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A cusp catastrophe with slow feedback is used to

model the interrelationship between the formation of

expectations and price determination. A catastrophe model

allows the use of relatively unrestrictive assumptions

concerning the formation of expectations and provides a

picture of how unstable price behavior can exist within a

structurally stable pricing system.

Some of the concepts underlying catastrophe theory

are presented in the familiar context of a competitive

market. This is followed by a demonstration of how

speculative changes in the demand for inventory may

disrupt the pricing structure of a competitive market. A

cusp catastrophe model of a competitive market for a

stored commodity is developed.

Simulation experiments are conducted to demonstrate

how alternative forms of price behavior can be represented

within the model. Prices generated by the model are

compared to actual patterns of price adjustment observed

for wheat. An empirical investigation of the pricing

structure of the wheat market is then conducted. It is

concluded that the relationship between price expectations

and the demand for inventory is, at times, a source of

price instability for stored commodities. Speculative or

transitory changes in the demand for inventory tend to



exacerbate existing variability in agricultural prices.

This appears to be an important consideration in analysing

production and marketing alternatives and in evaluating

public policy. A cusp catastrophe with slow feedback

provides a good conceptual framework for taking the

interdependence of expectations and prices into account.
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EXPECTATIONS, RESERVATION DEMAND AND THE
STABILITY OF AGRICULTURAL MARKETS

CHAPTER I

INTRODUCTION

Expectations and Reservation Demand in Aqricultural

Markets

Inventories are a major component of the agricultural

production and marketing system. Most agricultural crops

are produced seasonally and must be stored to distribute

supplies for consumption throughout the year. Grains and

other nonperishable crops held in raw inventories, are

commonly referred to as storable commodities. Perishable

crops, while not generally referred to as stored

commodities, are held in inventories in a variety of

processed forms. In livestock industries, animal

inventories are a source of current supplies for

consumption and future production capacity. Thus, the

demand for inventories is an important part of the total

demand for agricultural commodities.

Inventories are held at every level of the

agricultural production and marketing system.

Consequently, inventory demand may reflect a diverse set

of economic conditions. Inventory demand may be broadly

classified into two categories; facilitative demand and



2

reservation demand. Inventories are held to accomplish or

facilitate production and distribution. Facilitative

inventory demand is derived from some productive or

marketing efficiency gained by holding stocks. This

efficiency must be weighed against the costs and risks

associated with maintaining inventories. Reservation

demand may be defined as a demand to withhold supplies,

currently available for use or consumption, in

anticipation of higher prices in the future. Reservation

demand may be viewed as an investment in inventories for

capital gains. Facilitative demand and reservation demand

are not mutually exclusive. The capital value of any

stocks may be effected by expectations for future price

changes. Inventory demand, in general, may be altered in

response to expectations for capital gains or losses.

Hence, the term reservation demand may be applied to the

relationship between price expectations and inventory

demand. Changes in inventory demand, which result from a

shift in the distribution of expectations held by

individuals, may be referred to as a change in the level

of reservation demand.

Inventories link price determination to the formation

of expectations within a given market. This link is not

limited to the effect of changing expectations on prices
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through reservation demand. Current prices and price

trends may influence expectation. The interrelationship

between prices and expectations creates a potential for a

very complex pricing structure. There are three factors

which point to the significance of this interrelationship

in agricultural markets. First, as noted earlier,

inventory demand may be a large component of total market

demand at a given point in time. Second, market supplies

are highly price inelastic. A small change in the level

of demand may result in a relatively large change in

price. Third, agricultural prices are characteristically

unstable. This may be reflected in price expectations

which move with changes in price. In other words,

unstable prices may give rise to unstable expectations

which in turn, adds to the variability in prices.

Expectations and Market Prices

Price expectations for a stored commodity may be

temporarily self-fulfilling. Expectations for increasing

prices, leading to increased reservation demand, places

upward pressure on prices. Expectations for declining

prices, leading to a reduction in reservation demand,

places downward pressure on prices. Inconsistencies

between past expectations and current market conditions



may bring about a readjustment of prices. However, as

long as inventories are retained, expectations may

continue to influence current prices, as price

expectations are revised in response to new information.

A good examples of this type of market behavior is the

response in prices in information on an upcoming harvest.

A projection of a poor harvest may generate expectations

of higher prices in the coming year. An increase in

reservation demand may result in a price advance prior to

harvest. Actual market conditions at harvest may force a

readjustment of prices. At the same time, information on

harvest production and prices may bring about a revision

in expectations, changes in inventory demand and further

adjustment of prices. It is the revision of expectations

with current market information that present the greatest

difficulty in attempting to model this type of market

behavior.

How individuals incorporate market information into

the formulation of expectations lies more In the domain of

psychology than In economics. Whether an Individual

discounts current information, projects the present into

the future or employs economic logic to information on

supply and demand, may depend on a rationality divorced

from economic constraints. Expectations may simply be a



5

feeling about the direction prices will take in the

future, not an explicit prediction of prices at some

future date. Clearly, some assumptions must be made to

reduce the formulation of expectations to a level

appropriate for economic study. A common approach is to

make use of hypothetical expectations formulas. The most

frequently used models are adaptive and rational

expectations formulas.1 With an adaptive formula,

expectations are based on a lagged distribution of past

prices. With a rational expectations formula,

expectations are based on economic analysis of projected

supply and demand. The problem with defining how

expectations are formed is that the behavioral assumptions

tend to exclude more implications than they can elicit.

Another approach, one taken in this paper, is to attempt

to classify expectations with respect to their impact on

market prices and stability.2 In other words, we may

consider how alternative forms of expectations may affect

pricing structure within a market.

Expectations and Market Stability

For a given set of expectations, held by market

participants, an inventory demand curve is downward

sloping, as an increase in price increases the cost of



acquiring, (or the opportunity cost of holding)

inventories. If expectations for a price change are

independent of current market prices, then the response in

the quantity of inventory demanded to a change in price

may be viewed as a movement along an inventory demand

schedule. If expectations vary with current market

prices, a change in price results in a shift in the

expected capital value of inventories. This shift in

demand may offset or augment the change in the quantity of

inventory demanded attributed to costs. A movement along

an inventory demand schedule is accompanied by a shift in

the demand schedule. The quantities demanded under

changing prices trace out a new effective demand schedule

(Figure 1.1). The impact of expectations on effective

demand provides a useful means of classifying

expectations.

In considering the effect of current prices and price

trends on expectations for future price changes, there are

three possibilities. First, expectations are uneffected

by price movements and the demand for inventory is

unchanged. Second, expectations are negatively related to

price changes and effective inventory demand becomes more

inelastic. Third, expectations move with price changes.

In the third case, a movement along a demand schedule is



d
0 -

..- d
3

d1

Effective Demand

Quantity

Figure 1.1. An example of short-run and effective
inventory demand schedules under price dependent
expectations.
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offset by a shift in demand. If the shift in expectations

partially offsets the change in the cost of holding

inventories, then, effective demand is downward sloping

and more elastic. If expectations exactly offset costs1

an unlikely situation, effective demand is perfectly

elastic. If a shift in expectations more than compensates

for a change in cost, effective demand is upward sloping.

Here, an upward price trend may attract increasing levels

of demand, tending to sustain the trend. Falling prices

may lead to a reduction in demand, extending the decline

in prices. An upward sloping reservation demand

relationship is referred to here as speculative demand.

Initially, it may appear that speculative demand is

simply an unlikely analytical possibility. However, there

is evidence to suggest that speculative inventory

investment and disinvestment is relatively common.

Livestock inventories are often built up on an upswing in

prices and liquidated as prices decline. Within a crop

year we can often observe periods in which prices are

falling and utilization is increasing. Given that

supplies are limited to existing stocks which are

declining, any downward pressure on prices can be

attributed to a reduction in demand. A reduction in

consumption demand is associated with a decline in
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utilization. A reduction in inventory demand is

associated with an increase in utilization. Therefore, a

decline in both prices and utilization may correspond to a

period on decreasing inventory demand under falling

prices. A period of increasing prices and declining

utilization may also be an indication of speculative

demand. However, this may also be due to declining

supplies and an upward movement along the consumption

demand schedule.

To address questions concerning the impact of

speculation of commodity prices, we need to develop a

better understanding of how speculative demand may affect

price behavior. Consider an example in which prices begin

to rise in response to an external change in the exchange

environment. If rising prices attract speculative demand,

upward pressure on prices is increased which may sustain

the trend. An established trend may further stimulate

expectations and attract more speculation. this internal

reinforcement of prices and expectations may extend a

price trend beyond what was dictated by the external

change which initiated an adjustment in prices. Clearly

this is a temporary state; expectations can not sustain a

trend indefinitely. Prices will eventually turn the

corner. The imbalance existing between current prices and
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the exchange environment may be eliminated.

Alternatively, the interaction between prices and

expectations may continue to drive prices in the opposite

direction. Declining prices may lead to pessimistic

expectations and a speculative disinvestment in

inventories. This places more downward pressure on prices

which may reinforce expectations and sustain a prolonged

downward trend.

Thesis Objectives

The potential impact of speculative reservation

demand is not a new topic in economics. Samuelson's

investigation of the subject led him to state:

"...any speculative bidding of prices at a
rate equal to carrying costs can't last
forever. The market literally lives on its
own dreams and each individual at every
moment is perfectly rational.. .But I have
long been struck by the fact and puzzled by
it too, that in all the arsenal of economic
theory we have absolutely no way of
predicating how long such a phenomenon will
last . "4

Samuelson points to the types of questions which are

of greatest interest to individuals in the purchase and

sale of agricultural commodities. When will a market turn

the corner? How severely will prices change? Are current
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prices over or undervalued? We may view our inability to

answer these questions as a need for better models of

human behavior.5 We may hope to discover a better

formula to represent the formation of an individual's

expectations. Alternatively, we may view unpredictability

as an important piece of information about the economic

system in question. Information which may force us to

accept that unconstrained and unpredictable human behavior

is an essential aspect of the pricing process. A new set

of questions must be formulated. How can the concept of a

market be expanded to allow for speculative behavior?

Will such a model return any useful insights and

applications in the analysis of agricultural prices? Can

we identify conditions under which speculative changes are

more or less likely to occur? Can we better assess

marketing risks or the impact of public policies? The

objective of this thesis is to explore these questions.

Theoretical Approach

Speculative behavior cannot be adequately represented

within the traditional static or dynamic model of a

competitive market. The interaction between formation of

expectations on current market information and price

determination creates a strange loop in the pricing
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process. "A strange loop" is a term used by Hofstadter

(1979) to describe a system of feedback which perpetuates

itself within a given structure. A market, as a

conceptual model of exchange, represents a stable

structure. Exchange is an ongoing process. Speculation

does not bring about a collapse of trade. Yet, the loop

between expectations and prices introduces an internal

form of structural instability. Price trends may be self-

sustaining. This internal instability must somehow be

embedded into the overall structure of a market in a

stable fashion. This can not be accomplished within a

traditional market model without imposing some set of

artificial constraints on the process of price

adjustment.6 What is really required is an expanded

picture of a market, one allowing a more complete

synthesis of the interaction between expectations and

price determination.

In 1974, E.C. Zeeman published the first economic

application of catastrophe theory in a paper entitled Q

the Unstable Behavior of Stock Exchanqes. Zeeman

postulated a dynamic model of a stock exchange based on

the structure of a cusp catastrophe with slow feedback. A

cusp catastrophe with slow feedback offers a radically

different picture of price determination. An illustration
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provides the best introduction to a cusp market structure,

Figure 1.2. The state of the market is represented by the

time-rate of change in price, P. in the vertical

dimension. The control variables, representing

nonspeculative excess demand and the level of speculation

(speculative content), are the horizontal coordinates of

the control plane. For a given set of control values, the

rate of change in price is represented by a point on the

equilibrium surface of the cusp, directly above the

corresponding point in the control plane. The effect of

changing prices on the control variables is represented by

the slow feedback flow along the equilibrium surface.

A wide range of behavior can be depicted within the

model. Stable dynamic adjustment can be represented by

flows within the single sheeted region of the equilibrium

and control surfaces. A price trend which is sustained by

increasing speculation, carries the dynamic flow over the

double sheeted region of the cusp. The eventual collapse

of the trend is depicted by a sudden crash or jump between

sheets of equilibrium surface. Structurally unstable

behavior is embedded into the stable structure of a cusp

catastrophe. Zeeman's model of a cusp catastrophe with

slow feedback, extended to a competitive market for a
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stored commodity, forms the theoretical core of this

thesis.

Applied Methodoloqy

The impact of prices on the formation of expectations

can be traced out along the equilibrium and control

surfaces of a cusp catastrophe. The implications of

alternative behavioral assumptions can easily be explored.

To address the types of questions put forth under the

objectives of this thesis, we need to develop testable

hypotheses which characterize speculative price

instability. This presents a number of methodological

problems.

Catastrophe theory is a qualitative mathematical

theory. It is not the qualitative nature of catastrophe

that presents any new difficulties. Economic theory is

qualitative and the methods of catastrophe theory are well

suited to economic analysis. A distinction can be made

between an economic application and applied economics

which points directly to the problems inherent in

attempting to apply catastrophe theory. In using the

framework of a market to model exchange, we may obtain a

simple and understandable picture of a system which is

much too complex to analyze in detail. This picture of

15
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exchange allows us to describe a set of interacting forces

which act to determine exchange rates. An application of

a cusp catastrophe model simply provides a new picture,

one which allows us to describe an expanded set of

interactions. Applied economics enters into the domain of

exchange in hopes of being able to verify or disprove

inferences drawn from the model through statistical tests.

Establishing correspondences between entities of a market

model and conditions of exchange requires a better

understanding of the model and the system it represents.

In applied catastrophe theory, both the model and the

system it is intended to represent are more complex.

Establishing correspondences between the two can be

extremely difficult.

Since the introduction of catastrophe theory by Rene

Thom in 1972, applications of catastrophe theory in

economics have been very limited. This is partly due to

the considerations outlined above. It may also be

attributed to the fact that the language, concepts and

techniques of catastrophe theory are not a part of the

mathematical training of most economists. Generally,

applications have been limited to the descriptive use of

catastrophe theory (Wilson and Clarke (1979), Varian

(1979), Wilson (1980), Madden (1982)). Presently, there



does not appear to be any established methods for the

empirical evaluation of catastrophe models. An

investigation of empirical methods forms a large part of

the applications section of this paper.

Thesis Desiqn

Chapter I has served to introduce the nature and

potential significance of the relationship between

expectations, reservation demand and the pricing structure

of agricultural markets. The general analytical problems

presented by the interdependence of expectations and price

determination were explored. These problems led to a

statement of the objective of this thesis. This was

followed by a brief overview of the theoretical and

applied methodology employed to meet these objectives.

The mathematical structure of a competitive market is

examined in detail in Chapter II. There are two

objectives of this investigation: one, to introduce the

language and underlying concepts of catastrophe in a

familiar context and two, to make use of the methods of

catastrophe theory to gain a better understanding of

competitive market structure. In the first section of

Chapter II, the concepts of structural and qualitative

equivalence are treated on a intuitive level with the aid

17
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of geometric interpretations. In the second part of

Chapter II, these same ideas are presented in a more

rigorous form using coordinate transformation and

perturbation theory. In the final section of Chapter II,

a geometric synthesis of competitive market structure is

presented.

Chapter III is devoted to the development of

catastrophe market structures. A simple profit maximizing

inventory investment model is used to demonstrate how

expectations may disrupt the internal stability of a

competitive market. This is followed by a geometrically

oriented development of alternative catastrophe structures

as approximations to a competitive market dynamic. In the

second part of Chapter III, a more formal treatment of the

application of catastrophe theory in economics is

presented. This is followed by a detailed examination of

the geometry of the cusp catastrophe. In the third

section of Chapter III, a critical review of Zeeman's

model of a stock exchange is presented. An extension of

Zeeman's model of a cusp catastrophe with slow feedback,

to a competitive market for a stored commodity, is

developed at the conclusion of Chapter III.

Chapter IV is devoted to applications of a cusp

market structure in an investigation of the impact of
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speculative inventory demand on wheat prices and price

stability. The problems of identifying catastrophic

behavior in an economic system are examined. A market

simulation is constructed using the dynamic structure of a

cusp catastrophe with slow feedback. The simulation model

is designed to meet two objectives. The first is to

develop a better picture of a cusp catastrophe as a

pricing structure. The second is to use a quantitative

model of a cusp catastrophe to generate pricing patterns

similar to those observed for stored commodities. A

graphical analysis of wheat prices is then presented for

comparison. The second part of Chapter IV provides an

overview of the domestic wheat market. An emphasis is

placed on the primary sources of variability in wheat

prices. The remainder of Chapter IV is given designing

and testing of hypotheses, in an attempt to determine the

significance of speculative reservation demand as a source

of price instability in domestic wheat markets.

The implications and conclusions drawn for this

research are presented in Chapter V. The results from the

study of wheat price stability are evaluated. An emphasis

is placed on questions stated in the objectives of this

thesis. In the second part of Chapter V1 the role of

catastrophe theory in economics is evaluated. The use of



catastrophe models in market analysis is explored.

General Comments

It is the author's belief that the methods of

catastrophe are of greater use to economists than

catastrophe models. The concepts of catastrophe theory,

which are based on differential topology, are expansive

and powerful. A sincere effort has been made to make

these ideas affordable to economists with only a moderate

interest in mathematics. Wherever possible, verbal

interpretations of mathematical properties and results are

provided. Verbalizations are not sufficiently precise for

the needs of mathematicians but they can be essential in

economic applications. Mathematical proofs are not

included in this paper. However, specific references are

provided for mathematical results in the end notes of each

chapter. Mathematical demonstrations are included where

needed or when the exercise is informative. In making

extensive use of mathematics in economics it is important

to retain a sense of perspective. Albert instein, in

Sideliqhts on Relativity (1921), wrote:

"As far as the propositions of mathematics
refer to reality they are not certain; and
as far as they are certain they do not
refer to reality."

20
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Endnotes

1
In an adaptive expectations model expected prices
are formulated as a weighted average of current and
past prices. Adapted expectations lag behind current
price trends and converge with market prices when
price levels are steady. The rational expectations
model was introduced by John Muth, (1961). The
essential property of rational expectations is that
expectations are assumed to be unbiased estimators of
future price levels.

2
A classification scheme, similar to the one developed
here, was proposed by Heiner, (1983).

3
This situation is analogous to the shifting of a
firms marginal cost curve as an industry expands,
tracing out an effective market supply.

Paul Anthony Samuelson, '1lntertemporal Price
Equilibrium: A Prologue to the Theory of
Specu].ation.' Collected Scientific Papers, vol. a,
(Cambridge: MIT press, 1966).

Current research on the stability of stored commodity
prices is engaged in this approach. Recent
applications within the rational expectations
framework include Masahiro, (1983) and Sarris,
(1984).

An interesting treatment of markets with bounded
price variation is provided by Maddala, (1983).
Bounds are assumed to be imposed by institutional
constraints.



CHAPTER II

COMPETITIVE MARKET STRUCTURE
AND THE DETERMINATION OF EXCHANGE RATES:

A MATHEMATICAL OVERVIEW

Motivation

In this chapter we will examine the mathematical

structure of a competitive market as a model of exchange.

The purpose of this investigation is twofold. First, many

of the concepts underlying catastrophe theory can be

presented in the more familiar context of traditional

market theory. At the same time, we may make use of the

methods of catastrophe theory to develop a better

understanding of competitive market structure and the

behavior of exchange rates. Gilmore (1981) defines the

general program of catastrophe theory as the study of how

the equilibria of a system change as the parameters

controlling the system change. Equilibrium is the central

concept about which market theory is organized.

Catastrophe theory provides an ideal framework for

examining how behavior is represented within a market.

Market Structure

A market is a conceptual model of exchange based on

the doctrine of classical physics. Classical physics is a

mathematically oriented view in which cause and effect are
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reduced to actions of forces within a mechanical system.

The descriptive framework of a market is not a mechanical

model of price determination. The forces acting within a

market and a mechanism describing how exchange rates are

determined are not expressly defined. The adjustment of

prices and quantities of exchange to changing market

conditions is represented within an equilibrium system.

Hence, the existence of an underlying mechanical process

may be considered an implicit assumption of market theory.

However, the working hypothesis provided by a market and

what may best characterize market structure is our

definition of market equilibrium.

There are two aspects of competitive market structure

reflected in the concept of equilibrium. First, market

equilibrium may be defined as a price equating the

quantity supplied with the quantity demanded. Factors

such as production costs, consumer income and preferences,

establishing specific levels of supply and demand,

determine an equilibrium price and quantity distinct from

other rates of exchange. The relationship between

equilibrium and factors influencing supply and demand may

be referred to as external market structure. Second,

market equilibrium organizes the flow of behavior within a

market. The adjustment of exchange rates is represented
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by a flow toward or between stable equilibria. This is a

form of internal or dynamic structure.

An organizational point of equilibrium, determined by

the intersection of a supply and a demand schedule, is a

limited picture of a stable market structure. Our

perspective can easily be expanded. The external factors

affecting supply and demand may be treated as a set of

smooth variables defining a family of demand schedules and

a family of supply schedules. The intersection of these

families define a set of market equilibria corresponding

to the values taken by the external variables. An

individual equilibrium point may act as a stable

attracter, directing dynamic flows for a given set of

external values. However, the behavior of exchange rates

in response to changes in the exchange environment depends

on the overall organization of the set or family of market

equilibria. This organization is the level of market

structure we will explore with the tools of catastrophe

theory.

Formalizing a description of a market in the

mathematical form of an equilibrium system requires three

assumptions.1 First, we will assume that the state of a

market can be completely specified by a set of internal

state or behavioral variables. Here, we will limit our
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consideration to price, quantity and their respective

rates of change over time. Second, we will assume that

exchange is under the control of a set of external or

control variables which determine the values of the state

variables.. More specifically, the controls are the

variable parameters which define the families of supply

and demand schedules, as for example, the slope and

intercept of a linear supply or demand curve. The values

of the control variables are established by the external

factors influencing change. Third, we will assume that

the action of forces within a market can be described by a

smooth function or potential, representing an attraction

towards market equilibrium.

Mathematical relationships describing a physical

system are usually asserted to reflect physical laws.

Physical laws express quantitative invariantS; for

example, the attractive force between two bodies is

inversely proportional to the square of the distance

between them. As a result, the mathematical structure of

a physical theory is quantitative. Economic laws express

qualitative invariants; for example, the greater the

price the less the quantity demanded. A mathematical

theory asserted to reflect qualitative laws possesses a

corresponding qualitative structure. The distinction
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between qualitative and quantitative is evident in the

language of economics, with the use of terms such as

greater or less than, increasing or decreasing, as opposed

to equal or proportional to. The mathematics of this

distinction will be discussed briefly in the following

section.

Mathematical Structure

While there are many levels of mathematical

structure, Isnard and Zeeman (1976) in defining the term

qualitative state:

"The whole of mathematics rests on three types
of structure, (1) order, (ii) topological, and
(iii) algebraic. ... Roughly speaking, in
mathematics, those properties which depend upon
the order and the differential-topological
structures are called qualitative, while those
that depend upon the lgebraic structure are
called quantitative."

We may consider how these three levels of mathematical

structure relate to market theory.

Ordering structure pertains to the arrangement of

elements within a collection or set. Order is a principal

link between economics and mathematics. We may suppose

that a supply or demand schedule is a collection of price

and quantity pairs which may be represented as a set of

points with price-quantity coordinates. The laws of

supply and demand impose an ordering relationship upon
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these sets. A higher price Is associated with a smaller

quantity demanded and a greater quantity supplied.

Extending our consideration to families of supply and

demand schedules we may define a set of equilibrium

exchange rates. Each element of this set contains an

equilibrium price and quantity, along with corresponding

values for the variable parameters of the supply and

demand families. Given that the laws of supply and demand

hold for the respective families as a whole, an ordering

structure can be inferred for the equilibrium set. For

controls positively affecting quantities demanded at each

price (a demand shift), increasing control values are

associated with higher equilibrium prices and quantities.

For a supply shift control, increasing control values are

associated with lower prices and higher quantities of

exchange. Properties established at an ordering level

shape higher levels of mathematical structure.

Topological structure arises when we assume that the

proximity of points comprising a relationship is

measurable on a smooth scale.3 Tangible scales, such as

units of trade, or intangible scales, such as utility, are

equally valid. In other words, we are assuming that a

given relationship is continuous. Curves and surfaces,

and the space in which they are embedded, are topological
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structures. A supply and a demand curve embedded in a two

dimensional price-quantity plane is a topological

representation of a market. When we assume that a curve

or surface is smooth, the tools of differential calculus

become meaningful. Differentiation at a point yields

information on the local geometry of a curve or surface

which can be used to characterize qualitative properties

of a topological structure.

Points on a surface with a well defined first

derivative or tangent function (regular points) are

qualitatively distinct from critical or stationary points

with a degenerate derivative or tangent. The qualitative

difference between regular and critical points may be used

to convey the difference between disequilibrium and

equilibrium rates of exchange. Second order derivatives

provide information about the curvature of a surface,

allowing us to identify the qualitative properties of a

critical point. A stable equilibrium or attractor may be

represented by a minimum. Unstable or repeller equilibria

may be represented by maxima or saddle points. Critical

points (or a lack of critical points) organize the

qualitative character of a curve or surface. There are

critical points which cannot be classified by second order

information. These are called degenerate or singular
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points. Singular points (or a lack of singular points)

organize the qualitative character of families of curves

or surfaces. The classification of singular points, with

respect to their qualitative properties, is the focus of

catastrophe theory. It is important to note that we are

not equating qualitative properties with topological or

ordering structure. Qualitative properties may be imposed

on a topological or ordering structure.

Moving from a definition of market equilibrium, as an

intersection of a supply and demand curve, to a solution

for a system of corresponding market equations, requires a

higher level of mathematical structure. Solving a system

of supply and demand equations for an equilibrium exchange

rate entails the use of algebraic operations such as

addition and multiplication. Equally important, the

supply and demand equations must initially be defined In a

form allowing us to make use of these operations in a

meaningful way. In summary, we need an algebraic

structure.

It is useful to think of an algebraic structure as a

system of rules governing operations on elements of a set,

such that any relationship expressed by the operations

defined for the set can be solved by the rules governing

the operation. The specific properties which a given



system must possess define specific algebraic structure.

For example, an additive relationship defined on the

integers can be solved by addition. Consider the

following illustration:

3+x 7 given

-3 + (3 + x) = -3 + 7 addition

(3 + 3) + x = -3 + 7 associative law

0 + x = -3 + 7 additive inverse

x = -3 + 7 additive identity

X = 4 computation.

The solution, in general, requires that addition is

associative and the set of integers under addition

contains an identity element and an inverse for each

element in the set. These are the properties of an

algebraic structure referred to as a group. Addition on

the positive integers does not exhibit a group structure

(there are no inverse elements). An expression such as:

7 +x= 3

cannot be solved. Multiplication on the integers is

associative with an identity element equal to one. Again,

the set lacks inverse elements and multiplication on the

integers does not define a group structure.
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Multiplication on the rational numbers does possess an

algebraic structure. We may solve the general form of a

multiplicative relationship expressed for rational numbers

in a manner completely analogous to addition on the

integers:

a*x=b given

1/a * (a * x) = 1/a * b multiplication

(1/a * a) * x = 1/a * b associative law

1 * x = 1/a * b multiplicative inverse

x = 1/a * b multiplicative identity

x = a/b computation.

