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Chapter 1: Introduction

1.1 Introduction to Taylor-Aris Dispersion in a Capillary Tube

Exploring the dispersion phenomena of two contacting miscible fluids under shear stress has

been widely investigated in the literature [7–13]. Some potential applications of studying the

dispersion state include, but are not limited to, (1) the distribution of tracers and drugs in

the bloodstream, (2) conventional chromatography, (3) field flow fractionation or polariza-

tion chromatography (4) the transient behavior of tubular reactors, (5) pollutant transport

in the atmosphere, and (6) material and thermal pollution of natural streams [14]. The wide

applications of such dispersion phenomena was a strong motivation for early development

of the dispersion theories. The first study on dispersion of a soluble matter injected into a

circular capillary tube in which a fluid was moving was reported by G.I.Taylor [15,16] and

Aris [17]. They theorized the convective-diffusive transport processes for a solute matter

introduced into a fully developed laminar flow in a capillary tube. Later, some modifica-

tions on original theory and extensions for different applications (such as flow in rectilinear

duct and channel) were added by others [2–4, 18–25]. Starting from convective-diffusive

description of the motion of a Brownian tracer particle through an abstract multidimen-

sional phase space, Brenner [26–28] modified the classical Taylor-Aris rectilinear-flow dis-

persion problem which greatly increased the scope of application. Some examples include:

sedimentation of non-spherical particles [10, 29], surface transport phenomena [30], direct

coupling effects [28], the transport of flexible bodies and chains of interacting Brownian par-

ticles [31], time-periodic non-unidirectional flows [32], effects of finite-size particles applied

to chromatographic separation [33–35], and turbulent flow fields [36].
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1.2 Introduction to Volume Averaging

The volume averaging technique can be used to derive continuum equations for multiphase

systems. A multiphase system is one described by the simultaneous presence of several

phases; each of which may have different flow characteristics. Continuum equations which

are valid within one phase may not be valid within the other phases. The volume averaging

method can express the multiphase system as a whole by means of spatially smoothing the

continuum equations that are valid in one phase to produce constitutive equations that are

valid everywhere. This method can also be used to analyze multiphase systems that are

hierarchical in nature and have disparate length scales. The difference between the time

and the length scales in most physics of interest is shown in Figure 1.1. There are four

principle objectives at each step of volume averaging process [6].

• Derivation of the spatially smoothed equations

• Validation of spatially smoothed equations by applying the constraints

• Development of closure problem in order to estimate the effective transport coefficients

• Comparison between theory and experiment

In the method section (Section 3), we will explain the general volume averaging procedure

by which governing point equations and boundary conditions can be spatially smoothed for

a simple case of diffusion-convection transport equation. The process of spatially smoothing

produces the governing equation for the local volume averaged quantities which includes the

spatial deviation quantities. This process along with the four principle objectives mentioned

earlier will be addressed in details.
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Figure 1.1: The difference between the time and the length scales for commonly used
physics [1].

1.3 Introduction to Multiscale Modeling

In contrast to traditional modeling which mainly focuses on one scale, multiscale modeling

is founded on modeling methods in which multiple models at different scales are simulta-

neously applied to characterize the complexity of systems that are hierarchical in nature.

A hierarchical structure is a structure with different levels of detail associated with the dif-

ferent scales within the system. By simultaneously implementing models at these separate

scales, one hopes to adopt an approach that shares the efficiency of the macroscopic models

as well as the accuracy of the microscopic models [1]. One main assumption underlying

this type of modeling is that the larger scales are at quasi-steady state compared to the

microscales. Multiscale modeling aims to encompass the different scales involving physi-

cal laws at different resolutions in which the system property is critical. In such systems,

a combination of the system properties at the different scales controls the overall system

behavior. Oftentimes, an macroscale model which is less accurate but computationally

faster to solve is combined with an microscale model to address the system behavior. The

microscale model is more accurate but it usually offers too much information. Different

methods (such as volume averaging) can be used to exploit the proper statistics of system
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in order to eliminate such superfluous information.

1.4 Motivation

The main motivation behind this study is using the method of volume averaging to investi-

gate the dispersion of a single species in a tube under preasymptotic regimes. The volume

averaging approach can be used to upscale microscale balance equations for the case of

diffusion-convection transport system. One interesting feature of the developed theory is

its ability to predict the effective transport properties from initial to asymptotic times. As

a result, the asymptotic solution for the effective dispersion tensor can be compared with

that of calculated by Taylor-Aris diffusion-convection transport equation as a validation for

the developed theory.
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Chapter 2: Literature Review

Early studies of the dispersion pattern of a solute pulse introduced into a laminar or tur-

bulent flow of a solvent in a capillary tube dates back to mid 1950s when the British fluid

dynamicist Geoffrey I. Taylor published the idea that longitudinal shear stress, resulting

from the parabolic velocity profile of the moving fluid, can raise the virtual diffusion coeffi-

cient (now usually called the effective dispersion coefficient) K of a species in the direction

of the flow

K =
a2U2

48DA
(2.1)

where U is the mean velocity of flow, a is the radius of pipe, and DA is the molecular

diffusion coefficient. This virtual diffusion coefficient is a combined result of the velocity

gradient over the cross section of the tube and the molecular diffusion in the radial direc-

tion. More precisely, dispersion of solute matter is influenced by two separate mechanisms.

A slow molecular or turbulent diffusion and a fast molecular turbulent diffusion induced

by velocity shear. Taylor theoretically and experimentally explored the correlation between

the longitudinal dispersion coefficient and the average concentration. He stated that the

average concentration influences the virtual diffusion coefficient and the virtual diffusion co-

efficient determines the dispersion state. For the case of turbulent flow, the virtual diffusion

coefficient was defined by

K = 10.1 a v∗ or K = 7.14 a U
√
γ (2.2)

where γ is the resistance coefficient and v∗ is the friction velocity. Dispersion was also found

to be greatly controlled by a small amount of curvature [15,16,37].
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Aris [17] followed Taylor with the next work considered seminal for the problem of

defining effective dispersion coefficients. Aris successfully eliminated the restrictions under

which the Taylor analyses was valid (i.e. 4L
A �

Ua
D � 6.9, where L is the length over which

observable changes in concentration happen) using the moments of solute distribution. He

defined a effective diffusion constant (again, in more modern parlance this would be called

the effective dispersion coefficient) as one-half of the growth rate of the variance of the

solute distribution about the moving origin

V =
1

S

∫∫
S
dydz

∫ +∞

−∞
(x− Ut)2C(x, y, z, t)dx (2.3)

lim
t→∞

1

2

dv

dt
= D +

a2U2

48D
= K (2.4)

Here, V and K are the variance and effective diffusion constant, respectively. He also

calculated that dispersion in a elliptical tube is more than that of a circular tube of the

same area for a constant pressure drop.

Based upon Taylor and Aris work, which provide it with a robust scheme for the study

of dispersion phenomena in convection-diffusion transport process [38], other researchers

extended general Taylor dispersion theory for different applications. As such efforts, Gill

and Sankarasubramanian [2] showed for the steady state, fully developed, laminar flow

condition, the dispersion model used by Taylor (shown below) can be valid within any time

if the dispersion coefficient also depends on time.

∂C

∂t
+ Um

∂C

∂x
= k

∂2C

∂x2
(2.5)

where t is time, C is the area average concentration, Um is the average velocity, x is the

axial coordinate, and k is the dispersion coefficient which does not depend on x and t, but

rather depends on physical parameters. For this heat equation type formula (Equation 2.5),
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the center of mass of the concentration xg and the variance σ2 are given by

xg = Ut (2.6)

σ2 = 2Kt (2.7)

If one chooses units of concentration (i.e.
∫ +∞
−∞ Cdx = 1), one possible solution for Equation

2.5 would be the Gaussian curve

C(x, t) =
1

σ
√

2π
exp(−(x− xp)2

2σ2
) (2.8)

Gill and Sankarasubramanian [3] also demonstrated that an exact solution for unsteady-

state convection diffusion transport equation can be obtained from first principles for the

convective coefficient K1(τ), the apparent diffusion coefficient K2(τ) and an infinite set of

time-dependent coefficient Ki(τ) for the case of non-uniform initial distribution of solute

such as one depicted in Figure 2.1. Their work was able to address a larger class of physical

problems.

