
An Abstract of the Thesis of

Martin B. Fuchs for the degree of Master of Science in Physics presented on
December 4, 1991.

Title: Brueckner Theory of Nuclear Matter

Abstract approved:

Redacted for Privacy

Philip J. Siemens

The Bethe-Goldstone equation was solved numerically for uniform nuclear matter with
local two-nucleon interactions. The reference spectrum method was combined with a
rapidly converging polynomial representation to obtain the full nuclear matter reaction
matrix. A self-consistent mean field for states below the Fermi level was deduced from
the effective interaction. Calculations at various densities were performed and yielded the
expected binding and saturation properties for nuclear matter. Saturation was reached at a
Fermi momentum of kfin = 1.48fin-1 and an average energy of E = -12.52 MeVInucleon
using Reid's soft-core potentials. Good agreement with prior calculations confirmed the
feasibility of the computational methods employed. The mean field calculation could not
be extended successfully to particle states because the present formalism can not properly
treat singularities which arise for those states.



Brueckner Theory of Nuclear Matter

by

Martin B. Fuchs

A Thesis

submitted to
Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Completed December 4, 1991

Commencement June 1992



Approved:

Redacted for Privacy

Philip J. Siemens, Professor of Physics in charge of major

Redacted for Privacy
Kenneth S. 'Crane, Chairman, Department of Physics

Redacted for Privacy

Dean of Gradu to School
C.

Date thesis is presented December 4, 1991

Typed by Martin B. Fuchs for Martin B. Fuchs



Acknowledgements

Why is there something,

rather than nothing ?

(Memories of philosophy)

While the above quote usually provokes profound discussions, at least among
physicists, it ought to be interpreted quite narrowly concerning the topic of the thesis:
How come that nucleons stick together? But to the thesis and its 'author', the quote
applies as well. And there the answer is clear: Many people contributed and this is the
opportunity to thank them.

Why is there something? I thank my parents for nurturing my interest in nature and for
their encouraging and steadfast support during my studies at the University of Stuttgart
and at Oregon State.

...rather than nothing? On the academic side many thanks are due to Prof. Phil
Siemens. His insights and his advice at every stage, from the initial phase of the project
to the very end have been a true enrichment to my understanding.

Major and minor obstacles with computations and equipment were overcome with readily
available help from Mark Gummin, Bianca Hermann, Martin Rosenbauer and Linhua
Xia. For bearing the permanent background noise of a rattling keyboard, my officemates
Axel Vischer and Neil Roberts deserve special thanks. The number of misprints and,
other errors in the final copy of the thesis was greatly reduced thanks to the careful
review by Mark Gummin and Axel Vischer.



Table of Contents

Page

1. The Nuclear Matter Problem 1

1.1 Introduction and Survey 1

1.2 Scope of the Present Work 3

2. Brueckner Theory 4

2.1 Independent Pair Approximation and Bethe-Goldstone Equation 5

2.2 Perturbation Expansion for the Nuclear Groundstate 7

2.3 Nuclear Matter 14

3. Solution of the Bethe-Goldstone Equation 17

3.1 The Reference Spectrum Method 17

3.2 Calculating the Reference Reaction Matrix 18

3.3 Legindgaard's Method and Full Nuclear Matter Reaction Matrix 21

3.4 The Pauli Exclusion Operator 23

4. Brueckner-Hartree-Fock Theory

4.1 Single-Particle Spectrum Method

29

29

5. Numerical Solution of the Bethe-Goldstone Equation 34

5.1 Reference Reaction Matrix 34

Solution of the Reference Wave Equation Conventions 34



Page

Reference Wave Equation Numerical Method 35

Matrix Elements 37

Miscellanea and Critique 37

5.2 Legindzaard's Method for the Full Nuclear Matter Reaction Matrix 38

Polynomial Transforms of the Reaction Matrix 38

Angle Averaged Propagator Correction 39

Matrix Inversion - Miscellanea 39

5.3 Considerations for the Self-Consistent Calculation of the Spectrum 39

6. Examples and Discussion

6.1 Nuclear Matter Reaction Matrix

6.2 Self-Consistent Calculation of the Hole Spectrum

6.3 Extension to Particle States

41

41

49

53

Bibliography 54

Appendix A Partial Wave Basis 56

Appendix B Hartree-Fock Approximation 58

Appendix C Converting to the Reaction Matrix 61

Appendix D Numerical Data - Samples 63



List of Figures

Figure Page

1 Construction of Goldstone Diagrams 9

2 Geometry of the Pauli Operator and the Legindgaard Subspace 27

3 Angle Averaged Pauli Operator 28

4 Integration over Occupied States 30

5 Coupled Channel Potentials 42

6 Potential and Reference Wave Function in Channel 1S0 43

7 Integrand for Reference Reaction Matrix in 1S0 44

8 Nuclear Matter Reaction Matrix for 1S0 45

9 Nuclear Matter Reaction Matrix for 3S1 46

10 Nuclear Matter Reaction Matrix for 3S1 3D1 47

11 Nuclear Matter Reaction Matrix for 3D1 48

12 Self-Consistent Hole Spectrum 50

13 Single-Particle Potential: Partial Wave Decomposition 51

14 Saturation Plot for Nuclear Matter 52



Brueckner Theory of Nuclear Matter

1. The Nuclear Matter Problem

1.1 Introduction and Survey

Ideally it should be possible to relate the observed properties of nuclei to the
interactions among the constituent nucleons, qualitatively and ultimately quantitatively.
Empirically, the nucleus is described well by a phenomenological mean fled theory, the
shell model. In it, the constituent nucleons behave essentially as if they were
independent. Given that nuclei are many-fermion systems one might hope, guided by
atomic physics, that the nuclear mean field can be derived as a Hartree-Fock potential ab
initio from the forces between the nucleons. In striking contrast to the existence of nuclei,
this is not possible for realistic nuclear forces. Their key feature, strong repulsion at short
distances, is incompatible with the independent particle motion implied by the Hartree-
Fock approximation. To overcome this difficulty Brueckner and Goldstone [1,2]
developed a perturbative many-body approach based on multiple scattering theory which
replaces the bare nuclear interaction in favor of an effective interaction which is well
behaved and which yields a modified independent particle model, the independent particle
approximation. It amounts to introducing pair correlations in the nucleons' motion in
addition to the apparently insufficient Pauli principle, so that the repulsion is de-
emphasized by shifting the independent particles' wave function more to the attractive
regions of the potential. Obviously this must be done in a way which leads to binding
and saturation, and a simple test for the theory is provided by comparing the bulk
properties like density and binding energy to the empirical values. In principle one can
construct the single-particle Hamiltonian from the effective interaction and solve the
corresponding Schrodinger equation for the single-particle eigenstates and energies. The
problem can be attacked using a discrete basis of states from which one has to determine
the eigenstates and the mean field potential self-consistently. Considering the number of
nucleons involved this is a sizeable task even today and has defeated numerical attempts
in the past. The local density approximation instead uses a density dependent interaction,
with non-locality limited to spin and angular momentum dependence. The advocating
argument is that the nucleus is a low-density system where short range correlations are
dominant so that a test nucleon is mainly influenced by the other nucleons in the vicinity.
The approximate interaction may be constructed [3,4] from the effective interaction in an
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infinite model system of uniform density, nuclear matter. The translational invariance
tremendously simplifies the problem because the wave functions are known a priori, they
are plane waves, and the remaining question is how to find a reasonable mean field.
Clearly, nuclear matter is a purely hypothetical system and probes only the nuclear bulk
properties, for any surface is absent and one can not account for any effects due to the
finiteness of real nuclei with this model. Furthermore the Coulomb interaction must be
"switched off". Actual calculations first of all test whether a given nucleon-nucleon
potential leads to reasonable properties. The foremost criterion is that the system can
reach a stable groundstate, i.e. that it is bound and that it saturates. As a uniform Fermi
gas it is characterized by the Fermi momentum kfm which relates to the density p as

1 3

P g 671.2 i`fin

where the degeneracy factor g = 4 indicates that each momentum state can be occupied
with 4 nucleons of different spin and isospin. Related is the mean distance ro between
nucleons

(1.1)

1 47E 3p = -3- ro

and the equilibrium values are given by [5]

p = 0.17fm-3 <=> kfm = 1.36 fm-1

(1.2)

(1.3)

The average binding energy E should be compared to the value of the volume term in the
mass formula of the liquid drop model [4], in the limit of an infinite nucleus

E = 15.68 MeVI nucleon. (1.4)

It should be remarked that the nuclear matter problem is a well plowed field. Reviews are
given in [6,7]. The idea of using multiple scattering theory to describe the motion of the
nucleons reaches back into the 1950s and it is fair to say that by the beginning of the
1970s the field reached a stationary state. A major revision after the mid-1970s is due to
the authors of [7], who showed that the previously used prescription to set the potential
energies for states above the Fermi momentum equal to zero should be abandoned in
favor of treating them self-consistently like the occupied states. However it is still a
worthwhile system to study: It is a many-fermion system par excellence with a relatively
complicated spin and angular momentum dependent interaction [8]. But foremost, it
provides access to finite problems via the density dependent interaction mentioned above.
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1.2 Scope of the Present Work

The scope of this work encompassed two major tasks. The central part of the thesis
project was the design of two Fortran subroutines [9] to calculate the nuclear matter
reaction matrix with an angle averaged Pauli operator. The code TREF calculates the
partial wave projections of the reference reaction matrix [10]. Its input consists only of
the partial wave projections of a local potential and the reference spectrum parameters.
The code TNM obtains the full nuclear matter reaction matrix in a rapidly converging
polynomial expansion [11] and requires as input the user-provided nuclear matter
spectrum, the parameters of the preceding calculation of the reference reaction matrix.
The numerical feasibility of the codes was confirmed by comparing their results with
previous calculations [3,12]. After the successful completion of this first part, the codes
were employed to obtain the single-particle spectrum and the average binding energy as a
function of kfin . The reported calculations are based on Reid's soft core potentials [13].
These are scalar two-body interactions, which are local in the separation, but depend on
the relative angular momentum and the total spin of the interacting pair.

Chapter 2 gives a review of Brueckner theory. Two viewpoints are explored, a
short approach which appeals to the idea of the multiple scattering of the two nucleons
and a rather formal approach based mostly on a diagrammatic representation of many-
body perturbation theory. This chapter provides the theoretical background for the
application-oriented formalism in chapter 3. Chapter 3 establishes the analytical
framework as implemented in the numerical calculations. Bethe's reference spectrum
method is presented in some detail followed by an outline of Legindgaard's method for
the full reaction matrix and a discussion of the angle averaged Pauli exclusion operator.
Chapter 4 describes the Brueckner-Hartree-Fock approximation to the mean field
building on the formal development in the previous chapters. At this stage, the treatment
is applicable to particle and hole states. Chapter 5 presents some methods, the Numerov
algorithm, integration procedures etc., used in the numerical computations and discusses
them. It reflects the algorithm implemented in the developed programs. Chapter 6 is
devoted to some numerical results to illustrate the methods of chapter 3 and the self-
consistent calculations following chapter 5. An argument is presented why the self-
consistency condition can not be imposed on the particle states with the present method
along with some preliminary thoughts how the theory needs to be extended. Appendix A
is concerned with some technicalities and conventions about partial wave expansions.
Appendix B supplements chapter 2 with a discussion of the usual Hartree-Fock method.
Appendix C further illustrates the use of diagrams in Brueckner theory. Appendix D
contains reference results of numerical calculations.
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2. Brueckner Theory

Brueckner theory provides a means to calculate groundstate properties in finite as well as
in infinite nuclear systems. In the first two subsections no specialization towards infinite
nuclear matter is implied. It is presented with the understanding that the nuclear forces are
purely two-body interactions and that it ultimately treats the problem non-relativistically.

The motivation for Brueckner's theory originated in the puzzle that the shell model
[4] as a phenomenological mean field theory is successful in describing many properties
of nuclei but that conventional many-body approximations like the Hartree-Fock method
for the mean field, see Appendix B, fail if realistic nucleon-nucleon potentials are
considered. For the model case of nuclear matter two problems prevail in the independent
fermion model, saturation and binding. In an atomic system the Coulomb repulsion
between the electrons is balanced by the attractive background potential of the nuclei and
it is not a surprise that the system has a bound groundstate. In the case of nuclear matter
there is no stabilizing background and consequently any ab initio theory which starts only
from the form of the two-body interactions must also provide for the saturation property.
Because in the independent particle model the ratio of potential and kinetic energy per
particle is not bound as a function of the density, no saturation is possible, and the
system is unbound or collapses, depending on whether the average potential energy is
positive or negative. For the nucleon-nucleon interaction the strong repulsion at short
interparticle separations causes the potential energy to be positive and nuclear matter
would be unbound. Considering the part of the repulsion, the reason for the failure is
clear. In the independent particle model the nucleons can approach too closely and
experience predominantly the repulsive part of the interaction, despite the Pauli principle

which usually keeps identical particles apart. Apparently the motion of the interacting
particles should be correlated beyond mere antisymmetrization to prevent close approach.
Of course, the attraction gained thereby must also exhibit the correct density dependence
to achieve saturation.

As a first step one can introduce just pair-correlations, and Brueckner's theory
provides the framework for doing this. It can be understood in the context of multiple
scattering of the interacting pair in the presence of the nuclear medium, with the principal
question of how to treat the strong short-range repulsion. Brueckner theory is restricted
to groundstate properties since it is inherently a zero-temperature theory rather than the
thermodynamic limit of a finite temperature theory for an infinite system. A thorough
account of the interchangeability of both limits may be found in [14]. In the case of
nuclear matter, both methods are equivalent [10]. Section 2.1 presents an abbreviated,
more intuitive version of Brueckner theory [4]. Section 2.2 outlines a more formal
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justification based on many-body perturbation theory, supplemented by diagrammatic
methods, the Goldstone diagrams. For notational simplicity, the theory is displayed for
finite systems. Section 2.3 focuses on infinite nuclear matter and establishes notational
conventions for the subsequent calculations.

2.1 Independent Pair Approximation and Bethe-Goldstone Equation

The formalism for scattering of two particles in free space via a two-body
interaction V can be utilized as a guideline to describe the motion of an interacting pair in
the presence of the other nucleons which act as passive spectators. The starting point is
the Lippmann-Schwinger equation for the T-matrix TE

TE = V + VGETE, (2.1)

where all operators are two-body operators. The subscript E indicates the dependence on
the energies of the scattering particles. If the scattering takes place within the many-
nucleon system, the two-body operators act on the two-particle projections of the
complete many-body wave function. Without the effects of scattering, a: single nucleon
moves in the mean field produced by all the other nucleons, which one actually wants to
extract from this development. Hence the homogeneous part of the scattering two-particle
wave function is a product of two bound eigenstates of some single-particle Hamiltonian
corresponding to the mean field and the single-particle energies must reflect the binding.
In addition, the spectator fermions prevent the interacting pair from scattering into already
occupied intermediate states by the Pauli principle, so that only scattering states above the
Fermi level are permissible. Thus the propagator GE in (2.1) needs to be modified
regarding two aspects: (1) It has to account for the influence of the surrounding medium
on the interaction by correcting the single-particle spectrum. (2) The propagator must
project the intermediate states on the unoccupied states above the Fermi level. Explicitly,
eq. (2.1) becomes

TE = V + V E TE,' (2.2)

referred to as Bethe-Goldstone equation. The Pauli exclusion operator Q projects onto the
unoccupied states and is given by

Q =
ij

with nij as occupation numbers of the single-particle levels. In the groundstate ni= 1 if
the state i is occupied and ni = 0 if it is unoccupied. With the single-particle energies ei

(2.3)



6

corresponding to the mean field Hamiltonian Ho the Bethe-Goldstone equation for the
groundstate of nuclear matter follows from (2.2)

(mnIQ Imn)
&JITE = + 2, NY 'inn) (mnITE

mn EEmen
(2.4)

E is usually called the starting energy and enters as a parameter. While eq. (2.4) is a two-
body equation which applies to the interacting pair the other nucleons do not enter
explicitly, but they serve to modify the propagator. This passive role is condensed in the
name independent pair approximation for the above treatment. There are no singularities
in the propagator for occupied states by virtue of the exclusion principle. For states above
the Fermi level a choice exists, either one uses a principal value integral for the scattering
term or one evaluates it always off-shell. Both should correspond to bound states, and in
the following treatment the latter is adopted. The T-matrix obtained by (2.4) might be
considered as an effective interaction which includes pair correlations induced by
potential scattering to all orders in V. According to its definition

TE/00) = 17/1/10) = VDEPP0) (2.5)

TE acts upon the uncorrelated state /0o) to reproduce the action of V on the correlated
state /v/o) after the Moller operator DE distorts the uncorrelated state. Eventually, it is then
possible to regain the independent particle description by constructing the Hartree-Fock
Hamiltonian from the effective interaction rather than from the bare V. The Hartree-Fock
groundstate energy (B.12) is then given in terms of the single particle energies El and the
effective interaction

(00/HHF/00) = 1'4 (E)
ij

with /00) denoting the many-nucleon groundstate and the sums covering the occupied
states. This is not really a Hamiltonian, after all the interaction depends on the energy and
there is the question of how to select E . One might select it on-shell from the single-
particle spectrum, E = + ej for the hole states in (2.6) in the spirit of a self-consistency
problem, see App. B. However the particle states also enter the potential in the single-
particle Schrodinger equation which ultimately determines the spectrum, and the question
of how to choose E for them arises again. The answer emerges in section 2.1. Essentially
the single-particle spectrum should be calculated self-consistently regardless of whether
the state corresponds to a hole or a particle.

In analogy to the free-space scattering, eq. (1) relates the correlated, "distorted" and
the uncorrelated two-particle state (2.5) via the defect wave function

(2.6)
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(2.7)

With the bound state boundary condition the scattered wave must vanish for large
separations of the scattering nucleons. This is depicted by the concept of healing. The
interaction inflicts a "wound" on the wave function which heals with a characteristic
constant y and the defect wave function vanishes asymptotically. The goodness of the
independent pair approximation is then assessed by comparing the healing distance y with
the average spacing ro of the nucleons. If y << ro, the wave function at ro is the
independent particle wave function in the mean field and for the purpose of scattering it is
justified to look upon the other nucleons just a spectators, since they are remote from the
scattering region. Another viewpoint is, that the probability to find three nucleons within
a sphere of the order of y is much smaller than for only two, consequently three-particle
correlations are expected to be less important than pair correlations. Typically one has
y/ro - 0.5. The concept of healing will be revisited under a different aspect in ch. 4.

