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SOLUTIONS OF THE TWO-DIMENSIONAL,
SUBSONIC FLOW ABOUT AN AIRFOIL

I. INTRODUCTION

A, Qeneral.

For many years the theory of aerodynamics has been able to
predict useful results by assuming, among other things, that air is
incompressible, Although this assumption was obviously wrong,
the resulting theory allowed accurate calculations of pressure
distributions and 1ift forces on airfoil sections, At air speeds of
less than 300 miles per houwr, this basic assumption is very nearly
true, The development of high-speed airplanes in the last ten
years, however, has necessitated extensive research into the
effects of the compressibility of air upon the flows about
aerodynamic shapes used in aireraft for 1lift, propulsion, and
control. These effects are quite pronounced as the velocity of the
free stream about the shape approaches the velocity of sound, The
theoretical treatment of the flow then is much more difficult, and
even at the present time, no success has been attained comparable to
that of the theory of incompressible flow. The results of these
difficulties have meant large expenditures for high-speed wind
tunnel construction and testing, and elaborate and expensive flight
tests, The need for good analytical methods that can be applied
to practical aerodynamic shapes is acute.



At the present time, the majority of our airplanes are
flying at speeds ranging from 1/2 U, to U, or at subsonic speeds.
This subsoniec range of speeds is not only important from the present
practical standpoint, but it also represents a difficult point in

the theory, The basic problem is to determine the pressure or
velocity distribution over an airfoil of arbitrary shape, taking
into account the compressibility of the air. The condition of
two-dimensional. flow is equivalent to considering a wing section of
infinite span in a flow which is the same for every plane
perpendicular to the wing. This, of course, does not accurately
represent actual conditions, but it does allow consideration of the
lift forces on the airfoil., Two-dimensional subsonic flow theory
does not allow consideration of drag forces.

In the past five years the aerodynamicist who has been
faced with this problem of calculating the pressure distribution
over an airfoil, has encountered a wealth of theoretical work on
the subjecte Many have been appalled at the large amount of
mathematics employed in the discussions, and the obvious lack of
practical methods which could be applied in engineering work.
Briefly, the theoretical difficulties stem from the faect that the
differential equations deseribing the flow are non-linear. As yet
a general method for the treatment of non-linear partial differ-
ential equations does not exist. However, tw methods are generally

used to find solutions to these equations of motion:



l. To approximate the exact non-linear equations
by linear differential egquations.

2. To try to find a transformation of variables
that transforms the exact non-linear equations

into exact linear equations,

B, Object of Investigation.

The object of this paper is to determine the pressure
distribution around a given airfoil in two-dimensional, subsoniec
flow by available methods, and to attempt to evaluate these
methods by correlating their results with experimental data that has
been published on the subject.e It is hoped that the investigation
will provide some ideas for future research in this important
problent.

II. AIRFOIL SELECTION

The first step in the problem is the selection of the
airfoil. For the purposes of the investigation, an airfoil is
needed with extensive compressible and incompressible experimental
data available. In order to simplify the work as much as possible,
it would also be desirable to have an airfoil with theoretical,
incompressible calculations either completed or in such a form
that could be easily calculated for the desired conditions.

Fortunately, the National Advisory Committee for Aeronautics'
4412 airfoil (5, p.320) satisfies these conditions. Very complete
experimental work has been done with this airfoil at high speeds in



an attempt to investigate the effects of compressibility. Since,
in the theory developed later, compressible flows are related to
the corresponding incompressible flows, it is important to have
reliable calculations for the incompressible flow. In a recent
method of caleulating pressure distributions (1, p.21),

theoretical data are presented for the NACA 4412 airfoil, and can
be used to calculate the incompressible flow easily. !’rﬁn other
considerations, however, the NACA 4412 airfoil is not really a
"modern” airfoil, in that it does not have low drag characteristies.
It will probably not appear on any future airplanes, Physically
speaking, it has a maximum thickness of 12 per cent (of the chord),
which occurs at 40 per cent of the chord behind the leading edge.
Its thickness of 12 per cent makes it a relatively thin airfoil,
which is a necessity for high-speed oons:ldaratdona. Because of

the favorable factors mentioned, the NACA 4412 airfoil was chosen
for the investigation, Its drag characteristics will be overlooked
since drag is not being considered in the investigation. It is
believed that the undesirable characteristics of the airfoil will
in no way alter the usefulness of the investigation., The airfoil
and its coordinates appear in Figurs 1,
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III. THE EQUATIONS OF FLOW

A, Basic Assumptions.

In order to derive the equations that describe the flow of
a compressible fluid in two dimensions, it is first necessary to
state the basic assumptions upon which the derivation will depend.
It will be assumed that the following exists:
1, Steady flow (independent of time)
2, Reversible adiabatic flow (frictionless and is-
entropic)
3. A perfect, compressible gas or fluid that makes
up the flow
4e An irrotational flow (or potential flow)

B, Eguation of Continuity.

The equation of continuity expresses the fact that the mass
flow in the fluid is a constant. In other words, the amount of
fluid entering a small element is equal to the amount of fluid
leaving that element in unit time, Figure 2 shows a small element
in the flow,

The mass of fluid entering the element per unit time is
Cu ay +Cv ax, At the faces (x + Ax) and(y + ay), the change
in Cu may be expressed by an expansion in Taylor's series. Thus,
equating the amount of fluid entering and the amount leaving, we
have,
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Simplifying the above expression leads to the equation,

2 :
B 1 L

ax =
20y ey (ay)ax &
hy A X b Sadee + o 00 8| = oo
Y > !

Now, dividing by (-Axny), and taking the limit as ax and Ay
approach zero, gives the result,

Cu . oCy

This is the equation of continuity. Because the fluid is compress-
ible, € is a function of x and y and must remain as part of the
product Cu or € v, unless the form for the differentiation of a
product is used.

C. The Equation of Notion.

The equations of motion represent Newton's law, This law
states that the sum of the forces acting on any element in a steady
flow is equal to the product of the mass and the acceleration. In
Figure 3 is shown a small element in the flow.
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Figure 3.

Small Element Showing Pressures Acting.



The pressure on the face x + ax is expanded in a Taylor's
series. Equating the sum of the forces and the product of the
mass and acceleration in the x direction, we have,

2 2
3 Y] 3 (ax)”
pay E-rabx-l-axz Y +...]A7= Cayax (g":).

By simplifying the above expression and expressing (g%) in partial
derivatives, we obtain,
2 2
28 2p (ax)"ay sudx  sudy
-I;tany-l-az 31 teeoe ]'“’“xl;:dt"aydt o
But, by definition, (&) =u, and (§¥) = v, so,

2 2
_ e ap (ax)ay au 2u
Exﬂxﬂ.,"‘axz él +¢.¢]' cq‘an'l"ay .

Now, dividing by (ax, ay), and taking the limit as ax and ay

approach zero, we obtain,

R su 1'%
'ax”cE‘ax""ay:l‘

su  _gu__1 2
Baivis %a.‘ g

The same procedure may be followed in the y direction, with the
results,
v - Gy 3R
u ™ +v oy = 3y o _ (3)
Equations (2) and (3) express Newton's law for a compressible fluid
in a steady flow. ~,



D, Summary.

The equation of continuity and the equations of motion, that
have just been derived, form the basis for the equations of flow,
In order to obtain a more practical form, consider the second
assumption in part A, that is, that the flow is reversible
adiabatic. For this type of process, the following equation holds
true,

p=ke’, (4)
Equation (4) will be used to eliminate € from the equation of
continuity, Taking the logarithm of each side of equation (4)
and differentiating, say, with respect to y, gives the result,

lop ¥ of
€y y

But it is shown in aerodynamics (6, pe.2l) that = T& « Thus,
this substituted into the above equation gives,

3p _ .2 €

=% 3" (5)
Similarly,

R = ;;f ’ (6)

If the rule for the differentiation of a product is applied to
equation (1), the following results,

C’g—}-&u-gxs-ﬁtg-vvigno. (7
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In order ;o apply equations (5) and (6) to equation (7), multiply
(7) by (¥

=en+ug-u+.=-t :g-a:ﬁ. (8)
Now substitute (5) and (6) into (8). This gives,
AW, BW L AW g8, (9)

The second and fourth terms above are seen to be the same as the
right hand sides of equations (2) and (3) except for sign and the
velocity factors u and v. Substituting equations (2) and (3) into
equation (9) results in,

23 2 29
u-u g-x“ uv%-ﬁa é-wg-'agﬂ’-
Or,
(a2- uz)%:“-l- (.2-3)§-w (%;+§§) = 0. (10)

Equation (10) is the combination of the equations of motion, the
continuity equation, and the assumption of reversible adiabatic
flow, If the flow is irrotational, the velocity components may be

given in terms of a velocity potential, ¢ , as follows (10, p.94),
u= —t and v = g'; (11)
The equations (11), when substituted into (10), give,

|:-t—*) = [ -“) ’, (—*)(—')[L—f-] .(12)
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Equation (12) represents the end result of the equations of
flow and is the equation that must be solved for the compressible,
reversible adiabatic, irrotational, steady flow of a perfect fluid.
The problem is then to find a solution of the non-linear equation
(12) to fit arbitrary boundary conditions. Inability to obtain a
general solution to this equation is responsible for most of the
problems in the present theory of compressible aerodynamics at
subsonic speeds. At the present time there are two methods of
solution that are of practical importance to the engineer; the
Prandtl-(lauert Approximation, and the Karman-Tsien Approximation.

These will be discussed in the next section.
IV. APPROXIMATE METHODS OF SOLUTION

As mentioned in the introduction, the approximate methods of
solution are based on two methods. The first of these methods is
to linearisze the equations of motion by some approximation, and
the second method is to find some transformation that will reduce
the non-linear equations to linear equations without the use of
any approximation. In this investigation, an application of each
method will be covered.