Figure 2.1: A schematic system that Gill et al. investigated in his research with uniform
initial distribution [2], and with non-uniform initial distribution. Courtesy of [3].

In a later work, Gill and Sankarasubramanian [39] extended their theory of miscible

dispersion to the case of system with interface transport. They specifically studied the
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dispersion of a non-uniform initial distribution in time-variable isothermal laminar flow

in a tube with a first-order rate process at the tube wall. As a consequence of interface

transport phenomenon, a time-dependent ‘exchange coefficient’ depending on the rate of

interface transport and the initial solute distribution, but with no dependency on velocity

distribution, was explicitly derived. They developed only asymptotic large-time evaluations

due to the complex nature of the problem. Their research provided more insight to several

heat and mass transfer system such as (1) open tube chromatography (2) thermal pollution

in natural streams, (3) unsteady heat transfer in double pipe heat exchangers, and (4)

tubular flow reactors with heterogeneous catalysis.

Chatwin [4] studied the dispersion, as a result of diffusion and convection, of a passive

solute in a straight pipe of uniform cross-section. He developed an asymptomatic series

(Equation 2.9) for the concentration distribution based upon the assumption that diffusion

of solute follows Fick’s law. The first term in the series contains a Gaussian function and

the next terms involve asymmetries in the system as shown in Figure 2.2. For the case of

D t
a2

> 0.2 (D is molecular diffusion coefficient), three terms of the series can acceptably

explain the distribution of concentration in Poiseuille flow in a pipe of radius a. In the case

of a turbulent open channel, there was an excellent match between the model predictions

and numerical data provided by Sayre [40].

∂C

∂t
+ Um

∂C

∂x
= K2

∂2C

∂x2
+K3

∂3C

∂x3
+K4

∂4C

∂x4
+ · · · (2.9)

Later on, Chatwin [18] addressed whether the general solution of Equation 2.5 bet-

ter described the observed non-Gaussian concentration profile, than Equation 2.8. For

preasymptotic time, Equation 2.5 is possibly more accurate. For asymptotic times, how-

ever, Equation 2.5 is not better since all terms of order greater than two are not given by

the general solution for the Equation 2.5, according to the author.

Doshi et al. [5] investigated the effect of side walls on the dispersion process for open
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Figure 2.2: Initial dispersion state of solute Poiseuille flow, showing the asymmetry caused
by diffusion and interaction with the pipe wall. Courtesy of [4].

and closed rectangular ducts (as shown in Figure 2.3). For the laminar flow in a rectan-

gular cross-section channel, the Taylor longitudinal diffusivity is about 8D0 (where D0 is

longitudinal diffusivity when all variations across the channel are neglected) as aspect ratio

b
h reaches infinity.

Figure 2.3: Examined geometries in Doshi et al. work. Cross section perpendicular to the
flow direction for (a) open channels and for (b) closed duct. Courtesy of [5].
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According to Chatwin and Sullivan [19], who analyzed the Taylor’s longitudinal diffu-

sivity in the case of turbulent flow in a flat-bottomed channel of large aspect ratio, the time

necessary for the Taylor analysis to be valid in a channel with large aspect ratio should be

of order of a
2

k for laminar flow and of order a2

bw∗
for turbulent flow; where a is channel width,

b is channel height, k is molecular diffusivity, and w∗ is shear viscosity. In both laminar

and turbulent flow, the time must satisfy

Kt

b2
= O

(
a2

b2

)
(2.10)

in which

K ∝
W 2L2

K
(2.11)

where W is velocity, L is the characteristic length of the cross-section, and k is a measure

of the intensity of the lateral mixing of solute.

Taylor showed that after a sufficient amount of time, the longitudinal dispersion of a

solute is governed by a time-constant factor in the convection-diffusion equation, making

it difficult to use Taylor theory in many practical applications since there might not be

sufficient time available for this asymptotic state to be reached. Smith [20] addressed this

problem by introducing a delay-diffusion equation

∂C̄

∂t
+ Ū

∂C̄

∂x
− k̄ ∂

2C̄

∂x2
−
∫ ∞

0
D
∂2C̄

∂x2

(
x−

∫ τ

0
ũ(τ ′)dτ ′, t− τ

)
dτ = q̄(x, t) (2.12)

in which q̄ is the source strength, Ū is the bulk velocity, ũ is a transport velocity for the

free decay of cross-stream concentration variations.
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Chapter 3: Method

3.1 Volume Averaging

In our analysis, we use volume averaging to coarse-grain (or upscale or aggregate) the

system information. One fundamental assumption of the volume averaging technique is

that the system can be characterized by more than one length scale, that is to say, volumes

that are sufficiently large compared to the microscale characteristic length exist within the

system [6]. For any such volume, the intrinsic volume average for a scalar field property ψγ

is defined over the region V (x) by

〈ψγ〉γ |(x,t) =

∫
r∈V (x)

w(x− r)ψγ(r, t)dV (r) (3.1)

where w is a weighting function that is compacted in V . This definition associate every

point in space with an averaging volume that is invariant with respect to time and space [6].

For a n-phase system, the averaging volume can be expressed as

V =
n∑
i=1

Vi(x) (3.2)

where Vi(x) is the volume of the i-phase contained within the averaging volume and n is

the total number of phases. A representation of macroscale region and averaging volume

for a solid-liquid two-phase system is illustrated in Figure 3.1. Following this notation for

a two-phase system, the intrinsic average concentration and the intrinsic average velocity
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are defined by

〈cAγ〉γ =
1

Vγ(x)

∫
Vγ(x)

cAγ dV (3.3)

〈vγ〉γ =
1

Vγ(x)

∫
Vγ(x)

vγ dV (3.4)

in which Vγ(x) represents the volume of the γ phase contained within the averaging

volume.

Figure 3.1: Macroscopic region and averaging volume for a two-phase system. The γ- and
the κ-phase represent the liquid and the solid phase, respectively. r0 is the characteristic
length for averaging volume, lγ is the characteristic length for liquid phase and lκ is the
characteristic length for solid phase. The position vector rγ is used to locate any point in the
γ-phase. The position vector x locates the centroid of the averaging volume. The relative
position vector yγ shows the location of points in the γ-phase relative to the centroid of
averaging volume. Courtesy of [6].

3.2 Spatial Averaging Theorem

In the process of volume averaging one may encounter the interchanging of differentiation

and integration in order to express the flux in terms of volume averaged quantities. This
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can be achieved by means of the spatial averaging theorem. For a scalar field property ψγ

and a vector field property Ψγ defined over the region V (x), the spatial averaging theorem

is given by

〈∇ψγ〉γ = ∇〈ψγ〉γ +
1

Vγ

∫
Aγκ

nγκψγdA (3.5)

〈∇ ·Ψγ〉γ =∇ · 〈Ψγ〉γ +
1

Vγ

∫
Aγκ

nγκ ·ΨγdA (3.6)

in which Aγκ defines the area of the interface between two phases [41–43]. The latter is the

vector form of the spatial averaging theorem. We will repeatedly use the spatial averaging

theorem for the purpose of direct interchanging differentiation and integration along with

the general transport theorem which will be presented in the next section.

3.3 General Transport Theorem

General transport theorem (or Leibniz-Reynolds transport theorem) [44] is a three-

dimensional representation of the Leibniz rule for interchanging differentiation and inte-

gration which can be expressed as

d

dt

∫
Ω(t)

ψγdV =

∫
Ω(t)

∂ψγ
∂t

dV +

∫
∂Ω(t)

ψγ(w · n)dA (3.7)

in which Ω(t) is an arbitrary, time-dependent region and ∂Ω(t) is the bounding surface of

this region. The outward-pointing unit normal vector and the speed of displacement of the

bounding surface is given by n and w · n, respectively. It is clear that this formulation

is very general and can be applied to a variety of applications. We will use the general

transport equation for interchange of differentiation and integration for the accumulation

term. With these theorems in place, we have the necessary elements to begin the volume
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averaging process for the Taylor-Aris boundary value problem.

3.4 Averaging Theory for Taylor-Aris Dispersion

We examine the simplest convective transport system; a passive (i.e., no adsorption or

reaction at the fluid-wall boundary or the fluid-porous interface) convection and diffusion

multiscale system. We are particularity interested in distribution state of a single species

in a single fluid phase inside a capillary tube. The cylindrical geometry has been chosen for

this investigation since Taylor-Aris dispersion theory was first adopted for the cylindrical

coordinate system. Note, the volume averaging process for the one-phase system discussed

in this study can be extended for a homogeneous porous medium (i.e. a coarsened pore

scale in such a way that internal boundaries are not needed to be resolved). We consider

the transport phenomena of a single species A which is being carried out by the fluid phase,

identified as the γ-phase, in a tube using the method of volume averaging.

