). Yields of 150 mg/L (36), 200-240 mg/L (7), 

220-600 mg/L (10), have been observed and one research group noted that when a ropy 

eps strain is inoculated in conjunction with a non-ropy eps strain, eps yield can reach 800 

mg/L suggesting a stimulatory effect by the non-ropy eps strain (9). Due to the 

heterogeneity of lactococcal eps, the requirements for maximal production are probably 

strain specific. Unbuffered media (18), lower temperatures (10) and aerobic environments 

may help to produce greater quantities (9). 

Studies examining the specific enzymes needed for eps biosynthesis are limited but 

are beginning to show that very specific enzymes are utilized to assemble, polymerize, and 

export the eps heteropolymer. These enzymes include sugar transfer enzymes such as 

gluco- and galacto- transferases and polymerases (9). In two recent studies, operons 

encoding eps biosynthesis in LAB have been isolated and both operons contained genes 

having homology to eps genes in other bacterial species (56, 63). With increased 

knowledge on how eps biopolymers are synthesized, polymerized, and exported, advanced 

techniques of molecular biotechnology have the potential to develop novel eps specifically 

suited to individual parameters (12). 
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Experimental Approach 

The goal of this research project was to isolate the genes responsible for ropy 

exopolysaccharide biosynthesis in a natural lactococcal ropy isolate which produces a 

viscous, ropy exopolysaccharide in fermented milk. ISSJ, carried on the temperature 

sensitive replicon pGh9:ISSJ, was used to create insertional mutations in the ropy 

exopolysaccharide genes of a natural lactococcal ropy isolate. Using this insertional 

mutagenesis approach, mutants failing to express the ropy exopolysaccharide have been 

selected and characterized. The interrupted gene was sequenced using unique attributes of 

the pGh9:ISSJ vector. 
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MATERIALS AND METHODS 

Bacterial Strains and Growth Media 

Bacterial strains and plasmids used in this study are detailed in Table 1. 

Lactococcal stock glycerols were maintained in 11% reconstituted nonfat dry milk (NFM) 

containing 20% glycerol at -70°C. For subsequent experimentation, Lactococcus cultures 

were streaked on 7% whey agar (64) or grown in M17 based media (60). In general, 

lactococcal strains were grown at 30°C and without shaking if grown in broth. 

Lactococcal strains were grown in M17+1actose (M17L) except MG1363 which was 

grown in M17+glucose (M17G). Whey media was prepared in two parts as follows: Part I 

was made by dissolving 70 grams (gms) of sweet whey powder (Tillamook County 

Creamery, Tillamook OR.) in 500 milliliters (mis) of double distilled water (ddH2O), 

mixing for 20 minutes, and centrifuging for one hour at 7000 rpms to remove particulate 

matter. The supernatant was fortified with 19 gins of/3- Na glycerophosphate, 5 gins of 

yeast extract and brought up to 600 mls in volume. Part II was made by combining 15 gms 

of agar with 400 mls of ddH2O and 3 drops of Anti-foam A (Sigma). Parts I and II were 

autoclaved separately for 10 min. and promptly removed. Part I was mixed into part H 

after cooling to 55°C and poured into sterile petri plates. M17 media was prepared as 

follows: five gins of polypeptone peptone, phytone peptone, beef extract and either lactose 

or glucose, 2.5 gms of yeast extract, 0.5 gms of ascorbic acid, 19 gins off- Na 

glycerophosphate, and 1 ml of 1 M MgSO4 was added to 1 liter (L) of ddH2O and 

autoclaved for 20 minutes. Escherichia colt was grown on LB agar or in LB broth (49). 

This media was made as described: 10 gms of tryptone and 5 gms of yeast extract and 

NaC1 were added to 1 L of ddH2O. If plates were needed, 15 gins of agar was added. The 

media was autoclaved for 20 min. and for plates, cooled and poured into sterile petri 

plates. Antibiotics were used as follows; Erythromycin (em) concentration for lactococcal 

strains: 5 µg/m1 when pGh9:ISSJ was in plasmid form or 2 gg/m1 when pGh9:ISSJ was 

inserted into the chromosome, for E. colt TG1: 100 pg/m1 (33). 
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Table 1. Bacterial Strains and Plasmids 

Strain/Plasmid Relevant Phenotype/Characteristic Reference 
Strain 

Lactococcus lactis sp. cremoris 
natural ropy isolate ropy (13) 
MG1363 non-ropy, plasmid free (19) 
EK1002 natural ropy isolate harboring This work 

pGh9:ISS/, ropy, emR 
EK1038 EK1002 transposon mutant This work 

non-ropy, emR 
EK1238 EK1002 transposon mutant This work 

non-ropy, em' 
EK1338 EK1002 transposon mutant This work 

non-ropy, emR 
EK48X EK1238 excision mutant, non-ropy This work 
EK217X EK1238 excision mutant, ropy This work 
Escherichia colt 
TG1 plasmid free (49) 
EK1238H harboring pEK1238H, emR This work 

Plasmid 
pGh9:ISSJ emR (33) 
pEK1238H pGh9:ISSJ containing a 2006 by insert This work 

from EK1238 chromosomal DNA 
restricted with HindIII, emR 

emR: erythromycin resistant 

Electroporation 

Electroporation was carried out as described (26, 15). Cells were grown for 48 hr 

in M17 media supplemented with 1% sucrose and 0.5% glycine. Cells were pelleted, 

washed in cold 0.3 M sucrose three times, and resuspended in 200 p.1 of 0.3 cold M 

sucrose. DNA was added to the cells and the mixture was transferred to a chilled 

electroporation cuvette (0.2 cm gap). The cells were shocked (2.5 kV, 200 ohms, 25 pF) 

and resuspended in 8 mis of growth media supplemented with 1% sucrose and 50 ng/ml 

em. Cells were allowed to recover for 2 hours before plating on whey agar containing 5 

gg/mlem for lactococcal strains and LB agar containing 100 pg/inl em for E. colt strains. 
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Plasmid DNA Isolation 

Small scale lactococcal plasmid preparations were carried out as previously 

described (40). Briefly, a 5-10 ml overnight culture was pelleted, resuspended in 200 pl of 

25% sucrose containing 30 mg/nil of lysozyme, and incubated at 37°C for 15 minutes. 

Four hundred microliters of fresh 3% SDS, 0.2 N NaOH solution was added, mixed 

immediately, and incubated for 7 min. at room temperature. Three hundred microliters of 

cold 3 M Na acetate was added and immediately mixed. Cell debris and chromosomal 

DNA were removed by centrifugation for 15 min. and the supernatant was transferred to a 

clean microfuge tube. To this tube, 650 pl of isopropanol was added and mixed well. The 

DNA was pelleted by centrifugation for 15 minutes. After resuspension in 320 pl of sterile 

ddH2O, 200 pl of 7 M ammonium acetate containing 0.5 mg/ml of ethidium bromide, 175 

pl phenol, and 175 pl of 24:1 chloroform/isoamylalcohol was added and mixed well. After 

centrifuging for 5 min., the upper phase was transferred to a new tube, ethanol 

precipitated in 1 ml of 95% ethanol, washed in 0.5 ml of 70% ethanol, dried, and 

resuspended in 40 IA of 0.01 M Tris, 1 mM EDTA (TE). 