A. The Prandtl-Glauert Method.

One of the first and best known methods for calculating the
compressibility effects for an airfoil was due to Prandtl and
Glauert (4, pe235). This method is of the first type; that is, it
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makes use of an approximation which linearizes the equations of
motion. This approximation is generally referred to as the small
perturbation method, The reason for this will become apparent. In
order to develop this method, it will be convenient to rewrite
equation (12) by dividing through by a°, and expressing it in the
following form:

a-H 0.0 amie , g
a® x & o | &Y

It will be assumed that our airfoil under consideration is
thin and that the airstream coming from infinity at the veloecity,
U, is increased over the airfoil so that the x component is U + u',
where u' is 2 small perturbation velocity., In the free stream at
infinity, v = 0, while around the airfoil v = v, It will now be
assumed that,

2
1. 3;-2-,?2 are negligible compared to 1.

2. .(L"_ll(ﬁ).(ﬂ is negligibly small.
v

3 3%'—,!:42& are negligible compared to 1.

The importance of the second assumption will be seen
presently, for, if Bernoulli‘s equation for a compressible,
reversible, adiabatic flow is written, we have,

a4 (-L;—l‘)w2 = a.z. + (r—;]‘)'f, (14)
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But, w2 = u® + v2 = (U + u')%+ v*, and w2 = U2, If this is
substituted into equation (14), and the equation is transposed, the
following results,

@aads (EH [ - | as)

Dividing through by 12 gives the expression,

2 2
a 311-7—-1[- LR L ilo (16)
? 2

2 P(-ztnt= 5'2= V)
o145 ;2"'2]. (17)

By applying the first assumption made, it is found that equation
(17) reduces to,

!;'ﬂl- LA . (18)
8.

The reason for the second assumption is now apparent, for
2

because of it, equation (18) reduces to ‘-2- =1, From this, it is
o

now evident that,

2
o ¥ g

Approximately (29)

= :
. :5-(1 _'_3%_)‘2.

Dol

2.
.2
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The use of assumption (3) in the second equation of (19) reduces it
to,

2
Le+3) PR (20)
a

Also, !; = & from equation (19). But this is Mglisibiy small

N

compared to one by assumption (3) and can be neglected. The term

(nz)( ) is equal to,
2
2(1!_)(32‘ aﬁla & aﬁuzﬂ'_"g;%. (21)

Since u' and v are of approximately the same magnitude, the terms on
the right hand side of equation (21) are negligible under
assumptions (1) and (3).

If the three results of the assumptions above are applied
to the fundamental equation (13), the following linear equation
results,

@ ) £ = ”, (22)

Equation (22) is the basic linearized equation of flow, In order
to solve this equation, Glauert and Prandtl introduced a new set of

variables., Thus, let

V' =y

x! 'ﬂ-e-i? .

(23)


http:resul.ta
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Then, forming the new derivatives,

348 28 QB 4 e Ak
ox  ax'

dx L(——-‘z ax'

Po_ 2% a1 2%
dx

azz ! l - ll2 ax'z
(24)
3 _3% & 3%
ay ' dy ' °
Y
a2y gy 2%
agt oW W
Substituting equation (24) into equation (22) gives,
2 2
—‘--;— +22=0. (25)
ax! ay!

This is Laplace's equation and represents the equation for an
incompressible flow, If the solution to this equation is found at
(x4, yi) in the incompressible flow, the value of ¢ will be, say,

¢1. Then at the point (x,, ¥,), defined by equation (23), the
velocity potential will still be ¢1. Thus the effect of the
compressibility may be thought of as acting in either of two ways.
For a given flow, the compressibility has the effect of decreasing
the chord of the airfoil in the incompressible flow by the factor,
V1= . Or, if the compressible and incompressible flows are

being compared about the same airfoil, the compressibility has the
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effect of increasing the pressure coefficient of the incompressible
flow by the factor — + Thus,

Vi

C
6 =——d—, (26)

P

B Jyie
However, the 1lift coefficient may be expressed in terms of the
pressure coefficient (7, p.140).

Cc
¢ %x(cp-c ) dx
0 =l (0 -¢ ) txw—220 i . @
Y
" G [¢] p"’ pll v‘l-l2
Or,
Gy
G =—2—. (28)
B /1.

This is the final result of the Prandtl-(lauert approximation.
Due to the assumptions made, it is obvim;a that tho region of
accuracy of equation (28) is limited to the cases of low Mach
numbers, small angles of attack, and thin airfoils.

The Karman-Tsien approximation is an application of the so-
called hodograph method, which utilizes the fundamental idea of
converting the non-linear partial differential equations of flow
into linear equations of flow by a transformation of coordinates.
Basically, this transformation of coordinates amounts to
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desoribing the flow in a system in which the velocities, u and v
become the independent variables in place of x and y. The fact
that the non-linear equations of flow are transformed into linear
equations might at first appear to be the answer to all the
problems in compressible flow. This, however, is not the case,
for the hodograph has one distinet drawback. This is in the matter
of boundary conditions. The boundary conditions for the problem
are specified in terms of the geometric shape of the airfoil, and
it is generally difficult to find a solution in the hodograph plane
that will satisfy arbitrary boundary conditions in the physical
plane, In order to get a better picture of the situation, consider
Figure 4, which shows a comparison of the physical and hodograph
planes,

The streamline a-b-c-d-e along the upper surface of the
airfoil in the physical plane is represented by the streamline
a'-b'-g'~d'=e' in the hodograph plane, The points b and d are
stagnation points. Thus, it is seen that the flow about the
airfoil in the physical plane may be represented in the hodograph
plane.

The method of the hodograph was first developed by
Molenbreck in 1898 (6, p.163), and by Chaplygin in 1902 (2, p.4).
This work went practically umnoticed until the early nineteen-
thirties, and Chaplygin's paper was not translated until 1944.
Since the complete derivation of the hodograph transformation and
the Karman-Tsien approximation is extremely long and difficult,
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only the fundamental principles of the method will be presented
here. The only two complete derivations of the hodograph method
and the Karman-Tsien approximation as applied to compressible
aercdynamics, that are known by the author to be available at the
present time, are the original paper by Theodore von Karman

(12, p.337), and a recent text on aerodynamics (6, p.163). For a
detailed account of the procedure, either of these references is
good.

Basically, the procedure has six steps, The object of
this section will be to present an outline of the procedure and
the basic equations that result from it.

The first step is the derivation of the equations of flow
in the physical plane in terms of the stream function, W , and the
velocity potential, & , with w and © as the dependent variables.
This is done with the same basic assumptions as in Part III of
this paper. The results of this are (6, p.169),

e a-®) o

e )
'g;-'é‘s%-OQ

(29)

The second step in the process is to transform the equations
(29) into the hodograph plane. In (29), @ = £($,¥), and
w=f(0,¥). In order to effect the hodograph transformation,
equations must be found that express ¢ = f(w,@ ) andy = f(w,@ ).
This is done by writing the total differentials for &, ¥, and then



solving for dw and d® by determinants, with the results,

g;wg-sq-(l-n’)%%no

+]

(30)
v gf - -eg' %% = 0.
o
Equation (30) represents the equation of flow in the hodograph
plane in the polar coordinates, w and © , The above equations
are linear since the coefficients of the derivatives are functions
of the independent variables only,

If incompressible flow in the hodograph plane is considered,

-rg-zlmdequntions (30) will reduce to the Cauchy-Reimann

)
differential equations if\ = log W and © are used as independent

variables. Similarly, for compressible flow, if a variable w is
given as dw =/ 1 - e E', equations (30) reduce to the symmetrical

form,

3 ¢ 3
R=-2V1-4%

€o /
%‘+% I-f%'%o

It is seen from the above equations that if the quantity

(31)

%-1/1 - I could be put equal to unity, equations (31) would
reduce to the Cauchy-Reimann differential equations. This is an
important point in the procedure. From the isentropie relation of
flow (6, p.174), we have,
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-f\/—uz-l+( ) \/1_-:2 (32)

Now, if ¥ had the value of ¥ = - 1, equation (32) would be equal
to unity, the desired result. Actually, no gas exists with a
ratio of specific heats equal to - 1, but Chaplygin considered a
¥ = - 1 as an approximation to the isentropic relation for the
gas. Chaplygin used the line tangent to the p = K€' curve at
the point Pgy? €y which represented stagnation conditions. It is
interesting to note that incompressible flow has the relation,
('o =K, The Karman-Tsien approximation uses the tangent to the
curve at p_, € , or at free stream conditions. This covers
a wider range of applicability. Figure 5 illustrates these
approximations.

To represent this tangent at p_ , € , Karman and Tsien

use the form,
p-p,,=p_§af,(é-%). (33)

Let us now consider the effects of the approximation. The
compressible Bernoulli equation with ¥ = « 1 becomes,

et -a%. (34)
The hodograph equations (31) become,
$--3
(35)

£
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Figure 5,
Approximations of Chaplygin and Karman-Tsien (12, pe 345)e
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The corresponding incompressible hodograph equations follow from
(30) with -% = 1, and will reduce to the Cauchy-Reimann differential
equations with . = log W, Therefore, the relationship between
the incompressible velocity, W, and the compressible veloecity, w,
comes from the ﬁlation of . and w such that both will satisfy
the Cauchy-Reimann equations if,

W=vr-F8, (36)

Equation (36) is integrated with the help of equation (34) and the
following results between incompressible and compressible
velocities are obtained:

2
La W
o G
4al- W

Also, from equation (34) and Chaplygin's approximation, it is

shown that, i
e 4at+ W
#=—4—. (38)
482~ W
o

Equations (37) and (38) give the complete set of relations between
an incompressible and a compressible flow. However, the problem
is not completely finished for it must be shown that the
incompressible and compressible flow as described by equations (37)
and (38) apply to the same boundary. A detailed analysis of this
question (6, p.179) reveals that there is a slight distortion in
profile which is dependent upon the shape of the boundary and on
the factor,
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A= ° (39)

otullm

A is seen to become greater with increased Mach number, but even
at speeds close to Mach = 1, the distortion factor is small, In
most cases it is completely neglected.
In order to apply equations (37) and (38), we have, from
the definition of pressure coefficient, and equation (33),
2

PR o C.
Also, the Bermoulli equation for incompressible flow gives,
W
C =1=-=%5. u)
Py ? :

By use of equations (37), (38), and the fact that,

e €, 45T u + W |:1+] 1+x)(

==, 42)
{ i A 4a2s u" -0 (
the result is obtained,
(1+4) (‘)
¢, = l, -3 —L | . (43)
» (1-3) (-)
This reduces to the final result,
c
P
C = 1 ) (44)



It is important to remember that this equation is based on
two assumptions. The first of these was the approximation of the
isentrope by a straight line tangent at the point, p , € « The
second assumption consisted of neglecting the change in boundary
conditions in the compressible physical plane as compared with the
incompressible physical plane. There is some reason to believe
that the errors caused by these assumptions tend to balance each
other out, since attempts to improve upon only one of them have
actually resulted in larger errors (6, p.186).