Our interest here does not lie with the particular

algebraic structure required to solve a given set of

market equations, though it is clear that a quantitative

solution does depend on this structure. What is of

importance is the method employed to analyze algebraic

systems; defining structure by the conditions necessary

f or determining a solution. This line of reasoning may be

applied to the distinction between qualitative and

quantitative structure in marketing analysis.
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Qualitative Versus Quantitative: Choices of Scale

To draw quantitative conclusions, we must eventually

carry out the calculations needed to arrive at a numeric

answer. The relationships in question must be cast in a

scaler form. Observed prices and quantities of exchange

are a natural choice of scaler coordinates, units of

measure, in market analysis. However, the supply and

demand relationships must also be specified as scaler

functions. The problem lies with a choice of functional

form. In economics, there are no quantitative laws (or

invariants) from which we may assert a specific functional

form. By assuming, for example, a linear form for a

demand function, a quantitative structure is imposed; a

change in price results in a proportional change in the

quantity demanded. Hence, quantitative results possess

only a sense of qualitative validity.

A choice of scale (coordinates) and a choice of

functional form are closely related. Generally, a change

of functional form is equivalent to a change in scale.4

Again, citing Isnard and Zeeman:

"In most mathematical models of the social
sciences, if one uses a scale X for the
convenience of making experimental measurements
or displaying data, then any qualitatively
related scale X' is as valid. Therefore, any
conclusion based on the use of the particular
scale X is only valid provided the same
conclusion also holds using X'. Such a



conclusion is called qualitatively invariant5
or, more briefly, a qualitative conclusion"

In econometrically estimating a market model, a change in

functional form equivalent to a qualitative change in

scale will, in general, alter quantitative results. We do

expect qualitative agreement, that the qualitative

properties of the estimates are consistent. In comparing,

for example, a linear and a loglinear demand function, we

expect the slope to be negative for each, a substitute

commodity to remain a substitute, and so forth. We can

make use of qualitative transformations of coordinates

(changes of scale) to identify the simplest algebraic

representation of a market structure. The transformations

and the rules which govern them can provide insight into

how behavior is represented within a model. Before taking

up coordinate transformations, we will take a more

intuitive approach to the idea of qualitative equivalence.

Structurally Equivalent Linear Approximation

Consider a supply curve continuous and smooth about

an arbitrary regular point A = (P0,Q0). The best linear

approximation to the curve at A is the tangent. In a

sufficiently small neighborhood of A, the tangent is a

good quantitative estimate of the curve. In other words,
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for small enough variations from (P01%) we can ignore

curvature. However, the greater the curvature the more

quickly the accuracy of the linear estimate declines.

This is not the case for the qualitative properties of a

linear approximation. For points on the supply curve in

the neighborhood of A the law of supply imposes a strong

ordering relationship which Is:

I) Asymmetric; either,

I) P > P0 and Q > Q0 or

ii)P<P0andQ<Q0 or

=
P and Q = Q0

II) Transitive; if,

> > P0 then P > P0 and Q >

P < P1
<

then P < P0 and Q < Q0

Exactly the same relationship is expressed by the tangent

at A. The qualitative neighborhood of validity may extend

indefinitely so long as the supply curve exhibits strong

ordering.

A supply or demand curve and a tangential
approximation are isomorphic (structurally equivalent) if

there exists between them a transformation which is:

one, order preserving and two, point to point

(reversible) These conditions imply that we may move
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from a curve to its tangent and back without any loss of

relevant information. The projection of a supply curve

onto a tangent along lines parallel to the normal of the

tangent satisfies these conditions and establishes the

isomorphism (Figure 2.1).

If we interpret the laws of supply and demand as weak

ordering relationships, we allow for perfectly elastic or

inelastic sections of the curves. Conditions for

structural equivalence under these conditions further

illustrate information preserving transformations. Weakly

ordered points on a supply curve satisfy the conditions

of:

I) Antisymmetry; either,

1) P>PandQ>Q or

ii)P<PandQ<Q or

P
= and Q unrestricted or

P unrestricted and Q = Q0

II) Transitivity.

Sections of a supply curve which are strongly ordered

satisfy antisymmetry conditions i and ii. These sections

may be represented by the tangent at a regular point.

However, the neighborhood of validity does not extend to

any degenerate part of a curve. A degenerate section of a
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figure b Quantity

Figure 2.1. Transformation of a supply curve: Figure a)
projection of a smooth supply curve onto a tangential
approximation, Figure b) projection of a degenerate
supply curve onto a piecewise continuous linear
approximation.
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supply curve is either vertical, with unrestricted prices

for a given quantity, or horizontal, with unrestricted

quantities for a given price. An isomorphism requires

that unrestricted elements be mapped into unrestricted

elements of the same type.7 Geometrically, vertical lines

must be mapped into vertical lines, horizontals into

horizontals. Qualitatively different types of points

convey different information or behavioral implications.

This information is preserved by requiring that the

transformation maintains any relevant distinction. A

demand curve with both regular and perfectly elastic

sections implies that prices may or may not change with

shift in supply. This type of behavior cannot be

represented as smooth and linear. Figure 2.lb illustrates

an isomorphic linear representation of a degenerate supply

curve which is piece-wise continuous. The figure shows

that tangency is not a required condition; there is simply

a correspondence in the number and type of ordering

relationships portrayed.

Under strong ordering, the tangent at any regular

point on a supply or demand curve is structurally

equivalent. This suggests that by choosing tangents to

the supply and demand curves at a point of equilibrium an

equivalent linear representation of a general static



38

market model can be obtained (Figure 2.2). There appears

to be an isomorphic relationship. The ordering of the

supply and demand schedules is preserved. Equilibrium is

maintained being mapped into itself. However, an

appropriate transformation is not evident. A single point

to point mapping is required. This is difficult to

visualize in a two dimensional market model. A direct

consideration of coordinate transformations is a means of

approach to the problem. Expanding the dimensions of the

model is a less exacting approach but one which exposes

some interesting market geometry.

Dimensions and Codimension

In a typical geometric representation of a market

there are two dimensions, price and quantity. Supply and

demand are one dimensional curves. The difference between

the dimension of an object and the space in which it is

embedded is the object's codlinension. The supply and

demand curves are of codimension one. Equilibrium, a

single point representing both quantities supplied and

demanded, is of codimension two: a zero dimensional object

in a two dimensional space.

In general, when the dimensions of a problem are

altered and the codimension is preserved the relevant

properties of a structure are preserved.8 Poston and



0

Quantity

Figure 2.2. A linear approximation of static market
equilibrium; tangents to the supply and demand curve
at equilibrium.
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Stewart illustrate this principle with an example of a

geographic border.9 On a two dimensional map a border is

a one dimensional curve with codimension one. In three

dimensional space a border is a two dimensional plane or

surface; its codimension is again one. The concept of a

border is better defined in terms of its codimension than

its dimensions in that it divides a space into two

regions. If the codimension of an object changes, its

properties change. A circle in a plane, codimension one,

separates points inside and outside. A circle in three

dimensions, codimension two, makes no such separation.

In three dimensions the supply and demand

relationships can be combined into a single set. Each

element of the set is represented by a single point with

price, quantity demanded, and quantity supplied

coordinates. The supply-demand relationship may be

represented by a one-dimensional curve embedded in a

three-dimensional space; an object of codimension two.

There is an apparent change in the codimension of the

supply and demand relationships (from one to two) which

implies some form of structural change. The supply-demand

relationship no longer divides the price-quantity space

into separate regions. However, this is not a relevant

property of the supply and demand relationships, hence; it
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need not be preserved. In a two-dimensional

representation of a market, the equilibrium point is an

element of the combined supply-demand set and an object of

codimension two. This codimension is preserved in three

dimensions. This brings out an important aspect of a

market model. The distinction between equilibrium and

disequilibrium exchange rates is not a property of the

supply and demand relationships. It is imposed upon these

relationships. The supply and demand curves simply convey

information on the quantities buyer and sellers are

willing to exchange at given prices. This information is

preserved when we add or ignore inessential coordiante

dimensions. The concept of equilibrium must be accounted

for in its own context. This can be illustrated by

examining the geometric relationships between our two and

three dimensional market models.

A three dimensional market model is presented in

Figure 2.3. The combined supply and demand relationship

is represented by the space curve SD. In reducing the

model to two dimensions the curve is projected onto a

plane along perpendiculars to the quantity planes (double

arrowed lines). An effective choice of coordinates must

be made in the reduction. If we simply ignore the demand

quantity coordinate
d' the supply curve is projected onto
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!jce Ouatttv Qraded 'tari

Figure 2.3. A aupp3.y-deinand curve in three dimensions
with two-dimensional projections of supply and
demand.
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its corresponding plane and the demand relationship is

lost. The opposite occurs if the supply coordinate Q8 is

ignored. By projecting supply and demand onto the

plane (ignoring the perpendicular direction given by

there is no loss of relevant information with the

reduction in dimension.

Returning to the problem of a linear transformation,

the tangent to a three dimensional curve is a straight

line.10 Its direction is now a two component vector. The

demand component, the change in quantity demanded with

respect to price, is negative. The supply component, the

change in quantity supplied with respect to price, is

positive. This directional orientation is maintained

throughout the curve by a tangent at any regular

point. The ordering imposed by the laws of supply and

demand is preserved. The curve may again be projected

onto a tangent by means of parallel lines. The parallels

may no longer lie in a plane owing to the twisting of the

curve, but they may still be drawn perpendicular to the

tangent. Our choice of points for the linear

representation is no longer arbitrary if we require a

correspondence between equilibrium points. In choosing a

tangent as the approximation we must also choose its point

of coincidence at equilibrium. Projecting the curve and
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equilibrium tangent onto the price-quantity plane reveals

a two dimensional representation of the equivalent market

structures (Figure 2.4).

Comments on Structural Equivalence

The term isomorphism refers specifically to the

ordering or algebraic structure of sets. In speaking of a

supply or demand curve as a topological structure, there

is a more appropriate definition of equivalence. In a

topological space, points are near enough together to

think of transformations as being continuous. Two

topological structures are structurally equivalent if

there exists between them a continuous order preserving

transformation with a continuous inverse. Saunders

(1980) states:

"It is sometimes useful (though not
strictly accurate) to think of two geometric
objects as being topologically equivalent, or
homeomorphic, if one can be continuously
deformed into the other without any tearing or
pasting together. "11

Fraleigh (1976) gives the following intuitive

interpretation:



bigure 2.4. A two-dimensional projection of a linear
approximation to a supply-demand curve atequilibrj



IsVaguely, a continuous transformation with
a continuous inverse is one that we can achieve
by bending, stretching and twisting the space
without tearing or cutting it. ... the boundary
of a circle has the same structure as the
boundary of a square ... Two spaces which are
structurally the same in this sense are
homeomorphic. ... The concept of a homeomorphism
is to topology as the concept of isomorphism
(where sets have the same algebraic structure)
is to algebra."12

With respect to topological structure, we may say a supply

curve and its tangent at a regular point are homeomorphic

and note that the ordering structures of their underlying

sets are isomorphic.

The concept of structural equivalence has been used

in a restrictive manner to accomplish a few specific

objectives. The full meaning of these ideas has not and

will not be explored. However, as suggested by the

definition of a homeomorphism, structural equivalence does

not directly pertain to the orientation of an object to a

specific set of coordinates. We work within a framework

of downward and upward sloping curves because orientation

to the ideal price-quantity coordinates of exchange is

meaningful. The choice of linear approximations which

maintain this orientation is valid but not required under

the mathematical definitions of structural equivalence.

The linear models were termed approximations in the

sense that one set of points was substituted for the

46
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other. By substituting relationships we retain our

original coordinates, relying on the existence of a

transformation to establish equivalence. By conducting

the transformation, the approximation becomes exact. In

bending and stretching a supply or demand curve to linear

form, we are deforming the space which contains the curve

or our scales of measurement.

Transformation of Coordinates: Motivation

The objective of coordinate transformations, or

changes in variables, is simplification. By an

appropriate choice of coordinates we may be able to reduce

an unrecognized or ill-defined structure to a readily

identificab].e form with known properties. Coordinate

transformations may be viewed in two ways: one, as a

change from one coordinate system to another in a fixed

space, or two, as the displacement of space about a fixed

coordinate system.13 The former, analogous to a change

in perspective, facilitates a discussion of the

transformations. The latter, owing to our interest in

price-quantity coordinates as a point of reference,

facilitates the discussion of results.

We can choose scaler coordinates for a market

corresponding to units of trade. The exact form of market

demand, supply and the underlying dynamic are unknown. To
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study market structure it would be helpful to reverse this

situation by transforming to an unknown set of coordinates

to obtain an exact structure in its simplest form. In an

absolute sense, information is neither gained nor lost; a

change of variables may allow an advantageous

reorganization of information. However, we must restrict

our use of transformations to those which preserve

meaningful properties attributed to a model.

Quantitatively Equivalent Transformations

A rigid displacement of coordinates, not involving

any bending, stretching or twisting, preserves algebraic

structure. References to location and direction are

changed, but the relationship between points is retained.

Parallel lines are mapped into parallel lines. Quantities

used to measure spactial relationships, such as distance

and curvature, are unaltered. Any rigid movement may be

obtained by translation and rotation of axes.14 A

translation or displacement of the origin is an

inhomogeneous linear transformation, written:

-3. (2. lOa)

A rotation about a fixed origin is a special homogeneous

linear transformation, written:



Xi -). X = A1x

where A1 is a rotation matrix;

i.) AA' = I

ii) /A/ = 1

The general linear transformation, written:

x1 + x=A1x+b1
where IA! = 0
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(2. lOb)

(2. lOc)

translates, rotates and stretches the coordinate axes.

With the stretching of the coordinate axes a linear

transformation is no longer rigid. Space is deformed as

15
parallel lines are not mapped into parallel lines.

Quantities used to measure distance and curvature are

subject to change. However, the algebraic characteristics

of a structure are invariant under a linear

transformation. A linear relationship remains linear, a

curvilinear relationship does not gain any new bends or

straight sections. In other words, the "basic shape" of

an object is retained.

If we quantify a physical or economic process using

different systems of coordinates related by a linear

transformation, we may expect to obtain quantitatively

equivalent results. Isnard and Zeezuan offer an example

of Boyle's law.16 Investigating the relationship between
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temperature and pressure under fixed volume, we may select

two different temperature scales, centigrade and

fahrenheit. These scales have different sized units and

origins, but they are linearly related. In both cases, we

observe a straight line relationship between temperature

and pressure.

If we quantify different processes, or the same

process at different points in time, using the same system

of coordinates and obtaining different results which are

related by a linear transformation, the processes are

similar but not quantitatively equivalent. For example,

if we estimate a demand function at different points in

time we might discover that, about the sample mean, demand

has shifted outward and become more elastic. The two

curves are related by a translation and rotation, but

there has been a quantitative change in relative value as

perceived by consumers. The two relationships are

qualitatively similar; all the qualitative properties of

one are the same as the other. In restricting our

attention to qualitative properties, we may consider

equivalent nonlinear transformations of coordinates which,

in general, do not preserve quantitative structure.
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Qualitatjve].v Equivalent Transformations

Earlier, a structurally equivalent transformation, a

homeomorphism, was defined as being continuous with a

continuous inverse. This obviously includes nonlinear

transformations, but our definition of qualitative

equivalence requires an additional restriction.

Qualitative properties of an equilibrium system, relating

to behavioral and structural stability, depend on the

local geometry near a critical point of a curve or

surface. To within a homeomorphic transformation all

local geometry appears the same. A stable minimum may be

deformed into an unstable saddle point or a point on a

plane. We can retain the character of critical points by

requiring smooth transformations.

A qualitatively equivalent transformation of

coordinates, a diffeomorphism, is one-to--one, continuous

and differentiable. Saunders (1980) provides a useful

(though not strictly accurate) definition of a smooth and

smoothly invertible transformation:

"We may think of two geometric objects as being
diffeomorphic if they are homeomorphic and if,
in addition, the deformation involves no
creasing or flattening of creases. Thus, a
sphere, an ellipsoid and a cube are all
homeomorphic bu7only the first two are
diffeomorphic."



The transformation:

x 2+ xl = x

is a diffeomorphism from and to the positive real numbers.

If we include the negative reals (2.11) is no longer a

diffeomorphism since its inverse:

+ ,c =

has no real values for x' less than zero. In a second

example the transformation:

x + x' = for x' real (2.12)

has an inverse:

for x > 0 (2.11)

However, (2.12) is not a global diffeomorphism since its

inverse is not smooth at the origin. The slope of the

inverse:

dx' 1

dx

is undefined at the origin.
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The geometric effect of a diffeomorphism is a smooth

bending of the coordinate system. The linear

transformations considered earlier are diffeomorphisms.

Linear transformations are easily inverted nonlinear

transformations are not. For two variables the general

homogeneous nonlinear transformation may be written:

X1 + = a11x1 + ai2x2 + a11x2 + a122x2

+ ai12x1x2 + (2.13)

Note that at the origin:

= aj1
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The transformation is axes preserving.18 Sufficiently

close to the origin the transformation is linear; there is

no change in the algebraic character of the surface. By

moving the origin to a critical point and performing a

homogeneous nonlinear transformation the character of the

critical point, its local geometry, is unchanged.

In econometrically estimating economic relationships,

using scales and functional forms qualitatively related by

a diffeomorphism, we may expect qualitatively equivalent

results. Qualitatively related scales abound in

economics. In a demand study, we might use nominal prices



or prices deflated by a number of different indices of

inflation. Quantitative results will vary, but these

scales are likely to be qualitatively related. In

estimating an aggregate supply function for beef cattle,

our choice of prices may vary in location, weight class

and grade. We might measure production costs with farm

level prices of grains or the price of corn in Chicago.

We expect qualitatively equivalent results because these

scales are likely to be qualitatively equivalent.19 If we

are interested in quantitative results, then we require

quantitative criteria for comparing alternative scales and

functional forms. If we are interested in qualitative

results or establishing basic criteria for theoretical and

empirical consistency, we are justified in using the

simplest means available. This is an area where the

techniques of coordinate transformations are of value.

Before undertaking the explicit use of variable

changes we need an initial set of coordinates. Our state

variables are easily defined, but we have yet to consider

the relationship between the external variables of the

exchange environment and the control variables of a

market.

54



The Control Space Coordinates

Consider a demand or supply function of the form:

Q = f(P;X) (2.20)

where X is a fixed vector of values corresponding to the

external variables of the exchange environment, other

market prices, and so forth. The function is presumed to

be smooth at any arbitrary point A (P01Q0). Translating

the origin to A with a transformation (of the type 2..lOa):

P + P' = P - P0

Q 4. QI Q -

where flOW:

Q' = f'(P';X )n

Dropping primes and expanding the function as a Taylor's

series about the new origin:

F(P) = f(O;X) + f1(O;Xn)P + 1/2f2(O;X)P2

+ . . . + 1/k! fk(O;X)PC +

= Z 1/k! fk(ox)Pk
k=O

= apiC
k=O k

55

(2.21)
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The Taylor's expansion coefficients, a1, may be regarded

as functions of the exogenous variables X. The number of

dimensions in the control space is determined by the

number of functions which are independent. At most, m<n

functions are independent, forming an orthogonal set

spanning a control space of m dimensions.20 We may define

a set of in independent control variables, c, as functions

of the exogenous variables. If the first m Taylor's

coefficients are defined by independent functions of the

external variables then we may write the controls:

C0 = = h(X)
C1 = a1 = h1(X)

C2 = a2 = h2(X) (2.22)

Cm_i = am_i = h1(X)

The remaining Taylor's coefficients are either dependent

on the controls Cm or fixed parameters. The expansion may

be written:

F(P) = C0 + c1P + c2P2 + . Cinipini

+ higher terms dependent on C (2.23)
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Since the number of controls may range from one to

the number of original external variables, we can say

little about the dimensions of the control space. This

proves to be an important point in the following chapter.

Establishing canonical forms of the supply and demand

curves, along with their respective controls, is the

objective of the following two sections.

The Implicit Function Theorem: Canonical Forms

Given a supply or demand function of the form:

Q f(P;C,) (2.30)

where C is a fixed vector of controls,

such that for any admissible control values:

dQ

dP

we may find a diffeoniorphism which reduces the curve to

linear form:

Q'
= 1 (2.31)

Consider the change of variables:

p + pi
= ± f(P;C0) (2. 32a)

Q + Q' = Q (2. 32b)
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The transformation is smooth since, by assumption, the

supply or demand curve is smooth. Since at any point On

the curve the tangent Is a function of price and quantity:

we may appeal to the implicit function theorem or its

corollary, the inverse function theorem, for the existence

of a smooth inverse:

P' + P = f1(P';C0)

A supply or demand function may be written In linear

form:21

±1'' (2.33)

where:

means equivalent after a diffeomorphism.

We may interpret this smooth bending and displacement

of coordinates as a deformation of the curve itself, in

our original system of coordinates. An arbitrary point on

the curve has been displaced to the origin, but this may

be reversed by a simple translation of axes, yielding a

canonical form f or a supply or demand curve relative to

the initial origin:

Q" = ±" + u (2.34)
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We can examine the underlying procedure with the use

of a Taylor's expansion. Translating the origin to an

arbitrary point on a given curve, we may expand a supply

(or demand) function as a Taylor's series:

F(P';C0) = a0 a1?' + a2?'2 +

where:

a1 = f1(O;Co)(h/!)

Terms of degree two and higher may be eliminated with an

axes preserving transformation (2.13), leaving:

F'(P";C) = a, + aP"

The coefficients a' and a can be eliminated with a linear

transformation to obtain:

= Pt,'

Dropping primes and translating back to the initial origin

yields a canonical form:

F(P;C0) P + u.

The implicit function theorem establishes a local

result. A curve may be transformed into a qualitatively

equivalent linear form at a point if the tangent to the

curve at that point is a function of price and quantity.
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The neighborhood of qualitative validity extends

indefinitely so long as the supply or demand curve remains

smooth. This is the same as the neighborhood of validity

for linear approximations treated earlier.

A backward bending supply curve, sometimes postulated

for labor, is an example of a relationship which is

qualitatively nonlinear. At the fold point (Figure 2.5),

the tangent is vertical, no longer a function of price and

quantity. At the fold, the implicit function theorem is

invalid. Linearization destroys the qualitative nature of

the curve. A diffeomorphic transformation must retain the

fold. Given a supply curve, g(P), and a diffeomorphism:

G(g(P))

where:

dG ( P)

dg ( P)

= G1

we may apply the chain rule for a composite function to

obtain:

dG

dP
- (G1)(g1(P))

= 0 if g1(P) = 0

if g1(P)



P

I
Fold Point

Figure 2.5. A backward bending supply curve with avertical tangent at the fold point.
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Regular points are mapped into regular points. Critical

points, such as a fold, are mapped into critical points.

The told, and therefore the double-valuedness of the

supply curve, is maintained through a qualitatively

equivalent transformation.

The general concept of qualitative equivalence for

graphs is illustrated in Figures 2.6a, b and c. The first

two figures are qualitatively equivalent. Vertical lines

are mapped into vertical lines, thus preserving fold points

and multi-valued regions of the curves. The third figure

is nonequivalent as the correspondence is lost.22

The canonical linear models for smooth supply and

demand functions were derived for fixed values of the

controls. As the controls change, so do the coordinates

of the linear form. We would like to establish a

canonical form for families of supply and demand curves

defined by variable control parameters. This result can

be developed from a consideration of perturbations.

Perturbation of Supply and Demand Functions:
Canonical Forms With Variable Controls

In the neighborhood of a given point on a smooth

supply or demand function, a small change in the controls

may be viewed as a perturbation. A perturbation function

may be written:



Yl

Figure 2.6. Examples of qualitative equivalence for
graphs: Figures a and b illustrate qualitatively
equivalent graphs, Figure c is not qualitatively
equivalent to either a or b. Adapted from Isnard and
Zeeman.
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z(P;C) = f(P;C) - f(P;C) (2.40)

where f(P;C) is a family of functions. The perturbed

function may be written:

F(P;C) = f(P;C0) + z(P;C) (2.41a)

Given that the laws of supply and demand are maintained,

respectively, for every member of the supply and demand

families, then:

dF ( F; C)

dP

We may appeal to the implicit function theorem for the

existence of a diffeomorphism which reduces the perturbed

function to a linear form:23

F'(P';C) = F' + u (2.41b)

A local representation of a family of supply or demand

functions requires a minimum of one canonical control, u.

To see why, we can examine the dimensions and codimensions

of the problem.24 Consider a point A on a demand curve.

The curve, embedded in the price-quantity plane, is a one-

dimensional object of codimension one. To construct a

family of curves so that every point in the neighborhood
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of A lies on a member of the family, the object generated

by the family must be two-dimensional or of codimension

zero. In general, a one parameter family of objects of

dimension r is an object of r+1 dimensions. A one

parameter continuous family of curves in the price-

quantity plane is a two-dimensional section of the plane

of codimension zero.

The linear canonical form is a local representation.

The neighborhood of qualitative validity extends until a

nongeneric (nonregular) point is encountered in either the

control space or on a given curve.

The canonical control parameter u varies continuously

with changes in the control variables C. This may be seen

by expanding the perturbed function as a Taylor's series.

First, we may place f(P;C0) in canonical form (equation

2.33) and rewrite the perturbed function (without primes):

F(P;C) = P + z(P;C) (2.41c)

Expanding the perturbed function about the new origin as a

Taylor's series yields:

F = z(Q;C) + (1 + z1(O;C))? + 1/2z2(O;C)P2

+ (2. 42a)



Since the linear term is nonvanishing, second and higher

degree terms may be eliminated with an axes-preserving

nonlinear transformation:

F' z'(O;C) + (d + z(O;C))P' (2.42b)

A linear transformation (F" = (d + z(O;C))P') stretches

the coordinate axis to absorb the linear coefficient,

yielding:

F" z'(O;C) + F" (2.42c)

The constant term z'(O;C) varies continuously with the

control values C.

The behavioral implications of the canonical forms

are not surprising. A small change in the controls

results in a slight change in the quantity supplied or

demanded at a given price. A smooth change in the

exchange environment results in a smooth response in

supply or demand. There is no qualitative change in the

nature of the relationships. Supply and demand are

structurally stable.

To consider the impact of changing control values on

market equilibrium, we may seek a change of coordinates

which linearizes both the supply and demand curves at
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equilibrium. We can obtain this result from the Thom

isotopy theorem.

Transversatiljty of Supply and Demand:
Thom's Isotopy Theorem

Poston and Stewart state:

"Transversatility is often called general
position (bgause 'nothing special
happens' ) ."

The supply and demand curves are transverse if: one, they

intersect in exactly one point (if at all); and two, the

tangents to the curves at the point of intersection do not

coincide.26 A transverse crossing is illustrated in

Figure 2.7a. A non-transverse crossing is illustrated in

Figure 2.7b. Non-transverse crossings occur at isolated

prices or quantities. Control values corresponding to

non-transverse intersections are isolated points in the

control space. In the same sense that a real number

chosen at random is infinitely unlikely to be equal to

it is unlikely that the control will take on exact values

corresponding to a non-transverse crossing. We presume

that non-transverse conditions, such as multiple-

equilibria, do not occur.

There are two important results of Thom's isotopy

theorem for equilibria defined by a transverse
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p

Figure h

Figure 2.7. Transverse and non-transverse intersections of
a supply and demand curve: Figure a) a typical
transverse intersection, Figure b) a non-transverse
intersection. Two conditions of transversality are
violated: one, the intersection is of the same
codimension as the intersecting lines, and two, the
tangents of the intersection are coincident.

