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QUALITY ASSESSMENT STRATEGIES FOR MULTI-CAMERA

PANORAMA VIDEO

1. CHAPTER ONE

1.1. Introduction

With the availability of optimized audio/video streams and improved net-

work resources, new devices have recently started entering the market, promising

unprecedented videoconferencing experiences. By combining the outputs of mul-

tiple video sources (see Fig. 1.1), a new video format is created and its quality

needs to be evaluated by using novel strategies. Providing the best trade-off be-

tween technical requirements and appealing video quality is still the main concern

in the design process of such devices. Therefore, as the end users are getting in-

creasingly accustomed to video technologies and, consequently, more demanding,

the perceived quality of digital video is a very important factor in discriminating

between successful video streaming technologies.

This research focused on the adjustment and enhancement of current qual-

ity assessment techniques to appropriately address specific problems experienced

during the quality test of a new videconferencing device currently being devel-

oped at Microsoft Corporation. Classical quality assessment approaches have

revealed their weaknesses because they are mostly designed to evaluate the qual-

ity of standard video formats. These techniques have demonstrated the capability

of adequately assessing the quality of single video streams. However, the overall

quality assessed for a panorama video stream, generated by stitching together the
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FIGURE 1.1. An example of uncalibrated panoramic video stream generated by an

omnidirectional device.

outputs of multiple cameras, presents low correlation with the results of subjec-

tive quality tests. Problems such as noticeable calibration differences between

adjacent cameras, concentration of motion in limited regions of the panoramic

scene, combined vignetting, non-uniformity of the surfaces in the seam regions,

are not appropriately handled by existent metrics. In this thesis, we present new

strategies for assessing the quality of panorama video with specific attention to

those peculiar problems that have challenged standard approaches.

A short description of this work was given in this introductory paragraph.

Section 1.2 reviews the purposes of the quality metrics and basic terminology of

video quality assessment. Section 1.3 presents an overview of the Thesis.

1.2. Video Quality Assessment

The goal of objective video quality assessment is to design quality metrics

that can predict perceived video quality automatically. In general, the purpose of

an image/video quality metric is threefold [1]:

• Monitoring: A quality metric can be used to monitor image quality for

quality control systems. For example, an image and video acquisition system

can use the quality metric as an automatic control to adjust itself to obtain
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the best image/video quality data. A network video server can examine

the quality of the digital video transmitted on the network and regulate the

video streaming accordingly.

• Benchmarking: A quality metric can be employed to benchmark image and

video processing systems and algorithms. If multiple video processing sys-

tems are available for a specific task, then a quality metric can help deter-

mine a ranking and provide the best quality results.

• Optimizing: In the early stages of design, where optimization is one of the

key issues, a quality metric can be embedded in the image/video system

to optimize the algorithms and the parameter settings. For instance, in the

multicamera system under analysis, a quality metric can help optimal design

of the post-filtering and calibration algorithms at the stitcher and decoder

level.

It is important to point out that there are two notions usually associated

with the concept of quality. First, quality implies a comparison between two or

more quantities or objects. This comparison may be direct (A is better than B)

or indirect (A is good). Second, given the possibility of something being better

or worse, quality must be quantified using an open-ended scale. These two simple

concepts have a considerable impact on how video quality is measured. In fact,

the fundamental distinction that can be made on objective video quality metrics

is based on the full or partial availability of the original (distortion-free) video

signal, with which the processed signal is to be compared:

• Full-Reference (FR): A complete reference image/video is assumed to be

known; these objective measures of impairment are more appropriately
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termed fidelity measures [2] and are based on the differences between source

and processed signal;

• Reduced-Reference (RR): The reference image/video is only partially avail-

able in the form of a set of extracted features made available as side in-

formation to help the evaluation process. This approach usually adopts an

ancillary channel for reduced key features interchange;

• No-Reference (NR)(also referred to as “blind” quality assessment): The

reference image/video is not available at all.

In most of the objective quality metrics proposed in the literature, the

undistorted reference signal is supposed to be fully available. But it is worth

noting that, in many practical video service applications, the reference images or

video sequences are often not accessible. Therefore, it is highly desirable to de-

velop measurement approaches that can evaluate image and video quality blindly.

In the case under investigation, for instance, the impossibility to record the video

remotely (after being transmitted through the network) has motivated us to de-

velop an NR metric that assesses the quality indirectly.

As subjective tests have largely demonstrated, a human observer can

straightforwardly judge the quality of a processed image or video without tak-

ing into consideration the original as a reference. On the other hand, developing

objective quality assessment methods that do not require a reference, is still a

quite difficult task. The user judgment maintains an unquestionable importance

in the final quality evaluation. The Mean Opinion Score (MOS) quality measure-

ment obtained from human observers has been regarded for many years as the

most reliable form of quality measurement. However, the drawbacks of this ap-

proach include high cost, high time consumption, and practical inconvenience. It
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is therefore important to develop objective methods able to automatically predict

these subjective evaluations and establish a consistent correlation with numerical

data.

This work will focus on the development of an adjusted NR metric but, for

the sake of clarity, some notions helpful in the three domains (FR,NR,RR) will

be presented in this and in the following chapter.

The most widely used FR objective image and video distortion/quality metrics

are the Mean Squared Error (MSE) and the Peak Signal-to-Noise Ratio (PSNR),

which are defined as:

MSE =
1

N

N∑
i=1

(xi − yi)
2 (1.1)

and

PSNR = 20 log10

Vpeak

MSE
(1.2)

where N is the number of pixels in the image or video signal, and xi and yi are the

i− th pixels in the original and the distorted signals, respectively. Vpeak is the dy-

namic range of the pixel values (255 for an 8 bits/pixel monotonic signal). Based

on the sum of all differences between the video and the reference one, MSE and

PSNR are widely used because they are simple to calculate, have clear physical

meanings, and are mathematically easy to deal with (MSE is differentiable, for

example). However, they have been widely criticized as well for not correlating

well with perceived quality measurements [1, 3–8]. These simple measures operate

solely on a pixel-by-pixel basis and neglect the important influence of image con-

tent and viewing conditions on the actual visibility of artifacts. Therefore, their

predictions do not agree well with perceived quality. Considerable efforts have
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been made to develop objective image/video quality assessment methods based

on the human visual system (HVS) characteristics. Some of the developed models

are commercially available. Even though only limited success has been reported

from HVS-based FR quality assessment models [6, 9], there is an increasing in-

terest in these approaches. HVS-models may slowly replace classical schemes, in

which the quality metric basically consists of an MSE or PSNR measure. The

quality improvement that can be achieved using an HVS-based approach is sig-

nificant and applies to a large variety of image processing applications. Although

HVS models can be very complex and computationally demanding (inconvenient

for DSP implementations), simplified versions can be extremely powerful. As dis-

cussed later, standard quality metrics applied to panorama video have revealed

weaknesses that have been appropriately tackled by simplified HVS-based seman-

tic models.

1.2.1. Video Quality Metrics

The quality metrics measure the typical artifacts introduced by processing

and transmitting digital video. To be accurate, digital video quality measure-

ments must be based on the perceived quality of the actual video received by the

users rather than on the measured quality of traditional video test signals (e.g.,

color bar used in analog video testing). In fact, digital video systems adapt and

change their behavior depending upon the dynamic features of both video content

(e.g., spatial information, motion) and digital transmission system (e.g., bit rate,

dropped packets, latency). Therefore, different types of impairments than those

generated by analog video devices have to be taken into consideration.
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Widely used metrics for video quality assessment are the ANSI video qual-

ity metrics and the perceptual metrics. ANSI metrics rely on features and pa-

rameters suggested by the American National Standards Institute (ANSI) [10–12]

and include common fidelity metrics (such as the MSE and the PSNR) and spa-

tiotemporal metrics (such as the Edge Energy Difference and the Motion Energy

Difference). They represent arithmetic measures of the distance between pro-

cessed and reference video. Although very popular in the image and video pro-

cessing community, ANSI metrics do not take into account human perception.

