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Brueckner Theory of Nuclear Matter

1. The Nuclear Matter Problem

1.1 Introduction and Survey

Ideally it should be possible to relate the observed properties of nuclei to the
interactions among the constituent nucleons, qualitatively and ultimately quantitatively.
Empirically, the nucleus is described well by a phenomenological mean fied theory, the
shell model. In it, the constituent nucleons behave essentially as if they were
independent. Given that nuclei are many-fermion systems one might hope, guided by
atomic physics, that the nuclear mean field can be derived as a Hartree-Fock potential ab
initio from the forces between the nucleons. In striking contrast to the existence of nuclei,
this is not possible for realistic nuclear forces. Their key feature, strong repulsion at short
distances, is incompatible with the independent particle motion implied by the Hartree-
Fock approximation. To overcome this difficulty Brueckner and Goldstone [1,2]
developed a perturbative many-body approach based on multiple scattering theory which
replaces the bare nuclear interaction in favor of an effective interaction which is well
behaved and which yields a modified independent particle model, the independent particle
approximation. It amounts to introducing pair correlations in the nucleons' motion in
addition to the apparently insufficient Pauli principle, so that the repulsion is de-
emphasized by shifting the independent particles' wave function more to the attractive
regions of the potential. Obviously this must be done in a way which leads to binding
and saturation, and a simple test for the theory is provided by comparing the bulk
properties like density and binding energy to the empirical values. In principle one can
construct the single-particle Hamiltonian from the effective interaction and solve the
corresponding Schrddinger equation for the single-particle eigenstates and energies. The
problem can be attacked using a discrete basis of states from which one has to determine
the eigenstates and the mean field potential self-consistently. Considering the number of
nucleons involved this is a sizeable task even today and has defeated numerical attempts
in the past. The local density approximation instead uses a density dependent interaction,
with non-locality limited to spin and angular momentum dependence. The advocating
argument is that the nucleus is a low-density system where short range correlations are
dominant so that a test nucleon is mainly influenced by the other nucleons in the vicinity.
The approximate interaction may be constructed [3,4] from the effective interaction in an
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infinite model system of uniform density, nuclear matter. The translational invariance
tremendously simplifies the problem because the wave functions are known a priori, they
are plane waves, and the remaining question is how to find a reasonable mean field.
Clearly, nuclear matter is a purely hypothetical system and probes only the nuclear bulk
properties, for any surface is absent and one can not account for any effects due to the
finiteness of real nuclei with this model. Furthermore the Coulomb interaction must be
"switched off". Actual calculations first of all test whether a given nucleon-nucleon
potential leads to reasonable properties. The foremost criterion is that the system can
reach a stable groundstate, i.e. that it is bound and that it saturates. As a uniform Fermi
gas it is characterized by the Fermi momentum kg, which relates to the density p as

= 1,3
P =8¢ 3kim (1.1)
where the degeneracy factor g = 4 indicates that each momentum state can be occupied
with 4 nucleons of different spin and isospin. Related is the mean distance r, between
nucleons

- 4
b= (1.2)

and the equilibrium values are given by [5]

p = 0.17 fm3 = kfm =1.36 fm~!
(1.3)

The average binding energy € should be compared to the value of the volume term in the
mass formula of the liquid drop model [4], in the limit of an infinite nucleus

€ = —15.68 MeVinucleon. (1.4)

It should be remarked that the nuclear matter problem is a well plowed field. Reviews are
given in [6,7]. The idea of using multiple scattering theory to describe the motion of the
nucleons reaches back into the 1950s and it is fair to say that by the beginning of the
1970s the field reached a stationary state. A major revision after the mid-1970s is due to
the authors of [7], who showed that the previously used prescription to set the potential
energies for states above the Fermi momentum equal to zero should be abandoned in
favor of treating them self-consistently like the occupied states. However it is still a
worthwhile system to study: It is a many-fermion system par excellence with a relatively
complicated spin and angular momentum dependent interaction [8]. But foremost, it
provides access to finite problems via the density dependent interaction mentioned above.



1.2 Scope of the Present Work

The scope of this work encompassed two major tasks. The central part of the thesis
project was the design of two Fortran subroutines [9] to calculate the nuclear matter
reaction matrix with an angle averaged Pauli operator. The code TREF calculates the
partial wave projections of the reference reaction matrix [10]. Its input consists only of
the partial wave projections of a local potential and the reference spectrum parameters.
The code TNM obtains the full nuclear matter reaction matrix in a rapidly converging
polynomial expansion [11] and requires as input the user-provided nuclear matter
spectrum, the parameters of the preceding calculation of the reference reaction matrix.
The numerical feasibility of the codes was confirmed by comparing their results with
previous calculations [3,12]. After the successful completion of this first part, the codes
were employed to obtain the single-particle spectrum and the average binding energy as a
function of &y, . The reported calculations are based on Reid's soft core potentials [13].
These are scalar two-body interactions, which are local in the separation, but depend on
the relative angular momentum and the total spin of the interacting pair.

Chapter 2 gives a review of Brueckner theory. Two viewpoints are explored, a
short approach which appeals to the idea of the multiple scattering of the two nucleons
and a rather formal approach based mostly on a diagrammatic representation of many-
body perturbation theory. This chapter provides the theoretical background for the
application-oriented formalism in chapter 3. Chapter 3 establishes the analytical
framework as implemented in the numerical calculations. Bethe's reference spectrum
method is presented in some detail followed by an outline of Legindgaard's method for
the full reaction matrix and a discussion of the angle averaged Pauli exclusion operator.
Chapter 4 describes the Brueckner-Hartree-Fock approximation to the mean field
building on the formal development in the previous chapters. At this stage, the treatment
is applicable to particle and hole states. Chapter 5 presents some methods, the Numerov
algorithm, integration procedures etc., used in the numerical computations and discusses
them. It reflects the algorithm implemented in the developed programs. Chapter 6 is
devoted to some numerical results to illustrate the methods of chapter 3 and the self-
consistent calculations following chapter 5. An argument is presented why the self-
consistency condition can not be imposed on the particle states with the present method
along with some preliminary thoughts how the theory needs to be extended. Appendix A
is concerned with some technicalities and conventions about partial wave expansions.
Appendix B supplements chapter 2 with a discussion of the usual Hartree-Fock method.
Appendix C further illustrates the use of diagrams in Brueckner theory. Appendix D
contains reference results of numerical calculations.



2. Brueckner Theory

Brueckner theory provides a means to calculate groundstate properties in finite as well as
in infinite nuclear systems. In the first two subsections no specialization towards infinite
nuclear matter is implied. It is presented with the understanding that the nuclear forces are
purely two-body interactions and that it ultimately treats the problem non-relativistically.

The motivation for Brueckner's theory originated in the puzzle that the shell model
[4] as a phenomenological mean field theory is successful in describing many properties
of nuclei but that conventional many-body approximations like the Hartree-Fock method
for the mean field, see Appendix B, fail if realistic nucleon-nucleon potentials are
considered. For the model case of nuclear matter two problems prevail in the independent
fermion model, saturation and binding. In an atomic system the Coulomb repulsion
between the electrons is balanced by the attractive background potential of the nuclei and
it is not a surprise that the system has a bound groundstate. In the case of nuclear matter
there is no stabilizing background and consequently any ab initio theory which starts only
from the form of the two-body interactions must also provide for the saturation property.
Because in the independent particle model the ratio of potential and kinetic energy per
particle is not bound as a function of the density, no saturation is possible, and the
system is unbound or collapses, depending on whether the average potential energy is
positive or negative. For the nucleon-nucleon interaction the strong repulsion at short
interparticle separations causes the potential energy to be positive and nuclear matter
would be unbound. Considering the part of the repulsion, the reason for the failure is
clear. In the independent particle model the nucleons can approach too closely and
experience predominantly the repulsive part of the interaction, despite the Pauli principle
which usually keeps identical particles apart. Apparently the motion of the interacting
particles should be correlated beyond mere antisymmetrization to prevent close approach.
Of course, the attraction gained thereby must also exhibit the correct density dependence
to achieve saturation.

As a first step one can introduce just pair-correlations, and Brueckner's theory
provides the framework for doing this. It can be understood in the context of multiple
scattering of the interacting pair in the presence of the nuclear medium, with the principal
question of how to treat the strong short-range repulsion. Brueckner theory is restricted
to groundstate properties since it is inherently a zero-temperature theory rather than the
thermodynamic limit of a finite temperature theory for an infinite system. A thorough
account of the interchangeability of both limits may be found in [14]. In the case of
nuclear matter, both methods are equivalent [10]. Section 2.1 presents an abbreviated,
more intuitive version of Brueckner theory [4]. Section 2.2 outlines a more formal



5

justification based on many-body perturbation theory, supplemented by diagrammatic
methods, the Goldstone diagrams. For notational simplicity, the theory is displayed for
finite systems. Section 2.3 focuses on infinite nuclear matter and establishes notational
conventions for the subsequent calculations.

2.1 Independent Pair Approximation and Bethe-Goldstone Equation

The formalism for scattering of two particles in free space via a two-body
interaction V can be utilized as a guideline to describe the motion of an interacting pair in
the presence of the other nucleons which act as passive spectators. The starting point is
the Lippmann-Schwinger equation for the T-matrix Tg

Te = V+ VGETE, 2.1)

where all operators are two-body operators. The subscript E indicates the dependence on
‘the energies of the scattering particles. If the scattering takes place within the many-
nucleon system, the two-body operators act on the two-particle projections of the
complete many-body wave function. Without the effects of scattering, a single nucleon
moves in the mean field produced by all the other nucleons, which one actually wants to
extract from this development. Hence the homogeneous part of the scattering two-particle
wave function is a product of two bound eigenstates of some single-particle Hamiltonian
corresponding to the mean field and the single-particle energies must reflect the bindin g.
In addition, the spectator fermions prevent the interacting pair from scattering into already
occupied intermediate states by the Pauli principle, so that only scatterin g states above the
Fermi level are permissible. Thus the propagator Gg in (2.1) needs to be modified
regarding two aspects: (1) It has to account for the influence of the surrounding medium
on the interaction by correcting the single-particle spectrum. (2) The propagator must
project the intermediate states on the unoccupied states above the Fermi level. Explicitly,
eq. (2.1) becomes

T = V+ E—QH()TE’ 2.2)

referred to as Bethe-Goldstone equation. The Pauli exclusion operator Q projects onto the
unoccupied states and is given by

0 = f‘: (1-ni)(I-n}) fii)il, 2.3)
7l

with n; j as occupation numbers of the single-particle levels. In the groundstate n; = 1 if
the state i is occupied and #; = 0 if it is unoccupied. With the single-particle energies &
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corresponding to the mean field Hamiltonian H, the Bethe-Goldstone equation for the
groundstate of nuclear matter follows from (2.2)

(mn/Q /mn) -

—Em—En

(ITE [kL) = GV Jkl)+ 24 (v Jmn) === (mn|TE [kl). (2.4)
E is usually called the starting energy and enters as a parameter. While eq. (2.4) is a two-
body equation which applies to the interacting pair the other nucleons do not enter
explicitly, but they serve to modify the propagator. This passive role is condensed in the
name independent pair approximation for the above treatment. There are no singularities
in the propagator for occupied states by virtue of the exclusion principle. For states above
the Fermi level a choice exists, either one uses a principal value integral for the scattering
term or one evaluates it always off-shell. Both should correspond to bound states, and in
the following treatment the latter is adopted. The T-matrix obtained by (2.4) might be
considered as an effective interaction which includes pair correlations induced by
potential scattering to all orders in V. According to its definition

Te|Po) = V/Wo) = VR Do) 2.5)

Tg acts upon the uncorrelated state /@) to reproduce the action of V on the correlated
state /o) after the Mgller operator Qg distorts the uncorrelated state. Eventually, it is then
possible to regain the independent particle description by constructing the Hartree-Fock
Hamiltonian from the effective interaction rather than from the bare V. The Hartree-Fock
groundstate energy (B.12) is then given in terms of the single particle energies & and the
effective interaction

DolHuri9o) = X e (B) -5 D (GiTali)- GiTeliit) @
i ij

with /@) denoting the many-nucleon groundstate and the sums covering the occupied
states. This is not really a Hamiltonian, after all the interaction depends on the energy and
there is the question of how to select E . One might select it on-shell from the single-
particle spectrum, E = & + & for the hole states in (2.6) in the spirit of a self-consistency
problem, see App. B. However the particle states also enter the potential in the single-
particle Schrédinger equation which ultimately determines the spectrum, and the question
of how to choose E for them arises again. The answer emerges in section 2.1. Essentially
the single-particle spectrum should be calculated self-consistently regardless of whether
the state corresponds to a hole or a particle. ,

In analogy to the free-space scattering, eq. (1) relates the correlated, "distorted" and
the uncorrelated two-particle state (2.5) via the defect wave function
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E-H,

JBo) — Vo) = - —=—V/yo). (2.7)
With the bound state boundary condition the scattered wave must vanish for large
separations of the scattering nucleons. This is depicted by the concept of healing. The
interaction inflicts a "wound" on the wave function which heals with a characteristic
constant Y and the defect wave function vanishes asymptotically. The goodness of the
independent pair approximation is then assessed by comparing the healing distance ¥ with
the average spacing r, of the nucleons. If y << r,, the wave function at r, is the
independent particle wave function in the mean field and for the purpose of scattering it is
justified to look upon the other nucleons just a spectators, since they are remote from the
scattering region. Another viewpoint is, that the probability to find three nucleons within
a sphere of the order of ¥ is much smaller than for only two, consequently three-particle
correlations are expected to be less important than pair correlations. Typically one has
Y/ro = 0.5. The concept of healing will be revisited under a different aspect in ch. 4.

2.2 Perturbation Expansion for the Nuclear Groundstate

A more formal approach to the effective interaction compared to the intuitive
arguments in sec. 2.1 is based on many-body perturbation theory. The idea is to view the
two-body interaction as a perturbation of an assumed, unperturbed mean field
Hamiltonian. One obtains the ground state energy by means of a linked cluster expansion
in powers of the interaction. By rearranging the series and summing over a certain type
of terms one can overcome the difficulty with the strength of the nucleonic interaction and
arrive at an expansion in powers of the nuclear reaction matrix. The lowest order terms
correspond to the effective interaction from which in turn defines a modified mean field.
The traditional approach employs time-dependent perturbation theory and yields the
perturbed state via a Dyson expansion of the time-development operator in the adiabatic
limit for the time dependence. The topic is usually referred to as Goldstone-Hugenholtz
method; it can be found elsewhere [5,15] along with the auxiliary theorems due to Wick
needed in the evaluation of time-ordered products. Some basic equations are presented in
this section and a diagrammatic representation of the terms in the perturbation series is
given which facilitates the interpretation of the various terms in the perturbation series.
The use of operators in second quantization is not mandatory but allows for ready
interpretation.