C. Swmmary.

Two expressions have now been derived that show the
relationship between the pressure coefficient in a compressible
flow and the pressure coefficient in an incompressible flow,
These are not the only solutions ?o the problem. At the present
time there are other methods, An examination of these, howm,l
reveals that the two foregoing approximate methods are the only
ones of any engineering importance in regard to determining the
pressure distribution over the airfoil. Most of the more .
complicated solutions reduce to the Prandtl-Glauert form for the
first approximation, and become 80 complicated and tedious for the
higher approximations that they, as yet, have not been completed
for any airfoil shape. For this reason the Prandtl-Glauert and
Karman-Tsien methods were chosen for this investigation.
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It is interesting to note that the Karman-Tsien relationship
(equation 44) will reduce to the Prandtl-Glauert formula (equation

26) for small values of cp or M, The difference in the two
i

relations will occur when Gp has a negative value and the
i

denominator of equation (44) will be smaller than the denominator
of equation (26), Thus, the Karman-Tsien formula will prediect
higher nekatiw pressure coefficients than will the Prandtl-
Glauert formula, This will become more apparent in the following

sections.

V. PROCEDURE FOR CALCULATIONS

A, General.

Most methods of solution of subsonic, compressible
aerodynamics problems are based on a correction of the
incompressible solution, which can be determined. This
investigation was carried out with the idea of calculating an
analytic solution to the problem without the use of any
experimental data. It is obvious, however, that the final
compressible results can agree no better with experimental data
than the theoretical incompressible calculations agree with
incompressible experimental data, Therefore, in this section, the
method in which the calculations were carried out will be covered,
along with a brief coverage of the incompressible solution and the
method that was used to get comparable results. It should be

noted at this point that all calculations were carried out with a



slide rule. Because of this, the accuracy is somewhat limited,
but is sufficient to show the desired results. Three significant
figures are carried throughout the calculations.

B. The Incompressible Solution.

The method used in this investigation for detemining the
incompressible pressure distribution about the NACA 4412 airfoil
is one of the most recent and most accurate methods available,

The original paper on this method contains extensive data for the
NACA 4412 airfoil, which reduces the calculations to a
considerable degree. Basically, this method is developed on the
following theory (1, p.l). The veloecity distribution over an
airfoil may be considered to consist of two effects. These effects
are due to the camber and the base profile of the airfoil. The
base profile of the airfoil is defined as the profile of the
airfoil if the camber were removed and the resulting symmetrical
airfoil set at zero angle of attack.

First, let us consider the effect of camber. The velocity
distribution of the camber is dependent upon the shape of the mean
line and its angle of attack. The mean camber is considered to be
an infinitesimally thin line, and the wvelocity distribution is
calculated on this camber-line by replacing it with a vortex system.
The result of this is an expression of the difference in pressure
coefficients, P, between the upper and lower surfaces in a Fourier
series. The series has two types of terms. The first type is
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independent of the shape of airfoil and dependent upon the angle
of attack. The second type is solely dependent of the shape of the
camber line. Bach of these is then corrected for the effect of
thickneumdtharuultial’b, the difference in upper and lower
pressure coefficients due to the basic lift. DNext, the 01 value
for P (denoted by Olb) is determined and the additional P due to

angle of attack corresponding to a given cg is determined by
correcting the P, (already corrected for thickness) by the
expression,

P
P =-2( -¢, ) (45)

where Gl. is the coefficient of 1ift due to P.. E!';" is calculated
b a
by first determining —3-* for infinitesmal thickness (denoted by
o la
0 in front of P and C!.) and oc.(: 1. Then this value of P, is
corrected to the finite thickness and the Cy is determined from
2

this corrected P,. Finally, the P due to the sum of the basic
camber line and the additional 1ift is the total camber effect, or,
a2
a
The second effect on the airfoil is that of the base profile.
The velocity distribution contributed by this is found by adding
the known velocity distribution over some reference base profile
having the same leading edge radius to the change in velocity

distribution due to a change in shape from the reference to the
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given base profile, This velocity distribution is non-dimensionally
w

expressed as -'% .

Knowing the chordwise P distribution due to the camber line,
and the chordwise velocity distribution due to the base profile,
the upper and lower surface velocity distributions may be found by
the superposition method (1, p.10) which gives,

w w
i QO -
il fed

c:lh"lwu

(47)

b Tt |
C R A

b pers

Formulas (45), (46), and (47) are the ones that were used to

carry out the incompressible calculations, Data for the NACA 4412
P

airfoil in the form of Pb’ EL
|

a

above calculations are easily carried out. The incompressible

ol <
and ~; are given (1, p.23) and the

pressure coefficient may be found from the veloeity distribution,
for it may be shown using Bernoulli's equation for incompressible
flow that,

2
X

It is seen from equation (46) that the pressure and
consequently the veloeity distribution around the airfoil is
determined by the Cy of the section. Thus, in order to compare
the results of the calculations with existing data on the subject,
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the same G! values must be used as in the experimental work.
However, in the experimental work, the airfoil was placed at a
given angle of attack,d , in a compressible flow. To be exact,
the experimental data for the NACA 4412 airfoil (8, p.78) is
presented for three angles of attack and for various Mach numbers
at each angle of attack, It was decided at this point to carry
out the theoretical calculations for the two highest angles of
attack of the experimental data; namely, & = = 0,25° and
& =1,88° for four Mach numbers each. These four Mach numbers
were not the same for both angles of attaok‘due to the
irregularity of the experimental data. Fortunately, at least one
of the Mach numbers for each angle of attack in the experimental
data was so low that it could be considered almost incompressible.
In order to compare these low Mach number data with the
incompressible flow, equation (26) was used to correct the
experimental data to M = 0, Since for both of the above angles of
attack, experimental data was available at M<0.2, the
corresponding correction from (26) would be, |

5 L] L]
Cpi 0.96 Gp- (49)

Thus, it is seen that the difference between cp and Gp is very
i m

small, for this Mach number, Since past experience indicates that
equation (26) is good at very low Mach numbers, it was used to
determine the incompressible experimental pressure distribution.
The calculations for this appear in Table I (& =-0.25°) and.
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Table VII (&K = 1,88°) in the Appendix and the results are plotted
in Figure 6 (o = = 0,25°) and Figure 7 (£ = 1.88°),
At first it was thought that the C, of the experimental
incompressible pressure distribution could be determined by the
fundamental aerodynamic relationship,

c" = l(‘ -“"@)’ (50)

where m is the slope of the 1ift curve andef.cfo is the zero lift
angle, Calculations were made using equation (50) and the
resulting C, values were used to calculate the theoretical pressure
distribution discussed in the first part of this section. However,
when the calculated incompressible pressure distribution was
plotted for comparison with the corrected experimental

distribution, the results were highly unsatisfactory. Comparison
was poor and the Cp values did not agree even though they were
supposedly the same as determined by equaiion (50)¢ This method
was then abandoned, It was decided to use the Oltront.he corrected
experimental incompressible pressure distribution which was

obtained by the mechanical integration of the approximate equation
(7, Poy&O); c
6 = %‘ (2)ax. (51)

o
The Cq determined from Figure 6 (& = - 0.25° corrected
experimental) was 0.461, and the Cg determined from Figure 7
(oL = 1,88°, corrected experimental) was 0,687, These C, values
were used for calculating the theoretical incompressible pressure
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as before, and the results were again plotted with the experimental.
This time good agreement was obtained. The complete theoretical
incompressible calculations for these are presented in Tables II
and III (oL = - 0,25°), and Tables VIII and IX (K = 1,88°), These
are the theoretical results which are compared with the experimental
data in Figures 6 and 7. The curves show good agreement in both
cases except near the maximum Gp value in Figure 7, These
comparisons are an important part of the procedure, for it should
be remembered that no better compressible agreement can be shown
than is exhibited between the incompressible distributions using
the methods of this report.

C. Ihe Compressible Solution.

Thus far the incompressible solution for the airfoil has
been determined at two angles of attack., The next step was to
calculate the compressible pressure distribution using equations
(26) and (44)e The Mach number chosen for these calculations
coincided with the Mach numbers in the experimental data. Four
Mach numbers were used for each angle of attack. For & = = 0,25°,
the compressible calculations were carried out at Mach numbers of
0,299, 0.427, 0.517, and 0,590, For «L = 1,88°, calculations were
carried out at Mach numbers of 0,512, 0,596, 0.640, and 0.735.
These calculations were set up in tabular form and appear in the
Appendix, Tables IV and X contain the calculations for the

Prandtl-Glauert method at & = = 0.,25° and 1.88° respectively. In
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the same mamner, Tables V and XI contain the calculations for the
Karman~Tsien methods For convenient reférence, Tables VI and XII
present the experimental data for both angles of attack, The
results of the compressible calculations were plotted together
with the experimental data for comparison.

D, Summary,

When speaking of the flow about an airfoil, one usually
thinks of velocities, Depending upon what viewpoint is desired,
the non-dimensional velocity, w/U, over the surface may be found
if a physical picture of the flow is wanteds, On the other hand,
if one is more interested in forces, the pressure coefficients
may be determined as in this investigation. The pressure
coefficient is used in deternining the Cl values, in finding the
center of pressure of a section, and in determining foreces on an
airfoil. In order to get an overall picture of the effects of
compressibility, therefore, the Cy values were determined for all
pressure distributions (including experimental) using equation
(51)s These were plotted against Mach -nuﬂ:er. Also, to get an
idea of how the maximum forces on the airfoil section compared as
predicted by the two methods, the Cp value for the upper surface
was plotted at 30 per cent chord, which is very nearly the maximum
point. These curves, as well as the pressure distributions, will
be discussed in the following section.