On the other hand, perceptual metrics measure video artifacts as perceived by

the viewer. These metrics aim to measure impairments (such as jerkiness, blocki-

ness, blur, noise, colorfulness) in a way that is correlated with human perception

of those impairments. An additional characteristic of some perceptual metrics is

that they can be calculated without the reference video. Being the reference video

not available in the scenarios under investigation, perceptual metrics have thus

been the primary methods for the development of the adjusted metric proposed

in this work. It is worth noting that modified ANSI metrics have been success-

fully used on subsequent ‘static’ frames. Spatiotemporal constant regions of the

video have been analyzed with these techniques to calculate noise, to identify spa-

tio/temporal local fluctuation (artifacts such as flickering), and to quantify and

track motion.

Some background details on the two categories of metrics are given in the

rest of this paragraph.
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1.2.1.1. ANSI Video Quality Metrics

These metrics measure differences between the original (source) video and

the received (destination) video. The amount of different types of distortion that

has occurred in the transmission process can be calculated directly from the des-

tination video. As previously stated, being the source video not accessible, these

techniques have been used on the destination video only. Differences have been

measured between subsequent frames with similar spatiotemporal characteristics,

identifying noise and artifacts.

The parameters suggested by ANSI are divided in three main categories:

parameters based on scalar features, parameters based on vector features, and

parameters based on matrix features. A brief description of the basic concepts is

given below and some examples are given in Appendix A.

Parameters based on scalar features

Scalar, or one-dimensional, features produce one value per video frame. ANSI has

defined a set of scalar quality parameters that can be extracted from the source

and destination videos. Two useful concepts that are used in the computation of

several scalar quality parameters are the Spatial Information (SI), and the Tem-

poral Information (TI).

Spatial Information SI(i, j, n)

Spatial gradients, or edges, play an important role in image quality and can be

enhanced using different edge-enhancing filters. Sobel filters are suggested in the

ANSI document [12]. In this case, the edge-enhanced images are obtained by

linearly convolving each video frame with the kernels in Eq. (1.3):
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Hv =




−1 −2 −1

0 0 0

1 2 1




, Hh =




−1 0 1

−2 0 2

−1 0 1




. (1.3)

The results of these convolutions are

SIv(i, j, n) = Y (i, j, n)⊗Hv (1.4)

and

SIh(i, j, n) = Y (i, j, n)⊗Hh, (1.5)

where Y (i, j, n) denotes the luminance component at pixel location (i, j) of the

n−th frame, and SIv(i, j, n) and SIh(i, j, n) are called vertical and horizontal

spatial information of the video frame, respectively.

Parameters values based on spatial information can be interpreted as in-

dication of added or lost edges in the destination scene compared to the source

scene. Added edges result from impairments such as tiling, error blocks, or noise.

On the other hand, lost edges may result from blurring.

We define the magnitude (radius) and phase of the spatial information

respectively as

SIr(i, j, n) =
√

SI2
v (i, j, n) + SI2

h(i, j, n) (1.6)

and

SIΘ(i, j, n) = arctan
(SIv(i, j, n)

SIh(i, j, n)

)
. (1.7)

Some statistical properties about the spatial information can be obtained by com-

puting the mean, variance, standard deviation, and RMS of SI(i, j, n):

SImean(n) =
1

P

∑
i

∑
j

SIr(i, j, n) , (1.8)
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SIvar(n) =
1

P

∑
i

∑
j

(SIr(i, j, n)− SImean(n))2 , (1.9)

SIstdv(n) =
√

SIvar(n) , (1.10)

SIrms(n) =
√

SIvar(n) + SI2
mean(n) , (1.11)

where P is the total number of pixels.

Temporal information TI(i, j, n)

Temporal information TI(i, j, n) as defined in Eq. (1.12), describes the difference

(movements) between two temporally adjacent frames Y (i, j, n−1) and Y (i, j, n):

TI(i, j, n) = Y (i, j, n)− Y (i, j, n− 1). (1.12)

Quality parameters based on temporal information can be interpreted as

indication of added or lost motion in the destination scene compared to the source

scene. Added motion results from impairments such as jerkiness, error blocks, and

noise. Frame repetition clearly leads to lost motion. In our case, temporal infor-

mation is extracted from subsequent frames, assumed to be constant, in order to

detect unwanted added motion.

As with the spatial information feature, we can get valuable information by com-

puting the mean, variance, standard deviation, and RMS of TI(i, j, n):

TImean(n) =
1

P

∑
i

∑
j

TIr(i, j, n) , (1.13)

TIvar(n) =
1

P

∑
i

∑
j

(TIr(i, j, n)− TImean(n))2 , (1.14)

TIstdv(n) =
√

TIvar(n) , (1.15)
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TIrms(n) =
√

TIvar(n) + TI2
mean(n) , (1.16)

where P is the total number of pixels.

Examples of scalar quality parameters based on TI(i, j, n) and SI(i, j, n) are given

in Appendix A.

Parameters based on vector features

Let us define a square subregion R(i, j, n) of Y (i, j, n) comprised of N ×N

pixels. A vector feature can now be derived from the magnitude of the Fourier

transform of R(i, j, n):

F (k, l, n) =
1

N2

N−1∑
i=0

N−1∑
j=0

R(i, j, n)e−j 2π
N

(ki+lj) . (1.17)

Then, the average of the Nr magnitudes of spatial frequency components that lie

within a certain discrete radius r is computed as

f(r, n) =
1

Nr

∑
i,j

|F (k, l, n)|, (1.18)

and a vector-valued feature is defined as

f(n) =




f(0, n)

f(0, 1)

...

f(N
2
− 1, n)




. (1.19)

The vector-valued feature described in Eq. (1.19) is computed for both the source

and the destination scene. Two parameters that can be computed from these
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vectors are, for example, the Maximum (over time) of the Summed Positive Er-

ror Ratio (SPER) and the Minimum (over time) of the Summed Negative Error

Ratio(SNER) defined as

SPER = max
n

(
iu∑

i=il

[
fS(i, n)− fD(i, n)

fS(i, n)

]

PositivePart

)
(1.20)

and

SNER = min
n

(
iu∑

i=il

[
fS(i, n)− fD(i, n)

fS(i, n)

]

NegativePart

)
. (1.21)

where fS(i, n) and fD(i, n) are the vector-valued features computed for the source

and the destination video, respectively.

Parameters based on matrix features

One common parameter used for signal quality is the signal-to-noise ratio.

Because of the two-dimensional (matrix) nature of a digital picture, the SNR

of an image can be considered as a matrix-based quality parameter. The peak

signal-to-noise ratio in dB of a digital image is defined as

PSNR(n)dB = 20 log 10


 Vpeak√

1
NcolNrow

∑Ncol−1
i=0

∑Nrow−1
j=0 [YS(i, j, n)− YD(i, j, n)]2


 ,

(1.22)

where YS(i, j, n) and YD(i, j, n) are the luminance components of the source and

the destination video, respectively. The word peak refers to the maximum value

of a pixel. In the case of eight bits per pixel, V peak in Eq. (1.22) is 28− 1 = 255.

1.2.1.2. Perceptual Metrics

Perceptual quality metrics quantify the artifacts present in the video as

perceived by human viewers. These well-known artifacts can be easily recognized
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even by non-experts. The most common artifacts are briefly presented here and

summarized in Table 1.1. The purpose of these metrics is to provide an auto-

matic measure of those artifacts in order to establish a correlation with human

perception. Since some of them are specifically designed to assess the quality in

the absence of a reference (jerkiness, blockiness, blur, noise), these metrics have

been extensively used in this work to predict the MOS and reproduce the results

of human subjective tests.