Large scale plasmid isolations for lactococcal strains were a combination of two 

protocols and carried out as follows (4,40). One liter of cells was grown to saturation in 

appropriate growth media and pelleted. The pellet was resuspended in 20 mis of 25% 

sucrose containing 30 mg/m1 of lysozyme and incubated for 15 min. at 37°C. Forty 

milliliters of freshly made 3% SDS, 0.2 N NaOH solution was added, mixed immediately, 

and incubated at room temperature for 7 minutes. Fifteen milliliters of cold 3 M Na 

acetate was added, mixed immediately, and incubated on ice for 10 minutes. Cellular 

debris and chromosomal DNA were removed by centrifugation for 15 min. and the 

supernatant was transferred to a new tube. Thirty milliliters of isopropanol was added, 

incubated on ice for 10 minutes, and centrifuged. The pellet was dried, resuspended in 10 

mis of 50 mM Tris pH 8.0, 100 mM Na acetate, 1 mM EDTA, and agitated at 37°C until 

resuspended. DNA was precipitated with 20 mis of 95% ethanol, pelleted, washed with 5 

mis of 70% ethanol, dried, and resuspended in 4 mis of lx TE. To this solution, 300 pi of 
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10 mg/ml ethidium bromide and 5.2 gm of CsCI were added and mixed well. This solution 

was added to an ultra-centrifuge tube, weighed carefully, sealed, and centrifuged at 58,000 

rpms for 16 hours at 20°C. The lower plasmid band was removed with a syringe and the 

ethidium bromide was removed by repeated extractions with water saturated butanol. The 

plasmid DNA was pelleted by adding 2 volumes (vol.) of sterile ddH20, 1 vol. of 3.5 M 

Na acetate, and 0.7 vol. of isopropanol followed by centrifugation. The pellet was dried, 

resuspended in 0.5 ml of 50 mM Tris pH 8.0, 100 mM Na acetate, 1 mM EDTA, 

precipitated with 95% ethanol, pelleted, washed in 70% ethanol, dried, and resuspended in 

200 ill of lx TE. 

Small scale E. coli plasmid preparations were carried out as described (49). After 

overnight growth in 5 mis of LB containing appropriate antibiotics, cells were pelleted and 

resuspended in 150 µl of lysis buffer (50 mM glucose, 10 mM EDTA, 25 mM Tris pH 

8.0). Sixty microliters of fresh lysozyme solution (80 mg lysozyme, 1 ml water) and 200 

of fresh SDS/NaOH (0.2 N NaOH, 1% SDS) was added and mixed until the cells lysed. 

One hundred fifty microliters of 5 M K acetate was added and mixed until a white 

precipitate formed. Cellular debris and chromosomal DNA were removed by 

centrifugation and 250 p.1 of phenol and 250 µl chloroform/isoamylalcohol (24:1) were 

added. After thorough mixing and centrifugation for 3 min., the top phase was removed 

and added to 80 ml of 0.35 M Na acetate and 1 ml of cold 95% ethanol. After 5 min. at 

room temperature, the DNA was pelleted, washed with 0.5 ml cold 70% ethanol, dried, 

and resuspended in 50 gl of lx TE. 

Large scale plasmid isolations for E. coli followed the Birnboim method (4). One 

liter of cells grown in LB containing appropriate antibiotics was pelleted and resuspended 

in 10 mis of lx TE containing 20 mg of lysozyme and incubated at room temperature for 5 

minutes. Following addition of 20 mis of Bernie #2 solution (400 mg NaOH, 5 mis of 10% 

SDS, 45 mis sterile ddH2O), cells were incubated 10 mM. on ice. Fifteen mis of 5 M K 

acetate was added and incubated for 30 min. with occasional mixing. Cellular debris and 

chromosomal DNA were removed by centrifugation for 15 min. and the supernatant was 

transferred to a new tube followed by the addition of 30 mis of isopropanol, incubation on 

ice for 10 minutes, and centrifugation. The pellet was dried, resuspended in 10 mis of 50 



17 

mM Tris pH 8.0, 100 mM Na acetate, 1 mM EDTA, and agitated at 37°C until 

resuspended. DNA was precipitated with 20 mis of 95% ethanol, pelleted, washed with 5 

mis of 70% ethanol, dried, and resuspended in 4 mis of lx TE. To this solution, 300 ill of 

10 mg/ml ethidium bromide and 5.2 gm of CsC1 were added and mixed well. This solution 

was added to an ultra-centrifuge tube, weighed carefully, sealed, and centrifuged at 58,000 

rpms for 16 hours at 20°C. The lower plasmid band was removed with a syringe and the 

ethidium bromide was removed by repeated extractions with water saturated butanol. 

Plasmid DNA was pelleted by adding 2 volumes of sterile ddH2O, 1 vol. of 3.5M Na 

acetate, and 0.7 vol. of isopropanol followed by centrifugation. The pellet was dried, 

resuspended in 0.5 ml of 50 mM Tris pH 8.0, 100 mM Na acetate, 1 mM EDTA, 

precipitated with 95% ethanol, pelleted, washed in 70% ethanol, dried, and resuspended in 

200 pi of lx TE. 

Chromosomal DNA Isolation 

Chromosomal isolations were performed as described (49). Cultures were grown 

in 30 mis of the appropriate growth media for 48 hr. and pelleted. Pellets were 

resuspended in 1 ml of 0.1 M EDTA, 0.1 M Tris pH 8.0 containing 15 mg/nil lysozyme 

and incubated at 37°C with gentle rocking for 1 hour. Two mis of 0.01 M Tris, 0.1 M 

NaC1, 1% SDS, pH 8.0 were added and rocked at room temperature for 1 hour. Three mis 

of phenol were added and rocked for 1.5 hours, after which the aqueous phase was 

removed to another tube. Two volumes of ice cold 95% ethanol were added, mixed well, 

and set on ice for 10 minutes. Chromosomal DNA was spooled onto a glass Pasteur 

pipette, dried, and dissolved in 1 ml of lx TE. 

Lactococcal Insertional Mutations 

Insertional mutants were created using the transposon mutagenesis plasmid 

pGh9:ISSJ (33). Transformants were grown to saturation in Ml7L containing 5 pg/m1 of 

em, diluted 100 fold into Ml7L without em and incubated 150 min. at 28°C. This culture 
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was shifted to 38°C for another 150 mia and plated on whey agar containing 2 fig/m1 of 

em at 38°C. Mutants were screened for loss of ropy eps expression on whey agar plates. 

The ropy phenotype is indicated by rope formation greater than 5 mm when the colony is 

touched with a sterile loop (65). 

Mutant Characterization 

Lactococcal strains to be characterized were brought out of frozen stocks on whey 

agar plates, inoculated into 5 mis of Ml7L, and grown for 48 hours. After commercial 2% 

milk was sterilized by steaming for 30 min., 3 mis of milk were inoculated with 0.5 ml of 

the culture. The milk was incubated for 18 hours at 30°C and visually examined for 

coagulation and ropy eps expression. The milk was examined again after 24, 48, 72 and 96 

hours. Positive coagulation was indicated by a solid clump in the tube. Ropiness was 

indicated by inserting a sterile wire loop and pulling long ropes out of the milk when the 

loop was withdrawn. Growth curves were prepared as follows. Sixty mis of Ml7L was 

inoculated with 1.5 mis of a 48 hour culture and mixed well. An initial OD600 reading was 

taken and readings were subsequently taken every 30 minutes. Results were graphed and 

the doubling time taken from the graph. 

