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A HIGH-PERFORMANCE, LOW-POWER AND
MEMORY-EFFICIENT VLD FOR MPEG
APPLICATIONS

1. INTRODUCTION

1.1. Motivation

Now that we are in the midst of a major revolution in human computer inter-
face, the multimedia interface is becoming the combination of computer, television
and telephone. The coming of the information super-highway is indeed a big merge
of communications, computation and consumer electronics. The core technology of
this transition is digital video which will be the bulk of the traffic in future ATM
networks. Also it is the key to many applications such as interactive TV, video-on-
demand, video conferencing, HDTV, video phone, set-top box, videoCD and DVD,
just to name a few.

The current two important topics in digital video communications are rep-
resentation and transmission. The efficient digital representations of video signals
(also called source coding) has been the subject of considerable research over the
past twenty years.

Compression is the most critical aspect of digital video, because uncom-
pressed video is far too huge to transmit, store, and manipulate. For example, a
640*480 color video will require transmit rate at 27.6MB/s, and a 2-hour full motion

video will need 99,360 MB storage space which is certainly not practical.
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This field is sufficiently mature that several standards are now available.
These include the ITU-T H.261 standard for teleconferencing and the ISO/IEC
MPEG family of standards. Right now these standards are all based on the same
general architecture, namely motion-compensated temporal coding coupled with
block discrete cosine transform spatial coding. The standards and their implemen-
tations will be discussed throughly in the following chapters.

Although a great deal of work remains to be done to approach fundamental
limits of coding performance, these standard coding algorithms will form the basis
for many services in the coming years. In particular, the telecommunication and
semiconductor industries are working on these standards. However, standardization
is a time-consuming process and development goes on.

The intraframe coding of video signals is very similar to the still image com-
pression standard developed by the Joint Photographic Experts Group and the cod-
ing standard is accordingly called JPEG. JPEG is based on a division of the image
into blocks of 8x8 pixels. Each block is transformed with discrete cosine transform
(DCT). After the transform, the DCT coefficients are quantized and each frequency
is weighted according to its importance to the human visual system (HVS). Finally,
the coefficients are zig-zag scanned, run length coded and the data stream is send
to a entropy coder such as Huffman encoder.

The above schemes are the core part of video coding standards such as H.261
and MPEG-1 and MPEG-2. For low bit rate applications like video conference and
videotelephony the Recommendation H.261 of the International Consultative Com-
mittee for Telephone and Telegraph (CCITT) was internationally adopted in 1991.
The Moving Pictures Expert Group of the International Organization for Stan-
dardization (ISO/IEC) has been developing a similar but extended and improved
scheme. MPEG-1 is intended for the storage of video (For example, CD-ROM and
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VideoCD) and associated audio at low to medium bit rates and was standardized
in 1992. MPEG-2 is intended for the transmission of video and associated audio
at high bit rates, such that it can also be used for digital high definition television
(HDTV). It can also be used for the broadcasting of standard digital television.
The Subband related coding techniques are promising especially for HDTV
because they have an inherent multiresolution structure, so the normal digital TV
can extract the low-resolution video from the video stream without affecting the
high resolution quality. Nevertheless, compared to DCT related techniques, subband
coding has a short history for standardization. However, it may play an important
role in the forcoming MPEG-4 video coding standard which is for very low bit rate

special-purpose applications such as wireless video transmission.

1.2. Outline of the thesis

"This thesis discusses digital video compression algorithms (MPEG) and their
VLSI implementations. Moreover, a VLSI implementation (CMOS 0.35u technology
and 3 layer metal) of a variable length decoder (VLD) for MPEG applications is
developed. The VLD achieves high performance by using parallel and pipeline
architecture. MPEG bitstream patterns have been carefully analysed to drastically
improve VLD memory efficiency. In addition, a special clock scheme is applied to
reduce the power consumption.

Chapter 2 contains overview of different techniques for still image compres-
sion. JPEG standard has been extensively studied. Several important fast DCT
methods are presented. Huffman coding as one of the VLC methods has been ex-

plained. Rate Distortion function is used to evaluate the performance.
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Chapter 3 describes the fundamentals of lossy video compression, emphasis
on motion estimation (ME) and motion compensation (MC).

Chapter 4 introduces the very important digital video coding standards:
MPEG-1 and MPEG-2. Both field and frame based coding are introduced.

Chapter 5 describes the VLSI architectures of video compression. First the
different architectures are compared, then several ways of designing ME are pre-
sented. The practical issues involved are also studied, including low power design
techniques and interconnection analysis.

In Chapter 6, a high-performance, low-power and memory-efficient VLD has

been designed for MPEG applications.



2. STILL IMAGE COMPRESSION

2.1. Introduction

At eight bits/sample, the image has sufficient precision to be considered a
gray scale or continuous-tone image. For binary images (e.g. fax image), there is
only one bit per sample and are usually images of text or line drawings. They only
have two tones, black and white. A process called digital halftoning creates the effect
of continuous tones in a binary image by alternating between closely spaced black
and white samples.

JPEG works best on ”continuous tone” images; images with many sudden
jumps in color values will not compress well. There are a lot of parameters to
the JPEG compression process. By adjusting the parameters, one can trade off
compressed image size against reconstructed image quality over a wide range.

JPEG has defined a ”baseline” capability which must be present in all the
JPEG modes of operation which use the DCT. It also defines optional extensions
for progressive and hierarchical coding. There is also a separate lossless compression
mode which typically gives about 2:1 compression where the lossy one gives about 10

to 20:1 compression or even higher compression depending on different applications.

2.1.1. Color Spaces

Red, green and blue (RGB) is one example of a color representation requiring

three independent values to describe the colors. Each of the values can be varied
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independently, and we can therefore create a three-dimensional space with R, G,
and B as independent coordinates. Colors are represented as points in this space.

RGB may not always be the most convenient way of color representation. One
particularly important color space for digital image compression is called Luminance-
chrominance representation where one component is the luminance (Provides a
grayscale version of the image) and the other two components provide the extra
information that converts the grayscale image to color image.

The reason for doing this is that one can afford to lose a lot more information
in the chrominance components than you can in the luminance component, because
the human eye is not as sensitive to high-frequency color information as it is to high-
frequency luminance. So the first step in JPEG is the color space transformaion.

If the values of the three colors R, G and B are expressed by a relative scale
from 0 to 1, then the luminance(Y) of any color can be calculated from the following

weighted sum:
Y =0.3R+ 0.6G + 0.1B.

The scaling is chosen such that the luminance is also expressed by a relative
scale from 0 to 1 and weights reflect the contributions of the individual primaries to
the total luminance.

The term chorminance is defined as the difference between a color and a
reference white at the same luminance. The chrominance information can therefore

be expressed by a set of color differences, V and U, where V and U are defined by:
V=R-Y;U=B-Y.

These color differences are zero whenever R=G=B, as this condition produces

gray, which has no chrominance. The V component controls colors ranging from red
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V' > 0 to blue-green V' < 0, whereas the U component controls ranging from blue

U > 0toyellow U < 0. Together with the luminance, these chrominance coordinates
make up the color coordinate system know as YUV.

Another color coordinate system, YCbCr, was used extensively in the devel-

opment of the JPEG standard. This system is closely related to YUV where the U

and V are scaled and zero-shifted to produce the variables Cb and Cr, respectively:
Cb=(U/2)+0.5Cr = (V/1.6) + 0.5

This will ensure that Cb and Cr are always in the range 0 to 1 so they can
be multiplied by 255.
A number of other color spaces, including the YIQ can also be related to

these spaces by simple linear transformation.

2.1.2. Human Visual System

The frequency response of the human eye is more sensitive to low frequency
than to high frequency. For vertical patterns, it is similar to the response for hor-
izontal patterns. On the diagonals, however, the response is significantly reduced.
Furthermore, the human eyes are much less sensitive to the high frequency of the
color information which is a very important property from the standpoint of data
compression [30].

Down-sampling is the typical technique to compress the color image. The
luminance component is left at full resolution, while the color components are usually
reduced 2:1 horizontally and either 2:1 or 1:1 (no change) vertically. This step
immediately reduces the data volume by one-half or one-third, while having almost
no impact on perceived quality. (Obviously this would not be true if we tried it in

RGB color space).
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However, simple down-sampling methods such as discard every other sam-

ples may introduces “aliasing artifacts“, therefore the method of averaging together
groups of pixels in the processing of down-sampling. This is equivalent to lowpass

filtering.

2.1.3. DCT and Fast DCT

The discrete cosine transform was first applied to image compression in
Ahmed, Natarajan, and Rao’s pioneering work, in which they showed that this par-
ticular transform was very close to the KLH (Karhunen-Loeve-Hotelling) transform,
a transform that produces uncorrelated coefficients [44].

We have seen that the human visual system response is very dependent on
spatial frequency. If we could somehow decompose the image into a set of waveforms,
each with a particular spatial frequency, we might be able to separate the image
structure the eye can see from the structure that is imperceptible.

Group the pixel values for each component into 8x8 blocks. Transform each

8x8 block through a discrete cosine transform (DCT) with following equations

F(u,v):%u—)—c—glzz:fx y) cos(

z=0y=0

and the Inverse DCT (IDCT):

(21‘ -|1-61)u7r) cos( (2y -;—61)1)71')

! 7C’u)C’)

flay) =233 ——

u=0v=0

where C'(u),C(v) = % for u,v =0 and C(u), C(v) = 1 otherwise.

(2z + 1)un

F(u,v) cos(————16—) cos((2_yL)v7r

16 )

We can think the DCT as a harmonic analyzer. This is a relative of the
Fourier transform and likewise gives a frequency map, with 8x8 components. Each
8x8 block of source image samples is effectively a 64 point discrete signal which is

a function of the two spatial dimensions z and y. The DCT takes such a signal as
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its input and decomposes it into 64 unique 2D “spatial frequencies” which comprise
the input signals “spectrum”. The output is the set of 64 basis-signal amplitudes
whose values are uniquely determined by the particular 64 -point input signal.

Thus we now have numbers representing the average value in each block and
successively higher-frequency changes within the block. The motivation for doing
this is that we can now throw away high-frequency information without affecting low-
frequency information. (The DCT transform itself is reversible except for roundoff
error.)

The most straightforward way to implement the DCT is to follow the theo-
retical equations. When we do this, we get an upper limit of 64 multiplications and
56 additions for each 1-D 8-point DCT. Or, 1024 multiplications and 896 additions
for 8x8 block.

If the DCT really required this many operations to compute, JPEG would
have chosen a different algorithm. In fact, there are many fast DCT techniques
take advantage of the symmetries in the DCT equations. And there exists a close
connection between DCT and DFT. For example, It has been shown that the N-
point DCT can be expressed in terms of the real and imaginary parts of an N-point
DFT and rotations of the DFT outputs. It has also been shown that the first N
coefficients of a 2N- point DFT with appropriate symmetry of input values can be
used to compute an N-point DCT. This will also lead to avery efficient scaled DCT
structure. This can be shown as follows:

Let Wi = exp(—j2n/K), then the K-point DFT is given by:

K-1

F(u) =3 s(x)Wg

z=0
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We then define the appropriate symmetry of the input value by using the
mirror of the input, that is, extend the N-point sequence s(z),z = 0,...,N — 1 by

defining another N points with symmetry about the point (2N-1)/2,
s(z)=s2N—-z-1),z=N,...,2N -1

then the 2N-point DFT becomes

N-1 2N-1
F(u)= Y s(@)Wg+ > s(2N —z — )W
z=0 =N

If we define the new index k = 2N —z —1 (Note that W2V = 1), this becomes

N-1 N-1
Flu)= Y s(@)WE+ 3 s(k)Wg .
=0 k=0

u/2

Replacing the index & by r and multiplying by (1/2)W,/°, yields

(1/2)F(u)W¥*? = Nz_:l s(z) cos((2z + 1)ur/2N),
z=0
which proves that multiplying a complex scaling factor by the first eight DFT coef-
ficients (of the 16-point DFT), gives the 8-point DCT coefficients.
Take one step further and we can show that the DCT coefficients can be
obtained by a simple scaling of the real part of the DFT coefficients, that is,
N-1
(1/2)Re(F (u))sec(mu/2N) = > s(z) cos((2z + 1)un/2N)
z=0

Because of the orthogonal nature of the DCT transform, the IDCT has the

identical computational complexity of the DCT.