VI. RESULTS

A, General,

In the pressure distributions (Gp versus %), the negative
ulmso.chmonthenpwportionofthoGpuiaandt.ho
positive values are on the lower. This is so the upper surface
pressure distribution will appear on top. Thus, the curves of
high negative value are for the upper surfaces, while the small
negative and positive values are the lower surfaces. The
difference between the upper and lower surfaces was not
designated by a difference in curves because it was thought that
this would only be confusing, with three different pressure
distribution curves with each in two different parts. It is
believed that there will be no difficulty in distinguishing between
the upper and lower surface for each curve.

B, The Pressure Distributions.

The calculated distributions ford = - 0,25° appear in the
order of increasing Mach number in Figures 8, 9, 10, and 11,
Figures 8 and 9 show very good agreement between the experimental
and the two methods of calculation. As the Mach number increases,
however, there is seen to be a greater difference between the
experimental and calculated values of CP. This change takes place
not only in the magnitude of the Op values, but also in the
occurence of the maximum cp. The maximum value of the experimental
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cp shows a tendency to shift toward the center of the chord, This
fact will be even more pronounced in the case of the higher angle
of attack. The major disagreement in magnitude occurs at about
the 30 per cent chord point on the upper surface and near the
trailing edge on the lower surface, While the experimental values
remain almost constant at and near the trailing edge on the lower
surface, the calculated values become greater and greater with the
higher Mach numbers. This causes a considerable disagreement at
the higher values of Mach number,

For incompressible flow, it may be shown from Bernoulli's
equation that at stagnation points, C,=1. Stagnation points
occur at the leading edge and the trailing edge. However, the
theory from which the incompressible flow was calculated results

in an indeterminate expression at these points, so no (:p are
m

calculated at these points from the Prandtl-Glauert or Karman-~Tsien
methods, However, since a C p of one is predicted for the
incompressible, there camnot be too much error in assuming that the
theoretical cp at these points would be near to one. Actually,

the curves were drawn as being asymptotic to the Gp axes at those
points. The question is purely academic, however, for the area
enclosed is so small as to be considered negligible. The
difference between the calculated and experimental Cn'l due to

this fact is not enough to be considered important. The important
thing to note is the fact that the Karman-Tsien method gives a
closer approximation to the experimental value than does the



b

Prandtl-Glauert, although both tend to underestimate the effects
at higher Mach numbers, As corrections to the incompressible
distributions, neither method can predict changes in the shape of
the distribution, but only serve to magnify the incompressible
distributions,

The comparison of pressure distribtuions foro = 1,88° is
shown in Figures 12, 13, 14, and 15, The higher angle of attack

results in higher C ey valuess The combination of this and the
 #

higher Mach numbers at this angle of attack causes the flow to go
over the critical pressure coefficient, The eritical pressure
coefficient is defined as the pressure coefficient at which the

local velocity is equal to the speed of sound. The Op values
c

are ruled in on Figures 13, 14, and 15, These values are
determined (8, p.76) by the relation,

0,528 p_~ 2.
- il 4 o
Cpe o (52)

At this point, it must be noted that the theory fails after
the critical has been reached., If a sudden pressure jump, such as
a shock wave, occurs, as in Figures 14 and 15 (indicated on the
experimental curve by portion of curve between small arrows), the
flow will no longer be reversible adiabatic and one of our basic
assumptions will not hold, However, it is interesting to see how
the theory agrees. Much of the same effect is found at the higher
Mach numbers and angles of attack as was experienced at the lower



1.0

.L. } p+ 444
S
aaa sEsanaass B :
jess 3 1 O
4 - Il Ld
an A nas 5 Q
o 1 |l B ¥ 1t
- 4 +
.|._. ‘ 3 QJJ ..“no”HIY e b
T 8" S5y o ssaser o
HH jeass oabananas H o
HHHHH A HH | @
T t —~ -
} T 8 b
Bafuanas .’ Jif tamad sas aa b . HH O
-+ - + 1 L
I I o, JES
8 +_ S Raee " T o
R » ) 1
> Jiibeeiit - bl “ St HH 0
nu + ra
52858 Boass taest a & m HH O
! H ﬂ " & :
B3 saas
T T T Q |+.r,H w
T 1 « XlO
. .. . T
ik 2 .m i ©
£22aEd g :
EE 141 m ma.
. THT o o~
L 1is k Lq. < 0.
B * ]
=g anE nus buw 1 T
;- -t i 4 m i
11 SREEERaN
HrH Ht ] ™
s - »
1 B - o
1 M B ol 2o saans
88 B08s HHEH HHE o
i T S
[ hr [ -
au T
T ! A Hn ~
T g T 3
) iH °
ﬂ HH . i “
T 1 e

1L.0F
0

-0.6
Q.4
-0,

512.

Figure 12.

10880, M= 0.

ol

Comparison of Pressure Distributions at



Lt

1

e

y R
1 4
TS
11 111
! aBdsans:
e
St R
t++11++1+
HH
-+
w.*d mna
b 4+
4t 1.~|u..
ey
1t
it
e e

-Tsien

’ p.80)

11t 1 4] 34 = EANEN
H 5338 AR T
R 1 4 .# 4 41 HH
. iapaEaIRenn Tiia i
1l Hit u.. 4 _.....rw.
e Rune 19 EN B EY
T T
=t ++
++ 4
Hi ass
HHH beues
+ T + 4o a
] I +1 3
T 1T 1112 N
4 H + . 1
1 L] I
s 4 o
T 1 e
4.

.“rTl H...Y.. y
HTHH“4r0
iasasBnEey
T
IQRES SRR BT N
T
jEae. 1O
: Ineay
HaF

i HE T 1858 1} x
! 188 i } T i
f xE I3 .#' *! 4.~. .,_,
4 e L4+ '.M. u“ +
; Ny H THH 1
H T H b
: B Hi HH i i
4 RS W Ly H a4t 4 ..-.u W
] oEe i 1 541 1 T o
E pas ++44 +11+ *1 6 m
n & i " +—+ -
] 85 Ra88 ¢ 11 i1 o
: 88 ssnal HT 1 BT
1 T
1 98 18 1 o3
3 i 888
. e

1.0§

Ko

Figure 13.

10380’ M= 005960

Comparison of Pressure Distributions at
ol =



47

0.9

0.7

+ 1 " I I3 B L
SasaEagan s F HER Hi i | F
1 1 1 1
HERSEENOSE SN 1 eERE jas!
T : “ ol
el b . - a8
o
i rnn . Ll = -
HHEH I ¢8 B89 T
FHH - 1 58 maw
1wy s wwe
. . SEEES 88 as ses
i H H 1 H e .
maal 1 [RE RRRES 20 i wEline
1 NN B
HHEHT 1 T sam o
as 28 S6S 00 ERaaN Sn0un nEEE Saa Ry :
.hl IORAs el rrpefeer ISOES SNSTE B R
ST ] wE psant
SR SR Se a8 i I g brrtapi - n_l
[sESRabees - - -
vm avw
v— 5
+
X
T

INEaN A

138 &
1

Dedad e it

AT

Prandtl=Glauert
——— Karman-Tsien

x Experimental (8, p.80)

0.5

0.5

+H
- .
1 :
1T 1111
. : ~t
T mmns ]
fousaaagal HO

8 Sa8ss

.4
(¥

Fig‘ure 14.

Comparison of Pressure Distributions at

ol = 1.88“, M= 006400



s— R
ol . T == B
~J I ] mL : T B - t ~
" 1 o T
It m | - o
3 - . + + 4
H ] o 1 1 T 1 1
I T LT EESRERRl O
T 1 1 aaasas
1 i
1 1 uu. 1
. 1 +_.. 11 T 1 o0
" jssuy aat yms 3
7 i
1] +HH HHHHT T (o]
ot HH i
= seusnns o) snanusunss sy oupouss N Y & o8 o E Bas o
] e I
+ ft- sl |
b o - feas [
F T o
Ry ] . B I
_._ i
4 +
I 1 O
T ¢
e puaa o
T
wn
L]
¥ o
s ED o !
T POSSBEaEs SRESE sESES ~
= e
ausssune annan sosns [ o
- h B A
- I
! e A
1 R
H HHH o

SRt e
S
+ 444
a4 e ss ot o~
e RS FESES SSGa. »
] ERE BRO6S BREw
H 15836 saibs ssany [ =)
- R N
.HH...,- HA
% IS SEROS baeel
S IR IR
b Covifeeiif iy gl
) R SRR [
1 9SS Spaes
1 . IR IR
-+ PSS EETEE Ranee
08 .8 ot
T3

X
c

Figure 15.

1.88°, M = 0,735,

Comparison of Pressure Distributions at
ol



49

angle of attack,

The effects of the compressibility are much more pronounced.
Here, the shift of the maximum megative pressure coefficient is
definite. In Figure 14 (M = 0,640), the maximum experimental ¢,
occurs at about 20 per cent chord, while the theoretical methods
predict the maximum between 10 per cent and 15 per cent, In
Figure 15 (M = 0,735), the experimental maximum occurs at 50 per
cent, while the theoretical methods still predict 10 per cent
to 15 per cent, As it will soon be shown, this last Mach number
is past the "compressibility stall", so-named because of the
similar loss of 1ift that occurs at excessive angles of attack.

The importance of angle of attack can be seen from the
pressure distributions, Even at o& = 1,88° ecritical conditions
occur over the airfoil at M = 0,596, The reason for this is
partly due to the airfoil. More efficient, high-eritical-cp
airfoils are now being designed and used in actual practice.
One other discrepancy that causes undesirable results is the
fact that the incompressible experimental and incompressible
theoretical distributions differ to a great extent at the
maximum negative Gp value (see Figure 7)s This is responsible
to a large degree for the discrepancies in the compressible
distributions.

Ce The Effects of Mach Number on Maximum t!n and on C.