2.2 Perturbation Expansion for the Nuclear Groundstate

A more formal approach to the effective interaction compared to the intuitive
arguments in sec. 2.1 is based on many-body perturbation theory. The idea is to view the
two-body interaction as a perturbation of an assumed, unperturbed mean field
Hamiltonian. One obtains the ground state energy by means of a linked cluster expansion
in powers of the interaction. By rearranging the series and summing over a certain type
of terms one can overcome the difficulty with the strength of the nucleonic interaction and
arrive at an expansion in powers of the nuclear reaction matrix. The lowest order terms
correspond to the effective interaction from which in turn defines a modified mean field.
The traditional approach employs time-dependent perturbation theory and yields the
perturbed state via a Dyson expansion of the time-development operator in the adiabatic
limit for the time dependence. The topic is usually referred to as Goldstone-Hugenholtz
method; it can be found elsewhere [5,15] along with the auxiliary theorems due to Wick
needed in the evaluation of time-ordered products. Some basic equations are presented in
this section and a diagrammatic representation of the terms in the perturbation series is
given which facilitates the interpretation of the various terms in the perturbation series.
The use of operators in second quantization is not mandatory but allows for ready
interpretation.

The starting point is the definition of an auxiliary, yet unknown mean field
Hamiltonian, which is constructed from Hamiltonians Hsij of the n individual nucleons
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Hsij = [017.1j) + NUID]atai (2.11)

with eigenstates /qYd the mean field many-body Hamiltonian is given by

Ho = 1[0177.0 + NUINatai. (2.12)
ij

T stands for the kinetic energy here and U denotes the single-particle potential. The basis
for the perturbation theory is the many-body eigenstates /0) of (2.12) which are the
antisymmetrized products of the single-particle eigenstates of (2.11)

10(E)). A k /0(E)) (2.13)i./

with the energy eigenvalue E as the sum of the eigenvalues corresponding to the 10(E)).
The energy of the unperturbed groundstate 100) is then given as a sum over the lowest
single-particle eigenvalues. The perturbation proper is the nucleon-nucleon interaction V
but one has to subtract also the spurious auxiliary potential, thus the definition of the
perturbation

Hp = NIV1104a4jakai INUID atai
ijlk ij

(2.14)

In essence the Hamiltonian H for the interacting system has been separated in a mean
field part (2.12) and a perturbing part (2.14)

H = Ho + Hp, (2.15)

where H should not depend on the auxiliary potential U. The choice of U provides some
freedom to influence the convergence properties of the perturbation expansion, which is
given for the groundstate energy by

(000o)
*0d

= (00/H0/00) .I(Oo/ H [H 1-100)(0o1 uHp [Hp oo "P] 10d, (2.16)

under the normalization (0/00) = 1 and the condition that 100) is non-degenerate. The
second term in (2.16) represents the corrections to the unperturbed groundstate, and as
in ordinary perturbation theory the intermediate states are projected off the unperturbed
state. The operators in (2.16) are sums of one- and two-body operators by eqs. (2.14,
2.12) which single out the particular one- and two-particle projections of the many-
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nucleon states. Inserting them explicitly yields terms like e.g. first order in V

(00/Hp/00) = E (001a14akail 00) ENUID *14a/10d, (2.17)
ijlk if

where the sums sample all possible single-particle states. It is understood that only
distinct terms are retained, for example (ij/V///c) = (l1c/V/ij) is counted only once. The
expansion (2.17) can be cast into a diagrammatic representation, due to Goldstone [2].
Each term is represented by a diagram. They are constructed from basic elements and
their contributions to the perturbation series are evaluated according to the following rules
[2,5].

Rule I Fermion lines. Particles are represented by a line pointing upwards,
holes by lines pointing downwards.The time is directed upwards.

x
(a) (i /U /j) (b) (i/V//k)

.1(

Rule II Interactions. For each interaction 0/U/Ddraw a basic one-body vertex
(a). Interactions N/V//10 are represented by a two-body vertex (b).

The creation and annihilation operators in (2.6) act between the unperturbed groundstate.
Consequently no external lines can enter or leave a vertex, all fermion lines are paired up,
contracted, and all possible combinations contribute.

Rule III Contractions. Connect all the fermion lines in all possible ways with
all possible orderings of the vertices. Lines entering a vertex from below denote
fermion destruction, lines leaving a vertex represent fermion creation.

=>

i=p

Figure 1 Construction of Goldstone Diagrams. Example of a 2nd order
contribution to the perturbation series (2.16) according to rule III. At the lower
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vertex a nucleon is excited out of state i into a state k. Two nucleons, in a hole
state i and in a particle state k propagate as particle-hole excitation. At the upper
vertex the excitation is destroyed by an interaction with a passive unexcited
nucleon in the occupied state j. Note that this diagram does not obey momentum
conservation and will not contribute to the groundstate energy of nuclear matter.

Starting with order m=2 the propagators contribute energy denominators which represent
the excitation energy

1
(EH0)-1 = t-1 = (E Eh E )

holes particles
(2.18)

where the sums include all particle and hole lines at a given instance (horizontal section)
in a diagram. Note that e as defined in (2.18) is a negative quantity.

Rule IV Energy Denominators. Include m-/ factors 1/e with the denominator
being the excitation energies defined in eq. (2.18).

Rule V Sign Rule. Each hole line, each closed fermion loop and each one-
body vertex contribute a factor of 1. Bubbles as in fig. 1 count as hole lines.

Rule VI Intermediate States. Sum over all lines without observing the Pauli
principle in intermediate (particle) states. All intermediate states are taken as
simple product states. Include a factor of 1/2 for each pair of equivalent lines.
Two lines are equivalent if they point in the same direction and if they start at
the same vertex and terminate at the same vertex.

As an example, the diagram in fig. 1 is second order, so one has m-1 = 1 energy
denominator with e = ek et . There are 2 intermediate hole lines, labeled i and j. There
are 2 fermion loops, including the bubble, they contribute a factor (-1)2. From the one-
body vertex one gets an additional factor 1. This leads to the equation

k i

(ijlVlkj)(kIUIi)

eiek
k>n

(ijIVrjk)(klUli)

ij5_
n
n eiek

k>

(2.19)

where the right graph is the exchange term associated with the left one, since it has one
fermion loop less, it has the opposite sign. Beginning with third order in the
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perturbation, also disconnected diagrams occur, for example

0 0-0 0 0 0 0
linked disconnected

It can be shown that only linked graphs contribute to the perturbation series (2.16). This
is expressed by the Linked Cluster Theorem [15], due to Goldstone

(v0/1-1/igo) = (00/1-10/0) + E(00/ Hp[H 1-1(4)(°°1 r 1/6 )
P EoHo HP , 0,Linked (2.20)

m

Besides the significant reduction of the number of terms one has to evaluate, each term
alone in eq. (2.20) exhibits the correct volume dependence, a feature not shared by the
conventional Schrodinger perturbation series . At fixed density p, each linked diagram is
proportional to the total number n of particles in the system and a graph with h
independent hole lines is proportional to nph-1[16]. Thus one has explicitly physical
behavior in all orders, and the perturbation series can be terminated at a particular order
without having to worry about spurious unphysical contributions which might eventually
cancel out in higher orders. In lowest order the Hartree-Fock potential can be recovered
from eq. (2.20). The groundstate energy is given in diagram notation by

(I//o/11/ Igo) = (00/110/00) +
$

where the diagrams contribute nothing if evaluated according to

E ow) = DIM
ij<n i<n

X

(2.21)

which one recognizes as the Hartree-Fock potential. If the auxiliary potential is defined in
this way, the mean field Hamiltonian (2.12) is correct to lowest order perturbation theory
and incorporates the Pauli principle. Actually the definition (2.21) does more, it cancels
all bubble insertions and the corresponding exchange graphs in all orders [2], this is
illustrated below for the T-matrix. Correlations beyond mere antisymmetrization are then
studied by examining the remaining diagrams, with the order of the correlation given by
the number of hole lines, which represents the number of nucleons involved.

As it stands (2.20) can not be used for the nucleonic interaction because the strong
short range repulsion renders all matrix elements V or Vie so large that the series can not
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converge in powers of V. However the perturbation series can be rearranged in partial
sums to account for the most important terms. Guidance is provided by the fact that
nuclear matter behaves like a low-density Fermi gas, where the average spacing of the
nucleons ro is much larger than the range a of the short-range repulsion. Each summation
over a hole line roughly scales like p= kf113= r0-3 and it turns out that ( pa3) << 1 is a
sensible parameter to classify the terms, dependent on their number of independent (not
constrained by momentum conservation) hole lines [5]. The idea, due to Brueckner [1],
is now to sum up all terms which are equivalent by this argument in the hope that the
emerging series will converge. The prime candidates are those with repeated interactions
between fermion lines, the so called ladder diagrams. Consider the two-hole line graphs

6)7E/1D =

with the ladder contributions

/(/) =

1(1) 1(2)

1 (ij /VIlm)(im1V1pq)6NIVI1J)
41n (EElem)(EEpEq)

pq>

1(3)

= _ r oviirnximiviw
2 -slm>n

+

(2.22)

etc. (2.23)

where E is the starting energy. Generally E depends on the entire diagram, see Appendix
C. By defining the Pauli operator Q and the propagator Q/e from eq. (2.18) together with
the operator (1--No)(0o9Hp in (2.16) one gets

Q = £ *X* Q =
1

(2.24)
lm>n eE lm>n EpEm

which agrees with (2.3) in projecting off the states below the Fermi level. In its
generalized form, eq. (2.22) defines the reaction matrix TE via the series

TE = V + VQV + V-QvQv -4-v2vQ vQV...
eE eE eE eE eE eE

(2.25)

which is quite like the Born series in scattering theory. In the limit of an infinite system,
it is equivalent to the integral equation for the T-Matrix
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(2.26)

For a given starting energy, TE is a well behaved hermitian operator. Remarkably, its
matrix elements are finite despite the behavior of the bare nucleon-nucleon interaction. If
one replaces the V-vertices by the corresponding T-vertices (wiggly lines) following the
scheme of (2.23) the groundstate energy can be written as

(14/11/14) = (00/110/00) + a-A-AAA-0 +

OvvvvX

(2.27)

No second order graphs appear here because they are already absorbed in the first order
diagrams for TE. Some care needs to be exercised to avoid double counting of diagrams,
the ultimate check for correctness of the rearranged expansion being comparison with the
original one. The exposition here remains of course incomplete. For a detailed discussion
the reader is referred to [5]. Convergence problems persist also for the revised series,
and essentially it needs to be rearranged again with the number of independent hole lines
as a "parameter". The most important diagrams are then the 2-hole line bubble and the
exchange bubble in (2.27). In practice one can consider only those, having again the
independent pair approximation, while the contributions of higher graphs can eventually
be simulated by an appropriate choice of the auxiliary potential [9]. If one chooses the
auxiliary potential as in the Hartree-Fock approximation one arrives at a new mean field
Hamiltonian (2.12) which now includes the most important correlation effects arising
from the short-range repulsion. Consider

2EffulTEM ='NM E=ei+ ej. (2.28)
ij

as definition for the mean field. The T-matrix is evaluated under the proviso that the
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starting energy should be evaluated on-shell, so E=ei+ej, regardless of the rest of the
diagram. This is necessary to achieve uniqueness for the single-particle potential. As
before for the bare V, all bubble-insertions and associated exchange terms cancel in all
orders

X + = 0,

(2.29)

and apparently it those terms which modify the spectrum. The procedure of selectively
cancelling terms at a given order in general has loopholes, because it is not clear a priori
that the remaining fragments are less important. It is demonstrated in [5] that the on-shell
prescription as a bonus also treats equal terms consistently. A self-consistency problem,
see App. B, arises from the on-shell condition since U determines the Ei and the
eigenstates in (2.18). The choice whether to demand self-consistency for intermediate
particle as well as for hole states had a controversial history, but the established
prescription today is to satisfy it for all states [7]. There is some freedom in determining
the single-particle spectrum, due to the fact that the Hamiltonian (2.12) need not agree for
occupied and unoccupied states, see App. B. The prior choice, due to Bethe, was to
obtain the hole spectrum self-consistently and to set U= 0 for particle states. This appeals
to the argument that for high momentum states the kinetic energy should prevail over the
potential energy and moreover that the contributions of 3-body correlations are
suppressed by this choice. While according to [7] the latter remains true also if all states
are treated self-consistently, one obtains a better estimate of the binding energy. A
sketchy reason is that the former method implies a big gap at the Fermi surface which
suppresses low-momentum excitations which pertain to long-range correlations, see fig.
12 in ch. 6. If those increase the two-particle wave function in the attractive region of the
potential, one would gain additional binding energy as opposed to the case where they
are excluded.

2.3 Nuclear Matter

The preceding sections provided the theoretical background for the treatment of
many-nucleon systems. This one establishes some conventions needed before one can
proceed with actual calculations. The major advantage of considering nuclear bulk
properties via nuclear matter is the conservation of momentum associated with the
translational invariance. Thus the single-particle states can be chosen as eigenstates /ki) of
the single-nucleon momentum operator. Also for the one-body vertex, momentum
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conservation requires ki=kj . For the two-body vertex ki+kj=kk+ki , and, among many
others, diagrams like fig. 1 are excluded because they would simultaneously have a
particle and a hole in the same state. The fixed set of momentum basis states further
obliterates any self-consistency condition for the single-particle states. The wave function
at position ri for a nucleon with momentum ki is the plane wave

eikiri,
(27r)312

(2.30)

normalized to the 3-dimensional 5-function. Summations over discrete levels in a finite
system of volume V are replaced by integrations in the usual way

n, kfm,

lim
/

F((ki),n ) 'chi F(ki) . (2.31)
V)00 V in (27-3

0

The two-body scattering problem is separable into the center-of-mass and the relative
motion of the two particles 1 and 2 with momenta k] and k2. The underlying
transformation to the center-of-momentum cms -frame is defined by

relative k = (ki k2)tive momentum 2-1

(2.32)

average momentum K = 1 (k] + k2)2

Corresponding in position space are the transformations

relative separation r = (r] r2)

(2.33)

cms-position R = (Ti + r2)

noting that this deviates from the usual definition for K and R. A two-particle product
wave function expressed in the cms-quantities becomes

KR ikr(Rr /Kk) = (r-r-1(ki+k2) (k12
1

I 21 2 (2703 e
I

e
(2.34)

where the separation of the relative and cms-motion is manifest by the product. Neutrons
and protons are treated as an isospin doublet and are distinguished only by their isospin
projection. Conventional spins and isospins of the scattering particles are coupled and
yield the total spin S and total isospin I. The related eigenstates are already
antisymmetrized and incorporated into the two-particle states by direct multiplication



IKkSMsIMI) = /Kk) ISMS) 0 gAid

16

(2.35)

Unless otherwise specified the spatial part will not be antisymmetrized. Of course one
has triplets S, 1=1 as well as singlets S, 1.0.

In the notation throughout the rest of the thesis, the spin or isospin dependence will
be implied but not be written out if unambiguous, e.g. the integration in (2.8) also
implies the summation over the spin variables. The isospin quantum numbers will be
suppressed as they are determined once parity and spin are specified later on. Although
not inherently limited by the theory, the subsequent development will be restricted to
symmetric nuclear matter.

Unless stated otherwise, all energy-like quantities, e, V, TE etc. are given in units
fm-2, i.e. they are scaled with

h2
41.47 MeV fm2 (2.36)

where M is the nucleon mass. For example the energy of a free nucleon becomes 1/2k2 in
these units.
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3. Solution of the Bethe-Goldstone Equation

3.1 The Reference Spectrum Method

Apart from the question of how to chose the single-particle spectrum of the
intermediate states, conflicting computational demands arise from the Pauli operator and
the short-range repulsion of the interaction. The short-range correlations induced by the

interaction require many high momentum components to describe them adequately. In
position space those correlations are readily treated. For example in the case of an infinite
hard core potential the main correlation effect consists of the vanishing wave function
inside the core, which is equivalent to the boundary condition that the wave function, see
(3.14), vanishes at the core edge. By contrast, the Pauli operator Q is diagonal in the
relative momentum and is represented by a Heavyside function, see eq. (3.32). In
position space this implies on the other hand that Q is a long-ranged, non-local operator.
Thus neither the position nor the momentum space representation offer any particular
computational incentive if one solves the integral equation (2.4) directly [1]. Alternatively
the calculation can be attempted in two stages by obtaining an approximate solution in
position space and by then improving it in momentum space. This is done in the
reference spectrum method [5,10]. It is based on two observations. First, those
intermediate states which are most important in building up the short-range correlations
lie well above the Fermi momentum up to k = 3...5 fm-1 [5]. The single particle
spectrum in this region can be approximated sufficiently well by a modified free particle
spectrum of the form

ER(k) -
2m

/
* k2 + A, (3.1)

where the effective mass m* and the constant single-particle potential A reflect the
influence of the surrounding medium on the scattering particles. Typical values are m* =
0.65 and Ak 0, see fig. 12 in chapter 6. Second, since those intermediate states are at
momenta above the Fermi momentum, they are not affected by the Pauli operator. For
intermediate states below the Fermi momentum the Pauli operator may be neglected as
well, because they contribute a much smaller fraction to the two-particle phase space than
those above the Fermi level and moreover the scattering into them is suppressed by the
large values of the excitation energies (> 50MeV) [2]. This provides the motivation for
setting Q equal to unity for all states. The reference T-matrix TR is then defined from
(2.27) by

TR = V +
eR

V TR , (3.2)



where the propagator is now given in terms of the reference spectrum ER as

eR = E_ A (K2 + k2) 2A ,
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(3.3)

with the cms choice (2.32). The starting energy E corresponds to a set of momenta below
the Fermi momentum. Since the energies of the intermediate states for hole momenta are
taken from the reference spectrum and since particle states enter eq. (3.3) always off-
shell, no singularities are introduced into (3.2) and the healing property of the correlated
pair wave function is preserved. The reference spectrum is thus concerned with the short-
range effects of the potential only and the quadratic form of (3.3) permits one to
transform the integral equation (3.2) into an ordinary differential equation in position
space, from which the correlated reference wave functions readily derive. Once TR has
been obtained the actual reaction matrix T follows formally as [10]

T = TR + TR 1 Q ]7' . (3.4)
[ eR

The propagator difference accounts for the corrections to TR due to the initial neglect of
the Pauli principle and the shift of the single particle spectrum in the reference spectrum
method. With the Pauli operator present, eq. (3.4) can be treated appropriately in
momentum space and it is also the starting point for Legindgaard's method

3.2 Calculating the Reference Reaction Matrix

According to the previous section the intermediate aim is now to obtain a
momentum space representation of TR with the actual calculation carried out in position
space. Starting from the differential equation equivalent to (3.2) one arrives at correlated
reference wave functions vA(k,r) which yield TR as an integral in position space. With
the help of the reference Moller operator [21? one can express TR as

TR = V S2R.