Cloning of the Interrupted Gene 

Cloning of interrupted genes was performed as described (33). Chromosomal 

DNA was isolated and digested with Hind111. Fragments were circularized and 

transformed into E. coli TG1 cells and plated on LB containing 100 gg/m1 of em at 28°C. 

Plasmids were isolated and digested with Hind III and EcoRl to verify the presence of an 

insert. 
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E. coli Transformation 

Transformation of E. coli was achieved as described (49). After growth overnight 

in LB, cells were diluted 50 fold, grown to OD600= 0.5-0.6, and pelleted. Cells were 

resuspended in 10 mis of cold 0.1 M CaC12 and iced for 15 minutes. The cells were 

pelleted and resuspended in 5 mis of cold 0.1 M CaC12 and iced for 15 minutes. Cells were 

pelleted and resuspended in 1 ml of CaC12 and iced for 2 hours. DNA was added and the 

cells were iced for 30 min. followed by heat shock at 42°C for 1 min. and icing for 2 

minutes. One ml of SOC broth was added and incubated at 37°C for 1 hr and plated on LB 

agar containing 100 fig/m1 em. SOC broth was made by adding 20 gm of tryptone, 5 gm 

of yeast extract, 0.58 gm of NaCI, 0.19 gm of KC1, 2 gm of MgCl2 6 H2O, and 2.5 gin of 

MgSO4. 7 H2O to 1 L of ddH2O and autoclaving for 20 minutes. Prior to use, 2 mis of 

20% glucose were added for every 100 mis used. 

DNA Sequencing 

Plasmids containing inserts to be sequenced were isolated using a large scale 

plasmid preparation. After gel quantitation using Gibco BRL Life Technologies DNA 

mass ladders, plasmid DNA was sequenced at Central Services Laboratory at Oregon 

State University. Sequencing primers are listed in Table 2. The initial forward primer, 

ISSlfor, was located in the forward end of the ISS/ element and used to sequence the 

pGh9:ISS1 vector. From the vector sequence, a primer, pGh9rev, was generated to the 

pGh9 backbone on the downstream side of the HindlII site to use as a reverse sequencing 

primer. Sequence generated using these primers allowed new primers to be synthesized to 

the end of the new sequences permitting another round of sequencing. Using ISSHor, 

EK1238Hf1, EK1238Hf2, and EK1238Hf3 consecutively, the forward strand was 

sequenced. Using pGh9rev, EK1238Hr1, EK1238Hr2, and EK1238Hr3 consecutively, the 

reverse strand was sequenced. Sequence data was aligned using a multiple sequence 

alignment program and the two ends of the insert were determined. The insert DNA 

sequence was analyzed by the GenBank data base using BLAST to search for homologous 
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sequences. The insert DNA sequence was also translated into its predicted amino acid 

sequences in all six frames. Amino acid sequences of any considerable length were 

analyzed by the SwissProt data base using BLAST to search for homologous sequences. 

Table 2. Sequencing Primers 

Primer Primer Sequence 
ISSlfor 5'-AAACTTTGCAACAGAACCAG-3 ' 
pGh9rev 5'-GCCGGATTGTTCCCAGTCACGACG-3' 
EK1238Hfl 5 '-TATACTTCTCAACATTGTTATTGG-3 ' 
EK1238Hf2 5 '-ATAAAATTCAGGATCAACTTTCCC-3 ' 
EK1238Hf3 5 '-CATAATTTCTCGCATGCGATACCC-3 ' 
EK1238Hr1 5 '-TAATGATCTTCTTGAATGTGAAGG-3 ' 
EK1238Hr2 5 ' -C GTGTATGATACATATGT TATC C G-3 ' 
EK1238Hr3 5 '-CTTAATGCCACTGGAGAATATATC-3 ' 

Transposon Excision 

Excision of the pGh9:ISS1 vector was performed as described (33). Cultures were 

grown overnight in M17L containing 2 µg/ml em at 38°C, diluted 50 fold in M17L 

without antibiotics, and grown to saturation at 28°C. Serial dilutions were plated on whey 

agar without em at 38°C. Colonies were re-streaked onto whey agar containing 2 µg/ml 

em and whey agar without em to screen for excision of the pGh9:ISS1 vector at 28°C. 

Southern Hybridization 

Southern hybridization using enhanced chemiluminescense (ECL) was performed 

as described by ECL Direct Nucleic Acid Labeling and Detection System by Amersham 

Life Sciences. Briefly, chromosomal DNA was restricted using EcoRV and separated on 

0.6% agarose gel. The gel was depurinated by gentle shaking in 250 mM HC1 for 15 min., 
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rinsed with ddH2O for 1 min., denatured by gentle shaking in 1.5 M NaCl, 0.5 M NaOH 

for 45 min., rinsed with ddH2O for 1 min., and neutralized by gentle shaking in 1.5 M 

NaC1, 0.5 M Tris -HCI, pH 7.5 for 30 minutes. The neutralization step was done twice. A 

transfer stack was assembled. This consisted of a shallow tray filled with 20x SSC (0.3 M 

Na3 citrate, 3 M NaC1, pH 7.0) overlaid by a glass sheet. A wick of Whatman 3MM paper 

was wetted and placed over the glass contacting the buffer under both sides of the glass 

sheet and all air bubbles were removed. The gel was placed upside down on the 3MM 

paper, air bubbles were removed, and Petri-film was placed on the 3MM paper wick to 

cover any exposed areas not covered by the gel. A piece of nitrocellulose paper, 

pre-wetted in 20x SSC, was placed on top of the gel and all air bubbles were removed. 

Two pieces of pre-wetted 3MM paper were placed on top of the nitrocellulose and the air 

bubbles were removed. A stack of paper towels was placed on top of the 3MM paper 

followed by another glass sheet and weighted. After the DNA was allowed to transfer 

overnight, the nitrocellulose membrane was removed and washed in 6x SSC for 5 min. and 

dried at room temperature. The DNA was fixed to the membrane by UV cross linking with 

1200 joules of energy. The membrane was placed in a hybridization tube filled with 

hybridization buffer containing 0.5 M NaC1 and 5% (w/v) blocking agent preheated to 

42°C and allowed to pre-hybridize for 1 hour. Approximately 100 ng of probe DNA 

consisting of either the Spel-Hinc1111 fragment of pEK1238H or the HindlII-EcoRI 

fragment of pGh9:ISS1 was labeled in a 10 til volume as follows. The DNA was boiled for 

5 min., cooled on ice for 5 min., and spun briefly to collect the sample on the bottom. Ten 

microliters of labeling reagent was added and mixed. Ten microliters of gluteraldehyde 

was added and mixed. The probe was set at 37°C for 10 min. and used immediately. The 

probe was allowed to hybridize at 42°C overnight. Following hybridization, the membrane 

was washed twice in 100 mls of pre-heated primary wash buffer (6 M urea, 0.4% SDS, 