In order to get a better picture of what happens to the t‘.p
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values as Mach number is increased, Figure 16 was plotted. This
figure shows the variation of the Gp at 30 per cent chord on the
upper surface with increasing Mach numbers. The 30 per cent chord
point represents close to the maximum except in the case of the
higher Mach numbers. The results of the calculations for both
angles of attack are plotted. For & = - 0,25°, the Karman-Tsien
relation gives the best approximation. At M = 0,590, the Karman-
Tsien method is 10 per cent in error and the Prandtl-Glauert
method is 20 per cent in error, For the higher angle of attack,
d =1,88° two things are immediately seen. The first of these
is the disagreement in the incompressible 8p values. If the

experimental Op and the calculated Gp had been in better
- § 3

agreement, it appears that the Karman-Tsien method might have
given a very good approximation, The second important point to
notice is the sudden drop in experimental Gp after M = 0.640

has been reached. This sudden drop of Gp comes from the break in
flow described in the foregoing section, and is responsible for
the "compressibility stall."

Figure 17 shows the relationship between Cy and Mach number
at the two angles of attack. These Gn values were found by
mechanical integration of the approximate equation (51). The
calculation appears as Table XIII in the Appendix, The results
of it are not in agreement with the general opinions expressed in
literature on the subject, for in both cases the two approximate
methods give higher Gn values than the experimental values,
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However, the author has not found any direct ealculations of this
sort in the literature to compare with Figure 17. For = 1.88°,
the "compressibility stall" is clearly shown by the experimental
data, The reasons for the higher theoretical values were the
disagreement in the pressure distribution on the lower surface of
the airfoil, This discrepancy at both angles of attack more than
counteracted the maximum Gp values, which fall exactly as they are
predicted by existing literaure, to give the higher C values for
the theoretical calculations.

D. Summary.

In general, the resulis are not extensive enough to show
any special trends., However, the author does not believe that
either of these methods is satisfactory for the speed range
U,/2 to U The results show that the Prandtl-Glauert method is
good only at Mach numbers less than 0.500, The Karman-Tsien
method will give better agreement, however, and might be used as
a general indication of compressibility effects up to the critical
condition, Whenever the above methods are used, the ansle of
attack must be small for good results. This limitation, plus the
inability to predict shifts in the center of pressure of the
distribution, leave much to be desired in using the above methods.

The results do show some advantages, however, The most
significant of these is the ease of application. Both may be
applied with a minimum of tedious calculations and do not require
extreme lengths of time. This would be of importance in
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engineering work.: Even though the methods do not show excellent
agreement with experiment, they would serve well as a first
approximation in a more complicated procedure.

VII. CONCLUSIONS

Although the investigation was carried out with the idea of
calculating compressible flow completely without the aid of
experiment, it was shown in the results that one of the major
difficulties was in acquiring an accurate incompressible solution,
For this reason, it is recommended that the methods in this
report be applied to experimental incompressible data when
available. It is believed that in this way much better results
would be obtained. This, of course, would pertially defeat the
purpose of saving the high experimental costs that occur in this
worke

Actually, the investigation has not produced the results
originally hoped for. Neither of the solutions presented gives
a satisfactory final answer to the problem at hand, However, they
represent the only quick and practicable methods of approach to the
problem at the present time.

The future outlook for the problem is far from hopeless,
however, After a major part of the work in this investigation had
been completed, a paper was found on the subject which utilized
Southwell's relaxation method (3, p.l). Time did not permit
inclusion of this in the work, but a numerieal solution such as



55
this, or a numerical integration method as applied to the equations
of flow might have good possibilities. Future work on this two-
dimensional, subsonic, flow problem would certainly be of great
importance to the field of aerodynamics, for although many have
contributed to the theory, there still remains to be found an
accurate solution for an arbitrary profile. Success in this field
of research would mean great advances in modern, high-speed
airplane design.
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CALCULATION OF EXPERIMENTAL PRESSURE DISTRIBUTION AT L = - 0,25°

(Correction of Experimental Cp at M = 0.141 to Gp
= gcp 3 P =0.992).

(By the Relation, C
Py

at M =0).

# Data from (8, p.78)

x # M =0.141 M=0
c c pu! Gp‘l! Cp _ cpi_&
0,0000 1,000 1,000 1,000 1.000
0.,0125 0,100 0.020 0.099 0.0198
| 0,0250 20,200 | -0.300 0,190 0,296
| 0.0500 0,350 0,340 | -0.348 0,337
10,0750 =0, 500 =0, 280 00496 | 0,278
0,1000 -0, 580 =04240 0,575 0,238 .
10,1500 -0, 680 0,170 0,674 0,168
0.2000 0,70 | 0210 | -0.7% 0,109
|__0.2500 0,75 | 0,07 | -0.74 | -0.069
0.3000 =0, 740 0,000 0, T34 0.000
04000 =0, 680 0.040 =0,675 0.040 |
{—0,5000 =0, 600 0,070 =0.595 0,060
0, 6000 0450 0.085 =0+446 0.084
| 0,7000 0340 0.115 0,337 0.114
0, 8000 =0,220 0,125 =0.218 0.124
. 0.,9000 =0,075 0,150 =0,074 0,149
| 0.9500 0,040 0.160 0.040 0,159
21,0000 | _ 0,150 | 0,150 0,149 0,149




VELOCITY DISTRIBUTION CALCULATION FOR NACA 4412 AIRFOIL AT C

TABLE II

(Incompressible Flow)
R =(C,- Gy ) = (0,461 - 0.587) = - 0,126
b

4

= 00461 (& = '0.256)0

#P # P P w w w

b P P/4/w 'Y L

¢ (¢,=0.587) Ei' E:‘('l) (Cy=0.461) _é ‘?/ ” U ]

a a

0 0,000 0,000 | 0,000 0,000 0,000 —— —— —
0.0125 0,270 | 5.408 | -0,683 04412 0,987 =0,104 0,883 1.091
0.0500 0.472 3,126 | -0.394 -0.078 1.163 0,017 1,146 | 1.180
0.0750 0e554 | 2.560 | =0,323 04231 1,181 0,049 | 1,230 1.132
0.1000 0,620 2,199 | 0,277 0,343 1,188 0,072 1,260 1,116
0.1500 0.724 1e742 | =0,219 0,395 1,187 0,106 1.293 1,081
| 0.2000 0.792 1.454 | -0,183 0,609 1.179 0,129 1,308 1,050
| 0,2500 [ 0,828 | 1,248 | 0,157 0,671 | 1,168 0,144 1.312 1,024
0, 3000 0.841 | 1,090 | -0,137 0,704 | 1,156 0.152 1,308 1,004
| 0.4000 0,802 0,854 | -0,108 04694 1,129 0,154 1,283 0,975
(0. 5000 0,694 | 0,681 | -0,086 0.608 1,103 0,138 1.241 0.965

0,6000 0,622 0,542 | -0,068 04554 1,076 0,12 1,20 0

0. 7000 0.543 0.424 | 0,054 0439 1.050 o.;l_% ;.132 1 0.93%
0.8000 04451 04315 | =0,040 04411 1,022 0,101 1.123 0,921

| _0,9000 04320 0.202 | -0.025 0+295 0,982 0,075 1.057 0,907
|_0,9500 0,227 0,134 | -0,017 0,210 0,942 0.056 0.998 0.886

|_1.0000 0.000 0,000 | 0,000 0,000 0,000 - - —

#Data from (1, pe23)

8s



TABLE III

CALCULATION OF INCOMPRESSIBLE PRESSURE DISTRIBUTION FOR

2

2

2

2

w w W
z ) G e, - [o, a-H
ot ty
| 0.0000 - - - —-
0.0125 0,780 1.191 0,220 0091
| 0.0250 1.120 1.300 | -0.120 0,300
0,050 1315 130 | 0,315 | 0,39
0,0750 1,55 1280 | -0.515 0,280
0,1000 150 | 1.20 | 0,580 0,240 _
| _oasoo | 1675 | 1367 | -0.678 0,167
0.2000 1.710 1,100 0,710 0,100
02500 1,720 1,048 0,720 _ 0,048
| 0.3000 1,710 1,008 0,710 0,008
04000 1,645 0.951 | -0.645 0,049
|_0.5000 | 1.5 0,931 | -0.50 0.069
0,600 1.450 089 | _-0.450 0201
o000 | 1357 | 0873 | -0.357 0,127
|__0.8000_ 1.260 0,848 | -0.260 0,152 |
|__0.9000 117 | 0823 | 0.7 0,177
|__0.9500 0.995 0,785 0,005 0213




CALCULATION OF COMPRESSIBLE PRESSURE DISTRIBUTION FOR

TABLE IV

NACA 4412 ATRFOIL AT & = - 0,25° USING PRANDTL-GLAUERT METHOD.