Using eq.(3.3) this can be manipulated in eq. (3.2) and one has

eR (1 f2R) = V DR.

(3.5)

(3.7)

The momentum operators in eR become differential operators in position space and (3.7)
constitutes a differential equation for the defect wave function CR(k,r)=(1)(k,r)ipR(k,r)
which measures the defect inflicted by the pair interaction upon the uncorrelated wave
function P(k,r) . With the spin variables written out
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(V2 )2E,K)) siws(kr) = m* V(r,S) tvsms(kr), (3.8)

where the healing parameter yessentially describes how rapidly the defect wave function
decays with increasing r so that the motion of the scattering particles becomes
independent again. Since the Pauli operator is absent in this approximation, one expects
that the healing parameter is quite incorrect [3], especially at low relative momenta. It is
defined from (3.1) and (3.2) by

y2 = K2 + m*(2A E). (3.9)

Exploiting the isotropy of nuclear matter and given that the interaction V depends on the
total spin S and the relative angular momentum 1 of the interacting pair a partial wave
decomposition is introduced. Projecting eq.(3.8) onto the partial wave bases /KkJ1SM)
and /KrJISM) yields

(KrJISMsI( V2 12) (1 S2R)IkSM) = m* (KrJISMsIVS2R (3.10)

With regard to the spherical symmetry the quantization axis is chosen along the cms
momentum K. J denotes the total angular momentum in a state with orbital angular
momentum 1 if the pair has total spin S; M stands for the z-projection of J. More details
concerning the partial wave expansion are given in Appendix A. In particular, the basis
transformation between radial position and momentum representation of correlated states
follows

12
1

1 up. rs(kr)(KrJISMIDRIKkJTS'W) = 8sS' 8mm' kr (3.11)

Here, the ums(kr) are explicitly independent of M, and l' is commonly called the
entrance channel. The scalar interaction potential V is taken to be local and has the
components

(KrJISMIVIKr'JTS7W) = Off OsS' SMAI' 80.-6 (3.12)

Eq. (3.4) implemented in the partial wave basis constitutes now a differential equation for
the radial correlated partial waves ums(kr)

r(i+i) 2
771 E. vms(r) ujirs(kr),

1'
Ldr2 r2 Y 0(0. ujirs(kr)) *

(3.13)

where regularity at r=0 and the healing property impose the boundary conditions



ums(0) = 0, lirn ujms = oirJr(kr).
kr»1
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(3.14)

The unperturbed components .11(kr) are derived from spherical Bessel functions j1(kr)
according to J1(kr) = krykr). The partial wave projections of TR are obtained from the
projections of the correlated and uncorrelated wave functions and lead to the expansion

(KkSMsITRIKk'SM's)

Osms(kr) V(r) wRsiws(k'r)

zlir V
1. Yi

1SmJ *
1-1 tn(S20C insmY rnzd nk')CimSj,m,sm (KkJ1SMITRIKk71'SM),

(270-3 JM

(3.15)
1SJ

with the spherical harmonics l'im(S2k) and the Clebsch-Gordan coefficients Cnimsm. The
convention for partial wave constituents of TR takes on the form

(KkJISMITRIKVITSM) z---- 1,7, E jdr ykr)Vjirsuros(k'r) .[ (3.16)

00

If the potential contains also a hard core of radius rc, the product Vy/ becomes
undetermined inside the core. Via the two potential form of the Lippmann-Schwinger
equation one can derive an additive separation of contributions from the core (subscript
"<") and the potential V> in the outer region

TR = S2<V>S2 + TR. (3.17)

The modified eq.(3.16) includes then the contributions of the hard core and the outer
region as two distinct terms

(KkJISMITRIKk'JPSM) = tkr,

00

fdr (J1(kr)H1(k/yr))17jirsur1'Js(kr)
1" rc

+ 511,{(y2+k2)idr J1(kr)J1'(k'r) + .11(krc)Tfkfr(k
,
rhilifk",Yrc))}

al
00

(3.18)

Here the functions 111(k,r) are the decaying spherical Hankel functions resulting from
the core scattering. They are normalized to Ji(krc) and



Ji(krc)
111(k,yr) lit(yr)

Hr(rci
with Hr(x) = i(11-1) (ix) h/(/)(ix). The form of the differential equations (3.13) remains
unaltered by introducing a hard core, Vms(r) of course being replaced by the finite
potentials in the outer region and the lower boundary becoming rc. Both, core volume
and core edge contributions the second integral and the derivative term in (3.18)
vanish if rc > 0 and eq.(3.16) is gained back, e.g. for the RSCP potentials.

21

(3.19)

3.3 Legindgaard's Method and Full Nuclear Matter Reaction Matrix

Having TR as first approximation, eq. (3.4) furnishes the prescription how to
proceed towards the full reaction matrix. In principle one could discretize it and iterate the
solutions in position space [12]. This way the true wave functions, with the low
momentum components diminished compared to the reference wave function due to the
exclusion principle, emerge naturally during the calculation. But this transparence
contrasts the computational effort of the iteration procedure which must be performed for
each matrix element separately. The situation is remedied by benevolent convergence [7]
and in cases where one does not need to know off-diagonal elements (see ch. 4 ).
Another method is due to Legindgaard [11] and takes advantage of two observations. As
explained in section 3.1 the reference spectrum suitably approximates the true nuclear
matter spectrum for larger single particle momenta, ki .3...5fm-1. If one chooses ER(ki)
to coincide with the true single particle spectrum E(ki) beyond some cutoff momentum
kmax> kfm the difference of the propagators in eq. (3.4) vanishes above this cutoff.

Formally, the two-particle states with k > kmax lie in the nullspace L of the
operator 1 leR Qle . If one is just interested in solutions up to moderate momenta k <
kmax , e.g. in binding energy calculations, it is sufficient to consider eq. (3.4) only in the
complement of L, which includes then only states for which the propagator difference
does not vanish identically. An inspection [12] of the functional dependence on
magnitude of the relative momentum k revealed that matrix elements T(K,k) depend
smoothly on k and can be represented by low-order polynomials. The polynomials are
constructed from the requirement that the underlying polynomial basis must span the
described subspace of the Hilbert space, i.e. define a complete orthonormal basis for k
E [0,kmax] . In the Kk-basis the model space can be taken as a sphere in the relative
momentum with radius kmax> 2kfm, see fig. 2. The transformation between the entrance
channel basis (3.10) the polynomial basis IKnJISM) obeys the relation

(KkJISM /KnJ1SM) = Fn(k), (3.20)
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where the polynomials Fn(k) form a complete set of orthogonal functions on the interval
[0, kninxi

I Fn(k) FIN 8(kk')
)

k2n=1

kmax

ofk2dk Fn(k) Frr(k) = (5nn'

The polynomials Fn(k) are of order n-1 and are given by

n-1
k s(-1)s (n+s+1)!

Fn(k)
n+1

s! (n -1 -s)! (s+2)! (kmax)s=0

(3.21)

(3.22)

(3.23)

Partial wave components of T(Kk) in the polynomial representation are obtained with the
unitary transformation (3.20) as

kmax kmax

(KnJISMITIKn'JI'SM) = fk2dk fle2dk' Fn(k)Fn'(k) (KkJ1SMITIKk'Jl'SM).
0 0

(3.24)

The inverse transformation , truncated at order nmax is given given by

nmax

(KkJISMITIKIal'SM)nmax = F n(k)Fn'(k) (KnJISMITIKni.11'SM). (3.25)

n,n'=0

The convergence in nmax is well established for both, T and TR [11]. In practice nmax=
5 usually proved to be adequate. The polynomial representation (3.24) applied to eq.
(3.4) results now in a low-dimensional matrix equation

(KnJISMITIKn'.11'SM) =(KnJISMITRIKn7I'SM)+E (KnJIMITRIKniJ11 1M)

n4322
11,1

1x (Knif --Q 1Kn2.1212SAI) (Kn2J212SMITIKni.11'SM). (3.28)

The apparent simplicity of (3.28) is blurred by the Pauli operator. It breaks rotational
invariance and couples states with different 1 so that J and M are no longer conserved.
The rotational symmetry is usually restored with immaterial loss in accuracy [11,18] by
considering only an angle averaged version of Q. At first sight however an expansion in
any discrete set of functions in k appears unsuitable for Q since it is diagonal in k and it
is not analytic as a function of k at the Fermi surface. Fortunately the expansions of T
and TR converge rapidly enough to overcome this difficulty. The angular momentum
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sums in eq. (3.28) are modest: For S=0 one has 1=J while for S=1, the tensor interaction
allows for 1=J±1. If one considers .Imax couplings induced by the Pauli operator, the
Bethe-Goldstone equation is realized by a matrix equation of dimension ND=nmax-Imax
or, in the tensor coupled cases, ND = 2nmaxJmax The polynomials (3.23) can be viewed
as best fits in the sense that they minimize the mean square deviation

km ax

2
a2 = Ik2dk ininaxT(k,k1) T(k,k') I2, (3.29)

0

where nmax71k,le ) is obtained from T(n,n') via the inverse Legindgaard transformation
(3.24) with the cutoff n,n' nmax. Recalling that the reference spectrum method
provides by itself a good first approximation the difference T(k,k')TR(k,k') should
exhibit a smoother dependence on k than either T(k,k') or TR(k)e) . The polynomial
expansion of this difference in deed converges faster. The preferred approach is then to
calculate only TTR in the polynomial basis by means of the rearranged eq. (3.4)

TTR .[I _ TRF_
eR e

T1TR TR

and to add the difference back to TR [11] in momentum space representation.

3.4 The Pauli Exclusion Operator

(3.30)

In sec. 2.1 the Pauli operator Q was introduced into the two particle scattering
equation to prevent particles from scattering into already occupied intermediate states.
This section discusses some properties of Q in uniform matter. It starts with a description
of the geometric properties of Q in the ems system of the scattering pair. An explicit
expression for Q in the partial wave basis is given and the analytical behavior of Q is
addressed with respect to the discrete angular and radial expansions in momentum space.
The angle averaged approximation concludes the discussion.

The Pauli operator is diagonal in the single-particle momenta and thus in K and k
by the transformation (2.32); the ems representation of Q is given by

(Kkl Q /K'k') = 53(KK') 83(kk') (1 n(K+k)) (1 n(Kk))

= Q(Kk) ,

with the occupation densities n(k)

n(k) = 9(1k1 kfm) .

(3.31)

(3.32)
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As a consequence of the isotropy of the medium Q(Kk) can be completely described by
the magnitude and the relative orientation of K and k, given by the angle On . The z-
axis was chosen in sec. 3.2 along K to take advantage of the rotational symmetry. The
selection rule eq. (3.31) in terms of these variables can be rewritten as

Q(Kk) = 1 for K2 + k2 2Kk IcoseK,1 > kim,

Q(Kk) = 0 else (3.30)

For fixed average and Fermi momenta the two particle phase space separates in three
domains shown in fig. 2. If k lies outside a sphere with radius (K2+ kf2m)112 , the Pauli
principle is never violated and Q = 1, whereas for k inside a sphere with radius kfm K,
Q(Kk) always vanishes. In the intermediate region Q(Kk) depends also on en, with a
discontinuity at the characteristic cut-off angle Oc(K,k) defined by

K2 + k2 k 2
fm (3.31)cos ec(ick) 2 Kk

For the solution of the Bethe-Goldstone equation Q is needed in the partial wave
representation of eq. (3.28). The azimuthal symmetry of Q(Kk) suggests a mutipole
expansion, which can be readily used in the partial wave representation where the angular
functions are spherical harmonics and can be regarded as spherical tensor operators.
They couple partial waves with different 1, parity being conserved for Q(Kk) being an
even function of cosen (3.30). Because of the coupling in 1 the total angular
momentum J is no longer conserved, whereas its z -projection M remains unaffected due
to the azimuthal symmetry and Q 's independence of the particles' spin. Consider the
matrix element in the ppw (polynomial and partial wave) representation

(KnJ1SM/ Q 1Kn'J'I'S'M)
km ax

= .1 k2dk Fn(k)F,r(k) (KkJISM/ Q(K ,k) IKkJTS'M'), (3.32)
0

where the F n(k)'s are the Legindgaard polynomials. The multipole expansion is defined
in terms of the Legendre polynomials PL (cosOKk ) as

Q(Kk) = £ q(K,k) PL (cos0Kk ),
L

or equivalently in terms of the associated spherical harmonics Y L0( f2k)

Q(Kk) E (2L4 +ir 1/2 YLO(eKk'°)
L

(3.33)



with the multipoles q(K,k) given by
1

qL(K,k)
2L2+1 jdx Q(Kk) P L(x) , x = cosen

--1
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(3.34)

After decoupling the total angular momentum J in (3.32) into / and spin S and projecting
the the partial waves /k/m) onto the basis states /k), see App. A., one arrives at

(KkJ1SM/ Q /KkJ'I'S'M')

sss,
mIS A4.1

(KklmSMs/ Q /Kkl'm'SMs)
mmws

1

6ss, cm`sm.' m cmrs.mf m EqL(K,k) (41r)2 f
df2k Y */m42k)YLPk)Yrffil"Qk)*

MM S s L

(3.35)

Here and in the following Z = (2L+11 /2 . The integral over solid angle clearly manifests
the tensor character of Q , it may be evaluated using the Wigner-Eckart theorem [15],

fd.Qk Yi*m(Q) Yon,AdYLo(Qic) (ln/ YL0/1"m)

II ?L
CILI'

mOm , p (3.36)

The Clebsch-Gordan coupling coefficient reflects the selection rule m = m', which
results in M = M'. Finally a matrix element of Q in the polynomial representation reads

(KnJ1SM1 Q 1Kn'JTS'M)

kmax
l'SJ' Ctrl f

= t5ssq5mArE IA AAC IA A, ,(./ 1.-
MM ?VI A2 1 r Cm_moC000 Jk2dk Fn(k)Frr(k) qL(K,k),

mms L 0
(3.37)

where the sum over m collapses because of the restriction m = M Ms. Similar to the
poor convergence of this expansion in the order n of the polynomials Fn(k) the lack of
analyticity of Q viewed as a function of 0Kk requires many multipoles to accurately
model the angular dependence, see fig. 3. This flaw is overcome by the fact that in eq.
(3.28) Q appears only integrated over intermediate states. There the partial wave
projections of T decline rapidly with increasing I as a consequence of the weakening
interaction V for those channels and thus the couplings to states with higher 1 are
irrelevant. This at least applies to the case of the Reid potentials, which account for J
2 only, and furthermore already the angle averaged prescription where one limits oneself
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to the monopole term in (3.37) yields results accurate to within a few percent [18] even
for higher partial waves. In principle no difficulties arise from the couplings of different
1, but apart from breaking the spherical symmetry they enlarge the matrices in eq.(3.28)
and complicate the evaluation of the partial wave expansion for T, which is similar to eq.
(3.15) and enters the calculation of the single particle spectrum, see ch.4 . Thus it is also
convenient to resort to the angle averaging procedure which is pictured in fig. 4.
Formally, the coupling coefficients in (3.37) satisfy

Cla Cla L9 s (-1)m
(3.38)m-m0 r

After inserting eq. (3.38) in (3.37) the unitarity of the Clebsch -Gordan coefficients can
be used to give the angle averaged Pauli operator Qav defined by

kmax

fk2dk Fn(k)F,r(k) q0(K,k), (3.39)
0

(Kls* Q IKn'fl'S'M')av= 5.11'or5Oss'SmAr

confirming the restored diagonality in all angular momentum quantum numbers. Qav is
thus a scalar operator, given by the Legindgaard transform of the monopole of Q(Kk)
obtained from eq. (3.33). In this connection the Bethe prescription for the full nuclear
matter spectrum from sec. 3.3. provides a useful means to check the numerical methods
used to calculate the propagator difference in (3.30). Then

1 Q(Kk) 1 Q(Kk)
eR(Kk) e(Kk) eR(Kk)

where eR(Kk) is independent of °Kk, and a matrix element of the averaged operator
reads

(3.40)

1
(Kk.11SMI

;Q 1 if (k2 + K2) k
IKkJ1SM)av =

{
eR (Kk)

1 cosec(Kk)

f2m

else.
eR (Kk)

0 if (k K)2 > kfin

(3.41)

The cutoff angle0c(Kk) is the same as in eq.(3.31).
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Figure 2 Geometry of the Pauli Operator and the Legindgaard Subspace.
Inside the darkly shaded sphere the Pauli operator always vanishes for all
angles a If k lies inside the two single-particle Fermi spheres (lightly dotted),
separated by the true cms momentum 2K, it vanishes beyond some cutoff
angle. For the propagator correction the coarsely grained region up to the cutoff
of the Legindgaard subspace at k,, is important, if reference and true nuclear
matter spectrum differ.
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-O. S' 0 . 5'

Figure 3 Angle Averaged Pauli Operator. The upper polar plot shows the
angle averaged operator Q for k = 1.88frn-1. Parameters are kfm = 1.4fm-1 and
K = 0.5fm-1. The resulting cutoff angle is e. 14°, causing the dis-continuity
from Q = 1 to Q = 0. The angle averaged operator is represented by the dashed
line. The lower plot shows the approximation by a 2nd order (long dashes) and
a 6th order (short dashes) multipole expansion.
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4. Brueckner-Hartree-Fock Theory

An application of Brueckner theory is to calculate the single-nucleon spectrum and related
quantities like the Fermi energy and the average binding energy. In Section 2.2 it was
argued that the Hartree-Fock choice (2.29) of the auxiliary potential accounts for the most
important contributions to the groundstate energy of nuclear matter. This is called the
Brueckner-Hartree-Fock approximation. With the starting energy calculated on-shell
many terms in the perturbation series are cancelled consistently. One can therefore expect
that (2.29) defines a mean field which reasonably approximates the correlation
corrections represented by the terms in the series (2.21). The aim is now to obtain the
spectrum in a self-consistent way. Contrary to finite nuclei, in the case of infinite nuclear
matter just the spectrum is subject to this requirement. Section 4.1 presents the methods
needed to perform calculations using the development for the reaction matrix from
chapter 3. It is not specific with respect to whether the self-consistency shall be applied to
hole states only or to particle states as well. Section 4.2 displays and discusses results of
numerical computations for various nuclear densities. Some questions concerning
numerics are deferred to section 5.3.