3.5 Representative Elementary Volume for Taylor-Aris Dispersion

Problem

For our case, the representative elementary volume (or averaging volume) within which

the change in system properties can be well evaluated by a statistical description is the

differential slice of the tube as shown in Figure 3.2. A further adoption of the intrinsic

average concentration formulation (Equation 3.3) for the presented REV leads to

〈cAγ〉γ =
1

Vγ(x)

∫
Vγ(x)

cAγd(Ah) =
1

Aγe

∫
Aγe

cAγdA = 〈cAγ〉γe (3.8)

One might assume that the intrinsic average concentration, 〈cAγ〉γ , can be represented as

an area average concentration, 〈cAγ〉γe (i.e the average concentration over a cross section
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along the longitudinal axis of tube) for this specific REV. Although they are essentially the

same, we use volume averaging notation for our averaging process presented in this study.

Figure 3.2: A tube with its representative elementary volume. We are interested in studying
diffusion-convection transport phenomenon inside the tube. Aγκ represents the entire inter-
face area between the γ-phase and the tube wall contained within REV and Aγe represents
the area of the entrance and the exit of the γ-phase passing through the REV.

3.6 Length-Scale Constraints for Taylor-Aris Multiscale System

Before starting the volume average process for Taylor-Aris dispersion problem, it is impor-

tant to point out that one may need to use the conventional length scale constraint in order

to neglect some high order terms that frequently appear in the volume averaging process

(such as the average or the average of an averaged scaler or vector field)

lγ � r0 � L (3.9)
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in which lγ is the characteristic length for γ phase, r0 is the characteristic length for aver-

aging volume and L is the characteristic length for macroscopic region (these three length

scales are compared in Figure 3.1). There are three length scales associated with Taylor-Aris

dispersion multiscale system, similar to conventional length scale, but they have slightly dif-

ferent relations. For Taylor-Aris problem, the size of the macroscale length (L) is described

as at least the size of the initial condition (i.e. how wide the initial condition is spread out

along the tube length) while the characteristic length of γ phase (lγ or microscale length) is

of order of tube radius. The radius of the tube (r0) represents the REV length scale leading

to

lγ ∼ r0 � L (3.10)

In other words, the REV characteristic length and microscale characteristic length hap-

pened to be in same order for Taylor-Aris multiscale system in a tube. We will use this

length scale constraint for the development of the averaged equation and the closure prob-

lems.

3.7 Microscale Balance Equations

We examine a single fluid phase system in a tube such as one illustrated in Figure 3.2.

This system is essentially the same system that was studied originally by Taylor [15] and

Aris [17]. The governing equation, the boundary conditions, and the initial condition for

this multiscale system are given by

∂cAγ
∂t

+∇ · (cAγvγ) =∇ · (DAγ · ∇cAγ) (3.11)
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B.C.1 −nγκ · (DAγ · ∇cAγ) = 0 at Aγκ (3.12)

B.C.2 −nγκ · (DAγ · ∇cAγ) = FA(x, t) at Aγe (3.13)

I.C.1 cAγ(x, 0) = ϕA(x) at t=0 (3.14)

in which Aγκ represents the entire interface area between the γ-phase and the tube wall

contained within the averaging volume, while Aγe identifies the area of the entrance and

the exit of the γ-phase passing through the averaging volume. In Equation 3.11, cAγ , vγ ,

and DAγ are concentration of species A in γ phase, fluid velocity, and mixture diffusivity

of species A, respectively. One assumption that has been implemented in the diffusive

mass flux equation is that the mole fraction of species A is small enough (i.e., xA � 1).

Moreover, the following reasonable assumptions has been made in order to simplify the

volume averaged process: (1) the fluid flow is incompressible and steady; (2) the velocity

field is symmetric cross-sectional fluid pressure at the ends of the tube is uniform, which

leads to a symmetric velocity field; and, (3) the concentration field is symmetric in the

angular direction, so that ∂cA/∂θ = 0. Furthermore, it should be clear that this equation set

(Equations 3.11-3.14) serves as a simple convection-diffusion system with an impermeable

wall boundary condition (no flux of species A can pass through the wall), a known flux for

species A along the entrance and the exit of the tube, and an arbitrary initial configuration

for species A distributed inside the tube. Although the second boundary condition implies

a flux at the external boundaries, keeping this term as non-zero condition adds significant

complexity to the analysis without adding much in the way of additional insight. Therefore,

one can treat this boundary condition as zero-flux boundary condition for a sufficiently long

tube in such a way that no flux of initial configuration can exit the external boundaries.

It is also important to note that the initial condition (ϕA(x)) can have any arbitrary

function of coordinate system and this will not affect the volume averaging process. We
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will keep this initial configuration as a non-zero term, in contrast to the second boundary

condition, in the volume average process.

3.8 Averaging Process (Spatial Smoothing)

The result of the spatial smoothing process is obtained by developing the intrinsic volume

average (Equation 3.1) for the microscale balance equation (Equation 3.11) as follows

∂〈cAγ〉γ

∂t
+ 〈vγ〉γ · ∇〈cAγ〉γ + 〈ṽγ · ∇c̃Aγ〉γ =∇ · (DAγ · ∇〈cAγ〉γ) (3.15)

B.C.1 −nγκ · (DAγ · ∇c̃Aγ) = nγκ · (DAγ · ∇〈cAγ〉γ) at Aγκ (3.16)

B.C.2 −nγκ · (DAγ · ∇〈cAγ〉γ) = 〈FA(x, t)〉γ at Aγe (3.17)

I.C.1 〈cAγ〉γ |(x,0) = 〈ϕA〉γ |x at t=0 (3.18)

Here we have used the spatial decompositions for development of the balance equations

cAγ(x, t) = 〈cAγ〉γ(x, t) + c̃Aγ(x, t) (3.19)

vγ(x) = 〈vγ〉γ(x) + ṽγ(x) (3.20)

Here, c̃Aγ and ṽγ are the spatial deviation concentration and spatial deviation velocity.

c̃Aγ and ṽγ have different length scales compared with the counterpart terms (i.e. 〈cAγ〉

and 〈vγ〉). These decompositions of length scale defined in Equation 3.19 and Equation

3.20 cause the average quantities to be subjected to major changes over only large scale

length (L) and the spatial deviation quantities to vary over small length scale (l). Therefore,

average quantities (i.e. 〈cAγ〉 and 〈vγ〉) are of the order of the macroscale length and spatial

deviation quantities (i.e. c̃Aγ and ṽγ) are of the order of the microscale length. Several
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steps have been taken to derive Equations 3.15-3.18. We try to explain these steps in the

following sections.

Using the general transport theorem (Equation 3.7) along with the fact that the volume

of REV (Vγ) does not change with time justifies the direct interchange of the gradient and

the averaging operations within the accumulation term. So, the accumulation term can be

rewritten as

〈
∂cAγ
∂t
〉γ =

∂〈cAγ〉γ

∂t
(3.21)

One can develop the averaging theorem for the gradient of the local concentration as

〈∇cAγ〉γ =∇〈cAγ〉γ +
1

Vγ

∫
Aγκ

nγκcAγdA (3.22)

Turning our attention to the integral part of the Equation 3.22, it is evident that for the

radial-symmetry initial condition (Section 3.7, assumption #3) the concentration of the

species A (cAγ) is independent of θ-direction for any specified r such as r = R

cAγ(r, θ, z, t)|r=R = cAγ(z, t) (3.23)

Moreover, one can show that the Equation 3.25 is valid for any closed, piecewise smooth

surface using the divergence theorem

divergence theorem

∫
∂V
φnidA =

∫
V

∂φ

∂xi
dV (3.24)

Ii =

∫
∂V
nidA =

∫
V

∂1

∂xi
dV = 0 (3.25)

where V is a volume in three dimensional space bounded by a single continuous surface ∂V

with outward unit normal vector −→n and ψ is a scalar function of the coordinate xi within