% M = 0.299 M = 0,427 M = 0,517 M = 0,590
c Incompressible

B = 0,955 B = 0.905 P = 0,858 P = 0.809

% % % % % % % % % %

a 4 ‘n % 'n % fn | by |
| 0,0000 s st — — i g — o —— )
0,0125 0,220 | -0,191 | 0,230 | -0 0,243 | =0,211 | 0,256 | -0,222 0,272 |-0,236
0,0250 | -0,120 | 0,300 | 0,126 |-0,314 | -0,133 | 0,332 | 0,140 | -0,350 | 0,148 |-0,371
10,0500 | 0,315 | 0,390 | 0,330 | ~0,408 | -0,348 | 0,431 | 0,367 | -0.454 | -0,389 |-0.482
[ 0,0750 | ~04515 | =0,280 | 0,539 | 0,293 | <0.569 | 0,309 | 0,600 | ~0.326 | -0.636 |-0,348 |
0,1000 | ~0,580 | -0.240 | 0,608 | 0,252 | <0.640 | 0,266 | <0.675 | -0.280 | 0,716 |-0,296
0e1500 | 0,675 | =0.,167 | 0,706 | 0,175 | 0.746 | 0,185 | 0,786 | 0,195 | 0,834 |~0.206 |
10,2000 | -0,710 | -0.100 | -0,744 | -0.105 | 0,785 | 0,110 | -0,826 | -0,117 | -0,877 |-0,124 |
0,2500 | ~0,720 | «0,048 | -0.754 | 0,050 | 0,796 | <0.053 | <0.839 | <0.056 | -0.890 [-0.059
0,3000 | -0,710 | 0,008 | 0,744 | -0,008 | -0,785 | -0,009 | -0.826 | 0,009 | -0,877 |-0,010 |
(0,4000 | -0.645 | © 0,6 0,051 | -0.723 | 0,054 | -0.751 | 0.057 | -0.797 | 0.061
| 0,5000 | -0,540 oi% -o.ﬁ 0,072 | 0,597 | 0,076 | -0,629 | 0.080 | -0.667 | 0.085
0.6000 | -0,450 | 0,101 | -0.471 | 0.106 | -0,497 | 0,112 | <0.524 | 0,118 | -0,556 | 0.125
0,7000 | ~0.357 | 0.127 | 0,374 | 0,133 | 0,394 | 0,140 | 0,416 | 0.148 | -0.442 | 0.157
 0,8000 | -0.260 | 0,152 | 0,272 | 0,159 | -0.288 | O | 0,303 | 0,177 | -0.321 | 0,188
0,9000 | -0,117 | 0,177 | -0,123 | 0,185 | <0.129 | 0.1 0,136 | 0,208 | -0.145 | 0,219
j.gm 0,005 | 0,215 | 0,005 | 0,225 | 0.006 | 0,238 | 0.006 | 0.251 0,006 | 0,266 |

.m —— Sm—— S E— — S — A — —
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TABLE V

CALCULATION OF COMPRESSIBLE PRESSURE DISTRIBUTION FOR
NACA 4412 AIRFOIL AT Cl = 0,461 USING KARMAN-TSIEN METHOD.

C

0, = 4 where k = ——
. Py 21 -+ 1:|
M = 0,299
% Incompress-
ible k = 0.023 B = 0.955

1 2 3 4 5 *ﬁ(- 7 8 9

¢, L kcp kcp p+(4)| p+(5) ¢, cp
uy l; u 11 ‘i !L

0.0000|  «= - - - e i - "y
0.0125 | 0,220|-0,191| 0.005|-0.004| 0.960| 0.951 | 0,229 |=0.201 |
| 0,0250 | -0,120| -0,300| -0,003) -0,007| 0.952] 0,948 | ~0,126|-0,316
| 0,0500 | <0,315| =0,390| =0.007| -0,009 | 0.948| 0.946 | 0,332 |=0.412
| 0.0750 | -0,515| -0.280| ~0,012| -0,006| 0.943| 0,949 | 0,546 |-0,295 |
| 0,1000 | -0, 580] ~0,240| 0,014 ~0.005| 0,941| 0,950 | -0,616|-0,253
| 0,1500 | -0,675] -0, 0,016 -0,004 | 0,939| 0,951 | 0,719 |-0.176
| 0,2000 | =0.710| 0.00| -0.016| -0,002 | 0.939| 0,953 | =0,756-0,105
| 0,2500 | <0.720| =0.048| ~0.017| =0.001 | 0,938| 0.954 | =0.769 |-0,050
| 0.3000 | 0,710| -0,008| -0.016| 0.000| 0.939| 0.955 | 0,756 |-0,008
| 0.4000 | -0,645| 0,049) -0.015( 0,001 0.9401 0,956 | 0,686 0,051
| 0.5000 | -0,540]| 0,069| ~0,012| 0,002 0,943| 0,957 | =0,572| 0,072
| 0,6000 | =0.450] 0.101| ~0.010] 0,002| 0.945| 0.957 [ ~0.476| 0.106
| 0,7000 | 0,357 0,127| -0,008| 0,003| 0.947| 0.958 | 0,377 0.132
MM%MMM% | 0,158
| 0.9000 | -0,117| 0,177 ~0,003| 0,004| 0.952| 0.959 | -0,123]| 0,185 |
M@.M_Oﬁul 0.000] 0.005| 0,955| 0,960 | 0.005]| 0,224 |

| 1,0000 [ == = = — — - — —




TABLE V (Cont'd)

M = 0.427
% Incompress=
ible k = 0,048 B = 0.905
1 2 3 i E 7 8 9
c, ¢, |k¢c, [kC, [® 4) | 8+(5) ¢, cP:.
, 5 198 o Y I " | m |
| 0,0000 | == = = == = o= o =
| 0,0125 | 0,220 | ) =0,009 | 0,916 | 0.896 | 0.240|-0,213
 0.0250 | 0,120 |-0. <0014 | 0.899 | 0.891 |-0,134|-0,337
[ 0,0500 | =0,315 |=0390| <0.0151~0.019 | 0,890 | 0.886 [-0,352 |~0.440 |
00750 | ~04515 |=0,280| -0,025|~0.013 | 0,880 | 0.892 |-0,585 |-0.314
| 052000 | =04 580 |=04240| <0030 |~0.010| 0.875 | 0.895 |-0,662 |-0.268
| 051500 | =0,675 |<0.167| =0.032 |-0,008 | 0,873 | 0.897 | =0, 77 |~0.186
062000 | ~0,710 |=0,100| 0,034 1~0,005 | 0,871 | 0.900 |~0,815 |-0.111
052500 | =0.720 |=0,048| <0.035 |-0.002 | 0.870 | 0,903 |-0,828 |~0,054
 0,3000 | -0,710 |-0,008| ~0,034] 0,000 | 0.871 | 0,905 |-0,815 |-0,009
024000 |-0,645 | 0.049| -0,031) 0,002 | 0,874 | 0.907 |-0.739| 0.054 |
| 0,5000 |-0.540 | 0.069] <0,026| 0,003 | 0.879 | 0.908 |-0,615| 0.076
| 0,6000 | -0.450 | 0.005| 0.883 | 0,910 |-0,510 | 0,111
| 0.7000 |=0,357 | 0,127| =0.017| 0,006 0,888 | 0.911 |-0,402 | 0,139 |
MM&%&&MM%MM
| 0,9000 | =0,117 | 0.177| 0,006 | 0,009 | 0.899 | 0.914 |-0,130| 0,194
| 0,9500 | 0,005 0,215/ 0,000| 0,010 0,905 | 0.915 | 0,006 | 0,235 |
| 1,0000 | == — = = - — - o
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TABLE V (Cont'd)

M = 0.517

B = 0.858

k = 0,071

=0s 714 |=0.286

0,795 | 0,057 |

0,857 |-0.879 |-0,009

0,810 | 0,846 |-0,834 [~0.197

Incompress=-

ible

0,220 |-0.191| 0.016(-0.014| 0,874 | 0.844 | 0,252 |-0.216 |

=0+ 580 |~0.240| =0.044 | 0,017} 0.814 | 0,841

0. 710 |-0,008| -0.050 |-0,001 | ©

0.0

| 0.0250 | «0,120 {~0.300} =0,009-0,021| 0,849 0.837 |-0.141 |~0.358

| 0.0500 { -0.315 1~0.390| -0.022 {0,028 | 0,836} 0,830 0,377 |0
| 0.0750 | ~0.515 [~0,280| -0,037{-0.020] 0,821 | 0,838 |-0.627|-0.334 |

0.2000 | -0, 720 |~0,100] -0.050 |-0.007| 0.808 | 0.85) |-0,879 |-0,118 |
| 02500 | ~0.720 |-0,048| 0,051 (0,003 | 0.807| 0.855 |-0.892 |-0.056

| 01500 | 0,675 [-0.167| -0.048 {-0.0

0. 3000
| 024000 | -0.645 | 0,049 -0.046| 0.003| 0.812

[ 026000 | <0450 | 0.101) 0,032 0.007] 0.826| 0,865 |-0.545 | 0,117 |
| 0,7000 | 0,357 | 0,127 -0.025| 0.009| 0.833| 0.867 |-0.429 | 0,147 |
| 0,8000 | -0,260 | 0,152 -0,018| 0,011] 0,840 | 0,869 |-0.310 | 0,175 |
0,9000 | ~0,117 | 0,177/ -0.008] 0,013] 0.850| 0,871 |-0,138 | 0.203 |
0.9500 | 0.005| 0.215| 0,000 0,015/ 0,858 | 0.873 | 0.006 | 04246 |

0.5000 | 0.540 | 0.069|-0.038| 0.005| 0.820| 0.863 |-0.659 | 0.080 |
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TABLE VI
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EXPERIMENTAL DATA FOR NACA 4412 AIRFOIL AT & = - 0,25°,

(8, p.?B)
M=0.299 | M=0,427 | M=0,517 | M=0.590

s cp“! cp, cl’uh cp,l % cp!! cin! cp!!
 0,0000 | 1,00 | 1,00 1,00 | 1,00 | 1.00( 1,00 | 1,00 | 1,00
10,0125 | 0,05 | 0,02) 0,20 |-0,05 | 0,30/ 0,05 | 0.40 |-0,15
| 00250 | =020 | =0,30 | =0,18 |~0,40 | 0,10 | ~0e41 | 0,10 |~0.40 |
| 0,0500 | <0438 | =0,34 | 0435 | ~0.42 | 0,38 | 0,45 | 0,38 |-0,50
[ 0,0750 | =0,52 | =0,30 | 0,50 [~0s37 | 0s54 | <040 | 0,55 |-0.42
10,1000 | <0.60 | <0426 | 0,62 | 0,30 | <0,66 | 0,33 | 0,72 |-0.38 |
0.1500 | 0,70 | <0,18 | 0,73 |~0.21 | <0,80 | =0,22 | 0,90 |-0.26 |
042000 | <0077 | =0,10 | =0,80 |=0,14 | ~0,90 [ <0014 | =1,02 [~0,15
| 0,2500 | -0,80 | 0,02 | 0,84 |-0,06 | -0.94 | 0,08 | -1,10 |-0,10
043000 | =0,78 | 0,00 | 0,84 |-0,02 | 0,94 | 0,05 | -1,08 [-0,08 __ |
| 0,4000 | =0,70 | 0,03 | -0.74 | 0,02 | 0,85 | 0,00 | 0,94 [ 0,00 |
05000 | <0,60 | 0,06 | <0,62 | 0,05 | 0,70 | 0,05 | 0,78 | 0,04
006000 | <0446 | 0,09 | <0049 | 0,07 | =0,55]| 0,07 | 0,62 | 0.06 |
[ 0,7000 | <0437 | 0,10 | 0,40 | 0,10 | ~O044 | 0,09 | 0,48 | 0,07
 0,8000 | 0,25 | 0.11 | 0,25 | 0,12 | 0,28 | 0,12 | -0,31 | 0,08
10,9000 | =0,08 | 0,14 | -0.075]| 0,14 | -0,08| 0,15 | ~0.10 | 0,10
0,9500 | 0,05 | 0,16 0,06 | 0,15 | 0,06] 0,16 | 0,02 | 0,15
11,0000 | 0,17 | 0.27( 0.26 | 0,26] 0.17] 0.17] 0.15 | 0.15




TABLE VII

CALCULATION OF EXPERIMENTAL PRESSURE DISTRIBUTION AT oL = 1.88°,

(Correction of Experimental cp at M = 0,141 to Gp at M = 0).