11

2.2. Image Compression Systems

2.2.1. Introduction to JPEG Standard

We now study a generic transform based image coding system, normally
speaking, a coding system which exploits the intra-frame correlation composed of

several major subsystems [29)].

Figure 2.1 represents the core computation pipeline employed in all the pop-
ular lossy image and video compression algorithms. In the encoder the DCT trans-
forms each 8x8 block into a set of DCT coefficients. There is no compression at
this step, in fact, there is expansion because each DCT coefficient needs 12 bits to
represents it. The “lossy” comes from the next step, namely, quantization. This
prbcess is an irreversible process and thus we will encounter information loss. After
quantization, the nonzero DCT coeflicients are further compressed using an entropy
coder. In most applications, the entropy coder combines a run-length coder with
a Huffman coder. This process is lossless. In the following section, JPEG will be
given as an example to illustrate the various steps performed during compression
and decompression:

For the color RGB image, one approach would be handle each color compo-
nent separately. However, as we mentioned before, there is significant correlation
between the color components. Thus, the approach is to transform the RGB image
into another component such YCbCr. There is very little correlation among the
components in this representation, furthermore, since most of the spatial informa-
tion is in the luminance (Y) component, we lose little information if we subsample
the Cb and Cr components by a factor of two in both dimensions. Therefore we

have reduced the image size by half before it goes into the encoder.
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For more efficient processing, images with multiple components can be inter-
leaved. A data unit is defined as the smallest logical unit (LU) of source data that
can be processed by JPEG. For lossy JPEG, this is a single 8x8 block of data. A
minimum coded unit (MCU) is formed by interleaving the Y, Cb and Cr data units.
The interleaved data come to the encoder in 8x8 blocks, then the pixel values

are changed to frequency domain by 2-D DCT. Which can be any one of the fast

DCT algorithm. Then the coefficients are quantized and entropy coded.

2.2.2. Quantization

The quantizer is the main source of compression. To do this, an 8x8 quanti-
zation matrix is required. It can be designed based on human perception and psycho
visual experiments or based on rate-distortion theory and bit-rate control. First we
give a quick review of rate-distortion theory. However, before going into the details,
a review of information theory is necessary.

We define the information content of a message, z, as I, in:

where the P, is the probability of occurrence of the event (message) z. Note that
if we use base 2 for the logarithm, the unit of information is called the bit of infor-
mation.

Entropy is defined as the average information per message. To calculate the
entropy, we take the various information contents associated with the messages and
weight each by the fraction of time we can expect that particular message to occur.
This fraction is the probability of the message. Thus, given n messages, z; through

Zn, the entropy is defined by
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i 1
H = ZPxi log(—=).
=1 PZi
The spatial redundancy of an image can be modeled by a two-dimensional

covariance function. A typical isotropic (non-separable) one looks like
Coux (3, §) = ge~eV 7%

where o is the variance of the image and ¢ and j refer to the distance from the
reference pixel about which the covariance function is defined. It can be seen from
the above equation that the covariance function decays rapidly beyond i,j > 8.
This is also one of the reason that 8x8 block is chosen.

Using quantization, with some loss of information, much higher compression
ratios are possible. However, there is a tradeoff between distortion (D) and the bit
rate (R)of the compressed bit stream. For a given D, the rate-distortion function
R(D) is defined as the minimum possible rate R necessary to achieve average distor-
tion D or less. Note that R(D) is independent of the particular compression method
and depends only on the underlying stochastic model for the input images and the
distortion measure [30].

For the isotropic covariance function above with 02 = 1, the 2-D power

spectral density of an image X has the form

fo

Se(fz, fy) = m

= SO(f)a

where f = ,/fZ+ f2. It has been shown by Berger [43] that the optimal encoder-

decoder tandem yields distortion D(f) and a minimum rate R(f) given by

_ / ‘: /_ °; min(8, Se(fz f,))df=df,

/ / maz(0 log2 (foy) —=—=22\df . df,
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The R(D) function has several practical uses, for example, one can measure
D and the corresponding rate R and compare them against the theoretical limit
R(D), it can even be used to optimize the design of functional blocks within the
encoder and decoder. For instance, the design of quantization tables.

The techniques for the design of quantization tables can be divided into two
main classes: (1) those based on human perception and psycho visual experiments,
and (2) those that are based on rate-distortion theory and bit rate control. The first
method defines the elements of the quantization matrix from visibility thresholds
for the DCT coefficients so that the human eyes will not detect them.

The tables give very good perceptual quality for most natural scenes. More-
over, one can tradeoff between image quality and data compression by uniformly
scaling the original quantization table by a quality factor, for example, halving
them will get nearly indistinguishable quality. This technique will become very
handy when we try to design a video compression system.

One recent actively researched area is rate control techniques based on rate
distortion functions. This can yield better compression result.

The idea behind this kind of rate control is to allocate more bits to the
coefficients with large variances. Thus it also known as Bit-Allocation [23]. From

rate-distortion theory, the optimum bit allocation is given by
214’
[[T:, 9751

where b;; is the bits allocated to each DCT coefficients and

1
bi,j =7+ §log2

1 B
Hij = B kz__:lyk[%]]
where B is the number of 8x8 blocks in the image,

1 &
ol = —B—;{yk[z,zl — wig)?
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and 7 is the desired average compressed bit rate.

Therefore we get the quantization matrix:

.. 2046
Qlt, j] = 5o

Note that we use 2046 because the AC coefficients (Any component of the
DCT output except the (0,0) component) range of eight bits pixel is from -1023 to
1023.

2.2.3. Entropy Coding

The coefficients after quantization can be further compressed using entropy
coder as in Figure 2.2. This normally includes a Run-Length coder and a Variable
Length Coder (VLC) which can be a Huffman coder or Arithmetic Coder. The
baseline JPEG implementation uses Huffman coding only. Now we describe the
operation of the entropy coder in JPEG.

Huffman code construction procedure the following steps:

1. Order the symbols according to their probabilitjes. The frequency of
occurrence of each symbol must be known a priori. In practice, the frequency of
occurrence can be estimated from a training set of data that is representative of the
data to be compressed in a lossless manner. If, say, the alphabet is composed of
N distinct symbols s, s, ..., sy and the probabilities of occurrence are py, ps, ..., P,
then the symbols are rearranged so that p; > py > ps... > py.

2. A contraction process is applied to the two symbols with the smallest

probabilities. This can be viewed as the construction of a binary tree, since at each
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step we are merging two symbols. At the end of this recursion process, all the
symbols sy, s, ..., sy will be leaf nodes of this tree.

3. The codeword for each symbol s; is obtained by traversing the binary tree
from its root to the leaf node.

As we have seen, the Huffman encoding process is relatively straightforward.
Fixed-length input symbols are mapped into variable-length codewords. Hence the
name VLC. One of the desirable features of a Huffman code is that it is a prefiz-
condition code which makes it uniquely decodable. Since there are no fixed-sized
boundaries between codewords, if some of the bits are incorrectly received, the error
will propagate such that all the data is lost. So, special markers are designated
to indicate the start or end of a compressed stream packet. Huffman decoding
has several implementations, such as Bit-Serial decoding and Lookup-Table-Based
Decoding.

There are separately coding methods for DC coefficients (The (0,0) compo-
nent of the DCT output) and AC coeflicients because of their different statistics.
Due to the high correlation of DC values among adjacent blocks, JPEG uses dif-
ferential coding for the DC coefficients. That is, instead of coding each DC, the
difference between the DC coefficients of two blocks (DC; — Dc;_,) are coded. Ac-
tually, the residual is not directly Huffman coded, instead, it is expressed as a pair of
symbols: the category and the magnitude. The first symbol represents the number
of bits needed to encode the magnitude. Only this value is Huffman coded. This
notion of using a category table is a form of context modeling and simplifies the
Huffman coder. Without categorization of the difference, we would require a very
large Huffman table.

For 8 bit-per-pixel data, DC differentials can take values in the range [-2,047,

2,047]. This range is divided into 12 size categories. Thus, after a table lookup, each
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DC differential can be described by the pair (size, amplitude), where size defines
the number of bits required to represent the amplitude, and amplitude is simply the
amplitude of the differential.
AC coefficients are processed in a different manner. They are scanned in Zig-
Zag order (Figure 2.3) which allows for a more efficient operation of the run-length
coder.
A run-length coder yields the value of the next nonzero AC coefficient and
a run. This sturcture is motivated by the fact that there are lots of zeros among
AC coefficients after quantization. Therefore, each nonzero AC coefficient can be
described by the pair (run/size, amplitude). Similar to the case for DC coefficients,
the value of run/size is Huffman coded instead of amplitude. For example, an AC
coefficient with value 3 is preceded by 3 zeros. Hence, the coefficient is represented
by (3/2,3), If the Huffman code of 3/2 is 111110111 then the code will look like
11111011111. Another important symbol is end of block (EOB) which denotes that
the rest of the AC coefficients are all zeros. This way we can greatly reduce the code

table size.

2.3. Operation Modes

The JPEG standard specifies four modes of operation: Sequential DCT-
based, left to right, top to bottom; progressive DCT-based, coarse to sharp resolu-
tion; lossless, exact reconstruction; hierarchical, can decode lower resolution without
decoding full resolution image first (Figure 2.4).

Under the lossless mode, a predictive coder followed by either a Huffman or
an arithmetic coder is used instead of a DCT-based thus get rid of the quantization

step where the information is lost [36].
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In the progressive mode, coding is performed in multiple scans . There are
two procedures that are allowed for progressive coding: spectral selection where
DCT coefficients are grouped into “spectral” bands of related spatial frequencies
and the lower-frequency bands are sent first, and successive approrimation which
the information is first sent with lower precision and then refined in later scans.
Figure 2.4 is a detail graph of another operation mode, namely, hierarchical coding.
This mode is very useful when there are multiresolution requirement. This will
also lead us to next chapter when we introduce the multiresolution techniques using
/wavelets.
From this three-level hierarchical coder we can get some ideas of the coding
procedure. First, the source image data S is subsampled twice S; and S;. The
reconstructed pictures have different resolution, R, is constructed from S;. R, is

constructed from the encoded difference of S, and its upsampled version.
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3. LOSSY VIDEO COMPRESSION

3.1. Introduction

Video can be regarded as still images with another dimension: time. Video
is merely still images displayed at a speed of 30 frames per second. This is not only
true in the digital world but also applies to the analog world, TV is broadcast at 30
frame or 60 fields per second whereas movies are showed at 24 frames per second.
Most of the video compression is lossy because it is not possible to achieve very high
compression ratio by employing lossless compression methods. Nor is it necessary
because human eyes cannot tell the loss if the compression is done gracefully. Al-
though most of the still image compression methods are used in video compression,
or intra-frame coding, many efforts have been made in to explore the redundancy
along the temporal domain to remove the correlation between the frames, or, inter-
frame coding. Among all the techniques, motion estimation (ME) is by far the most

widely used and implemented methods for reducing the temporal redundancy (25].