The starting point is the definition of an auxiliary, yet unknown mean field
Hamiltonian, which is constructed from Hamiltonians HSjj of the n individual nucleons



HSy = [Tl + (U] dra; (2.11)

with eigenstates /@) the mean field many-body Hamiltonian is given by

Ho = X [G/Tli)+ (1Ujj)]dta; (2.12)
)

T stands for the kinetic energy here and U denotes the single-particle potential. The basis
for the perturbation theory is the many-body eigenstates /¢) of (2.12) which are the
antisymmetrized products of the single-particle eigenstates of (2.11)

IHEN=A fg/qxw» (2.13)

with the energy eigenvalue E as the sum of the eigenvalues corresponding to the /Qi(E)).
The energy of the unperturbed groundstate /@) is then given as a sum over the lowest
single-particle eigenvalues. The perturbation proper is the nucleon-nucleon interaction V
but one has to subtract also the spurious auxiliary potential, thus the definition of the
perturbation

Hp = ‘le: (iilV/ik)tdta,a,~ Z(i/U/j) ata; . (2.14)
ij
In essence the Hamiltonian H for the interacting system has been separated in a mean
field part (2.12) and a perturbing part (2.14)
H = H, + H, (2.15)

where H should not depend on the auxiliary potential U. The choice of U provides some
freedom to influence the convergence properties of the perturbation expansion, which is
given for the groundstate energy by

(P/H/ o)
(¢/00)

= Qoltalde) + Dol Hy| 1, 22 1 0y 16)

(Wo/H/YWo) =

under the normalization (/) = 1 and the condition that /@) is non-degenerate. The
second term in (2.16) represents the corrections to the unperturbed groundstate, and as
in ordinary perturbation theory the intermediate states are projected off the unperturbed
state. The operators in (2.16) are sums of one- and two-body operators by eqgs. (2.14,
2.12) which single out the particular one- and two-particle projections of the many-



nucleon states. Inserting them explicitly yields terms like e.g. first order in V

(GolHp/00) = )T; GIVIK) (@oldidiaa)Po) — D GIULD (Poldtajdo)  (2.17)

ij )
where the sums sample all possible single-particle states. It is understood that only
distinct terms are retained, for example (ij/V/lk) = (Ik/V/ij) is counted only once. The
expansion (2.17) can be cast into a diagrammatic representation, due to Goldstone [2].
Each term is represented by a diagram. They are constructed from basic elements and
their contributions to the perturbation series are evaluated according to the following rules
[2,5].

Rule I Fermion lines. Particles are represented by a line pointing upwards,
holes by lines pointing downwards.The time is directed upwards.

@ (U (b) (i/Viik)

Rule II  Interactions. For each interaction (i/U/j) draw a basic one-body vertex
(a). Interactions (ij/V/lk) are represented by a two-body vertex (b).

The creation and annihilation operators in (2.6) act between the unperturbed groundstate.
Consequently no external lines can enter or leave a vertex, all fermion lines are paired up,
contracted, and all possible combinations contribute.

Rule Il Contractions. Connect all the fermion lines in all possible ways with
all possible orderings of the vertices. Lines entering a vertex from below denote
fermion destruction, lines leaving a vertex represent fermion creation.

Figure 1 = Construction of Goldstone Diagrams. Example of a 2nd order
contribution to the perturbation series (2.16) according to rule III. At the lower
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vertex a nucleon is excited out of state i into a state k. Two nucleons, in a hole
state ¢ and in a particle state k propagate as particle-hole excitation. At the upper
vertex the excitation is destroyed by an interaction with a passive unexcited
nucleon in the occupied state j. Note that this diagram does not obey momentum
conservation and will not contribute to the groundstate energy of nuclear matter.

Starting with order m=2 the propagators contribute energy denominators which represent
the excitation energy

-1
(E-Hof! = el = (Xey - X &) (2.18)
holes particles
where the sums include all particle and hole lines at a given instance (horizontal section)
in a diagram. Note that e as defined in (2.18) is a negative quantity.

Rule IV  Energy Denominators. Include m-1 factors 1/, with the denominator
being the excitation energies defined in eq. (2.18).

Rule V. Sign Rule. Each hole line, each closed fermion loop and each one-
body vertex contribute a factor of —1. Bubbles as in fig. 1 count as hole lines.

Rule VI  Intermediate States. Sum over all lines without observing the Pauli
principle in intermediate (particle) states. All intermediate states are taken as
simple product states. Include a factor of 1/2 for each pair of equivalent lines.
Two lines are equivalent if they point in the same direction and if they start at
the same vertex and terminate at the same vertex.

As an example, the diagram in fig. 1 is second order, so one has m-1= 1 energy
denominator with e = & — & . There are 2 intermediate hole lines, labeled i and j. There
are 2 fermion loops, including the bubble, they contribute a factor (=1)2. From the one-
body vertex one gets an additional factor —1. This leads to the equation

D GjIVIKIXKIUR) . Y GjIVIkXKIUT)
g e i e

(2.19)

where the right graph is the exchange term associated with the left one, since it has one
fermion loop less, it has the opposite sign. Beginning with third order in the
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perturbation, also disconnected diagrams occur, for example

linked ‘ disconnected

It can be shown that only linked graphs contribute to the perturbation series (2.16). This
1s expressed by the Linked Cluster Theorem [15], due to Goldstone

_ m-1
Vol = @it f0)+ Xt Hy| Hy 220 1 [ s ea . 220

Besides the significant reduction of the number of terms one has to evaluate, each term
alone in eq. (2.20) exhibits the correct volume dependence, a feature not shared by the
conventional Schrodinger perturbation series . At fixed density p, each linked diagram is
proportional to the total number n of particles in the system and a graph with A
independent hole lines is proportional to np#~/[16]. Thus one has explicitly physical
behavior in all orders, and the perturbation series can be terminated at a particular order
without having to worry about spurious unphysical contributions which might eventually
cancel out in higher orders. In lowest order the Hartree-Fock potential can be recovered
from eq. (2.20). The groundstate energy is given in diagram notation by

WolHIWo) = BolHol9o)+ (Hrrl() + &I + Ol
J

where the diagrams contribute nothing if evaluated according to

3 2 (Vi) - Vi) = 26 2.21)
ij<n i<n
which one recognizes as the Hartree-Fock potential. If the auxiliary potential is defined in
this way, the mean field Hamiltonian (2.12) is correct to lowest order perturbation theory
and incorporates the Pauli principle. Actually the definition (2.21) does more, it cancels
all bubble insertions and the corresponding exchange graphs in all orders [2], this is
illustrated below for the T-matrix. Correlations beyond mere antisymmetrization are then
studied by examining the remaining diagrams, with the order of the correlation given by
the number of hole linés, which represents the number of nucleons involved.
As it stands (2.20) can not be used for the nucleonic interaction because the strong
short range repulsion renders all matrix elements V or V/e so large that the series can not
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converge in powers of V. However the perturbation series can be rearranged in partial
sums to account for the most important terms. Guidance is provided by the fact that
nuclear matter behaves like a low-density Fermi gas, where the average spacing of the
nucleons r, 1s much larger than the range a of the short-range repulsion. Each summation
over a hole line roughly scales like p= kg, 3=r,73 and it turns out that (pa3) << 1is a
sensible parameter to classify the terms, dependent on their number of independent (not
constrained by momentum conservation) hole lines [5]. The idea, due to Brueckner [1],
is now to sum up all terms which are equivalent by this argument in the hope that the
emerging series will converge. The prime candidates are those with repeated interactions
between fermion lines, the so called ladder diagrams. Consider the two-hole line graphs

with the ladder contributions

_ L 3 Vi imiVi

1 = (Vi) #2)

2 jm>n E-¢r-¢,

1 (i/V/lm)Xim|V|pa Xpq/V/ij)
1) = 7 )

etc. (2.23)
Im>n  (E-€1-&€m)(E-€p—¢4) ‘
pg>n

where E is the starting energy. Generally E depends on the entire diagram, see Appendix
C. By defining the Pauli operator Q and the propagator Q/e from eq. (2.18) together with
the operator (1-/¢o)(¢o/)H), in (2.16) one gets

D /imXim e_ X Jimim] —

s = (2.24)
Im>n Im>n l—gm

which agrees with (2.3) in projecting off the states below the Fermi level. In its
generalized form, eq. (2.22) defines the reaction matrix Tg via the series

- Qo 2,9 2,9 ,9
Tp=V+VoV+VEVEVVEVEVEV.L (2.25)

which is quite like the Born series in scattering theory. In the limit of an infinite system,
it is equivalent to the integral equation for the T-Matrix
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Te=v+vE e, (2.26)
ég

For a given starting energy, T is a well behaved hermitian operator. Remarkably, its
matrix elements are finite despite the behavior of the bare nucleon-nucleon interaction. If
one replaces the V-vertices by the corresponding T-vertices (wiggly lines) following the
scheme of (2.23) the groundstate energy can be written as

+ O’V"VVX + Q:@vvvy +...
(2.27)

No second order graphs appear here because they are already absorbed in the first order
diagrams for Tg. Some care needs to be exercised to avoid double counting of diagrams,
the ultimate check for correctness of the rearranged expansion being comparison with the
original one. The exposition here remains of course incomplete. For a detailed discussion
the reader is referred to [5]. Convergence problems persist also for the revised series,
and essentially it needs to be rearranged again with the number of independent hole lines
as a "parameter”. The most important diagrams are then the 2-hole line bubble and the
exchange bubble in (2.27). In practice one can consider only those, having again the
independent pair approximation, while the contributions of higher graphs can eventually
be simulated by an appropriate choice of the auxiliary potential [9]. If one chooses the
auxiliary potential as in the Hartree-Fock approximation one arrives at a new mean field
Hamiltonian (2.12) which now includes the most important correlation effects arising
from the short-range repulsion. Consider

T2 (GITelip — GTEl) = D AU, E=e+ g (2.28)
ij i

as definition for the mean field. The T-matrix is evaluated under the proviso that the
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starting energy should be evaluated on-shell, so E=g;+¢j, regardless of the rest of the
diagram. This is necessary to achieve uniqueness for the single-particle potential. As
before for the bare V, all bubble-insertions and associated exchange terms cancel in all

% ....... +

7

and apparently it those terms which modify the spectrum. The procedure of selectively
cancelling terms at a given order in general has loopholes, because it is not clear a priori
that the remaining fragments are less important. It is demonstrated in [5] that the on-shell
prescription as a bonus also treats equal terms consistently. A self-consistency problem,
see App. B, arises from the on-shell condition since U determines the &; and the
eigenstates /i) in (2.18). The choice whether to demand self-consistency for intermediate
particle as well as for hole states had a controversial history, but the established
prescription today is to satisfy it for all states [7]. There is some freedom in determining
the single-particle spectrum, due to the fact that the Hamiltonian (2.12) need not agree for
occupied and unoccupied states, see App. B. The prior choice, due to Bethe, was to
obtain the hole spectrum self-consistently and to set U= O for particle states. This appeals
to the argument that for high momentum states the kinetic energy should prevail over the
potential energy and moreover that the contributions of 3-body correlations are
suppressed by this choice. While according to [7] the latter remains true also if all states
are treated self-consistently, one obtains a better estimate of the binding energy. A
sketchy reason is that the former method implies a big gap at the Fermi surface which
suppresses low-momentum excitations which pertain to long-range correlations, see fig.
12 in ch. 6. If those increase the two-particle wave function in the attractive region of the
potential, one would gain additional binding energy as opposed to the case where they
are excluded.

= 0,

(2.29)

2.3 Nuclear Matter

The preceding sections provided the theoretical background for the treatment of
many-nucleon systems. This one establishes some conventions needed before one can
proceed with actual calculations. The major advantage of considering nuclear bulk
properties via nuclear matter is the conservation of momentum associated with the
translational invariance. Thus the single-particle states can be chosen as eigenstates /k;) of
the single-nucleon momentum operator. Also for the one-body vertex, momentum



15

conservation requires k;=k; . For the two-body vertex ki+kj=ki+k; , and, among many
others, diagrams like fig. 1 are excluded because they would simultaneously have a
particle and a hole in the same state. The fixed set of momentum basis states further
obliterates any self-consistency condition for the single-particle states. The wave function
at position r; for a nucleon with momentum k; is the plane wave

1 ikir;
(2732 ¢

(rilk;) = , (2.30)

normalized to the 3-dimensional &-function. Summations over discrete levels in a finite
system of volume V are replaced by integrations in the usual way
kfmy°°

n, oo
1 1
lim =2, F((ki - = ffk'F ki) . 2.31
lim 12 Fitkim) P J k) 231)
The two-body scattering problem is separable into the center-of-mass and the relative

motion of the two particles 1 and 2 with momenta k; and k. The underlying
transformation to the center-of-momentum cms -frame is defined by

relative momentum k = é(k 1-k2)

(2.32)
average momentum K = %(k] + k)
Corresponding in position space are the transformations
relative separation r = (rj-nr)
(2.33)
cms-position R = (rj+nrp)

noting that this deviates from the usual definition for K and R. A two-particle product
wave function expressed in the cms-quantities becomes

_ (ki+k2) (kj~kz), _ 1 iKR ikr
(Rr/Kk) = (rirz/ > 5 = P e e

, (2.34)

where the separation of the relative and cms-motion is manifest by the product. Neutrons
and protons are treated as an isospin doublet and are distinguished only by their isospin
projection. Conventional spins and isospins of the scattering particles are coupled and
yield the total spin S and total isospin I. The related eigenstates are already
antisymmetrized and incorporated into the two-particle states by direct multiplication
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/KkSMIM;) = |Kk) ® [SMs) ® JIM}) (2.35)

Unless otherwise specified the spatial part will not be antisymmetrized. Of course one
has triplets S, /=1 as well as singlets S, /=0.

In the notation throughout the rest of the thesis, the spin or isospin dependence will
be implied but not be written out if unambiguous, e.g. the integration in (2.8) also
implies the summation over the spin variables. The isospin quantum numbers will be
suppressed as they are determined once parity and spin are specified later on. Although
not inherently limited by the theory, the subsequent development will be restricted to
symmetric nuclear matter.

Unless stated otherwise, all energy-like quantities, e, V, Tg etc. are given in units

fm2, i.e. they are scaled with
2
1}:—4 = 41.47 MeV fm? (2.36)

where M is the nucleon mass. For example the energy of a free nucleon becomes 1/242 in
these units.
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3. Solution of the Bethe-Goldstone Equation

3.1 The Reference Spectrum Method

Apart from the question of how to chose the single-particle spectrum of the
intermediate states, conflicting computational demands arise from the Pauli operator and
the short-range repulsion of the interaction. The short-range correlations induced by the
interaction require many high momentum components to describe them adequately. In
position space those correlations are readily treated. For example in the case of an infinite
hard core potential the main correlation effect consists of the vanishing wave function
inside the core, which is equivalent to the boundary condition that the wave function, see
(3.14), vanishes at the core edge. By contrast, the Pauli operator Q is diagonal in the
relative momentum and is represented by a Heavyside function, see eq. (3.32). In
position space this implies on the other hand that Q is a long-ranged, non-local operator.
Thus neither the position nor the momentum space representation offer any particular
computational incentive if one solves the integral equation (2.4) directly [1]. Alternatively
the calculation can be attempted in two stages by obtaining an approximate solution in
position space and by then improving it in momentum space. This is done in the
reference spectrum method [5,10]. It is based on two observations. First, those
intermediate states which are most important in building up the short-range correlations
lie well above the Fermi momentum up to k = 3...5 fm~1 [5]. The single particle
spectrum in this region can be approximated sufficiently well by a modified free particle
spectrum of the form

1
m*

ER(k) = 5 k2 + 4, 3.1)

where the effective mass m* and the constant single-particle potential A reflect the
influence of the surrounding medium on the scattering particles. Typical values are m* =
0.65 and A= 0, see fig. 12 in chapter 6. Second, since those intermediate states are at
momenta above the Fermi momentum, they are not affected by the Pauli operator. For
intermediate states below the Fermi momentum the Pauli operator may be neglected as
well, because they contribute a much smaller fraction to the two-particle phase space than
those above the Fermi level and moreover the scattering into them is suppressed by the
large values of the excitation energies (> 50MeV) [2]. This provides the motivation for
setting Q equal to unity for all states. The reference T-matrix TR is then defined from
(2.27) by