1
(By the Relation [ Prandtl-Glauert ] , G, =BC ;P= 0.983).
1

x # M =0,191 M=0
c cg! GEL c’n cpjl
0,0000 060 1.000 0,390 0,983
| 0.,0125 =0.52 0,600 =0.511 0,590
| 0,0250 =0, 70 0,330 =0, 689 0.324
0,0500 =0.80 0,040 =0, 787 0.039
| 0.0750 =0, 87 0.015 =0,855 0,0147
. 0.1000 ~0.92 0,000 =0.913 0,000
0,1500 096 0.015 0,944 0.0147
| 0,2000 =0.99 _0.050 =097 0,049
| 0.2500 =0.97 0,075 =0.954 0.074
| 0.3000 0.95 _0.090 =0.934 0.089
(- 0.4000 .84 0.110 0,826 0,108
0,5000 0,65 0,120 0,639 0,118
10,6000 =0e 54 0,135 =0,531 " s S
| 0,7000 =0.40 —0.150 =0.393 0,147
20,8000 =0.26 0,155 =0+255 0,152
[ 0.9000 =0.09 0.160 | -0.089 _0.157
| 0.9500 0,05 0,160 0,049 0,157
10000 0,15 0,150 0,147 0,147

# Data from (8, p.80)




TABLE VIII

VELOCITY DISTRIBUTION CALCULATION FOR NACA 4412 AIRFOIL AT Cl = 0,687 (&« = 1,88°),
(Incompressible Flow)

n= (- clb) = (0,687 = 0,587) = 0,10

¥ 7353 x w w w
x b P PlL/w
¢ |(g =0.587) By & | = o.6m | T e S
b a 8
| 0.0000 0.0000 | 0,000 0,000 0,000 0,000 — — -
0.0125 0.2710 | 5.408 s 541 0,812 0.987 | © 0
0,0250 0,3550 | 4.235 0s424 0.779 1.099 | 0.1773 i:z% 0.9217
0,0500 0.4720 | 3.126 0.313 0.785 1.163 | 0.1688 1.3318 | 0.9942
0.0750 0.5540 | 2,560 0.256 0.810 1.181 | 0.1713 1.3523 | 1.0097
|_0,1000 | 0.,6200 | 2.199 0,220 0_;% 1.188 | 0,1769 1,3649 | 1.0111 |
|_0.1500 0.7240 | 1.742 0,174 0. A1.187 | 0.1891 | 1.3761 | 0.9979
0,2000 0.7920 | 1.454 0,145 0.937 1.17% | 0.1989 1.3779 | O
|_0,2500 | 0,880 | 1,248 0,125 0.953 1.168 | 0,2040 | 1.3720 | 0,9640
10,3000 0,8410 | 1.090 0,109 0.950 1.156 | 0.2055 1,3615 | 0.9505
04000 0.8020 | 0.854 0.085 0,887 1.129 | 0.1967 1. 0.9323
0. 5000 0.6940 | 0.681 0,068 0.762 1.103 | 0.1728 1.2758 | 0.9302
|_0,6000 0.6220 | 0,542 0,054 0.676 1.076 | 0.1572 1,2332 | 0.9188
0, 7000 0.5430 | 0.424 0,042 0,585 1.050 | 0.1393 1.1893 | 0.9107
0.8000 0.4510 | 0.315 0,032 0483 1,022 | 0,1180 1.1400 | 0.9040
[ 0.9000 0,3200 | 0,202 0,020 0.340 0.982 | 0.0865 | 1.0685 | 0.8955
| 0,9500 [  0,2270 | 0,134 0,013 0.240 0,942 | 0,0637 1.0057 | 0.8783
[ 1.0000 0.0000 | 0,000 0.000 0.000 0,000 _ -—- - —
#Data from (1, p.23)

L9



TABLE IX

CALCULATION OF INCOMPRESSIBLE PRESSURE DISTRIBUTION
FOR NACA 4412 AIRFOIL AT C’. = 0,687 (& = 1,88°),

P

2

2

2

w w, w
-z (2 B | D |o, 2P
- i

0,000 - - e -
_0.0125 20 | o6n | 0.2 0,369
00250 | 1625 | osso | 0625 | 0450
0,0500 70 | o0ss | 070 | o2

| 0.0750 180 | 200 | o080 | 009 |

| 02000 | 1.86s | 1.0 | -o6s | 002 |
0.1500 L0 | 099 | 0.0 0.004 |

02000 [ 3000 | o9a [ -0.000 0.0%9
02500 082 | 09w | -oss2 | o0m

[ 0.3000 Less | o090 | -o.8ss 0,09

| 04000 | 17 | owm | -0.7s8 0,130

| o000 | 1,628 | o867 [ -0.628 033
0,600 L2 | o3 | 022 | o0as

| 0.7000 Las | osn | 2.5 0170

o800 | 1.0 [ owms | 0300 | oas |
00000 | 2042 | oso2 | o2 | o208 |
0950 | o2 | ome | o0 0,228




TABLE X

CALCULATICON OF COMPRESSIBLE PRESSURE DISTRIBUTTON FOR
NACA 4412 AIRFOIL AT <L = 1,88° USING PRANDTL-GLAUERT METHOD.

cP
L) S
Cp‘ B
% Incompressible
B = 0.859 P = 0.&4 B = 0.770 = 0.678
C C C c C c c C c c

Py Pp Py Py PE Py Py Py 15'!l PL

0.0000 — —— p— miose — —— — — —— ——
[ 0,0125 | =0,420 | 0,389 |[-0,489 | O =0.523 | 0.484 | 0,546 | 0,505 | -0,620 | 0.574

0.0250 0,625 0,150 | 0,728 0.175 | <0 0,187 | -0.812 0,195 - 0,221
0.,0500 =0,750 0.012 | -0.8 0.014 | =0.934 0,015 | <0.975 0.,0156 | -1.107 | 0.0177
0.0750 | <0,830 | 0,019 | -0 =0,022 | =1.031 |-0,024 | =1,080 | -0,025 | =1,250 |-0,028
0,1000 0,865 | -0,022 | ~1,007 | -0,026 | -1,075 | 0,027 | - 5 | 0,029 =1,280 |-0,0325]|

o.lm -O,ﬁﬂi 0.% -l‘gg 0,005 -!'J;E 0.1@5 =L 0.% -1! m 0,%

0,2000 =0 0,039 | -1.,047 0,045 | =1.120 0,048 | -1.170 0,051 =-1.330 | 0.058

042500 -0.882 0,070 | 1,037 0,082 | -1.008 0,087 | =1.147 0,091 -1,302 | 0,103
0.3000 0,855 0.096 | 0,995 0,112 | -1.063 0,119 | -1.110 0,125 =1,260 | 0,142

0+4000 0,758 0,130 | -0,883 0,151 | 0,943 0 0,985 0 =1,120 | 0,192
[0.5000 | =0.628 | 0.133 | -0.731 | 0.155 | 0,781 | 0.165 | -0.816 | 0,173 | =0.927 | 0.196

 0,6000 | -0.522 | 0,157 |-0.607 | 0,183 | 0,649 | 0,195 | -0.678 | 0.204 | 0,771 | 0,232
0,7000 | -0,415 | 0.170 | -0.483 | 0.198 | 0,516 | 0,211 | -0.539 | 0.221 | -0.612 | 0.251 |

| 0.8000 =0,300 0,182 | -0 0 0,373 0,227 | 0,390 | 0.236 =0.443 | 0.260
0:9000 | =0:342 | 0:106 0363 0,231 [ 0,177 | 0,246 | -0.185 | 0.257 | =0.210 | 0.292 |

g.9500 =0.012 0.228 | 0,014 0.266 | -0.015 0.284 | <0.0156| 0,296 =0.0177| 0.336

+0000 -—— —— e e e e R -— —— e




TABLE

XI

CALCULATION OF COMPRESSIBLE PRESSURE DISTRIBUTION FOR
NACA 4412 ATRFOIL AT d = 1,88° USING KARMAN-TSIEN METHOD.

c

% B-l-pkc § wnere 1c = —

y " 2[3/1 - +1:|
M = 0,512
% Incompress-
ible k = 0.0708 B = 0.859
N L T L 5 ‘ 7 8 9
c, ¢, [xe, [k¢, B+(4)| B +(5) ¢, ¢,

S e | 2 “w | *m |
| 0,0000 [ - - - - - -- - --
0.0125 | 0,420 0 -0.030| 0.028| 0.829| 0.887| -0.507| 0.439
| 0,0250 | <0,625| 0,150] =0,044| 0,011| 0,815 0,870 -0.767| 0,172 |
00500 | 0,750 0.012] 0,053| 0,001| 0,806 0.860| -0.931| 0,014
0,0750 | =0,830 |=0,019| 0,059 |=0.001| 0.800| 0.858| =1.039|-0.022
| 0,1000 | 0,865 |-0.022| 0,061 |-0.001| 0.798| 0.858| -1.083|-0,026
0.1500 | 0,894 | 0,004 -0,063| 0,000| 0,796| 0.859| <1.122| 0.005
| 0,2000 | -0,900| 0,039| -0,064| 0.,003| 0.795| 0.862| -1.132| 0.045 |
042500 | -0.882| 0,070 -0,063| 0,005 0.796| 0.864| -1.110| 0,081
| 0.3000 | -0.855| 0,096 -0.061| 0.007| 0,798| 0.866| =1.071| 0,111
| 044000 | 0,758 | 0.130] -0.054| 0,009| 0,805 0,868 -0.943| 04150
05000 | 0,628 | 0,133| -0.044| 0,009| 0.815| 0,868| -0.771] 0,153
| 046000 | 0,522 | 0.157 <0.037| 0.011| 0.822| 0.870| -0.635| 0.181 |
| 0,7000 | -0,415| 0,170] -0,029| 0.012| 0.830| 0.871| -0.500| 0.195
| 0,8000 | 0,300 | 0,182] -0,021| 0.013| 0.838| 0.872| -0.358| 0.209
| 0,9000 | 0,142 0.198] -0,010| 0,014| 0.849| 0.873| -0.157| 0.227
| 0.9500 | -0.012| 0,228 -0.001| 0.016| 0.858| 0.875| -0.014| 0.261
160000 | == | == | o= | me e | e | e | o




TABLE XI (Contt'd)

M= 0.596

|

™w

+

>
-
wW|
Xl
n
S|

(2]

13,
:

0,806 | =1,148

;.