20

the volume. Rewriting the integral part of Equation 3.22

1

Vγ

∫
Aγκ

nγκcAγdA =
1

Vγ

∫
Aγκ

cAγ(z, t)nidA =
1

Vγ

∫
Aγκ

cAγ(z, t)nid(Rdθdz) (3.26)

At this point, it can be easily understood that for any specific value of z and t

1

Vγ

∫
Aγκ

cAγ(z, t)nidA = 0 (3.27)

This is illustrated in Figure 3.3. Because of the radial-symmetry of the initial configuration

the circles, which are closed surfaces, represent a constant concentration for any specific

z at any time. Therefore, one can conclude that the spatial averaging theorem allows the

direct interchange of the gradient and averaging operations for systems where the initial

condition is radially-symmetric. This can be expressed as

〈∇cAγ〉γ =∇〈cAγ〉γ +
1

Vγ

∫
Aγκ

nγκcAγdA =∇〈cAγ〉γ (3.28)

For the non-symmetry initial condition (which is beyond the scope of this thesis), one

may need to calculate the integral terms appearing in the averaged equation for concentra-

tion as

〈∇cAγ〉γ =∇〈cAγ〉γ +
1

Vγ

∫
Aγκ

nγκ〈cAγ〉γ dA+
1

Vγ

∫
Aγκ

nγκc̃Aγ dA (3.29)

This is an active area of research. Our main focus for this thesis will remain on systems where

the initial configuration is radially-symmetric. Now, we try to find a spatially smoothed

equation for the diffusive transport term (the term on the right-hand-side of Equation 3.11)

in order to substitute it in the microscale balance equation. For this purpose, we apply the
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Figure 3.3: The colored circles represent a constant concentration and velocity for any
specific z at any time since the initial concentration and local velocity profiles are radially-
symmetric. This essentially means local concentration and velocity are independent of the
θ-direction.

spatial averaging theorem on this term as

〈∇ · (DAγ · ∇cAγ)〉γ =∇ · 〈DAγ · ∇cAγ〉γ +
1

Vγ

∫
Aγκ

nγκ · (DAγ · ∇cAγ) dA (3.30)

Recalling the first boundary condition of the microscale balance equation

−nγκ · (DAγ · ∇cAγ) = 0 at Aγκ (3.31)

the last term on the right-hand-side of Equation 3.30 is identically zero. Under this

circumstances, the diffusive transport term (Equation 3.30) is reduced to

〈∇ · (DAγ · ∇cAγ)〉γ =∇ · 〈DAγ · ∇cAγ〉γ (3.32)

Here, we have made the assumption that the variations of molecular diffusivity (DAγ) within

the averaging volume can be ignored since it gradually varies with pressure, temperature,

and concentration [45].
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Turning our attention to the convection term, we implement the fact that the velocity field

is solenoidal inside the tube so that the continuity equation takes the form ∇ · vγ = 0,

which immediately leads to

∇ · 〈vγ〉γ = 0 (3.33)

∇ · ṽγ = 0 (3.34)

Applying the spatial averaging theorem on the convective term gives us the volume averaged

form for the convective term as

〈∇ · (cAγvγ)〉γ =∇ · 〈cAγvγ〉γ +
1

Vγ

∫
Aγκ

nγκ · (cAγvγ)dA (3.35)

The second term on the right-hand-side of Equation 3.35 is identically zero since the

Aγκ is treated as a rigid, impermeable wall as

nγκ · vγ = 0 at Aγκ (3.36)

Therefore, Equation 3.35 simplifies to

〈∇ · (cAγvγ)〉γ =∇ · 〈cAγvγ〉γ (3.37)

It is possible to remove volume averaged quantities from within the averaging volume in

order to simplify the right-hand-side of Equation 3.37 after expanding this term based on

spatial deviation concentration (Equation 3.19) and spatial deviation velocity (Equation

3.20) as

〈cAγvγ〉γ = 〈cAγ〉γ〈vγ〉γ + 〈cAγ〉γ〈ṽγ〉γ + 〈c̃Aγ〉γ〈vγ〉γ + 〈c̃Aγ〉γ〈ṽγ〉γ (3.38)

This is justified by the length-scale constraint `γ � L (more details can be found in Ap-
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pendix A). We can also make the explicit assumption that 〈c̃Aγ〉γ � 〈cAγ〉γ so that varia-

tions of volume averaged quantities may be neglected in the average balance as follows

〈cAγvγ〉γ = 〈cAγ〉γ〈vγ〉γ + 〈c̃Aγ〉γ〈ṽγ〉γ (3.39)

Expanding the two terms on the right-hand-side of above formulation using Equations 3.33

and 3.34 leads to

∇ · (〈vγ〉γ〈cAγ〉γ) = 〈vγ〉γ · ∇〈cAγ〉γ (3.40)

∇ · 〈ṽγ c̃Aγ〉γ = 〈ṽγ · ∇c̃Aγ〉γ (3.41)

The volume averaged convective transport term can be written as its final form as

∇ · (cAγvγ) = 〈vγ〉γ · ∇〈cAγ〉γ + 〈ṽγ · ∇c̃Aγ〉γ (3.42)

Substitution of averaged accumulation, convective, and dispersive transport terms back into

the microscope balance equation (Equation 3.11) gives us the volume averaged convective-

diffusion transport equation (Equation 3.15) as

∂〈cAγ〉γ

∂t︸ ︷︷ ︸
accumulation

+ 〈vγ〉γ · ∇〈cAγ〉γ︸ ︷︷ ︸
convective transport

+ 〈ṽγ · ∇c̃Aγ〉γ︸ ︷︷ ︸
dispersive transport

=∇ · (DAγ · ∇〈cAγ〉γ)︸ ︷︷ ︸
diffusive transport

(3.43)

One may wonder why the B.C.1 (Equation 3.16) and the B.C.2 (Equation 3.17) have dif-

ferent forms after averaging process. This can be justified by the fact that developing the

volume averaged transport equation for the wall (Equation 3.16) does not have any physical

interpretation, even though it possible to derive a mathematical expression for it, as the

integral domain is a surface rather than a volume. Therefore, B.C.1 is a simple substitution

of the spatial deviation concentration (Equation 3.19) into Equation 3.16. We have also

developed volume averaged flux at the external boundaries (i.e. 〈FA(x, t)〉γ) and volume
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averaged initial condition (i.e 〈ϕA(x)〉γ) as

〈FA(x, t)〉γ =
1

Vγ(x)

∫
Vγ(x)

FA(x, t) dV (3.44)

〈ϕA(x)〉γ =
1

Vγ(x)

∫
Vγ(x)

ϕA(x, t) dV (3.45)

3.9 Deviation Equations

To derive the boundary value problem for spatial deviation concentration, one can subtract

the original average equations (Equations 3.15-3.18) from the point equations (Equations

3.11-3.14) to obtain

∂c̃Aγ
∂t︸ ︷︷ ︸

accumulation

+ vγ · ∇c̃Aγ︸ ︷︷ ︸
convection

+ ṽγ · ∇〈cAγ〉γ︸ ︷︷ ︸
local convective source

− ∇ · 〈ṽγ c̃Aγ〉γ︸ ︷︷ ︸
non-local convection

=

+∇ · (DAγ · ∇c̃Aγ)︸ ︷︷ ︸
diffusion

(3.46)

B.C.1 −nγκ · (DAγ · ∇c̃Aγ) = nγκ · (DAγ · ∇〈cAγ〉γ)︸ ︷︷ ︸
source

at Aγκ (3.47)

B.C.2 −nγκ · (DAγ · ∇c̃Aγ) = F̃A(x, t)︸ ︷︷ ︸
source

at Aγe (3.48)

I.C.1 c̃Aγ(x, 0) = ϕ̃A(x)︸ ︷︷ ︸
source

at t=0 (3.49)

Here, we have adopted the following notation

F̃A(x, t) = FA(x, t)− 〈FA(x, t)〉γ (3.50)

ϕ̃A(x) = ϕA(x)− 〈ϕA(x)〉γ (3.51)
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Turning our attention on∇· 〈ṽγ c̃Aγ〉γ term, it is clear that the value of the c̃Aγ is evaluated

throughout the entire REV rather than at the centroid of the REV and, as a result, it is

a non-local term in nature. More simplification of the non-local convection term will be

explained in the next section.

3.10 Simplification of the Closure Problems

The closure problems above are linear but nonlocal (in space) convection-diffusion problems.