4.1 Single-Particle Spectrum - Method

Momentum conservation implies that the average potential U is diagonal in
momentum space. Further, the nucleons carry spin and isospin which is conserved by
the scalar interaction. Their z-projections {ms,md =I/ are averaged for the purpose of
calculating the potential U. Overall there are g=4 spin-isospin states associated with each
value of the relative momentum k, so an average matrix element of U is given by

(ki/U/k/) = 1 Ea111//U/k1/11), (4.1)

where the summation (2.28) over the hole states enters according to

= Jd3k2 E ((icy nik277.2177kinik2112) licinlk2772177k2n2kin1))
k25-kfm n2

(4.2)

To actually evaluate (4.2) one has to obtain the averaged antisymmetrized matrix elements

from the partial wave constituents (3 .16) and the integration has to be expressed in terms
of the relative momentum k.

First to the transformation in (4.2) from k2 to the relative momentum k, ignoring
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spatial antisymmetrization. The matrix (k1k2SMs7T3/77k1k2SAIsTr3)is transformed into
the Kk-basis by (2.32), where it remains diagonal in k. With the z-axis chosen along kb
the integral (4.2) is conveniently expressed in spherical coordinates; a factor of 23
attached to the 3d-volume element in the Kk-basis comes from the Jacobian. Fig.(4)
illustrates the restrictions on k and the polar angle 0 arising from the condition that k2
always denotes occupied levels below the Fermi level. For the polar integration this leads
to a cut-off similar to the case of the Pauli operator.

kfm

Ni
i

Figure 4 Integration over occupied states. At a given single-particle
momentum k1 the integration in k samples only the blank area. Only momenta
k2 within the Fermi sphere (dotted) are allowed, and values k2 falling into the
shaded area outside the Fermi sphere do not contribute.This puts a restriction on
the polar angle 0, its maximum value is defined by the intersection of the Fermi
sphere and the sampling sphere of radius 2k (shaded). Note the rotational
symmetry around IQ .

The magnitude of the average momentum at which the T-matrix is evaluated is derived
from ki and k by means of (2.32). Rewritten in the ars- system, (4.2) reads

k> cosO>

g
2rcidkk2 dcos 0E ((Ian 112/7710011112) --(Kkrlii12/TIKkr12 111))

1 111 112

(4.3)

where the limits of integration and the parameters are given by



k< = max (0, k 1 kf m)

( 4k2 ± ki 4k fin)
cose> = min (1 , 4k1 k

ki +kf,n
k>

K = k2 + k3 2kAcos O.
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(4.4)

Now to the average over the internal degrees of freedom. First, single-particle spin and
isospin are coupled to the total spin and isospin of the interacting pair. Second, the matrix
elements are expressed in terms of the expansion of eq. (3.15), whose constituents
(KkJISMITIKkJrM) are invariant under rotations and independent of M in the case of
the angle averaged Pauli operator. Thus they may be evaluated with k II ez. As a result
one obtains

E((Kkniii2/TiKkniii2)- (Knin2o7K-krigii))
111712

= 2
(2

I £
(2.1+1)(E (2J+1) aCkJ1SMITIKkJIM)).

7 si Jl

Eq. (4.2) can then be written as
k> cosec

(4.5)

1(kali/CI) = 7-f.fdkk2fd C 0 S eL21+ 1 ) (L2J-f- 1 gianSMITIWIM)) (4.6)
SI Jl

k< 1
For definite parity, the summation over !naturally splits into partial sums with odd and
even parity, which can be further classified into single and coupled channels.
Respectively the sum over spin-isospin becomes

L2I+1 )(L2J+1 )(KkJ1SMITIKkJ1M))
SI J1

= E (21+1)(KkJISMITIKkJISM)5i=0 + 3 X (21+1)(KkJISMITIKkJIM)s=0j=1
odd 1 even 1

+
even
E 1(2J+ 1 )(KkJISMITIKkJIM)s=i ,I=0 + 30E (2J+ 1 )(KkJISMITIKkJIM)SJ=1'

(4.7)

The treatment in this section applies to potentials with and without a core, not however
if higher Pauli couplings break the spherical symmetry. Then the parts in (3.15) can not
be simplified in the manner leading to (4.7). Finally the single-particle spectrum is
obtained by adding the kinetic and potential energies



E(k1) =
1 + U(ki).

An effective mass m* and the Fermi energy Efni are defined by
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(4.8)

m = (1+ dU)
-1

, E = E(kfm). (4.9)
de

At a given Fermi momentum kfm the density p follows from eq. (1.1) and with (4.8) and
(B.10) the average energy E of a nucleon in the Fermi sea is given by

km
g_ 1r kidki U(ki) Ai

2
rn.

3 1,

E =
I 4

2- (27)30 (4.10)

where g is the degeneracy factor from above. The T-matrix in (4.7) must be calculated
on-shell with the starting energy E evaluated according to

E (k1,k2) = -1c12 + Zk22 + U(k1) + U(k2), (4.11)

where k2, given by (2.32), depends on the variables k1, k and cos°. The starting energy
determines together with k and K the healing parameter y in the reference spectrum
method. For the self-consistent calculation of the hole states Bethe's prescription was
used in the intermediate states above the Fermi level, so that U(ki >kfm) = 0. The
effective mass for those states was set to m* = 1. Since then both reference and the full
spectrum above kfm are parabolas in k, the condition that both coincide outside the
modelspace is naturally fulfilled if one chooses them to be the same. If one attempts the
particle states self-consistently, more rigorous requirements must be imposed on the
reference spectrum. Ideally, one has to determine m* and the offset A from the magnitude

and the slope of the true nuclear matter spectrum at the cut-off of the Legindgaard
subspace. This is hardly feasible from the outset, but from [18] it is known that m*
should be close to its free space value in this momentum region. The offset was
judiciously set to a value which would presumably ensure positiveness of yin (3.9). The
idea was that the value of A could be checked once the self-consistent iterations have
converged. The procedure failed to produce a stable spectrum, most certainly because of
a fundamental inadequacy of the purely real treatment of the propagators. This is
discussed below.

To avoid the laborious evaluation for many different sets of parameters, two
observations are helpful. While increasing K enhances the defect wave function for small
relative momenta, it also enlarges the phase space region excluded by the Pauli operator,
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diminishing the contributions of low lying momenta. Hence both effects tend to
compensate, so that TE(Kk) depends only weakly on K. In practice the polar integration
was done as a 2-point Gauss-Legendre integral. After each self-consistent iteration the
spectra were obtained by fitting an even forth order polynomial in lc/ to the calculated
points. The fitted curves were then used for (4.8) during the next iteration. This fit is
physically more reasonable than an unrestricted interpolation with odd powers of lc/
present, since viewed as a power series in k, it incorporates explicitly inversion
symmetry.
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5. Numerical Solution of the Bethe-Goldstone Equation

The numerical work to solve the Bethe-Goldstone equation encompasses three major
tasks. In the first step the reference reaction matrix is calculated in terms of its partial
wave projections (3.16), this is realized by the code TREF. Secondly, the Legindgaard
representation of (3.30) must be realized by transforming the reference reaction matrix
and the propagators into the polynomial representation. In the last step, the matrix
inversion in (3.30) is carried out and the resulting solution is transformed back into
momentum space via (3.25). The code TNM executes this Legindgaard method. The
Sections 3.2 - 3.4 provide the corresponding analytical framework around these steps
and the related computer codes are essentially a straightforward implementation of the
theory. The central numerical methods are discussed in the subsequent sections. The
given descriptions represent the actual conventions used in the codes. A short critique of
the choice of the various algorithms concludes the discussion.

5.1 Reference Reaction Matrix

The matrix elements are calculated from the radial distorted waves (3.11) as the
position space integrals (3.16). Although it appears to have a rather auxiliary purpose,
the repeated solution of the reference wave equation (3.13) is actually the numerically
most demanding and also the most time-consuming part in the entire calculation. Hence,
it deserves the emphasis awarded by the somewhat detailed description to follow.

Solution of the Reference Wave Equation Conventions

The radial reference wave functions ujirs(kr) are the solutions to the second order
ordinary differential equations (3.13). In the case of the tensor interaction one has two
coupled equations

Cld2
+ V ( r)1u(r) = w(r) , r re. (5.1)

where the wave functions u and the driving terms w are given in terms of the ums(kr)
and the Bessel functions Jj,i(kr) as

u(r) = entrance channel l'=J-1 : u1 = 1,1,1(f.fi)(J-1)1, u2 .-14,1(.1-1)(1-1)1,

l'=J+1 : ul .H1441+1)(1+41, u2 = 1,1,1(1-1)(J-1-1)1,



w(r) = (k2+ y2)
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(Jj_01(kr)) 0
w(r) = (k2+).2)(h+1(k1 if l'=J+1.

(5.2)

The matrix V(r) contains the orbital angular momentum potential and the interaction
potential. Here VD is the direct and VT the tensor coupled part of the particular Reid
interaction potential Vjws , the eigenvalues of the LS and the S12 operators are absorbed
into Vars.

V(r) =
( J(J+1) 2

2 7 0 VD_1(r) VT(r)

(J+1)(J+2) 2 m T
0 r2 7 , V (r) (r)

The expressions for single channels are the analogs in one dimension.

Reference Wave Equation Numerical Method

(5.3)

The solutions u(r) to eq. (5.1) with (5.2) and (5.3) are subject to the boundary
conditions (3.14) and are obtained with a Newton iteration [21]. It treats the problem like
an initial value problem and improves linearly on solutions computed from trial initial
conditions at the lower boundary r, to meet the conditions at the upper boundary where
kr »1. Its discussion is followed by an outline of the Numerov algorithm [19], which
was used to tackle the differential equation.

The present 2-point boundary value problem has the size n=1 in the single channel
cases and n =2 in the coupled cases and the ordinary second order equation (5.1)
requires n adjustable parameters, which are defined to be the undetermined initial
conditions vk at the core radius

vk = uk(r=rc+ Sr). (5.4)

The boundary value problem expressed in functions fi(uj,vk) of the j=1 ..n solutions uj
obtained from the trial vk are, e.g. for l'=J-1

kr »1 : lij,11)
U2(

(141(k1 _ r-1(kr)fi
0 jkr)

vk

The boundary conditions are satisfied by vk =1,k taken to yield

(5.5)

kr »1 : = 0 . (5.6)

Assuming that .the solutions ui(r) depend smoothly on the vk, f(ui,vk) may be
approximated by its Taylor expansion in vk around Vic,
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fi(ubvm) = 0 + + 0.((vj-15)2). (5.7)

To fulfill (5.6) one has to find improvements (5vj such that

(vi+5-1, J-17 j) 0.

Substituting this into (5.7) and solving for (5vj yields

(5.8)

Svi = (df-1 )ij flubv,n), with =
-Irv;.01

(5.9)

The improvements 8vi were derived from the gradient matrix cif calculated in subsequent
trials with slightly different vk, whose starting values were estimated from the slopes of
the Bessel functions at the origin and which were held fixed for all values of the relative
momentum. For the linear equations (5.1) the gradient matrix is constant and a single
iteration should lead to the correct ilk, however a second iteration was performed if (5.6)
was not satisfied to within a specified margin. The matrix inversion was done
straightforwardly with Cramer's rule.

The Numerov algorithm used to integrate the eq. (5.1) exploits the fact that only
second order derivatives appear in them. The solutions un+i = u(r=rn+i) are found
explicitly from un_i and un according to

, h2 She h2un+1 = [i + 7-271Vni-1(r)] { 2[1 -12Vn]un + 117n-1]un-1

where h is the stepsize between rn and
leading order by

h6
-1,W1(wiVijuj)(4)

h2
+ -1-[wn+.1+ lOwn + wn-d}, (5.10)

rn+i. The local truncation error E is given in

(5.11)

so that the method is of 5th order. To initialize the algorithm the values uno and un0+1
must be specified, uncq being the free parameters of eq.( 5.4). In the coupled channel
cases the strongly singular behavior of the tensor potential at r=0 was ameliorated by
introducing an artificial small hard core of radius 0.06fm 0.03fm. Its smallness
ensures compatibility with Reid's soft-core potentials, which were determined also with
an auxiliary core [13]. The matrix inversion involved for the coupled channel cases was
done troublefree again with Cramer's rule. Numerov's method uses a fixed stepsize h.
Whenever different stepsizes were employed the algorithm was initialized anew at the
breakpoints where h changed by a 6th order polynomial extrapolation [20].
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Matrix Elements

The integral (3.16) was evaluated by the trapezoidal rule on the same position space
mesh on which the reference wave function was calculated. It allows for variable
stepsizes and it safeguards against subtle weighting effects where the integrand changes
rapidly within a few steps. This flexibility stands in contrast to its slow quadratic
convergence, which dominates the rapid convergence of the wave functions with finer
meshes. While the calculation of the reaction matrix TR(k,k') is not symmetric with
respect to the bra- and ket-states, hermiticity implies that the real matrix TR(k,k') be
symmetric. As a means to check the reliability of the computations the quantity

kmax kmax

fk2dk fki2dk' [(KkJISMITRIKkJI'SM) (Kk'll'SMITRIKkJ1SM)f
v. 2 0 0

Z.:1111S kmax kmax

Jk2dk SO dk' [ (KkJ1SMITR IKkIl'SM) + (Kk711SMITRIKkJ1SM)f
0 o

(5.12)

was introduced as measure for the hermiticity. It has the desirable property to weigh
lower momenta with a small phasespace factor apt to the Legindgaard transforms and the
single-particle potential. The expression in the denominator of (5.12) is essentially the
symmetrized norm of the T-matrix and can be used to judge the overall accuracy.

Miscellanea and Critique

The Bessel and Hankel functions appearing as the inhomogeneous terms of the
differential equations and in the matrix elements are calculated from their analytical forms
in sin(x), cos(x) and e(x) for I <3 and for higher values recursion schemes are invoked
[21].

At first, the single channel equations were attempted as standard initial value
problems where the constants of integration are found analytically, e.g. from the
matching condition at the upper boundary. For r--> 0 the angular momentum barrier
dominates and the initialization can be done in closed form as udkr)--,-a(kr)14-1 . However
the solutions were then linear combinations of the inhomogeneous and the regular
fundamental solutions which had to be subtracted off. This problem was absent when
Newton's method was used.

A discretization mesh in r with different step sizes, was chosen to account
adequately for the rapidly changing potential at small r, see fig. (5). The Numerov
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algorithm has a difficulty with this because it has to be initialized anew if the stepsize
changes. This was done somewhat arbitrarily but sufficiently successfully by a 6th order
polynomial extrapolation at the breakpoints. The matrix elements of usuallyTR deviated
less than 1% compared to the the case of a uniform mesh, dependent of the choice of the
mesh; the check (5.12) however turned out to be quite sensitive upon the number of cuts.
As expected it attains a minimum for uniform stepsizes. Still, a non uniform mesh may
be useful in a quick first calculation which can then be refined and it is clear that the
extrapolation is a rather crude approach. One could do better with interpolation or a
Runge-Kutta style reinitialization. It did not seem worthwhile to pursue this, given the
option to take a uniform stepsize. Runge-Kutta would of course avoid the problem at all
since it advances without explicit information from past points and the most appealing
conventional approach might be to combine a variable transformation like r 4(a+ 13r)--1
with Runge-Kutta, possibly with adaptive stepsize control. While the variable
transformation emphasizes short distances, it introduces first order derivatives and thus
precludes the use of Numerov's method. The major practical advantage of Numerov's
method is on the other hand that it needs only 1 evaluation of the right hand side in (5.1)
per step, compared to 4 in the 4th order Runge-Kutta scheme. Moreover there is no
unused overhead from the expensive evaluations of the potential and especially the Bessel
functions whose values need to be known in the intermediate steps of Runge-Kutta.
Although the matrix elements are obtained only with the trapezoidal rule a high order
method for the differential equations is appropriate due to the unscaled integration range
and the pronounced sensitivity of the solutions to the initial conditions.

5.2 Legindgaard's Method for the full Nuclear Matter Reaction Matrix

Polynomial Transforms of the Reaction Matrix

At the beginning of the numerical realization of Legindgaard's method one needs to
choose an integration algorithm for the Legindgaard transforms (3.24 ). A Gauss-
Legendre procedure seems attractive, especially as the integrand is a well behaved
smooth function of the relative momentum k. If the task is to evaluate the Legindgaard
transforms TR (n,n') up to order n,nax , a formula with a minimum of nmax +2 supports
are needed. The transforms converge rapidly with nmax and economic meshes of less
than 16 x 16 points proved sufficient. Many more points are undesirable because then
very small values of k occur in the reference wave equation (3.13). There the outer
boundary condition is reliably enforced only if kr >> 1 and the maximal cut-off radius is
limited by the noise-induced growing exponential 0r. This is mostly uncritical except in
self-consistent calculations where one might reach yr > 20 so that the solution becomes
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contaminated even under Fortran double precision. Fortunately the phasespace factor k2
de-emphasizes critically small k and in practice this difficulty needed no further attention.
Gauss-Legendre integration was used to reduce the number of intermediate calculations
of TR(k,k'). The other suitable method is Simpson's rule, corrected for the excluded
value k=0. It is much preferred over the slowly converging trapezoidal rule in this case,
although it precludes non-uniform meshes. Optimum accuracy was attained roughly for
meshes with 50 x 50 points, dependent on the range of the model space. This was
verified by investigating the dependence on the mesh size of the discrepancy between
original and the inverted representations of TR.

Angle Averaged Propagator Correction

For the angle averaged propagator correction (3.40), just 1-dimensional integrals
need to be evaluated for both angular and radial momentum space integration. The angle
averaging was checked by means of the Bethe prescription (3.41). After splitting the
model space into up to three subintervals depending on the discontinuities caused by the
cut-offs in the Pauli operator, the radial integral was obtained in each subinterval by a 10-
point Gaussian formula. This ensured a precise representation, which is important since
the propagtor difference is the central quantity in Legindgaard's method.

Matrix Inversion - Miscellanea

The matrices involved are small, usually less than 20x20, see sec. 3.3, symmetric
and well behaved. The matrix inversion was based on LU-decomposition with
backsubstitution, according to the version given in [20]. There are actually four distinct
classes of partial wave projections, classified by their spin S and their parity H
(equivalently the isopspin): cs,Th . (0,-1), (0,1), (1,-1) and (1,1). Neither of them is
linked by the parity conserving spin-independent Pauli operator. All matrices
(KnJISM /T /knJl'SM) belonging to a particular class (5,11) were gathered as blocks in
single matrix to prepare for the possibility of using a non-angle averaged propagator
difference, where channels with different J can be coupled by the Pauli operator. For the
present angle averaged procedure this has no further significance besides enlarging
somewhat the dimension of eq. (3.28).