3.2. Motion Estimation

Consider a picture sequence of a singer singing on stage, we will find that two
kinds of correlation exist, one is the spatial correlation among the pixels composed of
a singer. Whereas the other is the temporal correlation, the same object (the singer)
appears in many frames and the background is almost fixed. Thus, the successive
frames of a video sequence are analyzed to estimate the motion (displacement)

vectors of moving pixels or blocks of pixels. Many different types of algorithms such
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as Blocking-Matching Algorithms (BMA), Pel-Recursive Algorithms (PRA), Phase
Correlation, etc., have been developed and implemented in video encoders. We will

focus on BMA since it is the more widely used in real-time video encoders. And it

4

is also used in MPEG standard [31].

X
Space
Time

FIGURE 3.1. Temporal Correlation Between Pictures

In BMA, each video frame is partitioned into blocks. The motion vectors
are extracted on a block by block basis. Two frames are used in motion estimation:
a reference frame and a current frame (Figure 3.1). For each block in the current
frame, it is searched in a search-window in the previous frame for a best matched
block based on a match-criterion. If we define a frame as a current frame at time
t, we define a reference frame at past time t — n for forward motion estimation,
and future time t + k for backward motion estimation. If we define the location
of current macroblock as (z,y), then the best matching block with MV (u,v) is
located at (z + u,y + v). However, we make the assumption that all the pixels in
the macroblock go through the same common displacement. In BMA, the motion
vectors have to be transmitted to the decoder for reconstruction of the image. These
are transmission overheads compared to the simple pel-by-pel predictive coding. The
amount of the overhead is dependent on the block-size and the search-window size.
Larger block-sizes result in fewer blocks in a frame, and thus, less transmission

overhead. However, since the algorithms assume that the displacement is constant
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within the block, larger block-sizes will degrade the performance. In most video
coding standards, the size of the block is 16x16.

The most used matching criterion is the MAD or Mean Absolute Difference,
or

1N-

M 1
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where C(z + k, y +1) is the pixel value of the current block, R(z + k + i,y +1+7) is
the reference block and —p < i < p. The best matching block R(z + 4,y + ) is the
one with the minimized MAD. It can be shown that MAD almost performs as well
as other much more complicated cost functions such as MSE (mean squared error).
Therefor, for the rest of the thesis, the best match for ME means minimum MAD
1s considered.

In order to be able to track large motion, it is desirable to search in a large
search-window. However, a larger search-window results in more search positions in
the window and the required computation increases rapidly. Also, the transmission
overhead is increased since more bits are needed to represent the motion vector.
In videoconference applications, for example, H.261 standard a search-window that
does not exceed +/- 15 is defined. However, to track a car chasing scene we may
need a larger search-window.

There are several strategies to search for the best matched blocks. The most
straightforward and brute-force method is the full-search (FS) which searches all
the (2p + 1)? locations in the search window. For each position, MAD is calculated
and the smallest generates the motion vector as illustrates in Figure 3.2.

The FS method will guarantee the optimum solution since all possible po-
sitions of search-window are exhaustively searched. However, it also requires very

large amount of computations and data-accesses. If we ignore the operation of load-
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FIGURE 3.2. Block Matching Motion Estimation

ing and storing of the current and reference blocks, then for each NxM macroblock
we need to do 3(2p + 1)2M N operations, where 3 means a subtraction, an absolute-
value calculation, and one addition. For a typical TV broadcast with resolution
720x480 and 30 frames/s, and if we take N = M = 16, p = 15 the total operation
need will be 3(31)?720 x 480 x 30 or 28.89 GOPS (Giga operations per second ). It
should be noted that the amount of computation is independent of the block-size
and is a quadratic function of the search-range. So for higher search range (which
is necessary for high quality sports broadcast) the required number of operations is
even higher. If we consider the memory access, the required I/O bandwidth is very
difficult to achieve [43].

In order to reduce the amount of required computations and data accesses,
many fast search methods have been developed. These algorithms are subopti-

mum in the sense that the search strategies do not guarantee that we will find the



26
minimum MAD value. However, the complexity is significantly reduced either by
decreasing the number of search locations or by computing fewer pixel difference
per location. In the following we will give some examples of these methods.

The three-step search (TSS) is a fast ME method that decreases
the number of search areas. Instead of searching all the locations in-
side the search-window we only search the major points in the search
window. First we compute the minimum MAD from the locations of
(0,0), (0,d1), (0, —dy), (d1, —d1), (d1,0), (d1, d1), (—d1,dy), (—dy,0), (—di, —d;) where
dy is given by d; = 2* — 1 where k = log, p — 1 and p is the search range.

After we find the best match among these locations (for TSS where k = 3
there are nine locations), we continue this process using dy = %l until the we find
the minimum. This greatly reduces the computation requirements. For instance,
with p = 7 only 25 locations need to calculated instead of the 225 locations if we use
full search. Comparing the implementation complexity of this method with that of
full search, for the same resolution TV (720x480, 30 frames/s) and p = 15, yields
3 X 720 x 480 x 30 x (8[log, p] + 1) or about 1 GOPS.

Similar to TSS, PHODS ( Parallel Hierarchical One-dimensional Search) also
uses the idea of reducing the search locations. However, in PHODS the search is
done independently along the two dimensions, in this case, the MAD calculations
are parallelizable and it has a regular data flow, since the search locations are al-
ways along the x and y axis. However, PHODS and TSS all assume that the MAD
increases monotonically as the search area moves away from the best-matched lo-
cation. If this assumption fails, search for a global minimum may get trapped into
a local minimum, in other words, the search may be misguided by local minima at

the beginning steps.
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As we mentioned before, there exists another method to reduce the compu-
tation requirement of ME, by using reduced pixel numbers. Since block matching
implies that all pixels within the macroblock have the same motion, an estimate of
the motion can also be obtained with fewer pixels. One straightforward way is by
pixel subsampling. However, this decimation has to be done very carefully such that
the ME accuracy will not be greatly affected. For example, for each macroblock,
one fourth of the pixels can be used to calculate MAD, by alternating the pixel
patterns and associating a different pattern for each neighboring search location, all
the pixels within the block can be covered thus minimizing the possibility of not
considering one-pixel-wide horizontal, vertical and diagonal lines.

The two fast ME methods we discussed before are such that one reduces
the search locations and the other reduces the pixel numbers. How about combin-
ing them together? Their combination will lead naturally to Hierarchical Motion
Estimation (HME) which combines two features together and is widely used in al-
most all the video compression algorithms. In the HME, the matching of blocks
is performed in two or three steps with decreasing block-size and increasing search
resolutions. Lowpass filtering is applied to improve the reliability. Subsampling is
used to reduce the required computation load. In the following example we give in
depth introduction to a 3 level hierarchical motion estimation.

First, several low-resolution versions of the current picture and the reference
picture is formed by lowpass filtering and subsampling. In Figure 3.3 we show two
low levels (namely, level 1 and level 2) of the original resolution (level 0). This step
applies to both the reference picture and the current picture.

The ME starts from the lowest resolution, in our case, level 2. Because the
picture size is small so the 4x4 macroblock is used in ME instead of 16x16. The

scaled versions of search parameter can also be used, that is we use ¢ instead of
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p. We can use any of the search methods mentioned before. However, because of
the smaller search area and smaller macroblock, full search method can be used to
increase the accuracy. If we assume that the search origin in level 0 is (z, y) then it

will be (%, ¥) at level 2. The complexity of ME at level 2 will be:

prcturesize

2 .
Macroblocksize X (2 x p+1)* x (Macroblocksize) x 3,

where picture size will be 180x120 and p is 4, and the result is 157.46 MOPS. Assume
the MV we found at this step is (up, v2), then we go up one level and do the ME at
level 1. Because the (uz,v;) is the MV we found at the lower resolution, we need
to refine the search. Therefore we do not have to search in a very big area, instead
the search is centered around the (uy,v;). Thus, a search region [-1, 1] is enough.
As before, we use full search since only 9 locations are needed to compute. We
need to compute the origin (z/2 + 2u,,y/2 + 2v;) again because in this level we are
using macroblocks of size 8x8. Repeating the complexity analysis, we can get 69.98
MOPS, assuming the minimized MAD is found at (u;,v;).

At level 0 or the reference picture level, again we search 9 locations around
origin (z + 2u;, y + 2v;) with marcoblock size of 16x16, the computation complexity
is now 279.9 MOPS. At this level the final MV will be generated.

If we add the computation requirement at each level together, we will get the
total complexity of 507.38 MOPS, which is greatly reduced from the 28.89 GOPS
needed for full-search, and almost half of the TSS search of 1 GOPS. Therefore, this
is by far the most popular ME algorithm [28] (Figure 3.3).

By subsampling the reference picture will also created some problems since
inaccurate MV may be generated for regions containing small objects. Because the
search starts from the coarse version of the reference picture, regions containing

small objects maybe completely eliminated and thus failed to be traced. If there are
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FIGURE 3.3. Hierarchical Motion Estimation

lots of small objects moving then the situation gets worse. Moreover, the subsampled
version of the picture has to be stored for use in ME, thus increasing the system
memory requirement. On the other hand, the creation of low-resolution version
(especially the lowpass filtering) will reduce noise.

Because the true motion between frames is unrelated to the sampling grid,
if the displacement estimates are obtained at a finer resolution, a better prediction
can also be obtained. The ME we talked about before is all restricted to integer
pixel grids. This means that we can have half-pixel or even quarter-pixel accuracy
motion vector.

Half-pixel accuracy MV can be easily found by interpolating the current and
reference pictures by a factor of two and then using any of the ME methods described
in the previous section. However, if both interpolated pictures have to be stored for
computation, excessive memory has to be provided. To avoid this, we can follow

these steps for the half-pixel ME.
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In the first step, a MV with integer-pel accuracy using any of the ME methods
is obtained. The resulting integer-pel motion vector (u, v) which yields the minimum
MAD is shown in the figure.

In the following steps, we refine the results of the first step to obtain the
motion vector with the desired half-pel accuracy. As shows in Figure 3.4, eight new
MAD are calculated at the new half-pel locations around the origin. The macroblock
is 16x16 and the top-left corner of each block being at the locations marked circle
in the figure. For each of these eight new search blocks, we know only those pixel
values with coordinates matching our original integer-pel grid. The remaining values
on the half-pel grid can be estimated using simple interpolation techniques. The
MAD is computed by comparing each of these eight search blocks with the original
macroblock. Therefore, the position where the MAD is minimum is the location for
the half-pel MV. If we define this location as (k,!) then the refinement MV will be
(u+k/2,v+1/2).

The quarter-pel ME can be done in the same manner. One of the computa-
tion intensive steps of the above procedure is the interpolation step. There are some
fast interpolation methods discussed in the literature [43], thus, we are not going to
discuss them in greater detail. We will come back to this topic when we are discuses

the VLSI implementation of the ME.

3.3. Motion Compensation

The next step after the step of ME where the MV is found, is to use this
information to reduce the interframe redundancy. The output of the motion estima-
tor, the coordinates (u, v) which define the relative motion of a block from one frame

to another, are used to define the motion compensation (MC) as the process of com-
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puting changes among frames by establishing correspondence between frames. In
other words, as the process of compensating for the displacement of moving objects

from one frame to another. The prediction error as :
e(xayat) = I(x7yat) - I(.’L‘ - Uy — ’U7t— 1)7

where I(z,y, ) is the pixel value at spatial location (z,y) in frame ¢ and I(z —u,y —
v,t — 1) is the corresponding pixel value at spatial location (z — u,y — v) in frame
t—1.

Note that the above temporal prediction definition is very similar to the
differential coding scheme DPCM. The difference is that we form the temporal
prediction using temporally adjacent samples, which are determined through the
process of motion estimation, so it gives a better prediction. Notice the MC is
performed in both the encoder and the decoder but ME is needed only in the encoder.