TR =V+§vﬂ, (3.2)
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where the propagator is now given in terms of the reference spectrum ER as
R = E- L (K2+42)-24, (3.3)

with the cms choice (2.32). The starting energy E corresponds to a set of momenta below
the Fermi momentum. Since the energies of the intermediate states for hole momenta are
taken from the reference spectrum and since particle states enter eq. (3.3) always off-
shell, no singularities are introduced into (3.2) and the healing property of the correlated
pair wave function is preserved. The reference spectrum is thus concerned with the short-
range effects of the potential only and the quadratic form of (3.3) permits one to
transform the integral equation (3.2) into an ordinary differential equation in position
space, from which the correlated reference wave functions readily derive. Once TR has
been obtained the actual reaction matrix T follows formally as [10]

T = TR +TR[—1—_ —Q—]T. | 3.4)
eR e

The propagator difference accounts for the corrections to TR due to the initial neglect of

the Pauli principle and the shift of the single particle spectrum in the reference spectrum

method. With the Pauli operator present, eq. (3.4) can be treated appropriately in

momentum space and it is also the starting point for Legindgaard's method

3.2 Calculating the Reference Reaction Matrix

According to the previous section the intermediate aim is now to obtain a
momentum space representation of TR with the actual calculation carried out in position
space. Starting from the differential equation equivalent to (3.2) one arrives at correlated
reference wave functions yR(k,r) which yield TR as an integral in position space. With
the help of the reference Mgller operator X one can express TR as

TR = VR, 3.5)
Using €q.(3.3) this can be manipulated in eq. (3.2) and one has
eR(1-QR) = VR, 3.7)

The momentum operators in eX become differential operators in position space and (3.7)
constitutes a differential equation for the defect wave function {R(k,r) = d(k,r) — yR(k,r)
which measures the defect inflicted by the pair interaction upon the uncorrelated wave
function &k,r) . With the spin variables written out
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(V2- $EK)) CSMS(k") = -m" V(r,5) Vs (kr), (3.8)

where the healing parameter yessentially describes how rapidly the defect wave function
decays with increasing r so that the motion of the scattering particles becomes
independent again. Since the Pauli operator is absent in this approximation, one expects
that the healing parameter is quite incorrect [3], especially at low relative momenta. It is
defined from (3.1) and (3.2) by

¥ = K2+ m*(2A-E). (3.9)

Exploiting the isotropy of nuclear matter and given that the interaction V depends on the
total spin S and the relative angular momentum / of the interacting pair a partial wave
decomposition is introduced. Projecting eq.(3.8) onto the partial wave bases /KkJISM)
and /KrJISM ) yields

(KrJISMg/(V2 — ) (1 — QR)IkS'M;) = -m* (KrJISMVQRKS'M;). (3.10)

With regard to the spherical symmetry the quantization axis is chosen along the cms
momentum K. J denotes the total angular momentum in a state with orbital angular
momentum / if the pair has total spin S; M stands for the z-projection of J. More details
concerning the partial wave expansion are given in Appendix A. In particular, the basis
transformation between radial position and momentum representation of correlated states
follows

1y . uppelkr
2) 2 Musthr) 3.11)

(KrJISM/QRIKKI'T'S'M’) = 811 Sss° Sy (7—[ 2
Here, the uj)-g(kr) are explicitly independent of M, and /' is commonly called the
entrance channel. The scalar interaction potential V is taken to be local and has the

components
(KrJISMIVIKrJTSM") = &7y 85 Sy &(r—r") V(7). (3.12)

Eq. (3.4) implemented in the partial wave basis constitutes now a differential equation for
the radial correlated partial waves uz;-g(kr)

Fll+1 : *
[ﬁ_ ( :2 ) 72] (511'Jz(kr)— qul's(k’)) = -m IZ,VJ”'S(r) uns(kr),

(3.13)

where regularity at r=0 and the healing property impose the boundary conditions
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ungre(0) = 0, lim uppe = OyJykr). 3.14
7irs(0) Jm s e Ji(kr) (3.14)

The unperturbed components Jy(kr) are derived from spherical Bessel functions jj(kr)
according to Ji(kr) = krjj(kr). The partial wave projections of TX are obtained from the
projections of the correlated and uncorrelated wave functions and lead to the expansion

(KkSM ;/TR/Kk'SM;)

= [ @t @guy k) Vi) wRey gier)

LYY Yim(2)Cor » f (2)Ch - (KKIISMITRIKK'JI'SM),

(3.15)

IAYS
with the spherical harmonics Yn,(2¢) and the Clebsch-Gordan coefficients Cmp . The
convention for partial wave constituents of T takes on the form

(KKJISMTRIKK'JI'SM) = 17 [2 Jdr TAkr)V jypositgrs(kr) | (3.16)

If the potential contains also a hard core of radius r, the product Vy becomes
undetermined inside the core. Via the two potential form of the Lippmann-Schwinger
equation one can derive an additive separation of contributions from the core (subscript
"<") and the potential V> in the outer region

TR = Q<V>Q+TR<. (3.17)

The modified eq.(3.16) includes then the contributions of the hard core and the outer
region as two distinct terms

(KkJISM|TRIKK'JI'SM) =

kk 2 Jd’ (Ji(kr)~H(k, )YV gypmsiagpegs(kr)

+ 5,,'{ (P+k2 )d[dr Jikr)Jp(k'r) + Jy(kr, )g(Jl'(k'r)—Hlf(k’,er ))} ]

(3.18)

Here the functions H(k,yr) are the decaying spherical Hankel functions resulting from
the core scattering. They are normalized to Ji(kr;) and
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~ Jikre)
Hitkyr) = H7(p) =5, (3.19)
H(re)
with H”(x) = it'+1) (ix) hy(1)(ix). The form of the differential equations (3.13) remains
unaltered by introducing a hard core, Vjj's(r) of course being replaced by the finite
potentials in the outer region and the lower boundary becoming r,. Both, core volume
and core edge contributions - the second integral and the derivative term in (3.18) -

vanish if r. — 0 and eq.(3.16) is gained back, e.g. for the RSCP potentials.

‘s Method and Full Nuclear Matter Reaction M

Having TR as first approximation, eq. (3.4) furnishes the prescription how to
proceed towards the full reaction matrix. In principle one could discretize it and iterate the
solutions in position space [12]. This way the true wave functions, with the low
momentum components diminished compared to the reference wave function due to the
exclusion principle, emerge naturally during the calculation. But this transparence
contrasts the computational effort of the iteration procedure which must be performed for
each matrix element separately. The situation is remedied by benevolent convergence [7]
and in cases where one does not need to know off-diagonal elements (see ch. 4 ).
Another method is due to Legindgaard [11] and takes advantage of two observations. As
explained in section 3.1 the reference spectrum suitably approximates the true nuclear
matter spectrum for larger single particle momenta, k; > 3...5fm=1. If one chooses ER(k;)
to coincide with the true single particle spectrum E(k;) beyond some cutoff momentum
kmax > kfm the difference of the propagators in eq. (3.4) vanishes above this cutoff.

Formally, the two-particle states with k > ky,4y lie in the nullspace L of the
operator I/eR — Q/e . If one is just interested in solutions up to moderate momenta k <
kmax » €.g. in binding energy calculations, it is sufficient to consider eq. (3.4) only in the
complement of L, which includes then only states for which the propagator difference
does not vanish identically. An inspection [12] of the functional dependence on
magnitude of the relative momentum & revealed that matrix elements T(K,k) depend
smoothly on k£ and can be represented by low-order polynomials. The polynomials are
constructed from the requirement that the underlying polynomial basis must span the
described subspace of the Hilbert space, i.e. define a complete orthonormal basis for k
€ [0,kmax] . In the Kk-basis the model space can be taken as a sphere in the relative
momentum with radius kmgx > 2kfn, see fig. 2. The transformation between the entrance
channel basis (3.10) the polynomial basis /KnJISM) obeys the relation

(KkJISM/KnJISM) = Fy(k), (3.20)
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where the polynomials F,(k) form a complete set of orthogonal functions on the interval
[0, kmax]

o k=k')

2 Fp(k) Fu(k') = : (3.21)
n=1 k2
kmax
Ojkzdan(k) Fu(k) = S (3.22)
The polynomials Fp(k) are of order n-1 and are given by
-1
_(2ntINn N (21 (s D) (kY
Fulk) = (km;) =1y %s! n-1-5)1 (s+2)1 (kmax) (3.23)
S=

Partial wave components of T(Kk) in the polynomial representation are obtained with the
unitary transformation (3.20) as

kmax kmax

(KnJISMIT/Kn'JI'SM) = [k2dk [k2dk’ Fu(k)F (k) (KKTISMITIKK'TI'SM).
0 0

(3.24)
The inverse transformation , truncated at order n,,,, is given given by
Mmax
(chllSM/T/Kk'Jl’SM)nmax = Z Fu(k)F (k') (KnJISM|T/Kn'JI'SM ). (3.25)
n,n'=0

The convergence in np,,y is well established for both, 7 and TR [11]. In practice npy =
5 usually proved to be adequate. The polynomial representation (3.24) applied to eq.
(3.4) results now in a low-dimensional matrix equation

(KnJISM|T/Kn'JI'SM) =(KnJlSM/TR/Kn']l'SM)+Z(Kn]lM/TR/Kn]Jﬂ]M)
s
I

X (Kn1]1lISM/eLR —%—/an]zleM) (KnaJ212SMIT/Kn'JI'SM).  (3.28)

The apparent simplicity of (3.28) is blurred by the Pauli operator. It breaks rotational
invariance and couples states with different / so thatJ and M are no longer conserved.
The rotational symmetry is usually restored with immaterial loss in accuracy [11,18] by
considering only an angle averaged version of Q. At first sight however an expansion in
any discrete set of functions in k appears unsuitable for Q since it is diagonal in k and it
is not analytic as a function of k at the Fermi surface. Fortunately the expansions of T
and TR converge rapidly enough to overcome this difficulty. The angular momentum
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sums in eq. (3.28) are modest: For S=0 one has /=] while for S=1, the tensor interaction
allows for /=J£1. If one considers Jp,,y couplings induced by the Pauli operator, the
Bethe-Goldstone equation is realized by a matrix equation of dimension Np=nq/max
or, in the tensor coupled cases, Np = 2npmg/may. The polynomials (3.23) can be viewed
as best fits in the sense that they minimize the mean square deviation

kmax

2
o? = kadk ["maxT(k k) = T(k,k) |7, (3.29)

[

where "maxT(k k') is obtained from T(n,n’) via the inverse Legindgaard transformation
(3.24) with the cutoff n,n’ < nygy. Recalling that the reference spectrum method
provides by itself a good first approximation the difference T(k,k’)-TR(k,k’) should
exhibit a smoother dependence on k than either T(k,k’) or TR(k,k’) . The polynomial
expansion of this difference in deed converges faster. The preferred approach is then to
calculate only 7-T¥ in the polynomial basis by means of the rearranged eq. (3.4)

-1
T_TR = [1 - TR{eiR - ;Q }] TR _ TR (3.30)

and to add the difference back to TR [11] in momentum space representation.

3.4 The Pauli Exclusion Operator

In sec. 2.1 the Pauli operator Q was introduced into the two particle scattering
equation to prevent particles from scattering into already occupied intermediate states.
This section discusses some properties of Q in uniform matter. It starts with a description
of the geometric properties of Q in the cms system of the scattering pair. An explicit
expression for O in the partial wave basis is given and the analytical behavior of Q is
addressed with respect to the discrete angular and radial expansions in momentum space.
The angle averaged approximation concludes the discussion. ‘

The Pauli operator is diagonal in the single-particle momenta and thus in K and k
by the transformation (2.32); the cms representation of Q is given by

(Kk/ Q [K'k’) = 53(K-K'_) 83(k=k') (1- n(K+k)) (I- n(K—k))
= Q(Kk), (3.31)
with the occupation densities n(k)

nk) = O]~ k) (3.32)
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As a consequence of the isotropy of the medium Q(Kk) can be completely described by
the magnitude and the relative orientation of K and k, given by the angle O, . The z-
axis was chosen in sec. 3.2 along K to take advantage of the rotational symmetry. The
selection rule eq. (3.31) in terms of these variables can be rewritten as

Q(Kk)

1 for K2 + k- 2Kk lcosB,| > k2,

O(Kk) = 0 else (3.30)

For fixed average and Fermi momenta the two particle phase space separates in three
domains shown in fig. 2. If k lies outside a sphere with radius (K2+ kf%,, )1 2| the Pauli
principle is never violated and Q = 1, whereas for k inside a sphere with radius ko= K,
QO(Kk) always vanishes. In the intermediate region Q(Kk) depends also on Oy, with a
discontinuity at the characteristic cut-off angle 6K k) defined by

K? + k? - k&
cosOu(Kk) =——pp—1" . (3.31)

For the solution of the Bethe-Goldstone equation Q is needed in the partial wave
representation of eq. (3.28). The azimuthal symmetry of Q(Kk) suggests a mutipole
expansion, which can be readily used in the partial wave representation where the angular
functions are spherical harmonics and can be regarded as spherical tensor operators.
They couple partial waves with different /, parity being conserved for Q(Kk) being an
even function of cosOkx (3.30). Because of the coupling in / the total angular
momentum J is no longer conserved, whereas its z -projection M remains unaffected due
to the azimuthal symmetry and Q 's independence of the particles' spin. Consider the
matrix element in the ppw (polynomial and partial wave) representation

(KnJISM] Q |Kn'J'I'S'M")
kmax

= szdk FL(k)F (k) (KkJISM] Q(K k) |[KkJ'I'S'M’), (3.32)
0

where the F,(k)'s are the Legindgaard polynomials. The multipole expansion is defined
in terms of the Legendre polynomials P; (cosfkx ) as

Q(Kk) = 2 q,(Kk) P, (cosbk ),
L

or equivalently in terms of the associated spherical harmonics Yw( )

OKk) = X (szl jlz Y, Ok 0) (3.33)
L
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with the multipoles ¢, (K,k) given by
1

aukk) = '[dx O(Kk) P (x) , X = cosBgy. (3.34)
-1

After decoupling the total angular momentum J in (3.32) into / and spin S and projecting
the the partial waves /kIm) onto the basis states /k), see App. A., one arrives at

(KkJISM] Q |KkJ'I'S'M’)

= &y 2 CS 1t Coongg (KkImSM.f Q [Kki'm'SMs)
mm’M

1SJ sy A 75)7

= 5SS'ZCmMSM mMh £

mm'Ms

koY ol S2Y | o(S2)Y |, ().