Q

Figure a
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intersection. First, any transverse intersection of the

supply and demand curves is qualitatively equivalent to

Figure 2.8, the intersection of two perpendicular lines.

This is consistent with our linear canonical forms for

supply and demand at equilibrium. Second, transverse

crossings are structurally stable. A small change in the

values of the controls results in a slight change in the

location of equilibrium. Smooth changes in the exchange

environment result in smooth changes in the location of

market equilibrium. The qualitative character of

equilibrium, stable or unstable, is unaltered.27

Transversality implies structural stability of

equilibria. It does not imply that equilibrium can and

will be achieved. To examine this aspect of market

behavior, we must consider the market dynamic. Viewing

market structure in the context of a gradient based

equilibrium system provides a relatively complete

framework for analyzing market adjustment and the

determination of exchange rates.

A Gradient Based Market Model: Description

Market models are, in general, derivable from a

simple first order gradient system. Stable market

equilibria are represented as a minimum of a potential or

market objective function. Maxima or saddle points of a



Q=P+V

Figure 2.6. A canonical form of a transverse intersectionof a supply and demand curve.
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potential function represent unstable equilibria. A given

potential, from which the market dynamic is derived,

corresponds to a given set of control values. For

variable controls we may think of the controls as

parameters of a family of potentials.

The way in which equilibria organize market structure

is reflected by the way in which critical points organize

a potential or family of potentials.28 The force acting

to adjust exchange rates is represented by the negative

gradient of a potential. The negative gradient is a

vector, perpendicular to the contours of a potential:

directed downward towards a stable minimum (Figure 2.9a)

and outward from an unstable maximum (Figure 2.9b) or in

both directions for a saddle point (Figure 2.9c). The

components of the market adjustment force are given in the

price direction by the partial derivative of the potential

with respect to price, and, in the quantity direction, by

the partial derivative of the potential with respect to

quantity. At an equilibrium or critical point, the price

and quantity components of the force are zero.

The slope of the potential vanishes at equilibrium;

hence, the tangent to the potential is no longer a

function of price and quantity. The implicit function

theorem is no longer applicable. A linear approximation



Unstable Maxinurni

Unstable Saddle

FIgure 2.9. The structure of a non-degenerate equI1ibrjsurface with projections of contours and negativegradients along principle directions of curvature:Figure a) a stable minimum, Figure b) an unstable
maximum, Figure C) an unstable saddle.
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or transformation is not qualitatively equivalent to the

potential at this point. We may consider the qualitative

properties of a quadratic approximation.

Quadratic Aproxlmation: Equilibrium

In a sufficiently small neighborhood of a

nondegenerate equilibrium point (a minimum, maximum or

saddle), the potential may be approximated with a

quadratic surface, an upward (downward) opening elliptic

paraboloid for a minimum (maximum) and a hyperbolic

28
paraboloid for a saddle (Figures 2.9a.b,c). The

neighborhood of validity for the quantitative properties

of the approximation may be large or extremely small.

The curvature of a quadratic surface is constant, and the

more quickly the curvature changes the faster quantitative

accuracy declines.

The neighborhood of validity for the qualitative

properties of the approximation is analogous to linear

approximations at regular points. For a stable minimum,

all regular points of the approximating surface lie above

the tangent plane of the critical point (positive upward

curvature). For a maximum, all regular points lie below

the tangent plane (positive downward curvature). For a

saddle, regular points lie on both sides of the tangent

plane (negative curvature). The qualitative validity of



the approximation is maintained until another critical

point of the potential is encountered.29 This is

illustrated for a single variable potential in Figure

2.10. If the critical point is unique, the validity of

the approximation is global.

A quadratic approximation of a potential at a

critical point is easily obtained form a Taylor's

expansion. Given a market potential expressed in terms of

price and quantity, V(P,Q), with a critical point at

(P0,Q0), we can expand the potential as a Taylor's series

about the stationary point:

V(P,Q) = V(P0,Q ) + V1(P0,Q0)(P-P0) + V2(P0,Q0)(Q-Q0)

+ 1/2V11(P ,Q)(P-P )2
+ 1/2V22(P0,Q0)(Q-Q)2

+ V12(P,Q)(p-p)(Q-Q) + higher

terms (2.50)

The Taylor's series may be truncated beyond second degree

terms and noting that the linear terms vanish at a

stationary point:
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V(P,Q) V(P,Q) + i/2V11(P ,Q )(P-P) +

1/2V22(P01Q)(Q-Q)2 + V12(P,Q)

V12 (P0 , Q0) (P-P ) (Q-Q ) (2. 51a)



V(P)

FIgure 2.10. The qualitatjve organization of a potentialabout its critical points.



The quadratic terms can be diagonalized (cross products

eliminated) with a rotation of axes to the principal

directions of curvature:

V'(P',Q') V'(P ,Q ) + V' (P ,Q )(P-P )12
0 0 11 0 0 0

V2(P,Q)(Q-Q) ,2
(2.51b)

Finally, the origin may be translated to the critical

point, yielding:

V"(P",Q") V1(P ,Q)P"2 + V2(P0IQ0)Q"2 (2. 51c)

With the steps outlined in 2..51a,b,c we can obtain a

quadratic approximation for a nondegenerate critical point

in standard form, written (without primes):

V(P,Q)X1p2 + X2Q2 (2.52)

where:

i) X1 X2 > 0 for a minimum

'1' 12 < 0 for a maximum

iii) < 0
< .

for a saddle.

If one or both of the
.

are zero, the critical point

is degenerate, and the approximation may break down. If

only one of the x. is zero, the approximating surface is

a parabolic cylinder; if both the
. are zero, the

approximating surface is a plane. In either case, the
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approximation may not correspond qualitatively to the

critical point of the potential.30

The are the eigenvalues of the stability matrix

(Hessian), V, written:

(2v a2v

aP aQ

\ aQap aQ2
I

By stretching the length of the coordinates axes with the

transformation:

= I
x1 112p (2.54a)

Q = I 2 I
1"2Q (2.54b)

we can write 2.52 in Morse canonical form:

VI(Pt,Qt)±Pt2 --±Q'2 (2.55)

Morse canonical form for a nondegenerate critical

point is the counterpart to a linear canonical form for a

regular point. The Morse lemma states that in the

neighborhood of a nondegenerate critical point, a

potential may be placed in Morse canonical form with a

smooth reversible change in coordinates.31 If we are
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able to successfully approximate the local properties of a

V.. = (2.53)
i:j



a =.i!2. = y(P -P
dt d

(f1(Q;C)_g1(Q;C5)) (2. 60b)
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critical point with a quadratic function, then we can make

the approximation exact with a qualitative change in

scale. Before considering the implication of the Morse

lemma, we need a working definition of a market potential.

Market Potentials

A market potential is a mathematical description of

the response of market prices and quantities to changes in

supply and demand. To develop a market potential, an

explicit mechanism of market adjustment is required, the

market dynamic. There are two components of a market

dynamic: one, Wairasian price adjustment specifying the

rate of change in prices over time, P, as a function of

excess quantity demanded:

L = e(Q -Q
dt S

= e(f(P;c)-g(P;c5)) (2.60a)

and, two, Marshallian quantity adjustment, specifying the

rate of change in quantity over time as a function of

excess demand price:
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To ensure that equilibrium corresponds to the intersection

of the supply and demand curves, we require the functions

o and 'y to be homogeneous:

(0) 0

= 0

We presume that market equilibrium is stable under the

laws of supply and demand. Therefore, excess quantities

demanded must decline as prices increase, and:

o1(
) > 0

and excess demand price must decline as market quantities

32
increase, and:

> 0

The functions of the dynamic, 0 and , may be

viewed as components of a market adjustment force.33

Assuming that this force may be derived as the negative

gradient of a potential, equations 2.60a and 2.60b may be

rewritten:

V(P,Q;C)
e(f(P;C)-g(P;C5)) (2.61a)

Q
V(P,Q;C)

= (f(Q;C)-g1(Q;C)) (2 .61b)



where;

=
- Oi( )(f1(P;C)_g1(P;C5)) > 0

X2 = - 'Y1( )(f(Q;C)_g(Q;C5)) > 0

The eigenvalues, A1 and A2, are strictly positive

since, one, the first derivatives of 0 and '1! are positive

by assumption and two, the slopes of the supply and demand

curves are, respectively, positive and negative for all

values of the controls. A point of equilibrium

3V(P,Q;C)

ap
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Equilibrium conditions are given by zero time derivatives:

P = 0

Q=0
which clearly correspond to a critical point of the

potential V(P,Q;kC):

- (f(P;C)-g(P;C5)) 0 (2.62a)

V(P,Q;C)
- (f(Q;C)_g1(Q;C5)) 0 (2.62b)

The stability matrix for the potential is diagonal;

its elements are the eigen values of the matrix, written:

A
=

1.3
0

0

A2
(2.63)
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corresponds to a stable minimum of a potential. The set

of market equilibria correspond to the minima of a family

of potentials specified by the control parameters. We may

write a quadratic approximation of the potential at

equilibrium:

V(P,Q)j V(Pe&PQe) + Aie)2 + (2.64)

The approximation is simply a truncated Taylors expansion

with the values of and evaluated at P and

respectively. By translating the origin to the

equilibrium point and stretching the coordinate axes to

absorb the elgen values (transformations 2.54a,b), the

potential may be written in Morse canonical form:

V'(P',Q') + Q'2 (2.65)

The Morse lemma guarantees the approximation can be made

exact with a diffeomorphic transformation of coordinates.

The Morse Lemma

A demonstration of the Morse lemma, adapted from

Gilmore, provides some insight into the process of

coordinate transformations.34 We have and will, continue

to appeal to the fact that higher terms of a Taylor's

expansion may be conveniently eliminated with a smooth
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change of variables. Mere we will make a limited attempt

to show why this is so.

To simplify the development of the Morse lemma for a

market potential, we can make the following observation.

Equations 261a and 2.61b contain no cross product terms.

The price and quantity components are separable:

V(P,Q) = V1(P) + ¶72(Q) (2.70)

We may treat the price and quantity components

individually. Focusing on the price component, we may

write a Taylor's expansion of the price potential with the

origin at Pc:

v1 = A1?2 + cP3 + dP4 + eP5 + (2.71)

We may define a nonlinear axes preserving transformation:

P + P' = P + A2?2 + A3?3 + A4?4 + (2.72)

The A1 are disposable coefficients. These may be chosen

to eliminate third and higher degree terms. First, we

equate the Morse form with equaiton 2.71 using the

nonlinear transformation (equation 2.72):

1' '2V = A1

(2.73)



P3 : A.12A2 c

P4 : X1A2 + X12A3 = d
2

X1A2A3 + X12A4 = e

The details for higher degree terms are messier, but there

is one new disposable coefficient for each new term of the

expansion. The constraints can be solved to eliminate all

but the first nonvanishing term of the Taylor's expansion.

A similar nonlinear transformation can be used to

reduce the quantity component of the potential to Morse

form. The first derivatives of the nonlinear

transformations are equal to one at equilibrium

(derivative of 3.72 where P = 0). Therefore, we may

appeal to the inverse function theorem; the

transformations are invertible and smooth in the

neighborhood of equilibrium. We may write a stable market

potential in Morse form after a qualitative change in

scale:

83

This places constraints on the disposable coefficients.

To obtain these constraints the square of 2.73 is expanded

and the disposable coefficients are equated with those of

the corresponding monomial P1 of 2.71. For the

coefficients shown in 2.71, the constraints are:

(2.74)

V(P,Q) API2 + (2.75)
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The transformation to Morse form is for fixed values of

the controls. As the controls change, the coordinates of

equation 2.75 change. To treat the controls as variables,

we need to consider a family of market potentials. The

parameters of this family of potentials are the canonical

controls. The canonical controls reflect how equilibrium

changes in response to changes in the environment of

exchange. As with the supply and demand functions

considered earlier, we can determine the form of a family

of stable potentials in the neighborhood of equilibrium by

studying the effects of perturbations of a given market

potential.

Perturbations: Market Eauilibrium

Given a market potential, V(P,Q;C0), with an

equilibrium point e'e and a family of potentials,

V(P,Q;C) with stable equilibria, the difference:35

z(P,Q;C) = V(P,Q;C) - V(P,Q;C°) (2.80)

may be regarded as a perturbation of V(P,Q;C°) in the

neighborhood of 'e C°). The perturbed function may be

written:

V(P,Q;C) V(P,Q;C°) + z(P,Q;C) (2.81a)



Choosing the origin at equilibrium and placing V(P,Q'C°)

in Morse form, we may rewrite the perturbed function

(dropping primes):

V(P,Q;C) = A1P2 + X2Q2 + z(P,Q;C) (2.Blb)

The perturbed function may be expanded as a Taylor's

series about the origin:

V = z(O;C) + z11(O;C)P + z12(O;C)Q +

A1 + z21(O;C))p2 + + z22(O;C))Q2 +

z31(O;C)P3 + z32(O;C)Q3 + (2. 82a)

= + z11P + z12Q + + z1)P2 + C x2 + z22)Q2

z31P3 + z32Q3 + ... (2.82b)

The terms of the expansion of degree greater than two may

be eliminated with a nonlinear axes preserving

transformation:

V' = + zp' + z2Q' +
( + z1)P'2 +

I + I'"2 22

A linear transformation of the form:

P4 + P" = ?'( +

Q'+ Q" = Q'( + z2) 1/2
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(2.83)



absorbs the second-degree coefficients into the length of

scale:

VII = z = z" P + z Q1'0 11 12

We are not concerned with the value of the potential; the

origin may be translated in the V" direction to eliminate

the constant term:

V''1 = z1P" + + + (2 . 84b)

The linear coefficients, z"., are continuous functions of
11

the controls C. They may be regarded as a qualitative

transformation of the original control variables:

V'" = c'1P" + c'2Q" + ,,,2 + (2 .85a)

Rescaling F" and Q" for convenience and dropping primes,

the potential may be written:

V C1? + c2Q + 1/2P2 + 1/2Q2 (2. 85b)

Differentiating equation 2.85b with respect to price

and quantity, we can obtain a canonical form of the market

dynamic:

= -p - c
1

9v
- Q = - C2

9Q
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(2 .84a)

(2. 86a)

(2. 86b)



Equilibrium conditions, P = Q = 0, yield canonical

expressions for equilibrium price and quantity as

linear functions of the control variables:

-ci (2. 87a)

= -C2 (2.87b)

In the neighborhood of an initial point of

equilibrium, (O,O;C0), a small change in the control

values results in a slight shift in the location of

equilibrium to (-c1, -c2). Since the canonical controls,

c1 and c2 vary continuously with changes in C, the

location of equilibrium moves smoothly with smooth changes

in the exchange environment. This is simply a restatement

of the implications of Thom's isotopy theorem for a stable

transverse equilibrium. The result is based on local

properties but the neighborhood of qualitative validity

extends until a nontransverse equilibrium is encountered.

Under a strict interpretation of the laws of supply and

demand isolated nontransverse crossings can occur and the

preceding analysis breaks down. However, we have excluded

nontransversality on the basis that it is extremely

unlikely to occur.

Two canonical control parameters are required to

define the family of market equilibrium points. Again, we
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can examine the codimensons of the problem to see why. An

equilibrium point embedded in the price-quantity plane is

an object of codimension two. To construct a family of

equilibrium points so that in a given neighborhood every

point is an equilibrium point of the family, the

codimension of the object generated by the family must be

equal to zero. A two-parameter continuous family of

zero-dimensional points is an object of two dimensions, a

section of the price-quantity plane with codimension zero.

The stability of individual equilibria and the

structural stability of the family of market equilibria

imply that market prices and quantities can adjust

smoothly to a new point of equilibrium in response to

changes in the market environment. Whether or not this

will, in fact, happen depends upon the temporal structure

of a market. Temporal structure, taking into account the

relative rates at which state and control variables

change, is the final key element of qualitative market

structure.

Temporal Market Structure

The canonical equilibrium equations (2.87a,b) are

related to our canonical supply and demand equations:



Q=-P+u demand

Q= P+v supply

Solving the equations for equilibrium price and quantity

yields:

(u-v)/2 (2.90a)

= -ci

= (u+v)/2 (2.90b}

The two sets of controls are related by a simple linear

transformation. Separating the equilibrium controls into

supply and demand shift parameters is informative so the

distinction will be maintained.

If we assume the flow of the dynamic is fast in

comparison to the rate of change in the controls, we may

equate market prices and quantities with equilibrium

prices and quantities:36

P = (u-v)/2 (2.91a)

Q (u+v)/2 (2.91b)

The adjustment of exchange rates is represented as a

continuous transition between alternate states of

equilibrium. We may represent this graphically by

treating the price and quantity components separately.
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The state variable price and the control variables, u and

v, may be viewed as coordinates of a three-dimensional

phase space; a one-dimensional state space and a two-

dimensional control space. The family of equilibrium

prices is a surface; drawn in canonical form in Figure

2.11. The control surface corresponds to a section of the

u-v plane over which prices are positive. The fast flow

of the dynamic is assumed to be a near vertical flow

between the control and equilibrium surfaces.37 The slow

flow of market response to changing control values is

represented by a movement along the equilibrium surface.

Figure 2.12 illustrates the quantity component of the

model.

The figures drawn for the equilibrium model are a

relatively complete synthesis of a competitive market

under the assumptions of fast and slow flow. A delayed

adjustment of supplies to current market prices can be

represented as a slow feedback of prices on the controls.

A gradual growth in demand with oscillations introduced by

lagged supply adjustment is illustrated by the slow flow

in Figure 2.11. The model reflects qualitative market

structure, those aspects of price determination which are

independent of our choice of functional forms or

coordinates. In general, we may bend, stretch or twist
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Figure 2.11. Price as a linear function of the demand
shift variable u and the supply shift variable v,
with fast and slow flows.

I-I
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Figure 2.12. Market quantity as a linear function of the
supply and demand shift variables.
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the equilibrium and control surfaces, so long as we do not

tear, crease or fold them, without altering qualitative

structure. Figures 2.11 and 2.13 are illustrations of

models with a very different quantitative structure but an

equivalent qualitative structures.

We can introduce quantitative structure if we attach

significance to a particular set of coordinates. For

agricultural products we might assert that the slope of

the price surface is very steep and the quantity surface

quite flat, owing to the inelasticity of supply and

demand. Relatively how steep or how flat are quantitative

properties. We need to choose scales of measurement to

obtain an estimate. Since these choices are to some

extent arbitrary, the estimate is to some extent

arbitrary. This does not exclude the value of

quantitative results in helping to confirm or deny our

explanation of why agricultural prices are subject to

large variations. It should temper our assertions drawn

from a given estimate.

If the control values change rapidly, so that we may

no longer think of the dynamic as a vertical flow, the

static equilibrium structure of a market may be obscured.

A market may exist in a near constant state of

disequilibrium. Our focus must shift to the market



p
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Figure 2.13. Price as a non-linear function of the supply
and demand shift variables. This figure may be
obtained from Figure 2.11 by a smooth reversible
change of coordinates. Figures 2.11 and 2.13 are
qualitatively equivalent.
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dynamic, illustrated for the price and quantity canonical

forms in Figure 2.14. The dynamic model may also be

perceived as an equilibrium system.38 Dynamic equilibria

are rates of change In price and quantity, given for the

canonical forms by:

P + P - (u-v)/2 = 0 (2. 93a)

Q + Q - (u+v)/2 = 0 (2.93b)

The families of dynamic equilibria correspond to the price

and quantity trajectory curves toward static equilibrium.

The fast flow, towards a dynamic equilibrium rate of

change, may be represented by the negative gradient of a

dynamic potential:

(2. 94a)

(2.94b)

The potential is structurally stable as the determinant of

the stability matrix, U1:



/
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Figure 2.14. Rate of change in price of quantity as afUflctj of excess demand; fast flow towards a stabletrajectory and slow flow along a normal Walrasian orMarshallian dynamic.



is nonvanishing (equal to one for all control values).

The positive eigen values of the matrix indicate that the

dynamic equilibria are stable. The potential may be

written:

U(P,Q) = 1/2P2 + 1/2Q2 b1P b2Q (2.95)

where the controls:

b1 = -P + (u-v)/2

b2 = -Q + (u+v)/2

The fast flow generated by the dynamic potential is

assumed to be vertical. Changes in the controls result in

a slow flow along the price and quantity trajectories.

Given that factors outside the market stabilize, a slow

feedback effect of changing prices and quantities on the

controls brings the market to a point of static

equilibrium. This feedback is simply the effect of

increasing or decreasing prices on excess demand:

U.. =
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b1 = 1/2((-P + U) - (P + v))

= 112d -

and the effect of increasing or decreasing quantities on

excess demand price:

b2=1/2((-Q+u)-(Q--v))

= 112d P5)

In a dynamic formulation of a market, exchange rates

are given as functions of time. For specified values of

the external controls, u and v, market prices and

quantities follow a time dependent pathway, starting at an

initial boundary point (P0,Q0) and terminating at a point

of static equilibrium. The time paths are given by the

solution to the differential equations 2.93a and 1.92b for

P=P and Q=Q0 at t=O.39
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P = (P0 - (u.v)/2)et + (u-v)/2

= (P0 - Pet + P
e

Q = (Q0 - (u+v)/2)et + (u+v)/2

Qe)e_t
+

(2.96a)

(2.96b)

With a few exceptions, the analysis conducted for

static equilibria can be applied to the dynamic model.

Since dynamic equilibria will be treated at length in the
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following chapter the details will not be presented here.

In Chapter III the methodology presented here will be

applied to the more interesting possibilities of

catastrophic market behavior. The behavioral implications

of normal competitive market structure are not surprising

and may be summarized briefly.

Summary

Within the structure of a normal competitive market,

the way in which exchange rates are determined is a stable

process. The source of price instability is the exchange

environment. The response in exchange rates to a change

in the market environment may differ owing to the

quantitative structure of different markets. However, the

qualitative nature of change within a market reflects the

qualitative change in external variables. Smooth, sudden,

or cyclical patterns of change within a market are

attributable to corresponding changes in the predetermined

factors which influence supply and demand. Approximately

the same external conditions result in approximately the

same market conditions.

The qualitative structure of a normal competitive

market is stable by design. Under the laws of supply and

demand we have defined a stable mechanism of market

adjustment. If we wish to consider an internal form of
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price instability, either through a violation of these

laws or an unstable dynamic, we are presented with a

problem. Without the existence of a stable attracter

state, a market lacks sufficient organization to support

exchange. In traditional models of unstable markets,

prices either fall, to zero or continually increase. In

both cases, a collapse of trade is implied. Since this is

seldom observed, these models are of little use. In some

manner internal instability must be bounded or embedded in

a stable system. This is precisely the structure of a

cusp catastrophe.

The implications of a cusp structure are strikingly

different. The actions of buyers and sellers within a

market can generate sudden changes, bull or bear markets,

price cycles and very different market states under nearly

the same external conditions. In the first part of the

next chapter we will examine how expectations acting

through reservation demand can alter normal market

structure. A market with a dynamic cusp structure is then

postulated as an alternative.
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CHAPTER III

CATASTROPHE MODELS OF A COMPETITIVE MARKET

Motivation

In this chapter we will consider a competitive market

with an internal structure of a cusp catastrophe. The

term catastrophe holds a common connotation of disaster.

Here, a catastrophe refers to a sudden change in the state

of a system in response to a smooth change in its

environment. The occurrence of sudden transitions between

rising and falling price trends is only one property

associated with a cusp market structure. Other behavior

characteristics include patterns of over and under

valuation, price cycles and the occurrence of radically

different market states under similar external conditions.

In the traditional competitive market model,

considered in the previous chapter, an internal dynamic

was postulated to be a stable process. Under the laws of

supply and demand the market moves smoothly toward a

position of static equilibrium. When the willingness of

some individuals to buy or sell a commodity depends upon

expectations for future prices, the stability of the

market adjustment process may be disrupted. In the first

part of this chapter a very simple profit maximizing
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reservation 4emand model is used to demonstrate that a

smooth adjustment to static equilibrium may become

impossible.

Expectations, Reservation Demand and Market Prices

Market prices have a twofold impact on reservation

demand. First, current prices are a variable cost of

acquiring (or an opportunity cost of holding inventories)

and the marginal revenue of liquidation. Second, current

prices are a substantial part of the information available

for formulating future expectations upon which the capital

value of inventories is based. An increase in price,

reflected as an increase in cost, may lead to a reduction

in reservation demand. However, if an increase in price

gives rise to higher price expectations, sufficient to

offset increased costs, reservation demand may increase.

If for a decline in price, a change in expectations

offsets lower costs, reservation demand may decline as

prices fall. Expectations of this type will be called

speculative. In essence, speculative expectations project

a current price trend into the future which is sufficient

to offset changes in carrying costs.

We may develop a simple model of a reservation demand

function from a single period investment opportunity in
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which expected profit, defined by the expression:

E(ir) = E(P)Q - P(1+i)Q - C(Q) (3.10)

where:

( ) denotes expectations

lT = profit

i = interest rate

C(Q) = other costs as a function of
quantity

is maximized.1 First order conditions for a maximum

require that marginal revenue equals marginal cost:

dE (1r)

dQ
- E(P) - P(1+i) - C1(Q) = 0

E(P) = P(1+i) + C1(Q) (3.11)

MR MC

Second order conditions for a maximum require that

marginal costs are an increasing function of quantity:

d2E(w)

dQ2

= -C2(Q) < 0 (3.12)

Given second order conditions are met, we.may appeal to

the inverse function theorem to solve equation 3.11 for a

reservation demand function:
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= c;:1 (E(P) - P(1+i)]

Assuming we can write an expected price:

= P + E(iP)

we may rewrite the reservation demand function:

= c1 [E(P) - Pfl

(3. 13a)

(3.13b)
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For completeness, we may identify phases of inventory

acquisition and liquidation. For a given initial

inventory level I; acquisition occurs when Q > 10 and

liquidation when
Q*

< However, an increase in the

rate of inventory acquisition and a decline in the rate, of

liquidation are essentially equivalent conditions of

increased reservation demand. Declining rates of

inventory acquisition and increasing rates of liquidation

are equivalent conditions of decreasing reservation

demand.2 With respect to market structure and stability,

the issue of concern is the response in reservation demand

to changes in price.

The slope of the reservation demand curve (equation

3.13b) is given by:

*
dQ dE(P)

-3f (E(P) - Pi (3.14)
dP dP



Since marginal costs are assumed to be an incresing

function of quantity, the slope of the demand curve is

negative if:

dE ( P)
<1

dP

and positive if:

dP

(3. 15a)

(3.15b)

The slope of the reservation demand curve is dependent

upon the psychological impact of changing prices on

expectations. The rationality of this impact is not in

question. We are presented with alternative hypotheses

concerning the formulation of expectations and we must

evaluate their consequences. This can be done more

clearly by viewing the role of expectations in another

way.

We may treat an expected change in price as a demand

shift parameter. For a given level of expectations the

reservation demand curve is negatively sloped, reflecting

only the effect of changes in capital costs. If

expectations for future price changes are based on

external information (such as normal seasonal price

log
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trends, anticipated changes in production or consumption)

and:

dE ( F)
=0

dP

then this short run (fixed expectations) relationship is

the effective demand curve. If expectations change as

market prices change then a movement along the demand

curve is accompanied by a shift in reservation demand.