We can now start to put everything together and build a hybrid coding

system using the methods we mentioned so far. Before that, we need to discuss the
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concepts of frame and field. In current TV industry the video is interlaced, which
means that each frame is comprised of fields, a top field and a bottom field (or odd
and even field, Figure 3.5). Scanlines from the two fields are interleaved. Note that,
spatially adjacent scanlines are not temporally adjacent. For example, at 30 fps, the

adjacent scanlines are %-th of a second apart.

N\. 7~

Macroblock

Frame Submacroblock Ficld Submacroblock

FIGURE 3.5. Field Image

In order to exploit the presence in a macroblock of lines from two temporally
separated fields, two fundamental modes of MC are defined: the frame-MC and
the field-MC modes. The frame-MC mode does not discriminate between the two
fields inside a macroblock, it compensates a macroblock with another macroblock
containing lines from both fields. In the field-MC mode, the lines from each field in a
macroblock are compensated with a block containing only lines from the field of the
same parity. For the frame-MC mode two block sizes are allowed, with dimensions
of 16x16 and 16x8, respectively. In the latter case, a macroblock is separated into
two horizontal halves. In the field-MC mode a macroblock is separated into two
fields. From only one field with a size of 16x8.

A MV can point either to a field in another reference frame or to a field

in the current frame. For example, the first field can be predicted either from
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the top or the bottom fields in a reference frame, or the field can be predicted
either from the bottom field of another frame or from the top field of the current
frame. The vertical range for the integer MV is halved, since one field-line shift is
equivalent to a two-line shift in the picture. The half-pixel positions for the field-
MC mode are obtained as follows. A first intra-field spatial interpolation operation
places the interpolated pixels where the lines of the other field lie. Since these
positions correspond to integer-line locations of the picture, a second intra-field
interpolation set up is performed that places the interpolated pixels at half-line
positions of the picture, which is equivalent to quarter-line positions inside the
field. MV for the field-MC mode are defined with respect to these quarter-line field
positions. The half-pel search thus consists of updating the field integer motion
vector in two successive steps. The effect is that the frame-mode and field-mode
MV have the same resolution relative to the picture.

Another MC mode that will be discussed in the later chapter is the Dual-
prime motion compensation in which only one MV is encoded (in its full format) in
the bitstream together with a small differential MV. In the case of field pictures two
MVs are then derived from this information. These are used to form predictions from
two reference fields (top and bottom) which are averaged from the final prediction.
In the case of frame pictures this process is repeated for the two fields so that a
total of four field predictions are made.

In order to form a MV for the opposite parity, the existing MV is scaled to
reflect the different temporal distance between the fields. A correction is made to
the vertical component to reflect the vertical shift between the lines of top field and
bottom field and then a small differential MV is added. This process is illustrated

in Figure 3.6, which shows the situation for a frame picture.
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Therefore, rather than sending four vectors, a single vector is sent with the

four required vectors derived using a constant velocity model, and then a small accu-
rately tuning parameter allows an independent adjustment of +/- 1 pel vertically in
two of the vectors. Thus we can achieve low delay and less overhead. Assuming that
my; is the MV predicted from reference picture top field to the predicted picture

top field, then we have the following relationship:

Moo = My +(5

me1 =~ 1/2mq; + 6

mia = 3/2mq; + 6

where ¢ can take the values in -1, 0 or 1.
Similar to ME, there is also frame DCT and field DCT and this can also
be selected based on the analysis before coding. So if we have adaptive DCT and

adaptive MC, then we have the major building blocks for adaptive frame/field (AFF)

[4]-
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4. MPEG STANDARDS

4.1. Background

The MPEG committee was established by ISO in 1988 with the mission to
develop standards for the coded representation of moving pictures and associated
audio information on digital storage media. Over the next few years, participation
amassed from international technical experts in the areas of Video, Audio, and
Systems, reaching over 200 participants by 1992. By the end of the third year (1990),
a syntax emerged, which when applied to code SIF (standard input format) video
and compact disc audio samples rates at a combined coded bit rate of 1.5 Mbit /sec,
approximated the perceptual quality of consumer video tape (VHS). Formally known
as ISO standard 11172, or MPEG-1 which is mainly used in CD-ROM and VideoCD
applications [20].

After demonstrations proved that the syntax was generic enough to be ap-
plied to bit rates and sample rates far higher than the original primary target appli-
cation, a second phase (MPEG-2) [21] was initiated within the committee to define
a syntax for efficient representation of broadcast video. Efficient representation
of interlaced (broadcast) video signals was more challenging than the progressive
(non-interlaced) signals coded by MPEG-1. Similarly, MPEG-1 audio was capable
of only directly representing two channels of sound. MPEG-2 introduce a scheme
to correlate multichannel discrete surround sound audio. Need for a third phase
(MPEG-3) was anticipated in 1991 for High Definition Television, although it was
later discovered by late 1992 and 1993 that the MPEG-2 syntax simply scaled with
the bit rate could phase out MPEG-3 [37]. In 1994, this effort lead to the ISO
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standard 13818. MPEG-4 was launched in late 1992 to explore the requirements of
a more diverse set of applications, while finding a more efficient means of coding
low bit rate/low sample rate video and audio signals, such as wireless transmission
of video and audio signals. MPEG-4 is expected to be defined by 1998.

From the beginning, MPEG has been embraced by industry, in fact, it is
the driving force behind this effort. In 1991 C-Cube Microsystem made the world’s
first MPEG-1 decoder, then the world’s first MPEG-1 encoder in 1993 and the
world’s first MPEG-2 encoder in 1994. Other companies then joined the band
wagon, e.g., AT&T, IBM, IIT, LSI, NEC, SGS-Thomson and TI, etc.. MPEG
applications such as VideoCD player (MPEG-1 decoder) and Direct TV set top
box (MPEG-2 decoder) have become the most successful consumer electronics ever.
Moreover, MPEG is an exclusive syntax of the United States Grand Alliance HDTV
specification, the European Digital Video Broadcasting (DBS) and Sony/Toshiba
Digital Video Disk (DVD).

The MPEG standards are published in four parts: systems, video, audio, and
conformance testing [8].

Part 1-—Systems: The first part of the MPEG standard has two primary
purposes: 1) a syntax for transporting packets of audio and video bit streams over
digital channels and storage mediums (DSM), 2) a syntax for synchronizing video
and audio streams.

Part 2—Video: describes syntax (header and bit stream elements) and se-
mantics (algorithms telling what to do with the bits). Video breaks the image
sequence into a series of nested layers, each containing a finer granularity of sample
clusters (sequence, picture, slice, macroblock, block, sample/coefficient). At each
layer, algorithms are made available which can be used in combination to achieve

efficient compression. The syntax also provides a number of different means for



38
assisting decoders in synchronization, random access, buffer regulation, and error
recovery. The highest layer, sequence, defines the frame rate and picture pixel di-
mensions for the encoded image sequence.

Part 3—Audio: describes syntax and semantics for three classes of compres-
sion methods. Known as Layers I, I, and III, the classes trade increased syntax and
coding complexity for improved coding efficiency at lower bit rates. The Layer II is
the industrial favorite, applied almost exclusively in satellite broadcasting (Hughes
DSS) and compact disc video (White Book). Layer I has similarities in terms of
complexity, efficiency, and syntax to the Sony MiniDisc and the Philips Digitial
Compact Cassette (DCC). Layer III has found a home in ISDN, satellite, and Inter-
net audio applications. The sweet spots for the three layers are 384 kbit /sec (DCCQ),
224 kbit/sec (CD Video, DSS), and 128 Kbits/sec (ISDN/Internet), respectively.

Part 4—Conformance: defines the meaning of MPEG conformance for all
three parts (Systems, Video, and Audio), and provides two sets of test guidelines
for determining compliance in bit streams and decoders. MPEG does not directly
address encoder compliance.

Part 5—Software Simulation: Contains an example ANSI C language soft-
ware encoder and compliant decoder for video and audio. An example system en-
coder/decoder is also provided which can multiplex and demultiplex separate video
and audio elementary streams contained in computer data files.

As of March 1995, the MPEG-2 volume consists of a total of 9 parts under
ISO/IEC 13818. Part 2 was jointly developed with the ITU-T, where it is known as
recommendation H.262. The four additional parts are listed below:

Part 6—Digital Storage Medium Command and Control (DSM-CC): pro-

vides a syntax for controlling VCR-style playback and random-access of bit streams
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encoded onto digital storage mediums such as compact disc. Playback commands
include Still frame, Fast Forward, Advance, Goto.

Part 7—Non-Backwards Compatible Audio (NBC): addresses the need for
a new syntax to efficiently -correlate discrete multichannel surround sound audio.
By contrast, MPEG-2 audio (13818-3) attempts to code the surround channels as
an ancillary data to the MPEG-1 backwards-compatible Left and Right channels.
This allows existing MPEG-1 decoders to parse and decode only the two primary
channels while ignoring the side channels (parse to /dev/null). This is analogous
to the Base Layer concept in MPEG-2 Scalable video. NBC candidates include
non-compatible syntaxes such as Dolby AC-3. Final document is not expected until
1996.

Part 8—10-bit video extension. Introduced in late 1994, this extension to the
video part (13818-2) describes the syntax and semantics to coded representation of
video with 10-bits of sample precision. The primary application is studio video
(distribution, editing, archiving). This part has not been finished.

Part 9—is the real time interface.

All MPEG standards are generic, that is, application independent, they do
not specify the operations of the encoder, instead, they specify the syntax of the

coded bit stream and decoding process [15] [3].

4.2. Digital Video Formats

Both MPEG-1 and MPEG-2 video syntax can be applied at a wide range of
bit rates and sample rates. The MPEG-1 that most people are familiar with has
parameters of 30 SIF pictures (See following table) per second and a bit rate less

than 1.86 megabits/s. Also known as “Constrained Parameters Bitstreams”. This
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popular interoperability point is promoted by Compact Disc Video (White Book)

[7].

Video Format|Frame Size (Y) |Frame Rate|Size
HDTV 1920*1250 50 Hz 1.9 Gb/s
CCIR 601 720*576 (PAL) |25 Hz 166 Mb/s
720*480 (NTSC)|30 Hz 166 Mb/s
SIF 360*240 30 Hz 31 Mb/s
QSIF 180*120 30 Hz 8 Mb/s
QQSIF 90*60 30 Hz 2 Mb/s

Although MPEG bit-stream syntax allows for picture sizes of up to 4095*4095
pixels with a bitrates up to 100 Mb/s, many of the applications have been optimized
for SIF (MPEG-1) and CCIR601 (MPEG-2 main level, main profile). A color video
source has three color components, Y, Cb and Cr. One of the most useful formats is
called 4:2:0 subsampling format where the resolution of the chroma components is
half of the luminance resolution in both the horizontal and vertical dimensions. This
is the only format for MPEG-1. Multiplex order within macroblock is YYCbCr, and
targets main stream television and consumer entertainment. MPEG-2 also supports
the 4:2:2 and 4:4:4 color subsampling formats. In the 4:2:2 format, the chrominance
components have the same vertical resolution as the luminance component, but the
horizontal resolution is halved. Multiplex order is YYYYCbCrCbCr, mainly used
in studio production environments, professional editing equipment, distribution and
servers. In the 4:4:4 format, all components have identical horizontal and vertical
resolutions. Multiplexed order is YYYYCbCrCbCrCbCrCbCr and used in computer

graphics application [14].
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4.3. Temporal processing

One of the main applications of MPEG is in consumer and computer elec-
tronics. Thus it requires the random access of the video data, such as forward,
rewind, still, stop and index. Because of the conflicting requirements of random ac-
cess and highly efficient compression, three main picture types are defined, namely,
I, B, P, as in Figure 4.1.