(3.35)

Here and in the following 7= (2L+1 )I 2 The integral over solid angle clearly manifests
the tensor character of Q , it may be evaluated using the Wigner-Eckart theorem [15],

Jag, Y;km(Qk) VA Q) = (] Y, i)
A As
IL] L
= O (3.36)

The Clebsch-Gordan coupling coefficient reflects the selection rule m = m’, which
results in M = M’. Finally a matrix element of Q in the polynomial representation reads

(KnJISM/| Q [Kn'J'I'S'M’)
kmax

= SssOumr 2 CrntCot, Z ﬁ( nmcht ot k2dk Fy(k)F (k) qr(K k),
(3.37)

where the sum over m collapses because of the restriction m = M - M. Similar to the
poor convergence of this expansion in the order » of the polynomials F,(k) the lack of
analyticity of Q viewed as a function of Ok requires many multipoles to accurately
model the angular dependence, see fig. 3. This flaw is overcome by the fact that in eq.
(3.28) Q appears only integrated over intermediate states. There the partial wave
projections of T decline rapidly with increasing / as a consequence of the weakening
interaction V for those channels and thus the couplings to states with higher / are
irrelevant. This at least applies to the case of the Reid potentials, which account for J <
2 only, and furthermore already the angle averaged prescription where one limits oneself
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to the monopole term in (3.37) yields results accurate to within a few percent [18] even
for higher partial waves. In principle no difficulties arise from the couplings of different
[, but apart from breaking the spherical symmetry they enlarge the matrices in eq.(3.28)
and complicate the evaluation of the partial wave expansion for T, which is similar to eq.
(3.15) and enters the calculation of the single particle spectrum, see ch.4 . Thus it is also
convenient to resort to the angle averaging procedure which is pictured in fig. 4.
Formally, the coupling coefficients in (3.37) satisfy

’ ’ L=0 _1ym
oL oL 2 5”,(1) ‘

m-m0~000 (3.38)

After inserting eq. (3.38) in (3.37) the unitarity of the Clebsch -Gordan coefficients can
be used to give the angle averaged Pauli operator Q,, defined by

kmax

(KnJISM] Q [Kn'JTS'M'),, = 8178uSssSum |K2dk Fu(k)F (k) qo(K k), (3.39)
0

confirming the restored diagonality in all angular momentum quantum numbers. Qg is
thus a scalar operator, given by the Legindgaard transform of the monopole of Q(Kk)
obtained from eq. (3.33). In this connection the Bethe prescription for the full nuclear
matter spectrum from sec. 3.3. provides a useful means to check the numerical methods
used to calculate the propagator difference in (3.30). Then

I__ Ok _ 1-0(KkK)

eR(kk)  e(Kk) Ry (3.40)

where eR(Kk) is independent of Oy, and a matrix element of the averaged operator
reads

r 0 if(k-K)? > kp,

1
_ if (K*+ K?) < k&,
(KkJISM) 2 = Q/KldlSM)av = 9§ eR(kp !
e
I-cos8,.(Kk)
. - else.
ek (ki)

(3.41)
The cutoff angleB, (kk) is the same as in eq.(3.31).
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Figure2 Geometry of the Pauli Operator and the Legindgaard Subspace.
Inside the darkly shaded sphere the Pauli operator always vanishes for all
angles 6. If k lies inside the two single-particle Fermi spheres (lightly dotted),
separated by the true cms momentum 2K, it vanishes beyond some cutoff
angle. For the propagator correction the coarsely grained region up to the cutoff
of the Legindgaard subspace at kqy is important, if reference and true nuclear
matter spectrum differ.
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Figure 3 Angle Averaged Pauli Operator. The upper polar plot shows the
angle averaged operator Q for k = 1.88fm~1. Parameters are kf, = 1.4fm~! and
K = 0.5fm™1. The resulting cutoff angle is 6 = 149, causing the dis-continuity
from Q = 1 to Q = 0. The angle averaged operator is represented by the dashed
line. The lower plot shows the approximation by a 2nd order (long dashes) and
a 6th order (short dashes) multipole expansion.
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4. Brueckner-Hartree-Fock Theory

An application of Brueckner theory is to calculate the single-nucleon spectrum and related
quantities like the Fermi energy and the average binding energy. In Section 2.2 it was
argued that the Hartree-Fock choice (2.29) of the auxiliary potential accounts for the most
important contributions to the groundstate energy of nuclear matter. This is called the
Brueckner-Hartree-Fock approximation. With the starting energy calculated on-shell
many terms in the perturbation series are cancelled consistently. One can therefore expect
that (2.29) defines a mean field which reasonably approximates the correlation
corrections represented by the terms in the series (2.21). The aim is now to obtain the
spectrum in a self-consistent way. Contrary to finite nuclei, in the case of infinite nuclear
matter just the spectrum is subject to this requirement. Section 4.1 presents the methods
needed to perform calculations using the development for the reaction matrix from
chapter 3. It is not specific with respect to whether the self-consistency shall be applied to
hole states only or to particle states as well. Section 4.2 displays and discusses results of
numerical computations for various nuclear densities. Some questions concerning
numerics are deferred to section 5.3.

4.1 Single-Particle Spectrum - Method

Momentum conservation implies that the average potential U is diagonal in
momentum space. Further, the nucleons carry spin and isospin which is conserved by
the scalar interaction. Their z-projections {mg,m;}=7 are averaged for the purpose of
calculating the potential U. Overall there are g=4 spin-isospin states associated with each
value of the relative momentum £, so an average matrix element of U is given by

1 .
CalUK1) = ; (ama /Uiy, @.1)
1
where the summation (2.28) over the hole states enters according to

kimi/Ulkimg) = Jd 3k, 2 ((kl Nik2n2/T/kinikan2) - (kinikana/T/kzn2k; 711))
k2<skfm n2
4.2)
To actually evaluate (4.2) one has to obtain the averaged antisymmetrized matrix elements
from the partial wave constituents (3 .16) and the integration has to be expressed in terms
of the relative momentum k.
First to the transformation in (4.2) from k3 to the relative momentum &, 1gnoring
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spatial antisymmetrization. The matrix (k;koSMTT3/T/k1k2SMTT3) is transformed into
the Kk-basis by (2.32), where it remains diagonal in k. With the z-axis chosen along k;,
the integral (4.2) is conveniently expressed in spherical coordinates; a factor of 23
attached to the 3d-volume element in the Kk-basis comes from the Jacobian. Fig.(4)
illustrates the restrictions on & and the polar angle © arising from the condition that k;
always denotes occupied levels below the Fermi level. For the polar integration this leads
to a cut-off similar to the case of the Pauli operator.

Figure 4 Integration over occupied states. At a given single-particle
momentum k; the integration in k samples only the blank area. Only momenta
kz within the Fermi sphere (dotted) are allowed, and values k> falling into the
shaded area outside the Fermi sphere do not contribute. This puts a restriction on
the polar angle O, its maximum value is defined by the intersection of the Fermi
sphere and the sampling sphere of radius 2k (shaded). Note the rotational
symmetry around k; .

The magnitude of the average momentum at which the T-matrix is evaluated is derived
-from k; and k by means of (2.32). Rewritten in the cms- system, (4.2) reads

ks cos@s
23
/U1y = 2 27| ak dcos@nan (ko TiEn ) ~(Rkny 12/ TIK—k1121m,))
1112
k( _]

4.3)

where the limits of integration and the parameters are given by
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ke = max (o,ﬁ‘z—km) ks = KLtk
5 5 (4.4)
4k2 + k2 - 4k
cos6s = min (1 , Y3y f’") K = k2 + k5 - 2k;Kcos®.

Now to the average over the internal degrees of freedom. First, single-particle spin and
isospin are coupled to the total spin and isospin of the interacting pair. Second, the matrix
elements are expressed in terms of the expansion of eq. (3.15), whose constituents
(KkJISM/T/KkJI'M) are invariant under rotations and independent of M in the case of
the angle averaged Pauli operator. Thus they may be evaluated with k // e,. As a result
one obtains

2 (ks o/ TIK k1)~ (K, MalTIK—knzn1))
nn2

- 2 (2 7 4 2(21+1) (2 (2J+1) (KleSM/T/KleM)} (4.5)

Eq. (4.2) can then be written as
ks  cosOs

(kiJUky) = ——JdkaJdcos @Z(znu (%'(zuz )(KleSM/T/KleM)) '(4.6)

For definite parity, the summation over / naturally splits into partial sums with odd and
even parity, which can be further classified into single and coupled channels.
Respectively the sum over spin-isospin becomes

SZ(21+1 ) ( %‘(21+ i )(KIc]lSM/T/KleM))
I

= D (2U+1)(KKIISMITIKKIISM)s 1=0 + 3 D, (211 (KK ISMITIRKIM)s=0 =1

odd |l even |

+ O (20+1)(KKIISMITIKKIIM)s—] 1=0 + 3 %I(ZJH WKKIISMT/KKIIM)s 1= 1
(4]

evenl
4.7

The treatment in this section applies to potentials with and without a core, not however
if higher Pauli couplings break the spherical symmetry. Then the parts in (3.15) can not
be simplified in the manner leading to (4.7). Finally the single-particle spectrum is
obtained by adding the kinetic and potential energies
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ki) = Fki2 + Ulky) (4.8

An effective mass m* and the Fermi energy £fn are defined by

oU ~1

Y= (1+=) 7,
m (ag)

€ = glkpm). (4.9)

At a given Fermi momentum &gy, the density p follows from eq. (1.1) and with (4.8) and
(B.10) the average energy € of a nucleon in the Fermi sea is given by

kfm
- _ 1 _ g 4m |(,2 3.2
€ = 35X p —_(27r)30.'[k1dk1 Ulk;) + 3 kfm. (4.10)

where g is the degeneracy factor from above. The T-matrix in (4.7) must be calculated
on-shell with the starting energy E evaluated according to

E(krko) = Ski2+ Sha? + Ulky) + Utko), @.11)

where k2, given by (2.32), depends on the variables &, k and cos©. The starting energy
determines together with k and K the healing parameter ¥ in the reference spectrum
method. For the self-consistent calculation of the hole states Bethe's prescription was
used in the intermediate states above the Fermi level, so that U(k; >kfm) = 0. The
effective mass for those states was set to m* = 1. Since then both reference and the full
spectrum above kg, are parabolas in k, the condition that both coincide outside the
modelspace is naturally fulfilled if one chooses them to be the same. If one attempts the
particle states self-consistently, more rigorous requirements must be imposed on the
reference spectrum. Ideally, one has to determine m* and the offset A from the magnitude
and the slope of the true nuclear matter spectrum at the cut-off of the Legindgaard
subspace. This is hardly feasible from the outset, but from [18] it is known that m*
should be close to its free space value in this momentum region. The offset was
Judiciously set to a value which would presumably ensure positiveness of yin (3.9). The
idea was that the value of A could be checked once the self-consistent iterations have
converged. The procedure failed to produce a stable spectrum, most certainly because of
a fundamental inadequacy of the purely real treatment of the propagators. This is
discussed below.

To avoid the laborious evaluation for many different sets of parameters, two
observations are helpful. While increasing K enhances the defect wave function for small
relative momenta, it also enlarges the phase space region excluded by the Pauli operator,
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diminishing the contributions of low lying momenta. Hence both effects tend to
compensate, so that Tg(Kk) depends only weakly on K. In practice the polar integration
was done as a 2-point Gauss-Legendre integral. After each self-consistent iteration the
spectra were obtained by fitting an even forth order polynomial in k; to the calculated
points. The fitted curves were then used for (4.8) during the next iteration. This fit is
physically more reasonable than an unrestricted interpolation with odd powers of k;
present, since viewed as a power series in k, it incorporates explicitly inversion

symmetry.
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5. Numerical Solution of the Bethe-Goldstone Equation

The numerical work to solve the Bethe-Goldstone equation encompasses three major
tasks. In the first step the reference reaction matrix is calculated in terms of its partial
wave projections (3.16), this is realized by the code TREF. Secondly, the Legindgaard
representation of (3.30) must be realized by transforming the reference reaction matrix
and the propagators into the polynomial representation. In the last step, the matrix
inversion in (3.30) is carried out and the resulting solution is transformed back into
momentum space via (3.25). The code TNM executes this Legindgaard method. The
Sections 3.2 - 3.4 provide the corresponding analytical framework around these steps
and the related computer codes are essentially a straightforward implementation of the
theory. The central numerical methods are discussed in the subsequent sections. The
given descriptions represent the actual conventions used in the codes. A short critique of
the choice of the various algorithms concludes the discussion.

5.1 Reference Reaction Matrix

The matrix elements are calculated from the radial distorted waves (3.11) as the
position space integrals (3.16). Although it appears to have a rather auxiliary purpose,
the repeated solution of the reference wave equation (3.13) is actually the numerically
most demanding and also the most time-consuming part in the entire calculation. Hence,
it deserves the emphasis awarded by the somewhat detailed description to follow.

Solution of the Reference Wave Equation - Conventions

The radial reference wave functions ujy-g(kr) are the solutions to the second order
ordinary differential equations (3.13). In the case of the tensor interaction one has two
coupled equations

[1%+ V(r)]u(r) = w(r), r2re. (5.1)

where the wave functions u and the driving terms w are given in terms of the u;-g(kr)
and the Bessel functions Jj,;(kr) as

u ,
u(r) = ( I(r)) entrance channel  I'=J-1 :uj Suygep)-1)1, 2 SUjJ-1)J-1)1>

U'=J+1:up Supgen)g+1)l, 2 SUj-1)I+1)1
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w(r) = — (k2+ 72)(

ifr=I-1, wr) = — K+ ) if =y,
Jy.tkr) 0

(5.2)

The matrix V(r) contains the orbital angular momentum potential and the interaction
potential. Here VP is the direct and V7 the tensor coupled part of the particular Reid
interaction potential Vs , the eigenvalues of the LS and the S operators are absorbed
into Vjjs.

v _J(Jr_zl)_ v2 0 ) Vo, Vi 5
N = J+1)(J+2 - m :
0 (—%—) 72 Vo Vi

The expressions for single channels are the analogs in one dimension.

Reference Wave Equation — Numerical Method

The solutions u(r) to eq. (5.1) with (5.2) and (5.3) are subject to the boundary
conditions (3.14) and are obtained with a Newton iteration [21]. It treats the problem like
an initial value problem and improves linearly on solutions computed from trial initial
conditions at the lower boundary r. to meet the conditions at the upper boundary where
kr >>1. Its discussion is followed by an outline of the Numerov algorithm [19] which
was used to tackle the differential equation.

The present 2-point boundary value problem has the size n =1 in the single channel
cases and n=2 in the coupled cases and the ordinary second order equation (5.1)
requires n adjustable parameters, which are defined to be the undetermined initial
conditions vy at the core radius

Vi = Ug(r=ro+0r). (5.4)

The boundary value problem expressed in functions fi(u;,vg) of the j=1..n solutions Uj
obtained from the trial vy are, e.g. for I'=J-1

kr>1 : fluj,vg) = Ukr)
uz(kr) ),

Ji_1(kr)
( 0 ) . (5.5

The boundary conditions are satisfied by vy =7 taken to yield
kr>>1 : Suj,vg) = 0. ) (5.6)

Assuming that .the solutions u;(r) depend smoothly on the Vi, f(uj,vi) may be
approximated by its Taylor expansion in v around v,
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filu,vy) = 0 + (%;)/ 3 (vi-vj) + 0.((Vj-\"7j)2). (5.7)
]
To fulfill (5.6) one has to find improvements év; such that

(vi+ovi-v;) = 0. (5.8)

Substituting this into (5.7) and solving for év; yields

&vi = (df1)ij fitu,vm),  with (df)ij = (g%) (5.9)

/ Vj=T)j.
The improvements &v; were derived from the gradient matrix df calculated in subsequent
trials with slightly different v, whose starting values were estimated from the slopes of
the Bessel functions at the origin and which were held fixed for all values of the relative
momentum. For the linear equations (5.1) the gradient matrix is constant and a single
iteration should lead to the correct i, however a second iteration was performed if (5.6)
was not satisfied to within a specified margin. The matrix inversion was done
straightforwardly with Cramer's rule.