0.5x SSC). The membrane was washed twice in 2x SSC for 5 minutes. Developing 

reagents in a 1:1 mixture were added to the membrane for 1 min. and drained. The 

membrane was covered in plastic wrap and exposed to the film for various amounts of 

time. The film was developed using Kodak developer and fixer. 
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RESULTS 

Insertional Mutations Impact Ropy Exopolysaccharide Biosynthesis 

Two distinct exopolysaccharides, mucoidy and ropy, are produced by a previously 

described natural lactococcal ropy isolate (13). The exopolysaccharide of interest, ropy 

exopolysaccharide (ropy eps), is evident by touching the colony and observing a viscous 

rope greater than 5 mm in length originating from the colony. Mucoid exopolysaccharide 

lacks this rope formation. Due to active restriction-modification systems and plasmid 

incompatibility, transformation with foreign DNA by electroporation into the natural 

lactococcal ropy isolate proved to be inefficient (13). A mutagenesis vector designed to 

circumvent these obstacles, pGh9:ISS1 (33), was therefore exploited. One microgram of 

pGh9:ISS1 plasmid DNA was used to transform the natural lactococcal ropy isolate and 

one transformant colony, EK1002, was generated. The erythromycin resistant (emR) 

colony was assayed for ropiness; long ropes greater than five mm in length indicative of 

wild type ropy eps expression were observed as shown in figure 1. The plasmid 

complement of EK1002 was isolated and an additional plasmid approximately 4.6 kb in 

size, pGh9:ISS1, was observed. These results indicated that pGh9:ISS1 had transformed 

the natural lactococcal ropy isolate yet had not disrupted ropy exopolysaccharide gene 

expression while in an autonomously replicating state. Insertional mutants were generated 

by growing EK1002 at 28°C and shifting the temperature to 37°C so as to repress 

autonomous replication of the vector. Only cells in which the vector inserted into the 

chromosome could survive on the whey agar containing erythromycin (em). This process 

is depicted in figure 2. The surviving ete colonies were assayed for ropy eps expression. 

Of the 120 em' colonies that grew on the mutagenesis plates, three colonies named 

EK1038, EK1238, and EK1338, were identified that did not yield any rope formation 

when touched with a sterile loop. The mutational frequency in genes essential for ropy eps 

biosynthesis was 2.5% indicating that only a fraction of insertions disrupted ropy eps 

biosynthesis and gave the desired non-ropy phenotype. One mutant, EK1238, was selected 

for further characterization. 
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Figure 1. Ropy Eps Expression on Whey Agar by EK1002 

Figure 1. Whey agar plates containing em were incubated at 30°C for 48 hours. EmR 
colonies were touched with a sterile toothpick to test for ropy eps expression. 



Figure 2. pGh9:ISSJ Mediated Insertional Mutagenesis  
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Figure 2. Cells were grown to saturation in M17L containing 5 ug/ml em, diluted 100-fold into M17L without em and 
incubated 150 minutes at 28°C. The culture was shifted to 38°C for 150 minutes and plated on whey agar containing 
2 ug/ml em. Mutants were screened for loss of ropy eps expression by touching with a sterile toothpick and observation 
of ropes greater than 5 mm in length. 
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Localization of the Insertion 

Utilizing the unique characteristics of the pGh9:ISSJ transposon mutagenesis 

vector, a fragment of the interrupted gene can be isolated following a simple chromosomal 

isolation, restriction, and ligation procedure as detailed in figure 3. Chromosomal DNA 

from the ISS/ mutant, EK1238, was isolated, restricted with HindIll, ligated, and 

transformed into Escherichia coli TG1 cells. Twenty-seven emR transformants were 

recovered. The plasmid DNA, pEK1238H, of one transformant, EK1238H, was analyzed 

by a HindIII -EcoRJ restriction digest to verify presence of an insert and gauge the size of 

that insert. Using unique Hindlll and EcoRI restriction sites in pGh9:ISS/, two fragments 

can be resolved: 3.8 kb, corresponding to the pGh9 vector and 0.8 kb, corresponding to 

the ISS/ element (figure 2). Transformant plasmid DNA, pEK1238H, was restricted with 

HindlII and EcoRI giving fragments of 3.8 kb and 2.7 kb in size. The 3.8 kb fragment 

co-migrated with the 3.8 kb pGh9 vector fragment and the 2.7 kb fragment was 

hypothesized to be the 0.8 kb ISS/ element joined to approximately a 1.9 kb chromosomal 

insert. The restriction digest results of pEK1238H suggest that a fragment of the ISS/ 

interrupted gene (approximate size: 1.9 kb) was isolated from EK1238 chromosomal 

DNA restricted with HindlIf Southern blot analysis was used to localize the ISS/ 

interrupted gene and the data is shown in figure 4. A probe consisting of the 1.6 kb 

SpeI-HindIII fragment of pEK1238H insert DNA (figure 3) was constructed and used to 

probe chromosomal DNA isolated from the natural lactococcal ropy isolate, from 

EK1238, and from MG1363, a non-ropy, negative control. Chromosomal DNA from 

these three strains was restricted with EcoRV restriction endonuclease before probing. 

EcoRV does not restrict within either the pEK1238H insert or the pGh9:ISSJ vector. A 

prediction can be made that this probe will hybridize to a single EcoRV DNA fragment 

(illustrated as a band in a Southern blot) from the natural lactococcal ropy isolate and from 

EK1238 but will not hybridize to any of the EcoRV DNA fragments from the non-ropy 

MG1363 negative control. As illustrated in figure 4, a single band is detected in the natural 

lactococcal ropy isolate (lane 1) and in EK1238 (lane 2). In contrast, this probe does not 

hybridize to any DNA fragments from MG1363. The band in lane 2, EK1238, is 



Figure 3. Chromosomal Insert Isolation and Sequencing Using pGh9:ISSI 
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Figure 3. EK1238 chromosomal DNA was isolated and restricted with HindIII. Fragments were recircularized by ligation, 
transformed into E. coli TG1, and cells were plated on LB containing 100 ug/ml em at 28°C. Plasmid DNA was isolated and 
digested with Hind!!! and EcoRI to verify presence of an insert. 
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Figure 4. Southern Blot Analysis Demonstrating 
Chromosomal Insertion of pGh9:ISSJ 
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Figure 4. Chromosomal DNA was restricted using EcoRV and electrophoresed in 
1.0% agarose, transferred to nitrocellulose overnight and UV cross-linked. The blot 
was pre-hybridized for one hour and probed with the 1.6kb Spel- HindIll fragment of 
pEK1238H. The film was exposed for 5 minutes. Lane 1: Natural lactococcal ropy 
isolate; Lane 2: EK1238 (ISS/ insertional mutant); Lane 3: MG1363 (negative control). 
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approximately 4.6 kb larger than the band in lane 1, the natural lactococcal ropy isolate, 

indicative of pGh9:ISSJ insertion in the chromosome of EK1238. The Southern analysis 

results suggest a chromosomal location for the interrupted gene of interest as no 

contaminating plasmid DNA was observed in the chromosomal preparation when 

unrestricted chromosomal DNA was electrophoresed. 