The solutions and properties of such problems is an active area of research. However, it

can be shown that solutions exist, that the solutions depend continuously on the initial

conditions, and that the nonlocal equations converge to the local ones as the nonlocal terms

become small enough [46–49]. Much less information is available about the properties of

even linear nonlocal equations in the presence of boundaries, although they are frequently

solved numerically [50]. Fortunately, for this particular set of equations, we can make some

very compelling arguments indicating that the integral terms are negligible for the purposes

of the closure problems. This yields the following set of localized closure problem.

∂c̃Aγ
∂t

+ vγ · ∇c̃Aγ −∇ · (DAγ · ∇c̃Aγ) = −ṽγ · ∇〈cAγ〉γ (3.52)

B.C.1 −nγκ · (DAγ · ∇c̃Aγ) = nγκ · (DAγ · ∇〈cAγ〉γ) at Aγκ (3.53)

B.C.2 −nγκ · (DAγ · ∇c̃Aγ) = F̃A(x, t) at Aγe (3.54)

I.C.1 c̃Aγ(x, 0) = ϕ̃A(x) at t=0 (3.55)
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3.11 Integral Solutions to the Closure Problems

The simplified closure problem above is a local and linear parabolic equation. The solution

to the problem for species A is a classical solution that can be represented in integral form

by Polyanin [51] as

c̃Aγ(x, t) =

∫ τ=t

τ=0

∫
y∈Vγ(x)

−GA(x,y, t, τ) ṽγ(y) · ∇y 〈cAγ〉γ |(y,t) dV (y)dτ︸ ︷︷ ︸
volume source

+

∫ τ=t

τ=0

∫
y∈Aγe(x)

−GA(x,y, t, τ) F̃A(y, t) dA(y)dτ︸ ︷︷ ︸
boundary source

+

∫
y∈Aγκ(x)

GA(x,y, t, 0)ϕA(y)dV (y)︸ ︷︷ ︸
initial condition source

(3.56)

where GA(x,y, t, τ) is the Greens function for this problem. We have already imposed

the length-scale constraints `/L � 1, which allows us to remove average quantities from

integrals. We also impose at this point the approximations that the characteristic time

scale, T , associated with the average concentration gradient is much larger than the time

scale, t∗, associated with the Greens function. In other words, we must have an analogous

separation of time scales

t∗ � T (3.57)

This approximation is a version of the quasi-steady approximation, and it is described in

additional detail in [52] and [53]. Although there are conditions when this approximation

will clearly not be true (e.g., when the structure of the initial condition is such that it must

span large distances before it is relaxed), the approximation is nonetheless a useful one

because it allows the development of a time-localized theory. These approximations allow

us to put the solution in the conventional time- and space- localized form [45]. Additionally,
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when we are interested in systems where the system boundaries are far in some sense from

the chemical species of interest, we can safely set the boundary conditions to zero (i.e.,

F̃A = 0). In the following, we will adopt this assumption to keep the analysis clear. However,

note that if the particular boundary conditions are known, then one may incorporate them

into the theory with very little additional effort.

With these approximations in place, the local solution for the set of balance equations

associated with chemical species A is given by

c̃Aγ(x, t) = bAγ(x, t) · ∇ 〈cAγ〉γ |(x,t) + SAγ(x, t) (3.58)

where bAγ and SAγ(x, t) are known as closure variables and are defined by

bAγ(x, t) =

∫ τ=t

τ=0

∫
y∈Vγ(x)

−G(x,y) ṽγ(y) dV (y)dτ

+

∫ τ=t

τ=0

∫
y∈Aγκ(x)

−G(x,y) F̃A(y, t) dA(y)dτ (3.59)

SAγ =

∫
y∈Aγκ(x)

G(x,y, t, 0)ϕ̃A(y)dV (y) (3.60)

Note that SAγ is an exponentially-decaying function of time (this can be easily seen by

attempting a conventional separation of variables for c̃Aγ). At early times, the magnitude of

this function can be significant, and can create (apparent) deviations from Fickian behavior

(especially in the second moment), even thought the spreading process is a Fickian one.
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3.12 Closed Form

We start with the averaged equation to derive the closed form that does not depend on the

spatial deviation concentration

Averaged equation

∂〈cAγ〉γ

∂t
+ 〈vγ〉γ · ∇〈cAγ〉γ + 〈ṽγ · ∇c̃Aγ〉γ =∇ · (DAγ · ∇〈cAγ〉γ) (3.61)

We substitute the local solution to the balance equation (Equation 3.58) to develop the

closed form of convection-dispersion transport equation as

∂〈cAγ〉γ

∂t
=∇ · (DAγ · ∇〈cAγ〉γ)−∇ · (〈ṽγ ⊗ bAγ〉γ · ∇〈cAγ〉γ)

− 〈vγ〉γ · ∇〈cAγ〉γ − 〈ṽγ · ∇SAγ〉γ (3.62)

To simplify the notation, we can define the following effective parameters

DH
Aγ = −〈ṽγ ⊗ bAγ〉γ (3.63)

DT
Aγ = DAγ + DH

Aγ (3.64)

S∗Aγ = 〈ṽγ · ∇SAγ〉γ (3.65)

in which DH
Aγ and DT

Aγ identify as hydrodynamic dispersion tensor and the total disper-

sion tensor, respectively. As a result, Equation (3.62) can be written compactly as

∂〈cAγ〉γ

∂t︸ ︷︷ ︸
accumulation

=∇ ·
(
DT
Aγ · ∇〈cAγ〉γ

)︸ ︷︷ ︸
diffusive transport

− 〈vγ〉γ · ∇〈cAγ〉γ︸ ︷︷ ︸
convective transport

− S∗Aγ︸︷︷︸
non-conventional convective source

(3.66)

Note that this balance equation is unusual in that it contains a non-conventional source

term, S∗Aγ . The role of this term is to account for the evolution of the initial condition

at early times. Because this term is an exponentially decreasing function of time, it will
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decay toward zero as time grows large enough. The effect of this term on the early stages

of diffusion-convection transport phenomenon will be discussed in the discussion section.

To complete the problem, as a final step, we must evaluate the closure variables over a

representative domain. This is described in the following section.

3.13 Solving for the Closure Variables

Recall the solutions for the deviation concentrations for species A is given by a linear form

where each term is proportional to one of the sources in the balance equation

c̃Aγ = bAγ · ∇〈cAγ〉γ + SAγ (3.67)

The linearity of the balance equation for c̃Aγ allow us to separate the deviation concen-

trations problem into two separate problems, where each set of equations represents the

contribution of one source term. It is fairly simple to show

∂c̃Aγ
∂t

=
∂bAγ
∂t
· ∇〈cAγ〉γ + bAγ ·

∂(∇〈cAγ〉γ)

∂t
+
∂SAγ
∂t

(3.68)

∇c̃Aγ =∇⊗ bAγ · ∇〈cAγ〉γ + bAγ · ∇⊗∇〈cAγ〉γ +∇SAγ (3.69)

At this point, the quasi-steady assumption is conventionally adopted, and this allows one

to neglect derivatives with respect to time, assuming that certain length-scale constraints

are met. Additionally, it is usually assumed that the gradient of the average concentration

can be treated as being constant, so that the second gradient of the average concentration

may be neglected.

However, more recently certain schemes have been developed to investigate useful tran-

sient closure problems [54]. Under these conditions, the terms involving the second gradient

of the average concentration and the time-derivative of the gradient of the concentration

are neglected. Under these conditions, a set of soluble closure problems for bAγ and SAγ
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can be developed.