The Numerov algorithm used to integrate the eq. (5.1) exploits the fact that only
second order derivatives appear in them. The solutions u,4; =u(r=r,,;) are found
explicitly from u,,_; and u,, according to

h2 -l 5h2 h2
Upy] = [1 + I—Z-V,H.](r)] {2[1 - TZ—Vn]un— [1 + EV,,-J]u,,-I

2
+ 5 [w,,+1+ 10w, + w,,_,] } (5.10)

where £ is the stepsize between ry and ry, 4. The local truncation error € is given in
leading order by

hé
& = Ja7 wi-Viu)? (5.11)

so that the method is of 5th order. To initialize the algorithm the values Un,and uy 4 g
must be specified, up 47 being the free parameters of eq.( 5.4). In the coupled channel
cases the strongly singular behavior of the tensor potential at r=0 was ameliorated by
introducing an artificial small hard core of radius 0.06fm >r; =0.03fm. Its smallness
ensures compatibility with Reid's soft-core potentials, which were determined also with
an auxiliary core [13]. The matrix inversion involved for the coupled channel cases was
done troublefree again with Cramer's rule. Numerov's method uses a fixed stepsize h.
Whenever different stepsizes were employed the algorithm was initialized anew at the
breakpoints where h changed by a 6th order polynomial extrapolation [20].
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Matrix Elements

The integral (3.16) was evaluated by the trapezoidal rule on the same position space
mesh on which the reference wave function was calculated. It allows for variable
stepsizes and it safeguards against subtle weighting effects where the integrand changes
rapidly within a few steps. This flexibility stands in contrast to its slow quadratic
convergence, which dominates the rapid convergence of the wave functions with finer
meshes. While the calculation of the reaction matrix T7R(k,k’) is not symmetric with
respect to the bra- and ket-states, hermiticity implies that the real matrix TR(k,k’) be
symmetric. As a means to check the reliability of the computations the quantity

kmax kmax
[k2dk [k2ak’ [(KiJISMTRIKKII'SM) - (KK'TISMITRIKKIISM)T
Zhys =2 2

kmax kmax

[k2dk [k2ak’ [(KiIISMITRIKKIISM) + (KK'TI'SMITRIKKIISM)T
o o

(5.12)

was introduced as measure for the hermiticity. It has the desirable property to weigh
lower momenta with a small phasespace factor apt to the Legindgaard transforms and the
single-particle potential. The expression in the denominator of (5.12) is essentially the
symmetrized norm of the T-matrix and can be used to judge the overall accuracy.

Miscellanea and Critique

The Bessel and Hankel functions appearing as the inhomogeneous terms of the
differential equations and in the matrix elements are calculated from their analytical forms
in sin(x), cos(x) and e(~*) for / <3 and for higher values recursion schemes are invoked
[21].

At first, the single channel equations were attempted as standard initial value
problems where the constants of integration are found analytically, e.g. from the
matching condition at the upper boundary. For r— 0 the angular momentum barrier
dominates and the initialization can be done in closed form as uj(kr)=o(kr)!+! . However
the solutions were then linear combinations of the inhomogeneous and the regular
fundamental solutions which had to be subtracted off. This problem was absent when
Newton's method was used.

A discretization mesh in r with different step sizes, was chosen to account
adequately for the rapidly changing potential at small r, see fig. (5). The Numerov
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algorithm has a difficulty with this because it has to be initialized anew if the stepsize
changes. This was done somewhat arbitrarily but sufficiently successfully by a 6th order
polynomial extrapolation at the breakpoints. The matrix elements of usually7R deviated
less than 1% compared to the the case of a uniform mesh, dependent of the choice of the
mesh; the check (5.12) however turned out to be quite sensitive upon the number of cuts.
As expected it attains a minimum for uniform stepsizes. Still, a non uniform mesh may
be useful in a quick first calculation which can then be refined and it is clear that the
extrapolation is a rather crude approach. One could do better with interpolation or a
Runge-Kutta style reinitialization. It did not seem worthwhile to pursue this, given the
option to take a uniform stepsize. Runge-Kutta would of course avoid the problem at all
since it advances without explicit information from past points and the most appealing
conventional approach might be to combine a variable transformation like r — (o+ fr)-1
with Runge-Kutta, possibly with adaptive stepsize control. While the variable
transformation emphasizes short distances, it introduces first order derivatives and thus
precludes the use of Numerov's method. The major practical advantage of Numerov's
method is on the other hand that it needs only 1 evaluation of the right hand side in (5.1)
per step, compared to 4 in the 4th order Runge-Kutta scheme. Moreover there is no
unused overhead from the expensive evaluations of the potential and especially the Bessel
functions whose values need to be known in the intermediate steps of Runge-Kutta.
Although the matrix elements are obtained only with the trapezoidal rule a high order
method for the differential equations is appropriate due to the unscaled integration range
and the pronounced sensitivity of the solutions to the initial conditions.

5.2 Legindgaard's Method for the full Nuclear Matter Reaction Matrix
Polynomial Transforms of the Reaction Matrix

At the beginning of the numerical realization of Legindgaard's method one needs to
choose an integration algorithm for the Legindgaard transforms (3.24 ). A Gauss-
Legendre procedure seems attractive, especially as the integrand is a well behaved
smooth function of the relative momentum . If the task is to evaluate the Legindgaard
transforms TR(n,n’) up to order ny4y , a formula with a minimum of RNmax +2 supports
are needed. The transforms converge rapidly with n,,;, and economic meshes of less
than 16 X 16 points proved sufficient. Many more points are undesirable because then
very small values of k occur in the reference wave equation (3.13). There the outer
boundary condition is reliably enforced only if kr >> 1 and the maximal cut-off radius is
limited by the noise-induced growing exponential e?. This is mostly uncritical except in
self-consistent calculations where one might reach - > 20 so that the solution becomes
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contaminated even under Fortran double precision. Fortunately the phasespace factor k2
de-emphasizes critically small & and in practice this difficulty needed no further attention.
Gauss-Legendre integration was used to reduce the number of intermediate calculations
of TR(k,k’). The other suitable method is Simpson's rule, corrected for the excluded
value k=0. It is much preferred over the slowly converging trapezoidal rule in this case,
although it precludes non-uniform meshes. Optimum accuracy was attained roughly for
meshes with 50 x 50 points, dependent on the range of the model space. This was
verified by investigating the dependence on the mesh size of the discrepancy between
original and the inverted representations of TR,

Angle Averaged Propagator Correction

For the angle averaged propagator correction (3.40), just 1-dimensional integrals
need to be evaluated for both angular and radial momentum space integration. The angle
averaging was checked by means of the Bethe prescription (3.41). After splitting the
model space into up to three subintervals depending on the discontinuities caused by the
cut-offs in the Pauli operator, the radial integral was obtained in each subinterval by a 10-
point Gaussian formula. This ensured a precise representation, which is important since
the propagtor difference is the central quantity in Legindgaard's method.

Matrix Inversion - Miscellanea

The matrices involved are small, usually less than 20x20, see sec. 3.3, symmetric
and well behaved. The matrix inversion was based on LU-decomposition with
backsubstitution, according to the version given in [20]. There are actually four distinct
classes of partial wave projections, classified by their spin S and their parity I]
(equivalently the isopspin): (S,IT) = (0,-1), (0,1), (1,-1) and (1,1). Neither of them is
linked by the parity conserving spin-independent Pauli operator. All matrices
(KnJISM|T/knJI'SM) belonging to a particular class (S,]]) were gathered as blocks in
single matrix to prepare for the possibility of using a non-angle averaged propagator
difference, where channels with different J can be coupled by the Pauli operator. For the
present angle averaged procedure this has no further significance besides enlarging
somewhat the dimension of eq. (3.28).

5.3 Considerations for the Self-Consistent Calculation of the Spectrum

In the self-consistent calculation TREF and TNM appear as subroutines and, if the
integral (4.6) is evaluated with ngangular and ny radial supports, both are invoked
ng X ni times. The k-integral was done again via the Gauss-Legendre method with
ng 2 10 supports and ng=2. The spectrum was obtained either as a fit or local
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interpolation ng 235 points. So one has roughly 100 subroutine calls per iterated
spectrum and to achieve accuracy better than 0.01MeV/nucleon at least 5 iterations were
necessary In short, if proceeding without further approximations, it will pay in
calculation time to reduce the sizes of the meshes in the subroutines. The size of the
reference reaction matrix relates to the method in the numerical integration used to obtain
the Legindgaard transforms. In order to accelerate the repeated consuming execution of
TREF the Gauss-Legendre type integration of sec. 5.2 was employed for the
Legindgaard transforms on a 16 X 16 mesh. As an alternative one might try a Gauss-
Jacobi method [22], appealing to the Jacobi-form of the polynomials (3.23). It was not
examined whether this would permit an even sparser mesh. The full T-matrix in
momentum space was obtained directly from its polynomial representation rather than via
€q.(3.30), which would have been more accurate, especially for low values of k, but also
somewhat cumbersome in this context.
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6. Examples and Discussion

6.1 Nuclear Matter Reaction Matrix

The reaction matrix was calculated for each of the 12 Reid potentials up to J=3. The
highest angular momentum appears just in the coupling of the states 3P, and 3F, . No
higher partial waves were considered. After studying the convergence of single matrix
elements dependent on the stepsize in the solution of the wave equation the calculations
were done with an artificial core of 0.05 frm and a uniform mesh with 400 steps between
core and a cutoff radius 7,4, = 10fim. The relative accuracy of the matrix elements is then
better than 10-4. At this point no use was made of the hermiticity of TR. Output of a
sample calculation may be found in Appendix D. The values agree to within 1% with
previous calculations of [3,11], based on a different numerical methods. The calculations
were performed on a Sun 3/60 workstation with a MC68881 coprocessor and took about
0.25 sec. per matrix element. Fig. 5 illustrates the behavior of the potentials in the 3§ |
channel. Fig. 6 demonstrates the correlation effects induced by the 1S, potential. The
potential is shown in the top graph, note the shallow attractive region. The middle graph
shows the integrand in the matrix element eq. (3.16) and the evolvution of the radial
integral. The bottom graph illustrates how the unperturbed function J,(kr) is distorted
into the correlated function u,(kr), basically its maximum is shifted towards the attractive
region of the potential. {{kr) illustrates the rapidly healing defect function. The graph is
for kpm = 1.4fm=1 and k = 0.91fm~1 and represents a state in the Fermi sea. This shift is
somewhat reduced, if the Pauli principle is taken into account [3], which is not shown
here because the full wave function does not explicitly appear in the development in ch.
3. The effects of the Pauli operator are introduced via the operator equation (3.4) rather
than directly via the wave functions. The polynomial representation of the Bethe-
‘Goldstone equation was usually solved with 7,,4,=5 basis polynomials for 40x40 points
using Simpson's rule for the transformations. Higher order in the polynomials did not
lead to any gain in the accuracy, if one uses Gaussian integration one has to use at least
32x32 points to achieve good convergence for low-lying momenta. The sample output in
Appendix D was obtained with the indirect method eq. (3.30). Comparison of output
from direct and indirect methods with [12] showed agreement of better than 0.5% for
each method. As mentioned previously the indirect method should be preferred over the
direct method at small momenta, typically less than 0.5f~!. The actual calculations were
performed with the full nuclear matter spectrum as input. An example of how the
reference reaction matrix is corrected for the spectral and Pauli approximation is shown
figs. (7-9). The upper graphs always show the full reation matrix, while the lower ones
illustrate the difference between T and TR. For the 1S, channel the Pauli principle de-
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emphasizes the contributions at low momenta by about 10%. It is even more effective in
the tensor coupled channel 3S;. There the reduction reaches 30%. The execution of the
subroutine TNM required in this case about 0.05 sec. per matrix element.
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Figure 5 Coupled Channel Potentials. The potential Voo for the direct
channel 357 and the tensor potential V121 for the coupling of 3S7 and 3D are
shown.
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Figure 7 Integrand for Reference Reaction Matrix in 1S,. The lower graph and
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and shows how the matrix element evolves to its attractive value, ¢f. Appendix
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Figure 8 Nuclear Matter Reaction Matrix for 1S,. The upper graph shows the
full reaction matrix, the lower displays the corrections compared to the reference
spectrum calculation. The momentum coordinates are scaled to the subspace
cut-off, kyax = 2.8fm=1. The ordinate gives the value of the matrix elements in
fm3.The parameters are as in Appendix D.
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Figure 9 Nuclear Matter Reaction Matrix for 3S1. Similar to Fig. 8.

46



Figure 10 Nuclear Matter Reaction Matrix for 3§1— 3D1. Similar to Fig. 8.
This is the off diagonal matrix (KkJISM/T/Kk'JI'SM) which is not symmetric
just under exchange of & and k.
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Figure 11

Nuclear Matter Reaction Matrix for 3D . Similar to Fig. 8.
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6.2 1f-Consistent Calculation of the Hol ectrum

As an application of the developed subroutines, the self-consistent spectrum was
obtained for hole-states using Bethe's method. This was done with TR calculated using a
reduced mesh of 200 radial points by explicitly exploiting hermiticity, which cuts the
calculation time by roughly 40%. The required input size for the transformation was
reduced to a 16X16 matrix by using Gaussian quadrature. A reasonable compromise
between accuracy and execution time was achieved with a 12 point Gauss quadrature
over hole momenta. For the polynomial fit 12 supports were used. The spectra were
iterated until a relative accuracy in the coefficients of the polynomials of better than
0.01% was achieved. This required between 5 and 12 iterations dependent on the starting
spectrum. The starting spectra were parabolas, derived from [3] for values of k= 1.0,
1.4fm=1. Figure 12 shows the self-consistent hole spectrum and the single-particle
spectrum for kfy,= 1.4fm=1, along with the reference spectrum, which has no potential
energy contribution. Figure 13 displays the contributions to the potential for the various
partial waves, apparently the binding arises mainly from the S channels, as expected
from the binding of the deuteron. Self-consistent iterations were performed for several
Fermi momenta in search of the saturation point and the average total energy. Figure 14
shows the dependence on the Fermi momentum of the average energy ( 4.10). The curve
was fitted as a 4th order polynomial. The results are

Saturation Density kfm = 1.48 fm~1 = 0.22 fm3
‘L p

Average Energy € = -12.52 MeV/nucleon
(6.1)

These values give a somewhat lower estimate to the average energy than in [3], where
kfm = 1.44fm=1 at € = —11.1MeV/nucleon. Although there is a small contribution from
the fourth order term, the effective mass changes very little, its value being

Effective Mass m* > 0.68. (6.2)

This is larger than the estimate in [5] and the value m™ = 0.65 obtained in [7,18]. By
comparing with eq.(1.3,1.4) one sees that while including two-particle correlations
accounts for the most important effects, saturation and binding at reasonable density, but
that one has to resort to more sophisticated approximations to arrive at quantitatively
improved results.
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6.3 Ex;ensi‘on to Particle States.