Jerkiness . Jerkiness is a perceptual measure of frozen pictures or motion

that does not look smooth. The primary causes of jerkiness are network congestion

and/or packet loss. It can also be introduced by the encoder dropping or repeating

entire frames in an effort to achieve the given bit-rate constraints. A reduced frame

rate can also create the perception of jerky video. Lower levels of jerkiness can be

perceived when subregions of the image appear to be moving in a jerky way.

Blockiness . Blockiness is a perceptual measure of the block structure that

is common to all image compression techniques based on the Discrete Cosine

Transform (DCT). The DCT is typically performed on 8× 8 blocks in the frame

and the coefficients in each block are quantized separately, leading to artificial hor-

izontal and vertical borders between these blocks. Blockiness can also be caused

by transmission errors, which often affect entire blocks in the video.

Blur . Blur is a perceptual measure of the loss of fine detail and the smear-

ing of edges in the video. It is due to the attenuation of high frequencies at

some stage of the recording or encoding process. It is one of the main artifacts

of wavelet-based compression techniques, such as JPEG2000, where transmission

errors or packet loss can also induce blur. DCT-based compression schemes are

also affected by this artifact, although to a lesser extent (JPEG, MPEG). Other
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important sources of blur are low-pass filtering, out-of-focus cameras, and large

motion (leading to motion blur).

Noise. Noise is a perceptual measure of high-frequency distortions in the

form of spurious pixels. It is more noticeable in smooth regions and around edges

(edge noise). This can arise from noisy recording equipment, from the compression

process (where certain types of image content introduce noise-like artifacts), and

from transmission errors (especially uncorrected bit errors).

Ringing . Ringing is a perceptual measure of ripples, typically seen around

high-contrast edges in otherwise smooth regions (this is referred to as the Gibbs

phenomenon). Ringing artifacts are very common in wavelet-based compression

schemes (e.g., JPEG2000), but they also appear to a slightly lesser extent in

DCT-based compression techniques (e.g., JPEG, MPEG).

Colorfulness . The colorfulness of an image describes the intensity or satu-

ration of colors as well as the spread and distribution of individual colors in the

image. The range and saturation of colors is often impaired by compression.

Watermarking Artifacts . Digital watermarking of digital video content is

becoming an increasingly important way for content producers to protect their

production and distribution. It is important to minimize the perceptual impact

of the embedded watermark on the content. The ideal way to do this is to use

perceptual metrics that can reproduce the impact of the watermark on a human

observer.

1.3. Thesis overview

The thesis is organized as follows:
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• Chapter 1 presents basic concepts and definitions behind FR, NR, and RR

image and video quality assessment.

• Chapter 2 reviews current literature on image/video quality assessment. A

set of algorithms chosen to provide an initial quality estimation of the video

is also discussed.

• Chapter 3 introduces the proposed adjusted NR metric for assessing the

quality of panorama video streams, illustrating the specific drawbacks en-

countered using standard methods. The proposed perceptual quality metric

is evaluated using a set of customized test sequences and its correlation with

subjective quality tests is verified. Some preliminary results of the novel NR

metric developed are included. The chapter finally addresses issues regard-

ing the prediction performance of the quality metric.

• Chapter 4 makes concluding remarks and provides suggestions for future

research directions.
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TABLE 1.1. Perceptual Metrics

Metric Jerkiness(FR, NR, Temporal)

Description Frozen pictures or motion that does not look smooth.

Common Cause Network congestion, packet loss, dropped frames reduced frame rate.

Metric Ghosting(FR, Temporal)

Description Delayed version of the picture appearing on the screen.

Common Cause Network congestion, packet loss, dropped frames reduced frame rate.

Metric Blur(FR, NR, Spatial)

Description Loss of fine detail and edge smearing due to high-freq. attenuation.

Common Cause Compression (wavelets, DCT), transmission error, packet loss,

low-pass filtering, camera out-of-focus, high motion.

Metric Blockiness(FR, NR, Spatial)

Description Block grid structure (discontinuities at adjacent block boundaries).

Common Cause Compression (wavelets, DCT), transmission error, packet loss,

low-pass filtering, camera out-of-focus, high motion.

Metric Ringing(FR, Spatial)

Description Ripples around high-contrast edges in otherwise smooth regions.

Common Cause Wavelet compression (e.g. JPEG2000), DCT compression.

Metric Colorfulness(FR, Spatial)

Description Loss of color.

Common Cause Compression, different processing of luminance and color.

Metric Noise(FR, NR, Spatial)

Description High frequencies distortions (spurious pixels).

Common Cause Noisy recording equipment, compression, motion compensation

mismatch, transmission errors.
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2. CHAPTER TWO

2.1. Video Quality Assessment Algorithms

A video signal can be thought of as a sum of a perfect reference signal

and an error signal. We may assume that the loss of quality is directly related to

the strength of the error signal. Therefore, a natural way of assessing the quality

of a video is to quantify the error between the distorted signal and the reference

signal, which is fully available in FR quality assessment. We have seen in the

previous chapter that the simplest implementation of the concept is the MSE as

given in Eq. (1.1). However, there are a number of reasons why the MSE may not

correlate well with the human perception of quality:

1. Digital pixel values on which the MSE is typically computed may not exactly

represent the light stimulus entering the eye.

2. The sensitivity of the HVS to the errors may be different for different types

of errors and may also vary with visual context. This difference may not be

captured adequately by the MSE.

3. Simple error summation, like the one implemented in the MSE formulation,

may be markedly different from the way the HVS and the brain arrive at an

assessment of the perceived distortion.

In the last three decades, many of the proposed image and video quality

metrics have tried to improve the MSE by addressing the above issues. They

have followed a paradigm error sensitivity based, which attempts to analyze and

quantify the error signal in a way that simulates the characteristics of human

visual error perception. Pioneering work in this area was done by Mannos and
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Sakrison [43] and has been extended by other researchers over the years [18, 28,

40, 46, 48]. Without providing details about the HVS, which is beyond the scope

of this thesis, it is worth mentioning that the underlying principle of visual error

sensitivity-based algorithms is to predict perceptual quality by quantifying per-

ceptible errors. This is accomplished by simulating the functional components of

the HVS involved in the perceptual quality evaluation. However, the HVS is an

extremely complicated system, whose understanding is currently limited. There-

fore, many visual error sensitivity-based approaches, explicitly or implicitly, make

a number of arguable assumptions (perfect quality of the reference signal, com-

plete parametrization of the eye’s optic, suppression of the active visual processes,

etc.).

A new interesting philosophy has recently emerged [1, 3, 7] which focuses

on the principle that the main function of the human visual system is to extract

structural information from the viewing field, and that the HVS is highly adapted

for this purpose. Since a modified version of this approach has been used also in

this work, a more detailed mathematical formulation of the method is presented

in Section 2.2.3. The basic idea behind the metric is that a measurement of struc-

tural distortion should be a good approximation of perceived image distortion.

In other words, image degradations are considered as perceived structural infor-

mation loss instead of perceived errors. Although errors and structural distortion

sometimes are in agreement, in many circumstances the same amount of error may

lead to significantly different structural distortion. This leads to a quite effective

demonstration of the limitations of the MSE to quantify the quality of an image.

The motivating example is shown in Fig. 2.1 and Fig. 2.2 where the original

“Lena” image is altered with a wide variety of distortions such as mean shift,
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FIGURE 2.1. Evaluation of “Lena” images with different types of distortion [8].

Top-left: Mean shifted image, MSE = 225, Q = 0.9894; Top-right: Contrast stretched

image, MSE = 225, Q = 0.9372; Bottom-left: Blurred image, MSE = 225, Q = 0.3461;

Bottom-right: JPEG compressed image, MSE = 215, Q = 0.2876.

contrast stretching, blurring, heavy JPEG compression, and various types of noise

(salt & pepper, additive Gaussian noise, and speckle noise).