Substituting Equation 3.67 into the closure problem given by Equations 3.52-3.55 yields

two sets of equations as

Species A closure for bAγ

∂bAγ
∂t

+ vγ · ∇⊗ bAγ −∇ · (DAγ · ∇⊗ bAγ) = − ṽγ︸︷︷︸
source

(3.70)

B.C.1 −nγκ · (DAγ · ∇⊗ bAγ) = +nγκ ·DAγ at Aγκ (3.71)

B.C.2 −nγκ · (DAγ · ∇⊗ bAγ) = 0 at Aγe (3.72)

I.C.1 bAγ = 0 at t=0 (3.73)

Species A closure for SAγ

∂SAγ
∂t

+ vγ · ∇SAγ −∇ · (DAγ · ∇SAγ) = 0 (3.74)

B.C.1 −nγκ · ∇SAγ = 0 at Aγκ (3.75)

B.C.2 −nγκ · (DAγ · ∇SAγ) = F̃A(x, t) = 0 at Aγe (3.76)

I.C.1 SAγ = ϕ̃A at t=0 (3.77)

It is apparent that the first of these two closure problems provides information about the

evolution of DH
Aγ in time, whereas the second problem provides information about how S∗Aγ

will evolve in time.
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3.14 Treatment of the Boundary Condition 2 using Periodic Boundary

Conditions

Since we are not interested in solving these two closure problems over the macroscopic

region, we abandon B.C.2 and replace it with a unit cell in a spatially periodic model as

Species A closure for bAγ

∂bAγ
∂t

+ vγ · ∇⊗ bAγ −∇ · (DAγ · ∇⊗ bAγ) = −ṽγ (3.78)

B.C.1 −nγκ · (DAγ · ∇⊗ bAγ) = +nγκ ·DAγ at Aγκ (3.79)

B.C.2 bAγ(x + li, t) = bAγ(x, t) at Aγe (3.80)

I.C.1 bAγ = 0 at t=0 (3.81)

Species A closure for SAγ

∂SAγ
∂t

+ vγ · ∇SAγ −∇ · (DAγ · ∇SAγ) = 0 (3.82)

B.C.1 −nγκ · (DAγ · ∇SAγ) = 0 at Aγκ (3.83)

B.C.2 SAγ(x + li, t) = SAγ(x, t) at Aγe (3.84)

I.C.1 SAγ = ϕ̃A at t=0 (3.85)

3.15 Treatment of the Boundary Condition 1 for bAγ Closure Equation

Taking a second look at B.C.1 (Equation 3.12) of the microscale balance equation, one

can conclude that the gradient of the average concentration is not a function of r and θ
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direction, in cylindrical coordinate, but rather it does depend on z and t

〈cAγ〉γ =
1

Aγe

∫
γe
cAγ dAγe (3.86)

〈cAγ〉γ =
1

Aγe

∫
cAγ(r, θ, z, t) dθ rdr (3.87)

〈cAγ〉γ = f(0, 0, z, t) (3.88)

Also, the third component of the normal unit outward vector to the wall is zero as shown

in Figure 3.4.

Figure 3.4: The schematic showing the components of the normal unit outward vector to
the wall for a tube (red arrow). Note, the third component of normal unit outward vector
is zero.

As a result, the gradient of the averaged concentration would be only a function of z

∇〈cAγ〉γ =
∂〈cAγ〉γ

∂r
−→r +

1

r

∂〈cAγ〉γ

∂θ

−→
θ +

∂〈cAγ〉γ

∂z
−→z (3.89)

∇〈cAγ〉γ =
∂〈cAγ〉γ

∂z
−→z (3.90)

Forming the dot product of nγκ and ∇〈cAγ〉γ

nγκ ·∇〈cAγ〉γ = (nr,nθ, 0) · (0, 0,
∂〈cAγ〉γ

∂z
) = 0 at Aγκ (3.91)
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We recall the simplified version of the B.C.1 for the averaged equation (Equation 3.16)

−nγκ · ∇c̃Aγ = nγκ · ∇〈cAγ〉γ at Aγκ (3.92)

Rearranging this equation leads to

−nγκ · ∇c̃Aγ = 0 at Aγκ (3.93)

−nγκ · ∇⊗ bAγ · ∇〈cAγ〉γ − nγκ · ∇SAγ = 0 at Aγκ (3.94)

One can express above equations as

−nγκ · ∇⊗ bAγ = 0 (3.95)

−nγκ · ∇SAγ = 0 (3.96)

Finally, we are able to rewrite the closure problems (Equations 3.79-3.85) as

Species A closure for bAγ

∂bAγ
∂t

+ vγ · ∇⊗ bAγ −∇ · (DAγ · ∇⊗ bAγ) = −ṽγ (3.97)

B.C.1 −nγκ · (DAγ · ∇⊗ bAγ) = 0 at Aγκ (3.98)

B.C.2 bAγ(x + li, t) = bAγ(x, t) at Aγe (3.99)

I.C.1 bAγ = 0 at t=0 (3.100)
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Species A closure for SAγ

∂SAγ
∂t

+ vγ · ∇SAγ −∇ · (DAγ · ∇SAγ) = 0 (3.101)

B.C.1 −nγκ · (DAγ · ∇SAγ) = 0 at Aγκ (3.102)

B.C.2 SAγ(x + li, t) = SAγ(x, t) at Aγe (3.103)

I.C.1 SAγ = ϕ̃A at t=0 (3.104)

We are now left with four sets of equation to solve for Taylor-Aris dispersion prob-

lem in a tube: (1) microscale balance equations (Equations 3.11-3.14), (2) averaged equa-

tions (Equations 3.15-3.18), (3) closed equations for bAγ (Equations 3.97-3.100), and (4)

closed equations for SAγ (Equations 3.101-3.104). We have used the finite elements package

COMSOL Multiphysics 5.3 R© and MATLAB R2017 R© for all computational analysis. The

physical parameters for the simulations are reported in Table 3.1.

Table 3.1: Parameters used in the simulations

Parameter Value Definition

T 293.15 K System temperature
Lt 200 cm Length of tube
L 15 cm Length of initial concentration
r 1 cm Radius of tube

DAγ,0 1× 10−9 m2/s Molecular diffusivity of species A
c0 1× 100 mol/m3 Initial concentration
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Chapter 4: Results & Discussion

In this chapter, our focus will remain on evaluating the total dispersion tensor and the second

moment of the initial configuration for an arbitrary structure of the initial concentration

using the analytical expression we already derived in Chapter 3 for the computation of

the total dispersion coefficient (Equation 3.65). We extend these evaluation for Péclet

numbers ranging 10−3 − 102. We recall that the development of the closure problems were

performed based on the microscale balance equations involving an arbitrary shape of initial

configuration. This is one of the exciting features of our analysis in this study.

A three-dimensional representation of the initial concentration which we use for our

analysis is illustrated in Figure 4.1. Note, the flow direction is left to right. This non-

uniform but radially-symmetric configuration has two separate blocks of equal length (L3 )

with different volumes. The left block which is located at the center of tube and initially

moves faster eventually catches up with the right block which initially moves slower (located

at the tube wall). The distance between these two blocks is also L
3 , leaving it L as the total

length of the initial configuration. We consider the length of the initial configuration as

the macroscale length and the radius of the tube as the microscale length throughout this

chapter. Therefore, Lr = 15
1 � 1 length scale constraint is automatically satisfied for analysis

purpose. Because of the non-uniformity of the initial solute distribution, there should be

a finite time interval for which the higher-order terms appearing at the right side of the

Equation 2.9 decay in the approach to a Gaussian distribution. Since the initial relaxation

time of the left block is less than that of the right block, the left block, at some point,

should merge with the right block. We are concerned with the evolution of total dispersion

tensor and second moment of concentration along the tube length under the preasymptotic

and asymptotic regimes.
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Figure 4.1: A three-dimensional representation of the initial concentration. Note, The flow
direction is left to right. This initial configuration is radially-symmetric and non-uniform
in nature.
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4.1 Total Dispersion Tensor

As expected, the total dispersion tensor varies with time and it finally reaches an asymptotic

plateau behavior for all value of Péclet number as shown in Figures 4.3-4.4. Note, the

value of the total dispersion tensor is divided by diffusivity (DAγ,0 = 1 × 10−9[m2/s]) for

comparison purpose. We recall that the total dispersion tensor is influenced by the combined

actions of the diffusivity tensor and the hydrodynamic dispersion tensor

DT
Aγ = DAγ ·

(
I +

1

Vγ

∫
Aγκ

nγκ ⊗ bAγ dA

)
− 〈ṽγ ⊗ bAγ〉γ (4.1)

It is easy to show that for the initial configuration shown in Figure 4.1 this tensor will

reduce to a scalar if one follows the analogy provided in Section 3.15.

DT
Aγ = DAγ − 〈ṽγ,z bAγ,z〉γ (4.2)

in which ṽγ,z is the spatial deviation velocity in flow direction and bAγ,z is b-field in the

z direction. Now, instead of a tensor calculation, which may be tedious, one can simply

compute this scalar as the total dispersion tensor. The first term on the right-hand-side of

Equation 4.2 is a constant scalar (DAγ = 1×10−9[m2/s]). Therefore, the second term, which

varies with time, should determine the overall (preasymptotic and asymptotic) behavior of

the total dispersion tensor. Expanding this term leads to

−〈ṽγ,z bAγ,z〉γ = − 1

Vγ

∫
Vγ

(
vγ,z −

1

Vγ

∫
Vγ

vγ,z dV

)
bAγ,z dV (4.3)

The only term that seems to have a dependency on time is bAγ,z and this term is actually

a function of both r and t (this is illustrated in Figure 4.2).