All attempts to calculate a self-consistent spectrum including the particle states
yielded stable and reasonable solutions for the hole states but became quickly unstable for
the particle states and eventually the calculations broke down. The reason why self-
consistency cannot be achieved for particle states with the present method might be traced
to the properties of the propagators (3.40). For hole states the on-shell starting energy is
always less than 2&p,, but the propagators never become singular because the Pauli
operator excludes all intermediate states below the Fermi level, so that (E-H,) < 0 holds
for all k1 <kfy. On the other hand if E > 2¢&p,, as possible if a particle state enters, the
former condition is violated and ((E-H,)~1) becomes singular at E = & + &, for states
/lm) above the Fermi level since those intermediate states are not blocked by the Pauli
principle. This problem has been recognized before in a different approach to the nuclear
matter problem [7]. The Legindgaard method as developed in sec. 3.3 and implemented
in the computer codes is a real theory which assumes finite integrands (3.4); it can not
treat the singularities. To devise a method for handling them so that self-consistency can
be imposed on the particle states, one would have to investigate: (1) How to integrate
over the poles to obtain the Legindgaard transforms, presumably introducing a complex
analog to eq. (3.28) [7,18] and performing the transformations with a principal value
prescription. (2) Whether the polynomial expansion is still appropriate, especially for an
imaginary part of Tg. The singularity probably arises abruptly for states above a
characteristic k. This along with the diagonality of the propagator questions the
convergence for the polynomial representation as in the case of the Pauli operator, see
sec. 3.4. (3) How suitable the reference spectrum method is, since the singularity implies
a phase shift in the correlated wave and consequently the concept of the healing property
can not be maintained.
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Appendix A Partial Wave Basis

The spatial part of a two-particle product state is represented in the Kk—basis, while the
two particle spin space is characterized by the observables for total spin 2 and its z-
projection S;. In the partial wave projection of the physical states one changes this
complete set of commuting observables according to

{KkS?S;}] e (K kJ? L2 S21,),

where JZ denotes the total angular momentum, J; its z-projection and L? the orbital
angular momentum. In the first step only the spatial observables are considered. The
partial wave basis in relative momentum space is defined by

X [ Kk |Kkim) Kkim) = 1, {lmeZ /120, m <1},
Im 0

o(k-k')

(Kkim/Kk'I'm') = 2

it S
and the projection coefficients for the basis transformation
(Kk/Kkim) = Yin($2%) (A.1)

with the usual spherical harmonic Y},,(£2). The quantization is along K which is an
azimuthal symmetry axis. In position space the partial wave basis is completely
analogous; the basis transformation between & and the radial coordinate r in relative
position space is given by

/
(Krim/Kki'm') = &y Sy’ i (%j 2 Jilkr) (A.2)

where jj(kr) is the spherical Bessel function of order /. The normalization factor is chosen
to give normalization to the 3-dimensional &-function and the arbitrary phase factor
reproduces the expansion of a plane wave, which is just the independent particle
wavefunction for the relative motion. Thus

Y SR
("/k) = (271_)3/2 etkr
1 g . *
= o 4n sz k) Y, ()Y, () (A.3)
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= D (rlmjkim) Y;;(Qk )Y, (D)

and

8r -r")
= &6 -0)5(¢ —¢').

r2sin@ ’-¢
Secondly, Spin S and orbital angular momentum / are coupled to the total angular
momentum J, which together with its z-projection J; is conserved by the nucleon-
nucleon interaction. The basis states transform according to

(rir') = S(r-r’

c.5.C.0. (K k121,828, & (K kJ? 12,82 ],)
1SJ
/Kkim) ® |Smg) = Coumgu IKKTISM), (A.4)
mms

1SJ
where the Cmmp are the usual Clebsch-Gordan coupling coefficients with M=m+my .
(A.2) and (A.4) have been utilized in the partial wave expansion for 7R in ch. 2.
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Appendix B Hartree-Fock Approximation

In this appendix the Hartree-Fock approximation of the mean field is presented to
formally supplement the reasoning in ch. 2.1 concerning its failure. Further the T-matrix
might be understood as an effective interaction and one can again derive a mean field
which 1is analogous to, but different from the Hartree-Fock potential. While the former
also accounts for correlations in lowest order, the latter is the mean field for uncorrelated,
independent particles. The material here follows mainly [23].

A system of n interacting fermions is characterized by its Hamiltonian. Written in
the language of second quantization and assuming only 2-body interactions V it is given
by

n n
H = 2amjdta; + 1 %‘ Vi) dtdtaa, (B.1)
ij ij

where the matrix elements of the kinetic energy operator T and V are taken between
single-particle states /i) ,yet to be specified, and product states /ij). The fermion creation
and annihilation operators satisfy the usual anticommutation relations

{a‘}"a'}'} = {al.,aj} = 0, {ai,a';} = 6,], , (B2)

which take care of the Pauli principle. The Hartree-Fock approximation consists in the
form of the many-body state /y) which is chosen as an antisymmetrized product of the n
occupied single-particle states

n
W = ,7}'(1’,?/0). (B.3)
=
In configuration space the wave function is given as the Slater determinant
(r1.rnl¥) = (n!)2 Det ¢y(rj), (B.4)

The groundstate configuration is obtained by a variational principle requiring that its
energy be a minimum with respect to variations of the groundstate /)

S(WdHlyo) =0 < E,=(yoH /o). (B.5)

where the variation is over the set of trial single-particle states under the constraint that
their normalization remains unchanged. First order variations observe this condition and
may be written as

S/wp) = na“;aj/wo) j<n,i>n. (B.6)
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The variation (B.6) can then be viewed as a particle-hole excitation where a particle is
shifted from an occupied level i into an unoccupied level j. Carrying out the variation in
(B.5) asserts that

((/T/j) + UkIVIjk) — GkIVIK) Jajfaj = 0, (B.7)
k

for i > n, j < n . This condition is evidently also fulfilled by the self-consistent Hartree-
Fock Hamiltonian

n .

Hyp = 2 ((i/T/j) + DUGRIVIjk) — GkIVI) Jajfa,- , (B.8)
ij k

which is a true one-body operator; i, j are not restricted here. From condition (B.7) it

follows that Hyp does not connect occupied and unoccupied states, hence it may be

diagonalized in the subspace of the occupied states alone. Thus one has to solve the

eigenvalue problem
T+ 20 (KIVIk) - (kVIkI) = 8y (B.9)
k

whose eigenvalues are the single-particle energies &; corresponding to the single-particle
states /i). If one takes the n lowest eigenstates as the basis for the many-body groundstate
in (B.3) the groundstate expectation value of the full Hamiltonian (B.1) satisfies the
minimization condition (B.5) already by construction and the groundstate energy is given
by

n n
1 S
E, = 2 & - 5.2 (IUJ) (B.10)
1l 1
where the self-consistent mean field is defined as

Ul = Ak‘: GKIVjk) ~ (kIVIKj). (B.11)

It enters (B.9) as the single-particle potential in a self-consistent calculation: Starting with
a trial potential (i/U/i) one obtains the eigenstates which in turn yield a new potential
(B.11). New wave functions are calculated from the new potential, and the procedure is
iterated until there is acceptably little change in the wave functions and the potential in
two consecutive iterations. The groundstate energy obtained in this manner places an
upper bound on the true groundstate energy by Ritz' variational theorem. The quality of
the approximation is determined by the set of trial wave functions used and is intrinsically
limited by the ansatz that they be Slater determinants (B.4). They were not suitable in
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treating the bare nucleon-nucleon interaction and the development of the effective
nucleon-nucleon interaction in ch. 2 provided a means to overcome this difficulty.

A more general approach to many-body systems with two-body interactions
involves density matrices. There the mean field approximation in general replaces the
two-body density operator, the product of creation and annihilation operators associated
with interaction in (B.1), by a product of one-body density operators. In the case of the
Hartree-Fock ansatz (B.3) the mean field approximation is formally exact. To explore
this a little further one can consider the pair-correlation function C(r;,r;) defined in
terms of the diagonal elements of the two-body density matrix p(r;,r2)

p(ri,r2) = p(ry) p(r2) (I- C(ry,r2)). (B.12)

The density p(rj,rz) is the expectation value for finding a particle at r; if another is at
r . Spin variables are suppressed here. If there are no correlations C(r;,r2) vanishes
identically. The right hand side is then just the product of the the single-particle densities
and nothing prevents two particles from being at the same site, r; = r2. The Pauli
principle however prohibits identical particles to occupy the same state, i.e. site, and the
correlation function for the independent particle approximation in uniform matter

L ( jilkgmrs = r2/)V
C(ry,r2) =3 (3 kfm/"] 1) ) (B.13)

reduces p(r;,r2) on ascale where /r; —rz./ < kg, giving indeed p(r,ry) = 1/2. For
nuclear matter at equilibrium density 1/kf, = 0.75fm, and for low lying momenta the
contributions to the long range correlations is reduced.



61

Appendix C  Converting to the Reaction Matrix

By considering the conversion of a bubble insertion in the bare interaction V of a 3-rd
order graph to the corresponding reaction matrix Tk, this appendix supplements the
discussion of the ladder-approximation in Section 2.2. In the sequence of ladder graphs
below, the focus is on the bubble insertion. In (a) an excited fermion interacts with one in
the Fermi sea without however exciting it. From (b) on the hole-fermion is also excited
and the two fermions interact repeatedly in the particle states before the second excitation
is destroyed. Only the bubble conversion affects the diagram while the rest enters just via
the starting energy, leaving the vertices unaffected. The contribution of the passive part
will be called a. Momentum conservation is enforced.

 (ij/V]ij)
(@) +
1 yij/Vimn)mn/V]ij)
* Zg E-g,—¢,
(b) +
o 1 Z (ij/VImn)Xmn/V|pg Xpq/V/ij)
drinpq  (E—em—en)(E-£5£y)
© +
a (ij/TE/ij)
(d)

with the starting energy E = &,+¢&,~€—€ . This expression also demonstrates that in order
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to avoid ambiguity for the self-consistent single-particel potential (i/U/i), E must not
depend on either &,&, or &, but only on &. Then the diagrams above depend at most on
& and &;. Diagrams where i and j appear both in E are consequently evaluated on-shell.
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Appendix D Numerical Data - Samples

Numerical results of a sample calculation are reported on the following pages.The
parameters were

kpm = 1.3fm=1 y2 = 1.4fm2

K = 0.7fm-1 m* =10

Starting energy E =-162.3MeV

Subspace cutoff kmax = 2.8fm-1

Maximum Polynomial n=35

Nuclear Matter Spectrum e=(100 + 41.47 %kz WMeV

400 radial points in TREF, with 0.05fm <r < 10fm.
40 x 40 points for TNM (Legindgaard method).

The matrix elements in the various channels are assigned as

"JLS000" for J=0, /=0and S=0 in (KkJJSM/TR/Kk'JJSM)
"JLS10C" for J=1,/=0and S=1in (KkJ-1SM/TR/Kk'JJ+1SM)
etc.
as
"T: JLS000" for (KkJJSM/T/Kk'JJSM), analogous to above,
etc.
and as
"PNMO000"  for (KnJJSM/TR/Kn'JISM),
etc.

The last printout shows the polynomial representation of the propagator difference up to
n=10.
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.8692
.7364
1035
1241
.945%
L2623
.3028
-0326
.3799

1.470

0077
1935
6388
.3917
.5458
.1606
9792
4990
.4384
8120

NWwwwhNn e 2o

-2.
-2.

-1

U1 W N

-0.
-0.
-0.
-0.
-0.
-1.
-2.
-4.
~-5.
-6.

1.750

.2086
-0275
-7900
-4560
.9832
-3243
-4246
.2912
. 0157
.6848

1.750

5701
3223
.7622
.9333
.0994
.2623
.4916
.7058
.7958
L6791

1.750

0028
0708
2347
5186
9821
7284
8419
1613
3076
0426

2.030

.1778
.8811
-5493
.1525
.6641
- 0550
L2912
-3322
-1832
.9161

NWwwwNNe M oo

2.030

.3780
.4195
.5242
.7035
.9644
.3029
.7059
.1617
.6376
- 0695

U W W NN NN

2.030

. 0006
.0139
.0339
0.0386
~0.0154
-0.2024
~-0.6293
-1.3887
-2.3744
-3.2883

o O O

2.310

-1492
.7408
.3124
-8467
.3227
.7199
.0157
.1832
.1902
.0396

Wwwwhnhr -2 oo

2.310

.2748
L1713
.9488
. 6505
-3291
.0328
.7959
-6377
.5699
.5800

Lo S S B BV B 2 e N Y

2.310

.0029
-0726
L2226
.4188
.6168
-7596
-7689
. 5445
-0010
-7916

jellelleNeNeNeNeoNolNeoNe)

2.530

-1227
.6122
.0931
.5554
-9861
.3684
.6848
L9161
.0396
. 0285

W W NN RS2 OO

2.590

.0862
.8883
.4543
.8409
.1233
.3802
.6793
.0696
.5801
.2267

W T U1 oY N N 0 W0

2.590

.0048
.1158
.3531
L6780
.0376
.3757
.6342
-7419
.6127
.1718

PR BRSSP, o000
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JLs121

kf \ ki

NN R, OO0 0O

.070
.350
.630
-910
.190
.470
.750
.030
.310
.590

JLS220

kf \ ki

NNNERPL,HPOoOOo0O0o

.070
.350
.630
.910
-190
-470
.750
.030
.310
.590

JLsz21

kEf \ ki

DN = Oooo0

.070
.350
.630
.910
.190
.470
.750
.030
.310
.590

(direct)

0.070 0.350
0.0009 0.0158
0.0158 0.2859%
0.0222 0.4461
0.0144 0.3245
0.0058 0.1357
-0.0012 -0.0263
-0.0056 -0.1315
-0.0078 -0.1863
-0.0085 -0.2049
-0.0082 ~-0.1989

0.070 0.350
-0.0004 -0.0060
-0.0060 -0.1064
-0.0081 -0.1657
-0.0060 -0.1411
-0.0048 -0.1137
-0.0038 -0.0929
~0.0032 -0.0780
-0.0026 -0.0648
~0.0021 -0.0516
-0.0016 -0.0395

0.070 0.350
~0.0017 -0.0301
-0.0301 -0.5507
-0.0442 -0.9091
-0.0348 -0.8037
-0.0252 -0.59%68
-0.0166 -0.4060
-0.0109 -0.2677
-0.0070 -0.1731
-0.0044 -0.109%4
~-0.0028 -0.0698

cC o oo

-0.
-0.
-0.

-0

-0.
-0.
-0.

-0
-0
-0
-0

-0.
-0.

-0

-0.
-0.
-1.
-2.

-1

-1.
-0.
-0.
-0.

-0

0.630

-0222
.4461
.8631
.7830
.3665
.0634
3732
5460
6096
.5998

0.630

0081
1657
3413
L3792
.3340
.2839
.2406
2008
1618
.1238

0.630

0442
9091
8940
0895
-7088
2315
8345
5478
3525
.2231

0.910

(==l ool

-0.
-0.
-0.
-1.
-1.

.0144
-3245
.7830
.9053
-5125

1075
6407
9742
1159
1162

0.910

-0.
-0.
-0.
-0.
-0.
~0.
-0.
-0.
~0.
-0

0060
1411
3792
5550
5851
5327
4632
3913
3184

-2460

0.910

-0
-0.
-2.
-2.
-2
~2.
-1.
-1.
~0.
-0.

.0348

8037
0895
9272

.8603

2706
6250
1005
7220
4632

o O oo

-0.
-0.
-1.
-1.

-1

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0

-0.
-0.
-1.
-2.

-3

-3.
-2.
-1.
-1.
-0.

1.190

.0058
-1357
.3665
.5125
.3233
2302
8741
3554
5992
.6357

1.190

0048
1137
3340
5851
7480
7694
7036
6080
5019
-3930

1.19%0

0252
5968
7088
8603
.4155
1604
4756
7685
1580
7850

-0

-0.
-0.
-0.

-0

-0.
~1.

-1

-1.

-2

-0.
-0.
-0.

-0
-0

-0.
-0.
-0.
-0.

-0

-0.
-0.
-1.
-2.

-3

-3.

-3

-2.
-1.

-1

1.470

. 0012
0263
0634
1075
.2302
5633
0997
.6266
9585
- 0542

1.470

0038
0929
2839
.5327
.7694
9052
9044
8145
6879
L5479

1.470

0166
4060
2315
2706
.1604
4817
.1299
4351

.1767

7384 .

-0.

-0

-0.
-0.
-0.
-1.
~-1.
-1.
-2.

-2

-0.
-0.
-0.
-0.

-0

-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.

-1
-2

-3.

-3

-2.
-2.

-1

1.750

0056
L1315
3732
6407
8741
0997
4117
8128
1528
.3015

1.750

0032
0780
2406
4632
.703¢6
9044
9999
9667
8478
6916

1.750

0109
2677
8345
.6250
-4756
1299
.2949
9133
2578
.6103

-0.
-0.

-0

~-0.
-1.
-1.

-1
-2

-2.

-2

-0
-0
-0

-0.
-0.
-0.
-0.
-1.
-0.

-0

-0.

-0
-0

-1.
-1.
-2.
-2.
-2.
-2.
~2.

2.030

0078
1863
-5460
9742
3554
6266
.8128
. 0033
2201
.3628

2.030

. 0026
.0648
.2008
3913
6080
8145
9667
0159
9482
-8025

2.030

0070
L1731
.5478
1005
7685
4351
9133
9853
6137
0205

-0.
-0.
-0.
-1.

-1

-1.
-2.
-2.
-2.
-2.