Tuning all the distorted images to yield almost the same MSE in relation

to the original image, it is interesting to notice that images with nearly identical

MSE have drastically different perceptual quality. Simple subjective evaluation

assessment shows that the contrast stretched and the mean shifted images provide
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FIGURE 2.2. Evaluation of “Lena” images with different types of noise [8]. Top-left:

Original “Lena” image, 512× 512, 8 bits/pixel; Top-right: Impulsive salt-pepper noise

contaminated image, MSE = 225, Q = 0.6494; Bottom-left: Additive Gaussian noise

contaminated image, MSE = 225, Q = 0.3891; Bottom-right: Multiplicative speckle

noise contaminated image, MSE = 225, Q = 0.4408.

very high perceptual quality, while the blurred and the JPEG compressed images

have the lowest subjective scores.

This is not surprising with a good understanding of the new approach since

the structural change from the original to the contrast stretched and mean shifted

images is trivial, but the structural change for the blurred and JPEG compressed

images is very significant.
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As already pointed out, in our case the reference video is not available. This

impediment to the feasibility of an FR video quality assessment has affected our

approach to the problem. The RR quality assessment was not a feasible approach

either, because it was not possible to implement an ancillary data channel for

reduced features interchange.

At this point, given the limited success that FR quality assessment has

achieved, it should come as no surprise that designing objective no-reference (NR)

quality measurement algorithms is very difficult indeed. This is mainly due to the

limited understanding of the HVS and the associated cognitive aspects of the

brain. Only a few methods have been proposed in the literature [13–17, 22, 29,

37] for objective NR quality assessment; yet, this topic has recently attracted a

great deal of attention. For example, the video quality experts group (VQEG) [37]

considers the standardization of NR and RR video quality assessment methods as

one of its working directions. More details on the VQEG are given in Appendix

A.

Furthermore, the problem of NR quality assessment is made even more

complex by the fact that many unquantifiable factors play a role in human assess-

ment of quality, such as aesthetics, cognitive relevance, learning, visual context,

etc., when the reference signal is not available for MOS evaluation. These factors

introduce variability among human observers based on individual subjective im-

pressions, which has to be handled in some way. However, we can work with the

following paradigm for NR quality assessment: all images and videos are flawless

unless distorted during acquisition, processing, and reproduction. Hence, the task

of blind quality measurement simplifies into blindly measuring the distortion that

has possibly been introduced during the stages of acquisition, processing, and re-
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production. The distortion is separated from the “expected” signals by making

assumptions regarding statistics of “perfect natural images.” For example, natural

images do not contain blocking artifacts, and therefore any presence of periodic

edge discontinuity in the horizontal or vertical directions is probably a distortion

introduced by block-DCT based compression techniques.

2.2. Towards a New Approach

In the case under investigation, in addition to common artifacts present

in digital video streams such as blur, blockiness, noise, and ringing [18], new

impairments are introduced by the specific technology employed. The former are

primarily due to compression [19] and network conditions as well as to non-trivial

interactions between the spatial/temporal characteristics of the video sequence

and the type of codec used [20]. The latter, as we will see in the next chapter, are

mainly the result of combining the video signals of different sources into one single

multimedia stream. The video streams from five different cameras are stitched

together generating a single omnidirectional panorama video stream. Although

spatial and color calibration algorithms are embedded into the device to control

the panorama generation, certain artifacts still remain.

The following sections review algorithms used to provide the general quality

of the video, creating relations between the contribution of each single camera

separately and the final panorama as a whole.

2.2.1. Detecting Blockiness

The methodology presented by Wang et al. in [21] has been used to detect

blockiness in our test videos. The typical panorama video analyzed, generated by
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stitching together the contribution of five different camera streams, is based on

JPEG compression. JPEG is a block DCT-based lossy video coding technique.

It is lossy because of the quantization operation applied to the DCT coefficients

in each 8× 8 coding block. Therefore, both blockiness and blurring artifacts may

be created during the quantization process. Blocking effects occur due to the

discontinuity at block boundaries, since JPEG quantization is block-based and

the blocks are quantized independently. Blurring effects are mainly due to the

loss of high frequency DCT coefficients, which smoothes the image signal within

each block.

By transforming sampled images of the video into the frequency domain, we can

effectively examine both blocking and blurring effects. As an example, let us

denote the test image signal as x(m,n) for m ∈ [1,M ] and n ∈ [1, N ], and let us

calculate a difference signal along each horizontal line as

dh(m,n) = x(m,n + 1)− x(m,n), n ∈ [1, N − 1]. (2.1)

If we now let fm(n) = |dh(m,n)| be a 1-D horizontal signal for a fixed value of m

and we compute the power spectrum of fm(n) for m = 1, 2, ..., M , we can average

them together to obtain a power spectrum estimation Ph(l) like the one shown in

Fig. 2.3. In this plot, the blocking effect can be easily identified by the peaks at

the frequencies 1/8, 2/8, 3/8, and 4/8; the blurring effect is also characterized by

the energy shifting from high frequency to low frequency bands.

A well-known disadvantage of the frequency domain method is the use of

the Fast Fourier Transform (FFT), which has to be calculated many times for each

image. The FFT also requires more storage space because it cannot be computed

locally. The method proposed in [21] has been adopted because it can overcome

this problem by providing a feature extraction procedure that is memory-efficient
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FIGURE 2.3. Power spectrum comparison between the original “Lena” image and its

JPEG compressed version, [21].

and computationally inexpensive. A brief description of this method is given in

the rest of this paragraph.

The features are calculated, using similar methods, first horizontally and

then vertically. For convenience, only the horizontal feature extraction is pre-

sented. First, an estimation of the blockiness is obtained as the average difference

across block boundaries:

Bh =
1

M(bN/8c − 1)

M∑
1=1

bN/8c−1∑
j=1

|dh(i, 8j)|, (2.2)
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where [M,N ] define the size of the image and dh(·) is the difference signal defined

in Eq. (2.1).

Second, the activity of the image signal is estimated. Blurring causes the

reduction of signal activity, and combining the blockiness and activity measures

gives more insight into the relative blur in the image. The activity is measured

using two factors:

1. The first is the average absolute difference between in-block image samples:

Ah =
1

7

[
8

M(N − 1)

M∑
1=1

N−1∑
j=1

|dh(i, j)| −Bh

]
(2.3)

2. The second activity measure is the zero-crossing (ZC) rate. For n ∈ [i, N−2]

we define

zh(m, n) =





1, horizontal ZC at dh(m, n),

0, otherwise.
(2.4)

The horizontal ZC rate can then be estimated as

Zh =
1

M(N − 2)

M∑
1=1

N−2∑
j=1

zh(m,n). (2.5)

Using similar methods, we calculate the the vertical features of Bv, Av,

and Zv. Finally, the overall features are given by

B =
Bh + Bv

2
, A =

Ah + Av

2
, Z =

Zh + Zv

2
. (2.6)

There are many different ways to combine the features to constitute a

quality assessment model, but according to Wang et al. [1], one method with

good prediction performance is the following

S = α + βBγ1Aγ2Zγ3 , (2.7)



26

where α, β, γ1, γ2, and γ3 are model parameters that must be estimated with

the subjective test data. The nonlinear regression routine nlinfit.m in the Matlab

Statistics Toolbox is used to find the best parameters for Eq. (2.7). The model

has performed well in all our tests, showing efficiency and robustness.

2.2.2. Detecting Blur

Beside the method presented in the previous paragraph, another NR per-

ceptual metric has been taken into consideration to quantify blurring effects. Pro-

posed by Marziliano et al. [22], the method is particularly interesting because it

does not assume any knowledge of the original image and it does not make any

assumption on the type of content or blurring process. Starting from the evidence

that blur is perceptually noticeable along edges or textured areas, the technique

is based on the smoothing effect of blur on edges and, consequently, attempts to

measure the spread of the edges. In practice, the interesting result of the method

is that measuring blur along vertical edges has been demonstrated to be sufficient.