The effective demand curve is traced out by the family of

shifting demand curves at given prices. Where:

dE(tF)
<0

a?

effective demand is negatively sloped and more inelastic

than short run reservation demand (Figure 3.1 a).

Adaptive expectations are an example of this type of

formulation. Where:

dE ( P)
0<

dP

effective demand is negatively sloped and more elastic

than short-run demand (Figure 3.1 b). Expectations of

this type extrapolate current price trends into the
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under price dependent expectations: Figure a)
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future, but the expected return does not cover the

immediate change in cost. Under speculative expectations

(equation 3.15b), a shift in demand more than compensates

for a movement along a demand curve. Effective demand is

positively sloped (Figure 3.lc).3

Market demand is defined as the summation of

quantities demanded by individuals at given prices. Thus,

we may classify aggregate expectations with respect to the

effective slope of a market demand curve. Aggregate

expectations are speculative if the slope of the effective

inventory demand curve is positive. However, this ignores

the distribution of expectations among individuals.

Effective demand may be downward sloping, in accord with

the law of demand, while a number of individuals hold

speculative expectations. This speculative component of

market demand may have a significant effect on market

stability. Before reducing expectations to an aggregate

form, we need to know what constitutes a significant level

of speculative demand.

Speculative Reservation Demand and Market Stability

In a Wairasian model of a competitive market, prices

adjust toward a stable equilibrium if as prices rise,

excess demand falls (Figure 3.2). We can attempt to apply
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this criterion for dynamic stability to a market with a

given level of speculative demand in addition to a normal

set of supply and demand relationships. Consider an

initial point of disequilibrium where excess demand is

positive and prices are rising. With rising prices there

is a corresponding increase in the quantity supplied and a

decrease in the quantity demanded. Increasing prices also

stimulate speculative reservation demand. If the increase

in speculative demand is less than the cumulative response

in normal supply and demand then excess demand falls as

prices rise and the market appears to converge towards

equilibrium. If the increase in speculative demand is

sufficient to offset the cumulative response in normal

supply and demand then excess demand rises with increasing

prices and equilibrium is, at least temporarily, unstable.

We may consider the unstable case in greater detail.

As long as increasing prices continue to attract a

sufficient level of speculative demand total excess demand

and prices may continue to increase. Normal excess demand

is falling and may become negative (Figure 3.2b). This

cannot go on indefinitely. Marginal costs of holding

stocks are presumably increasing. After a prolonged price

trend, individuals may begin to anticipate a turn in

prices. Normal supply and demand response ultimately
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dominate the market; excess demand begins to fall and the

rate of increase in price begins to slow. However, as

prices approach a stable equlibrium, the expectations

under which speculative inventories are held are no longer

consistent with current market conditions. Speculative

demand may quickly terminate leaving an imbalance between

normal demand and supply. Total excess demand may

suddenly become negative, and prices may abruptly begin to

fall. As prices fall, speculative expectations may again

form. Declining inventory demand may offset the normal

response in supply and demand to falling prices. Normal

excess demand may become positive as prices continue to

fall. An imbalance is created which cannot be maintained.

A speculative decline in inventory demand must end. Total

excess demand may suddenly become positive and prices may

abruptly begin to rise.

When speculative demand offsets the normal response

in supply and demand market equilibrium becomes unstable.

If equilibrium were to remain unstable the process of

exchange represented within a market would collapse as

price trends continue indefinitely. Such a model is

structurally unstable. Since we do not observe unbounded

price trends and the collapse of exchange, we are

justified in requiring a market model to be structurally
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tab1e. Thus, the occurrence of unstable equilibria must

be isolated, surrounded by a structurally stable system.

However, as with the previous example, it is the

organization not the obtainment of equilibrium, which

determines behavior. A stable state of equilibrium need

not be obtainable. The return of a stable dynamic acts to

terminate a price trend. The imbalance between normal

demand and supply may prevent the obtainment of a stable

state in the short run. Continuing speculation may result

in an ongoing cycle of price adjustment. This type of

behavior cannot be represented within the traditional

structure of a competitive market.

The conditions under which speculative expectations

drive a market may appear unlikely to occur. However, a

similar problem arises even when the response in

speculative demand is not sufficient to offset the normal

response in supply and demand. Consider a market in an

initial position of disequilibrium where normal excess

demand is positive and prices are rising. If the price

trend attracts speculative demand, the rate of decline in

total excess demand is slowed. The price trend is

sustained over a longer period of time. Normal excess

demand may become negative while the trend is artificially

maintained by expectations (Figure 3.2c). Again, the
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phenomenon cannot last. The question is how will the

trend terminate.

Several alternative transitions from a point A on an

artificially rising trend are illustrated in Figure 3.3.

Path a showing a smooth transition to a point of

equilibrium where normal excess demand is zero, is

inaccessible. Normal excess demand cannot increase as

prices increase. Path b, showing a smooth transition to a

falling market and an eventual return to equilibrium, is

also unobtainable. As the positive trend terminates and

prices begin to fail, the expectations under which

speculative inventories are held are no longer consistent

with prevailing market conditions. Expectations for

higher prices may change quickly. The buildup of

inventories may now be perceived as a liability for

capital losses. Path c, shows a sudden transition

between rising and falling market states. This picture

may best reflect impact of transitory speculative demand

on market stability. The upward pressure placed on prices

by speculative demand simply evaporates as the market no

longer sustains expectations. Excess demand suddenly

becomes negative and prices abruptly begin to fall. As

prices decline, speculative expectations for lower prices

may sustain a falling market. Normal excess demand may
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become increasingly positive until the trend terminates

with a sudden jump to a rising market.

When the presence of a price trend attracts inventory

investment or disinvestment, an imbalance is created

between existing prices and the normal determinants of

exchange rates. This imbalance grows as a price trend

extends beyond what may be called the physical conditions

of the market. It is tempting to draw an analogy to

physical structures and say that a price trend sustained

by expectations collapses under its own weight. However,

this is inaccurate. There is not an apparent mechanism

through which the imbalance acts upon a market. Given the

full range of possible interactions between market prices

and the formulation of expectations, it is unlikely that

we may derive an explicit set of deterministic

relationships. We can consider a system which exhibits

the type of behavior we have discussed; a cusp

catastrophe. A market with a dynamic structure of a cusp

provides a more complete picture of the interactions

between price determination and the formation of

expectations.



A Quartic Approximation to a Cusp Catastrophe

While we do not intend to derive a cusp structure

from a set of equations governing market behavior, a cusp

catastrophe is suggested by the figures drawn in the

previous section.4 In general, we may derive a Wairasian

market dynamic from a family of smooth potentials. Each

point on the price trajectory is a stable dynamic

equilibria, corresponding to a critical point of a po-

tential in the family. For a given level of excess

demand, a point along the price trajectory satisfies:

dV(P;C0

dP

By assumption, the dynamic equilibria are stable:

d2V(?;C)

0

Hence, the dynamic equilibria are nondegenerate, and we

may write a qualitatively equivalent quadratic

approximation of a potential about any given equilibrium

5
point:

V(P;C) V(P;C) + V2(P;C)P2 (3.20)
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Figures 3.2 and 3.3 illustrate price trajectories

which are disconnected. Upon casual Inspection, it may

not appear that this form of a market dynamic may be

derived from a smooth family of potentials. However, we

may redraw these figures as illustrated in Figure 3.4.

The solid portion of the curve corresponds to the

disconnected set of stable equilibria. These sections of

the curve attract the fast flow of second-order market

adjustment. The slow flow of first-order market

adjustment follows these stable trajectories. The dashed

line is a set of unstable or repeller equilibria. These

points are inaccessible. The presence of a repeller sheet

between the two stable trajectories prevents a sudden

transition between rising and falling markets from

occurring except at the two critical points of the curve,

A and B.

The critical points of the price trajectories are

degenerate equilibria, satisfying the singularity

condition:

d2V(?;C)

The family of dynamic market potentials contains members

which cannot be successfully approximated with a quadratic

dP2
-o
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function. Degenerate or singular points organize a family

of potentials in a manner similar to which nondegenerate

critical points organize the qualitative character of a

single potential. A sudden transition between market

states occurs only upon passing through a singular point.

On either side of a degenerate equilibria, the market is

smoothly rising or falling. Since singular points

determine qualitative behavior, we are interested in the

nature of the potential at these points.

A quadratic approximation to a potential about a

degenerate critical point reduces to:

V(P;C) V(P;C) + (0)P = a constant

The next simplest approximating function is a cubic.

However, this proves inadequate. A cubic approximation to

a potential at a degenerate critical point is of the

form:6

V(?;C0) V(?;C)+ V3(P;C)P3 (3.21)

To construct a family of potentials based on this

approximation we may consider the general form of a cubic

equation with variable control parameters:

V(P;C) a0 + a1P + a2P2 + a3?3 (3.22a)
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The second degree term may be eliminated with a linear

transformation:

P + P' = P + a2/3a3

The reduced form of the cubic equation may be written:7

V(Pt;C) = C0 + c1P' (3.22b)

where:

c = (2a3 - 9a a a + 27a2a )/27a3
2

123 30
3

2
C1 = (3a3a1 - a )/3a2

2 3

In the neighborhood of the degenerate equilibrium point,

the price trajectory is given by the equilibrium con-

dition:

dV(P';C)
2-c1+3P' =0

dP'
(3.23)
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At the singular point (c1=0), the equilibrium equation has

one repeated root, P'=0. For c1 < 0, the equilibrium

equation has two real roots; one stable attractor and one

unstable repeller. For c1 > 0, the equilibrium equation

has no real roots.8 The curve is shown as a function of

the control value c1 in Figure 3.5.
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Figure 3.5. Equilibrium rates of change in price as a
function of the canonical control in a cubic
approximation to a dynamic market potential.
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The singularity illustrated in Figure 3.5 is a fold

point. A family of potentials with a cubic singularity

exhibits a fold catastrophe.9 The point in the control

space corresponding to the fold is called the bifurcation

set. The bifurcation set divides the control space into

two regions: in this case, the positive and negative C1

axis. Along the positive control axis, where the

equilibrium equation has no real roots, the potentials of

the family look like Figure 3.6a. There are no critical

points to organize behavior. Within the bifurcation set,

the potential has a point of inflection (Figure 3.6b).

Along the negative control axis, the potentials of the

family look like Figure 3.6c. There are two critical

points, a stable minimum and an unstable maximum.

For a market 'to continually support exchange, it must

be structurally stable. This property is not retained

with a fold catastrophe. Upon passing through the

bifurcation set, a market which is internally and

structurally stable becomes both internally and

structurally unstable. A fold catastrophe or cubic

approximation to a degenerate equilibrium is an inadequate

description of the behavior in question.

The next simplest approximation to a degenerate point

of equilibrium is a quartic equation:
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Figure 3.6. Forms of a cubic potential for differentvalues of C: Figure a) C<Ø, Figure b) C=Ø, Figure C)c>ø.
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The equilibrium equation is given by:

128

c1 = (2a3 - 8a2a a + 16a a2)/(16a3)
4214

C2 = (-3a + 8a,,a4)/(8a
3 4

V(P) a + a1P + a22 + a3 + a4i (3. 24a)

where:

a1 = (1/i!)V.(P;C)

We may construct a family of potentials from this

approximation by taking the coefficients, a1, to be

continuous functions of the controls C. By first

absorbing the quartic coefficient, a4, into the scale of

V(?) and then making the linear displacement:

P + = + a3/4a4

the quartic equation may be placed in reduced form

(dropping primes):

V(P) = C0 + c1P + c2P2 + (3.24b)

where:

c0 = (-3a4 + 16a2a2 - 64a1a3a2 + 256a3)/
34 3 4 4

(256a4)



dV ( F)

dP
- C1 + 2c2P 43

=

The roots of the equilibrium equation, for given values of

the controls, correspond to dynamic equilibria. We may

determine the qualitative character of these equilibria by

computing the discriminant D of the cubic equation

3.25:10

D = 8c32+ 27c21 (3.26)

From a theorem on the discriminant of a cubic equation, we

may draw the following conclusions. For positive values

of the control c2 the discrimjnant is strictly positive

and the equilibrium equation has exactly one real root.

The price trajectory is single valued as in Figure 3.2a.

The corresponding potentials look like the one illustrated

in Figure 3.7a. For negative values of the control c2 the

discriminant may be greater than, less than, or equal to

zero. If D is positive, the preceding results apply. If

D is equal to zero, equilibrium is degenerate. The

equilibrium equation has a real repeated root and the

corresponding potentials look like the one illustrated in

Figure 3.7b. If D is negative, the equilibrium equation

has three real roots; two stable attractors and one

(3.25)
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unstable repeller. The corresponding potential,

illustrated in Figure 3.7c, has two minima separated by a

maximum. The price trajectory, graphed as a function of

has two stable attractor sections separated by a

repeller, as illustrated in Figure 3.4.

If we interpret the control parameter c1 as a

qualitative measure of normal excess demand and the

control parameter c2 as a qualitative measure of

speculative demand, a model derived from a quartic

potential holds a promising description of market

behavior. When the speculative content of a market is

low, the value of c2 is small. The dynamic adjustment of

exchange rates moves toward a point of static equilibrium.

When the speculative content of a market is high, the

value of C2 IS large. The market is split into a rising

or bull phase, and a falling or bear phase. The

transition between a bull and bear market is a sudden

crash or jump. We can construct a more detailed picture

of this sudden transition from the changing shape of the

dynamic potential. The general form of the dynamic

potential at points along the price trajectories is

illustrated in Figure 3.8. Along single valued sections

of the trajectory the potential has a single minimum.

Crossing into the double valued section a second minimum



p

Figure 38. Forms of the potential along various regions
of the price trajectory.
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develops but the market remains organized about the

initial local minimum. As the boundary of the double-

valued section is reached, the first minimum vanishes.

The market is carried by a fast flow to the opposing

trajectory of the new minimum. This sequence of events is

illustrated with a mechanical analogy in Figure 3.9. The

position of a small ball represents a market state. The

location of the ball changes suddenly as the basin in

which it rests disappears.

A family of potentials with a quartic singularity

exhibits the structure of a cusp catastrophe. The reduced

form of a cubic equation is, in fact, a canonical form for

the equilibrium surface of a cusp catastrophe. Before

considering the properties and geometry of a cusp

catastrophe in detail, we should consider two theorems

which are important in application of catastrophe theory.

The first is the splitting lemma. Up to this point, we

have ignored the adjustment in quantities of exchange. We

would like to know if a discontinuity in a pricing

structure is likely to affect, or be effected by, the

quantity side of the market. The splitting lemma may be

used to address this question. The second is Thom's

classification theorem which describes the types of

elementary catastrophes that can occur given the number of



FIgure 3.9. A simple mechanical analogy to a sudden jump
resulting from smooth changes of a potential; a small
ball moving along a curved track. Adapted from
Saunders p. 10.
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state and control variables. Unfortunately, as

demonstrated in the previous chapter, the number of

independent controls in an economic system is not

generally known. Hence, the classification theorem cannot

be applied directly. Another approach is taken to the

problem of classification which helps to clarify the

assumptions underlying the use of catastrophe models in

economics. A mathematical demonstration of the splitting

lemma and Thom's classification theorem Is beyond the

scope of this paper. We will limit our treatment of these

theorems to a discussion of results.

The Splitting Lemma

The splitting lemma allows us to split state variable

into two classes: one, essential state variables which

are involved in a discontinuity; and two, nonessential

variables which are not involved in structural instability

and may be ignored.11 Given a smooth potential, written:

V = V(X) (3.30)

equilibrium conditions are given by:

av
- 0 1 = 1,2, ... n (3.31)

ax1



at a degenerate equilibrium is singular. The rank of the

stability matrix, equal to the number of linearly

independent rows of the matrix, is less than the

dimensions of the matrix. The difference between the

dimensions of matrix (n) and its rank (r) is the co-rank

of the matrix (n-r = k). The number of degenerate

variables involved in the discontinuity can be reduced to

the co-rank of the stability matrix with a diffeomorphic

transformation of coordinates. After a smooth reversible

transformation of coordinates, the potential may be

written with a Morse component and a catastrophe

component:
12

where:

e. = + 1
a -

The stability matrix of second order partial

derivatives provides information on the curvature of the

potential, at a point of equilibrium. We may align our

coordinate system with the principal directions of

V e1x' + e2x
n-k n-k

+...e x

x')
n

+

(3.33)
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The stability matrix:

vi j (3.32)
xixj



V. . =
''3 Ak_i

0 0..,. 0

0

The rank of the matrix is given by the number of nonzero

diagonal elements. These are directions in which the

curvature of the potential is well defined, either

positive or negative. The co-rank of the matrix is given

by the number of vanishing or zero elements of the

diagonal. These are directions in which the curvature of

the potential is degenerate (linear). The splitting lemma

states, in essence; the nature of the potential in

noridegenerate directions is known, we need only look in

degenerate directions to determine the properties of the

singularity.

We may apply the splitting lemma to identify the

conditions under which structural market instability is
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curvature of the potential at equilibrium, with a rigid

linear transformation of coordinates. This transformation

eliminates second order cross-product terms, diagonalizing

the stability matrix:

/
0 0

/ 0 0



potential:

V = V(P,Q)

equilibrium conditions are given by:

v v
= = 0

p Q

Assuming the price and quantity dynamics are independent

(no cross-product terms in the potential), as was the case

for our traditional market model, we may write the

stability matrix:

/ v11,â)
V.. =
13

0 \

(3.36)

(3.34)

(3.35)
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confined to prices, and quantities of exchange may be

ignored. Given a general form of a smooth, dynamic market

0 V22(P,Q)/

The matrix is assumed to be singular, with a degenerate

price component. The stability matrix is doubly

degenerate, only if the quantity component also vanishes.

If the quantity component is nonvanishing, structural

stability is confined to prices and the potential may be

written, after a diffeomorphism:

V'(P',Q') + Cat(P') (3.37)
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We should note that it is the assumption of

independence between price and quantity adjustment that

allows us to transform the potential Into recognizable

price and quantity components. Under this assumption, the

structural stability of the quantity side of the market

neither effects nor is affected by market prices. The

splitting lemma simply states the conditions under which

structurally unstable behavior may occur in both price and

quantity adjustment. There is a reason why structural

instability may be confined to prices. Information on

prices is readily available to market participants while

information on market quantities of exchange is not.

Expectations may influence the offer and acceptance prices

of buyers and sellers and therefore, quantities of

exchange. However, the return flow of quantity

information in the formation of price expectations Is

presumably weak. This does not preclude a response in

expectations when quantity information is made available.

However, quantity side information is unlikely to sustain

a trend.

If we eliminate the assumption of independence, the

splitting lemma may become a very powerful tool. We may

still be able to reduce the problem from two state

variables to one essential state variable. However, this
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variable may now be defined in terms of both prices and

quantities. What is important is that the number and

types of structurally unstable behavior that can occur is

determined by the number of essential state variables, not

the total number of state variables. This brings us to

Thom's classification theorem.

Thom's Classification Theorem

Adequate preparation has and will not be made to make

a formal statement of Thom's classification theorem for

the seven elementary catastrophes. What the theorem

states is a description of the most complex thing that can

occur in a smooth system, with no more than two state (or

behavioral) variables and no more than four control (or

explanatory) variables. To try and gain some insight into

the content of Thom's theorem, we may consider a few

specific implications.14

Given a 1-dimensional state space and a 1-dimensional

control space, with a smooth potential of the state

variable parameterized by the control variable, the only

singularities that can occur in the set of equilibrium

values are fold catastrophes. Our example of a cubic

potential, discussed earlier, is the most complex

situation that can happen. If we add a control, making a
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2-dimensional control space, then the only singularities

that can occur are fold curves and cusp catastrophes. A

new and qualitatively distinct type of structure is added

to our list. Our example of a quartic potential again

describes the most complex thing that can occur. If we

add a third control a new singularity may appear, a

swallowtail catastrophe. By adding one more state and

one more control variable all seven elementary

catastrophes may occur.

In a system where the number of state and control

variables is known, Thom's theorem may be directly

applicable. However, when the number of controls is

unknown, the classification theorem has no real

methodological value. With one essential state variable,

it is relatively easy to approach the problem of

classification directly with the tools we have previously

developed.

The Elementary Catastrophes of One Variable

From Thom's classification theorem we can construct

the following table for elementary catastrophes with one

essential state variable.



142

Table 3.1. Elementary catastrophes with one essential
state variable.

Singularity Canonical Form Name

+ c1x Fold

+ + Cusp

X5 x5 + c3x3 + c2x2 + c1x Swallowtail

x6 x6 c4x4 + c3x3 + c2x2 Butterfly

+cx

We have briefly combined the forms of the fold and cusp

catastrophes. The swallowtail and butterfly catastrophes

are analogously based on fifth and sixth degree Taylor's

expansions with one dependent variable. We can develop a

general canonical formula for one variable catastrophe by

considering perturbations of a Taylor's expansion of

degree k. While our interest in higher degree

catastrophes is limited, a derivation of this formula

provides some useful insights into catastrophe structures.

The qualitative character of a potential about a

given point is determined by the first non-vanishing term

of a Taylor's expansion constructed about that point. We

may write a local approximation, qualitatively

equivalent to the potential, by truncating the Taylor's

series beyond the first non-vanishing term. A Taylor's

series truncated beyond terms of degree k is called the k-
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jet of function. A potential is said to be k-determined

if, at every point, the qualitative properties of the

potential are determined by its k-jet.15 This idea

extends to families of functions in a natural way. The

qualitative character of a family of functions is

determined by the first non-vanishing expansion term for

the family as a whole. A family of functions is said to

be k-determined if, for each family member, the

qualitative properties of the potential are determined by

its k-jet at each point. A potential or a family of

potentials which is k-determined is obviously also (k+1)

determined. However, determinancy refers to the lowest

degree. We may draw several examples from families of

functions we have considered previously.

A supply or demand curve is 1-determined if, at each

point, its tangent is a well defined function of price and

quantity. A first degree Taylor's approximation or 1-jet,

establishes the qualitative properties of the curve. From

the implicit function theorem, there exists a smooth

reversible transformation of coordinates which reduces the

supply or demand curve to a linear form. A family of

supply or demand curves is 1-determined if, for all

control values, the corresponding curves are 1-determined.
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We may construct a local linear representation of the

family.

A market potential with a non-degenerate critical

point is no longer 1-determined. At a non-degenerate

critical point the linear expansion term is zero, but the

16second degree term is non-vanishing. About a

nondegenerate critical point, a potential is 2-determined.

From the Morse lemma, there exists a smooth reversible

transformation which reduces the potential to Morse form.

A family of potentials is 2-determined if all its

equilibria are non-degenerate. We may construct a local

representation of the family in Morse form.

A potential, or family of potentials, with one or

more degenerate critical points is no longer 2-determined.

The cubic approximation of the fold catastrophe is an

example of a 3-determined family. The structure of a cusp

catastrophe is introduced with a 4-determined family, the

general condition for k-determinancy is given by:

d'V ( X; C)

dxk
= Vk(C) 0 (3.40a)

where for some control values C°:

V3(x;C°) = 0 for j = 1,2, ... k-i (3.40b)
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It must be acknowledged that all functions and

families of functions are not determined by some finite

k)7 Furthermore, we may be able to attach meaning to the

determinancy conditions. However, as we consider higher

order determinancy, new behavioral implications evolve.

The stable behavior of the market structure discussed in

Chapter II is based on an assumption of 2-determinancy. A

brief examination of a market dynamic under expectations

revealed conditions which violate 2-determinancy. Now we

propose to examine behavior within higher order

structures.

Consider a potential of a k-determined family,

expanded as a Taylor's series about the origin:

k+ 1V(x) = a1x + a2x2 + ... + ax + aklx
+ ... (3.41a)

where:

a1 = (1/i!)V.(O;C)

Since the family is k-determined we can eliminate the

18first k-i terms by a choice of control coordinates. A

nonlinear axis preserving transformation can be used to

eliminate terms of degree greater than k without altering

the qualitative properties of the function.19 Finally,



If k is even, the potential has a single minimum at the

origin. If k is odd, the potential has a point of

inflection at the origin. However, if we perturb this

singularity slightly the number and type of critical

points is subject to change. The potential (not

necessarily the family) is structurally unstable.

To classify the singularity we need to reveal all the

possibilities. This is called unfolding a singularity.

The control parameters which are required to unfold a

singularity are the canonical controls.

We may define a perturbation function:2°

z(x;C) V(x;C) - V(O;C) (3.42)

The perturbed function may be written:

V(x;C) = V(O;C) + z(x;C) (3.43)

The most general form of the perturbed singularity,

written as a Taylor's expansion about the origin, Is:

V(O;C) z + z1x + k-1 + (1+zk)xk

+ + (3.44a)

(3.42b)
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the coefficient ak may be absorbed into a length of scale,

yielding the singularity:



where:

= (l/i!)z1(O;C)

The constant term is of no consequence and may be

eliminated with a displacement in the value of the

perturbed function. The perturbed function is still a

member of the family of k-determined potentials.

Therefore, we may again eliminate terms of degree greater

than k with a nonlinear transformation. Finally, we can

rescale the function to eliminate the coefficient of to

yield:

V'(x'C) = zix' + zxl2 + + (3. 44b)

By collecting coefficients and translating the origin, we

can eliminate one additional term, chosen as

= z'jx"

:
:2 + ... + Zk2X

(3.44c)

The perturbation parameters, z, are continuous functions

of the controls C and may be treated as transformed

controls C'. Dropping primes we may write the canonical

form of a k-determined family:

2 k-I kV(x) = c1x1 + C2X Ck1X + x (3.45)
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The canonical form of a k-determined family of

functions is equivalent to the canonical forms of the

elementary catastrophes of one variable listed in Table

3.1. The canonical equations are arbitrary to a choice of

coefficient scales and the lower degree term which is

eliminated. More important than the exact form of an

equation is the number of canonical controls or the

codimension of a catastrophe. The minimum number of

dimensions, in which a given catastrophe structure can be

represented, is equal to the dimensions of the state space

(one) plus the codjmensjon of the structure. The

dimensions of the equilibrium set are equal to the

codimension of the family of potentials.

The canonical forms of the elementary catastrophes

can be obtained by another method. In this context, the

canonical controls are referred to as universal unfolding

parameters. The term unfolding parameter is suggested by

a geometric interpretation. For example, if we disturb

the singularity x4, which has a single minimum at the

origin, by allowing the controls to vary slightly about

the origin, the singularity unfolds into a complete array

of qualitatively distinct potentials as illustrated in

Figure 3.10.



Figure 3.10. The unfolding of the cusp catastrophe;shapes of the potentials in various regions of thecontrol space. Adapted from Saunders, p. 9.
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Earlier it was stated that degenerate equilibria

organize the qualitative properties of a family of

potentials. More precisely, the qualitative character of

a family is organized locally about the lowest

nonvanishing singularity of the family. The bifurcation

set of this singularity divides the control space into

different regions. Along a trajectory through the control

space which crosses the bifurcation set, behavior may

change suddenly. The cubic singularity of the fold

catastrophe divides the control space into one, a stable

region in which the price trajectory corresponds to a set

of dynamic attractors and two, an unstable region in which

there are no equilibria. Upon crossing the bifurcation

set into the unstable region the structure cannot persist

as a stable system. This division between stable and

unstable regions exists for any k-determined family for

which k is odd.21 It is not that the families of

potentials are mathematically unstable. The structure of

an odd degree catastrophe as a whole does not represent an

ordered and ongoing process.22

We will require that the structural instability

introduced by degenerate critical points is embedded into

a family of potentials in a stable way. In other words,

we require that the system as a whole retains an overall
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sense of organization. This becomes clearer with a study

of the geometry of the cusp catastrophe.