-0.
-0.
~0.

-0
-0

-0.
-0.
-0.
-0.

-0

-0.
-0.
-0.
-0.

-1

-1.
-2.
~2.
-2.
-2.

2.310

0085
2049
6096
1159
.5992
9585
1528
2201
2529
2886

2.310

0021
0516
1618
.3184
-5019
6879
8478
9482
9534
.8558

2.310

0044
1094
3525
7220
-1980
7384
2578
6137
6355
2941

-0.
-0.
-0.
-1.
-1.
-2.

-2

-2.

-2

-2.

-0.
-0.
~0.
-0.

-0

-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.

-0

-1.
-1.
-2.
-2.
-2.

2.590

0082
1989
5998
1162
6357
0542
.3018
3628
.2886
1727

2.590

0016
0395
1238
2460
-3930
5479
6916
8025
8558
8247

2.590

0028
0698
2231
4632
.7850
1767
6103
0205
2941
2918

99



JLS211 (direct)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.5%0
0.070 -0.0139 -0.0726 -0.1283 -0.1620 -0.1721 -0.1653 -0.1475% -0.1240 -0.0985 -0.0738
0.350 -0.0726 -0.3617 -0.6173 -0.7791 ~-0.8336 -0.8052 -0.7219 -0.6092 -0.4858 -0.3651
0.630 -0.1283 -0.6173 -1.0187 -1.2846 -1.3930 -1.3627 -1.2355 -1.0523 -0.8462 -0.6407
0.910 -0.1620 ~0.7791 -1.2846 -1.6275 -1.7909 -1.7847 -1.6455 -1.4224 -1.1587 -0.8878
1.190 -0.1721 -0.8336 -1.3930 -1.7909 ~2.0039 -2.0383 -1.9204 -1.6930 -1.4039 -1.0934
1.470 -0.1653 -0.8052 -1.3627 -1.7847 -2.0383 -2.1188 ~2.0441 -1.8459 -1.5652 ~1.2447
1.750 -0.1475 -0.7219 -1.2355 -1.6455 -1.9204 -2.0441 -2.021¢ -1.8739 -1.6313 -1.3303
2.030 -0.1240 -0.6092 -1.0523 -1.4224 -1.6930 -1.8459 -1.8739 -1.7848 -1.5987 -1.3419
2.310 -0.0985 -0.4858 -0.8462 -1.1587 -1.4039 -1.5652 ~1.6313 -1.5987 -1.4750 -1.2772
2.590 -0.0738 -0.3651 -0.6407 -0.8878 -1.0934 -1.2447 -1.3303 -1.3419 -1.2772 -1.1424

JLS21C (tensor coupled)

kf \ ki 0.070 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590
0.070 0.0004 0.0013 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.350 0.0414 0.1293 0.0802 0.0317 0.0138 0.0052 0.0031 0.0011 0.0009 0.0003
0.630 0.1300 0.4606 0.3827 0.1893% 0.0812 0.0349 0.0165 0.0081 0.0042 0.0020
0.910 0.1753 0.7197 0.7991 0.5294 0.2582 0.1158 0.0529 0.0257 0.0126 0.0059
1.190 0.1817 0.8089 1.0849 0.9369 0.5779 0.2853 0.1324 0.0620 0.0295% 0.0130
1.470 0.1717 0.7929 1.1780 1.2202 0.9503 0.5692 0.2837 0.1328 0.0607 0.0259
1.750 0.1530 0.7268 1.1486 1.3238 1.2204 0.8996 0.5289 0.2625 0.1198 0.0499
2.030 0.1347 0.6468 1.0583 1.3025 1.3333 1.1499 0.8171 0.4709 0.2280 0.0967
2.310 0.1162 0.5647 0.9468 1.2132 1.3268 1.2666 1.0445 0.7202 0.4038 0.1854
2.590 0.1001 0.4884 0.8312 1.0949 1.2495 1.2740 1.1602 0.9242 0.6188 0.333¢

JLS231 (direct)

kf \ ki 0.670 0.350 0.630 0.910 1.190 1.470 1.750 2.030 2.310 2.590
0.070 0.0000 -0.0001 -0.0002 -0.0002 -0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000
0.350 -0.0001 -0.0073 -0.0191 -0.0184 -0.0134 -0.009¢4 -0.0059 -0.0037 -0.0017 -0.0004
0.630 -0.0002 -0.0191 -0.0613 -0.0786 -0.0670 -0.0491 -0.0329 -0.0202 -0.0100 -0.0019
0.910 -0.0002 -0.0184 -0.0786 -0.1393 -0.1507 -0.1239 -0.0883 -0.0554 -0.0277 -0.0053
1.190 -0.0001 -0.0134 -0.0670 -0.1507 ~0.2105 -0.2087 -0.1638 -0.1079 ~-0.0551 -0.0103
1.470 -0.0001 -0.009%4 -0.0491 -0.1239 ~-0.2087 ~0.2534 -0.2315 -0.1655 -0.0880 -0.0156
1.750 0.0000 -0.0059 -0.0329 -0.0883 -0.1638 -0.2315 -0.2504 -0.2036 -0.1152 -0.0180
2.030 0.0000 -0.0037 -0.0202 ~0.0554 -0.1079% -0.1655 -0.203¢6 -0.1908 -0.1179 -0.0098
2.310 0.0000 -0.0017 -0.0100 -0.0277 ~-0.0551 ~-0.0880 -0.1152 -0.1179 -0.0733 0.0225
2.590 0.0000 -0.0004 -0.0019 -0.0053 -0.0103 -0.0156 -0.0180 -0.0098 0.0225 0.0945

L9



kf

NN - o0 00

kf

NN B2 O oo O

kf

NN PR OO0 Oo

T (kE,

T:
\ ki

.070
.350
.630
.910
.190
.470
.750
.030
.310
.590

T:
\ ki

.070
.350
.630
.910
.190
.470
.750
.030
.310
.590

\ ki

.070
.350
.630
.910
.190
.470
.750
.030
.310
.590

ki)

JLS000

JLS011

- JLS110

-23.

-20

-16.
-12.
-8.
-4.
-1.

(ol e el eleNe e NoeNeNol

Effective Mass EFM
Healing Parameter GAMSQ :

0.070

3113
.7675
6277
3674
2973
5511
2402
.5423
L7491
.3858

0.070

.1267
.5583
.5761
.4187
.2445
. 0852
. 0440
.1453
.2158
.2593

0.070

. 0848
.2407
.1557
.1506
.2430
.3235
.3622
.3531
.3179
L2682

-20.
-18.

-15
-11

-7.
-4.
-1.

0
0
0
1

H R R R e e o0 0o

0.350

7675
9675
. 6227
.7405
8948
3099
1248
.5644
.7088
.3055

0.350

.5583
.1346
.3599
.7765
.0372
.3691
.1686
.5762
.8589
.0321

0.350

.2407
.8105
L7374
.7942
.1690
.5314
.7043
L6728
.5094
.2813

-16.
-15.
-13.
-10.
-7.
-3.
-0.

-0
-2
-3
-2
-1
-0

0.

1
1.
1

NN PR, P, OO

0.630

6277
6227
4251
3702
0214
7815
8530
. 6508
L6713
.1942

0.630

.5761
.3599
L0732
.6288
.6267
.5819
3124
.0034
4926
.7958

0.630

.1557
.7374
.2130
.6142
.1259
. 6349
.9024
.8757
.6237
.2542

1.0
1.4

-12.
-11.
~-10.
-8.
-5.
-2.
-0.
1.

-0.

-1

-2.
-2.
-1.
-0.

0.

N N 3

W W wwwwih ek oo

000
000

0.910

3674
7405
3701
2784
6869
9728
4261
8020
L6350
. 0432

0.910

4187
.7765
6288
6128
7946
6309
4880
.4018
L0671
.4916

0.910

.1506
.7942
-6142
.4301
.0823
.5856
.8785
.8697
.5898
-1374

Gridsize

Cuto

-8.
-7.

-7
-5
-3

>N

-0.

-1

~-1.

-1
-1

w N

L R N N =]

f£f

1.190

2972
8947
. 0213
.6869
.9297
.8990
.1529
.0244
.6101
.8606

1.1%0

2445
.0372
6267
.7946
.3603
.4039
.7355
.7631
.553¢4
.0773

1.190

.2430
L1690
.1259
.0823
.8689
.3682
.6140
.6129
.3508
.8850

PKMX :

-4

-4.
-3.

-2

-1.
-0.

>N

BB T U s W N O

1.470

.5510
3097
7814
L9727
8989
5834
-8814
-3270
L6131
.6657

1.470

. 0852
L3691
.5819
.6309
.4039
.2022
L1228
.1099
-9441
.5327

1.470

.3235
.5314
.6349
.5856
.3682
.8992
.1285
.1114
.8832
.4586

40
2.8000

1.750

-1.2400
-1.1246
-0.8528
-0.4259

0.1530
. 8815
.7553
L7206
. 6629
.4817

=W N e o

1.750

. 0440
.1686
.3124
. 4880
.7355
-1228
.7228
-4949
L2606
. 8586

wWwWwNH R OO0 00O

1.750

L3622
.7043
.9024
.8785
. 6140
.1285
-3949
.3999
.2020
-8425

BT e W O

2.030

.5426
.5647
.6510
.8023
.0246
.3272
L7207
.2144
.7786
.3328

ORI SN I N RSP TN

2.030

.1453
.5762
.0034
.4018
L7631
.1099
.4949
.9821
.5531
.0804

ENIWH SN NI N i e =

2.030

.3531
.6728
.8757
.8697
.6129
-1114
.3999
.4764
.3419
. 0492

MV uvuuae W= o

2.310

.7495
.7092
.6717
.6353
.6104
L6133
.6630
L7787
.9768
.2419

W W W W W W W W W

2.310

.2158
.8589
.4926
.0671
.5534
.9441
L2606
.5531
.8828
.2474

B W W = OO

2.310

.3179
.5094
.6237
.5898
.3506
.8832
.2020
-3419
.3087
L1077

VU s WO

2.590

.3863
.3060
.1946
- 0435
.8610
.6660
.4819
.3329
.2420
.2292

L T VAV B Y )

2.590

.2593
L0321
.7958
.4916
L0773
.5327
8586
.0804
.2474
.4187

A s W W W N O

2.590

.2682
.2813
.2542
-1374
. 8850
.4586
. 8425
. 0492
.1077
.0251

LU ;e s ww - o

89



T:

kf \ ki

NNNHE B OO0 0

.070
.350
.630
.910
.190
.470
.750
.030
.310
.590

T:

kf \ ki

MNP HE PP OO0 OO

.070
.350
.630
.910
-190
.470
.750
.030
.310
.590

kE \ ki

NN - OO0 00

.070
.350
.630
.910
.190
.470
.750
.030
.310
.590

: JLS10C

JLS111

0.070

(=i« jlaileNeNe e Ne NolNa)

JLS101

-0943
.3374
.3502
.3011
L2650
.2334
-2048
.1746
.1466
-1205

(direct)

0.070

-23.
-21.
-18.
-14.
-10.
-6.
-2.
1.
4.
6.

1299
7762
6600
8711
6316
2338
0321
6625
6400
7839

0.070

-4.
-10.
-13.
~15.

-15.
-15.
-14.
-13

.0636

6962
4605
9759
6027

.0067

7489
1208
2767

.2967

SO ORKFRBREFO

-21
-20

-17.
-14.
-10.
-5.
-1.
1.
4.
6.

0.350

-3374
-3993
.6721
.5601
.4078
.2606
.1116
.956¢6
.8065
.6684

0.350

-7762
.6934
9405
2512
1170
8664
8275
7212
5893
6676

(tensor coupled)

0.350

. 0592
L1919
.0601
.9330
.0654
.9009
.9358
.5064
.7999
.9074

0.630

.3502
-6721
-4144
.5503
.3983
.1782
.9339
.6786
.4251
.1896

R NN NN RO

0.630

-18.6600
-17.9405
-15.8647
-12.6786
-8.9196
-5.0393
-1.3489
1.9106
4.5686
6.5215

0.630

6.0704
-1.4773
~-4.5783
-8.2102

-11.0444
-12.6550
-13.2951
-13.2913
-12.8789
-12.1920

P NN W WD R o

-14.
-14.

-10.
-7.
~3.
-0.

4.

-0.
-2.
-4.
~7.
-9.
-10.
-11.
-11.

-11

0.910

.3011
.5601
.5503
.0724
-1265
.9252
.6360
.3146
.9882
.6766

0.910

8711
2512
.6785
2064
1077
7997
6182
L2214
5697
-3293

0.910

.0462
6275
1260
5459
3259
5718
9172
4845
4917
.1104

NN WWWWN RO

-0.
-0.

-2
-4

-6.

-8
-9
-9
-9

1.1%0

.2650
.4078
-3983
.1265
.4695
-4344
.1796
-8414
.4777
-1190

1.190

- 6315
-1169
.9196
.107¢6
.8096
.2408
-3166
.6420
.6006
.1035

1.190

.0172
2725
9434
-1740
. 0580
2361
.0534
.1851
.6768
.6736

NN WWW WD RO

-6.
~5.
-5.

-3

-2.
-0.

e W

-0.
-0.
-0.
-0.
-1.
-3.
-5.
-6.
~7.
-7.

1.470

L2334
.2606
.1782
.9252
.4344
-6295
.5218
.2337
.8762
.5025

1.470

2337
8663
0392
-799¢6
2408
4638
.3935
-1521
-6720
.8703

1.470

0069
1262
4252
9968
9704
4316
1403
6012
5307
9319

NWwwwwes B o

-2.
-1.
-1.
-0.

O T S

-0.
-0.
-0.
-0.
-0.
-1.
-2.
-4.
-5.
-5.

1.750

.2048
L1116
.9339
. 6360
L1796
.5218
-6120
.4610
.1643
. 8123

1.750

0320
8274
3488
6180
.3167
.3936
.5559
.724¢6
.7878
. 6554

1.750

0223
0589
1919
4495
8938
6299
7418
0672
2245
9713

2.030

.1746
.9566
.6786
-3146
.8415
.2337
-4610
.4862
.3180
.0318

W W wwwhNn oo

2.030

L6627
.7214
.9108
L2215
. 6421
.1522
L7247
.3359
.9435
.4759

U s W W NN

2.030

-0.0306
-0.0240
-0.0791
-0.1864
~0.3639
-0.6657
-1.1849
-2.0057
-3.0194
-3.9310

2.310

-1466
.8065
.4251
.9882
.4777
.8762
-1643
.3180
.3082
.1409

W W wwWwhNDNEHE P oo

2.310

.6403
.5896
.5689
.5699
-6008
.6722
.7879
.943¢6
.1346
.3391

[CLINT, BN SO N N IV

2.310

~0.0354
-0.0063
-0.0198
-0.0498
-0.0918
-0.1659
-0.3247
~-0.6549
-1.2415
-2.0181

1
(oo« NeNelNeNeNeo N e Nl

i

Wi W NNN R OO

[SARNCARNVARNCA NS o2 WNe AN e S« A Is Y

2.590

.1205
.6684
.1896
.6766
-1190
.5025
.8123
-0318
-1409
-1155

2.590

.7842
.6680
.5218
.3297
-1038
.8706
.6556
.4761
.3392
.2499

2.59%0

. 0411
.0068
. 0157
.0296
.0617
.1065
.1396
.1081
.0723
.4909

69



T:

kf \ ki

MNNNMNSB R, OO0 O

.070
.350
.630
.910
.190
-470
.750
.030
.310
.590

T:

kf \ ki

NNNNHPE MR OO0

.070
.350
.630
.910
-190
.470
.750
.030
.310
.5%0

kf \ ki

NN =R, oo o

.070
.350
.630
.910
.190
-470
.750
.030
.310
.590

JLS121

-0.
-0.
-0.
~0.
-0.
~0.