5.3 Considerations for the Self-Consistent Calculation of the Spectrum

In the self-consistent calculation TREF and TNM appear as subroutines and, if the
integral (4.6) is evaluated with no angular and nk radial supports, both are invoked
nox nk times. The k-integral was done again via the Gauss-Legendre method with
nk 10 supports and no = 2. The spectrum was obtained either as a fit or local
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interpolation ns 5 points. So one has roughly 100 subroutine calls per iterated
spectrum and to achieve accuracy better than 0.01MeV /nucleon at least 5 iterations were
necessary In short, if proceeding without further approximations, it will pay in
calculation time to reduce the sizes of the meshes in the subroutines. The size of the
reference reaction matrix relates to the method in the numerical integration used to obtain
the Legindgaard transforms. In order to accelerate the repeated consuming execution of
TREF the Gauss-Legendre type integration of sec. 5.2 was employed for the
Legindgaard transforms on a 16 x 16 mesh. As an alternative one might try a Gauss-
Jacobi method [22], appealing to the Jacobi-form of the polynomials (3.23). It was not
examined whether this would permit an even sparser mesh. The full T-matrix in
momentum space was obtained directly from its polynomial representation rather than via
eq.(3.30), which would have been more accurate, especially for low values of k, but also
somewhat cumbersome in this context.
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6. Examples and Discussion

6.1 Nuclear Matter Reaction Matrix

The reaction matrix was calculated for each of the 12 Reid potentials up to J=3. The
highest angular momentum appears just in the coupling of the states 3P2 and 3F2 . No
higher partial waves were considered. After studying the convergence of single matrix
elements dependent on the stepsize in the solution of the wave equation the calculations
were done with an artificial core of 0.05 fm and a uniform mesh with 400 steps between
core and a cutoff radius rmax = 10fm. The relative accuracy of the matrix elements is then

better than 10-4. At this point no use was made of the hermiticity of TR. Output of a
sample calculation may be found in Appendix D. The values agree to within 1% with
previous calculations of [3,11], based on a different numerical methods. The calculations
were performed on a Sun 3/60 workstation with a MC68881 coprocessor and took about
0.25 sec. per matrix element. Fig. 5 illustrates the behavior of the potentials in the 3S 1

channel. Fig. 6 demonstrates the correlation effects induced by the 1S0 potential. The
potential is shown in the top graph, note the shallow attractive region. The middle graph
shows the integrand in the matrix element eq. (3.16) and the evolvution of the radial
integral. The bottom graph illustrates how the unperturbed function Jo(kr) is distorted
into the correlated function uo(kr), basically its maximum is shifted towards the attractive
region of the potential. c(kr) illustrates the rapidly healing defect function. The graph is
for kfm = 1.4frn-1 and k = 0.91fm-1 and represents a state in the Fermi sea. This shift is
somewhat reduced, if the Pauli principle is taken into account [3], which is not shown
here because the full wave function does not explicitly appear in the development in ch.
3. The effects of the Pauli operator are introduced via the operator equation (3.4) rather
than directly via the wave functions. The polynomial representation of the Bethe-
Goldstone equation was usually solved with nmax=5 basis polynomials for 40x40 points
using Simpson's rule for the transformations. Higher order in the polynomials did not
lead to any gain in the accuracy, if one uses Gaussian integration one has to use at least
32x32 points to achieve good convergence for low-lying momenta. The sample output in
Appendix D was obtained with the indirect method eq. (3.30). Comparison of output
from direct and indirect methods with [12] showed agreement of better than 0.5% for
each method. As mentioned previously the indirect method should be preferred over the
direct method at small momenta, typically less than 0.5fm-1. The actual calculations were
performed with the full nuclear matter spectrum as input. An example of how the
reference reaction matrix is corrected for the spectral and Pauli approximation is shown
figs. (7-9). The upper graphs always show the full reation matrix, while the lower ones
illustrate the difference between T and TR. For the 1S0 channel the Pauli principle de-
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emphasizes the contributions at low momenta by about 10%. It is even more effective in
the tensor coupled channel 3S1. There the reduction reaches 30%. The execution of the
subroutine TNM required in this case about 0.05 sec. per matrix element.
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Figure 5 Coupled Channel Potentials. The potential V1001 for the direct
channel 3S1 and the tensor potential V1021 for the coupling of 3Si and 3D1 are
shown.
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Figure 6 Potential and Reference Wave Function in Channel 1S0. The upper
graph shows the dependence on the distance r of the two interacting nucleons of
the potential Yin's = Vamp The lower graph displays the independent particle
wave function J0 , the correlated reference wave function u0 and the defect
wave function versus the radial separation. The relative momentum is k =
0.91fm-1 and the healing parameter y= 1.18fm-1. The auxiliary core is
positioned at r = 0.05fm.
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Figure 7 Integrand for Reference Reaction Matrix in 1S0. The lower graph and
the parameters are as in Fig.(7). The upper graph displays the integrand eq.
(3.16) for the the diagonal matrix element (KkJISMITRIKkJISM), J1S = 000,
and shows how the matrix element evolves to its attractive value, cf. Appendix
D.
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Figure 8 Nuclear Matter Reaction Matrix for 150. The upper graph shows the
full reaction matrix, the lower displays the corrections compared to the reference
spectrum calculation. The momentum coordinates are scaled to the subspace
cut-off, kmax= 2.8fm-1. The ordinate gives the value of the matrix elements in
fm3.The parameters are as in Appendix D.



46

Figure 9 Nuclear Matter Reaction Matrix for 3S1. Similar to Fig. 8.
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Figure 10 Nuclear Matter Reaction Matrix for 351 3D1. Similar to Fig. 8.
This is the off diagonal matrix (KkJISM /T /Kk'Jl'SM) which is not symmetric
just under exchange of k and k'.



Figure 1.1 Nuclear Matter Reaction Matrix for 3Di. Similar to Fig. 8.
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6.2 Self-Consistent Calculation of the Hole Spectrum

As an application of the developed subroutines, the self-consistent spectrum was
obtained for hole-states using Bethe's method. This was done with TR calculated using a
reduced mesh of 200 radial points by explicitly exploiting hermiticity, which cuts the
calculation time by roughly 40%. The required input size for the transformation was
reduced to a 16x16 matrix by using Gaussian quadrature. A reasonable compromise
between accuracy and execution time was achieved with a 12 point Gauss quadrature
over hole momenta. For the polynomial fit 12 supports were used. The spectra were
iterated until a relative accuracy in the coefficients of the polynomials of better than
0.01% was achieved. This required between 5 and 12 iterations dependent on the starting
spectrum. The starting spectra were parabolas, derived from [3] for values of kfm= 1.0,
1.4fm-1. Figure 12 shows the self-consistent hole spectrum and the single-particle
spectrum for kfm= 1.4fm-1, along with the reference spectrum, which has no potential
energy contribution. Figure 13 displays the contributions to the potential for the various
partial waves, apparently the binding arises mainly from the S channels, as expected
from the binding of the deuteron. Self-consistent iterations were performed for several
Fermi momenta in search of the saturation point and the average total energy. Figure 14
shows the dependence on the Fermi momentum of the average energy ( 4.10). The curve
was fitted as a 4th order polynomial. The results are

Saturation Density

Average Energy

kfm = 1.48 fm-1 p = 0.22 fm-3

e = -12.52 MeVlnucleon
(6.1)

These values give a somewhat lower estimate to the average energy than in [3], where
kfm = 1.44fm-1 at E = 11.1MeV /nucleon. Although there is a small contribution from
the fourth order term, the effective mass changes very little, its value being

Effective Mass m* ?_ 0.68. (6.2)

This is larger than the estimate in [5] and the value m* = 0.65 obtained in [7,18]. By
comparing with eq.(1.3,1.4) one sees that while including two-particle correlations
accounts for the most important effects, saturation and binding at reasonable density, but
that one has to resort to more sophisticated approximations to arrive at quantitatively
improved results.
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Figure 14 Saturation Plot for Nuclear Matter. Plotted is the average
energy per nucleon versus the Fermi momenta, i.e. the density. The heavy
triangles represent values from ref. [3]. At k = 1.48fm-1 and E = 12.52
MeV /nucleon the saturation point is reached.
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6.3 Extension to Particle States.

All attempts to calculate a self-consistent spectrum including the particle states
yielded stable and reasonable solutions for the hole states but became quickly unstable for
the particle states and eventually the calculations broke down. The reason why self-
consistency cannot be achieved for particle states with the present method might be traced
to the properties of the propagators (3.40). For hole states the on-shell starting energy is
always less than 2Efm, but the propagators never become singular because the Pauli
operator excludes all intermediate states below the Fermi level, so that (E-110) < 0 holds
for all ki S kfm. On the other hand if E > 2Efm, as possible if a particle state enters, the
former condition is violated and ((E-H0)-1) becomes singular at E = El + Em for states
//m) above the Fermi level since those intermediate states are not blocked by the Pauli
principle. This problem has been recognized before in a different approach to the nuclear
matter problem [7]. The Legindgaard method as developed in sec. 3.3 and implemented
in the computer codes is a real theory which assumes finite integrands (3.4); it can not
treat the singularities. To devise a method for handling them so that self-consistency can
be imposed on the particle states, one would have to investigate: (1) How to integrate
over the poles to obtain the Legindgaard transforms, presumably introducing a complex
analog to eq. (3.28) [7,18] and performing the transformations with a principal value
prescription. (2) Whether the polynomial expansion is still appropriate, especially for an
imaginary part of TE. The singularity probably arises abruptly for states above a
characteristic k. This along with the diagonality of the propagator questions the
convergence for the polynomial representation as in the case of the Pauli operator, see
sec. 3.4. (3) How suitable the reference spectrtim method is, since the singularity implies
a phase shift in the correlated wave and consequently the concept of the healing property
can not be maintained.
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Appendix A Partial Wave Basis

The spatial part of a two-particle product state is represented in the Kkbasis, while the
two particle spin space is characterized by the observables for total spin S2 and its z-
projection S. In the partial wave projection of the physical states one changes this
complete set of commuting observables according to

K,k,S2,Sz } At* { K, k, J2, L2, .52 jz },

where J2 denotes the total angular momentum, JZ its z-projection and L2 the orbital
angular momentum. In the first step only the spatial observables are considered. The
partial wave basis in relative momentum space is defined by

00

k2dk IKklm) (Kklm/ = 1, [1,m E Z 1 0,
1m 0

k-2 k')
(Kklm /Kk'l'm')m') 01' omm'

and the projection coefficients for the basis transformation

(Kk /Kklm) = Yim(S2k) (A.1)

with the usual spherical harmonic l'im(f2k). The quantization is along K which is an
azimuthal symmetry axis. In position space the partial wave basis is completely
analogous; the basis transformation between k and the radial coordinate r in relative
position space is given by

(KrImIKkrn0 = 611, 8
mm

, .1 (2)I2 ji(kr) , (A.2)

where ji(kr) is the spherical Bessel function of order 1. The normalization factor is chosen
to give normalization to the 3-dimensional 6-function and the arbitrary phase factor
reproduces the expansion of a plane wave, which is just the independent particle
wavefunction for the relative motion. Thus

(rIk) 1 eikr
(203 2

- 1 zkr i1 ji(kr) i*(f2k) im( (Or)
(2711 2

(A.3)



and

= E(rhnikin) Yim(f2k) Yim(S2r)
m

(r /r') = 53(r - r') _ 6(1- -r')
r2sin2 0 (5(e

O') &(
(( 0').
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Secondly, Spin S and orbital angular momentum I are coupled to the total angular
momentum J, which together with its z-projection ,/, is conserved by the nucleon-
nucleon interaction. The basis states transform according to

c.s.c.o. {K,k,12,1z,S2,Sz} '' i-K,k J2 ,12,s 2 jzi

wino e Isms) = ' c mi S inj IKkJISM),
nuns

(A.4)

1SJ
where the anmsm are the usual Clebsch-Gordan coupling coefficients with M=m+ms .

(A.2) and (A.4) have been utilized in the partial wave expansion for TR in ch. 2.
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Appendix B Hartree-Fock Approximation

In this appendix the Hartree-Fock approximation of the mean field is presented to
formally supplement the reasoning in ch. 2.1 concerning its failure. Further the T-matrix
might be understood as an effective interaction and one can again derive a mean field
which is analogous to, but different from the Hartree-Fock potential. While the former
also accounts for correlations in lowest order, the latter is the mean field for uncorrelated,
independent particles. The material here follows mainly [23].

A system of n interacting fermions is characterized by its Hamiltonian. Written in
the language of second quantization and assuming only 2-body interactions V it is given
by

I X"H= ENTIData. + zd(iiIVIkl)atata
.1 2 kai,

ij ijkl
(B.1)

where the matrix elements of the kinetic energy operator T and V are taken between
single-particle states /i) ,yet to be specified, and product states //j). The fermion creation
and annihilation operators satisfy the usual anticommutation relations

{at
1,

at} = {a. = 0,j r (B.2)

which take care of the Pauli principle. The Hartree-Fock approximation consists in the
form of the many-body state /v') which is chosen as an antisymmetrized product of the n
occupied single-particle states

/v') = gat/ 0). (B.3)

In configuration space the wave function is given as the Slater determinant

(rj...rn = (n! 1412 Det 0i(rj), (B.4)

The groundstate configuration is obtained by a variational principle requiring that its
energy be a minimum with respect to variations of the groundstate /tgo)

8 Nfol H = 0 <4 E0 = (V/at H /'go) (B.5)

where the variation is over the set of trial single-particle states under the constraint that
their normalization remains unchanged. First order variations observe this condition and
may be written as

8 IVo) = nataillgo) n, i > n.. (B.6)
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The variation (B.6) can then be viewed as a particle-hole excitation where a particle is
shifted from an occupied level i into an unoccupied level j. Carrying out the variation in
(B.5) asserts that

(/T lj) + Eokivix- okivikD 4a; = 0, (B.7)

for i > n, j n . This condition is evidently also fulfilled by the self-consistent Hartree-
Fock Hamiltonian

HHF E ((imp E(ik/V /jk) (ikIVIkj)jdfiai , (B.8)
ij

which is a true one-body operator; i, j are not restricted here. From condition (B.7) it
follows that HHF does not connect occupied and unoccupied states, hence it may be
diagonalized in the subspace of the occupied states alone. Thus one has to solve the
eigenvalue problem

+ E (ik/V /jk) (ik /V /kj) = SijEj , (B.9)

whose eigenvalues are the single-particle energies Ei corresponding to the single-particle
states /i). If one takes the n lowest eigenstates as the basis for the many-body groundstate
in (B.3) the groundstate expectation value of the full Hamiltonian (BA) satisfies the
minimization condition (B.5) already by construction and the groundstate energy is given
by

E0 = En Ei 2 En (B.10)

where the self-consistent mean field is defined as

(i/U/j) = (ik/V/jk) (ik/V/kj). (B.11)

It enters (B.9) as the single-particle potential in a self-consistent calculation: Starting with
a trial potential (i/U/i) one obtains the eigenstates which in turn yield a new potential
(B.11). New wave functions are calculated from the new potential, and the procedure is
iterated until there is acceptably little change in the wave functions and the potential in
two consecutive iterations. The groundstate energy obtained in this manner places an
upper bound on the true groundstate energy by Ritz' variational theorem. The quality of
the approximation is determined by the set of trial wave functions used and is intrinsically
limited by the ansatz that they be Slater determinants (B.4). They were not suitable in
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treating the bare nucleon-nucleon interaction and the development of the effective
nucleon-nucleon interaction in ch. 2 provided a means to overcome this difficulty.

A more general approach to many-body systems with two-body interactions
involves density matrices. There the mean field approximation in general replaces the
two-body density operator, the product of creation and annihilation operators associated
with interaction in (B.1), by a product of one-body density operators. In the case of the
Hartree-Fock ansatz (B.3) the mean field approximation is formally exact. To explore
this a little further one can consider the pair-correlation function C(ri,r2) defined in
terms of the diagonal elements of the two-body density matrix p(ri,r2)

P(r1,r2) = P(r/) P(r2) (1 C(r1,r2)). (B.12)

The density p(ri,r2) is the expectation value for finding a particle at ri if another is at
r2 . Spin variables are suppressed here. If there are no correlations C(r1,r2) vanishes
identically. The right hand side is then just the product of the the single-particle densities
and nothing prevents two particles from being at the same site, ri = r2. The Pauli
principle however prohibits identical particles to occupy the same state, i.e. site, and the
correlation function for the independent particle approximation in uniform matter

, (4h(kfniir,-r2nyC(ri,r2) = 2 kfmlri r2I )
(B.13)

reduces p(ri,r2) on a scale where In r2.1 < llkfm giving indeed p(rbri) = 1/2. For
nuclear matter at equilibrium density l/kfin = 0.75fm, and for low lying momenta the
contributions to the long range correlations is reduced.
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Appendix C Converting to the Reaction Matrix

By considering the conversion of a bubble insertion in the bare interaction V of a 3-rd
order graph to the corresponding reaction matrix TE, this appendix supplements the
discussion of the ladder-approximation in Section 2.2. In the sequence of ladder graphs
below, the focus is on the bubble insertion. In (a) an excited fermion interacts with one in
the Fermi sea without however exciting it. From (b) on the hole-fermion is also excited
and the two fermions interact repeatedly in the particle states before the second excitation
is destroyed. Only the bubble conversion affects the diagram while the rest enters just via
the starting energy, leaving the vertices unaffected. The contribution of the passive part
will be called a. Momentum conservation is enforced.

(a)

(b)

(c)

J

0

0k
(d)

b

a NIVIW

1 UIVImnXmnIVItj)

mn ECmen

1 r, NIVImnXmnIVIpaNIVIWa
4rnn,pq (Eemen)(Eepe,q)

a (ij ITElii)

with the starting energy E = ea+ebeiek This expression also demonstrates that in order
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to avoid ambiguity for the self-consistent single-particel potential NUM, E must not
depend on either Ek,ea or eb but only on El. Then the diagrams above depend at most on
ei and ej. Diagrams where i and j appear both in E are consequently evaluated on-shell.
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Appendix D Numerical Data - Samples

Numerical results of a sample calculation are reported on the following pages.The
parameters were

kfm = 1.3fm-1 y2 = 1.4fm-2

K = 0.7fm-1 m* = 1.0

Starting energy E = -162.3MeV

Subspace cutoff kmax = 2.8fm-1

Maximum Polynomial n = 5

Nuclear Matter Spectrum E = (100 + 41.47 k2 )MeV

400 radial points in TREF, with 0.05fm ... r 10fm.