Effects of Insertional Mutagenesis on Ropy Eps Biosynthesis in EK1238 

Mutants created using pGh9:ISSJ must be grown at 38°C or higher in order to 

maintain the vector as a chromosomal insert. The wild type natural lactococcal ropy 

isolate grows poorly at 38°C necessitating further characterization of the EK1238 mutant 

at 28°C so as to use the natural lactococcal ropy isolate as a control. Growth of the ISS/ 

generated mutant at 28°C results in renewed autonomous replication of the pGh9:ISS1 

vector and consequently excision from the chromosome generating a heterogeneous 

population of excisants dependent upon the excision event. After lowering the temperature 

and allowing the pGh9:ISSJ vector time to excise, shifting the temperature back to 38°C 

and plating on antibiotic free media at 38°C allows loss of the vector. After the excision 

event, 231 colonies of EK1238 were restreaked to whey agar and whey agar containing 5 

pg/m1 of em at 28°C to screen for em sensitive colonies indicating loss of the vector. After 

growth for 48 hours, 109 colonies of EK1238 were sensitive to em, giving an excision 

efficiency of 47%. Of the 109 em sensitive colonies, 64 colonies were restreaked to whey 

agar for isolation and a ropiness assay. After growth for 48 hours at 28°C, 77% of the 

excisants yielded long ropes indicating pGh9:ISS1 excised without taking adjacent 

chromosomal sequences. In contrast, 23% of the excisants did not yield long ropes 

indicating pGh9:ISSJ excised with adjacent chromosomal DNA. One of the non-ropy eps 

excision mutants, EK48X, and one of the ropy revertants, EK217X, were chosen for a 

Southern blot analysis and the data is shown in figure 5. In lanes 1 and 2, the natural 

lactococcal ropy isolate and EK1238 respectively, the bands observed in the previous 

Southern blot analysis (figure 4) are present. In lanes 3 and 5, the excision mutant EK48X 

and MG1363 respectively, no bands are evident. In lane 4, the ropy excision revertant 
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Figure 5. Southern Blot Analysis 
Demonstrating Excision of pGh9:ISSJ 
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Figure 5. Chromosomal DNA was restricted using EcoRV and electrophoresed in 
1.0% agarose, transferred to nitrocellulose overnight and UV cross-linked. The blot 
was pre-hybridized for one hour and probed with the 1.6kb SpeI-HindlII fragment of 
pEK1238H. The film was exposed for 45 minutes. Lane 1: Natural lactococcal ropy 
isolate; Lane 2: EK1238 (ISS/ insertional mutant); Lane 3: EK48X (non-ropy excisant); 
Lane 4: EK217X (ropy excisant); Lane 5: MG1363 (negative control). 
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EK217X, a band of approximately 3.0 kb is observed. These results suggest that excision 

of the pGh9:ISSJ mutational vector can have different effects upon the insertional locus. 

The literature suggests that an ISS/ element is maintained in the locus upon excision of 

the vector, thus a Southern blot analysis was performed to determine the fate of the ISS/ 

element. The blot analyzed in figure 5 was re-probed with 0.8 kb HindIII-EcoRI fragment 

of pGh9:ISSJ corresponding to the ISS/ element (figure 2) and the data is shown in figure 

6. In lane 1, the natural lactococcal ropy isolate, no bands appeared. In lanes 2, 3, and 4, 

consisting of chromosomal DNA from EK1238, EK48X, and EK217X respectively, 

several bands common to all lanes are present. These bands represent additional insertion 

sites of the ISS/ element. The unique bands of interest are the 7 kb band in lane 2, 

EK1238, and the 3 kb band in lane 4, EK217X. These bands correspond to the same 

bands observed in the previous Southern blot (figure 5) using the chromosomal fragment 

as a probe. In lane 3, the non-ropy EK48X excisant, a band can be seen of approximately 

3.2 kb in size. Finally in lane 5, MG1363, no band is observed. This data suggests that an 

ISS/ element native to the natural lactococcal ropy isolate or MG1363 is not present and 

that upon excision of the pGh9:ISSJ vector, the ISS/ element is maintained in the target 

DNA. 

A growth curve experiment to compare the generation time of the excision EK48X 

non-ropy mutant to that of the natural lactococcal ropy isolate was performed. The optical 

density at 600 nm (ODe®) versus time is displayed in figure 7. Generation timeswere 

determined to be 1 hr and 20 min. for the natural lactococcal ropy isolate and 1 hr 45 min. 

for EK48X. This represents an increase in generation time of 24% for EK48X over that of 

the natural lactococcal ropy isolate. Further characterization of the excision mutant 

EK48X and the ropy revertant EK217X for ropy eps expression in sterile 2% milk was 

carried out. The natural lactococcal ropy isolate coagulates and produces long ropes in 

sterile 2% milk after 16 hours of incubation at 30°C as depicted in figure 8. The non-ropy 

excision mutant EK48X coagulated the sterile 2% milk after 96 hours but failed to 

produce ropy eps. The additional time required for EK48X to coagulate the sterile 2% 

milk is supported by its increased generation time. EK271X, on the other hand, expressed 

ropy eps in sterile 2% milk after 48 hours of incubation. 
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Figure 6. Southern Blot Analysis Demonstrating Presence of ISS/ 
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Figure 6. Chromosomal DNA was restricted using EcoRV and electrophoresed in 
1.0% agarose, transferred to nitrocellulose overnight and UV cross-linked. The blot 
was pre-hybridized for one hour and probed with the 0.8kb Hind111-EcoRI fragment of 
pGh9:ISS1. The film was exposed for 5 minutes. Lane 1: Natural lactococcal ropy 
isolate; Lane 2: EK1238 (ISS/ insertional mutant); Lane 3: EK48X (non-ropy excisant); 
Lane 4: EK217X (ropy excisant); Lane 5: MG1363 (negative control). 
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Figure 7. Optical Density vs. Time for the Natural Lactococcal Ropy  
Isolate and the EK48X Excision Mutant  

Figure 7. Cultures were grown to saturation in M17L. Sixty mls of M17L were inoculated 
with 1.5 mls of culture and mixed well. An initial 0D600 reading was taken and readings 
were subsequently taken every 30 minutes. NLRI: Natural Lactococcal Ropy Isolate. 
EK48X: non-ropy excisant. 
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Figure 8. Ropy Eps Expression in Sterile 2% Milk by the Natural Lactococcal  
Ropy Isolate  

Figure 8. Commercial 2% milk was sterilized by steaming for 30 min. and 10 mis of milk 
were inoculated with 0.5 ml of an overnight culture. The milk was incubated for 18 hours 
at 30°C and visually examined for coagulation and ropy eps expression. Ropiness was 
indicated by inserting a sterile glass rod and pulling long ropes out of the milk. 
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ISS/ Interrupted Gene Sequence Analysis 

Primers to the pGh9:ISSJ vector (figure 3) were synthesized and the insert of 

pEK1238H was sequenced as detailed in the materials and methods section. Sequence 

data for pEK1238H revealed a 2006 by insert. The DNA insert sequence was scanned 

against Gen Bank for homologous DNA sequences. This search revealed potential matches 

to glycosyltransferase enzymes found in eps biosynthesis pathways in other bacteria. The 

DNA homology typically spanned regions of 100-274 base pairs with a 60-68% homology 

suggesting a conserved active domain important for sugar transfer activity. Translation of 

the insert DNA sequence of pEK1238H into its predicted open reading frames revealed 

two potential open reading frames, orfl, composed of 236 amino acids (aa), and orf2, 

composed of 338 amino acids. Both open reading frames are in the same direction but in 

different translational frames. Both of these amino acid sequences were scanned against 