The algorithm can be outlined as follows:

1. An edge detector (e.g., a vertical Sobel filter) is applied to find the vertical

edges in the image;

2. Each row of the image is scanned;

3. For pixels corresponding to the edge location, the start and end positions of

the edge are defined as the local extrema locations closest to the edge;

4. The edge width is then calculated by subtracting the end position from the

start position, and the local blur measure for this edge location is identified;
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FIGURE 2.4. One row of the blurred image. The detected edges are indicated by the

dashed lines, and local minima and maxima around the edge by dotted lines. The edge

width at P1 is given by P2′ − P2 [22].

5. Finally, the global blur measure for the whole image is obtained by averaging

the local blur values over all edges locations.

Fig. 2.4 shows an example of the analysis of a row in a image (Y channel).

For the edge location P1, the local maximum P2 defines the start position, while

the local minimum P2′ corresponds to the end position. The edge width is P2′−
P2. Similarly, for the edge P3, the local minimum P4 is the start position, the

local maximum P4′ is the end position, and P4′ − P4 is the edge width.
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The method is particularly attractive because is near real-time, has shown

low computational complexity, and its performance is independent of the image

content.

2.2.3. Detecting Jerkiness and Noise

A modified structural distortion metric introduced by Wang et al. [1] is

used on subsequent frames to identify regions that are supposed to maintain the

same quality from a spatiotemporal point of view. The metric yields a mapping of

the quality of these ‘static’ areas, identifying potential noise injection, jerkiness,

and temporal fluctuations (flicker).

As mentioned in Section 2.1, many of the quality metrics currently available

attempt to predict perceptual quality by quantifying perceptible errors. On the

other hand, these techniques consider the “structural information” in an image

as those characteristics that reflect the structure of the objects in the scene. This

is independent of the average luminance and contrast of the image and leads to

an image/video quality assessment approach that separates the measurement of

luminance, contrast, and structural distortions. The luminance of the surface of

an object being observed is the product of illumination and reflectance, but the

structure of the objects in the scene is independent of illumination. Consequently,

to explore the structural information in an image, the influence of the illumination

is separated.

Suppose that x and y are two nonnegative image signals, which have been

aligned with each other (e.g., spatial patches extracted from each image). If we

consider one of the signals to have flawless quality (say x), then the similarity

measure can serve as a quantitative measurement of the quality of the second
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signal y. Let µx,µy,σ
2
x,σ

2
y and σxy be the mean of x, the mean of y, the variance

of x, the variance of y, and the covariance of x and y, respectively. Here the mean

and the standard deviation (square root of the variance) of a signal are roughly

considered as estimates of the luminance and contrast of the signal. The covariance

(normalized by the variance) can be thought of as the degree of linear correlation

between x and y. Therefore, the metric formally separates the task of similarity

measurement into three comparisons: luminance and contrast distortion, and

loss of similarity in structure (correlation). Luminance, contrast, and structure

comparison measures can be defined as follows:

l(x,y) =
2µxµy

µ2
x + µ2

y

, c(x,y) =
2σxσy

σ2
x + σ2

y

, s(x,y) =
σxy

σxσy

. (2.8)

It is worth noting that these terms are conceptually independent in the sense that

the first two terms only depend on the luminance and the contrast of the two

images being compared, respectively, and purely changing the luminance or the

contrast of either image will not affect the third term, the structure. Geometri-

cally, s(x,y) corresponds to the cosine of the angle between vectors x − µx and

y − µy. Although s(x,y) does not use a direct descriptive representation of the

image structures, it reflects the similarity between two image structures by stat-

ing that it equals one if and only if the structures of the two image signals being

compared are exactly the same (recall that we consider structural information as

those image attributes other than the luminance and contrast information).

When (µ2
x +µ2

y)(σ
2
x +σ2

x) 6= 0, the similarity index measure between x and y given

in [7] corresponds to

S(x,y) = l(x,y) · c(x,y) · s(x,y) =
4µxµyσxy

(µ2
x + µ2

y)(σ
2
x + σ2

y)
. (2.9)

If the two signals are represented discretely then the statistical features can be

estimated as follows:
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µx =
1

N

N∑
i=1

xi, µy =
1

N

N∑
i=1

yi, (2.10)

σ2
x =

1

N − 1

N∑
i=1

(xi − µx)
2, σ2

y =
1

N − 1

N∑
i=1

(yi − µy)
2 , (2.11)

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy). (2.12)

Notice that, especially over flat regions, an instability problem may arise if, in

Eq. (2.9), (µ2
x + µ2

y) or (σ2
x + σ2

y) is close to 0. In order to avoid this problem, a

modification is necessary in the definitions of Eq. (2.8); in particular:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

, (2.13)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (2.14)

s(x,y) =
σxy + C3

σxσy + C3

. (2.15)

where C1 = (K1L)2 and C2 = (K2L)2, L is the dynamic range of the pixel values

(L = 255 for 8-bit/pixel gray-scale images), and K1 and K2 are two constants

whose values have to be small and such that C1 or C2 have effect only when

(µ2
x +µ2

y) or (σ2
x +σ2

y) is small. Indicative values for K1 and K2 are K1 = 0.01 and

K2 = 0.03, respectively. For convenience, in this work we set C3 = C2/2. The

resulting new measure is named the Structural SIMilarity (SSIM) index between

signals x and y:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (2.16)
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A more generalized version of the resulting similarity measure takes into account

also potential different contributions of the three terms of the comparison (lumi-

nance, contrast, structure).

S(x,y) = α[l(x,y)] · β[c(x,y)] · γ[s(x,y)] (2.17)

where α, β, and γ are parameters used to adjust the relative importance of the

three components. Setting α = β = γ = 1, we obtained the simplified version of

Eq. (2.16).
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3. CHAPTER THREE

3.1. Quality Assessment of Panorama Video

Analyzing the results obtained applying standard techniques (such the ones

presented in the previous chapter) to assess the quality of panorama video streams,

it is immediately evident that the approach is not satisfactory. Evidently, current

quality assessment techniques are not adequate and need to address specific prob-

lems. The overall quality of a panorama video stream as assessed with standard

methods presents strong deviations from the results of subjective quality tests.

In particular, the following limitations have been encountered working with

standard quality assessment methods:

1. Blockiness or noise confined to limited regions or single cameras; standard

methods tend to average out the error and the overall quality prediction is

excessively optimistic.

2. The differences in each camera calibration are not appropriately handled

because not detectable by a general method, even though it is easily noticed

by the human eye.

3. Camera vignetting and blooming may systematically occur in the upper or

lower part of the panorama, affecting the overall quality of the video.

4. There exist no test vectors or reference panoramic video databases.

5. There exists no specific semantic level that addresses the evaluation of a

video characterized by a large aspect ratio (i.e., the height much smaller

than the width). The user focus of attention can have sweeping ranges,
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be attracted by noticeable seam steps, and be mainly driven by motion

tracking.

In other words, in addition to common artifacts present in digital video

streams, new impairments introduced by the specific technology employed have

to be detected. If the former are primarily due to compression and network con-

ditions as we have seen in the previous chapter, the latter are mainly the result of

combining the video signals of different sources into one single multimedia stream.

The results have proved that this process seriously affect the MOS prediction usu-

ally obtained with standard objective metrics.

The idea is to first use and customize existing techniques to frame the

general quality of the video (creating relations between the contribution of each

camera separately and the final panorama as a whole) and then add several weight-

ing stages to the metric in order to tackle the specific measurement deficiencies. A

semantic level is appended to the quality measure to handle those cases in which

cognitive behavior plays a determinant role. The pooling process is then driven by

the output by assigning higher weight to the regions with numerically higher de-

viations from subjective scores and semantically higher significance. In this way,

excessively optimistic results are bounded and, with the adjustment introduced,

we produce a stronger prediction performance.