Bidircctional Prediction

A

(‘Q \

\
Forward Prcdlcuon/

GOP

FIGURE 4.1. I B P frame in a Video Sequence

Intra coded pictures (I pictures) are coded without reference to other pic-
tures. They provide access points to the coded sequence where decoding can begin,
but are coded with only moderate compression. Predictive coded pictures (P pic-
tures) are coded more efficiently using motion compensated prediction from a past
intra or predictive coded picture and are generally used as a compensated prediction
from a past intra or predictive coded pictures and are generally used as a reference
for further prediction coded pictures (B pictures) provide the highest degree of com-
pression but require both past and future reference pictures for motion compensation
(Figure 4.2). B pictures are never used as references for prediction. B pictures are

disliked by lots of people because the computational complexity, bandwidth, end-
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to-end delay and picture buffer size all get much larger. We will discuss how to
generate the B pictures in the following sections. ( In MPEG-1 there is another
type of picture defined as D picture which is coded like I picture but only with the
DC coefficients of DCT output. D pictures are not used in MPEG-2 )

Previous Picture Current Picturc Future Picture

Backward Interpolative Forward
Prediction Error  Prediction Error  Prediction Error

FIGURE 4.2. Bidirectional Motion Compensation

The organization of the three picture types in a sequence is very flexible, it
usually goes like:

IBBPBBPBBPBBIBBPBBPB...,
where there are 12 frames from I to I. This is based on a random access requirement
that is needed as a starting point at least once every 0.4 seconds or so. The ratio of
P’s to B’s is based on experience.

The order of the coded frames in the bitstream, also called coded order, is
the order in which a decoder reconstructs them. The order of the reconstructed
frames at the output of the decoding process, also called the display order, is not
always the same as the coded order.

When the sequence contains no coded B pictures, the coded order is the

same as the display order. When B pictures are present, then the frame reordering
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is performed according the following rules: If the current frame in coded order is a
I or P, then the output frame is the frame reconstructed from the previous I or P.
If the current frame is a B, then the output frame is the frame reconstructed from
that B.

One example is Figure 4.1, which has two coded B frames between successive
coded P frames and I frames. Frames ’1I’ is used for prediction of frame ’4P’. ’1I’
and ’4P’ are both used for prediction of frames 2B’ and ’3B’. Therefore the order
of coded frames in the coded sequence shall be '1I’, ’4P’, "2B’, ’3B’. However, the
decoder shall display them in the order of '1I’, 2B’, ’3B’, ’4P’.

There is no special requirement to use either P pictures or B pictures in the
MPEG bit stream. However, B pictures require significantly fewer bits than either
I or P pictures. Increasing the number of B between I and P may not lead to better
compression due to a drop off in temporal correlation as the distance between B and

I or P increases.

4.4. Encoder and Decoder

The MPEG standard does not define an encoding process. Figure 4.3 shows
the basic functions that need to to be executed by a typical MPEG encoder [26].

Preprocessing

This process may include color conversion, format translation, prefiltering,
and subsampling. None of these operations is specified in the standards.

ME and MC

Figure 4.2 shows the bidirectional ME and MC. After the preprocessing, the
encoder selects the coding type for the input picture, namely, I, B or P. The decision

is made differently for each macroblock for every different types of picture. The I
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FIGURE 4.3. MPEG Encoder ( P Pictures )

frame is coded like a still image. As P or B frame., the encoder does not code the
picture directly. Instead it codes the prediction errors. Figure 4.3 shows a P coding.
B frame can be coded very similar with more complicated ME methods.

As we noticed from the Figure 4.4, the decoder is very similar to the feedback

loop of the encoder.
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FIGURE 4.4. MPEG Decoder

4.5. Bit Stream Structure

The MPEG-1 syntax has a hierarchical representation with six layers (Fig-

ure 4.5: sequence, GOP, picture, slice, macroblock and a block layer.

Sequence a sequence of pictures. Information about frame size, pixel aspect ratio,

quantization matrices, etc.

GOP or Group of Pictures, a set of pictures bracketed by I-frames. Permits random

access.
Picture a single frame. Defines I, P, or B frame.
Slice a set of blocks within a frame. Header allows resynchronizations after errors

Macroblock a set of four luma blocks and two chroma blocks corresponding to the

same spatial region of he picture.

Block a single 8x8 block for DCT coding.

The concept of the Group of Pictures layer does not exist in MPEG-2. It is

an optional header useful only for establishing a SMPTE time code or for indicating
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Sequence Layer

GOP1 GOP2 GOP3 GOPs

[ B B P B GOP Layer

Picture Layer /

Slice 1
Slice 2

Y Luminance

FIGURE 4.5. Bitstream Layer of MPEG-1

that certain B pictures at the beginning of an edited sequence comprise a broken.
link. This occurs when the current B picture requires prediction from a forward
reference frame has been removed from the bitstream by an editing process. In
MPEG-1, the Group of Pictures header is mandatory, and must follow a sequence
header.

Progressive frames are a logic choice for video material which originated
from film, where all pixels are integrated or captured at the same time instant.
Most electronic cameras today capture pictures in two separate stages: a top field
consisting of all odd lines of the picture are nearly captured in the time instant,
followed by a bottom field of all even lines. Frame pictures provide the option of
coding each macroblock locally as either field or frame. An encoder may choose field
pictures to save memory storage or reduce the end-to-end encoder-decoder delay by

one field period.
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To aid implementations which break the decoding process into parallel opera-
tions along horizontal strips within the same picture, MPEG-2 introduced a general
semantic mandatory requirement that all macroblock rows must start and end with
at least one slice. Since a slice commences with a start code, it can be identified
by inexpensively parsing through the bitstream along byte boundaries. Before, an
implementation might have had to parse all the variable length tokens between each
slice (thereby completing a significant stage of decoding process in advance) to know
the exact position of each macroblock within the bitstream. In MPEG-1, it was pos-
sible to code a picture with only a single slice. Naturally, the mandatory slice per
macroblock row are restrictions also facilitates error recovery.

Motion vectors are now always represented along a half-pel grid for MPEG-
2, A intrinsic half-pel accuracy can encourage use by encoders for the significant
coding gain which half-pel interpolation offers.

In both MPEG-1 and MPEG-2, the dynamic range of motion vectors is
specified on a picture basis. A set of pictures corresponding to a rapid motion
scene may need a motion vector range of up to +/- 64 integer pixels. A slower
moving interval of pictures may need only a +/- 16 range. Due to the syntax
by which motion vectors are signaled in a bitstream, pictures with little motion
would suffer unnecessary bit overhead in describing motion vectors in a coordinate
system established for a much wider range. It later became practice in industry to
have a greater horizontal search range than vertical, since motion tends to be more
prominent across the screen than up or down. Secondly, a decoder has a limited
frame buffer size in which to store both the current picture under decoding and the
set of pictures (forward, backward) used for prediction by subsequent pictures. A
decoder can write over the pixels of the oldest reference picture as soon as it no longer

is needed by subsequent pictures for prediction. A restricted vertical motion vector
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range creates a sliding window, which starts at the top of the reference picture and
moves down as the macroblocks in the current picture are decoded in raster order.
The moment a strip of pixels passes outside this window, they have ended their
life in the MPEG decoding loop. As a result of all this, MPEG-2 created separate
horizontal and vertical range specifiers, greater restrictions are also placed on the
maximum vertical range than on the horizontal range. In Main Level frame pictures,
in range [-128,4127.5] vertically, and [-1024,+1023.5] horizontally. In field pictures,
the vertical range is restricted to |- 64,+63.5].

Also, macroblock stuffing or the “0000 0001 111”7 is a stuffing code and can
be inserted into the bit stream wherever the encoder detects the possibility of a
buffer underflow. Because the difficulty to implement in VLSI and the reduction of

bit efficiency ( This stream is ignored by the decoder ). Stuffing is not permitted in
MPEG-2.

4.6. Macroblock Coding

For the above discussion we assume that all the macroblocks with each frame
are coded the same way. Actually, in a real application, even within a single I, B
or picture, macroblocks can be coded differently. The decision trees for coding
macroblocks are shown in Figure 4.6 and Figure 4.7.

I pictures are coded without MC, nevertheless, MPEG syntax allows each
macroblock to be coded using a different effective quantization matrix. For the AC
coefficients of DCT, the quantization step depends not only on the value of the
corresponding element in the quantization matrix but also on the scale factor which
is also referred to as MQUANT. Thus, the macroblocks in I pictures can be coded
using a new MQUANT or using the old MQUANT (Figure 4.6). After this stage
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the DC coefficients are DPCM coded similar to JPEG. However, for AC coefficients,
only the most frequent run/amplitude values are coded the same as JPEG. For the
rest values are coded by an escape code followed by separate Huffman codes for the
run-length and the amplitude.

Macroblock (I picture )

l

Change
MQUANT

Coding Coding

FIGURE 4.6. I Frame Macroblock Coding

For P pictures the encoder has more coding choices for each macroblock due
to MC. First, decide if there is substantial motion between the two frames, if not,
the MV can be set to zero. For example, if the background seldom changes between
the frames, then there will not be bits to allocate to MV. If there exists a high level
of temporal activity, in other words, the ME may fail (If the best match macroblock
moved out of search window), the energy of prediction error may be greater than
the macroblock; in this case, the decisions have to be made if the macroblock will
be coded in intra-mode or inter-mode.

If the ME is very accurate and we almost have found the perfect match (Ac-
curate MV), then after MC, the prediction error may be so small that the following
quantization step will make every coefficient prediction error to zero. Thus, a mac-
roblock like this can be skipped (without coding) to reduce the bits count to code

the picture. Sometimes, the whole macroblock may not have to be quantized to
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zero, instead, one or more blocks of the six blocks are all zero, in this case, a six-bit
pattern referred to as the coded block pattern will indicate to the decoder which of
the six blocks within the macroblock have been coded.

B pictures are very similar to the P pictures except that the MC mode |,
namely, forward, backward, or interpolated MC mode, has to be decided before all

the above decisions can be made (Figure 4.7).

Macroblock ( B picture )

Coding  Coding Coding  Coding  Skipped

FIGURE 4.7. B Frame Macroblock Coding

4.7. Scalable Bit Streams

A new feature of MPEG-2 is bit stream scalability, which allows for a layered
representation of the coded bit stream. The syntax allows four basic modes of bit

stream scalability:

Data Partitioning The bit stream is split into two layers, one layer for critical
header information (Such as headers and MV). This is intended for use in

applications that can allocate two channels for a single bit steam.



51
SNR Scalability Support video transmission at multiple quality levels. All the
layers have the same spatial resolution but different video qualities. This

mode provides for better resilience to transmission errors. .

Spatial Scalability Support different spatial resolution transmission. Very similar
to hierarchical JPEG coding mode where subsampled version can send first

with enhancement follows..

Temporal Scalability All layers have the same frame size and chrominance for-

mats but different frame rates.

Main
SNR Scalable

Spatiatly Scalable

FIGURE 4.8. MPEG-2 Profiles

Considering the practicality of implementing the full syntax of the MPEG-2 spec-
ification, a limited number of subsets of the syntax are stipulated by means of
“profiles” and “level”. A profiles is a defined subset of the entire bitstream syntax
and a level is a defined set of constraints imposed on parameters in the bitstream

(Figure 4.8).



Level Profile

Simple Main|SNR Scalable|Spatially Scalable|High
High (1920*1152) X X
High (1440%1152) X X X
Main X X X X
Low (352*288) X X

TABLE 4.1. MPEG-2 Profiles Levels

92
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5. VLSI ARCHITECTURE FOR VIDEO COMPRESSION

5.1. Overview

The past few years have seen an explosive progress on digital video processing
thanks to the rapidly improved VLSI technology. In this chapter, a VLSI imple-
mentation of the video compression algorithms discussed in previous part of this
thesis (chapters 2, 3 and 4) is developed. Several methods of mapping algorithms
to architectures are carefully evaluated and a real VLSI chip capable of real-time
MPEG encoding and decoding is built and tested successfully.