The Geometry of the Cusp Catastrophe

The canonical form of the cusp catastrophe is given

by the equation:23

V(x;C) = x4 + c2x2 + c1x (3.50)

The controls (c1, C2) are variable parameters of a family

of functions. The critical points of this family define a

two-dimensional surface given by the equation:

4x3 + 2c2x + C1 = 0 (3.51)

The equilibrium surface is embedded in three dimensions:

a one-dimensional state space and a two-dimensional

control space (Figure 3.11). The singularity set of

degenerate equilibria is given by the equation:

12x2 + 2C2 = 0 (3.52)

The state variable, x, can be eliminated from equations

3.51 and 3.52 yielding an expression for the bifurcation

set in terms of the controls:

(3.53)
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The cuspoid shape of the bifurcation set is illustrated in

Figure 3.11. Fold points of the equilibrium surface

correspond to the lines of the cusp in the control space.

We may recognize that the equations for the

bifurcation set are also an expression for the determinant

of a cubic equation. Outside the cusp, the determinant is

strictly negative and the potential has a single minimum.

Inside the cusp the determinant is strictly positive.

Potentials have three distinct critical points: two

minima and one maximum. At the vertex of the cusp the

potential has a single minimum corresponding to the

singularity x4. Along the remainder of the cusp

potentials have two critical points, a minimum and an

inflection point. The cusp and corresponding potentials

are illustrated in Figure 3.10.

It is clear thatevery potential in a 4-determined

family possesses at least one stable attractor.

Structural instability is confined to the cusp where one

of two stable equilibria disappears or, conversely, a new

equilibria forms. If a system is organized about a unique

minimum outside the cusp, the transition into the cusp is

smooth. At the cusp a new equilibrium forms, but the

system remains organized by the first attractor.24 Upon

leaving the cusp, this initial equilibrium disappears.



Attractor Surface
Stable Equilibria

Origin

Repeller Surface
Unstable Equilibria

2

Figure 3.11. The equilibrium surface of the cusp
catastrophe projection over the control surface.
Adapted from Zeeman Catastrophe Theory. p. 21.
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The system is suddenly reorganized about a new set of

equilibria. A path through the cusp is illustrated in

Figure 3.12 for the control and equilibrium surfaces.

While behavior may suddenly change, the overall structure

of the system is stable.

The canonical coefficients, c1 and c2, are referred

to as normal and splitting factors, respectively. The

names reflect that when C2 is positive the system responds

smoothly to changes in c1. As c2 becomes negative, the

equilibrium surface splits into two stable attractors

separated by a repeller surface. Cross-sections of the

equilibrium surface are illustrated for different values

of c1 and c2 in Figure 3.13.

A careful examination of the geometry of the cusp

catastrophe reveals an important aspect of its

construction. Outside the cusp, where the equilibrium

surface is single sheeted, the system responds smoothly to

changes in the controls. Here, the cusp exhibits the

properties of a 2-determined family of potentials. The

double sheeted section of the stable equilibrium surface

is constructed from a series of folds. Fold points form

the boundaries of the equilibrium surface along the lines

of the cusp. The apex of the cusp corresponds to the

singularity x4. This type of construction extends to
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FIgure 3.12. A sudden jump in equilibrium along a pathway
corresponding to a smooth control trajectory crossingthe bifurcation set.
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Fi.gure 3.13. Cross sections of the cusp catastrophe forgiven values of C2: Figure a) C2>g, Figure b) C2<Ø.



higher degree catastrophes whose geometry we will not

consider here.25 A swallowtail catastrophe contains a

series of cusps organized about a new singularity x5.

With the addition of each new singularity a new element of

qualitative behavior is added. The fold catastrophe

introduces a boundary point.
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Boundary points are aligned

separation of the

catastrophe. In assuming a

market dynamic possesses a cusp structure we can allow for

sudden as well as smooth transitions (Figure 3.14). At

the same time, we must acknowledge that an endless number

of behavioral alternatives, associated with higher degree

singularities, are being excluded.

The flow lines representing behavior in Figure 3.14

imply some underlying hypotheses or assumptions about the

interrelationships between the state and control

variables. Zeeman calls these interrelationships slow

feedback. They play a critical role in the application of

a cusp structure in economics, which we will consider in

Zeeman's- model of a stock exchange.

Zeeman's Model of a Stock Exchange

Zeeman proposed a model of a cusp catastrophe with

slow feedback to explain the unstable behavior of stock

with a cusp point to form the

equilibrium surface in a cusp



Figure 3.14. Stable and unstable behavior along paths
through the control space of a cusp catastrophe.
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exchanges.26 With some modifications, this model can be

applied to any market subject to speculative investment.

Zeeman's apparent motive in developing a model of a stock

market was to demonstrate an application of catastrophe

theory in economics. As a result, the economic and

mathematical development of the model is limited and

presented with little explanation. An effort has been

made to provide a mathematical background so that we may

now focus upon the economic aspects of Zeeman's

application.

In a general description of the operation of a stock

exchange, an index, I, is chosen to measure the state of

the market. The rate of change in the index over time, 3:

dl
3 = I = - (3.60)

dt

is regarded as a dependent variable. The variable 3

depends on the rate at which investors are willing to buy

and sell stocks. At the same time, there is a feedback

effect of information about 3 on the behavior of

investors.

Zeeman restricts attention to two broad classes of

investors, fundamentalists and chartists. Fundamentalists

are assumed to invest on the basis of factors such as

yield, long term growth potential, and so forth. In other
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words, the demand schedule of fundamentalists is

independent of the current state of the market. Chartists

base their investment strategies upon the behavior of the

market itself. As the name implies, chartists may use

recent information on the state of the market to predict

future market behavior. The demand schedules of chartists

are dependent upon the state of the market.

The activities of fundamentalist and chartist

investors are represented by two variables1 F and C. The

variable F represents the excess demand of

fundamentalists. The variable C is defined as the pro-

portion of the market held by chartists. Zeeman calls C

the speculative content of the market since speculators

tend to be chartists. A separate variable for the excess

demand of chartists is not introduced. Zeeman offers two

reasons for this. First is simplicity; he argues that

total excess demand can probably be represented as a

function of .J and chartist excess demand is simply the

difference between total and fundamentalist demand.

Second, chartist excess demand can be treated as an

internal market mechanism as opposed to fundamentalist

demand which is an external driving force.27 These

reasons are cause for some concern and the subject will be

taken up in greater detail in the following section.
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Zeeman derives the dynamic flow of the model from

seven hypotheses. These hypotheses or assumptions rest

between the formal mathematics and the economic content of

the model. The first three assumptions are used to

establish the structure of a cusp catastrophe. The

remaining four assumptions are used to generate flows

within this structure.

The first hypothesis states that J respond to C and F

much faster than C and P respond to J. This is an

assumption concerning temporal market structure. The

market is assumed to respond very quickly to changes in

excess demand in comparison to the rate at which market

participants move along their demand schedules. Zeeman

states:

"The main purpose of a stock exchange or money
market is to act as a nerve centre so that
prices ... can respond as swiftly and as sen-
sitively as possible to supply and demand.
Changes in C and F can cause changes in J within
minutes, whereas changes in J have a much slower
feedback on C and F. The response time for C
may be a matter of hours, but is more likely to
be days or weeks, while the response time for2
can be months, due to the research involved."

As a general model of exchange, the process of price

adjustment may represent a diffuse as opposed to a

centralized organization. The rate at which the system

approaches equilibrium may be much slower. Furthermore,
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Zeeman's description of the response time for buyers and

sellers confuses a movement along a schedule with a shift

in supply and demand. The collective response to changes

in price could be faster. However, fast and slow flow

assumptions are necessary if we are to make use of some

form of equilibrium analysis. To describe the state of a

system by equilibrium values, we are in fact assuming that

equilibrium is achieved sufficiently fast to ignore the

process of adjustment.29

Zeeman's second and third hypotheses give the

conditions under which a discontinuity in the market

dynamic occur. Two: When C is small then J is a smooth

function of F passing through the origin. If a market is

dominated by fundamentalists, then the price trajectory

moves toward a point of static equilibrium (Figure 3.15a).

There are no singularities along the dynamic. Three:

When C is large, a discontinuity is introduced into the

dynamic, and static equilibrium is no longer stable. A

slight disturbance of the index will be sustained by

chartists creating an extended bull or bear market.

Zeeman offers a mathematical argument for why the graph of

the dynamic is flOW disconnected (Figure 3.15b). The

argument is complex, and it is based on Thom's

classification theorem which is, in turn, used with this
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Figure 3.15. Price trajectories along cross sections of acusp market Structure: Figure a) C-C<Ø, Figure b)C-C,>Ø. Adapted from Zeeman On the Ustabje Behaviorof Stock Exchanqes, p. 365.
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assumption to generate the model. However, economic

reasons for the discontinuity were considered in the

second section of this chapter.

A simplified statement of a part of Thom's theorem

may help clarify Zeeman's synthesis of a cusp structure:

for a family of smooth potentials of a single state

variable parameterized by two controls, the equilibria of

this family form a smooth surface, and the only

singularities are fold curves and cusp catastrophes.3°

Under the assumption of smoothness and by reducing the

problem to one state and two control variables, the most

complex thing that can occur is a cusp catastrophe.

Whether or not this framework provides an adequate

description of a system is not a question addressed by

Thom's theorem. Given the description is adequate and the

system is structurally stable, then the existence of a

discontinuity (hypothesis three) can only be attributed to

a cusp catastrophe. From hypothesis two, we may infer

that the cusp is not located at the origin. Unstable

behavior occurs only after some critical level of

speculation is reached. Finally, by hypothesis one,

behavior is constrained to be near the equilibrium

surface. Any control trajectory which crosses through the



cusp will result in a sudden change in the state of the

market. This synthesis is summarized in Figure 3.16.

The canonical form of cusp is given by the

equation:

- (C-00)J - F = 0 (3.61)

The critical level of speculation at which the

discontinuity begins is given by C=C0. The surface of

stable equilibria satisfy the inequality:

332
+ > C0- (3.62)

The complement of the attractor surface is the repeller

surface consisting of unstable equilibria, given by the

equation:

332
+ < C0

27F4(C-C ) =0

(3.63)

(3.65)
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The boundary of the equilibrium surface is the fold curve

given by the equation:

332
+ = C (3.64)

The projection of the fold curve onto the control the

plane is the cusp and has the equation:



C
Figure 3.16. A cusp catastrophe model of a dynamic market

structure. Adapted from Zeeman On the Unstable
Behavior of Stock Exchanqes. p. 368.
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In general, these equations are a variant of the canonical

forms, presented in the previous section, for a cusp

catastrophe located away from the origin. They are

intended to represent the model, illustrated graphically

in Figure 3.16, only to within a diffeomorphism. We can

construct any number of equivalent models through a smooth

reversible transformation of coordinates. We may bend,

stretch and twist Figure 3.16 without altering its

qualitative properties so long as we do not cut, tear, add

or eliminate any folds.

Zeeman's remaining four hypotheses are used to

generate the global dynamics of the model. These

hypotheses deal with the slow flow impact of the changing

index on the controls. Four: C has the same sign as J.

A bull or rising market attracts speculation by chartists.

When j is positive, the proportion of speculative money in

the market increases. We encountered a similar proposal

earlier in this chapter as the presence of a price trend

gave rise to speculative expectations and increased

reservation demand. However, on the other side of

Zeeman's hypothesis, a bear or falling market repels

chartists and the proportion of speculative money in the

market declines. In our treatment of reservation demand

falling prices may also lead to speculative expectations
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and increasing speculative content in the market. For the

present, we will hold to Zeeman's assumption.

Five: The rate of change in fundamentalist excess

demand is negative after a large rise in the index, even

though the index may still be rising. Zeeman contends

that as a bull market extends, fundamentalists begin to

view the price of a stock as overvalued and start to cash

in. Thus, excess demand falls as the index continues to

rise. This argument is somewhat contrary to the idea that

fundamentalist demand is independent of the state of the

market and again confuses a demand shift with a movement

along a schedule. However, the hypothesis is consistent

with a basic economic assumption concerning excess demand:

as prices rise the quantities suppliers are willing to

offer increase, while the quantities consumers are willing

to purchase decline. Applying this assumption to the

purchase and sale of stocks by fundamentalists, excess

demand falls as the index rises.

Six: Fundamentalist excess demand is declining after

a short falJ. in the index Zeeman's argument here is that

fundamentalists trade on a margin and opt to sell after a

fall in price greater than the margin. In other words, a

decline in the index which exceeds an investor's margin

leads to a policy of cutting losses through liquidation.
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As a result, fundamentalist excess demand falls after an

initial decline in the index. This assumption is contrary

to the laws of supply and demand. The concept of a buying

or selling margin based on price changes is more

appropriate as a speculator's strategy. While this

hypothesis may be unacceptable, it does not greatly alter

the slow dynamic flow due to the following hypothesis.

Seven: Fundamentalist excess demand declines if the

index has been falling for some time and is beginning to

flatten out. A recovering market is an attractive

investment to fundamentalists as they perceive stocks to

be undervalued. Short-run losses (in capital value) are

likely to be offset by greater gains in the long-run.

Thus, excess demand increases as prices continue to fall.

This hypothesis is consistent with the laws of supply and

demand. However, the logic of this and the previous two

hypotheses is questionable. This is not to say we would

not expect to observe investment under these strategies.

They are based on expectations for capital gains or losses

under prevailing market conditions and, therefore, might

be termed speculative. Since these assumptions will be

disposed of in our treatment of competitive markets, a

detailed discussion is not warranted. We will simply
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examine the dynamic flows implied by hypotheses four

through seven.

The changes in the control values are shown as

trajectories through the control space and as slow flow

lines along the equilibrium surface in Figure 3.17. The

direction of the slow flow vectors implied by the four

hypotheses are the sum of components, in the directions of

the control coordinates, for values of J on the

equilibrium surface.

We may use Figure 3.17 to illustrate the global

dynamics of the model. Starting from an initial point of

static equilibrium, a small disturbance, in the absence of

other external forces, may not disrupt the stability of

the market. If the proportion of speculative investment

remains small, the market will return to a position of

static equilibrium. If an external disturbance, resulting

in an increasing index, attracts a sufficient level of

speculative investment a smooth return to static

equlibrium is no longer possible. The bull market is

sustained as the trend continues to attract chartists.

Fundamentalist demand is declining and eventually becomes

negative. After a delay, the bull market crashes and a

recession begins. Finally, the market begins to move



FIgure 3.17. Zeeman's model of a stock exchange; a cusp
catastrophe with slow feedback. Adapted from Zeeman
On Unstable Behavior of Stock Exchanqes, p. 368.



formulae:

* 1/2
slope of the recession = J = L(C-00)

J = ((C-C )/3)
t 0

1/2

3. 66a)

(3. 67a)
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toward a point of static equilibrium as fundamentalist

demand increases and chartists withdraw.

Zeeman draws two qualitative conclusions based on a

cusp market structure. First, the greater the proportion

of speculative investment the greater the slope of the

recession (rate of decline in prices). Second, the

greater the proportion of speculative investment the

longer the delay before the market crashes (measured in

terms of fundamentalist excess demand). As a corollary of

Thom's theorem for C > C, Zeeman gives the following

where L and K are smooth non-vanishing functions of C.

For the canonical form of the cusp catastrophe L and

K are constants. A recession begins on the lower sheet at

a point corresponding to the cusp. Therefore, we may

utilize equation 364 to determine the slope of the

recession. Equation 3.64 may be solved for the terminal

slope on the upper sheet:

*
delay = F = K(C-00)312 (3.66b)



1 (C-C
)/3)l/2 (-2/3)(C-C ) 00 0

yielding the quadratic equation:

+ ((C-C )/3)'2J - (2/3)(C-C ) = 0
0 0

The roots of this equation are the remaining roots of the

equilibrium equation which can be obtained from the

quadratic formula as:

r = ((C-C )/3)
2 0

r = -2(C-C )/3)
3 0

The second root is repetitious, corresponding to the fold

point on the upper sheet. The third root, r3, is the

initial point of the recession on the lower sheet.

1/2

1/2
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Zeeman reports an identical formula for the slope of the

recession which is incorrect. There is no derivation but

later conclusions are based on a correct formula. Since

we have one root of the equilibrium equation (3.61), we

can perform the following synthetic division:

1 + 0 - (C-C ) - F /((C-00)/3)1'20

(C-C )/3 - 2(C-00)3"2/3 ..JT0



Therefore, the slope of the recession is given by the

formula:

3 = -2(C-C )/3)1/2
r a

(3. 67b)
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Comparing equations 3.67a and 3.67b shows that for the

canonical form of a cusp catastrophe, the initial slope of

the recession is twice as steep as the rate of increase in

price before the crash.

Within the stable region of the model the transition

between rising and falling markets is smooth, as

illustrated in Figure 3.18a. When the proportion of

speculative investment is large the transition is sudden,

creating a sharp maximum as in Figure 3.18b. For a

canonical cusp catastrophe, the angle of descent () is

twice the angle of incline (CL):

cot() = 2cot(CL) (3.68)

In general, the equilibrium surface is only

equivalent to, not the same as, a canonical form.

However, Zeeman states that this relationship provides an

approximate form for empirically evaluating an implication

of the general form of a cusp catastrophe; the greater the

rate of price increase in a bull market, the greater the

rate of decline in a recession.31
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figure a te

figure tifle

Figure 3.18. Changes in price over time: Figure a)
smooth transition, Figure b) sudden transition.
Adapted from Zeeman On the Unstable Behavior of Stock
Exchanqes, p. 366.
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Zeeman notes that the dynamic behavior of a cusp

structure can be accelerated or slowed by the actions of

external forces. Sufficiently large and frequent external

disturbances could completely obscure the underlying

dynamic. Zeeman fails to consider a second reason why the

potential for catastrophic behavior may not be realized.

The response of investors to market information, such as a

price trend, is unlikely to reflect deterministic

relationships. Attitudes of investors are subject to

change for reasons outside the domain of economic

rationale. A price trend may or may not attract

significant levels of speculative investment. In contrast

to the mechanical relationships postulated between excess

demand and price movements, the slow flow hypotheses,

relating prices to speculative demand, represent

behavioral alternatives. In other words, we may use

dynamic flow hypotheses to try and capture tendencies

among market participants. Hopefully, we can identify

conditions under which speculative behavior is more or

less likely to occur.

The dynamic flows illustrated on the equilibrium

surface of a cusp catastrophe show the potential impact of
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speculative demand for short-term capital gains. The

behavior of chartists can be viewed as a form of

speculative reservation demand. Chartist demand for

stocks may increase with increasing prices when

expectations for a continuing trend are projected to yield

a return greater than the opportunity cost of the

investment32 In a more general model of a competitive

market for an inventoried commodity, expectations for a

continuing trend may lead to speculative disinvestment as

well as investment. Expectations for capital losses based

on declining prices may induce the mirror image of the

behavior outlined in Zeeman's model. Still, it appears

that a model of a cusp catastrophe with slow feedback can

be readily extended to a competitive market for a stored

commodity.

A Dynamic Model of a Competitive Market for a Stored
Commodity

Before attempting to recast Zeeman's model of a stock

exchange into the framework of a competitive market for a

stored commodity, the assumptions underlying the

development of the model should be reconsidered. Our

motivation here is two fold. First, the application of a

catastrophe theory to market structure presents some

methodological problems which need to be addressed.
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Second, to apply a cusp narket structure as a model of

exchange, we need abetter understanding of the economic

implications and limitations of the model.

Zeeman's main hypothesis is simply a definition of

variables. The state of a market is measured by the rate

of change in an index, which we may now equate with the

rate of change in price, P. Prices are determined,

relative to some initial value, by the time path of P.

defining two types of investors, fundamentalists and

chartists, Zeeman distinguishes between two types of

supply and demand relationships. Fundamentalist demand or

supply schedules are not dependent on the current state of

the market. Quantities demanded or supplied are

determined at each price by conditions external to the

market. A change in price results in a movement along a

given schedule. Market relationships which are

independent of the state of the market are referred to

here as nontransitory. Chartist demand or supply

schedules are determined, at least in part, by current

market conditions. Changing prices generate future price

expectations which shift market demand or supply. Market

relationships which are dependent on the current state of

a market are referred to here as transitory. The

activities of fundamentalist and chartist investors, ii



179

determining stock prices, are represented by two

variables; fundamentalist excess demand and the proportion

of the market held by chartists. Fundamentalist excess

demand may be equated with nontransitory excess demand in

a competitive market. However, the proportion of a market

held by chartists, intended as a measure of speculative

content, may not adequately represent the impact of

transitory market relationships. We should try to treat

transitory supply and demand relationships explicitly

before assuming they are an implicit component of the

model.

Zeeman offered two arguments for not defining an

explicit variable representing transitory excess demand.

First, he states that total excess demand can probably be

represented as a function of the rate of change in price.

Transitory demand would then simply be the difference

between total and nontransitory excess demand. If we

begin with the assumption that the rate of change in

price, at a given point in time, may be written as a

function of total excess demand (Wairasian adjustment):

P(t) = f(EDN(t) + EDT(t)) (3.69)

where;

EDN(t) = nontransitory excess demand at time t

EDT(t) = transitory excess demand at time t
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then, to write total excess demand as a function of P we

must appeal to the inverse function theorem. The

derivative of P with respect to excess demand must be

nonvanishing at every point (1-determined). As a result,

we may expect the relationship between prices and excess

demand to be,structurally stable. Hence, any isolated

structural instability must involve both excess demand and

prices. This leads to an intuitively appealing conclusion.

A sudden change in prices is attributable to a sudden

change in transitory excess demand. In a traditional

market model changes in supply and demand are generated

outside the market. Here, transitory excess demand and

its eventual collapse is generated internally. This meets

with Zeeman's second argument that the response in

transitory demand or supply to changing prices is an

internal driving force.

The most direct way to incorporate the

interrelationship between changing prices and transitory

excess demand into a model may be to include transitory

excess demand as a state variable as opposed to a control.

This helps to explain why discontinuities or sudden

changes may occur. Suppose an upward price trend gives

rise to speculative demand, sustaining the trend and

allowing nontransitory excess demand to become negative.
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As the rate of increase in prices slows, transitory demand

eventually begins to decline. As a result, the trend

begins to terminate more quickly. A more rapid decline in

P brings about a faster decline in transitory demand and

consequently, a faster decline in P. The interaction

between transitory excess demand and prices culminates in

a nearly vertical (fast) flow to a declining market.

There is a sudden change in both transitory demand and the

rate of change in price. Introducing transitory excess

demand as a state variable alters two aspects of the

model's dynamic structure. First, the temporal flow

assumptions are altered. The rate of change in price and

transitory excess demand are adjusting at nearly the same

rate. Second, the model is not structurally stable over

some potentially relevant control values.

Given that we may regard a market as a smoothly

responding equilibrium system, we may represent the

process of price adjustment as a qualitatively linear

function of total excess demand. Given the occurrence of

discontinuitjes in an otherwise smoothly responding

equilibrium system, the simplest structurally stable

representation of the pricing process is a cusp

catastrophe. In considering two independent state

variable, the next simplest structurally stable model is a
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double cusp.33 With a total of eight canonical controls,

a double cusp is very difficult to describe and its

geometry is beyond interpretation. To reduce the model

back to a single cusp, we may make the assumption that the

rate of change in price and transitory excess demand are

functionally dependent. Unfortunately, this does not

bring us closer to a consistent interpretation of the

control variables.

Zeeman's canonical equation for a cusp catastrophe

with slow feedback may be rewritten and relabeled in the

form:

P3 + SP = SP + N (3.70)

where;

N = nontransitory excess demand
S = speculative content

S0 = the location of the cusp point, >0.

If we interpret the term SP to be transitory excess demand

the equation may be rewritten:

+ SOP = Total Excess Demand (3.71)

Since S0 is taken to be greater than zero, the rate of

change in price is expressed as a qualitatively linear

function of total excess demand.34 The linear equation



for transitory demand as a function of price may be

written:

EDT = SF' (3.72)

The splitting factor may be interpreted as the slope of

the nontransitory excess demand curve. While no real

argument can be made for the validity of this

interpretation, it does provide a reasonably well defined

market model with a cusp structure.

Assuming nontransitory excess demand is a function of

price, the cusp market model may be written:

- (S-S)P - g(P;C) = 0 (3 .73)

where;

g(P;C) = nontransitory excess demand
C = a vector of exogenous controls.

Holding the exogenous controls constant, the slow flow of

the normal factor is determined by the slope of the

nontransitory excess demand curve. Given that the slope

of the excess demand curve is negative, the feedback flow

of prices on nontransitory demand is directed toward a

state of equilibrium. The feedback flow of price

information on the slope of the transitory demand curve

has not been established. A large number of factors may
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influence speculation: the cost of holding inventories,

the magnitude of a price trend, the duration of a trend

and the perception of risk are at least four price

dependent factors that may effect the willingness of

individuals to speculate on current price changes. The

slow feedback of price information on the slope of the

transitory excess demand curve may be complex and varied.

If we do not constrain the way in which market

information is incorporated into expectations we can not

predict the flow of speculation. We can consider a wide

range of behavioral alternatives. We can examine a few

such alternatives as a means to demonstrate the five

properties, or flags, of a cusp catastrophe.

Catastrophe Flags

Three sets of alternative slow flow assumption are

illustrated in Figures 3.19, 3.20 and 3.21. In the first

figure, slow flows generating stable and unstable behavior

are shown. If changing prices fail to stimulate a

sufficient level of speculation, the slow flow remains on

the single sheeted section of the equilibrium surface.

There is a smooth return to a stable equilibrium. If

price changes generate a sufficient level of speculative

content, the slow flow is carried onto the double sheeted
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section of the equilbirium surface. As the slow flow

crosses the cusp there is a sudden jump between market

states. Sudden jumps are one characteristic of

catastrophic behavior. In the second figure, highly

speculative feedback flows illustrate a second property of

a cusp catastrophe, divergence. A relatively small

external disturbance leads to divergent paths of dynamic

adjustment. The third illustration shows a more complex

pattern of speculative flow. Increasing prices generate

sufficient speculative content to extend the trend over

the upper sheet of a bull market. The eventual collapse

of the trend onto the lower sheet initiates a bear market.

Falling prices stimulate a speculative reduction in

inventory demand which carries the slow flow back through

the cusp. The bear market terminates with a sudden jump

to a rising state. Increasing prices carry the market

through another cycle. The three remaining flags or

behavoral implicaitons, of a cusp catastrophe are

illustrated in this example. The third flag is

inaccesibility. A stable state of equilibrium is

inaccessible from within the cusp as the attractor sheets

of the equilibrium surface are separated by a repeller

sheet of unstable dynamic equilibria. The forth

catastrophe flag is bimodality. Given that price
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Ftgure 3.19. Alternative slow flow assumptions for the
splitting variable: stable and unstable behavior.
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Figure 3.20. Alternative slow flow assumptions for the
splitting variable: divergent response with small
variations.
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Figure 3.21 Alternative slow flow assumptions for the

splitting variable: cycical price oscillations.
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movements attract sufficient speculative inventory

changes, the flow of the controls continually crosses the

cusp. The market tends to exist in either a rising or

falling state. The fifth catastrophe flag is hysteresis,

the occurrence of irregular cycles. Control flows are

unlikely to follow identical paths through the cusp.