This Chapter is divided in four Sections. Section 3.2 discusses the adjusted

quality metric for panorama video streams. Section 3.3 reports on some experi-

mental results we have conducted to test our quality assessment system. Section

3.4 finally comments on the performance evaluation of the proposed metric.
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3.2. Omnidirectional Video Quality Metrics

Low-level aspects of vision such as the contrast sensitivity (enhanced also

by potentially strong steps between adjacent cameras), color perception (smearing,

vignetting), masking, and general impairments are very important in video/image

quality assessment. But the cognitive behavior of people when watching video se-

quences has to be taken in consideration as well, as argued by Cavallaro et al.

[23] and Bajcsy [24]. A generalization is almost impossible given the large variety

of behaviors generated in individuals by similar situations; however, some impor-

tant characteristics can be extracted. Several researchers have demonstrated that

humans are generally interested in what they look at [25, 26] and that the focus

of the viewers strongly depends on the scene [27]. A spatiotemporal ‘importance

map’ was proposed in [28] to determine a prediction of the focus of attention.

Tests have demonstrated that, even without considering more sophisticated

approaches that take into account changes in the human visual system sensitivity

(e.g., the loss of spatial acuity for the background when following a movement [5])

the existing correlation between motion localization/quantification and perceived

quality is able, along with the seam analysis, to produce key weighting adjustments

to the numerical analysis. As shown in Fig. 3.1, motion is quantified in each

camera to detect static regions for noise analysis and, at the same time, create

a first ranking of camera contribution to the semantic level. The range of the

motion is then calculated in order to have a more precise correlation with the

potential range of the focus of attention (see Fig. 3.2).

In other words, the motion information is used as a semantic to segment

moving objects and create a spatio-temporal map of potentially impaired regions

that will define the range of the focus of attention and will constitute, along
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with impaired seam areas, the likely target areas of judgment. A high-level seg-

mentation is thus added in our system to check where the motion occurs and to

appropriately identify regions that can potentially attract the focus of attention.

In the following sections, we present and discuss each component that is

used to build our global quality metric.

3.2.1. High-Level Vision Factors in Quality Assessment

3.2.1.1. Motion tracking and quantification

A modified structural distortion metric introduced by Wang et al. [1] is

used on subsequent frames to identify regions of the panorama where the motion

is concentrated. At the same time, this metric yields a mapping of the quality of

the areas that are supposed to maintain the same quality from a temporal point of

view. This method is also useful for automatically detecting temporal fluctuations

(flicker) problems. The regions where the motion occurs are marked as potentially

significant because it is where blockiness and blurriness problems may arise and

where the observer’s focus of attention is more likely concentrate. Since in the case

under investigation the scenarios are in most cases limited to conference rooms

and offices, a strong correlation exists between the person talking and the focus

of attention of the consumer.

Therefore, the observer, as expected, tends to follow the human action.

From a perceptual point of view, this suggests the creation of a ranking of each

camera contribution based on the presence of animated subjects and, at the same

time, the determination of the areas where this is more likely to occur in each

camera contribution, tracking the changes both spatially and temporally.
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FIGURE 3.1. Motion quantification analysis. The bars indicate the amount of motion

occurring in each camera. The magnitude of each bar is related to the behavior of the

correspondent standard deviation σn calculated over subsequent frames.

3.2.1.2. Seams regions

Regions at the seam between adjacent cameras are analyzed mainly to

identify calibration and vignetting impairments, introduced by stitching images

from different cameras with similar, but not equivalent, calibrations and char-

acterizations. To achieve a seamless panorama, a general color calibration is

usually implemented. Absolute color calibration is generally avoided since it is

difficult to provide a reference source spanning all lighting conditions. Relative
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Motion tracking − frame 1

Motion tracking − frame 15

Motion tracking − frame 30

Motion range

FIGURE 3.2. Example of spatio-temporal map of potentially impaired regions and

focus of attention concentration. The first, second, and third image represent the motion

detected at three different times, while the fourth image represents the entire motion

range detected.

calibration is usually adopted instead. Between one and four columns in the re-

gion of two camera edges (seam region) are sampled and a transfer function is

generated to compare the mean and standard deviation of each adjacent camera

image to the mean and the standard deviation of this region. Even not assuming

an affine/linear correction, as in the devices used for our tests, the method has

shown consistent results.

Furthermore, as shown in Fig. 3.3, possible steps in the luminance chan-

nel of adjacent cameras images are estimated using sampling lines over multiple
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FIGURE 3.3. Seam region analysis. Luminance level, magnitude of luminance steps,

and uniform regions are analyzed.

frames. The contribution of the steps is associated with camera pairs and ranked

according to their magnitude and the luminance level where they occur (bold

red lines and dashed lines denote larger steps and occurring at higher luminance

levels, while black lines denote less visible regions or lower steps).

It is in fact well-known that the human eye is very sensitive to overall

intensity (luminance) changes and subjective test have demonstrated that the

magnitude and the level at which the step occurs play an important role in at-

tracting the focus of attention and, consequently, in weighting appropriately the
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FIGURE 3.4. Uniform areas are automatically extracted in proximity of a cali-

bration impaired seam (large step) between two cameras.

user’s perceived quality. Moreover, by analyzing the slope of the luminance in

multiple sampling lines close to the seam region, it is possible to identify uniform

or quasi-uniform regions where one can make a consistent comparison between

samples of the same surface lying in the field of view of two adjacent cameras.

We adopt a tolerance factor that takes into account the variation of the

illumination that may occur in the sampled surface. By using an algorithm that

compares the entire region of the seam, we can easily identify possible objects lying

exactly at the boundary between two cameras. Two patches from correspondent

‘static’ regions can thus be extracted and analyzed in order to obtain a relative

measure of the noise occurring temporally in that region and an estimate of the

luminance step. The top and bottom regions of the panorama near the seam are

also analyzed to detect potential vignetting problems (anomalous radial drops of

the intensity profile). Fig. 3.4 shows uniform areas around the seam step extracted

in proximity of a seam between two cameras.
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3.2.2. Low-Level Vision Factors in Quality Assessment

From a purely mathematical point of view, the no-reference quality met-

ric estimates visual quality based on the analysis of three main video artifacts:

blockiness [29], blur [22], and jerkiness. The perceptual metrics presented in the

previous chapter are applied locally to each camera contribution over a predefined

number of frames in each video stream. The overall quality rating is driven by

the result of the semantic segmentation based on the seam uniformity and motion

quantification/tracking discussed above.

3.3. Experiments and results

Since a standard database of test panoramic videos is not available yet, we

have generated a panoramic video database which covers a variety of scenarios

with different lighting conditions, people of different gender and ethnicity, dif-

ferent motion patterns. Our proposed perceptual metric has been evaluated by

performing sessions of subjective testing, conveniently divided in three phases:

instruction/training, main test, discussion. Some details on the subjective test

procedure is given in the following paragraphs.

3.3.1. Subjective Evaluation of Video Quality

Subjective evaluation experiments are complicated in many respects. View-

ing conditions and human psychology, for instance, are two key factors that can

heavily affect a subjective evaluation. Other factors include observer vision abil-

ity, translation of quality perception into ranking score, preference for content,

adaptation, display devices, ambient light levels, just to name a few.
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Both MPEG [35, 36] and ITU [30–33] have made recommendations on

how to perform subjective tests for evaluating the quality of digital video images

coded at low and medium bit rates. These tests methods are based on traditional

subjective test methods, although adapted to address specific characteristics of the

MPEG-4 encoding scheme (low target bit rates, channel error conditions, etc.).

The two methods that we will briefly present are the Single Stimulus Continuous

Quality Evaluation (SSCQE) and the Double Stimulus Continuous Quality Scale

(DSCQS). These methods have demonstrated to have repeatable and stable results

and have consequently been adopted as a part of the international standard by

the ITU. In our case the SSCQE and DSCQS tests (simulated and for evaluators

training purposes) have been conducted on multiple subjects and the scores have

been averaged to yield the MOS. The standard deviation between the scores may

also be useful to measure the consistency across different subjects.