The required silicon area for VLSI implementation of algorithms is related
t(; the resources such as the number of logic gates, memory capacity, and the com-
munication bandwith for I/Os as well as between the modules. The number of
operation becomes smaller when more of the priori knowledge about the specific
algorithm is incorporated into the computation scheme. In addition to the oper-
ation part, we have to consider the memory and the interconnection between all
modules. The memory requirements are influenced by the multiple access to orig-
inal image data and intermediate results. According to the above consideration,
the characteristics of video compression algorithms related to the hardware expense
have been identified as computational rates, access rate and memory capacity. The
high performance requirements of video coding schemes need special multiprocessor
architectures with extensive parallel processing and pipelining. Mapping of video
coding schemes onto multiprocessor systems can be based on data distribution as

well as task distribution, or, dedicated (function specific).
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In the case of data distribution, parallel processing is possible by assigning
to each processor a subsection of an image. Thereby the image segments can be
almost independently processed. The particular advantage of this method is that
only one type of PE (Processing Element) is needed. For multiprocessor systems
with identical PEs SIMD (single instruction multiple data stream) oriented control
seems to be appropriate. SIMD systems have a common control unit for all PEs
which offers an overall small silicon area for control. However, the disadvantages are
caused by the data access and the operative part of the processor. This problem can
be partly solved by assigning a local memory to each processor. By storing in the
local memory all source data and intermediate results for processing of one macro
block the video bus access rate can be restricted to the order of the source rate. this
require to store the search area for the block matching in the local memory.

The other method consists of mapping the functional blocks of video com-
pression to different dedicated processors. This approach can be interpreted as
pipelining at the macroblock level. A realization according to the task distribution
can be optimized by adapting each processor architecture to the specific algorithm
features such as algebraic theorems, linearity and symmetry. For video compression
applications, this dedicated approach is mainly applied to the implementation of
computation intensive tasks, namely ME and DCT/IDCT. The main disadvantage
of dedicated architecture is the lack of flexibility.

Advantages of both the task distribution and data distribution approach
can be combined by an hierarchical multiprocessor system architecture. On the
first level of hierarchy data distribution is exploited for parallelization. Identical
processors are connected by a bus system for distribution of video data and inter-
processor communication. Each processor is assigned a local memory which contains

one or a few macroblocks of image data. The second level of hierarchy is formed
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within the processors. Each processor contains function specific modules and one
flexible programmable control module for data dependent processing and module
synchronization. Programmable architectures provide a significant higher flexibility
compared to dedicated approaches, since, for example, modifications of the envis-
aged applications require software changes instead of a more cost intensive hardware
redesign. Generally, this increased flexibility leads to a decreased architectural effi-
ciency. This can be compensated by a combination of dedicated modules (typically
for ME or DCT) and programmable modules for the remaining tasks of the hybrid
coding scheme, like quantization, coder control, etc.. The design efforts and design
errors will also be reduced by regular and modular architecture. Furthermore, the

building block concept simplifies the design by use of high level synthesis tools [35].

5.2. Architectures for Motion Estimation

In this section we are going to discuss the implementation of core algorithms,
or, Motion Estimation in VLSI. The different architectures will be discussed in detail
and the tradeoffs will also be studied. Even the most powerful processors now can
not adequately address the processing requirements of the ME. If we measure the
complexity by the number of required RISC-like operations, for example, r1 = a+b,
where a and b are data stored in external memory and 1 is the register, then the
total operation will be 3 since we also count the two memory access. If we take
H.261 encoder as an example, ME contribution more than half of the operations.

The inner loop operation, or, the accumulation of the Absolute Difference
(AD) is very computational intensive. For NTSC resolution, the full search will
need almost 50 GOPs (assume each s = s + |a — b| takes 5 operations). Even after

fast search method, such as hierarchical ME, this is still too mighty a job (Not
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counting the half-pel ME!). For such high throughput, parallel architectures have
to be explored.

There are ways to determine the feasibility of the architecture, first, the
computation load, that is to say, the implementation has to capable of the work.
Second is the I/O bandwidth, data rate can not be too high. Third, the size, or,
the number of gates, of the implementation can not be too large, last, latency can
not be too long, in other words, the response time has to be fast enough to make
real time ME possible. According to these standards, we will discuss the following
architectures [28] [43]:

By studying the algorithm carefully we can find out that BMA has a very
regular data-flow. Also the data in the search-window are used repeatedly in the
computations of displaced block differences at different search-positions. These fea-
tures can be exploited to result in very efficient and practical architectures such as
linear array.

The key to utilize the regularity of the data flow, the data are piped to
multiple PEs and used repeatedly so that memory access can be reduced. Without
loss of generality, let us consider ME of one macroblock (16x16) and search range of
-8 to +7 pixels (mostly used in videophone application). Figure 5.1 shows the pixel
coordinates.

Because the pixels in the search-window are used repeatedly in the calcu-
lations, by using suitable control to broadcast these data to the required PEs, it
relieves the burden of repeated accesses of the same data from the search-window
for the multiple search-positions.

In Reference to Figure 5.2, more detailed description of the operation is given

as follows:
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FIGURE 5.1. Data-flow Design
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FIGURE 5.2. Architecture for ME using Linear Array

The following table shows the detail pixel data flow for the parallel compu-
tation of the first 16 distortion values. The pixel data are processed row by row.
Reference block pixels move among PEs through a series of delays. At cycle 0,
a(0,0) and 5(0,0) are available to PEO, AD is performed in PEO, at cycle 1, a(0,0)
in DFF is used for PE2, at the same time, (0, 1) is available to PEQ. At cycle 15,

pixel a(0, 0) reached the PE16 and from this time on the PEs will be fully utilized.
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From cycle 16, all the input ports are active. Port b1 received the second row of

the search and 52 continue the first row. This procedure is repeated until all the

differences are completed then the MV is decided.

The reason two ports are used to search window memory is that the search

window is bigger than the reference block memory, thus the I/O bandwidth is larger.

Also the serial data can be inputed and thus reduce the pin count.

The basic idea of using the search-window data repeatedly can also be applied

to a linear array architecture using the reference block data repeatedly. Figure 5.3

shows the architecture [28].
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FIGURE 5.3. Architecture 2 for ME using Linear Array
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Cycle Time Input Data Processor Inputs

a bl b2 PEO PE1 PE15
0 a(0,0) {b(0,0) a(0,0),b(0,0)
1 a(0,1) |b(0,1) a(0,1),b(0.1) |a(0,0),b(0,1)
2 a(0,2) |b(0,2) a(0,2),b(0,2) |a(0,1),b(0,2)
14 a(0,14)|b(0,14) a(0,14),b(0,14){a(0,13),b(0,14)
15 a(0,15)|b(0,15) a(0.15),b(0,15)a(0.14),b(0,15) a(0,0),b(0,15)
16 a(1,0) {b(1,0) {b(0,16) {a(1,0),b(1,0) [a(0.15),b(0.16) [:a(0,0),b(0,16)
31 a(1,15)|b(1,15){b(0,31) |a(1,15),b(1,15)(a(1,14),b(1,15) [a(1,0),b(1,15)
256 b(15,16) a(15,15),b(15.16){a(15,1),b(15,16)
270 b(15,30) a(15,15),b(15,30)

TABLE 5.1. Basic Data Flow for ME
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In figure, Q0 — Q15 are latches while R0 — R15,.50 — S15 are latches with
multiplexors to select one of the two inputs. In the very beginning 16 cycles, 16 data
from the search window are shifted into the Q-latches. Then the data is parallel
loaded into the R-latches and provided to the PEs concurrently. During the next
15 cycles, the contents of the R-latches are shifted up one at each clock cycle and
b2 is shifted into the R15. The operation continues and we can show that the
computation is correct. (The operations are very similar to the above table).
The above two methods are 1-D linear arrays each need MxN clock cycles to
complete just one row of search positions, this is not enough for the higher sample-
rate or larger search window applications. Thus we can take the idea of 1-D linear

Array and extended into 2-D arrays which shows in the Figure 5.4:
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FIGURE 5.4. Architecture for ME using 2-D Linear Array
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The reference block data are sent to all the PEs at each cycle, the sequence of
the reference block and the search location are also illustrated in the figure. Each PE
can accept a search-window pixel from its left, upper, or lower PE. At the beginning
of the operation, each column of PEs and upper side-registers contain a column
of search-window data, when the first reference block pixel comes in, note that the
number of PEs equals to search locations, or, (2p+1)? and all the absolute difference
contain a(0, 0) are computed, that is, a(0, 0) —b(0, 0), a(0,0) —b(1, 0), a(0, 0) —b(1, 1)
etc are computed. After N cycles, the result will come out and another column of
search window data are loaded.

In order to support real time MPEG-2 IPB AFF encoding of CCIR601 pic-
ture, especially when the search range is large and with half-pel accuracy, all the
above architectures’ performance is not enough. Although we can extend the archi-
tecture by extend the number of PEs, this is not the best approach for high data
rate applications. In Figure 5.5 we are going to develop a new architecture with very
high computation ability. The tradeoff is that the I/O bandwidth will get large too.
However, with the advance of VLSI technology, this problem can now be overcome.
Also, smart memory access can also take advantage of the regularity of the data
flow and as a result reduce the I/O bandwidth requirement.

We assume that there is enough memory to hold the reference image data
and part of the search window data. Thus we form an architecture to provide
continuous data-flows for various block-size MEs by using a fixed-size computation
unit, that is, an 8x8 block. The search can be 8x8, 16x8, 8x16 and 16x16 to cover
all the cases (Since we are dealing with high resolution pictures, even at the lowest
resolution ME level, 8x8 blocks are needed instead of the 4x4 block). The 8x8
blocks absolute difference is computed and the result is added together, first all the

values of the same row are added together and then the 8 rows result can be added
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together (Figure 5.5). The adder implementation can be any fast adder scheme such
as: binary adder trees (3 level) or carry save adder (CSA), carry lookahead adder
(CLA) or carry select adder (CSEA) just to name a few [24] [22].

t i t } t § 377
7
ADDER ]

SCORE

FIGURE 5.5. New Architecture for ME

5.3. Mapping Algorithms to VLSI

The required silicon area is related to the required resources such as logic
gates, memory, and the interconnect between the modules. The amount of the logic

depends on the concurrency of operations [35]:

Ncon,op = Rs X Nop,pel X Topv
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where R, is the source rate in pels per time unit, Nop pet is the number of operations
per pel and T, is average time for performing an operation. This depends on the
video format.

The required interconnects between the operative part and the memory de-
pends highly on the access rate. If we store the the video data and intermediate
data (such as ME computation data, difference data between frames) in one big
external memory (for example, DRAM). Then the number of parallel bus lines for

connecting the operative part and the memory becomes approximately
Nbus = Rs X Nacc,pel X Tacm

where Ngceper specifies the mean number of accesses per pel and T, the memory
access time. Thus the number of bus lines will become too large to be practical.
Taking into consideration that the access rate is mainly influenced by multiple ac-
cesses of image source data and intermediate results, the access rate to an external
memory be essentially reduced by assigning a local memory to the operative part.
‘The memory size depends on the specific access structure of the coding algorithm.
Concurrency of operations can be achieved by architectures with parallel processing
or pipelining. This goes back to the different architectures such as task distribution
(See Figure 5.6).

A cascade of processors will be derived which can easily operate in pipeline by
placing between the processors a memory of appropriate size. However, by parallel
operation of processors where a subsection of the image is assigned to each processor,
the image segments can be processed separately. A local memory is assigned to each
processor for the image data and intermediate data. This is also shown in Figure 5.6.