We recall the diffusion-convention transport equation for closure variable bAγ,z (Equa-
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(a) time = 0 [min]. (b) time = 50 [min].

(c) time = 100 [min]. (d) time = 200 [min].

(e) time = 400 [min]. (f) time = 800 [min].

Figure 4.2: The evolution of the b-field across a plane perpendicular to the tube for Pé =
100. These pictures show that the b-field which is independent of z-direction is a function
of radial position r and time t.
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tion 3.97)

∂bAγ
∂t

+ vγ · ∇⊗ bAγ −∇ · (DAγ · ∇⊗ bAγ) = −ṽγ (4.4)

At this point, it should be obvious why the total dispersion tensor follows a transient

behavior (transport equation for the closure variable bAγ,z is a transient equation).

The asymptotic value of the normalized dispersion tensor increases as Pé goes up. This

can be justified by the fact that dispersion induced by shear flow as a result of laminar

or turbulent convection is much more effective than that of molecular diffusion process

(the asymptotic value of the total dispersion tensor for Pé=200 is almost 200 times the

asymptotic value of the total dispersion tensor for Pé=1).

Also, the asymptotic value of the total dispersion tensor is close to the value of diffusivity

(DAγ = 1× 10−9[m2/s]) for the low Péclet numbers (Pé 6 1).

In order to determine the approximate time at which the total dispersion tensor reaches

the asymptotic solution, the total dispersion tensor is divided by its asymptotic value (for

each Pé) and plotted versus time for all Pé numbers. The results have been provided in

Figure B.1. Surprisingly, the total dispersion tensor approaches its asymptotic value around

1100 [min] for all values of the Pé number. However, any possible conclusion or correlation

between the characteristic time of the system (i.e. characteristic time = characteristic length
velocity )

and this specific time will remain an active area of research.

One may ask this question: How can the results obtained from the volume averaging

process be validated for our system (Taylor-Aris dispersion in a tube)? The answer to this

question is, to the best of the author knowledge, (1) for the zero-velocity condition (i.e.

Pé → 0), which is considered as a pure diffusion process, the value of the total dispersion

tensor should be equal to the diffusivity since if v → 0, the diffusion-convention transport
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equation for closure variable bAγ,z (Equations 3.97-3.100) is reduced to

∂bAγ
∂t

=∇ · (DAγ · ∇⊗ bAγ) = DAγ∇ ·∇⊗ bAγ (4.5)

B.C.1 −nγκ ·∇⊗ bAγ = 0 at Aγκ (4.6)

B.C.2 −nγκ ·∇⊗ bAγ = 0 at Aγκ (4.7)

I.C.1 bAγ = 0 at t=0 (4.8)

Note, boundary condition 2 is written in its original form, not periodic form. Using

separation of variables, one can find that the only solution that can satisfy this equation set

is when bAγ = 0. Therefore, if v → 0, then bAγ → 0, then, bAγ,z → 0, and, consequently,

−〈ṽγ,z bAγ,z〉γ → 0, which leads to DT
Aγ → DAγ . It is obvious that the asymptotic solution

for the case of low Péclet numbers is very close to diffusivity value of 1 × 10−9[m2/s].

(2) For the case of non-zero velocity condition, the asymptotic solution should match the

Taylor-Aris dispersion theory [55] for all Péclet range.

DA,eff = DA +
U2a2

48DA
(4.9)

The results are illustrated in Figure 4.5. There is an excellent agreement between the

asymptotic solution for the total dispersion tensor calculated by the volume averaged ap-

proach and that of Taylor-Aris dispersion theory. Since both condition (1) and (2) are

satisfied, one can conclude that the time-dependent closure variable bAγ transport equation

derived based upon volume averaged process may be valid.
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Figure 4.5: Comparison between the asymptotic total dispersion tensor calculated by vol-
ume averaged approach (black square) and the Taylor-Aris diffusion-convection transport
equation. There is excellent agreement between the asymptotic solution for the total disper-
sion tensor calculated by the volume averaged approach and that of Taylor-Aris dispersion
theory.
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4.2 Total Dispersion Tensor: Volume-Averaged vs. Direct Numerical

Solution

Direct numerical solution for the microscale balance equation set (Equations 3.11-3.14)

leads to the distribution of the initial configuration for preasymptotic and asymptotic times.

Knowing the concentration of the initial configuration, one can calculate the first and second

moment of the concentration in the flow direction using the one-dimensional n-th spatial

moment of the concentration distribution c(x, t) as

mn,t =

∫ ∞
−∞

xnc(x, t) dx (4.10)

in which mn,t is the n-th spatial moment. Spatial moments usually describe the overall

mass behavior. The zeroth moment m0,t shows the total mass of the initial configuration,

the first spatial moment m1,t represents the mean location of the center of the mass, and

the second spatial moment m2,t describes the spread of concentration deviation about its

center of mass [56]. The large scale effective velocity of the solute can be defined as [57]

Veff =
d

dt

(
m1,t

m0,t

)
(4.11)

and variance as

σ2 =
m2,t

m0,t
−
(
m1,t

m0,t

)2

(4.12)

The effective dispersion coefficient may be obtained by

Deff =
1

2

d

dt
σ2 (4.13)

The comparison between the total dispersion tensor calculated based upon Equation 4.13

and volume-averaged total dispersion tensor are illustrated in Figures 4.6-4.7.
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There are two distinct regimes: preasymptotic and asymptotic ones. The total dispersion

tensor calculated by the volume averaged process eventuality matches up with that of calcu-

lated by DNS approach at asymptotic time for all Pé range. This can be another indication

that the volume average process can successfully evaluate the value of the total dispersion

tensor for a wide range of Pé number. One may expect minor change in total dispersion

tensor at low Pé numbers over time since the speed of displacement of the fluid and, con-

sequently, the initial configuration is very slow. In this case, the center of mass of initial

configuration does not significantly move along the flow direction with time. At high Pé

numbers, in contrast, considerable change in the total dispersion tensor is expected. These

two trends can be found in Figures 4.6-4.7 (solid black lines). In addition, the preasymptotic

solution for the total dispersion tensor calculated by DNS method has negative values at Pé

ranging 100 − 102. This can not be true since the negative value for total dispersion tensor

does not have physical interpretation. In general, it seems that volume averaged process

is more accurate in terms of assessing the preasymptotic dispersion behavior of the solute

matter.

4.3 The Second Moment

The results of the second moment for the initial configuration moving along the tube are

depicted in Figure 4.8. Since the displacement speed of solute is slow at low Pé numbers,

there is not much going on at the large scale and the second moments calculated by the

volume averaged process and the DNS method follow the same low monotonic increment.

At higher Pé number (i.e. Pé = 100), however, one may expect that the left block of initial

configuration (Figure 4.1) can pass the right one since it moves faster.
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4.4 The Evolution of the Concentration

The results of the species A concentration on a plane crossing the centerline of the tube are

illustrated in Figures 4.9 and 4.10 in order to gain a better insight into how the initial con-

figuration of the solute evolves along the tube. At low Péclet numbers (i.e. Pé=∈ {0.1, 1}),

two separate blocks of the initial configuration does not seem to merger at all even until 1600

[min]. It is expected, however, that these two blocks will merge and form a homogeneous

mixture at infinite times. They tend to radially disperse and form a relatively homogeneous

mixture at radial direction due to a huge radial concentration gradient. Note, there is a

concentration gradient in the longitudinal direction as well and this causes dispersion of the

blocks at longitudinal direction at higher times. Dispersion phenomena will be dominated

by diffusion since the convection force is not significant in low Péclet numbers. At Pé =

100, the left block quickly passes the right block and will remain the leading block. One

may rise the question of what is the minimum point in the second moment of concentration

for Pé=100 near 100 [min] seen in Figure 4.8. Taking a closer look at the part (b) of the

Figure 4.10, the left block starts to reach and touch the right block at about 100 [min], then

it will remain the tip of concentration profile. This may justify why the spread of concen-

tration deviation about its center of mass shows a monotonic increment after a monotonic

decrement. In general, it seems that the concentration profile along the tube will remain

more radially-symmetric and more compact when the convection term is low, causing a low

amount of concentration deviation from the center of mass. When the convective term is

dominant, however, the concentration profile spreads longitudinally, and radially, leading

to a high concentration deviation from the center of mass.
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é

=
0
.1

(b
)

P
é
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Chapter 5: Conclusion Remarks & Future Work

The method of volume averaging was used to investigate the preasymptotic dispersion

of an arbitrary initial configuration in a tube governed by diffusion-convection transport

phenomena. The role of the non-conventional additional source term appearing in the

averaging process was found to account for the evolution of the initial condition at early

times. The term was found to exponentially decay toward zero as time increases. Upon

averaging, two closure problems were derived. One of these provided information about the

evolution of DH
Aγ in time, whereas the other provided information about the evolution of

S∗Aγ . One exciting feature of the developed theory is that it can accurately describe the

effective transport properties from preasymptotic to asymptotic times. It was found that

the volume averaged process is more accurate in calculating the preasymptotic dispersion

of solute matter.