0.808

:

| =1.203
0.804 | =1,250|
=1+257

| =1.230

é
FEERRERE,

3111111341111,

*EEEEEEEEf

0,015
=0.023
=0.027
| 0,005 |

0.086




TABLE XI (Cont'd)

M = 0,640
% Incompress=
ible k = 0,116 B = 0,770
b O W B i S 5 7 X 9
cp cp kcp kcp g +(4) [p+(5) cp cp
- B T N A PR | m
0 e - - - - - -~ -
| 0,0125 | 0,420 | 0,389 [-0,049 | 0,045 | 0,721 |0,815 [-0,583 | 0,477 |
| 0,0250 | 0,625 0,150 1-0,073 | 0,017 0,697 |0,787 | -0,896 | 0,191 |
| 0,0500 | -0,750 | 0,012 (-0,087| 0,001 | 0,683 (0,771 |-1,099 | 0,016
| 0.0750 | =0,830 |-0.019 |-0,096 |-0,002 | 0,674 |0,768 |-1.233 |-0,025 |
[ 021000 | =0,865 0,022 10,100 10,003 | 0,670 {0,767 1-1.290 1-0,029
| 001500 | -0,894 | 0,004 {0,104 | 0,000 | 0,666 |0,770 |-1,342 | 0,005
[ 0,2000 | -0,900 | 0,039 |-0,104| 0,005 | 0,666 |0.775 |-1.350 | 0,050
 0.2500 | 0,882/ 0,070 [-0,102] 0,008 | 0,668 10,778 |-1,323 | 0,090 |
| 0,3000 | 0,855 | 0,096[-0.099| 0,011 | 0,671 | 0,781 |=1.275 | 0,123
| 0,4000 | -0,758 | 0,130 [-0,088| 0,015 | 0,682 10,785 |-1,112 | 0,166
045000 | =0,628 | 0,133 [~0,073 | 0,015 | 0,697 | 0,785 |-0.900 | 0,170
026000 | 0,522 | 0.157|-0,0611 0,018 | 0,700 (0,788 1=0,73610.199 _
| 0,7000 | 0,415 | 0,170 |-0,048 | 0,020 | 0,722 [0.790 |-0.575 | 0.215
| 0,8000 | =0,300 | 0,182 |-0,035] 0,021 | 0,735 10,791 |-0.408 | 0,230 |
| 0,9000 | =0,142 | 0,198 |-0,016| 0,023 | 0,754 10,793 |-0,188 | 0,250
10,9500 | 0,012 0,228 |-0,001| 0,026 0,769 {0,796 [-0.016 | 0,287
(140000 | == — - - e -- - -




— Incompress- —

¢ ible k = 0,161 B = 0,678

. t:pg c; kE: [ E: 19-”.) p+¥s) ‘-‘gg Gp:

s W e ";r__"l m n

0 . - o . - — e o
0,0125 | 0,420 | 0,389 |«0.068] 0,063 | 0,610 | 0,741 | ~0,688| 0,525 |
0.0250 | -0.625| 0,150 |-0,100 0,024 | 0,578 | 0,702 | ~1.081| 0,208 |
| 0,0500 | ~0,750 | 0,012 |-0,32) 0,002 | 0,557 ) 0.680 |~1.345]| 0,018 |
)_0.27& 0,830 |-0,019 (0,134 0,003 | 0,544 | 0,675 | -1,525/-0,028 |
| 0,1000 | -0,865 [-0,022 [-0,139 ~0.004 | 0,539 | 0.674 | -1.605|-0,033 |
| 0,1500 | 0,694 | 0,004 [=0.144] 0,001 | 0,534 | 0,679 | =1.675| 0.006
| 0,2000 | ~0,900 | 0,039 [~0.145 0,006 | 0,533 | 0,684 | -1.688| 0,057 |
| 0,2500 | -0.882| 0,070 [-0,142 0,011 | 0,536 | 0,689 | ~1.645] 0,102 |
| 0,3000 | 0,855 | 0,096 |-0.138 0,015 )| 0,540 | 0,604 | -1.582] 0,138 |
| 0,4000 | -0,758 | 0,130 |-0,122 0.021 | 0,556 | 0,699 |-1.363| 0,186 |
| 045000 | =0.628 | 0,133 |=0.101 0,021 | 0,577 | 0,699 | ~1.089| 0,190 _
| 0,6000 | 0,522 | 0,157 |-0.084 0,025 | 0,594 | 0.703 [-0,879| 0,224
| 07000 | =0,415 | 0,170 |=0,067 0.027 | 0,611 | 0,705 | -0.680| 0,241 |
 0.8000 | 0,300 | 0,182 |-0,048 0,029 | 0,630 ) 0.707 | -0.476) 0.257 |
_Q!m -Olm Qa]&g 0.023 0,032 93652%0 _'_0_-_?&7__51:3:!9_
| 09500 | 0,012 | 0,228 [-0,002) 0,036 | 0,676 | 0,714 | ~0.018| 0,320 |
[ 140000 | == = - P = ot = =




(2

TABLE XII
EXPERIMENTAL DATA FOR NACA 4412 AIRFOIL AT &L = 1,.88°,
(30 Pe80)
M= 0,512 M = 0.596 M = 0,640 M=0,735
g cpl 1.33 cpj 1.08 c:pg 0,64

Cc Gpg Gp! C pg cp& f:pg Gp . C pg cp!.
 0,0000 | 1,08 | 0,90 | 1,05 | 1,00| 1,10 | 0,88 1,10 | 0,044

10,0125 | 0,20 | 0,55 | 0,30 | 040 | «0,10 | 0.17| 0,60 | «0,10
10,0250 | <040 | 0,08 | 0,65 | 0,06 | <040 |[-0.03] 0,20 | -0,50 |

00500 =0 | 0,80 | «0,10 | 0,68 | 0,14 | 0,15 | <0.73
10,0750 | 0,95 | -0,07 [ =0.97 | 0,12 | 0,87 |-0,15| -0.34 | -0,68 |
 0,1000 | =1. =0,06 | -1,08 | 0,10 | -1,02 [ -0,13 | -0,52 | 0,60 |
001500 | 1613 | =0.02 | =1,27 | 0,06 | ~1.25 [-0,08| 0,73 | -0s45 |

 0,2000 | =1.19 | 0,01 | -1,38 | -0,02 | =1.39 |~0.,04 | -0.92 | -0,27

[ 0,2500 | =1.19 | 0,05 | ~1,42 | 0,02 | -1,49 | 0,01 | 1,00 | ~0,21
 0,3000 [ =1,14 | 0,08 | ~1,38 | 0,05/ 1,54 | 0,05| «1.05 | 0,16 |

004000 | 0,98 | 0,10 [ =1,13 | 0,08 | ~1,53 | 0,08 ~=1,22 | 0,11
0.5000 | <0,76 | 0,10 | 0,85 | 0.11|-0,83 | 0,08| ~1,38 | 0,08 |
 0,6000 | 0,62 | 0,125 0,67 | 0,12 | -0.70 Ooll ! =le32 1-0.07
| 0.7000 | <0045 | 0,17 | =048 | 0,13 | =0.52 | 0,12 | 0,092 0,05 |
| 0,8000 | -0,28 | 0,17 | =0,30 | O =0.30 | 0,13 ~0.50 | -0,03 |
| 0,9000 | 0,07 | 0,16 | =0,07 | 0,14 | <0,07 | 0,13 ] =0,25 | <0.04 |
[ 0,9500 | O | 9.15 | 0,05 | O.,12| 0.05 | O.,11)| -0,18 | -0,05 |
1,0000 | 0.3 | 0.3 | 0.10 | 0.10] 0,10 | 0.10| 0,08 | 0,08




CALCULATION OF C

TABLE XIII

0 VALUES FROM PRESSURE DISTRIBUTION CURVES,.
ok = = 0,25° cosd = 0,99999
Prandtl-Glavert Karman-Tsien Experimental
M A(:lnz.) Cn Gl -cnuou A Cn Co A cn Co
| 0,299 | 6,00 0,480 | 0,480 6,16 | 0,493 | 0,493 | 5.94 0.475 0.475 |
| 0.427 || 6446 0,516 0,515 1 6.64 0,531 0,530 6204 0,483 | 0,483 |
| 0,517 | 6,82 | 0,546 | 0,545 16,88 | 0,551 | 0,550 | 6,50 0,320 0.519 |
0,590 Te1l 0,569 | 0,568 || 7.54 0,603 0,602 7.15 0.571 0. 570
C,_ A On cl
0.833 9.75 0,780 0.779
0.906 10+45 0.836 0.835
0,964 | 10,88 | 0.870 | 0.869
2260 | 9.68 | o774 | 0.773

SL