We can develop the above ideas one step further and thus lead us to the

hybrid architecture showed in the Figure 5.7.
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FIGURE 5.6. Task Distribution and Function Distribution

We need to define the efficiency of the architecture. First, from the practical
point of view, because the silicon area is directly related to the cost. This leads to

the well known AT-product for architecture assessment, that is,

1

E= AsiXTp,

or in other words: A,; = ar X Ry, where the throughput Ry is inversely proportional
to the processing time for one sample (7},). This shows that area A; increases (par-
allel implementation) will increase the through-put. Since we have to include the
rapidly advanced semiconductor technology, if we assume a linear scaling of volt-
ages and doping concentration, in the “constant voltage” model of scaling of MOS
transistors the gate delay scales as /\102, plus some practical, such as, interconnection
delay, power requirement constraints on speed and the memory parts, etc.. As a

result, we can get
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where C), is the memory capacity.

In summary of what we have discussed, to improve the performance, there
exists several ways; however, it also depends on what the major goal we want to
achieve is. If we want to improve the through-put, we can:

1) Increase the clock frequency. This can be done by intensive pipelining.
2) Increase the on-chip memory, reduces the external memory access time.
3) Parallel data paths, exploits data distribution.

4) Increase the width of bus.

5) Dedicated modules such as ME and VLC/VLD, or floating point unit.
For the above 5 different methods, there are also existing tradeoffs. For

example, the maximum clock frequency is limited by the maximum delay between

two successive register stages. The intensive pipelining also introduces longer latency
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of the circuit which may not be acceptable. Large memory on chip will influence
the yield, parallel data paths will increase the silicon area thus increasing the cost
where dedicated modules will limit flexibility.

The silicon technologies and the design methodologies play a very important
role in video compression, especially with the intensive use of sub-micron technolo-
gies associated with fast on chip clock frequencies and huge numbers of transistors
on the same substrate affects traditional methods of designing chips. This will not
only change the hardware design process but also the use CAD tools [12].

The clocks that drive IC’s are increasingly fast (100MHz is very common
now), and CMOS devices scale down into the submicron region (0.35um process is
the standard process). Therefore some important parts of each digital submicron
chip have to be considered to be working in the analog mode rather than digital.
As a result, lots of effects used to be neglected by digital designers, such as power
management, interconnections and packaging have to be carefully considered.

The interconnections can be modeled by RC circuits, this method is still
used to derived the clock trees to manage the clock skew. Because of the scaling,
resistance plays a more and more important role. For example, fringing fields and the
contributions of neighboring lines must also be included in the calculation. However,
when the wire lengths increase, their inductance starts to play a major role. If
the signal propagates from a source to a load and back in more than one-tenth of
the time it takes the signal to rise, then transmission-line effects need to be taken
into consideration. These effects include reflections, overshoot, undershoot, and
crosstalk. Electromagnetic effects have to be analyzed in a first step but it might be
necessary to use another circuit analysis to gain better insight into circuit behavior
such as electromagnetic characteristics. However, the completed analysis of a whole

chip using 3-D electromagnetic methods is not feasible.
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A common method used to reduce the effects of interconnection is MCM, or
Multichip Modules Chip, which puts two or more chips on the same die and pack-
aged together. Because the delay between one chip and another on a board is one
magnitude larger than on-chip delays, thus MCM can greatly improve electrical per-
formance by drastically shortening interconnection lengths. Thus the corresponding
signal reduces “time of flight” and results in having faster circuit switching speeds.
Degrading noise and crosstalk are also minimized. A lowering of line capacitance
also makes it possible to reduce power consumption.

Simultaneous switching noise, or, ground bouncing is another problem intro-
duced by the inductance. The output driver has to be carefully designed so as to
avoid false triggering, double clocking, or missing clock pulse. An in-depth analysis
of the chip-package interface (Figure 5.8) is required to ensure the functionality of
high—speed chips.

Bonding Parasitics

Gnd Platform Parasitics

A

Package Pin Parasitics

FIGURE 5.8. Chip Package Interface

From the above discussion we can find out that some important parts of each
digital chip have to be considered to be working in analog mode rather than strictly

digital. This is true for I/Os and is also true for the timing and clocking blocks in a
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system. The entire floor plan has to be analyzed in the context of noise immunity,
parasitics, and also propagation and reflection in the buses and main communication

lines.

5.4. Low Power Design

Equally important as high speed, low power requirement has become one of
the major design issues for VLSI. Especially the actual demand for portable con-
sumer products implies that power consumption must be controlled at the same time
that complex user interfaces and multimedia applications such as video compression
are driving up computational complexity 1] [2].

In analog circuits, a desired SNR must be maintained, while for digital CMOS
circuit, although the peak power consumption is very important for low-power de-
sign, the more critical element is the time averaged power consumption which is
directly proportional to the battery weight and volume required to operate circuits
for a given amount of time. There are four sources of power dissipation in digital

CMOS circuits, that is,
Pavg = denamic + Pshort_circuit + Beakage + Pstatic,
where
Piynamic = ag->1 X Cp X V X Vgg X feik.

Charging and discharging parasitic and loading capacitors, Pyynemic repre-
sents the switching component of power, where Cp is the load capacitance, fq; is
the clock frequency and op--; is the node transition activity factor, or the number
of times the node makes a power consuming transition in one clock period, V is

the voltage swing which in most cases equal to V4 or the supply voltage. However,
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there may be some cases when the voltage swing is less than supply voltage, such

as pass-transistor implementation.

Pshort-cz‘rcm't = Isc X Vdd~

Due to short circuit current I, which arises when both the NMOS and PMOS

transistors are simultaneously active, Poport_circuit 15 also called Pyirect_path

Pleakage - Ileakage X Vaq.

The leakage current, Jjeqkqge cOmes from reverse bias diode currents and sub-

threshold effects. This mostly depends on the process technology.

Pstatz’c = Istatic X V:id-

This will rise if the logic used in the circuit has current source such as bias
circuitry or pseudo-NMOS logic families.

Among these four components, the dynamic power will dominate and will
contribute to more than 90 percent of the total power consumption thus making it
the primary target for power reduction. In the following section, we focus on how
to reduce the dynamic power.

From the above equations, the dynamic power arises when energy is drawn

from the power supply to charge the parasitic capacitors Cf,

CL = Cgate + Cdi f fusion + Cinterconnect*

First and foremost, from the equation of dynamic power we can tell that
the supply voltage has the greatest impact on the power. The dynamic power is
proportional to the square of the V,;. However, this comes with a cost: the scaled

down of the Vy; will also reduce the circuit speed and thus reduce the throughput.
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As a result, the power-delay product is a better indicator of the performance. Thus

the design objective becomes that of reducing power consumption while maintaing

the overall system throughput through appropriate architectural, advanced process

technology, careful sizing of transistors and the in-depth analysis of signal transition
activity.

It is found that a simple first-order derivation adequately predicts the exper-

imentally determined dependence and is given by:

_CLXV:M_ CLXVdd

T = .
’ I BCox s (W/L)(Vaa — Vi)

From this equation we can find out that to compenstate for the increased de-
lays at low voltages, parallel and pipelined architectures can be used. Computation
can be done in n parallel functions, each of them operating n times slower. The cir-
cuit operate at a lower rate thus reduce the frequency and as a result to reduce the
power. The downside is that the circuit overhead for the control and communication
task grows for parallel approaches and latency get longer for pipelining. Another
approach is to modify the threshold voltage of the devices. Reducing the threshold
voltage allows the supply voltage to be scaled down. However, the tradeoff is lack
of noise margins and the increase in subthreshold currents. This will in turn result
in significant static power dissipation.

Since CMOS circuits do not dissipate power if they are not switching, a major
focus of low power design is to reduce the switching activity to the minimal level
required to perform the computation. One method is to use gated clock to power
down the module that is not active when the other module is working. Another
important factor is ag_>;, or transition activity. Factors affecting a are as follows:
type of logic function, type of logic style (Static logic or dynamic logic), signal

statistics, circuit topology (the manner in which logic gates are interconnected) and
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inter-signal correlation (correlation exist between values of a temporal sequence of
data, since switching should decrease if the data is highly correlated). For example,
video and audio signals are highly correlated. Another example is the memory
access address, when one reads from or write to DRAM, for fast page mode, the
column address signals switching one bit at a time if we are access one section of
the memory.

At layout level, the place and route should be optimized such that signals
that have high switching activity (such as clocks) should be assigned short wires
and signals with lower switching activities can be allowed progressively longer wires,
therefore, new CAD tools need to develop to reduce the overall capacitance that is
switched.

At circuit level, transistors need to be carefully sized. It is important to
equalize all delay paths so that a single critical path does not unnecessarily limit the
performance of the entire circuit. Minimum size should be used wherever possible
to reduce the parasitic capacitances without degrade the speed. Chandrakasan etal,
[2] showed that if the total load capacitance is not dominated by the interconnect,
the minimum sized devices resulted in the optimized sizing.

Another approach to reduce power is to reduce the voltage swing on the
output nodes. This will be very effective on the internal buses. For example, NMOS
is used so the output will be Vyg — V; instead of full swing V;. The following figure
shows a simplified schematic of such a gate, used in the FIFO memory cells of
Berkeley low-power cell library. This circuit uses a precharged scheme and the
transistor M3 is used to clip the voltage of the bit-line to V;y — V;. The transistors
M1 and M4 are used to precharge the internal node which is the input of the inverter
to Vgg. During evaluation (CLK ="17), if V;, is high, the bit-line will start to

discharge. Because the bit-line is heavily loaded, the capacitance ratio of the bit-
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line to the internal node is very large, once the bit-line has dropped roughly 200 mV
to sufficiently turn on M3, the internal node quickly drops to the potential of the

bit-line, providing signal amplification thus also increase the speed (Figure 5.9).

Vdd = 1.5v
M1 M2
CLIS(% 6/2 319 })——
%_Vout
M3
Heavily Loaded | l:
Bit-line I ”
M4
CLK
92
________ s U
M5 >
4| an
Vin T Ceff = 5 pF

FIGURE 5.9. Voltage Swing Reduction Circuit
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6. VLSI IMPLEMENTATION OF VARIABLE LENGTH DECODER

6.1. Overview

As we have discussed in Chapter 2, the Variable Length Coder (VLC) can
achieve very good compression efficiency by combining RLC and Huffman coding
together. Because of its lossless nature, it is also called entropy coding. The VLC
is the last stage in the encoding pipeline of JPEG and MPEG (Chapter 2, Chapter
3 and Chapter 4). As a result, Variable Length Decoding (VLD) is the first stage
in the decoding pipeline of MPEG applications. Since there is no explicit codeword
boundary in the variable length coded bit stream, the VLD is more difficult to imple-
ment than the VLC. The VLD must decide the codeword length to extract the code
and align the following bit stream for the next decoding, therefore, it is a recursive
data dependent procedure for which the decoding speed is limited. In this chap-
ter, a high-performance, low-power and memory-efficient VLD has been designed
for MPEG applications. It has higher performance by using parallel and pipeline
architectures, furthermore, with careful analysis of MPEG bitstream pattern, effi-
cient on-chip memory usage has been achieved. At the same time, low-power design
techniques (Chapter 5) have been implemented to reduce the power consumption of

this highly active module.

6.2. System Model

First, a simple Huffman coding example is given in Figure 6.1.
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FIGURE 6.1. Simple Huffman Coding example

The VLD used in MPEG application is much more complicated, it has to be
able to cope with many MPEG audio and video bitstream corner cases. In order to
achieve high-performance, the VLD we designed can automatically decode MPEG
bitstreams up to Macroblock layer level (Chapter 4). Figure 6.3 is the system model
of VLD in C-like pseudocode which shows the main function block of VLD in MPEG
application. Notice that only the video decoding procedure is showed.