40 x 40 points for TNivi (Legindgaard method).

The matrix elements in the various channels are assigned as

as

"JLS000" for J=0, /=Oand S=0 in (KUJSMITR 1 Kk'JJSM)

"JLS 10C" for J=1, 1=0 and S=1 in (KkJ-1SMITR1Kk'JJ+1SM)

etc.

"T : JLS000" for (KkJJSMIT1Kk'JJSM), analogous to above,

etc.

and as

"PNM000" for (KnJJSMITR 1 Kn'JJSM).

etc.

The last printout shows the polynomial representation of the propagator difference up to
n=10.



TR(kf,ki)

JLS000

Effective Mass EFM
Healing Parameter GAMSQ :

1.0000
1.4000

Gridsize
Cutoff PKMX

40

2.8000

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -26.3613 -23.6753 -19.1420 -14.3300 -9.6290 -5.2376 -1.3177 2.0011 4.6492 6.6242
0.350 -23.6753 -21.7482 -18.0315 -13.6228 -9.1723 -4.9671 -1.1955 2.0109 4.5815 6.5051
0.630 -19.1420 -18.0315 -15.5141 -12.0035 -8.1300 -4.3511 -0.9122 2.0421 4.4341 6.2419
0.910 -14.3300 -13.6228 -12.0035 -9.5560 -6.5541 -3.4182 -0.4718 2.1091 4.2330 5.8644
1.190 -9.6291 -9.1724 -8.1300 -6.5541 -4.5187 -2.2020 0.1204 2.2305 4.0127 5.4138
1.470 -5.2377 -4.9673 -4.3512 -3.4182 -2.2021 -0.7411 0.8605 2.4259 3.8099 4.9373
1.750 -1.3179 -1.1957 -0.9124 -0.4720 0.1203 0.8604 1.7432 2.7145 3.6603 4.4808
2.030 2.0008 2.0107 2.0418 2.1089 2.2303 2.4257 2.7144 3.1127 3.5956 4.0861
2.310 4.6488 4.5812 4.4337 4.2327 4.0124 3.8097 3.6601 3.5955 3.6416 3.7883
2.590 6.6238 6.5047 6.2415 5.8640 5.4135 4.9370 4.4806 4.0860 3.7883 3.6145

JLS011

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -0.1458 -0.5481 -0.5531 -0.3949 -0.2278 -0.0801 0.0358 0.1248 0.1854 0.2228
0.350 -0.5481 -2.1816 -2.4265 -1.8376 -1.0779 -0.3830 0.1818 0.6124 0.9119 1.0954
0.630 -0.5531 -2.4265 -3.1719 -2.7207 -1.6882 -0.6022 0.3346 1.0623 1.5789 1.8989
0.910 -0.3949 -1.8376 -2.7207 -2.6986 -1.8520 -0.6496 0.5093 1.4580 2.1494 2.5898
1.190 -0.2278 -1.0779 -1.6882 -1.8520 -1.3989 -0.4168 0.7488 1.7991 2.6059 3.1398
1.470 -0.0801 -0.3830 -0.6022 -0.6496 -0.4168 0.1963 1.1233 2.1149 2.9516 3.5412
1.750 0.0358 0.1818 0.3346 0.5093 0.7488 1.1233 1.7081 2.4647 3.2169 3.8055
2.030 0.1248 0.6124 1.0623 1.4580 1.7991 2.1149 2.4647 2.9176 3.4599 3.9677
2.310 0.1854 0.9119 1.5789 2.1494 2.6059 2.9516 3.2169 3.4599 3.7481 4.0849
2.590 0.2228 1.0954 1.8989 2.5898 3.1398 3.5412 3.8055 3.9677 4.0849 4.2224

JLS110

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0777 0.2309 0.1405 0.1291 0.2156 0.2918 0.3283 0.3193 0.2862 0.2402
0.350 0.2309 0.7808 0.6859 0.7221 1.0798 1.4303 1.5972 1.5660 1.4084 1.1904
0.630 0.1405 0.6859 1.1226 1.4874 1.9692 2.4573 2.7145 2.6882 2.4464 2.0946
0.910 0.1291 0.7221 1.4874 2.2520 2.8619 3.3355 3.6138 3.6056 3.3401 2.9128
1.190 0.2156 1.0798 1.9692 2.8619 3.5956 4.0580 4.2855 4.2851 4.0407 3.6067
1.470 0.2918 1.4303 2.4573 3.3355 4.0580 4.5468 4.7552 4.7389 4.5314 4.1427
1.750 0.3283 1.5972 2.7145 3.6138 4.2855 4.7552 4.9993 5.0053 4.8293 4.5079
2.030 0.3193 1.5660 2.6882 3.6056 4.2851 4.7389 5.0053 5.0827 4.9701 4.7154
2.310 0.2862 1.4084 2.4464 3.3401 4.0407 4.5314 4.8293 4.9701 4.9576 4.7924
2.590 0.2402 1.1904 2.0946 2.9128 3.6067 4.1427 4.5079 4.7154 4.7924 4.7418



JLS111

kf ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590.

0.070 0.0904 0.3377 0.3530 0.3052 0.2695 0.2378 0.2086 0.1778 0.1492 0.1227
0.350 0.3377 1.3565 1.6018 1.4745 1.3166 1.1706 1.0275 0.8811 0.7408 0.6122
0.630 0.3530 1.6018 2.2967 2.4058 2.2433 2.0246 1.7900 1.5493 1.3124 1.0931
0.910 0.3052 1.4745 2.4058 2.8941 2.9342 2.7339 2.4560 2.1525 1.8467 1.5554
1.190 0.2695 1.3166 2.2433 2.9342 3.2611 3.2262 2.9832 2.6641 2.3227 1.9861
1.470 0.2378 1.1706 2.0246 2.7339 3.2262 3.4207 3.3243 3.0550 2.7199 2.3684
1.750 0.2086 1.0275 1.7900 2.4560 2.9832 3.3243 3.4246 3.2912 3.0157 2.6848
2.030 0.1778 0.8811 1.5493 2.1525 2.6641 3.0550 3.2912 3.3322 3.1832 2.9161
2.310 0.1492 0.7408 1.3124 1.8467 2.3227 2.7199 3.0157 3.1832 3.1902 3.0396
2.590 0.1227 0.6122 1.0931 1.5554 1.9861 2.3684 2.6848 2.9161 3.0396 3.0285

JLS101 (direct)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -34.9503 -32.1061 -27.0159 -21.0620 -14.6965 -8.3794 -2.5701 2.3780 6.2748 9.0862
0.350 -32.1061 -29.9227 -25.5268 -19.9417 -13.8891 -7.8692 -2.3223 2.4195 6.1713 8.8883
0.630 -27.0159 -25.5268 -22.1721 -17.4511 -12.1043 -6.7364 -1.7622 2.5242 5.9488 8.4543
0.910 -21.0620 -19.9417 -17.4511 -13.8416 -9.5461 -5.1035 -0.9333 2.7035 5.6505 7.8409
1.190 -14.6965 -13.8891 -12.1044 -9.5461 -6.4528 -3.1241 0.0994 2.9644 5.3291 7.1233
1.470 -8.3795 -7.8693 -6.7365 -5.1036 -3.1241 -0.9455 1.2623 3.3029 5.0328 6.3802
1.750 -2.5702 -2.3224 -1.7623 -0.9334 0.0993 1.2623 2.4916 3.7059 4.7959 5.6793
2.030 2.3778 2.4193 2.5240 2.7033 2.9642 3.3028 3.7058 4.1617 4.6377 5.0696
2.310 6.2745 6.1710 5.9485 5.6502 5.3289 5.0326 4.7958 4.6376 4.5699 4.5801
2.590 9.0858 8.8879 8.4539 7.8406 7.1230 6.3799 5.6791 5.0695 4.5800 4.2267

JLS10C (tensor coupled)

kf ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -0.2366 -0.1532 -0.0677 -0.0319 -0.0155 -0.0077 -0.0028 0.0006 0.0029 0.0048
0.350 -4.9257 -3.4294 -1.6939 -0.8034 -0.3964 -0.1935 -0.0708 0.0139 0.0726 0.1158
0.630 -11.1337 -8.7691 -5.2335 -2.6652 -1.3284 -0.6388 -0.2347 0.0339 0.2226 0.3531
0.910 -15.3692 -13.3463 -9.4868 -5.5790 -2.9007 -1.3917 0.5186 0.0386 0.4188 0.6780
1.190 -17.7996 -16.2433 -12.9822 -8.8756 -5.1354 -2.5458 -0.9821 -0.0154 0.6168 1.0376
1.470 -18.9435 -17.7725 -15.1856 -11.5794 -7.6202 -4.1606 -1.7284 -0.2024 0.7596 1.3757
1.750 -19.2595 -18.3400 -16.2763 -13.2690 -9.6645 -5.9792 -2.8419 -0.6293 0.7689 1.6342
2.030 -18.9825 -18.2329 -16.5419 -14.0388 -10.9263 -7.4990 -4.1613 -1.3887 0.5445 1.7419
2.310 -18.2552 -17.6306 -16.2132 -14.1051 -11.4518 -8.4384 -5.3076 -2.3744 -0.0010 1.6127
2.590 -17.1917 -16.6574 -15.4543 -13.6648 -11.4048 -8.8120 -6.0426 -3.2883 -0.7916 1.1715



JLS121 (direct)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0009 0.0158 0.0222 0.0144 0.0058 -0.0012 -0.0056 -0.0078 -0.0085 -0.0082
0.350 0.0158 0.2859 0.4461 0.3245 0.1357 -0.0263 -0.1315 -0.1863 -0.2049 -0.1989
0.630 0.0222 0.4461 0.8631 0.7830 0.3665 -0.0634 -0.3732 -0.5460 -0.6096 -0.5998
0.910 0.0144 0.3245 0.7830 0.9053 0.5125 -0.1075 -0.6407 -0.9742 -1.1159 -1.1162
1.190 0.0058 0.1357 0.3665 0.5125 0.3233 -0.2302 -0.8741 -1.3554 -1.5992 -1.63571.470 -0.0012 -0.0263 -0.0634 -0.1075 -0.2302 -0.5633 -1.0997 -1.6266 -1.9585 -2.0542
1.750 -0.0056 -0.1315 -0.3732 -0.6407 -0.8741 -1.0997 -1.4117 -1.8128 -2.1528 -2.3015
2.030 -0.0078 -0.1863 -0.5460 -0.9742 -1.3554 -1.6266 -1.8128 -2.0033 -2.2201 -2.36282.310 -0.0085 -0.2049 -0.6096 -1.1159 -1.5992 -1.9585 -2.1528 -2.2201 -2.2529 -2.28862.590 -0.0082 -0.1989 -0.5998 -1.1162 -1.6357 -2.0542 -2.3015 -2.3628 -2.2886 -2.1727

JLS220

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -0.0004 -0.0060 -0.0081 -0.0060 -0.0048 -0.0038 -0.0032 -0.0026 -0.0021 -0.0016
0.350 -0.0060 -0.1064 -0.1657 -0.1411 -0.1137 -0.0929 -0.0780 -0.0648 -0.0516 -0.0395
0.630 -0.0081 -0.1657 -0.3413 -0.3792 -0.3340 -0.2839 -0.2406 -0.2008 -0.1618 -0.1238
0.910 -0.0060 -0.1411 -0.3792 -0.5550 -0.5851 -0.5327 -0.4632 -0.3913 -0.3184 -0.2460
1.190 -0.0048 -0.1137 -0.3340 -0.5851 -0.7480 -0.7694 -0.7036 -0.6080 -0.5019 -0.3930
1.470 -0.0038 -0.0929 -0.2839 -0.5327 -0.7694 -0.9052 -0.9044 -0.8145 -0.6879 -0.54791.750 -0.0032 -0.0780 -0.2406 -0.4632 -0.7036 -0.9044 -0.9999 -0.9667 -0.8478 -0.6916
2.030 -0.0026 -0.0648 -0.2008 -0.3913 -0.6080 -0.8145 -0.9667 -1.0159 -0.9482 -0.8025
2.310 -0.0021 -0.0516 -0.1618 -0.3184 -0.5019 -0.6879 -0.8478 -0.9482 -0.9534 -0.8558
2.590 -0.0016 -0.0395 -0.1238 -0.2460 -0.3930 -0.5479 -0.6916 -0.8025 -0.8558 -0.8247

JLS221

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -0.0017 -0.0301 -0.0442 -0.0348 -0.0252 -0.0166 -0.0109 -0.0070 -0.0044 -0.0028
0.350 -0.0301 -0.5507 -0.9091 -0.8037 -0.5968 -0.4060 -0.2677 -0.1731 -0.1094 -0.0698
0.630 -0.0442 -0.9091 -1.8940 -2.0895 -1.7088 -1.2315 -0.8345 -0.5478 -0.3525 -0.2231
0.910 -0.0348 -0.8037 -2.0895 -2.9272 -2.8603 -2.2706 -1.6250 -1.1005 -0.7220 -0.4632
1.190 -0.0252 -0.5968 -1.7088 -2.8603 -3.4155 -3.1604 -2.4756 -1.7685 -1.1980 -0.7850
1.470 -0.0166 -0.4060 -1.2315 -2.2706 -3.1604 -3.4817 -3.1299 -2.4351 -1.7384 -1.1767
1.750 -0.0109 -0.2677 -0.8345 -1.6250 -2.4756 -3.1299 -3.2949 -2.9133 -2.2578 -1.6103
2.030 -0.0070 -0.1731 -0.5478 -1.1005 -1.7685 -2.4351 -2.9133 -2.9853 -2.6137 -2.0205
2.310 -0.0044 -0.1094 -0.3525 -0.7220 -1.1980 -1.7384 -2.2578 -2.6137 -2.6355 -2.2941
2.590 -0.0028 -0.0698 -0.2231 -0.4632 -0.7850 -1.1767 -1.6103 -2.0205 -2.2941 -2.2918



JLS211 (direct)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -0.0139 -0.0726 -0.1283 -0.1620 -0.1721 -0.1653 -0.1475 -0.1240 -0.0985 -0.0738
0.350 -0.0726 -0.3617 -0.6173 -0.7791 -0.8336 -0.8052 -0.7219 -0.6092 -0.4858 -0.3651
0.630 -0.1283 -0.6173 -1.0187 -1.2846 -1.3930 -1.3627 -1.2355 -1.0523 -0.8462 -0.6407
0.910 -0.1620 -0.7791 -1.2846 -1.6275 -1.7909 -1.7847 -1.6455 -1.4224 -1.1587 -0.8878
1.190 -0.1721 -0.8336 -1.3930 -1.7909 -2.0039 -2.0383 -1.9204 -1.6930 -1.4039 -1.0934
1.470 -0.1653 -0.8052 -1.3627 -1.7847 -2.0383 -2.1188 -2.0441 -1.8459 -1.5652 -1.2447
1.750 -0.1475 -0.7219 -1.2355 -1.6455 -1.9204 -2.0441 -2.0216 -1.8739 -1.6313 -1.3303
2.030 -0.1240 -0.6092 -1.0523 -1.4224 -1.6930 -1.8459 -1.8739 -1.7848 -1.5987 -1.3419
2.310 -0.0985 -0.4858 -0.8462 -1.1587 -1.4039 -1.5652 -1.6313 -1.5987 -1.4750 -1.2772
2.590 -0.0738 -0.3651 -0.6407 -0.8878 -1.0934 -1.2447 -1.3303 -1.3419 -1.2772 -1.1424

JLS21C (tensor coupled)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0004 0.0013 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.350 0.0414 0.1293 0.0802 0.0317 0.0138 0.0052 0.0031 0.0011 0.0009 0.0003
0.630 0.1300 0.4606 0.3827 0.1899 0.0812 0.0349 0.0165 0.0081 0.0042 0.0020
0.910 0.1753 0.7197 0.7991 0.5294 0.2582 0.1158 0.0529 0.0257 0.0126 0.0059
1.190 0.1817 0.8089 1.0849 0.9369 0.5779 0.2853 0.1324 0.0620 0.0295 0.0130
1.470 0.1717 0.7929 1.1780 1.2202 0.9503 0.5692 0.2837 0.1328 0.0607 0.0259
1.750 0.1530 0.7268 1.1486 1.3238 1.2204 0.8996 0.5289 0.2625 0.1198 0.0499
2.030 0.1347 0.6468 1.0583 1.3025 1.3333 1.1499 0.8171 0.4709 0.2280 0.0967
2.310 0.1162 0.5647 0.9468 1.2132 1.3268 1.2666 1.0445 0.7202 0.4038 0.1854
2.590 0.1001 0.4884 0.8312 1.0949 1.2495 1.2740 1.1602 0.9242 0.6188 0.3336

JLS231 (direct)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0000 -0.0001 -0.0002 -0.0002 -0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000
0.350 -0.0001 -0.0073 -0.0191 -0.0184 -0.0134 -0.0094 -0.0059 -0.0037 -0.0017 -0.0004
0.630 -0.0002 -0.0191 -0.0613 -0.0786 -0.0670 -0.0491 -0.0329 -0.0202 -0.0100 -0.0019
0.910 -0.0002 -0.0184 -0.0786 -0.1393 -0.1507 -0.1239 -0.0883 -0.0554 -0.0277 -0.0053
1.190 -0.0001 -0.0134 -0.0670 -0.1507 -0.2105 -0.2087 -0.1638 -0.1079 -0.0551 -0.0103
1.470 -0.0001 -0.0094 -0.0491 -0.1239 -0.2087 -0.2534 -0.2315 -0.1655 -0.0880 -0.0156
1.750 0.0000 -0.0059 -0.0329 -0.0883 -0.1638 -0.2315 -0.2504 -0.2036 -0.1152 -0.0180
2.030 0.0000 -0.0037 -0.0202 -0.0554 -0.1079 -0.1655 -0.2036 -0.1908 -0.1179 -0.0098
2.310 0.0000 -0.0017 -0.0100 -0.0277 -0.0551 -0.0880 -0.1152 -0.1179 -0.0733 0.0225
2.590 0.0000 -0.0004 -0.0019 -0.0053 -0.0103 -0.0156 -0.0180 -0.0098 0.0225 0.0945



T(kf,ki) Effective Mass EFM
Healing Parameter GAMSQ :