SwissProt to find homologous sequences. This search revealed several matches to 

glycosyltransferase enzymes involved in eps biosynthesis pathways in other bacteria. Four 

regions of homology were found that contained between 4 and 8 homologous amino acids 

suggesting conserved active sites. Using the potential matches generated from the 

SwissProt comparison, multiple sequence alignments were performed to elucidate the 

percent identity over the entire orf and the results are presented in table 3. The predicted 

open reading frames show limited identity to putative glycosyltransferases essential for eps 

biosynthesis in Gram positive and negative organisms. It has been hypothesized that the 

gene products EpsF and EpsG of Lactococcus lactis ssp. cremoris, EpsI of Streptococcus 

thermophilus, WcaA of Escherichia coli, and AmsE of Erwinia amylovora are responsible 

for the transfer of specific sugar moieties late in the elongation stage of the eps 

heteropolymer (8, 55, 56, 63). The low overall percent identity suggests that a conserved 

active domain is what links these homologous sequences. The amino acid sequence 

identities suggest the open reading frames of the chromosomal insert DNA isolated from 

ISS/ insertional mutant EK1238 may encode a glycosyltransferase involved in sugar 

residue transfer during elongation of the ropy eps polymer. The chromosomal insert DNA 

sequence of pEK1238H was analyzed for potential transcriptional start sites and 
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termination sites and none were found. The sequence was also searched for ribosomal 

binding sites and none were found in a suitable position to be involved with the translation 

of the predicted orfs. 

Table 3. EK1238H Predicted Amino Acid Sequence Identities 

Predicted Organism/Gene Product % Putative Function Reference 
orf Identity 

orfl L. lactis ssp. cremorise EpsG 26 glycosyltransferase (63) 
S. thennophilusb EpsI 24 glycosyltransferase (56) 
E. canylovorae AmsE 21 glycosyltransferase (8) 
E. colic' WcaA 23 glycosyltransferase (55) 
B. subtilise GgaB* 26 spore coat (20) 

biosynthesis 
S. dysenteriaef RfpA 25 glycosyltransferase (23) 

orf2 L. lactis ssp. cremorise EpsF 29 glycosyltransferase (63) 
EpsG 30 glycosyltransferase (63) 

S. thermophilusb EpsI 27 glycosyltransferase (56) 
E. amylovorae AmsE 21 glycosyltransferase (8) 
E colic' WcaA 22 glycosyltransferase (55) 
B. subtilise GgaB* 25 spore coat (20) 

biosynthesis 
S. dysenteriaef RfpA 22 glycosyltransferase (23) 

Full bacterial species names and GenBank accession numbers: a. Lactococcus lactis ssp. 
cremoris (U93364) b. Streptococcus thermophilus (U40830) c. Erwinia amylovora 
(X77921) d. Escherichia coli (U38473) e. Bacillus subtilis (U13979) f. Shigella 
dysenteriae (S73325). 
* Identity in N-terminus part of protein. 
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DISCUSSION 

The goal of this project was to identify and isolate genes responsible for ropy 

exopolysaccharide (ropy eps) biosynthesis in a natural lactococcal ropy isolate. Bacterial 

exopolysaccharides are of interest in industry, particularly the food industry, for their 

ability to increase viscosity, decrease syneresis, and bestow a smooth texture upon 

fermented milk products. Increased consumer health awareness associated with LAB also 

encourages increased use of ropy eps produced by LAB as thickeners and stabilizers in 

foods and beverages. Many studies have elucidated the structures and compositions as 

well as localized the genes involved in eps biosynthesis to plasmids, but recently only two 

studies have focused on characterizing the specific enzymes necessary for eps expression. 

Localization of ISS/ Insertional Interruption 

Previous researchers have linked eps biosynthesis to large and small plasmids in 

mesophilic strains of Lactococcus (38, 63, 64, 65, 66) while chromosomally linked eps 

genes have only been identified in thermophilic organisms lacking plasmids (56). Using an 

unbiased approach of transposon mutagenesis with pGh9:ISSJ, three mutants unable to 

express ropy eps were isolated and one, EK1238, was chosen for further study. A 

Southern blot analysis potentially revealed a chromosomal location for the pGh9:ISS/ 

interrupted locus. A chromosomal position for genes essential for ropy eps biosynthesis in 

a mesophilic lactococcal organism has not previously been reported. Many strains of 

Lactococcus have been shown to carry a complement of IS elements that are potentially 

capable of inserting plasmids into the chromosome (44, 48), and the chromosomal location 

of the interrupted eps locus in this strain may be a manifestation of a chromosomally 

inserted plasmid. 



37 

ISS/ Interrupted Gene Sequence Analysis 

Translation of the DNA sequence generated from the chromosomal fragment 

isolated from the EK1238 ISS/ insertional mutant revealed two open reading frames. The 

amino acid sequences of these open reading frames showed limited identity to sugar 

transfer enzymes involved in eps biosynthesis from several bacterial species. Typical eps 

biosynthesis, as shown in figure 9, requires linking the first sugar residue to a 

lipid-phosphate carrier onto which other sugar residues are transferred resulting in the 

repeating structure of the eps heteropolymer (36, 22). Elongation of the eps 

heteropolymer requires specific glycosyltransferases to transfer the appropriate sugar 

residues to the growing eps chain in the proper sequence to retain the appropriate 

structure. Glycosyltransferases are enzymes catalyzing the formation of glycosidic bonds 

between activated nucleotide sugars (donor) and the growing polymer (substrate) (3, 42). 

The polymerization and export of bacterial eps are still under consideration but the most 

recent speculation in Gram negative bacteria involves transporting the repeating eps 

subunits via energy dependent transporters to the periplasmic space where they are 

polymerized and ultimately exported to the environment (54, 55). Common individual 

activated sugar precursors such as UDP-D-glucose and UDP-D-galactose are synthesized 

by enzymes involved in energy production or other pathways and may also used for eps 

biosynthesis (55). A ropy strain of Streptococcus thermophilus has been shown to utilize 

only the glucose moiety and not the galactose moiety of lactose. The galactose moiety is 

excreted back into the environment implying that all cellular demands for sugar residues 

are met by glucose including synthesis of an eps composed of galactose, glucose, and 

rhamnose (16). Unique activated precursor sugar residues that are needed for eps 

biosynthesis are probably synthesized by enzymes coded for by the eps gene cluster (55). 

The structure of most eps heteropolymers contains a backbone of one or two different 

sugar residues and branches composed of the same or different sugar residues, presumably 

requiring a different glycosyltransferase for each residue in each position (3, 46, 63). 

Lactococcus lactis ssp. cremoris NIZO B40 produces an eps with a backbone of one 

galactose residue and two glucose residues and a branch containing a rhamnose and a 
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Figure 9. General Model of Eps Biosynthesis 
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Figure 9. Steps of proposed model for biosynthesis of bacterial eps (21, 39). A: 
Galactosyltransferase catalyzes the transfer of activated galactose (UDP-Gal) to the lipid 
carrier. B, C, D: Glucosyltransferases catalyze the specific bond formation of the 
subsequent transfers of activated glucose residues (UDP-Glu) to the growing eps 
biopolymer. E: Energy dependent enzymes flip the eps biopolymer to the periplasmic 
space (47,48). F: Uncharacterized enzymes release the eps biopolymer from the lipid 
carrier and export the eps chain outside the cell. 
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galactose residue. Presumably five different glycosyltransferases would be needed to 

synthesize the eps and five glycosyltransferases were predicted in the eps operon (63). 