Hence, repeated crossing of the cusp generates irregular

price cycles.

Catastrophe flags are often cited as evidence of an

underlying catastrophe structure. In a closed system this

may be true. In an open system such as a market,

catastrophe flags become very subjective criteria.

Changes in the exchange environment could readily mimic

the properties of catastrophic behavior. This is an

empirical problem and a topic considered in greater detail

in the following chapter.

Summary

In the first part of this chapter, a simple profit

maximization model of a single period inventory investment

opportunity was developed. The model was used to classify

the impact of current price information on price

expectations. It was then shown that a stable market
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dynamic is disrupted by a sufficient level of speculative

demand.

The speculative dynamic was examined through higher

degree approximations of a market potential. A quartic

approximation was shown to be the lowest degree

approximation which yielded an appropriate dynamic

structure: the structure of a cusp catastrophe.

Some of the more important theorems of catastrophe

theory were surveyed. Generally, the implications of

these theorems for economic applications, appeared to

be very limited. The more general methods developed in

Chapter Two proved to be a greater value in this regard.

The geometry of a cusp catastrophe was examined.

This was followed by a detailed review of Zeeman's model

of a stock exchange based on a cusp catastrophe with slow

feedback. The economic content of the model development

presented by Zeeman was inconsistent. However, the model

did appear to offer an adequate framework for the analysis

of speculative behavior. A cusp model was readily

extended to a competitive market for a stored commodity.

An attempt was made to address some of the problems

identified in Zeeman's development of cusp market

structure. The effort was not overly rewarding. The
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limitations of the model tended to touch on the limits of

economic theory.
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Endnotes

1
Models based on optimizing behavior have been subject
to substantial criticism. Much of this criticism
centers on the degree to which individuals are able
to optimize over time. A survey of this problem and
an alternative behavioral model are presented by
Ronald A. Heiner, "On the Origins of Predictable
Behavior." American Economic Review, Vol. 73(4):560-
595. In general, an adequate analytical framework
for non-optimizing behavior does not exist and
optimizing behavior remains a central assumption in
economic theory. Our interest in a profit maximizing
demand model is limited to showing how expectations
may easily disrupt market stability.

Rather than treating inventory and supplies
separately, available inventories are included in
total supplies.

Heiner suggests that a crossover mechanism is an
alternative to catastrophe modeling. While this
point is not pursued in detail, it is of interest to
note that he makes an analogous classification of
expectations. See Heiner, pp. 582-83.

Figures 3.2 and 3.3 may be viewed as cross sections
of the cusp catastrophe.

The point of equilibrium is chosen as the coordinate
origin.

Ibid.

The cubic coefficient is absorbed into a length of
scale transformation.

For a detailed treatment of cubic equations see a
reference on the theory of equation. The source of
this material is from Nelson Bush Conkwright,
Introduction to the Theory of Equations (New York:
Ginn and Company 1957) pp. 68-77.

This discussion of a fold catastrophe is drawn from
Saunders, pp. 40-1.
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10 For a more detailed treatment of quartic equations
see Conkwright, pp. 78-86, or a similar reference on
the theory of equations.

11 Since we are assuming there are no price-quantity
interactions, this is a somewhat trivial application
of the splitting lemma. For a better example, see
Saunders, pp. 21-5. For a more rigorous discussion
see Gilmore, pp. 23-6 and pp. 41-2.

12 The relation implies equivalence after a d!ffeo-
morphism.

13 Here structural instability refers to unstable
behavior attributable to internal market
interactions. The term structural stability or
structural instability may have a number of meanings
depending on context in which it is used. This may
seem unfortunate, but definitions must be completed
to suit the problem at hand (Saunders, pp. 17-8).

14 A more detailed discussion is given by Zeeman,
"Catastrophe Theory," pp. 22-27.

15 A simple introduction to jets and determinancy is
given by Saunders, pp. 30-5. This material is
covered more thoroughly by Foston and Stewart, pp.
123-129, and Gilmore, pp. 615-20.

16 This was developed in Chapter II, pp. 68-77.

17 An example of a function which is not finitely
determined is given by Saunders:

f(x) = exp(-1/x2)

18 This can be seen from the determinancy conditions
given by equations 3.40a and 3.40b.

19
Removal of terms higher than degree k (by the method
shown in Chapter II) does not alter any qualitative
properties of the family since each potential in the
family is determined by a term of degree less than or
equal to k.

20 This discussion of perturbations is based on a
derivation of a general form for catastrophes of one
variable by Gilmore, pp. 42-5.
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23
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A mathematically unstable family of functions
contains members that, when perturbed slightly, they
are excluded from the family. By defining the
parameters of a determinant family to be the
coefficients of its unfolding terms, all qualitative
types of functions are included in the family.
Therefore, the family is structurally stable. The
family may contain isolated potentials which are
structurally unstable, isolated in the sense that we
are unlikely to encounter consecutive potentials with
degenerate equilibria (they are nowhere dense,
comprising geometric objects of a degree lower than
the family) and unstable in the sense that nearby
potentials are not of the same type. The way in
which these structurally unstable potentials are
embedded into the family determines the structural
character of the family as it represents a given
process.

For an odd degree catastrophe, the degenerate
critical points of the potential divide the control
space into at least one empty regime (a region with
no stable equilibria). The highest time of the
equilibrium equation is of an even degree. For some
control values the equilibrium equation may be
written:

k where k< 0

which has no real roots.

This is standard treatment of the cusp catastrophe.
For a brief discussion see Saunders, pp. 42-4. For
an extended treatment see Gi].more, pp. 97-106.

We are assuming that the system remains organized
about the nearby local minimum until it disappears.
This is called the perfect delay convention. A
system which seeks an overall global minimum obeys
what is called the Maxwell convention. These
conventions represent extremes. There are an endless
number of intermediate or barrier conventions. For a
detailed discussion of conventions, see Gilmore, pp.
141-146. For a brief review see Saunders, pp. 84-6.
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25
See E.C. Zeeman, "Catastrophe Theory." Scientific
American 234(April 1976):65-83. Published in
extended form in EC. Zeeman, Catastrophe Theory,
Selected Papers 1972-1977, pp. 1-77, P. 25.

26
Zeeman, "On the Unstable Behaviour of Stock
Exchanges."

27
Zeeman, "On the Unstable Behaviour of Stock
Exchanges," p. 362.

28
Zeeman, "On the Unstable Behaviour of Stock
Exchanges," p. 363.

29
The assumption is not obviously reasonable or
unreasonable. It is necessary in that we lack an
adequate analytical framework for pure disequilibrium
analysis. See Poston and Stewart, pp. 423-5.

30
See Zeeman, "Catastrophe Theory," p. 23.

31
See Zeeman, "On the Unstable Behaviour of Stock
Exchanges," p. 370.

32
An admittedly naive approach in that it does not take
relative risks into account.

33
Zeeman, "The Umbi].ic Bracelet and the Double-Cusp
Catastrophe." pp. 563-565.

34
The slope of P with respect to total excess demand is
nonvanishing as the discriminant of the modified
cubic equaiton is nonvanishing. Therefore the
relationship is structurally stable.



CHAPTER IV

APPLICATIONS

Motivation

We have developed a theoretical framework to examine

the impact of price expectations for a stored commodity in

a competitive market. In this chapter we will consider

quantitative applications of this framework. The

methodology explored is directed toward answering three

questions. First, is the interrelationship between prices

and the formation of expectations a significant force of

price instability in agricultural markets? Second, can

this interrelationship be adequately represented within a

dynamic model of a cusp catastrophe with slow feedback?

Third, what implications does a cusp structure hold toward

price analysis in the evaluation of marketing alternatives

or public policy?

The concepts and methods of catastrophe theory are

qualitative. Quantitative applications of a catastrophe

model require a number of facilitative assumptions. Some

of these assumptions are commonly encountered in

quantitative economics, as economic theory is qualitative.

However, the intrinsically nonlinear behavior represented
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by a cusp catastrophe presents several special problems.

In the first part of this chapter some of the

methodological problems of identifying and modeling

catastrophic market behavior are discussed.

Simulation experiments provide a means to investigate

qualitatively nonlinear market structures. Simulations

can be used to explore quantitative properties of a model

and to demonstrate how alternative types of behavior can

be represented within a model. Results from simulation

experiments can be subjectively compared to observed

prices, for a stored commodity.

In the remaining sections of the chapter the pricing

structure of a specific commodity is investigated. An

attempt is made to evaluate the significance of future

price expectations in the determination of wheat prices.

Generally, hypotheses are designed under the premise of an

underlying cusp structure. The implications of these

hypotheses are tested using price data from selected cash

markets and aggregate information on domestic supplies and

disappearances.

Catastrophic Market Behavior: Empirical Methodoloqy

In discussing the application of catastrophe theory

in social sciences, Saunders states:



"If we observe in a system some or all of
the features which we recognize as
characteristics of catastrophes - sudden
jumps, hysteresis, bimodality,
inaccessibility and divergence - we may
suppose, at least as a working hypothesis,
that the underlying dynamic is such that
catastrophe theory applies. We then choose
what appears to be appropriate state and
control variables and attempt to fit a

1catastrophe model to the observations."

The features noted by Saunders are the properties or flags

of a cusp catastrophe presented in the previous chapter.

Unfortunately, these characteristics can not be uniquely

attributed to an underlying catastrophe structure in an

economic system.

There are two reasons why catastrophe flags may not

be indicative of a catastrophe structure. First, economic

data are discrete. Reported changes in prices and other

economic variables are discontinuous. What may constitute

a sudden change is a very subjective evaluation. Second,

an economic system, such as a market, is open to outside

forces. The action of external forces could comprise an

alternative explanation for any observed catastrophe

flags. If the exchange environment is constantly changing

then static equilibrium may appear inaccessible.

Oscillations in nontransitory supply and demand may

account for observed price cycles (hysteresis) and

biniodality. Divergence may be the result of an
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unaccounted relevant external variable. At the same time,

our inability to explain the occurrence of this type of

behavior with standard econometric techniques does suggest

the possibility of an underlying catastrophe dynamic.

Given the possibility of a catastrophe dynamic, one

alternative is to use nonlinear estimation techniques to

construct a quantitative model and apply goodness of fit

tests. However, there are two reasons why this approach

is unlikely to be successful. First, it is very difficult

to obtain measures of the control variables. Rene Thom,

in discussing quantitative applications of catastrophe

theory, states that where explicit observable

interpretations are given to the unfolding parameters

(controls), many, if not a].)., of these interpretations

will break down.2 Second, the shape of catastrophe

surface (its qualitative topology) is poorly suited to

nonlinear estimation. Nonlinear estimation techniques,

such as Marquardt's method, utilize local second order

information.3 The geometry of a catastrophe surface is

not determined by second order information. Simulations

and indirect hypothesis tests provide alternatives to

direct estimation. However, Thom's statement points to a

general problem in quantitative analysis.
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In our theoretical model of a cusp market dynamic the

normal factor was defined as nontransitory excess demand.

Under ideal conditions it may be possible to obtain good

econometric estimates of total excess demand (the change

in price is assumed to be a qualitatively linear function

of total excess demand). However, there is no plausible

means to differentiate between transitory and

nontransitory excess demand since the composition of

expectations is unknown. Furthermore, under practical

conditIons, econometric estimates of excess demand are

likely to be unreliable as they must be obtained

indirectly from partial adjustment models. The splitting

factor was only tentatively defined as the slope of the

transitory excess demand curve. This simply represents a

possible measure of speculative content or the willingness

of individuals to speculate on current price trends. We

may assume that the splitting factor is dependent on

current market information, such as the magnitude and

duration of a price trend, which is observable. However,

there is no way to determine how market information can be

incorporated into an appropriate quantitative measure of

speculative content.

Catastrophe theory classifies structures into

analogous groups, based on their qualitative
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characteristics. Quantitative analysis requires explicit

definition of the relationships under investigation. To

the extent that we can design quantitative models and

hypotheses that reflect the qualitative properties of a

given market structure, quantitative results may hold some

insight into the nature of price determination. However,

we should temper our desire for experimental confirmation

of an underlying catastrophe or any other market

structure. Quantitative economic analysis rests on

structural assumptions which are designed to generate a

given set of quantitative results. These results, in

turn, cannot be offered as evidence for the existence of a

given structure. For example, we can not confirm that

prices respond to excess demand with a Walrasian price

adjustment model.4 The model used prices to construct a

measure of excess demand. We can not confirm that prices

are responding to transitory demand if we define

transitory demand as a response to changing prices. The

value of an economic model, whether qualitative or

quantitative, is in the way it may be used to present an

organized picture of a very complex system.
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Simulations: Model Development

Simulation experiments were conducted to develop a

quantitative model of a competitive market based on a cusp

catastrophe with slow feedback. The objective of

constructing a simulation model is to make a comparative

examination of a cusp price dynamic: first, to determine

if a cusp structure can be used to generate pricing

patterns similar to those observed for a stored commodity,

and second, to identify any observable characteristics of

a cusp market structure.

The general design of the simulation model is a

Walrasian price adjustment system. A canonical form of a

cusp catastrophe is utilized as a dynamic fast flow

equation. Slow flow equations are developed for the

normal and splitting factors. The complete model is a

first order differential equation which is solved using an

iterative approximation procedure. The final design of

the model reflects an extensive trial and error effort.

Representative results are presented for three simulation

scenarios. First is a closed system adjustment to an

initial condition of market disequilibrium. Second is an

open system adjustment to continuous external changes.

Here the model is used to generate seasonal pricing

patterns. Third is an open system adjustment to
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continuous external changes and random disturbances.

Random disturbances are used to represent nonseasonal

changes in the exchange environment.

The theoretical market model of cusp catastrophe with

slow feedback is based on a rather unrestrictive set of

assumptions. Consequently, the model was specified only

to within a diffeomorphism of the state and control

variables. A number of facilitative assumptions were

required to specify the scaler equations required for the

simulation. Simplicity was a primary criterion for

developing the model. This is reflected in a choice of

canonical equations wherever possible. A second criterion

was stability. In the absence of external disturbances,

the model should converge to a stable point of static

equilibrium. It is important to note that the structural

stability of the cusp catastrophe does not imply

convergence to equilibrium. The convergence properties of

the model are determined by the slow flow equations and

must be established experimentally. A third criterion is

flexibility. The choice of model parameters should allow

a wide range of behavior to be represented.

The canonical form of a cusp catastrophe selected for

the fast flow equation is given by:

- (S - S0)P - N = 0 (4.20)



where;

N = a normal factor
S = a splitting factor
S = a fixed parameter locating the cusp.

The normal factor is taken to represent nontransitory

excess demand:

N
= ND NS (4. 21a)

where;

ND = nontransitory demand
°NS = nontransitory supply

The supply and demand equation were assumed to be linear.

The normal factor equation was respecified as a function

of price and the external supply and demand parameters:

N = (b1 - b2)(P - (u-v)/(b1 - b2)

where;

(4. 21b)

A more convenient form of the equation was used for the

simulation, written:

N = c5(P - (4. 21c)
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b = slope of the demand curve
b = slope of the supply curve
U = demand shift parameter
V = supply shift parameter



where;

= a fixed adjustment rate
= static equilibrium price determined by

the nontransitory supply and demand
parameters.

The splitting factor, which may represent the slope of the

transitory demand curve, is taken to be a function of the

absolute magnitude and duration of the current price

trend. The magnitude of a trend is assumed to be

positively related to the splitting factor while the

duration of a trend is assumed to be negatively related.

It was required that the controls vary continuously with

time. Both the magnitude and duration of the current

trend are discontinuous parameters. Breaks occur at the

termination of a trend. This presents some problems which

should be considered in detail.

One way in which the splitting factor may be

specified as a continuous function of time is to assume

that the rate of change in S (S) is a function of the

absolute magnitude and duration of the current price

5
trend:

S - f( t) (4.22)

where;

= the magnitude of the current trend
td = the duration of the current trend.
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The solution to this open form equation may be

approximated with a discrete procedure. This was the

initial approach taken. A number of linear and nonlinear

forms were investigated. In general, these efforts proved

unsatisfactory. It was difficult to scale prices and

price changes to desired levels. Model performance and

stability were affected by relatively small parameter

changes. A closed form equation was needed.

It was helpful to examine a number of known solutions

to differential equations with parameters which are

discontinuous with respect to time.6 Generally, an

explicit solution to a discontinuous differential equation

requires prior knowledge of the magnitude and location of

any discontinuities. The solution commonly involves a

series of time dependent functions, corresponding with the

intervals between discontinuous points, which together

vary continuously with time. Here, discontinuities occur

endogenously. Prior information is unavailable. However,

using a similar approach a continuous transition between

endogenously determined price trends can be specified.

The equation selected for the splitting factor is written:

S = S(t)e pIeX2td
(4.23)



where;

S(t*) = the value of the splitting factor at a
discontinuity

= dampening parameter
a = driving parameter.

At the termination of a price trend the value of the

splitting factor is S(t*). At the initial point of a new

trend the magnitude and duration of the current trend are

zero. Hence:

S = S(t*)e° = S(t*)

The transition between price trends is continuous.

The endogenous parameters for the splitting factor

are consistent with the initial assumptions. The impact

of the absolute magnitude of a price trend is positive:

as ae_X2td
> 0

a p

and the impact of the trend duration is negative:

as X
= _X1S(t*)e

ltd
- XaP(e

d

The fixed driving parameter (a) is intended to modify the

effect of the trend magnitude. The fixed dampening

parameters (X1) are intended to modify the effect of the

<0
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trend duration. However, an inspection of the aboye two

equations shows that the parameters are interdependent.

The equation for the splitting factor is linear in price

and exponential in time. Hence, for a sufficiently long

trend the splitting factor will approach zero. This does

not imply that S will converge to zero in the absence of

external forces or disturbances. Static equilibrium is

potentially unstable. The behavior of S is dependent upon

the overall structure of the model.

The complete dynamic equation for the simulation

model is given by the equation:

(S(t*)e_Altd + (pleX2td
- Sol - -P ) =0

e

(4.24)

There are a total of ten explicit parameters; four

endogenous (P. IPI, tdl S(t*)), one external and

five internal constants (), x2 ). In solving

the model for market prices, time becomes an explicit

parameter. Time within the simulation must be made to

correspond with time periods the model is intended to

represent. This can be achieved by scaling simulation

time so that price changes generated by the model

correspond to the general magnitude of observed price

movements over a given period. Initial values must be
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selected for the endogenous parameters. Typically these

are zero for the magnitude and duration of the current

price trend. An initial price may be selected which is

representative of a given commodity. The model operates

on relative rather than absolute price levels. Selection

of the fixed parameters was again a trial and error

process.

In conducting simulation experiments, some

information concerning the sensitivity of the model to

parameter changes was discovered. The performance of the

model was not greatly affected by changes in two of the

fixed parameters, S and A1. The parameter S0 locates the

cusp point. At values of S greater than S0 prices may

oscillate between rising and falling markets. S may be

selected to eliminate insignificant levels of speculative

price variation. The parameter determines the rate at

which past levels of speculative content is dissipated.

The dampening parameter A1 may be chosen to be relatively

large in order to effectively eliminate the endogenous

parameter S(t*). The model is sensitive to the remaining

fixed parameters.

Using the rules for differentiating implicit

functions, the derivatives of P with respect to the

parameters 6 and X2 may be written:



- - (P-P )/(3P2 - S + S
e 0

9?
. X2td

= (PctPIe
)/(3p2 - s + s0

(4 .25b)

3?
. *X2td /(32 - S + S- - -(PX2c(APle ) 0

(4.25c)

For the parameter (S. which may be used to control the rate

of adjustment in nontransitory excess demand:

1' i' \Sign( = -Sign(N) (4. 2 6a)

\3tS /

As the rate of adjustment in nontransi.tory excess demand

is increased ((S becomes more negative) two things occur:

one, the rate at which prices converge toward equilibrium

is increased and two, the rate at which prices diverge

from equilibrium is reduced. The behavior of prices

becomes more stable. This may be interpreted as follows:

if nontransitory supply and demand dominate a market then

the market adjustment should remain relatively stable.

The directional effects of the splitting factor parameters

on prices are:

Sig = Sign(P)

(4. 25a)

(4. 26b)
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Sign = - Sign(P) (4. 26c)

These effects correspond to the impact of the parameters

on the splitting factor. Increasing the driving parameter

(ct) increases the splitting factor and the level of price

variation. Increasing the dampening parameter decreases

the splitting factor and reduces the level of price

variation.

The external parameter
e'

specifying the location of

static equilibrium, may be used to represent the impaàt of

external forces. Discontinuous changes in ?e may be

interpreted as a sudden shock. Continuous changes in

may be used to reflect seasonal changes in supply or other

continuous changes in the exchange environment.

general, equilibrium price levels may be selected to

reflect a specific commodity.

Simulations: Solution Procedure

A computer program was designed to solve the

simulation equation for market prices. The technical

details of the simulation program are presented in

Appendix A. The program has three major components: one,
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a master control component with utilizes an iterative

Runge-Kutta procedure to solve the differential equation

for prices; two, a subroutine which solves the cubic cusp

equation for P; three, a subroutine which computes the

normal and splitting factors. A flowchart for the

simulation program is presented in Figure 4.1.

Runge-Kutta procedures are treated in standard texts

on differential equations (Braun, 1978) and numerical

analysis (Hildebrand, 1956). The Runge-Kutta method for

solving differential equations is widely used because of

its accuracy and simplicity. A third order method is

utilized in the simulation model, written:

tt
Pt+1 = Pt +

-;---

(I + 41i + 12)

where;

= P:(t, Pt]

= P:(t+ 1/2tt, Pt+1/2tIo1

12 = P:(t+t, Pt+2tIi_LtI0]

and,

(4.30)

P:f] denotes the evaluation of the implicit
equation defining at a specified
time and price.

The iteration increment chosen for all simulation runs is

t=.005. Observations on all variables are recorded at

five iteration intervals (T=5Et). Each iteration is
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Figure 4.1. Flow chart for the cusp market simulation.
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checked for a turning point. At turning points variables

are recorded and the trend parameters are reset.

For a third order Runge-Kutta procedure the levels of

local and global errors are of an order:

Local Error = O(t)4 = O(6.25x1010) (4. 31a)

Global Error = O(t)3 O(1.25x107) (4. 31b)

where;

O(
) order; a linear function of an unknown

constant.

While these formulas may not be completely accurate, they

do suggest that errors should be acceptably small.8 Test

runs conducted with a smaller iteration increment

(t=.001) did not alter prices to within two decimal

places.

The cubic equation of the price dynamic must be

solved three times for each iteration of the Runge-Kutta

procedure. Since the dynamic is a variant of a reduced

form cubic equation direct solution methods are most

efficient.9 The discriminant for the equation for given

values of the normal and splitting factor is computed. If

the discriiniriant is greater than or equal to zero,

Cardan's formula may be applied to find a single real

root:



r=
N +/N2_(4,27)s3

1/3

2

r1 = 2 \IS/3 cos

where:

0=cos

If the cusp is entered from the upper (positive) sheet,

the largest positive root is selected. If the cusp is

entered from the lower (negative) sheet, the most negative

root is selected. This allows discontinuities to occur

only after completely passing through to the other side of

the cusp. This is the perfect delay convention for a cusp

catastrophe.

Computational procedures for the normal and splitting

factors is straight forward and needntt be elaborated in

detail. The normal factor is computed using equation

4.21c. External changes and disturbances are incorporated

through incremental changes in the static equilibrium

price. Continuous changes are approximated by small step

+
N - VN2-4/27)S3

If the discrininant is less than zero a trigonometric

solution, known as the method of cosines, may be applied

to find three real roots:

0 + 2Fir

3

2

1/3

(4.32)

1=0, 1, 2 (4.33)
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changes in
e
within each iteration. The splitting factor

is computed using equation (4.23). The endogenous

parameters are calculated using intermediate prices from

the Runge-Kutta procedure and variable values recorded at

turning points.

Simulation Results

The simulations presented here were designed to

reflect observed prices and price variation for wheat over

the last twelve years. Wheat prices were selected for

three reasons. First, on a worldwide basis, wheat is

perhaps the single most important agricultural commodity.

Second, wheat prices have exhibited a high degree of

variability since the beginning of the 1972/73 crop year.

Third, wheat production and marketing is fairly

representative of grain industries in general. Results

generated for wheat prices are readily extended to corn

and other coarse grain prices.

In the first set of simulation runs, the model is

placed in an initial disequilibrium condition and allowed

to adjust in the absence of external disturbances. While

this might be interpreted as a simulated response to an

external shock, the prirnry purpose of these runs is to

illustrate model behavior under different choices of the
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model parameters. Results are presented graphically here

and in tabular form in Appendix A.

Three groups of simulations were run under pure

disequilibrium adjustment conditions. A different set of

fixed parameters was selected for each group. In the

first two groups of simulation runs, three different

initial and equilibrium price conditions were specified.

The third group consists of a single run in which the

parameters were set to produce unending speculative price

cycles. The parameter values selected for the simulation

runs are summarized in Table 4.1.

In the first group of simulations, there is only one

major price cycle in the adjustment path toward static

equilibrium (Figure 4.2a). The severity of the cycle is

dependent upon the difference between the initial and

equilibrium price. The trajectories of the control

variables through the control space are illustrated in

Figure 4.2b. Each trajectory enters the cusp from

outside. Cyclical variations are contained within the

cusp. As the magnitude of the price cycles decline, the

trajectories approach the cusp point.

In the second group of simulation runs, the frequency

and severity of the price cycles were increased by

increasing the driving and dampening parameters of the



splitting factor equation (Figure 4.3). The parameter

changes effectively increased the rate at which

Table 4.1. Parameter values and initial conditions for
the pure disequilibrium adjustment imulati.ons
runs; cusp market model, run set I.

Initial Run Conditions

Run Fixed a b c
Group Parameters

alnitial values f or all endogenous trend parameters are
set to zero for each simulation run.

speculative demand enters and exits the market. In the

final simulation run of the first set, the primary

dampening parameter, was reduced to produce an

unending series of price cycles (Figure 4.4). The cycles

are bounded, owing to the exponential dampening

parameters, but static equilibrium is unobtainable. The

overall structure of the model might be considered stable

in a mathematical sense. However, the market is not

stable in an economic sense if we assume that pure

speculation can not sustain price movements indefinitely.
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Figure 4.3. Simulated wheat prices over time, pure
disequhljbrjum adjustment; group 2.
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Table 4.2. Parameter values, initial conditions and external
adjustment rates for the continuous adjustment
simulations.

r

Run Fixed
Group Parameters

6 1112 cc

Initial
State

S0?0
1e

External Adjustment Parameters
Rate arid Time

e
T

e
T PT

e T PT
1'e

1.1

1.2

100

100

45

60

3

3

60

65

2

2

3.50

3.50

3.50

3.50

.025

.025

20

20

0

0

5

11

2.1 100 120 9 120 2 3.00 3.00 .050 8 .025 16

2.2 100 120 9 120 2 4.00 4.00 -.050 8 .025 16

2.3 200 90 9 140 3 4.00 4.00 -.075 8 .025 16

3.1 150 120 9 120 3 4.00 4.00 -.075 8 .025 16 .050 8 .025 16

3.2 200 90 9 140 3 4.00 4.00 -.075 8 .025 16 .075 8 .025 16 -.075 8 .025 16



The structural stability of a cusp catastrophe does not

guarantee a stable market structure. For a given model

and parameter choices, this must be established by

experimentation.10 However, the stability of static

equilibrium under large external shocks may not be

relevant if the exchange environment is assumed to adjust

continuously.