JLS220

~0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

JLS221

-0.
~-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

(direct)

0.070

-1179
0096
0715
0958
0881
0619
0284
.0028
. 0252
.0360

0.070

.0015
0064
0099
0085
0074
0063
0054
0045
0036
0028

0.070

.0790
0462
1135
1254
1155
0937
0650
0460
0283
0184

|
(=l e leleNoleNe NaolNe}

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
~0.
-0.
-0.
-0.
-0.
-0.
-0.

0.350

.0096
.3073
-5152
.4374
.2849
-1498
.0611
-0128
L0077
.0089

0.350

0064
1061
1650
1400
1124
0916
0768
0637
0507
0388

0.350

0462
5443
8897
7786
5711
3831
2494
1598
1006
0640

OO0 000 OoOH+HOO

-0.
-0.

-0

-0.
-0.
-0.
~-0.
-0.
-0.
-0.

-0.
~-0.
-1.
-1.
~1.

-1

-0.
-0.
-0.
-0.

0.630

-0715
.5152
. 0947
.1608
.8626
.5168
.2543
.0951
. 0185
.0005

0.630

0099
1650
.3386
3752
3293
2790
2359
1967
1584
1211

0.630

1135
8897
8209
9902
6042
L1361
7569
4912
3153
1990

CQOoOoOOoOHRFLE OO

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-1.
-2.
-2.

-2

-1.
-1.
-0.
-0.

0.910

.0958
.4374
.1608
.5466
.3836
.9379
.513¢0
.2216
.0667
.0195%

0.910

0085
1400
3752
5489
5777
5249
4557
3846
3129
2417

0.910

1254
7786
9902
7885
7102
.1301
5079
0133
6639
4256

QOO KEEFEFOOQCO

-0.
-0.
-0.
-0.
-0.

-0

-0.
-0.

-0

-0.

-0.
-0.
-1.

-2
-3
-3
-2
-1
-1

-0.

1.190

.0881
.2849
. 8626
.3836
.5390
.2596
.7961
.3%64
-1475
. 0496

1.190

0074
1124
3293
5777
7390
. 7596
6941
5995
.4949
3875

1.190

1155
5711
6042
L7102
.2489
.0006
.3395
.6653
.1283
7400

O DO RPEOOOO

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-1.
-2.
-3.

-3

-2.
-2.

-1

-1.

1.470

.0619
.1498
.5168
.9379
.2596
.2912
.0045
. 6008
L2778
.1119

1.470

0063
0916
2790
5249
7596
8946
8940
8051
6801
5418

1.470

0937
3831
1361
1301
0006
.3251
9939
3303
L6669
1307

OO0 OFHF OOCOOO

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.
~0.
-0.
-1.
-2.
~2.
-3.
-2.

-2

-1.

1.750

.0284
- 0611
-2543
.513¢0
.7961
-0045
.9985
.7581
.4433
L2225

1.750

0054
0768
2359
4557
6941
8940
9895
9573
8400
6856

1.750

0690
2494
7569
5079
3395
9939
1748
8195
.1933
5688

[el=jleNeNeNeNoeNoNole)

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-1.
~-0.
-0.

-0.
-0.
-0.
-1.
-1.
-2.
~2.
-2.
-2.
-1.

2.030

.0028
.0128
-0951
L2216
.3964
.6008
.7581
.7564
.5813
.3701

2.030

0045
0637
1967
3846
5995
8051
9573
0074
9411
7971

2.030

0460
1598
4912
0133
6653
3303
8195
9113
5625
9877

(=l e e e oo NoNoNeoNe)

-0.
~0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
~0.
-1.

-1

-2.
-2
-2.
-2.

2.310

.0252
.0077
.0185
.0667
.1475
L2778
-4433
.5813
. 6034
.5063

2.310

0036
0507
1584
3129
4949
6801
8400
9411
9476
8512

2.310

0283
1006
3153
6639
1283
.6669
1933
5625
6000
2713

2.5%0

(el e e lelNeNeNoNo e

.0360
- 0089
.0005
. 0195
.0496
.1119
.2225
.3701
.5063
.5682

2.590

-0.
-0.
-0.
-0.
-0.
~-0.
-0.
-0.
-0.
-0.

0028
0388
1211
2417
3875
5418
6856
7971
8512
8211

2.590

-0.
-0.
~-0.
-0
-0
-1.
-1.
-1.
-2.
-2.

0184
0640
1990

.4256
.7400

1307
5688
2877
2713
2773

0L



T:

kEf \ ki

NNNHE R PO O

-070
.350
-630
-910
.190
.470
.750
.030
-310
.590

T:

kf \ ki

NN R R oo

.070
.350
.630
.910
.190
-470
.750
.030
.310
-590

kE \ ki

NNNEBS OO0

.070
-350
.630
.910
.190
.470
.750
.030
.310
-590

JLs211

JLs21C

: JLS231

t

COO0OO0COO0O0O0O0C

(direct)

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.070

0070
0686
1264
1614
1721
1654
1472
1233
0975
0729

-0.
-0.
-0.
-0.
-0.
-0.

-0

-0.
-0.
-0.

0.350

0686
3366
5812
7392
7946
7696
.6909
5830
4643
3483

{tensor coupled)

el loNoNeNoeNeNeNoNe)

(direct)

0.070

.0017
. 0414
.1295
.1747
-1812
.1713
.1527
-1343
.1155
.0993

0.070

.0035
.0000
.0011
.0005
.0009
.0025
.0039
.0048
. 0051
.0050

[=ellelNeleNeNoleNe el

0.
-0.
~0.
-0.

-0
-0

-0.
-0.
-0.

0

0.350

.0005
.1289
.4575
-7119
.7961
.7758
.7070
-6260
.544¢
.4701

0.350

0000
0072
0190
0182
.0130
.0089
0053
0030
0010
.0003

0.630

-0.
-0.
-0.
-1.
-1.
-1.
~1.
-1.
-0.
-0.

1264
5812
9635
2212
3290
3029
1826
0073
8094
6120

0.630

CoOoOrHPRLrHMOoOOoOOOC

-0038
-0795
.3782
-7870
.0642
.1499
.1155
.0232
.9125
.7996

0.630

-0
-0.
-0.
-0.
-0.
-0
-0.
-0.
-0.

.0011

0190
0602
0764
0640

. 0455

0293
0167
0069

.0007

-0.
-0.
-1.
-1.
-1.
-1.
-1.
-1.
-1.

-0

HHERP S 200000

~-0.
-0.

-0

~-0.
-0.
-0.
-0.
~0.
-0.

0.910

1614
7392
2212
5527
7134
7106
5788
3650
1116
.8512

0.910

.0062
.0307
.1847
.5151
.9120
.1857
.2827
.2585
.1697
-0544

0.910

0005
0182
.0764
1345
1435
1149
0784
0455
0187
.0028

-0.
-0.

-1

-1.

-1

-1.
-1.

-1

-1.

-1

HRHEAR OO0 OO

0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0

1.190

1721
7946
-3290
7134
.9217
9582
8470
.6293
3514
. 0528

1.190

.0077
.0126
.0760
L2434
.5515%
L9134
.1759
.2850
L2787
.2043

1.190

0009
0130
0640
1435
1989
1936
1468
0905
.0388
.0045

-0.
-0.
-1.
~1.
-1.
-2.
-1.
-1.
-1.
-1.

H P B OoOO0oOoocOoO0oo

-0.
-0.

-0

-0.
~0.
-0.
-0.
-0.

1.470

1654
7696
3029
7106
9582
0393
9703
7812
5117
2030

1.470

.0082
.0040
.0302
.1017
.2597
.5329
.855¢4
-1015
.2179%
.2278

1.470

.0025
0089
0455
.1149
1936
2333
2084
1414
0649
.0055

-0

~0.

-1

-1.
-1.
-1.
-1.
-1.
-1.

-1

H OO oo oo oo

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

1.750

.1472
6509
.182¢
5788
8470
9703
9522
8127
5805
.2906

1.750

.0080
.001¢
. 0123
.0402
.1090
.2503
. 4879
-7719
.9985
.1163

1.750

.0039
0053
0293
0784
1468
2084
2232
1747
0871
.0080

-0.

-0

-1.
~-1.
-1.
-1.
~1.
-1.
-1.

-1

COoOO0O0 OO0 00

-0
-0

-0.
-0.
-0.
~0.
-0.
-0.

2.030

1233
.5830
0073
3650
6293
7812
8127
7306
5536
.3067

2.030

.0071
.0001
.0045
.0149
.0418
-1039
.2267
-4312
.6795
.8853

2.030

.0048
.0030
.0167
0455
0905
1414
1747
1599
0872
-01%0

-0.
-0.
-0.
~1.
-1.
-1.
-1.
-1.
-1.
-1.

(el e e e Ne NoNeNeNel

-0.
~0.
-0.
-0.
-0.
-0.
-0.

-0

2.310

0975
4643
8094
1116
3514
5117
5805
5536
4374
2478

2.310

. 0059
.0000
.0014
.0037
.0130
.0370
.0904
L1951
.3701
.5863

2.310

.0051
0010
0069
0187
0388
0649
0871
0872
. 0424
.0518

-0

-0.
-0.
-0.
-1.
-1.
-1.
-1.
-1.
-1.

-0.
-0.
-0.

[=eielNeNel

[=l=lleleNeNeNeNoNelNel

2.590

.0729
3483
6120
8512
0525
2030
2906
3067
2478
1193

2.590

0046
0004
0002
.0009
.0003
.007¢
L0271
L0712
L1591
.3082

2.590

.0050

.0003

.0007
.0028
.0045
. 0055
.0080
.0190
.0518
-1225

IL



POLYNOMIAL REPRESENTATION

PFM : 1.4000

ESTART : -162.3000

ETAR : -100.0000
mf || mi 1

1 1.28868

-2 0.26628

3 0.01802

4 -0.01213

5 -0.00166

6 0.00027

7 0.00079

8 0.00159

9 0.00338

10 0.00612

0.
-0.
0.
0.
~0.
-0.
0.
-0.
-0.
~-0.

POLYNOMIAL REPRESENTATION

mf || mi 1

1.17949
0.30139
-0.01671
-0.01061
-0.00148
.00002
.00053
.00151
.00304
.00572

QW W dN U W N
(=)

ory
O O O o

0.
-0.
-0.

0.
-0.
-0.

0.

0.00015

0.

0.00057

POLYNCMIAL REPRESENTATION

mf || mi 1

.61836
.31584
.00873
.02032
.00020
.00073
.00087
.00185
.00398
.00726

O WO W N
OO 000000 O

fony

0.
-0.
.10083
. 05698
~0.
-0.
.00029
-0.
-0.
-0.

OF

PKMX
GMASQ
EFM

26633
60538
05889
04217
00572
00161
00001
00065
00064
00208

OF

30139
13148
02542
04084
00060
00325
00013

00029

OF

31589
85815

01091
00154

00099
00098
00309

PNMOOO

2.
.4000
.0000

PNMO11

-0.
-0.
-0.
~-0.

0.

0.
-0.
-0.
-0.
-0.

PNM101

-0

8000

.01803
.05889
-0.
-0.
.00719
-0.
-0.
.00004
-0.
.00015

04775
00107

00044
00051

00002

01671
02542
03820
00065
01210
00000
00151
00008
00018
00038

.00872
.10083
-0.
-0.
.00605
-0.
-0.
.00009
.00000
.00027

04566
00513

00024
00031

-0

-0

-0.
.06698
.00513

-0

-0.
.00092
.00108
-0.
-0.
.00005
.00017

.01213
-04217
-0.
-0.
.00063
.00220
.00017
-0.
.00005
0.

00107
01078

00019

00012

.01061
.04084
.00065
.01900
.00009
.00494
.00002
.00072
.00003
.00007

02032

00768

00011
00002

-0.
-0.
.00719
.00063
.00349
.00011
.00099
.00007
.00013
.00001

00166
00572

.00148
.00060
.01210
.00009
.00711
.00003
.00213
.00001
.00036
.00002

.00020
.01091
.00605
.00092
.00232
.00014
.00062
.00008
.00008
.00003

o« e Ne e NeolNeoNeNe)

.00027
.00161
.00044
.00220
.00011
.00140
.00002
.00048
.00003
.00008

.00002
.00325
-00000
. 00494
.00003
.00302
.00002
.00100
.00000
.00019

.00073
.00154
.00024
.00108
.00014
.00092
.00001
.00036
.00003
.00007

= ellelNelNeNeNeNeNe o)

.00079
.00001
.00051
.00017
.00099
.00002
.00066
.00001
.00025
.00001

.00053
.00013
.00151
.00002
-00213
-00002
.00136
.00000
.00049
.00000

.00087
.00029
.00031
.00011
.00062
.00001
.00050
.00001
.00020
.00001

0.
-0.
.00004
-0.
-0.
.00048
.gooo1l
-0.

0.
.00013

[=lseNeNoeNeNsNeNeNe)

00159
00065

00019
00007

00033
00001

.00151
.00015
.00008
.00072
.00001
.00100
.00000
.00064
.00000
.00025

.00185
.00099
.00009
.00002
.00008
.00036
.00001
.00028
.00001
.00012

-0

.00339
-0.
. 00002
.00005
-0.
-0.
. 00025
.00001
~-0.
.00001

00064

00013
00003

00016

.00304
. 00029
.00018
.00003
.00036
.00000
.00049
.00000
0.00031
.00001

.00398
.00098
.00000
.00005
.oooo8
.00003
.00020
.00001
. 00015
.00001

-0

10

.00612
-0.
.00015

0.
-0.
.00008
-0.

0.

0.
-0.

00208

00012
00001

00001
00013
00001
00008

10

.00572
.00057
.00038
.00007
.00002
.00019
.00000
.00025
.00001
.00014

10

.00726
-0.
.00027

0.
-0.
-0.
-0.
.00012
.00001
-0.

00309

00017
00003
00007
00001

00007

L



POLYNOMIAL
mf || mi
1
2
3
4
5
6
7
8
9
10
POLYNOMIAL
mf || mi
1
2
3
4
5
6
7
8
9
10
POLYNOMIAL
mf || mi
1
2
3
4
5
6
7
8
9
10

REPRESENTATION OF

0.80079
0.32584
0.03572
-0.01326
-0.00444
-0.00067
0.00050
0.00133
0.00265
0.00490

-1.57774
-0.28184

0.16806

0.04721
-0.01256
-0.00302
~-0.00063
-0.00134
-0.00273
-0.00539

REPRESENTATION OF

.63923
.10696
.14032
.00485
.00444
.00048
.00043
.00141
.00278
.00534

OO0 OO0 OCO0O0H

2

0.10696
0.05952
0.01873
0.00052
~-0.00289
-0.00085
0.00036
0.00036
0.00047
0.00087

REPRESENTATION OF

.02989
.05178
.09635
. 00254
.00350
.00018
.00033
.00079
.00164
.00321

OO CO OO0 0O O

2

0.05178
0.10152
0.00953
-0.01847
-0.00035
0.00131
0.00012
0.00019
0.00034
0.00065

PNM10C

o}

-0

PNM110

-0

0

PNM111

-0.
.00953

0.
-0.
-0.

0.

0.
-0.
-0.
-0.

0

.22674
-0.

13856

.08812
0.
0.

-0.

-0.

-0.

-0.

-0.

03196
01878
00389
00182
00006
00008
00014

-14032
.01873
.01248
.00498
-00241
0.
.00085
-0.
.00001
-0.

00042

00002

00031

09635

02740
00039
00550
0000S
00054
00002
00004
00013

0

-0
-0

.10724

0.
-0.
-0.

05954
04004
03326

.01068
.00874
-0.
-0.
.00017
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