Similarly, Streptococcus thermophilus produces an eps with a backbone composed of two 

galactose residues and one glucose residue with a branch containing a galactose residue. 

Presumably, at least four glycosyltransferases would be required for eps synthesis and five 

were predicted in the eps operon (56). Glycosyltransferases must possess specificity to 

recognize the growing polymer, the appropriate substrate to be added, and be able to 

catalyze the correct bond formation at the appropriate site. This may explain the presence 

of five or more glycosyltransferases in several characterized eps operon (8, 55, 56, 63). 

Each glycosyltransferase catalyzes a different step possibly governed by substrate 

recognition (the growing eps chain) in order to ensure that the proper sequence of sugar 

residues and thus structure is constructed (3). This may lead to an inevitable amount of 

uniqueness in every glycosyltransferase due to the differing substrate recognition sites 

between enzymes and thus lead to low overall sequence identity among 

glycosyltransferases involved in eps biosynthesis. Greater localized identity will be present 

over short regions because independent of substrate recognition, the enzymes must retain 

similar mechanics to effect sugar residue transfer and formation of a glycosidic linkage. 

The gene product, ExoA, a glucosyltransferase from Rhizobium meliloti (46), was shown 

to complement an amsE mutant of Erwinia amylovora yet the two enzymes shared little 

identity illustrating that enzymes shown to have similar functions differ greatly in their 

amino acid sequence presumably due to substrate recognition (2, 8, 21). Typical amino 

acid sequence identities between glycosyltransferases reported in the literature range from 

a low of less than 20% to greater than 60% with the majority of percent identities ranging 

between 20-30% (21, 56, 63). The amino acid sequences of the two open reading frames 

of the chromosomal DNA insert isolated from the ISS/ insertional mutant EK1238 were 

found to show identity to enzymes important in the transfer of sugar residues to the 

growing eps chain but the overall identities were low. The low identities may also be due 

to the incomplete amino acid sequences of the predicted orfs. Limited overall identities 

between orfl, orf2, and the gene products from two LAB, EpsF and EpsG of Lactococcus 

lactis ssp. cremoris and EpsI of Streptococcus thermophilus, were observed. The gene 
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products EpsF and EpsG of Lactococcus lactis ssp. cremoris are important for the 

expression of eps by transferring sugar moieties to the growing eps heteropolymer (63). 

Similarly, the gene product, EpsI, of Streptococcus thermophilus is also a 

glycosyltransferase responsible for adding sugar residues to the growing eps chain (56). 

Multiple sequence alignments between these glycosyltransferases, orfl, and orf2 were 

performed and illustrated several conserved regions of 4, 5, 6, and 8 amino acid residues 

in length. These conserved regions may be important in glycosidic bond formation via the 

active domain and not in substrate recognition. The ISSI interrupted locus of the EK1238 

insertional mutant may be responsible for adding sugar residues to the growing eps 

heteropolymer and the inability to complete the eps heteropolymer leads to the observed 

non-ropy phenotype of the ISS/ insertional mutant EK1238. 

Previous eps genes have been shown to be transcribed into one large, single 

mRNA and transcriptional start sites within the eps coding region were lacking (8, 56, 63). 

This data indicates that the gene clusters coding for eps biosynthesis in these organisms 

are organized into operons, and the gene products are translated from one species of 

mRNA. The typical coding structure of the eps biosynthesis operon from the 5' end starts 

with putative regulatory genes followed by genes involved in preliminary sugar transfer 

and late sugar transfer, and ends with the genes involved in polymerization and export. 

The lack of potential transcriptional start sites and termination sites in the chromosomal 

DNA insert sequence of the ISS/ insertional mutant, EK1238, can be interpreted. The 

amino acid sequences show identity to glycosyltransferases typically involved in transfer of 

sugar residues later in eps heteropolymer elongation and would thus be predicted to be 

situated towards the middle of the gene cluster. Following the typical structure of eps 

operons, the transcription of orfl and orf2 can be predicted to be driven from a promoter 

upstream of the eps gene cluster and would thus not need any transcription sites. No 

typical ribosomal binding sites were located in appropriate relation to the orfs in order to 

be useful in translation. The amino acid sequence of the predicted orfs is incomplete due 

to the end of the DNA insert sequence. 
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Effect of ISSI Insertional Mutation on Ropy Eps Biosynthesis 

Characterization of EK48X, a non-ropy pGh9:ISS1 excisant, in sterile 2% milk 

demonstrated that ropy eps was not produced in milk even after 96 hours. As an indication 

of growth and acid production in the milk, EK48X produced enough acid to coagulate 

milk only after an extended amount of time. Conversely, EK217X, a ropy excisant, was 

able to produce ropy eps in sterile 2% milk after 48 hours. Recovery of two types of 

excisants, non-ropy and ropy, after insertional mutagenesis with pGh9:ISS1 and 

subsequent excision suggests that ISSI inserted in a gene essential for ropy eps 

biosynthesis. Southern blot analysis of the non-ropy EK48X excisant shows a total loss of 

the chromosomal sequence complementary to the probe, indicating excision of the vector 

and additional sequence flanking the insertion site. On the other hand, the Southern blot 

analysis of the ropy EK217X excisant shows sequence complementary to the 

chromosomal probe is still present but the fragment, visualized as a band in the Southern 

blot, has increased in size. These data suggests that upon excision of the pGh9 vector, 

different excision events may occur leading to a change in the size of the fragment and 

retention of the mutation or regeneration of the wild type phenotype. Southern blot 

analysis data using the ISSI sequence as the probe provides some clarification. Presence 

of a 3.2 kb band in the lane corresponding to EK48X suggests that upon excision, an ISSI 

element was maintained yet due to the loss of the flanking DNA sequence, one or more 