T: JLS000

1.0000

1.4000
Gridsize
Cutoff PKMX :

40

2.8000

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -23.3113 -20.7675 -16.6277 -12.3674 -8.2972 -4.5510 -1.2400 1.5426 3.7495 5.3863
0.350 -20.7675 -18.9675 -15.6227 -11.7405 -7.8947 -4.3097 -1.1246 1.5647 3.7092 5.3060
0.630 -16.6277 -15.6227 -13.4251 -10.3701 -7.0213 -3.7814 -0.8528 1.6510 3.6717 5.1946
0.910 -12.3674 -11.7405 -10.3702 -8.2784 -5.6869 -2.9727 -0.4259 1.8023 3.6353 5.0435
1.190 -8.2973 -7.8948 -7.0214 -5.6869 -3.9297 -1.8989 0.1530 2.0246 3.6104 4.8610
1.470 -4.5511 -4.3099 -3.7815 -2.9728 -1.8990 -0.5834 0.8815 2.3272 3.6133 4.6660
1.750 -1.2402 -1.1248 -0.8530 -0.4261 0.1529 0.8814 1.7553 2.7207 3.6630 4.4819
2.030 1.5423 1.5644 1.6508 1.8020 2.0244 2.3270 2.7206 3.2144 3.7787 4.3329
2.310 3.7491 3.7088 3.6713 3.6350 3.6101 3.6131 3.6629 3.7786 3.9768 4.2420
2.590 5.3858 5.3055 5.1942 5.0432 4.8606 4.6657 4.4817 4.3328 4.2419 4.2292

T: JLS011

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -0.1267 -0.5583 -0.5761 -0.4187 -0.2445 -0.0852 0.0440 0.1453 0.2158 0.2593
0.350 -0.5583 -2.1346 -2.3599 -1.7765 -1.0372 -0.3691 0.1686 0.5762 0.8589 1.0321
0.630 -0.5761 -2.3599 -3.0732 -2.6288 -1.6267 -0.5819 0.3124 1.0034 1.4926 1.7958
0.910 -0.4187 -1.7765 -2.6288 -2.6128 -1.7946 -0.6309 0.4880 1.4018 2.0671 2.4916
1.190 -0.2445 -1.0372 -1.6267 -1.7946 -1.3603 -0.4039 0.7355 1.7631 2.5534 3.0773
1.470 -0.0852 -0.3691 -0.5819 -0.6309 -0.4039 0.2022 1.1228 2.1099 2.9441 3.5327
1.750 0.0440 0.1686 0.3124 0.4880 0.7355 1.1228 1.7228 2.4949 3.2606 3.8586
2.030 0.1453 0.5762 1.0034 1.4018 1.7631 2.1099 2.4949 2.9821 3.5531 4.0804
2.310 0.2158 0.8589 1.4926 2.0671 2.5534 2.9441 3.2606 3.5531 3.8828 4.2474
2.590 0.2593 1.0321 1.7958 2.4916 3.0773 3.5327 3.8586 4.0804 4.2474 4.4187

T: JLS110

kf ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0848 0.2407 0.1557 0.1506 0.2430 0.3235 0.3622 0.3531 0.3179 0.2682
0.350 0.2407 0.8105 0.7374 0.7942 1.1690 1.5314 1.7043 1.6728 1.5094 1.2813
0.630 0.1557 0.7374 1.2130 1.6142 2.1259 2.6349 2.9024 2.8757 2.6237 2.2542
0.910 0.1506 0.7942 1.6142 2.4301 3.0823 3.5856 3.8785 3.8697 3.5898 3.1374
1.190 0.2430 1.1690 2.1259 3.0823 3.8689 4.3682 4.6140 4.6129 4.3505 3.8850
1.470 0.3235 1.5314 2.6349 3.5856 4.3682 4.8992 5.1285 5.1114 4.8832 4.4586
1.750 0.3622 1.7043 2.9024 3.8785 4.6140 5.1285 5.3949 5.3999 5.2020 4.8425
2.030 0.3531 1.6728 2.8757 3.8697 4.6129 5.1114 5.3999 5.4764 5.3419 5.0492
2.310 0.3179 1.5094 2.6237 3.5898 4.3505 4.8832 5.2020 5.3419 5.3087 5.1077
2.590 0.2682 1.2813 2.2542 3.1374 3.8850 4.4586 4.8425 5.0492 5.1077 5.0251



T: JLS111

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0943 0.3374 0.3502 0.3011 0.2650 0.2334 0.2048 0.1746 0.1466 0.1205
0.350 0.3374 1.3993 1.6721 1.5601 1.4078 1.2606 1.1116 0.9566 0.8065 0.6684
0.630 0.3502 1.6721 2.4144 2.5503 2.3983 2.1782 1.9339 1.6786 1.4251 1.1896
0.910 0.3011 1.5601 2.5503 3.0724 3.1265 2.9252 2.6360 2.3146 1.9882 1.6766
1.190 0.2650 1.4078 2.3983 3.1265 3.4695 3.4344 3.1796 2.8415 2.4777 2.1190
1.470 0.2334 1.2606 2.1782 2.9252 3.4344 3.6295 3.5218 3.2337 2.8762 2.5025
1.750 0.2048 1.1116 1.9339 2.6360 3.1796 3.5218 3.6120 3.4610 3.1643 2.8123
2.030 0.1746 0.9566 1.6786 2.3146 2.8414 3.2337 3.4610 3.4862 3.3180 3.0318
2.310 0.1466 0.8065 1.4251 1.9882 2.4777 2.8762 3.1643 3.3180 3.3082 3.1409
2.590 0.1205 0.6684 1.1896 1.6766 2.1190 2.5025 2.8123 3.0318 3.1409 3.1155

T: JLS101 (direct)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -23.1299 -21.7762 -18.6600 -14.8711 -10.6315 -6.2337 -2.0320 1.6627 4.6403 6.7842
0.350 -21.7762 -20.6934 -17.9405 -14.2512 -10.1169 -5.8663 -1.8274 1.7214 4.5896 6.6680
0.630 -18.6600 -17.9405 -15.8647 -12.6785 -8.9196 -5.0392 -1.3488 1.9108 4.5689 6.5219
0.910 -14.8711 -14.2512 -12.6786 -10.2064 -7.1076 -3.7996 -0.6180 2.2215 4.5699 6.3297
1.190 -10.6316 -10.1170 -8.9196 -7.1077 -4.8096 -2.2408 0.3167 2.6421 4.6008 6.1038
1.470 -6.2338 -5.8664 -5.0393 -3.7997 -2.2408 -0.4638 1.3936 3.1522 4.6722 5.8706
1.750 -2.0321 -1.8275 -1.3489 -0.6182 0.3166 1.3935 2.5559 3.7247 4.7879 5.6556
2.030 1.6625 1.7212 1.9106 2.2214 2.6420 3.1521 3.7246 4.3359 4.9436 5.4761
2.310 4.6400 4.5893 4.5686 4.5697 4.6006 4.6720 4.7878 4.9435 5.1346 5.3392
2.590 6.7839 6.6676 6.5215 6.3293 6.1035 5.8703 5.6554 5.4759 5.3391 5.2499

T: JLS10C (tensor coupled)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0636 0.0592 0.0704 0.0462 0.0172 -0.0069 -0.0223 -0.0306 -0.0354 -0.0411
0.350 -4.6962 -3.1919 -1.4773 -0.6275 -0.2725 -0.1262 -0.0589 -0.0240 -0.0063 0.0068
0.630 -10.4605 -8.0601 -4.5783 -2.1260 -0.9434 -0.4252 -0.1919 -0.0791 -0.0198 0.0157
0.910 -13.9759 -11.9330 -8.2102 -4.5459 -2.1740 -0.9968 -0.4495 -0.1864 -0.0498 0.0296
1.190 -15.6027 -14.0654 -11.0444 -7.3259 -4.0580 -1.9704 -0.8938 -0.3639 -0.0918 0.0617
1.470 -16.0067 -14.9009 -12.6550 -9.5718 -6.2361 -3.4316 -1.6299 -0.6657 -0.1659 0.1065
1.750 -15.7489 -14.9358 -13.2951 -10.9172 -8.0534 -5.1403 -2.7418 -1.1849 -0.3247 0.1396
2.030 -15.1208 -14.5064 -13.2913 -11.4845 -9.1851 -6.6012 -4.0672 -2.0057 -0.6549 0.1081
2.310 -14.2767 -13.7999 -12.8789 -11.4917 -9.6768 -7.5307 -5.2245 -3.0194 -1.2415 -0.0723
2.590 -13.2967 -12.9074 -12.1920 -11.1104 -9.6736 -7.9319 -5.9713 -3.9310 -2.0181 -0.4909



T: JLS121 (direct)

kf ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.1179 -0.0096 -0.0715 -0.0958 -0.0881 -0.0619 -0.0284 0.0028 0.0252 0.0360
0.350 -0.0096 0.3073 0.5152 0.4374 0.2849 0.1498 0.0611 0.0128 -0.0077 -0.0089
0.630 -0.0715 0.5152 1.0947 1.1608 0.8626 0.5168 0.2543 0.0951 0.0185 0.0005
0.910 -0.0958 0.4374 1.1608 1.5466 1.3836 0.9379 0.5130 0.2216 0.0667 0.0195
1.190 -0.0881 0.2849 0.8626 1.3836 1.5390 1.2596 0.7961 0.3964 0.1475 0.0496
1.470 -0.0619 0.1498 0.5168 0.9379 1.2596 1.2912 1.0045 0.6008 0.2778 0.1119
1.750 -0.0284 0.0611 0.2543 0.5130 0.7961 1.0045 0.9985 0.7581 0.4433 0.2225
2.030 0.0028 0.0128 0.0951 0.2216 0.3964 0.6008 0.7581 0.7564 0.5813 0.3701
2.310 0.0252 -0.0077 0.0185 0.0667 0.1475 0.2778 0.4433 0.5813 0.6034 0.5063
2.590 0.0360 -0.0089 0.0005 0.0195 0.0496 0.1119 0.2225 0.3701 0.5063 0.5682

T: JLS220

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0015 -0.0064 -0.0099 -0.0085 -0.0074 -0.0063 -0.0054 -0.0045 -0.0036 -0.0028
0.350 -0.0064 -0.1061 -0.1650 -0.1400 -0.1124 -0.0916 -0.0768 -0.0637 -0.0507 -0.0388
0.630 -0.0099 -0.1650 -0.3386 -0.3752 -0.3293 -0.2790 -0.2359 -0.1967 -0.1584 -0.1211
0.910 -0.0085 -0.1400 -0.3752 -0.5489 -0.5777 -0.5249 -0.4557 -0.3846 -0.3129 -0.2417
1.190 -0.0074 -0.1124 -0.3293 -0.5777 -0.7390 -0.7596 -0.6941 -0.5995 -0.4949 -0.3875
1.470 -0.0063 -0.0916 -0.2790 -0.5249 -0.7596 -0.8946 -0.8940 -0.8051 -0.6801 -0.5418
1.750 -0.0054 -0.0768 -0.2359 -0.4557 -0.6941 -0.8940 -0.9895 -0.9573 -0.8400 -0.6856
2.030 -0.0045 -0.0637 -0.1967 -0.3846 -0.5995 -0.8051 -0.9573 -1.0074 -0.9411 -0.7971
2.310 -0.0036 -0.0507 -0.1584 -0.3129 -0.4949 -0.6801 -0.8400 -0.9411 -0.9476 -0.8512
2.590 -0.0028 -0.0388 -0.1211 -0.2417 -0.3875 -0.5418 -0.6856 -0.7971 -0.8512 -0.8211

T: JLS221
kf ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0790 -0.0462 -0.1135 -0.1254 -0.1155 -0.0937 -0.0690 -0.0460 -0.0283 -0.0184
0.350 -0.0462 -0.5443 -0.8897 -0.7786 -0.5711 -0.3831 -0.2494 -0.1598 -0.1006 -0.0640
0.630 -0.1135 -0.8897 -1.8209 -1.9902 -1.6042 -1.1361 -0.7569 -0.4912 -0.3153 -0.1990
0.910 -0.1254 -0.7786 -1.9902 -2.7885 -2.7102 -2.1301 -1.5079 -1.0133 -0.6639 -0.4256
1.190 -0.1155 -0.5711 -1.6042 -2.7102 -3.2489 -3.0006 -2.3395 -1.6653 -1.1283 -0.7400
1.470 -0.0937 -0.3831 -1.1361 -2.1301 -3.0006 -3.3251 -2.9939 -2.3303 -1.6669 -1.1307
1.750 -0.0690 -0.2494 -0.7569 -1.5079 -2.3395 - 2.9939 -3.1748 -2.8195 -2.1933 -1.5688
2.030 -0.0460 -0.1598 -0.4912 -1.0133 -1.6653 -2.3303 -2.8195 -2.9113 -2.5625 -1.9877
2.310 -0.0283 -0.1006 -0.3153 -0.6639 -1.1283 -1.6669 -2.1933 -2.5625 -2.6000 -2.2713
2.590 -0.0184 -0.0640 -0.1990 -0.4256 -0.7400 -1.1307 -1.5688 -1.9877 -2.2713 -2.2773



T: JLS211 (direct)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 -0.0070 -0.0686 -0.1264 -0.1614 -0.1721 -0.1654 -0.1472 -0.1233 -0.0975 -0.07290.350 -0.0686 -0.3366 -0.5812 -0.7392 -0.7946 -0.7696 -0.6909 -0.5830 -0.4643 -0.34830.630 -0.1264 -0.5812 -0.9635 -1.2212 -1.3290 -1.3029 -1.1826 -1.0073 -0.8094 -0.61200.910 -0.1614 -0.7392 -1.2212 -1.5527 -1.7134 -1.7106 -1.5788 -1.3650 -1.1116 -0.85121.190 -0.1721 -0.7946 -1.3290 -1.7134 -1.9217 -1.9582 -1.8470 -1.6293 -1.3514 -1.05251.470 -0.1654 -0.7696 -1.3029 -1.7106 -1.9582 -2.0393 -1.9703 -1.7812 -1.5117 -1.20301.750 -0.1472 -0.6909 -1.1826 -1.5788 -1.8470 -1.9703 -1.9522 -1.8127 -1.5805 -1.29062.030 -0.1233 -0.5830 -1.0073 -1.3650 -1.6293 -1.7812 -1.8127 -1.7306 -1.5536 -1.30672.310 -0.0975 -0.4643 -0.8094 -1.1116 -1.3514 -1.5117 -1.5805 -1.5536 -1.4374 -1.24782.590 -0.0729 -0.3483 -0.6120 -0.8512 -1.0525 -1.2030 -1.2906 -1.3067 -1.2478 -1.1193

T: JLS21C (tensor coupled)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0017 -0.0005 -0.0038 -0.0062 -0.0077 -0.0082 -0.0080 -0.0071 -0.0059 -0.00460.350 0.0414 0.1289 0.0795 0.0307 0.0126 0.0040 0.0019 0.0001 0.0000 -0.00040.630 0.1295 0.4575 0.3782 0.1847 0.0760 0.0302 0.0123 0.0045 0.0014 -0.00020.910 0.1747 0.7119 0.7870 0.5151 0.2434 0.1017 0.0402 0.0149 0.0037 -0.00091.190 0.1812 0.7961 1.0642 0.9120 0.5515 0.2597 0.1090 0.0418 0.0130 0.00031.470 0.1713 0.7758 1.1499 1.1857 0.9134 0.5329 0.2503 0.1039 0.0370 0.00761.750 0.1527 0.7070 1.1155 1.2827 1.1759 0.8554 0.4879 0.2267 0.0904 0.02712.030 0.1343 0.6260 1.0232 1.2585 1.2850 1.1015 0.7719 0.4312 0.1951 0.07122.310 0.1155 0.5446 0.9125 1.1697 1.2787 1.2179 0.9985 0.6795 0.3701 0.15912.590 0.0993 0.4701 0.7996 1.0544 1.2043 1.2278 1.1163 0.8853 0.5863 0.3082

T: JLS231 (direct)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590

0.070 0.0035 0.0000 -0.0011 -0.0005 0.0009 0.0025 0.0039 0.0048 0.0051 0.00500.350 0.0000 -0.0072 -0.0190 -0.0182 -0.0130 -0.0089 -0.0053 -0.0030 -0.0010 0.00030.630 -0.0011 -0.0190 -0.0602 -0.0764 -0.0640 -0.0455 -0.0293 -0.0167 -0.0069 0.00070.910 -0.0005 -0.0182 -0.0764 -0.1345 -0.1435 -0.1149 -0.0784 -0.0455 -0.0187 0.00281.190 0.0009 -0.0130 -0.0640 -0.1435 -0.1989 -0.1936 -0.1468 -0.0905 -0.0388 0.00451.470 0.0025 -0.0089 -0.0455 -0.1149 -0.1936 -0.2333 -0.2084 -0.1414 -0.0649 0.00551.750 0.0039 -0.0053 -0.0293 -0.0784 -0.1468 -0.2084 -0.2232 -0.1747 -0.0871 0.00802.030 0.0048 -0.0030 -0.0167 -0.0455 -0.0905 -0.1414 -0.1747 -0.1599 -0.0872 0.01902.310 0.0051 -0.0010 -0.0069 -0.0187 -0.0388 -0.0649 -0.0871 -0.0872 -0.0424 0.05182.590 0.0050 0.0003 0.0007 0.0028 0.0045 0.0055 0.0080 0.0190 0.0518 0.1225



POLYNOMIAL REPRESENTATION OF : PNM000

PFM . 1.4000 PKMX : 2.8000
ESTART : -162.3000 GMASQ : 1.4000
STAB : -100.0000 EFM : 1.0000

mf II mi 1 2 3 4 5 6 7 8 9 10

1 1.28868 0.26633 0.01803 -0.01213 -0.00166 0.00027 0.00079 0.00159 0.00339 0.00612
2 0.26628 -0.60538 0.05889 0.04217 -0.00572 -0.00161 0.00001 -0.00065 -0.00064 -0.00208
3 0.01802 0.05889 -0.04775 -0.00107 0.00719 -0.00044 -0.00051 0.00004 -0.00002 0.00015
4 -0.01213 0.04217 -0.00107 -0.01078 0.00063 0.00220 -0.00017 -0.00019 0.00005 0.00012
5 -0.00166 -0.00572 0.00719 0.00063 -0.00349 0.00011 0.00099 -0.00007 -0.00013 -0.00001
6 0.00027 -0.00161 -0.00044 0.00220 0.00011 -0.00140 0.00002 0.00048 -0.00003 -0.00008
7 0.00079 0.00001 -0.00051 -0.00017 0.00099 0.00002 -0.00066 0.00001 0.00025 -0.00001
8 0.00159 -0.00065 0.00004 -0.00019 -0.00007 0.00048 0.00001 -0.00033 0.00001 0.00013
9 0.00338 -0.00064 -0.00002 0.00005 -0.00013 -0.00003 0.00025 0.00001 -0.00016 0.00001