In Reference to Figure 6.2, during MPEG block layer video decoding, the
DC coefficients are differentially coded in a way similar to the method employed in
JPEG, as we discussed in Chapter 2. That is, each differential value is coded using
a (size, level) pair. Then the size is Huffman coded and defines the number of bits
used by the level. As in JPEG, the AC coefficients are scanned in zig-zag order
and coded using run-length and level information. However, the coding details in
MPEG are different from JPEG. MPEG does not use any size information, instead

it provides Huffman codes for the most frequent run/level values. Run/level values
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block(i) {
if ( pattern_codel[i]) {
if ( macroblock_intra ) {
if(i<4){
dct_dc_size_luminance
if ( dct_dc_size_lumainance !=0)
dct_dc_differential
Jelse {
dct_dc_size_chrominance
if ( dct_dc_size_chrominance !=0)
dct_dc_differential
/
Jelse {
Frist AC coefficient

/

while ( nextbits() /= EOB )
Rest AC coefficients

EOB

FIGURE 6.2. Block Layer Pseudocode

that are not listed in the table are coded by an escape code (Figure 6.3), followed
by separate Huffman codes for the run-length and the level.

A more detailed description of the operation of Figure 6.3 is given in previous
chapters (Motion estimation and motion compensation in Chapter 3 and MPEG
standards in Chapter 4). In the following sections, the implementation will be given

in detail.
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6.3. VLSI Architectures

Traditionally, VLD is implemented through a tree searching algorithm as the
input bits are received serially (k bits at a time). This is known as constant-input-
rate VLD. The decoding process can be considered as traversing down a path of
Huffman tree from the root , the route determined by the input encoded bitstream.
Figure 6.1 is a simple example where k = 1.

We can implement the whole decoder as a pipelined decoding tree, where one
pipeline stage corresponds to one level of the tree and can be implemented by a read-
only memory (ROM). This method is still quite popular when the data rate is not
too fast. However, for MPEG-2 audio/video decoder, other parallel architectures
have to be used because of the vast amount of data that has to be processed.

Due to the variable-length property of the VLC code, the input and output
speed of the decoder can not both be kept constant, therefore if we have variable-
length input words, the constant-output-rate VLD can be achieved. Sun and Lei
[38] used a programmable logic array (PLA) based constant-output-rate parallel
architecture.

As Figure 6.4 shows, the output rate is fixed, one codeword every cycle. The
barrel shifter stores a 32-bit window of the input data, where the PLA takes 16-bit
as its input to decode one codeword. Since 16-bit is the maximal codeword length,
it is guaranteed that at least one codeword can be decoded. The output of the PLA
also includes the actual length of the decoded codeword. The length is accumulated
and used to memorize the new starting position within the 32-bit window in order
to get the 16-bit for decoding. The carry bit of the accumulator is used to issue a

data fetch command and get the next word from the input buffer. The mapping
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in PLA is done in parallel and one codeword is decoded each cycle hence the name
constant-output-rate parallel architecture.

However, Sun and Lei [38] claimed that because of the recursive operations of
VLD, pipeline can not be implemented. After careful study of MPEG bit patterns,
we have implemented a new VLD architecture which can take the advantage of both
pipeline and parallel structures at the same time.

A block diagram of new VLD is shown in the following Figures 6.5, 6.6 and
6.7.

Since the input to VLD is not constant, a first-in-first-out buffer (FIFO) of
32 words deep is added for VLD. The decoder receives the input bitstream from
DRAM through this FIFO. A request for new data is generated when the FIFO is
half empty. The control register bitcount is a pointer to the next bit to be read in
the delay register. A 5 bit adder (Figure 6.6) is used to update the bit pointer as
codeword are decoded.

Because the VLD can handle the macroblock layer decoding, an on-chip ROM
has to maintain the tables for MacroBlock Address (MBA), Macroblock type I, P,
B and D pictures, Coded Block Pattern (CBP), DC and AC coefficients for both
luma and chroma components and Motion Vector code (MV) for both MPEG-1 and
MPEG-2 (Chapter 4).

If we do not consider the 23-bit start code, the MPEG codeword is from 2
to 16 bits (without sign bit). The VLD table is mandatory to match all codewords
in the codebook, but without pre-processing for the incoming bitstream, the look-
up memory size could reach 65536 words by direct mapping all codewords in the
codebook. For each MPEG decoding table, different ROM has to be used, the result

means low speed, wasted memory resource and large die size.
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Previous papers, proposed various algorithms for preprocessing of input bit
stream of VLD [11] [40] [19] [6]. These algorithms utilize the clustering scheme to
partition the codewords into groups by the same bit patterns or a fixed amount
of bits. In other words, the VLD is simplified into two-step processing. First, the
bit pattern in a codeword is recognized or a fixed number of bits is processed in
the bit stream, then they are used as the first reference for the memory searching.
After the bit pattern or fixed amount of bits is removed, the remaining bits in
the codeword are used for the second step searching by accessing the smaller size
memory. However, sometimes extra information is needed in order to determine if
a codeword has ended. In what follows we will describe a different approach which
can accomplish faster decoding with efficient memory usage. High throughput is
achieved by pipelining and memory saving by exploring the special characteristics
of MPEG code tables.
Table 6.1 is part of a variable length code for motion-code for MPEG-2

application.

As shows in Figure 6.6, the barrel shifter is used to extract 5 LSBs of the
previous code and the next 23 bits of data from the bitstream. The 23 bits are used
to determine the length of the code currently being decoded. The bit pointer is then
updated with the length, so it points to the next symbol in the following cycle.

In the next pipeline stage, as the bit pointer has been updated, the barrel
shifter produces 5 LSBs of the code currently being decoded. The 5 LSBs, along
with the length from the previous cycle and the command are used to index into the
VLD table stored in the decoder ROM. The output of the ROM is multiplexed with

the escape code values to generate an 18-bit data. The 6 MSBs of the 18 bits are



Variable length codemotion-code[r][s][t]
0000 0011 001 -16
0000 0011 011 -15
0000 0011 101 -14
0000 0011 111 -13
0000 0100 001 -12
0000 0100 011 -11
0000 0100 11 -10
0000 0101 01 -9
0000 0101 11 -8
0000 0111 -7
0000 1001 -6
0000 1011 -5
0000 111 -4
0001 1 -3

TABLE 6.1. Variable Length Codes for Motion-code
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set to the run value and the 12 LSBs are set to the level value. Only positive values
of level are stored in ROM and if the decoded level is negative, a two’s complement
adder is used to generate the signed level. Thus, the ROM size can be greatly

reduced.

6.4. VLSI Implementation

VLD is designed to run at a clock speed of 81MHz and a gated clock has
been used to power down when the VLD module is idling. Furthermore, after careful
analysis, under the condition that we can meet the data rate requirement of MPEG-
2, the VLD pipeline is designed to run at half speed which is 40.5 MHz as shows in
Figure 6.8 thus greatly reducing the power consumption. This is verified through

the equation (Chapter 5):
Piynamic = ag—>1 X Cp X V' x Vg X fa.

We can draw the conclusion that if we reduce the f by half, the Psynamsc will
also cut in half.

In Chapter 5 we discussed the importance of the design methodology. In
this VLD design, at algorithm level, C language is used to model the system, then
the hardware is implemented according to the specifications of architecture using
hardware description language Verilog. Part of the start code length decode Verilog
file is given in Figure 6.9.

The Verilog code shown here implements a counter. Other types of finite state
machine (FSM) can be implemented easily by following this example. Such codes
are then remodeled into more structured descriptions, known as register transfer
level (RTL) descriptions. Then the language is mapped to schematics using CAD

tools such as Synposis. After this step, circuit layout is generated, place and route
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is done to connect the module. Along these steps the simulations and validations
have to be carried out carefully. The interconnections have also been modeled and
simulated carefully. VLD is also capable of decoding audio bitstream including
MPEG-1, MPEG-2 (both Layer I and Layer II) and Dolby AC-3 5.1 bitstream.
However, only the video decoding unit is discussed in this chapter. The VLD is
fabricated in triple layer metal 0.35u CMOS technology, Vdd = 3.3v with a size of
1598y x 2897u. Appendix A is the actual layout of VLD.



Macroblock(){
while( nextbits() = '0000 0001 00’)
macroblock_escape
macroblock_address_increment

ifimacroblock_motion_forward or macroblock_motion_backward) {

if(picture_structure == "11") {
iflframe_pred_frame_dct == 0)
frame_motion_type
}
else {
field_motion_type
}
/
if (( picture_structure == "Frame picture” ) & &
(frame_pred_frame_dct == 0) &&
(macroblock_intra or macroblock_pattern)) {
dct_type
/

if (macroblock_gquant)
quantiser_scale_code
ifimacroblock_motion_forward or (macroblock_intra & & concealment_MV))
MV(0)
if (macroblock_motion_backward)
MV(1)
if (macroblock_intra && concealment_MYV)
marker_bit
if (macroblock_pattern) {
if(chroma_format == 4:2:2)
coded_block_pattern_1
else
coded_block_pattern_0
} // chroma_format == 4:4:4 is not supported

for (i =0; i< block_count; i++) {
block(i)

FIGURE 6.3. System Model Pseudocode
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// Start code length decode (Counter)

Sfunction [2:0] nsstate;

87

input  [2:0] sstate;
input  [15:0] strm;
input enb, video,
reg [2:0] value;

begin

if (video) begin

case (sstate) // synopsys parallel_case full_case

3°b000:
begin

if (enb && strm 1+ 16°0)
else if (enb & & strm == 16°h0

else
end

3’b001:
begin
if (strm[15:8] == 8'h0)
else if (strm[15:8] == 8’hl)
else

end
3’b6010:

begin

if (strm[15:0] == 16°h0)
else
end

3’b011:
begin

if (strm{15:0] == 16b’0)

else

end
default value = 3’b000;
endcase
nsstate =value;

end
endfunction

end

value = 3'b010;

value = 3'b001:
3’b000;

value =

value =3°b011;
value = 3’b100;
value = 3°b010;

value = 3°b001;
value = 3°b010;

value = 3’b011;
value = 3°b100;

FIGURE 6.9. Verilog Code for Start Code Length Decoder
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7. CONCLUSIONS

Cost effective video compression solutions obtained through the combination
of digital video and compression technology are becoming the main driving force be-
hind a large number of applications. VLSI implementation of video compression has
become the core technology of consumer electronics, computer and communication,
such as VideoCD players, DVD, DVC, Add-in Cards for Game, content encoding
equipment, video editing systems, video conferencing, Direct Broadcast Satellite
(DBS), Multichannel Multipoint Distribution Service (MMDS), Satellite Uplinks,
cable set-top box and telephone distribution systems.

In this thesis, MPEG standards are discussed thoroughly and interpreted,
and a VLSI implementation (CMOS 0.354 technology and 3 layer metal) of a variable
length decoder (VLD) for MPEG applications is developed. The VLD achieves
high performance by using a parallel and pipeline architecture. MPEG bitstream
patterns have been carefully analysed to drastically improve VLD memory efficiency.
In addition, a special clock scheme is applied to reduce the power consumption.

Future Directions

Although the MPEG-1 and MPEG-2 have been widely accepted by industry,
there are still a lot of problems yet to be solved. Because the encoder standards only
define the syntax of the bit-stream, it it still very important to continue research to
find out new algorithms such as advanced preprocessing methods, wide search range
ME and rate control. Audio is also a very important part. The system layer which we
do not deal with in this thesis is very critical for the transport of the bit stream. The
video and audio streams synchronization problem and rate control are some of the

very active research areas. Video compression is truly the core technology which will
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enable revolutionary development in the electronics industry. For example, wireless
video transmission has been made possible because of low power VLSI, compression
technology and communication. Furthermore, there are still many other aspects of
digital video need to be explored, such as the modulation technique, error-correction
techniques and conditional access (security). The application is only limited by our

imagination.
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