3.3.1.1. Single Stimulus Continuous Quality Evaluation

In the SSCQE method, subjects indicate their impression of the video

quality on a linear scale that is divided into five segments. The five intervals are

marked with adjectives which serve as guides. In our tests, six additional de-

scriptive words are made available to the evaluator to help the evaluation process:

overall video quality, visible artifacts, strong impairments, noise, color quality,

panorama uniformity over 360 degrees. The subjects are instructed to mark any

point on the scale that best reflects their impression of quality at that time in-

stant, and to track the changes in the quality of the video using a slider. This

method is appropriate when references are not available as in our case.
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3.3.1.2. Double Stimulus Continuous Quality Scale

The DSCQS method is a form of discrimination-based method and offers

the extra advantage that the subjective scores are less affected by adaptation and

contextual effects. In the DSCQS method, the reference and the distorted videos

are presented one after the other in the same session, in small segments of a few

seconds each, and subjects evaluate both sequences using sliders similar to those

used for the SSCQE method. The difference between the scores of the reference

and the distorted sequences gives the subjective impairment judgement. In our

NR scenario, this test has been conducted with specific synthetically impaired

video stream to train the observers and have consistency with single stimulus

continuous quality evaluation. A network emulator, for instance, has been used

to recreate specific network impairment in the video and analyze its impact on

the quality evaluation of the observers.

3.3.2. Quality Assessment and Prediction Performance

The quality assessment with the new method can be summarized as follow:

First, blockiness and blur for each camera stream are estimated by averaging the

results obtained with the two methods presented in Chapter 2. We can define the

blur/blockiness quality coefficient as follows

qi(Si, bi) =
1

2
(Si + bi) =

1

2
(α + βBγ1

i Aγ2

i Zγ3

i + bi), (3.1)

where i = 1, ..., 5 is the number of cameras, Si is the output of the blur/blockiness

metric defined in Eq. (2.7), and bi is the output of the blur metric presented in

Section 2.2.2.
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Second, the motion quantification weight W
Mq

i and the motion tracking

weight WMT
i are calculated. Motion quantification is obtained by applying the

structural distortion method, as defined in Eq. (2.16), to subsequent frames. Each

camera contribution is ranked according to the variation over time of the standard

deviation against a given threshold. Cameras with a larger motion presence are

assigned a larger weight. Using the same approach, motion tracking is calculated

to define a hypothetical range for the focus of attention. Cameras with regions

that fall into the motion range are weighted more.

Third, seam analysis is performed on the stitching regions of the panorama.

A fixed number of rows in these regions is scanned. The perceptible steps are

identified by evaluating their magnitude and the luminance level where they occur.

By combining the contributions of these two factors, we can define the seam quality

coefficient as follows

W ς
i =

1

N

N∑
n=1

mn · ln , (3.2)

where i = 1, ..., 5 is the number of the camera whose rightmost seam is under

investigation, N is the number of perceptible steps, and mn and ln are the magni-

tude and the luminance level coefficient of the n-th step, respectively. The video

streams from cameras with larger steps occurring at higher luminance levels (i.e.,

more visible) are weighted more.

A Video Quality score for the panorama is then generated by combining

the weighted contributions of each camera as

V Q =
∑

i

W
Mq

i WMt
i W ς

i qi(Si, bi). (3.3)

Finally, a predicted MOS associated with the V Q score is generated (using

non-linear regression as suggested in [37]) and correlated with the MOS score

given to the same video through subjective tests.



44

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

Model Prediction

M
O

S

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

FIGURE 3.5. Scatter plots of MOS versus not adjusted model prediction for the six

video datasets tested.

To assess the enhancement of the prediction performance attributable to

seam and motion segmentation, we make a comparison between the results ob-

tained with standard perceptual metric analysis (see Fig. 3.5) and those obtained

with the adjusted metric proposed (see Fig. 3.6). As can be seen in these figures,

the modified metric in general gives better results, achieving a stronger correlation

between subjective tests and metric’s predictions. As expected, the improvement

is particularly significant when dealing with video impaired by evident calibration

problems and by localized artifacts in limited regions of the panorama. In these

cases, standard methods usually give too optimistic predictions.
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FIGURE 3.6. Scatter plots of MOS versus adjusted model prediction for the six video

datasets tested.

3.4. Performance Evaluation

The new objective quality metric has to prove to be a reliable, repeatable,

and cost-effective measure for video quality assessment applications. The goal of

this objective model is to predict perceived video quality and to find a consistent

correlation with the subjective evaluation. Therefore, it is mandatory to build a

video database covering numerous scenarios and to have a subjective evaluation

score associated with each entry. Such a database can be used to assess the

prediction performance to validate the objective quality measurement algorithms.

A systematic way to evaluate the prediction performance of the objective

model is to measure three specific attributes [31]:
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• Prediction Accuracy. Prediction accuracy of an objective model is the ability

of the model to predict subjective quality ratings with minimum error.

• Prediction Monotonicity. MOS predicted values of the objective model

should be monotonic over the range of the corresponding subjective MOS

values. The objective model was evaluated for its prediction ability by an-

alyzing how the predicted MOS values behaved with the varying subjective

results.

• Prediction Consistency. Prediction consistency is the ability of the model to

provide consistent and accurate predictions for the data from the subjective

tests on a large range of video sequences.

The metrics used to measure these prediction attributes are presented in

the following paragraphs.

3.4.1. Pearson Correlation Coefficient

The Pearson correlation coefficient was used to model the prediction accu-

racy of the proposed video quality metric. The Pearson correlation coefficient is a

statistical measure of the correlation between two sets of data (i.e., the objective

data set and the subjective data set). The range of the correlation is between -1

and 1. A correlation figure of 1 represents the largest similarity between two vari-

ables, 0 means that there is no correlation, and a correlation value of −1 indicates

a perfect negative correlation. The prediction accuracy was computed by corre-

lating the predicted MOS of the objective model with the MOS of the subjective

tests [32, 33]. The formula for calculating the Pearson correlation coefficient is

given by
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rxy =

∑N
i=1(xi − µx)(yi − µy)∑N

i=1(xi − µx)2
∑N

i=1(yi − µy)2
, (3.4)

where xi and yi, i = 1, ..., N , are the sets of data from the subjective and the

objective models which are being compared for similarity, and N is the size of the

data sets.

Table 3.1 shows the values of the Pearson correlation for the data of the

new method data and a standard perceptual metric. While the standard method

reveals negative or low values, those for the new metric are close to 1. The

proposed metric therefore achieves higher prediction accuracy than a standard

perceptual metric.

TABLE 3.1. Pearson Correlation Coefficients.

Video Sequence Standard perceptual metric Adjusted metric

Video 1 -0.5873 0.8732

Video 2 -0.2883 0.8114

Video 3 0.4315 0.9326

Video 4 -0.4221 0.8553

Video 5 -0.7234 0.8605

Video 6 0.5234 0.9705

3.4.2. Spearman Rank Correlation

Spearman’s correlation was used as a measure of prediction monotonicity

between the subjective MOS and the predicted MOS. This method is a quantita-

tive measure of the strength of a relationship between two sets of data [31]. The

range of the Spearman rank correlation is between -1 and 1, where a correlation
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of 1 indicates the most monotonic relationship. Spearman rank correlation was

calculated using the following equation:

ρXY = 1− 6

n(n2 − 1)

n∑
i=1

(Xi − Yi)
2 , (3.5)

where Xi is the rank of xi and Yi is the rank of yi in the ordered data series. As

illustrated in Table 3.2, the values of the Spearman correlation for the proposed

metric shows a strong monotonic relationship with the subjective results as com-

pared to the same relationship of a standard perceptual metric. The values prove

that, unlike the standard metric, the proposed metric is monotonic in the range

of the subjective data for all video sequences considered.