10 0.00612 -0.00208 0.00015 0.00012 -0.00001 -0.00008 -0.00001 0.00013 0.00001 -0.00008

POLYNOMIAL REPRESENTATION OF :

mf
I I mi 1 2

PNMO11

3 4 5 6 7 8 9 10

1 1.17949 0.30139 -0.01671 -0.01061 -0.00148 0.00002 0.00053 0.00151 0.00304 0.00572
2 0.30139 -0.13148 -0.02542 0.04084 -0.00060 -0.00325 0.00013 0.00015 0.00029 0.00057
3 -0.01671 -0.02542 -0.03820 -0.00065 0.01210 0.00000 -0.00151 -0.00008 -0.00018 -0.00038
4 -0.01061 0.04084 -0.00065 -0.01900 0.00009 0.00494 0.00002 -0.00072 0.00003 0.00007
5 -0.00148 -0.00060 0.01210 0.00009 -0.00711 0.00003 0.00213 0.00001 -0.00036 0.00002
6 0.00002 -0.00325 0.00000 0.00494 0.00003 -0.00302 0.00002 0.00100 0.00000 -0.00019
7 0.00053 0.00013 -0.00151 0.00002 0.00213 0.00002 -0.00136 0.00000 0.00049 0.00000
8 0.00151 0.00015 -0.00008 -0.00072 0.00001 0.00100 0.00000 -0.00064 0.00000 0.00025
9 0.00304 0.00029 -0.00018 0.00003 -0.00036 0.00000 0.00049 0.00000 -0.00031 0.00001

10 0.00572 0.00057 -0.00038 0.00007 0.00002 -0.00019 0.00000 0.00025 0.00001 -0.00014

POLYNOMIAL

mf II mi

REPRESENTATION OF

1 2

PNM101

3 4 5 6 7 8 9 10

1 1.61836 0.31589 -0.00872 -0.02032 0.00020 0.00073 0.00087 0.00185 0.00398 0.00726
2 0.31584 -0.85815 0.10083 0.05698 -0.01091 -0.00154 0.00029 -0.00099 -0.00098 -0.00309
3 -0.00873 0.10083 -0.04566 -0.00513 0.00605 -0.00024 -0.00031 0.00009 0.00000 0.00027
4 -0.02032 0.05698 -0.00513 -0.00768 0.00092 0.00108 -0.00011 -0.00002 0.00005 0.00017
5 0.00020 -0.01091 0.00605 0.00092 -0.00232 0.00014 0.00062 -0.00008 -0.00008 -0.00003
6 0.00073 -0.00154 -0.00024 0.00108 0.00014 -0.00092 0.00001 0.00036 -0.00003 -0.00007
7 0.00087 0.00029 -0.00031 -0.00011 0.00062 0.00001 -0.00050 0.00001 0.00020 -0.00001
8 0.00185 -0.00099 0.00009 -0.00002 -0.00008 0.00036 0.00001 -0.00028 0.00001 0.00012
9 0.00398 -0.00098 0.00000 0.00005 -0.00008 -0.00003 0.00020 0.00001 -0.00015 0.00001

10 0.00726 -0.00309 0.00027 0.00017 -0.00003 -0.00007 -0.00001 0.00012 0.00001 -0.00007



POLYNOMIAL

mf II mi

REPRESENTATION OF :

1 2

PNM10C

3 4 5 6 7 8 9 10

1 0.80079 -1.57774 0.22674 0.10724 -0.02303 -0.00312 0.00004 -0.00158 -0.00104 -0.00462
2 0.32584 -0.28184 -0.13856 0.05954 0.02322 -0.00861 -0.00129 0.00001 -0.00051 -0.00073
3 0.03572 0.16806 -0.08812 -0.04004 0.02317 0.00813 -0.00394 -0.00056 0.00030 0.00035
4 -0.01326 0.04721 0.03196 -0.03326 -0.01214 0.01034 0.00291 -0.00189 -0.00025 0.00024
5 -0.00444 -0.01256 0.01878 0.01068 -0.01377 -0.00459 0.00487 0.00116 -0.00098 -0.00015
6 -0.00067 -0.00302 -0.00389 0.00874 0.00375 -0.00618 -0.00183 0.00234 0.00050 -0.00051
7 0.00050 -0.00063 -0.00182 -0.00167 0.00419 0.00151 -0.00293 -0.00075 0.00116 0.00022
8 0.00133 -0.00134 -0.00006 -0.00103 -0.00072 0.00205 0.00065 -0.00143 -0.00033 0.00059
9 0.00265 -0.00273 -0.00008 0.00017 -0.00064 -0.00032 0.00103 0.00029 -0.00072 -0.00016

10 0.00490 -0.00539 -0.00014 0.00028 0.00006 -0.00036 -0.00015 0.00053 0.00013 -0.00038

POLYNOMIAL

mf II mi

REPRESENTATION OF

1 2

PNM110

3 4 5 6 7 8 9 10

1 1.63923 0.10696 -0.14032 0.00485 0.00444 -0.00048 0.00043 0.00141 0.00278 0.00534
2 0.10696 0.05952 0.01873 0.00052 -0.00289 -0.00085 0.00036 0.00036 0.00047 0.00087
3 -0.14032 0.01873 0.01248 -0.00498 0.00241 0.00042 -0.00085 -0.00002 0.00001 -0.00031
4 0.00485 0.00052 -0.00498 -0.00062 0.00053 -0.00033 0.00011 -0.00008 -0.00004 0.00004
5 0.00444 -0.00289 0.00241 0.00053 -0.00001 0.00018 -0.00063 -0.00002 0.00014 0.00001
6 -0.00048 -0.00085 0.00042 -0.00033 0.00018 0.00110 -0.00003 -0.00060 -0.00001 0.00014
7 0.00043 0.00036 -0.00085 0.00011 -0.00063 -0.00003 0.00097 -0.00001 -0.00044 0.00000
8 0.00141 0.00036 -0.00002 -0.00008 -0.00002 -0.00060 -0.00001 0.00063 0.00000 -0.00028
9 0.00278 0.00047 0.00001 -0.00004 0.00014 -0.00001 -0.00044 0.00000 0.00038 0.00001

10 0.00534 0.00087 -0.00031 0.00004 0.00001 0.00014 0.00000 -0.00028 0.00001 0.00024

POLYNOMIAL

mf II mi

REPRESENTATION OF

1 2

PNM111

3 4 5 6 7 8 9 10

1 1.02989 0.05178 -0.09635 0.00254 0.00350 0.00018 0.00033 0.00079 0.00164 0.00321
2 0.05178 0.10152 0.00953 -0.01847 -0.00035 0.00131 0.00012 0.00019 0.00034 0.00065
3 -0.09635 0.00953 0.02740 -0.00039 -0.00550 0.00005 0.00054 -0.00002 -0.00004 -0.00013
4 0.00254 -0.01847 -0.00039 0.00861 0.00009 -0.00238 0.00000 0.00033 -0.00002 -0.00003
5 0.00350 -0.00035 -0.00550 0.00009 0.00337 0.00002 -0.00113 -0.00001 0.00020 0.00000
6 0.00018 0.00131 0.00005 -0.00238 0.00002 0.00163 -0.00001 -0.00058 0.00000 0.00012
7 0.00033 0.00012 0.00054 0.00000 -0.00113 -0.00001 0.00082 0.00000 -0.00031 0.00000
8 0.00079 0.00019 -0.00002 0.00033 -0.00001 -0.00058 0.00000 0.00042 0.00000 -0.00016
9 0.00164 0.00034 -0.00004 -0.00002 0.00020 0.00000 -0.00031 0.00000 0.00022 0.00001

10 0.00321 0.00065 -0.00013 -0.00003 0.00000 0.00012 0.00000 -0.00016 0.00001 0.00013



POLYNOMIAL REPRESENTATION OF :

mf II mi 1 2

PNM121

3 4 5 6 7 8 9 10

1 -0.69934 -0.13520 0.05962 0.01219 -0.00614 0.00051 0.00039 -0.00072 -0.00142 -0.00267
2 -0.13520 0.04623 0.02455 -0.02004 -0.00510 0.00332 0.00033 -0.00015 -0.00013 -0.00029
3 0.05962 0.02455 0.01968 0.00246 -0.00938 -0.00207 0.00184 0.00036 0.00009 0.00040
4 0.01219 -0.02004 0.00246 0.01566 0.00108 -0.00515 -0.00065 0.00095 0.00015 -0.00001
5 -0.00614 -0.00510 -0.00938 0.00108 0.00709 0.00045 -0.00245 -0.00025 0.00046 0.00000
6 0.00051 0.00332 -0.00207 -0.00515 0.00045 0.00325 0.00015 -0.00115 -0.00010 0.00024
7 0.00039 0.00033 0.00184 -0.00065 -0.00245 0.00015 0.00151 0.00005 -0.00056 -0.00004
8 -0.00072 -0.00015 0.00036 0.00095 -0.00025 -0.00115 0.00005 0.00071 0.00002 -0.00028
9 -0.00142 -0.00013 0.00009 0.00015 0.00046 -0.00010 -0.00056 0.00002 0.00035 0.00001

10 -0.00267 -0.00029 0.00040 -0.00001 0.00000 0.00024 -0.00004 -0.00028 0.00001 0.00016

POLYNOMIAL REPRESENTATION OF :

mf I I mi 1 2

PNM211

3 4 5 6 7 8 9 10

1 -0.51172 0.03313 0.07023 -0.00512 -0.00298 0.00023 -0.00002 -0.00024 -0.00053 -0.00109
2 0.03313 -0.04133 -0.00954 0.00855 0.00046 -0.00071 0.00000 0.00001 -0.00006 -0.00010
3 0.07023 -0.00954 -0.01283 0.00097 0.00115 0.00000 -0.00010 0.00002 0.00006 0.00011
4 -0.00512 0.00855 0.00097 -0.00209 0.00004 0.00019 0.00000 -0.00001 0.00001 0.00002
5 -0.00298 0.00046 0.00115 0.00004 -0.00020 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.00023 -0.00071 0.00000 0.00019 0.00000 0.00001 0.00000 -0.00002 0.00000 0.00000
7 -0.00002 0.00000 -0.00010 0.00000 0.00000 0.00000 0.00003 0.00000 -0.00002 0.00000
8 -0.00024 0.00001 0.00002 -0.00001 0.00000 -0.00002 0.00000 0.00002 0.00000 -0.00001
9 -0.00053 -0.00006 0.00006 0.00001 0.00000 0.00000 -0.00002 0.00000 0.00001 0.00000

10 -0.00109 -0.00010 0.00011 0.00002 0.00000 0.00000 0.00000 -0.00001 0.00000 0.00001

POLYNOMIAL

mf II mi

REPRESENTATION OF :

1 2

PNM21C

3 4 5 6 7 8 9 10

1 -0.19140 0.12062 0.02942 -0.02818 -0.00018 0.00204 -0.00004 0.00003 -0.00001 -0.00005
2 -0.08149 0.01260 0.03631 -0.00122 -0.00948 0.00062 0.00109 -0.00011 -0.00001 -0.00004
3 -0.00843 -0.02505 0.00946 0.01332 -0.00308 -0.00355 0.00059 0.00050 -0.00009 -0.00003
4 0.00455 -0.00808 -0.00839 0.00535 0.00500 -0.00195 -0.00145 0.00040 0.00022 -0.00006
5 0.00115 0.00207 -0.00409 -0.00321 0.00278 0.00197 -0.00106 -0.00062 0.00024 0.00010
6 0.00008 0.00093 0.00094 -0_00203 -0.00134 0.00143 0.00082 -0.00057 -0.00028 0.00014
7 -0.00008 0.00002 0.00060 0.00043 -0.00102 -0.00059 0.00073 0.00036 -0.00030 -0.00013
8 -0.00032 0.00005 0.00004 0.00034 0.00020 -0.00053 -0.00026 0.00037 0.00016 -0.00016
9 -0.00063 0.00009 0.00012 -0.00002 0.00018 0.00010 -0.00028 -0.00012 0.00020 0.00007

10 -0.00117 0.00021 0.00025 -0.00001 -0.00003 0.00010 0.00005 -0.00015 -0.00006 0.00010



POLYNOMIAL REPRESENTATION OF :

mf II mi 1 2

PNM220

3 4 5 6 7 8 9 10

1 -0.26903 -0.02574 0.04142 0.00791 -0.00327 -0.00039 0.00000 -0.00015 -0.00033 -0.00068
2 -0.02574 -0.03178 -0.00369 0.00832 0.00165 -0.00099 -0.00014 -0.00003 -0.00010 -0.00019
3 0.04142 -0.00369 -0.01463 -0.00132 0.00348 0.00047 -0.00049 -0.00004 0.00003 0.00003
4 0.00791 0.00832 -0.00132 -0.00473 -0.00034 0.00145 0.00018 -0.00025 -0.00001 0.00004
5 -0.00327 0.00165 0.00348 -0.00034 -0.00207 -0.00011 0.00071 0.00007 -0.00014 -0.00001
6 -0.00039 -0.00099 0.00047 0.00145 -0.00011 -0.00098 -0.00005 0.00037 0.00003 -0.00008
7 0.00000 -0.00014 -0.00049 0.00018 0.00071 -0.00005 -0.00049 -0.00002 0.00019 0.00001
8 -0.00015 -0.00003 -0.00004 -0.00025 0.00007 0.00037 -0.00002 -0.00025 -0.00001 0.00011
9 -0.00033 -0.00010 0.00003 -0.00001 -0.00014 0.00003 0.00019 -0.00001 -0.00014 -0.00001

10 -0.00068 -0.00019 0.00003 0.00004 -0.00001 0.00008 0.00001 0.00011 -0.00001 -0.00007

POLYNOMIAL REPRESENTATION OF :

mf II mi 1 2

PNM221

3 4 5 6 7 8 9 10

1 -0.73424 -0.03606 0.12461 0.01509 -0.01115 -0.00069 -0.00023 -0.00044 -0.00077 -0.00168
2 -0.03606 -0.16105 -0.02848 0.04648 0.00888 -0.00655 -0.00066 0.00003 -0.00040 -0.00067
3 0.12461 -0.02848 -0.06718 -0.00571 0.01940 0.00303 -0.00314 -0.00037 0.00013 -0.00008
4 0.01509 0.04648 -0.00571 -0.02854 -0.00184 0.00882 0.00103 -0.00155 -0.00014 0.00016
5 -0.01115 0.00888 0.01940 -0.00184 -0.01220 -0.00067 0.00411 0.00040 -0.00079 -0.00004
6 -0.00069 -0.00655 0.00303 0.00882 -0.00067 -0.00550 -0.00024 0.00197 0.00016 -0.00041
7 -0.00023 -0.00066 -0.00314 0.00103 0.00411 -0.00024 -0.00258 -0.00009 0.00097 0.00007
8 -0.00044 0.00003 -0.00037 -0.00155 0.00040 0.00197 -0.00009 -0.00126 -0.00004 0.00050
9 -0.00077 -0.00040 0.00013 -0.00014 -0.00079 0.00016 0.00097 -0.00004 -0.00063 -0.00002

10 -0.00168 -0.00067 -0.00008 0.00016 -0.00004 -0.00041 0.00007 0.00050 -0.00002 -0.00033

POLYNOMIAL REPRESENTATION OF

mf II mi 1 2

PNM231

3 4 5 6 7 8 9 10

1 -0.01316 0.01817 0.01803 0.00352 -0.00152 -0.00044 0.00009 0.00008 0.00015 0.00025
2 0.01817 -0.00068 -0.00083 0.00353 0.00147 -0.00050 -0.00021 0.00007 0.00007 0.00012
3 0.01803 -0.00083 -0.00672 -0.00111 0.00191 0.00058 -0.00030 -0.00009 0.00004 0.00003
4 0.00352 0.00353 -0.00111 -0.00274 -0.00034 0.00086 0.00021 -0.00016 -0.00004 0.00002
5 -0.00152 0.00147 0.00191 -0.00034 -0.00121 -0.00013 0.00041 0.00009 -0.00008 -0.00002
6 -0.00044 -0.00050 0.00058 0.00086 -0.00013 -0.00055 -0.00005 0.00020 0.00004 -0.00004
7 0.00009 -0.00021 -0.00030 0.00021 0.00041 -0.00005 -0.00026 -0.00002 0.00010 0.00002
8 0.00008 0.00007 -0.00009 -0.00016 0.00009 0.00020 -0.00002 -0.00013 -0.00001 0.00005
9 0.00015 0.00007 0.00004 -0.00004 -0.00008 0.00004 0.00010 -0.00001 -0.00006 0.00000

10 0.00025 0.00012 0.00003 0.00002 -0.00002 -0.00004 0.00002 0.00005 0.00000 -0.00003



POLYNOMIAL REPRESENTATION OF THE PROPAGATOR DIFFERENCE

PFM : 1.3000 PKMX : 2.8000
ESTART : -162.3000 GMASQ : 1.4000
ETAB(1): 100.0000 EFM : 1.0000

mf II mi 1 2 3 4 5 6 7 8 9 10

1 0.06100 -0.11210 0.06406 0.00736 -0.01636 -0.00283 0.00502 0.00049 -0.00180 0.00151
2 -0.11210 0.23203 -0.19040 0.04921 0.02532 -0.01076 -0.00922 0.00348 0.00483 -0.00362
3 0.06406 -0.19040 0.26377 -0.19153 0.04759 0.02320 -0.00919 -0.00639 -0.00028 0.00363
4 0.00736 0.04921 -0.19153 0.27893 -0.20081 0.04693 0.02751 -0.01226 -0.00745 0.00246
5 -0.01636 0.02532 0.04759 -0.20081 0.28671 -0.20031 0.04240 0.02766 -0.00917 -0.00731
6 -0.00283 -0.01076 0.02320 0.04693 -0.20031 0.28690 -0.20223 0.04459 0.02840 -0.01140
7 0.00502 -0.00922 -0.00919 0.02751 0.04240 -0.20223 0.29200 -0.20288 0.04178 0.02926
8 0.00049 0.00348 -0.00639 -0.01226 0.02766 0.04459 -0.20288 0.29114 -0.20291 0.04256
9 -0.00180 0.00483 -0.00028 -0.00745 -0.00917 0.02840 0.04178 -0.20291 0.29327 -0.20399

10 0.00151 -0.00362 0.00363 0.00246 -0.00731 -0.01140 0.02926 0.04256 -0.20399 0.29367