In terms of future work, one can investigate the Taylor-Aris dispersion for the case

of diffusion-convection-reaction transport phenomena. Moreover, taking into account the

effects of viscoelastic fluids, instead of Newtonian fluids, on the microscale balance equation

will extend the applications of upscaled model to the biological systems. Furthermore,

developing the averaged transport equation for the non-symmetric initial configuration will

be of interest to consider.
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Appendix A: Estimates of the Variance of the Deviations

The most direct way to obtain an estimate of 〈c̃A〉γ is to follow the development of Whitaker

[6].

As a second, even more conservative estimate for c̃Aγ , we examine the deviation balance

equation directly. Multiplying the balance equation for c̃Aγ by c̃Aγ itself and averaging, it

is fairly easy to obtain a relation for the variance of the deviation field, σ2
A

Species A

∂σ2
A

∂t
+ vγ · ∇σ2

A −∇ · (DAγ · ∇σ2
A) = −2 〈ṽγ c̃Aγ〉γ · ∇〈cAγ〉γ︸ ︷︷ ︸

source

(A.1)

B.C. 1 −nγκ · (DAγ · ∇σ2
A) = 0 at Aγe (A.2)

I.C. 1 σ2
A(x, 0) = ϕ̃2

A(x)︸ ︷︷ ︸
source

(A.3)

where σ2
A = 〈c̃2

Aγ〉γ . There are two source terms that drive this problem: (1) the volumetric

source on the right-hand-side of Equation (A.1), and (2) the initial condition source given

in Equation (A.3). We can get an estimate of the size of σ2
A by conducting a conventional

order-of-magnitude analysis of the problem.

A constraint for this condition can be developed by conducting an order-of-magnitude

analysis. We start by defining the following metrics for the velocity field, diffusion, and

hydrodynamic dispersion tensor
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O(ṽγ) ∼ ṽγ = [σv(ṽ) · σv(ṽ)]
1
2 (A.4)

O (DAγ) ∼ DAγ = (DAγ : DAγ)
1
2 (A.5)

O
(
DH
A

)
∼ DH

A =
(
DH
A : DH

A

)1
2 (A.6)

where σ(·) is the standard deviation operation, and the double-dot notation is defined by

the contraction A : B = AijBji. Neglecting the accumulation term, a reasonable estimate

of the left-hand-side of Eq. (A.1) is

vγ · ∇σ2
A −∇ · (DAγ · ∇σ2

A) ∼ O

(
vγσ

2
A

L
+
DAγσ

2
A

L2

)
(A.7)

In this expression, note that the sign of the term has no role in estimating its magnitude

(thus all terms are estimated by their absolute values).

For the right-hand-side, first note

−2〈ṽγ c̃Aγ〉γ · ∇〈cAγ〉γ =− 2〈ṽγ · bAγ〉 :∇〈cAγ〉γ ⊗∇〈cAγ〉γ

=− 2DH
A :∇〈cAγ〉γ ⊗∇〈cAγ〉γ (A.8)

Then, the right-hand-side can be estimated by

−2DH
A :∇〈cAγ〉γ ⊗∇〈cAγ〉γ ∼ O

[
2DH

A (〈cAγ〉γ)2

L2

]
(A.9)

Equating (A.7) and (A.9) yields an estimate for the concentration deviations of the form

(
vγσ

2
A

L
+
DAγσ

2
A

L2

)
= O

[
2DH

A (〈cAγ〉γ)2

L2

]
(A.10)
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Solving this for σ2
A yields

σA
〈cAγ〉γ

=

2DH
A /DAγ

vγL
DAγ

+ 1


1
2

(A.11)

In the following, we define the Péclet number by

Pe =
vγL

DAγ
(A.12)

To continue, note that DH
A → 0 as Pe → 0. Now we can consider two possible limits

(1) Pe� 1, and (2) Pe� 1. For case (1), when Pe� 1, then DH
A /DAγ ∼ O(αLvγ/DAγ),

where αL is a longitudinal dispersivity. Hence

σA
〈cAγ〉γ

∼ O
(αL
L

)1
2

(A.13)

Note that the dispersivity in this case would be approximately the same size as the small

length scale, `. Hence, under the length-scale constraints that we have already imposed,

this condition is automatically satisfied, and we can conclude that σA � 〈cAγ〉γ .
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Appendix B: Normalized Total Dispersion Tensor
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Figure B.1: Normalized total dispersion tensor for all range of Péclet number.
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Appendix C: Validation of the Numerical Method

The estimation of the uncertainty associated with the numerical results becomes significant

when an analytical solution is not available. The numerical solutions of this study ob-

tained by COMSOL R© has been verified for a wide range of Péclet number based upon the

method originally introduced by Roache [58] for the uniform reporting of grid refinement

studies knows as Grid Convergence Index (GCI). The GCI is, in fact, a grid refinement

error estimator based upon the theory of Richardon Extrapolation [59] also known as “h2”

extrapolation. The discrete solution f are assumed to have a series representation, in the

grid spacing h, of

f = f [exact] + g1h+ g2h
2 + g3h

3 + · · · (C.1)

f [exact] =
h2

2f1 − h2
1f2

h2
2 − h2

1

+H.O.T (C.2)

in which functions g1, g2, etc. are defined in the continuum and do not depend on any

discretization and H.O.T are high order terms. The above equation should be a valid

definition for the order of the discretization. The basis idea for the second-order process is

to combine two separate discrete solutions f1 and f2 on two different grids with uniform

grid spacing h1 (fine grid) and h2 (coarse grid) in order to eliminate the leading order error

terms. Substituting the grid refinement ratio r = h2
h1

into Equation C.2 leads to

f [exact] = f1 +
f1 − f2

r2 − 1
(C.3)

Base upon the GCI method, one can calculate the uncertainty associated with grid con-

vergence. The numerical solution for a variable ξ on at least three different grids with

refinement ratios r21 = ∆2
∆1

and r32 = ∆3
∆2

is first calculated. Then, the fine (ξ1) and medium
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(ξ2) grid solutions are interpolated to the coarse grid. The local apparent order of accuracy

can be calculated as [60]

P (x) =
1

ln(r21)

∣∣∣∣∣∣ln
∣∣∣∣ε32(x)

ε21(x)

∣∣∣∣+ ln

rP (x)
21 − sign

(
ε32
ε21

)
r
P (x)
32 − sign

(
ε32
ε21

)
∣∣∣∣∣∣ (C.4)

in which ε32(x) = ξ3(x) − ξ2(x) and ε21(x) = ξ2(x) − ξ1(x). By averaging P (x) at nodes

with monotone convergence (i.e. sign
(
ε32
ε21

)
> 0) the global order of convergence (PG) can

be calculated. Finally, the CGI of the fine grid solution is obtained by

CGI(x) = Fs

∣∣∣∣∣ξ1(x)− ξ2(x)

1− rPG21

∣∣∣∣∣ (C.5)

in which Fs = 1.25 is a conservative factor of safety for a three grid refinement study [61].

Key results of the grid convergence study calculated for the total dispersion tensor is

reported in Table C.1.

Table C.1: Grid convergence quantifications for the system explained in Chapter 3.

Pe ξ PG CGI[%]

100 DAγ 1.32 2.56