EcoRV restriction sites were lost leading to a larger fragment size. In the case of EK217X, 

the ISSI probe sequence hybridized to the same band as the chromosomal probe, 

suggesting that an ISSI element has been maintained in the insertion site yet is not 

disrupting ropy eps expression. These Southern blot analyses present further evidence that 

pGh9:ISS1 inserted into the genes essential for ropy eps expression by illustrating the 

retention of the chromosomal fragment sequence and ropy eps expression in the ropy 

revertant even though an ISSI element is still present in the insertion site. Conversely, the 

chromosomal fragment sequence in the non-ropy excision mutant is absent and with 

excision of the pGh9 vector the fragment can be hypothesized to be smaller yet appears 

larger indicating a loss of EcoRV restriction sites and subsequently yields larger fragment. 
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The production of eps is an energy intensive process, potentially using up twice as 

much energy as cellular growth, and production of eps has been shown to be inversely 

related to cellular growth rates (29). Thus growth of an organism actively expressing a 

ropy eps directs a large proportion of available energy to making eps and would thus 

experience a slower growth rate. A hypothesis may be put forth that a non-ropy eps 

producing strain, such as a non-ropy laboratory strain or mutant, would then be able to 

grow faster as the drain on cellular energy is no longer present and cellular ATP can be 

directed towards growth, DNA replication, and division giving the non-ropy excisant 

mutant EK48X the potential to grow and divide at an increased rate over the ropy eps 

expressing natural lactococcal ropy isolate. The growth curve data shows that EK48X 

grows slower than the natural lactococcal ropy isolate. What may account for this 

conflicting evidence? The longer generation time for the non-ropy excisant EK48X may 

arise through a number of different mechanisms. Flanking genes not involved in ropy eps 

biosynthesis may lie upstream or downstream of the insertion locus and may be impacted 

by the insertion and subsequent excision. Also the Southern blots showed evidence of 

insertions occurring at other loci in the mutants. The genes flanking the excised 

chromosomal fragment and the other loci effected by the insertion and excision events may 

have detrimental effects to the health of the cell and be responsible for the longer 

generation time. A longer generation time caused by these other loci impacted by ISS/ 

insertion may also be responsible for the extended time required for EK217X, the ropy 

revertant, to produce ropy eps in 2% milk. 

Interestingly, the natural lactococcal ropy isolate grows much slower than that 

which has been cited for the non-ropy laboratory lactococcal strain MG1363. 

Exopolysaccharide production provides a large drain of cellular energy levels and as such 

must provide a selectable advantage over other bacteria in order to justify the large 

expenditure of energy and the resulting slow down in generation time. The role of eps in 

lactococci is not clear. Protection from bacteriophage has been suggested but is not a 

general characteristic. Lactococcal eps provides protection from certain phage attack yet 

acts as a receptor for others. Lactococci are now primarily grown in man-maintained 

environments where carbon and nutrient sources are not limited until late in the growth 
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stage, if the culture is allowed to grow for that long. It seems unlikely that eps expression 

is a starvation survival strategy as the cultures lactococci are routinely grown in do not 

provide the starvation stresses and thus the stimulus for eps expression of a natural 

environment. On the other hand, lactococcal eps may represent a survival strategy in the 

form of an adhesive. The bacterium receives signals indicating a favorable environment 

and generates a response in order to maintain its position. In continuous batch cultures 

grown in chemostats, some lactococci are able to produce eps in order to stay anchored in 

the growth chamber and thus avoid being removed from the rich environment. In natural 

environments such as the soil, water, or plants, the functions of other bacterial eps are 

beginning to be elucidated. Soil organisms utilize eps primarily as an adhesive. The 

adhesive anchors the bacteria to a matrix such as a soil particle allowing the bacterium to 

be in close contact with a source of nutrients and the eps may even trap smaller nutrient 

containing particles (11, 25). Similarly, bacteria present in the water also utilize eps as an 

adhesive for maintaining their position near a source of nutrients and nutrient trapping 

(45). In one case, a species of Pseudomonas, uses eps as a means of detachment from the 

surface. By constitively producing one eps the bacteria can attach to surfaces but when 

starvation occurs another eps is produced that interferes with the adhesive qualities of the 

constitively produced eps and the bacterium is released. This provides the bacterium with 

a survival strategy effected by eps expression and allows the bacterium to detach from the 

now unfavorable surface and find a new surface for colonization (69). Plant-bacterium 

interactions involving eps are many but some of the best studied involve Rhizobium, 

Agrobacterium, and Erwinia species. Rhizobium infects the roots of leguminous plants 

forming nodules allowing the bacterium to fix nitrogen that is used by the plant in 

exchange for carbohydrates produced by the plant. An eps produced by Rhizobium has 

been implicated as necessary for proper infection and establishment of the symbiotic 

relationship (46). Agrobacterium and Erwinia, on the other hand are plant pathogens. 

Agrobacterium causes tumor growth while Erwinia causes wilting. Both of these 

interactions require the production of a specific exopolysaccharide (8, 28). 

One of the natural habitats of lactococci is postulated to be plants, and eps expression may 

represent a past survival strategy for lactococci that has been maintained. The eps 
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expressed by ancestral species of lactococcus may have functioned as an adhesive allowing 

the bacteria to maintain a favorable position in a relatively rich environment associated 

with the host plant. 

The mechanisms by which bacterial eps allow cells to attach to solid surfaces 

continues to be explored but the mechanisms of gelling are becoming better known. In the 

best studied case of xanthan gum, strands of the polymer are able to adopt helical 

structures in solution. These helical structures are stabilized by non-covalent interactions 

and the short, one residue, side-chains may provide intra-helical stabilization (35, 41). 

Highly branched polymers such as guar gum, do not form as stable gel solutions due to the 

lack of stable interactions between strands of the polymer. The branches inhibit 

non-covalent forces from further stabilizing the gel structure (41). Preliminary 

compositional data of the ropy eps expressed by the natural lactococcal ropy isolate shows 

a heteropolymer composed of 54% glucose and 46% galactose with glucose at the branch 

points and galactose at the end points representing a novel composition for a LAB eps 

(unpublished data, E. P. Knoshaug, J. A. Ahlgren, J. E. Trempy). Preliminary data is also 

available for the mucoid eps produced by the natural lactococcal ropy isolate. This 

polymer is composed of 58% galactose, 29% glucose but also contains 13% mannose eps 

(unpublished data, E. P. Knoshaug, J. A. Ahlgren, J. E. Trempy). From this data one can 

postulate that the ropy eps may contain short branches that are able to non-covalently 

stabilize intra-molecular interactions among the helical strands of the ropy polymer leading 

to the rhealogical characteristic of long ropes. Conversely the mucoid polymer may have 

branches such that intra-strand interactions are prevented. Another prediction may be that 

the two polymers must act in concert to provide the strongly ropy characteristic to 

fermented milk. Studies have shown that mixtures of xanthan and guar can become even 

more stable than xanthan or guar alone. This is due to the additional intra-molecular 

interactions between additional branches of the guar polymer and xanthan. The ropy and 

mucoid polymers may act similarly when expressed in fermented milk. The branches that 

inhibited strong stabilization of the mucoid polymer may interact with the ropy polymer 

backbone and provide further stabilization to the milk giving it the characteristic ropy 

texture. 
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Summary 

Using insertional mutagenesis, a gene important in ropy eps biosynthesis has been 

identified in a natural lactococcal ropy isolate. Failure of the insertional mutant to express 

ropy eps on whey agar and in milk strongly suggests the ISS/ generated mutation lies 

within a gene essential for ropy eps expression. Additional support is lent by the excision 

process where upon excision of pGh9:ISSJ, two phenotypes were observed, non-ropy and 

ropy. A fragment of chromosomal DNA was sequenced and this DNA sequence was 

translated into its predicted amino acid sequence. Two open reading frames demonstrated 

identity to glycosyltransferase enzymes involved in eps biosynthesis in several different 

species. The data generated in this project strongly suggests that an insertional mutation 

was created in a gene essential for ropy eps production and further molecular 

characterization localized this potential ropy eps gene to the chromosome, which is unique 

in a mesophilic lactococcal strain. The characterization of the genes responsible for ropy 

exopolysaccharide in this natural lactococcal isolate will provide another bacterial eps 

system that may have commercial utility. 
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