In the second set of simulation runs the market model

is placed in an initial state of equilibrium. External

changes in nontransitory excess demand are introduced

through changes in the equilibrium price. The level of

change in the equilibrium price is specified for each

observation interval. Actual changes in the equilibrium

price are made in small equal increments at each

iteration. Three groups of simulations are presented. In

the first group of two simulation runs, the equilibrium

price was increased gradually from $3.50 to $4.00 per

bushel. In the second group of simulation runs, normal

seasonal patterns of crop year price adjustment were

explored. In the third group of simulation runs, seasonal

patterns of price variation were extended between crop

years. Graphical results are presented here, tabular

results are presented in Appendix A. Parameter values for

the second set of simulations are summarized in Table 4.2.
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In the first group of simulation runs, the model was

started at an initial equilibrium point of $3.50. The

equilibrium price was then increased to $4.00 at a rate of

2.5 cents per observation interval. After the equilibrium

price reached $4.00, the model was allowed to stabilize

without any further external disturbances. Prices over

time for the first run are plotted in Figure 4.5a. The

control trajectories for the first run are plotted in

Figure 4.5b. An interesting pattern is evident in the

price graph. Prices cycle about the trend in external

market conditions. An extended period of overestimation

is followed by a short period of underestimation. This

type of pattern is commonly observed in actual commodity

prices which are tending to trend sharply upward or

downward. The driving parameter for the splitting factor

is increased slightly in the second run to amplify the

price cycles. Prices over time are plotted in Figure

4.6a. Price changes over time are plotted in Figure 4.6b.

The graph of price changes reveals a second interesting

feature. Periods of relative smooth price adjustment are

separated by large sudden jumps. The distribution of

price changes along the dynamic may tend to cluster about

a mean near zero with the sudden jumps at the tails of the

11distribution.



225

In the second group of simulations, annual patterns

of price adjustment are generated. Observations are

intended to represent two week periods. Equilibrium

prices were allowed to adjust relatively quickly over the

first eight observations representing the harvest period.

In the first two simulations, equilibrium prices were

increased and decreased at a rate of 10 cents per month

over harvest (Figures 4.7a and 4.7b respectively). For

the remaining 16 observations representing the balance of

the crop year, equlibrium prices were increased relatively

slowly at 5 cents per month, to reflect the gradual

decline in available supplies. In the last month of the

crop year, speculative demand was artificially elinii.Thated

by setting the driving parameter for the splitting factor

equal to zero. This was done to reflect the possibility

that expectations for a continuing trend may give way in

anticipation of price changes over the harvest period. A

similar set of conditions were specified for the third

simulation run. In the third run, the rate of change in

prices over harvest was increased and the rate at which

the model responded to price changes was increased

(Figures 4.8a and 48b).

The general seasonal pattern of price adjustment

exhibited be the second group of simulation runs is
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Figure 4.5. Simulated wheat prices, continuous
adjustment; group 1, run 1: Figure a) prices over
time, Figure b) control trajectory.
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striking. The harvest period trend is overestimated.

Prices then cycle about the upward trend in equilibrium

prices over the remainder of the crop year. Price cycles

through crop years are commonly observed in wheat and

other grain prices. By increasing the rate at which the

model responds to price changes, the degree to which the

harvest trend is overestimated is not greatly affected.

However, the number of price cycles in the remainder of

the crop year is increased. In all three runs, the

magnitude of the price cycles tends to decline. The

variation introduced by catastrophic behavior is more

clearly seen in the graph of price changes over time for

run three (Figure 4.8b).

In the third group of continuous external adjustment

simulations, the artificial elimination of speculative

content is removed, and prices are generated over a two to

three year period. In the first run, a two year period is

simulated. There is very little change in the seasonal

pattern of adjustment generated by the model (Figure 4.9).

The first year exhibits relatively high speculative

content while the second year exhibits relatively low

speculative content. In the second run, a three year

period is simulated. The rate at which the model responds

to external changes was increased. However, there is no
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significant change in the pattern of seasonal adjustment;

harvest trends are overestimated and prices cycle about

the upward trend in equilibrium prices over the remainder

of the crop yea.rs. Simulated prices for years one and

three exhibit relatively high speculative content while

speculative content in the second year is relatively low

(Figure 4.10).

In the third and final set of simulations, random

disturbances are introduced into the continuous external

adjustment of equilibrium prices. Two runs from the

seasonal price adjustment simulations were selected as

base lines for the introduction of random disturbances;

the third run of the single crop year simulation (group 2,

run 3) and the three year price simulation (group 3, run

2). A random disturbance was added to the seasonal change

in the equilibrium price at each observation. The net

change in the equilibrium price was entered in small

increments at each iteration. The random disturbances

were taken from a normal distribution with a mean of zero

and a standard deviation of $0.05 per bushel. The actual

generation of random disturbances was accomplished with a

pseudo random number generator; details of the process are

presented in Appendix A, along with tabular results.
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In the first random disturbance run, parameter values

and the seasonal pattern of adjustment in equilibrium

prices correspond to the third run of the single crop year

simulations (Figure 4.8). Simulated prices and price

changes over time for the first run are presented in

Figure 4.11. The seasonal decline in prices over harvest

is still in evidence. However, the gradual increase in

the equilibrium price due to declining stocks is almost

completely obscured by speculative price cycles and random

disturbances. The sudden jumps along the price dynamic

can be clearly seen in the graph of price changes over

time. However, the pattern of relatively smooth price

movements followed by a sudden change is somewhat obscured

by the random disturbances. In the second random

disturbance run, parameter values and the seasonal pattern

of adjustment in equilibrium prices correspond to the

three year price simulation (Figure 4.10). Simulated

prices over time are presented in Figure 4.12. In

comparing the two three year simulations, the introduction

of random disturbances increased the variability of

prices. The impact of random disturbances is sometimes

moderated by the level of speculative demand. At other

times, the impact of random disturbances is amplified by

speculative demand.
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The simulations presented here are by no means an

exhaustive examination of the possible types of behavior

that can be represented by the model. The effects of

different parameter choices on model stability and

performance have not been fulily explored. However, the

model can be used to generate pricing patterns similar to

those observed for stored commodities. Without prior

knowledge, it would be difficult to distinguish the prices

generated from the simulation model from actual prices.

This contention is put up for subjective evaluation in the

following section, in which a graphical analysis of actual

wheat prices is presented. The simulation results also

show that pricing patterns indicative of catastrophic

behavior are clearer in the pattern of price changes as

opposed to absolute price levels. Thus, most of the

empirical investigation of wheat prices in the remainder

of this chapter is directed toward relative price

movements.

Wheat Prices: A Graphical Analysis

A graphical examination of wheat prices is a good

start to an empirical analysis of wheat markets. There

are two initial considerations. First, a representative
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set of prices must be selected. Second, an observation

interval must be chosen.

Wheat prices are reported at a large number of cash

markets. Prices are differentiated by class, grade and

protein content. Generally, strong relationships exist

between prices for wheat at different locations and for

wheat of different classes and grades. However, given

prices may reflect specific conditions. For example,

country elevator prices may reflect local supplies or the

relative buying power of the elevator operator. One

alternative, in attempting to represent general price

levels for wheat in storage, is to construct a composite

price based on weighted averages. A second alternative,

the one chosen here, is to use prices at a principal

intermediate market. Prices at major cash markets may

more clearly reflect the impact of speculation. Hard Red

Winter wheat prices at Kansas City were selected (No. I

ordinary protein). Hard Red Winter is the dominant class

produced in the U.S. and Kansas City is the principal cash

market in the central plains states where winter wheat is

grown.

It is reasonable to expect that speculation is a

relatively short-term form of market behavior. Frequent

price observations may be required to investigate the
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effects of speculative or transitory demand. At the same

time, to consider external sources of price variation,

observations on prices may have to be matched with less

frequent observations on variables such as consumption,

exports and supplies. A monthly observation period was

selected as a compromise in this regard.

Average monthly wheat prices from 1972 through 1983

are presented in Figure 4.13. The graph reveals some

interesting aspects of the variation in wheat prices over

this period. Prices can be divided into two distinct

periods; period I from 1972 to 1978 and period II from

1979 to 1983. In period I prices tended either to be

rapidly rising or falling. Price swings were relatively

large and turning points were sharp. In period II there

were intervals of relative stability. Price swings were

smaller and the transition between rising and falling

markets tended to be smoother. The general

characteristics of catastrophic behavior were exhibited to

a much greater degree in period I. Strong price trends in

period I may have attracted greater speculation. Interest

rates were lower in comparison to period II. Hence, the

costs of speculating was lower. Prices tended to be above

government support levels in period I and government

controlled stocks were at a minimum. A greater proportion
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Figure 4.13. Wheat prices over time; Hard Red Winter

wheat (No. 1 ordinary protein) at Kansas City
1912/73 to 1982/83; source, wheat situation.
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of available stocks were subject to speculative changes in

expectations.

Wheat prices for period I and II are plotted

separately in Figure 4.14 and 4.15 respectively. Actual

prices are plotted with exponentially smoothed prices in

each graph. The exponential smoothing procedure is

intended to filter out what may be short-term speculative

variation in order to reveal underlying external trends.

The formula for the exponential filter is given by the

equation:

Pt
= + 0.6(Pt) (4.50)

where;

P = exponentially smoothed price

The graph for period I compares well with the crop year

price simulation with relatively high speculative content.

The graph for period II compares with crop year

simulations with relatively low speculative content. In

general, cyclical patterns of price adjustment occur

within crop years f or both periods I and II. These cycles

correspond with the cylical patterns generated in the cusp

simulations. This is in contrast with what is often

called a normal seasonal pattern of increasing prices

predicted on the basis of a decline in available stocks
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Figure 4.14. Actual and exponentially smoothed wheat
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through a crop year. Over the sample period there is no

apparent normal return to storage.

Price changes over the sample period are plotted in

Figure 4.16. The graph brings out the difference between

periods of relative price instability and stability.

There are definite times when wheat prices exhibit sudden

switching between rapidly rising and falling states.

These parts of the graph compare well with simulated price

changes with random disturbances (Figure 4.11b).

While a graphical analysis may suggest the

possibility of speculative behavior, we need to consider

other potential sources of price variation. Between 1972

and 1983 there were significant changes in levels of

domestic production, export demand and public farm policy.

To investigate the effect of changes in the exchange

environment we must rely on the tools of aggregate supply

and demand analysis. However, we are interested in a form

of internal price variation which can not be accounted for

in traditional market analysis. Hence, we should remain

aware of other nonspeculative sources of unexplained price

variation. This requires a fairly good understanding of

the exchange environment and the limitations of aggregate

supply and demand analysis. One area that is easily
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overlooked i& the assumption that wheat may be treated as

an aggregate commodity.

Wheat as an Aggreqate Commodity

Wheat may be classified by different production and

use characteristics. Under U.S. grade standards wheat may

be divided into five major classes. These are listed in

Table 4.3 along with approximate percentage figures for

production, domestic use and exports for the sample

period. The distribution of wheat production in the U.S.

reflects the adaptation of varieties and cultural

practices to growing conditions. Winter wheats, Hard Red,

Soft Red and White, are usually planted in the fall and

harvested between May and September of the following year.

Spring wheats, Hard Red and Durum, are planted in the

spring and harvested between July and September.

Hard Red Winter and Hard Red Spring varieties, grown in

the central and northern plains states respectively, are

high protein wheats primarily used to produce bread flour.

Soft Red Winter varietiesgrown in the northeast and White

varieties grown in the northwest and north central states,

are lower in protein and are more suitable for pastry

flour and animal feed. Durum varieties, grown in the



Source: U.S. Department of Agriculture, Wheat Situation
(Washington, D.C.) various issues 1977 to 1984.

In grouping heterogeneous classes of wheat into a

single aggregate commodity we are ignoring relative

changes in the composition of supply and demand as a

source of price variation in a given market. From another

perspective, we are assuming that prices for different

classes of wheat are equivalent scales in measuring

aggregate value. The concept of a composite commodity is

useful only to the extent that prices are related through

aggregate supply and demand. If prices tend to vary

247

northern plains states, are a very hard high protein wheat

used to make semolina flour for pastas.12

Table 4.3. Wheat classes and the approximated composition
of production, domestic use and exports by
class.

Class Production Use Exports
Domestic

Hard Red Winter 49% 49% 50%

Hard Red Spring 15% 17% 14%

Soft Red Winter 16% 19% 14%

White 14% 8% 18%

Durum 6% 7% 4%

00% 100% 100%
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independently, then, prices for different classes of wheat

do not reflect equivalent measures of value and

aggregation becomes meaningless. We can evaluate this

problem, to a limited extent, by estimating linear

relationships between market prices for wheat. A good

linear fit, indicating that prices tend to change

proportionately, supports the idea of an underlying

aggregate relationship. A poor linear fit, while not

excluding the possibility of a nonlinear aggregate

relationship, suggests a need for disaggregate analysis.

Five market prices were selected to represent the

wheat classes under consideration. Market locations were

chosen to correspond with principal regions of production.

Hard Red Winter at Kansas City (HRW), representing nearly

50 percent of total production, was selected as the

independent price variable. Separate least squares

regression estimates were made for the four dependent

price variables: Hard Red Spring at Minneapolis (HRS),

Soft Red Winter at Chicago (SRW), Soft White at Portland

(SW) and Amber Durum at Minneapolis (AD). Results are

summarized in Table 4.4. The regression relationships are

all highly significant as indicated by the regression F

statistics. For MRS and HRW the linear fit is very good;

the proportion of unexplained variation is less than five



Independent Variable: No. 1 Hard Red Winter

at Kansas City (ordinary protein) cents/bu.
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percent. This is consistent with the fact that hard

wheats are good substitutes in producing bread flour. Hard

and soft wheats are poorer substitutes which may explain

the increase in independent variation for the classes.

Nonetheless, over 77 percent of the variation in soft

wheat prices is accounted for by a linear transformation of

HRW prices. This percentage drops to 62 percent for Durum

wheat. However, Durum wheat accounts for only about five

percent of domestic production. While we can not conclude

that relative price variation between categories of wheat

is insignificant, an aggregate approach does appear to be

a useful simplification.

Table 4.4. Linear price estimates between wheat classes;
average monthly prices 1977/78 through
1982/83.

Dependent Variable:
HR5

No. 1 Dark Northern Spring

at Minneapolis (ordinary protein) cents/bu.

HRS = 9.56 + 1°°6HRW r2 = .952

(10.35) (0.027) MSE = 207.9

F* = 1428.0



Table 4.4. (continued)
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All estimates made using ordinary least squares.
Standard errors of the coefficients are in parentheses.
MSE is mean squared error, F* = F statistic.
Degrees of freedom = 70.
Data source: U.S. Department of Agriculture, Wheat
Situation (Washington, D.C.) various issues 1977 to
1984.

Dependent Variable: No. 2 Soft Red Winter

at Chicago, cents/bu.

SRW = 24.91
+ °880HRW r2 = .774

(22.11) (0.057) MSE = 948.4

239.5

Dependent Variable: No. 1 Hard Amber Durum

at Minneapolis, cents/bu.

AD = -94.09
+ 1453HRW r2 = .629

(51.85) (0.133) MSE = 5216.3

F* = 118.7

Dependent Variable: P; No. 1 Soft White at

Portland, cents/bu.

sw = 127.90 °709HRW r2 = .774

(15.60) (0.040) MSE = 472.0

= 312.4
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The World Wheat Market: An Overview

Before focusing on domestic wheat production and

marketing, a brief consideration of the world wheat market

and the U.S. role in the international wheat trade is

appropriate. The relative importance of wheat as a world

food source has been increasing. World wheat production

has nearly doubled in the last 25 years. World production

has expanded from about 240 million metric tons in

1961/62, to over 450 million metric tons in 1981/82. Over

the same period U.S. production increased from

approximately 35 to 76 million metric tons. The U.S.

currently accounts for between 16 and 17 percent of world

production. 13

As of 1982, about 22 percent of world production

enters into international trade. The worlds' leading

wheat exporting countries (listed in decreasing order of

market share); the United States, Canada, Western Europe,

Australia and Argentina account for approximately 96

percent of all exports. U.S. exports rose from about 32

million metric tons in 1975/76 to about 50 million metric

tons in 1981/82. This represents an increase in the U.S.

market share from 43 to nearly 50 percent of total

exports.14 The concentrated structure of international

wheat trade has led a number of researchers to model world
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wheat trade as an fligopolist market with the U.S. acting

as a dominant firm (MacGregor and Kulshreshtha, 1980;

Bredhal and Green, 1983). However, there is far from a

consensus view as to the design of effective policies for

the U.S. grain trade.

The U.S. Wheat Market: Production, Consumption and

Exports

Wheat prices are influenced by a wide range of

factors effecting the exchange environment. These include

physical conditions such as climate, microeconomic factors

such as production costs and other commodity prices, and

macroeconomic factors such as inflation, interest rates

and exchange rates. External sources of price variation

may be broadly classified with respect to their effect on

production, consumption, export demand and inventory

demand. Inventory demand will be considered in the

following section. The remaining categories are reviewed

here.

Between the 1972/73 and 1982/83 crop years, U.S.

wheat production averaged 2117 million bushels.

Production ranged from a low of 1545 million bushels in

1972/73 to a high of 2812 million bushels in 1982/83.

Over this period production increased an average of 6.6
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percent. The largest percentage increase between crop

years was 19.5 percent in 1980. The largest decline was

11.7 percent in 1978. The average absolute change in

production was 10 percent. Given that the demand for

wheat is relatively price inelastic, changes in production

levels would account for substantial variations in wheat

prices.

Variations in production might be anticipated to be

reflected in price changes over the harvest period.

However, the average absolute change in prices over

harvest was only 11.1 percent for the sample period. This

can be explained, in part, by changes in expectations and

reservation demand. Information is provided by the

U.S.D.A. prior to harvest which allows for the

anticipation of changes in supply. For example, prior

information on a decline in production may lead to

expectations for higher prices and increased reservation

demand. This would lead to an anticipatory price increase

before harvest.

Domestic consumption demand may be broken down into

four categories. Between 1970 and 1980; 31 percent of

total U.S. production was utilized for food, 5 percent for

feed, 1 percent for seed and less than 1 percent for

alcoholic beverages.15 In contrast to corn; the dominant
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U.S. grain, the impact of changes in the livestock

industry on wheat prices in comparatively small.

Presumably, shifts in domestic consumption demand occur

slowly with changes in the population, income and tastes.

Between the 1972/73 and 1982/83 crop years, domestic

consumption averaged 798 million bushels. Consumption

ranged from a low of 686 to a high of 934 million bushels.

The average absolute change in consumption was 6.8

percent. These figures do not differentiate between

movements along a given demand schedule and shifts in

demand.

An estimate of the elasticity of domestic demand can

be used to decompose changes in domestic utilization into

demand shift and schedule components. Sarris and

Freebairn (1983) report an elasticity of domestic demand

equal to -0.15, based on estimates of a world grain-

oi].seed-livestock model developed by the U.S. Department

of Agriculture. This elasticity estimate can be

incorporated into the following adjustment formula:

%CHQ5 CHQ - (-0..15)%CHP (4.80)

where;

%CHQ5 = percentage change in quantity
attributed to demand shifts

%CHQ = observed percentage change in quantity
consumed

CHP = observed percentage change in price.
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Using this formula, the average absolute change in

domestic utilization attributed to shifts in demand is 6.0

percent. The average absolute change in domestic

utilization attributed to prices is 0.8 percent.

Variations in consumption attributed to shifts in demand

are approximately four times smaller than supply

variations for the sample period.

Exports accounted for over 61 percent of U.S. wheat

production between 1970 and 1980. This is the other side

of the dominant role of the U.S. in world wheat trade.

Domestic prices are very sensitive to changes in world

demand. A sharp increase in exports during the world food

shortage in the early 1970's was accompanied by a

threefold increase in domestic prices. As the shortage

eased, exports remained high but domestic prices declined

over 50 percent.

U.S. exports averaged 1270 million bushels between

1972/73 and 1982/83. Exports ranged from a low of 950

million bushels in 1976/77 to a high of 1771 million

bushels in 1981/82. The average absolute annual change in

exports was 14 percent. An estimate of an export demand

elasticity may again be used to decompose export variation

into demand shift and price schedule components. However,

the economic and physical relationships that determine
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foreign demand for U.S. wheat are complex and difficult to

model. As a result there is no consensus on the price

elasticity of export demand. Gallagher, Lancaster,

Bredhal and Ryan (1981) obtained an inelastic estimate of

-0.413. Konandreas and Schmitz (1978) obtained an elastic

estimate of -3.13. An even more elastic estimate of -6.72

was reported by Johnson et al., (1977).

The ratio of the average annual absolute percentage

change in exports, divided by the average annual absolute

percentage change in price, is equal to 0.7 for the sample

period. If the effects of simultaneous movements along a

demand schedule and shifts in demand are roughly

offsetting, then this ratio provides a crude lower bound

on the elasticity of export demand at -0.7. This is

consistent with the idea that the demand for staple

commodities is inelastic. Using the elasticity estimate

of -0.413 and the adjustment formula in equation (4.80),

the variation in export attributed to shifts in export

demand is greater that the observed variation. The

approximate absolute annual percentage change in export

due to shifts in demand is 18.2 percent or about 230

million bushels per year. This is slightly greater than

the average annual change in production, equal to about

212 million bushels.
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The figures presented are intended to give an idea of

the relative importance of changes in production, domestic

consumption demand and exports on wheat prices. Changes

in production and export demand appear to be the primary

sources of external variation in wheat markets.

Presumably, production affects general price levels within

a crop year. However, wheat prices are subject to

relatively continuous variation. Export demand varies

throughout crop years. At the same time, export and

consumption demand is generally small in relation to the

total volume of available supplies. This suggests that

inventory demand is a substantial source of price

variability within crop years.

Inventory Demand and Storage

There is an important distinction between the demand

for storage and the demand for inventories held in

storage. The former reflects the function of storage in

the grain marketing system. The latter reflects the

returns to individuals and firms willing to carry out this

function. The capacity to store large volumes of wheat

and other grains is required to distribute seasonal

production for continuous consumption. The demand for

storage is an implicit component of grain production,
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marketing and consumption. The willingness of firms to

supply storage capacity and to hold inventories is

explicitly dependent on the returns to storage.

Returns to storage may be grouped into two general

categories: one, an expected return in anticipation of a

change in prices and two, a facilitative return to

acquiring or holding inventories. Changes in inventory

demand arising from expectations for future price changes

has been termed reservation demand. Short-term

expectations may be based on current market information or

price signals. Intermediate range expectations may be

formed on the basis of information concerning production

and inventory carry-over into the following year. Long-

term expectations, as a basis for supplying storage

capacity, would require a well established pattern of

seasonal price increases within crop years.

Facilitative returns to storage include a wide range

of economic incentives for holding inventories. At each

stage of the grain marketing system inventories are needed

to facilitate smooth production and distribution over

time. This is commonly referred to as pipeline storage.

On farm storage capacity may expedite harvesting and allow

flexibility in choosing marketing alternatives. Elevator

operators may exploit their bargaining position as both a
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buyer and seller to obtain favorable price differentials.

In addition, elevators have facilities to clean, dry, and

blend grains, allowing operators to take advantage of

price differences between grades. The motivation behind

government storage programs is more political than

economic.

Empirical evidence on the relative importance of

facilitative versus reservation demand for grain

inventories is indirect. The lack of consistent seasonal

price increases through the harvest year would tend to

support the importance of facilitative demand.

Information on seasonal price variation in prices of No. 1

Hard Red Winter Wheat at Kansas City (ordinary protein) is

presented in Table 4.5. The only period over which prices

tended to show a significant upward trend was from October

through December (an 88 percent confidence level for the

mean greater than zero based upon cumulative frequencies

of the t distribution). Over the remainder of the harvest

year prices tended to decline. The probabilities of a

price increase (based upon an assumption of normally

distributed price changes) do not appear sufficient to

support the idea of a normal price return to storage.16

Recent studies on the demand for inventories focus on the

role of price expectations in a rational expectations



Table 4.5. Summary statistics for seasonal price changes

Source: Wheat Situation, bnits: cents/bu.
From cumulative frequency of a normal distribution.

framework (Heimberger and Weaver, 1977; Helmberger, Weaver

and Haygood, 1982; Sarris, 1984). While seasonal price

increases may be rational on the basis of economic theory,

those involved in the storage of grains are unlikely to

ignore market history. From an analytical perspective it

is difficult to ignore the fact that grains are stored in

large quantities while prices exhibit strong tendencies to

decline.17

In genera)., returns to storage may tend to follow the

marketing channel from producer to consumer rather than

260

in No. 1 Hard Red Winter Wheat Prices at
Kansas City 1972/73 to 1982/83.

Harvest to
Statistic 4th Quarter

4th Quarter
1st Quarter

1st Quarter
(April-May)

bmean 18.3 -1 .9 -21.3

standard
deviation 48.7 38. 3 51.9

coefficient
of variation 266 -2005 -244

probability
of a prige 64 . 6 49. 86 34 . 1%

increase
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temporal pricing patterns. However, this does not imply

that changing expectations for future prices do not affect

inventory demand. While firms are holding stocks they are

faced with at least some degree of price uncertainty which

results in capital gains or losses.

Expectations and Inventory Demand

Given that a firm is actively acquiring or holding

inventories in anticipation of a normal or facilitative

return, expectations for a price change may alter expected

returns and inventory demand. These expectations may

not be well defined. An individual may not have a

specific price or time interval in mind. Expectations may

reduce to a feeling of optimism or pessimism in the

evaluation of marketing alternatives. An emphasis has

been placed on the role of current price information in

the formation of expectations. At a given point in time,

other sources of information may be equally or more

significant. However, it is difficult to disregard

current price information at any time. For example, a

decision based on expectations for increasing wheat

exports can be quickly undermined if prices fail, to begin

rising. On the other hand, an upturn in the wheat market

can reinforce expectations and strengthen the posture of a
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decision maker. The impact of current price information

may not be explicit. Current prices and price trends may

act to moderate other sources of information.

Individuals may or may not view their expectations

with sufficient confidence to affect a decision. They may

simply accept windfall gains or losses. An individual's

response to his or her expectations may only result in an

attempt to transfer risks through participation in futures

trading, f award contracting, or government programs.

Thus, we should relax the contention that changes in

expectations necessarily effect inventory demand.

However, when the marginal return to inventories above

costs is small, even a slight change in expectations may

significantly alter inventory demand.

Since we can not restrict the way or degree to which

information enters into the formulation of expectations,

we can only attempt to classify expectations. Any

classification scheme to some extent may fail because

individuals are free to ignore the parameters which are

used to make divisions. Three categories were established

in the previous chapter. The first are lagged or

regressive expectations: current prices and price trends

are discounted and expected prices tend to lag behind

current prices. Adaptive expectation models fit within



this framework. Adaptive expectation models hive come

under recent criticism because adaptation is not an

optimization process (Fisher, 1982). However, human

behavior is often characterized as adaptive.18 For an

individual weighting the past in assessing current marke.t

conditions may represent the best use of information given

his or her own experience. The second are neutral

expectations: expectations for future price changes are

not based on current market information. Rational

expectations may fit within this framework. Expected

future price movements may be based on anticipated changes

in supply and demand. Information on supply and demand

conditions may provide a logical basis for formulating

expectations. However, our ability to predict price

changes, with available information on factors affecting

supply and demand, is very limited.19 Equating current

prices with future prices is a second form of neutral

expectations which often compares favorably with

econometric forecasts. The third are projective or

speculative expectations: current price trends are

projected into the future. Expected prices tend to extend

beyond current prices. Taken collectively, this

classification scheme covers a wide spectrum of humanistic

263
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response, adaptive behavior, rational oi deductive

behavior and speculative behavior.