TABLE 3.2. Spearman Rank Correlation Coefficients.

Video Sequence Standard perceptual metric Adjusted metric

Video 1 -0.3563 0.9231

Video 2 -0.1554 0.9321

Video 3 0.5215 0.9743

Video 4 -0.3113 0.8921

Video 5 -0.6562 0.9283

Video 6 0.3981 0.9678

3.4.3. Outlier Ratio

The number of outliers with respect to the total number of datapoints was

used as a measure of prediction consistency between the subjective MOS and the

predicted MOS. The threshold for defining an outlier point was set at twice the

MOS Standard error.
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4. CHAPTER FOUR

4.1. Conclusions

The very limited literature currently available on quality assessment of

panorama video has motivated us to work on a new metric to address specific

impairments of this type of video streams. Several standard quality assessment

methods were introduced and used to compute the general quality of each camera

video separately. Relations have then been established between the single video

contributions and the panorama video, obtained by stitching independent video

streams together.

The topic of panorama video quality assessment was explored starting from

specific limitations encountered using standard quality assessment approaches and

deriving several weighting stages in order to tackle specific measurement deficien-

cies. The weighting functions added to the standard approaches led to a high

correlation with the subjective ratings and effectively captured those impairments

that were affecting the subjective/objective correlation the most.

Important factors for a reliable panorama video quality assessment were

introduced, such as the seam analysis and the motion quantification/tracking

segmentation as parts of a semantic level. The semantic level was appended to

the quality measure to efficiently handle those cases in which cognitive behavior

plays a determinant role.

Performance comparisons between the proposed method and standard ap-

proaches were presented.

A Matlab Video Quality Tool for objective panorama video quality assess-

ment presented in this thesis was developed.
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4.2. Future Work

With the possibility to have source and destination video recorded, future

research will include a FR panorama quality metric study and implementation.

An integration of a simplified version of the strategies presented is under

investigation to monitor and optimize the quality of the panorama at the genera-

tion stage.

How to quantify and incorporate color distortions also needs more research

efforts.
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APPENDIX A. ANSI Scalar Quality Parameters

As part of the quality features and parameters suggested by ANSI, the

Scalar Quality Parameters are based on Spatial Information SI and Temporal

Information TI (see Chapter 1 for the definitions) extracted from the source and

processed video.

In this Appendix, some widely used quality parameters based on TI and

SI will be presented.

A.1. Scalar quality parameter based on temporal information

In this section some quality parameters based on the TI(n) feature are

introduced. According to the ANSI paper [8], the parameters TIS(n) and TID(n)

are preferably selected as TIS(n) = TIS,rms(n) and TID(n) = TID,rms(n), where

S and D stand for Source and Destination, respectively. We can also use

TIS(n) = TIS,mean(n) and TID(n) = TID,mean(n). This reduces the compu-

tational complexity but might also cause some degradation in accuracy of the

computed parameters.

Parameter P1, Max of TI Ratio

TIratio(n) = log 10
(TID(n)

TIS(n)

)
(A.1)

P1 = max[max
time

TIratio(n), 0] (A.2)

If TIratio(n) is positive, motion energy has been added to the destination

frame compared to the source frame. As discussed above, this can occur as a re-

sult of added noise, jerkiness or error blocks. Negative values can occur as results
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of frame repetition (i,e., lost motion).

Parameter P2, RMS of TI Ratio

P2 = RMStime(TIratio(n)) =
1

N

∑
n

TI2
ratio(n), (A.3)

where N is the number of frames.

An average measure of how different the motion in the source sequence is

from the destination sequence can be obtained by computing the P2 parameter.

Parameter P3, Max-Min of TI Ratio

P3 = max[max
time

(TIratio(n)), 0]−min[min
time

(TIratio(n), 0)] (A.4)

P3 is similar to P1 but also includes lost motion energy (e.g., frame repetition).

Parameter P4, Positive Mean - Negative Mean of TI Ratio

P4 = µ+
time[TIratio(n)]− µ−time[TIratio(n)] (A.5)

where µ+ and µ− are the mean of the positive and negative values respectively.

The P4 parameter resembles the P3 paramenter but the former is less sensitive to

peak values.

Parameter P5, RMS of TI Error Ratio(n)

TIerrorratio(n) =
TIS(n)− TID(n)

TIS(n)
(A.6)

P5 = RMStime(TIerrorratio)(n) =
1

N

∑
n

TI2
errorratio(n) (A.7)
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where N is the number of frames. The TIerrorratio(n) is the difference in temporal

information between the source and destination scene, normalized by the tempo-

ral information of the source.

Parameter P6, RMS of positive part of TI Error Ratio (lost motion

energy)

P6 = RMStime[max(TIerrorratio)(n), 0] (A.8)

P6 provides an average measure of the lost motion energy.

A.2. Scalar quality parameter based on spatial information

In this section some quality parameters based on spatial information are

introduced. According to the ANSI paper [8], the parameters SIS(n) and SID(n)

are preferably selected as SIS(n) = SISstdv(n) and SID(n) = SIDstdv(n). S and

D stand for source and destination, respectively.

Parameter P7, Max Absolute Value of SI Error Ratio

P7 = RMStime[max(TIerrorratio)(n), 0] (A.9)

The SIerrorratio(n) measures lost spatial information in the destination sequence

compared to the source sequence. A positive value (lost SI) can occur as re-

sult of impairments like blurring, and a negative value as result of added noise,

edges or error blocks. The parameter P7 is simply the maximum absolute value

of SIerrorratio(n).

Parameter P8, RMS of SI Error Ratio(n)
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P8 = RMStime(SIerrorratio)(n) =
1

N

∑
n

SI2
errorratio(n) (A.10)

where N is the number of frames. P8 gives an RMS value of the difference in

spatial information between the source and destination sequences.

Typical spatiotemporal metrics derived using the above parameters are

briefly presented in Table. 4.1.

TABLE 4.1. Spatiotemporal Metrics

Spatiotemporal Metrics Type Description

Motion energy difference FR, temporal Added motion energy (error blocks, noise)

Repeated frames FR, temporal Lost motion energy (jerkiness)

Edge energy difference FR, spatial Dropped or repeated frames

Horizontal and vertical edges FR, spatial Added edge energy (edge noise, blockiness)

Spatial frequencies difference FR, spatial Lost edge energy (blur)

APPENDIX B. The Video Quality Experts Group (VQEG)

The VQEG was formed in 1997 to develop, validate, and standardize new

objective measurement methods for video quality. The group is composed of

experts from various backgrounds and organizations around the World. They

are interested in FR/RR/NR quality assessment for various bandwidth videos for

television and multimedia applications. VQEG has completed its Phase I test

for FR video quality assessment for television in 2000 [37]. In Phase I test, 10

proposed video quality models (including several well-known models and PSNR)
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were compared with the subjective evaluation results on a video database, which

contains video sequences with a wide variety of distortion types and stimulus

content. The result was, in some sense, surprising, since except for one or two

proposed models that did not perform properly in the test, the other models

performed statistically equivalent, including PSNR. Consequently, VQEG did not

recommend any method for an ITU standard. VQEG is continuing its work

on Phase II test for FR quality assessment for television, and RR/NR quality

assessment for television and multimedia. Although it is hard to predict whether

VQEG will be able to supply one or a few successful video quality assessment

standards in the near future, the work of VQEG is important and unique from a

research point of view. First, VQEG establishes large video databases with reliable

subjective evaluation scores (the database used in the FR Phase I test is already

available to the public), which will prove to be invaluable for future research on

video quality assessment. Second, systematic approaches for comparing subjective

and objective scores are being formalized. These approaches alone could become

widely accepted standards in the research community. Third, by comparing state-

of-the-art quality assessment models in different aspects, deeper understanding of

the relative merits of different methods will be achieved, which will have a major

impact on future improvement of the models. In addition, VQEG provides an

ideal communication platform for the researchers who are working in the field.