In aggregate, it is more appropriate to consider a

distribution rather than a single form of expectations.

The distribution of lagged, neutral and projective

expectations among individuals is subject to change over

time. For example, when the Department of Agriculture

releases information on wheat plantings, rational

expectations may become dominant. When prices are moving

erratically up and down, adaptive expectations may become

increasingly important. When a market has been exhibiting

strong trends the proportion of speculative expectations

may increase. It is important to note that significant

levels of transitory demand or supply may arise even when

nonspeculative forms dominate the distribution of

expectations. 20

The composition of expectations and reservation

demand may tend to exhibit seasonal patterns within a crop

year. During harvest there is a rapid forced buildup in

inventories. The potential market interactions are

complex. Anticipated production and carryover are

gradually replaced with information on available supplies.

However, this type of information is relatively difficult

to analyze. Current price adjustments may provide the
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best information on general price levels for the crop

year. This is an unstable condition since expectations

may in turn influence prices. There may be a tendency for

harvest price trends to be artificially extended,

resulting in an under or over valuation of current stocks.

If price trends over harvest are carried into the crop

year, there should be a relatively strong positive

correlation between price changes over harvest and price

changes in the first quarter of the remaining crop year.

If stocks tend to be over or under valued in the first

part of a crop year, a negative correlation may exist

between price changes over the first and second halves of

the crop year. These hypotheses are readily tested.

Correlation coefficients for price trends in

successive periods of the wheat crop year are presented in

Table 4.6. A relatively strong positive correlation

between harvest and fourth quarter price trends is evident

in the sample period. A relatively strong negative

correlation between price trends in the first and second

halves of the crop year are also evident in the sample

period. The square of the correlation coefficients is the

goodness of fit measure, r2, for the simple linear

regression prediction equations:



Pt4 = 11.92 + 0.521
tH

(10.22) (0.207) r2 = .518

where;

= fourth quarter trend
harvest price trend;

JD = -9.24 + -0.428
JM

(15.76) (.167) = .449

where;

JD = June to December Price trend

JM January to May price trend.

Source: WheatSituation
2Based on cumulative t distribution; t = r n-2 / 1-r
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Table 4.6. Correlation coefficients and significance
levels for wheat price trends in successive
intervals of the crop year. No. 1 Hard Red
Winter weat at Kansas City, 1972/73 to
1982/83.

Periods Correlation Significance
From To Coefficient Level

June Oct.
Sept. Dec. 0. 72 99. 4%

Oct. Jan.
Dec. March 0.21 73.2%

Jan.
March

Apri.l
May -0.27 78 .9%

April June
May Sept. -0.15 67 .0%

June Jan.
Dec. May -0.67 98 . 3%
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A very hypothetical consideration of expectations and

speculation leads to a surprisingly good set of

predictions.

It was noted earlier that an individual response t

uncertain prices may be to transfer risk. Futures market

and forward contracts are a means of transferring risk.

An individual holding pessimistic expectations may not

choose to liquidate inventories on the open market. He or

she may decide to participate in a government reserve or

other price support program. Institutional arrangements

and public policy, on the farm and national level, have a

significant effect on wheat and other grain prices.

Institutional Arranqements and Government Policy

Institutional arrangements affect a wide range of

grain marketing activities and their impact on prices and

price stability is varied. Changes in institutional

arrangements, such as transport regulations, may affect

prices but they are an unlikely source of general price

instability. Arrangements, such as grades and standards,

are weakly linked to price determination through inventory

demand. Price differential between grades may be

exploited by elevator operators with the capacity to

clean, dry and blend grain. If these price differentials
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are affected by relative supplies and demand, returns to

inventories may be affected, resulting in shifts in total

inventory demand. Legal contracts are institutional

arrangements which are more closely tied to prices and

price variability.

There are essentially two types of grain contracts.21

First, there are foward contracts in which terms are

negotiated by the buyer and seller. Second, there are

futures market contracts in which terms are established by

a board of trade. Forward contracts eliminate price risks,

though not the risk of being able to sell at a higher or

buy at a lower price in the future. Since forward

contracts are negotiable, contract prices may reflect the

relative position of buyers and sellers under current or

expected market conditions. Futures contracts are used to

hedge a future purchase or sale. Price risks are reduced

to the degree futures and cash market prices tend to move

together. Contracting is usually viewed as a response to

price variability or expected price changes. The effects

of contracting on market prices is not totally clear.22

If we view contract prices as market prices modified by

perceived risks and expectations, forward and futures

contracting may be a source of price variation. Changes

in expectations or perceived risks may alter contract
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prices, affecting inventory demand and in turn, market

prices. On the other hand, if contracts reduce risks of

price changes, inventory demand may become more stable and

price variations may be reduced. We may draw at least one

relevant conclusion: contracts may be used to reduce

risk but prices may remain sensitive to changes in

expectations.

Public policy, on an international, domestic or farm

level, may greatly affect grain production and

marketing.23 The scope of government economic policies is

too broad to consider more than a few examples. On an

international level, the U.S. moved to a market determined

exchange rate beginning in 1972. The value of U.S.

currency relative to the currencies of other countries

participating in grain trading affects U.S. export demand.

With variable exchange rates grain prices are sensitive to

factors ranging from inflation to world confidence in a

given economy. On the domestic level; Federal Reserve

policy, designed to meet objectives through control of the

money supply, affect interest rates. In 1980 interest

rates rose from near 12 to over 20 percent as the rate of

growth in the money supply was slowed to curb inflation.

At prevailing prices (about $4.50/bu.,) this is a monthly

increase in storage costs of about 3 cents per bushel. To
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cover interest costs on six months storage would require

an increase of 45 cents per bushel. The effect of

interest rates on speculative reservation demand have been

considered previously. High interest rates should lead to

decreased speculative holding of inventories. The

marginal change in costs for a price change, which must be

offset by an expected price change, is equal to the

interest rate. The impact of interest rates is not

limited to inventory demand. Grain production is capital

intensive. Changes in current interest rates are likely

to affect future production and prices. Agricultural

policies are of special interest in that a number of

programs have been designed to affect grain prices.

Since 1973, commodity price support programs have

incorporated three policy tools: a government controlled

reserve, direct payments and acreage set aside provisions.

The basic design of U.S. agricultural policy has remained

unchanged but objectives have changed from price support

to stabilization and recently, the elimination of excess

inventories. Target prices and loan rates are established

for wheat and coarse grains. When prices are at or below

the loan rate, producers tend to transfer ownership of

stocks to the government as payment for nonrecourse loans.

When prices exceed the target price stocks are released on
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the open market and no direct payments are made. The

government may also release inventories to reduce

inventories and/or stabilize prices. When prices have

fallen between target prices and loan rates, different

policies have been followed. Between 1973 and 1977,

producers were allowed to sell on the open market and

received payment for the difference between market and

target prices. After 1977 producers were required to hold

grain in reserve for three to five years while receiving a

nonrecourse loan and storage payments. At the end of the

initial storage period stocks could either be sold on the

open market and the loan repaid or ownership could be

transferred to the government as payment for the loan. If

deemed necessary, participants in the program could be

required to set aside acreage out of production. In 1983

the Payment in Kind program (P1K) was introduced to reduce

government stocks and to decrease production.

Participants were required to set aside acreage out of

production to qualify for payments in grain which could be

stored privately or sold on the open market.

Under ideal conditions the policy instruments of the

commodity price support program could constrain prices to

near target levels. Direct payments and acreage controls

could be used to try to match production with anticipated
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demand. Unanticipated changes in production or demand

could be offset by acquisition or release of government

controlled stocks. The effectiveness of farm policy

instruments is determined by a large number of factors

including; participation levels and the size of the

reserve, prevailing conditions in grain markets and the

general economy, other public policies and the ability of

public decision makers to implement a given policy. In

general, the price support program has maintained open

market prices at or above the loan rate. This reflects

both the willingness of the government to acquire large

inventories and high rates of participation by individuals

when prices are low. The release of government stocks

when prices are above target levels has not effectively

controlled high prices. The size of government reserves

has not been sufficient to offset the major increases in

export demand which have occurred in the last twelve

years.

A government reserve program, based on a decision

rule to acquire stocks when prices are low and to release

stocks when prices are high, promotes price stability

through inventory demand. However, a policy decision rule

does not affect inventory demand in a smooth way. If, for

example, the government is willing to purchase all
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available supplies when prices reach the loan rate and is

willing to sell all existing stocks when prices reach some

specified level above the target price, inventory demand

may resemble the segmented curve drawn in Figure 4.17a.

At the loan rate or release price, demand is perfectly

elastic. No price-quantity combinations exist below the

loan rate since the government is willing to purchase all

free market stocks. Price-quantity combination above the

release price exist only after government stocks are

exhausted. If market equilibrium falls along a perfectly

elastic section of the demand curve then a small

disturbance in supplies, consumption, or exports, will not

alter prices. If market equilibrium falls along a

downward sloping section of the demand curve then a slight

disturbance will produce a change in price.24 While this

model may be oversimplif led, this public inventory demand

model provides some insight into the effects of the price

support program on speculative reservation demand.

The divergence of a market from external conditions,

under speculation requires two interactions; the formation

of expectations on current trends and a reaction in prices

to transitory demand. An existing policy the response in

expectations to a price trend may be moderated by if

individuals believe a program effects market prices. If,
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for example, the loan rate is believed to be a price

floor, speculative disinvestment may be eliminated as

prices approach the loan rate. Speculative investment may

be dampened if individuals believe the release of

government controlled stocks may lessen upward pressure on

prices. A government reserve program may or may not

moderate the impact of speculative reservation demand on

prfces. So far as the government is willing and able to

acquire or release stocks at or near targeted price

levels, inventory demand becomes more elastic over a

limited range (Figure 4.17b). Over this range, the

response in prices to a shift in supply or demand is

dampened. Thus, a government reserve may inhibit both

levels of dynamic flow in the interaction between

expectations and price formation. When prices are below

target levels, we may expect to observe more stable

prices. From 1977 through 1979 prices were below support

levels. The relative stability of prices over this period

is quite evident in the graphs of wheat prices and price

changes over time (Figures 4.13 and 4.16). However, how

much this may be attributed to a reduction in speculative

demand is unknown, as external changes are moderated as

well.
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There were two different farm policy programs in

effect over the sample period. Between 1973 and 1977, the

open market program was implemented. Government subsidies

reduced downside risk, tending to reduce speculative

liquidation. However, by allowing participants to sell on

the open market, expectations for prices greater than

subsidy levels may have lead to speculative inventory

demand. This may have created an upward speculative bias;

inducing greater instability when prices were increasing.

We can compare the monthly variation in price increases

and declines over this period (period I):

V(P) = 899.8 (/bu.)2

'J(P) = 482.0 (/bu.)2

Construction of an "F" test:

F*(3534) = (898.9)/(482.0) = 1.865

indicates that the variation in price increases is

significantly greater than the variation in price

declines, at the 95 percent confidence level. In 1978 the

farmer-owned reserve was implemented. To obtain a secure

price, a participant was required to set stocks aside for

a three to five year period. Expectations for prices

above subsidy levels must be weighed against a secure
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return, as open market and program participation were

temporarily exclusive. This may have tended to dampen

speculative demand and supply in a relatively unbiased

manner. We can compare the monthly variation in price

increases and declines over this period (period II):

V(tP) = 97.4

V(AP) = 97.1 (Ibu.)2

Constructing a corresponding hF!1 test:

(34,23)
= (97.4)/(97.1) = 1.00

leads us to conclude that the variation in price increases

and price declines is equal. The fact that participation

in the farmer-owned reserve grew steadily over period II

may explain, in part, the general reduction in price

variability between 1978 and 1983.

If price stability is a policy objective of a grain

reserve program; the extent to which a reserve system

inhibits speculative reservation demand represents a

positive contribution. The extent to which policies

should be designed to inhibit speculation is another

question. The evidence presented here is not sufficient

to claim speculative behavior is a major cause of price

instability. However, it does appear that the
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implications of speculative behavior should not be ignored

in the evaluation of alternative policy implements.

Agqreqate Supply and Demand Analysis: Modelinq

Considerations

In attempting to determine the impact of speculative

behavior on wheat prices, it would be extremely helpful to

know the effects of other sources of price variation. By

estimating the variation due to the external determinant

of supply and demand, the remaining variation can be

examined for evidence of speculative price movements. An

econometric model can be constructed to control for

external sources of change within wheat markets.

Generally, researchers have taken two approaches to

modeling price determination in wheat markets. One, is to

specify and estimate an equilibrium system of supply and

demand equations.25 The second, is to specify and

26estimate a lagged adjustment price equation. The choice

of approaches is largely dependent upon research needs and

objectives. Equilibrium system models are commonly used

to investigate characteristics of supply and demand, such

as price elasticities, and to evaluate policy

alternatives. Examples of this type of modeling for wheat

may be found in Shei and Thompson (1977), Johnson et al.
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(1977), Greenes, Johnson and Thursby (1978), Konandreas

and Schmitz (1978), Sarris and Freebairn (1983). Lagged

adjustment equations are often used when accuracy and

simplicity are of primary importance. Lagged price

equations are commonly found in price forecasting models

and large scale sector models.

Equilibrium system models for wheat and other grains

are estimated, almost exclusively, on an annual basis.

This, in part, reflects the seasonal aspect of grain

production. The availability of information is an

important limiting factor. To empirically estimate price

movements within a crop year a lagged adjustment model is

generally necessary, simply because the information needed

to estimate a simultaneous set of supply and demand

equations is unavailable. The primary difficulty lies

with estimating foreign demand. Quarterly price

predictions are common forecasting and sector model

applications. A model of the livestock and feed grain

sectors by Arzac and Wilkinson (1979) provides a typical

example of a lagged price prediction equation:

P =b +bP =bI bE +dQ +dQ
t 0 iti 2t 3t 12 22

+ d3Q3 (4.12.0)



where;

P = grain price
I = inventories
E = exports

= seasonal dummy for quarter i
b1 = estimated variable coefficient

= estimated dummy variable coefficient

A slightly more general formulation might include domestic

consumption. By subtracting
-1

from both sides of the

above equation reveals the underlying disequilibrium

partial adjustment form of the model:

= -(1--bi)Pt 1 b2It + b3Et +

d1Q2 4 dQ3 + d4Q4 (4.12. la)

By rearranging terms the model can be written:

= (1_b1)[(1/1_b1)(b0+b2I+b3Et+diQ2+d2Q3+d3Q4)

- = (1_b1)(Pe -
(4.12.lb)

where;

Pe = imputed equilibrium price at time t.

If we interpret the model to be a Walrasian price

adjustment model, then; the term in brackets,

may be viewed as a qualitative measure of excess demand.

In applications regarding inventory demand, the

disequilibrium form of the price adjustment equation

yields a better picture of the predictive accuracy of the

model.27 Our interest is in price changes over time. The
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tendency for P and to be of nearly the same magnitude
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is not reflected in measures of the disequilibrium models

explanatory power. Generally, values for the

disequilibrium form are much lower. Errors for the two

models are identical while the variation in prices is

usually much larger than the variation in price changes.28

Data limitations present an additional problem in

attempting to estimate a disequilibrium lagged adjustment

model to control for external sources of price variation.

Data on wheat inventories, domestic usage and exports is

reported by the U.S.D.A. at only four irregular intervals

within a crop year. There are two approaches to

incorporating this information into a monthly model: one,

seasonal dummy variables can be introduced for the months

between reporting periods; two, monthly observations can

be interpolated from the reported information. Dummy

variables adjust the mean response in prices for the

sample period. Interpolation allows changes in the

exogenous variable to be projected over monthly intervals.

Interpolation would appear to have a better potential for

explaining external price variation.

A modified form of the disequilibrium adjustment

model was used to estimate changes in wheat prices over

the sample period. The estimating equation can be

written:



P =b +bP +bMD9I
t o iti 2

where;

MDI = total monthly disappearances (domestic
use + exports) as a percentage of
inventories.

This form of the model is based on the hypothesis that the

ratio of consumption to inventories provides a better

measure of relative scarcity than a linear combination of

consumption and inventories. However, this does not

eliminate the fundamental methodological problem of using

lagged adjustment models. Levels of inventories,

domestic consumption, and exports are not qualitatively

equivalent measures of the external determinants of

inventory, domestic and foreign demand. First, changes in

inventories and consumption may be due to movements along

a demand schedule as well as shifts in demand. A change

in, for example, exports may not be associated with any

change in the level of export demand. Second, within a

crop year inventories and consumption are in a fixed

relationship. An increase in consumption is matched by a

greater rate of inventory reduction. However, the source

of this change may be due to either, or both, a reduction

in inventory demand or an increase in consumption demand.

While this problem may be unavoidable, estimations based

on a lagged adjustment models are likely to suffer from
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(4.12.2)
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specification bias. Results should be examined carefully

and conclusions should be tempered.

Estimation of a linear Price Adjustment Model

Monthly changes in Hard Red Winter wheat prices at

Kansas City were estimated using a disequilibrium lagged

price model. To quantify the model, aggregate figures on

wheat supplies and disappearances were interpolated to

monthly data points. Supply and disappearance figures are

reported by the USDA for four irregular intervals; June

through September (harvest), October through December,

January through March and April through May. The simplest

procedure is to use a linear interpolation. Monthly

averages are computed for domestic use and exports over

each observation period. Inventory levels over the period

may be accounted for by using the average rate of

disappearance. There are two disadvantages of using a

linear interpolation. First, no additional information on

disappearance is provided. Monthly exports and domestic

usage are constant within a reporting period. Second,

transitions between reporting periods tend to be overly

abrupt. Both these problems can be reduced by

incorporating more information in a nonlinear

interpolation.



where;

li(t) =

and;

t = cumulative time in months
y = cumulative disappearance

i,j = subscripts denoting data points

Interpolations are made by substituting in time and

disappearance values into the formula for appropriate data

points and specifying time at the point to be

interpolated. Total disappearances between 1972/73 and

(t - t.)
3 i = 0,1,2,3,

- - (t. - t.)
1 3
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The interpolation problem is illustrated in figure

4.18. The interval to be interpolated is from two to four

months. The points bounding an interval are cumulative

disappearance as of the end of the reporting period (or

equivalently the beginning of the next period). Two data

points are required to define the interpolation interval.

Two more data points, a total of four, are needed to

include the preceding and following intervals. A third

degree Lagrangian interpolating polynomial may be

constructed to pass through these four points with the

formula: 29

3

L(t) = E 11(t)y (4.13.0)

1=1
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0 Time in months

Figure 4.18. Interpolation of monthly observations from
aggregated observations reportated at irregular
intervals.
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1982/83 (domestic consumption plus exports), were

interpolated to cumulative monthly data. These data were

then transformed into monthly disappearances. The results

are presented in tabular form in Appendix B.

There are at least two ways to compute the relative

rate of disappearance. First, monthly disappearances may

be expressed as a percentage of currently available

supplies Second, monthly disappearances may be expressed

as a percentage of beginning stocks (production plus

carryover). The first measure tends to exhibit a strong

seasonal pattern, following the sudden increase in

inventories over harvest and the decline in stocks over

the remainder of the crop year. This would fit a pattern

of increasing prices through a crop year with a sharp

decline over harvest. This pattern is not evident in the

sample period. The second measure, selected here, follows

current consumption relative to annual production and

carryover. It ignores the cumulative effect of

consumption through a crop year. Monthly disappearance as

a percentage of beginning inventories, MD%BI, is plotted

with prices in Figure 4.19. The figure illustrates that

prices tend to follow changes in the rate of

disappearance. However, a number of exceptions can be

seen. It is of interest to note that the variation in



- Prices

1 tlD%NI
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Figure 4.19. Monthly prices and disappearances as a
percentage of beginning inventories (MDBI) over the
sample period.
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MD%BI is relatively constant throughoutthe sample period.

The variation in prices between 1972/73 and 1977/78,

period I, is substantially greater than price variation

between 1978/79 and 1982/83, period II. This does support

an earlier contention regarding the relative degree of

speculation in the two periods. Conditions were more

favorable for speculation in period I.

The model was estimated using Ordinary Least Squares

(OLS). The results are presented in Table 4.7. One

statistic that stands out is the low coefficient of

determination, R2 = .169. The poor fit is a good

indication of how well econometric models predict short-

term price changes in general. By adding '-1 to both

sides of the regression equation the corresponding price

prediction model is obtained. The coefficient of

determination for the price model, R2 = .906, indicates a

good fit with the sample data. However, the explanatory

power of the price model is due to the fact that prices

are relatively large in comparison to monthly price

changes. The lagged adjustment model explains only about

17 percent of monthly variation in wheat prices. It is

reasonable to assume that the percentage of price

variation due to changes in the exchange environment is

considerably higher.



Linear Disequilibrium Price Adjustment Model

= -15.67 - 0.089Pt_i + 0.085MDBI

(15.18) (.027) (.021)

R2 = .169 D.W. = 1.400
MSE = 639.06 d.f. = 127

Implicit Price Prediction Model

P -15.67 O.gllP_1 + 0.085MD%BI

(15.18) (.027) (.021)

R2 = .906 DW. = 1.400
MSE = 639.06 d.f. = 127

Source: Wheat Situation, various issues.
Standard errors in parentheses.

The signs of the estimated coefficients for P_1 and

the rate of consumption are appropriate. With the

exception of the constant term, the estimated coefficients

are significant at the 99 percent confidence level.

Despite the lack of predictive ability, which may be an

unavoidable limitation, themodel appears to be reasonably
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Table 4.7. Estimation of wheat price changes and prices:
No. 1 Hard Red Wi.nterbwheat at Kansas City
1972/73 to 1982183a,



well structured. The level of positive serial correlation

indicated by the Durbin-Watson test statistic is

significant at the 99 percent confidence level. This may

be an indication of specification bias but this was

anticipated.

The variance in monthly price changes in each of the

two sample subperiods, periods I and II, can be compared

using an F test:

-
(69,59) -

The gross difference in variation is significant at the

99.9% confidence level. An equivalent test for the

variance in model errors can be constructed:

=
(67,57)

2
s (e)1

2s (e)11

5.392

= 3.428
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The net (unexplained) variation in period I is

significantly greater than in period II, at the 99.9%

confidence level. If the model adequately explained the

impact of external sources of price variation, we might

conclude that speculative reservation demand may have been

a significant source of price variability. However, given

the inadequacies of the model, these results simply fail

to reject this hypothesis. Unfortunately, this condition
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would appear to hold true for any hypothesis tests that

are explicitly dependent on controlling for the external

determinants of supply and demand.3°

Before exploring some alternative hypotheses, there

are a few interesting questions which can be investigated

within the general framework of a lagged adjustment model.

It is reasonable to assume that individuals would show a

greater tendency to speculate on continuing trends if past

price changes are a relatively good predictor of future

price changes. At the same time, if individuals tend to

speculate on price movements and artificially extend

trend, then there should be a greater tendency for price

changes to be correlated over time.

Current price changes can be estimated as a linear

function of lagged prices and price changes. In addition,

the impact of past price movements can be estimated

individually for periods I and II by using binary

interaction variables.31 The estimation equation may be

written:

= b0 + biPt
i
+ b2[x1(,P)] + b3[x2(APt1)} (4.13.1)



where;
(i in in period I; 1972/73-1977/78

x1 =
k.9 if in period II; 1978/79-1982/83

(0 if in period I
2=

1 1 if in period II

The model is estimated using OLS and the results are

summarized in Table 4.8. The model explains a slightly

greater proportion of the variation in price changes,

nearly 20 percent. A comparison of the lagged price

change variable in each period is of greater interest.

About 40 percent of the last period change is projected

forward in period I. The period I coefficient is very

significant (t* = 4.674). Only 20 percent of last period

Table 4.8. Estimation of monthly wheat price changes
using lagged and price lagged price changes b
No. 1 Hard Red Winter wheat at Kansas City.

292

= 33.58 -O.O88P + O.4O2(xi1t._i) + O.212(x2APt_i)

(10.38) (.027) (.086) (.217)

= .199
MSE = 620.94
df = 126

Source: Wheat Situation, various issues.
Standard errors are in parentheses.



change is projected forward in period II. The period II

coefficient is not significant at the 90 percent

confidence level (t* 0.997).

Lagged price changes may be incorporated into the

disequilibrium adjustment model developed earlier. The

estimation equation can be written:

b0 + b1Pt i
+ b2MD%BI + b3M't1 (4.13.2)

The model is estimated using OLS for both the complete

sample period and period I. The results are summarized in

Table 4.9. There is an improvement in the coefficient of

determination,R2 = .250, over the full sample. This

represents about a 10 percent reduction in unexplained

variation (a 48 percent increase in explained variation),

in comparison to the initial disequilibrium adjustment

model estimate. The model coefficients are of appropriate

sign. With the exception of the constant term, the

coefficients are significant at the 99 percent confidence

level. For the period I subsample, 35 percent of the

monthly variation in price changes is explained by the

model, = .353. The coefficients remain of appropriate

sign and are significant at the 99 percent confidence

level. There is a reduction in the magnitude and

significance of the lagged price change coefficient in
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period I. This is somewhat surprising since there

appeared to be a greater correlation between price changes

in period I as opposed to period II. However, this may

reflect the fact that the initial form of the adjustment

model performs relatively poorly in period II. Relative

to the other dependent variables in the equation, lagged

price changes may be a better predictor of current price

changes in period II.

The attempt to control for external source of

variation in monthly wheat prices using a lagged

adjustment model was not particularly successful. This

greatly reduces our capacity to objectively examine prices

and price movements for evidence of catastrophic behavior.

The results did suggest that current market information on

prices and price trends are perhaps the best predictors of

future prices and price changes. This points to the

potential link between the formation of expectations and

price determination. We can consider some alternative

hypotheses concerning the impact of expectations and

speculative behavior, which may be evaluated on a more

subjective basis.



Full Sample

LP = -1.50 + _OOgSP_ + O.O64MD9BI
+

(14.97) (0.026) (0.020) (0.080))))

R2 = .250
MSE = 591.24
df = 125
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Table 4.9. Estimated changes in monthly wheat prices,
disequilibrium adjustment with lagged price
changes; No. 1 Hard Rgd Winter at Kansas City
1972/73 to 1982183a,

Period I: 1972/73 to 1977/78

1P = -20.67
+ + 0.113MD%BI + 0.272Pt-1

(20.52) (0.037) (0.031) (0.107)

= .353
MSE = 831.92
df = 65

Source: Wheat Situation, various issues
Standard errors in parentheses

Wheat Prices: Turninq Point Changes

The single most important indication of catastrophic

behavior is the occurrence of sudden jumps in the state of

a system, which is otherwise responding smoothly. Prices

and price changes, which describe the state of exchange

for a given commodity, are reported at discrete intervals.
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With, for example, average monthly wheat prices, the

distinction between smooth and sudden change becomes very

subjective. We can use descriptive statistics to help

analyze turning point changes in wheat prices over the

sample period. In addition, Zeeman's hypothesis

concerning turning points can be modified slightly and

evaluated.

Turning points for wheat prices between 1972/73 and

1982/83 are presented in Table 4.10. Included in the

table are the preceding and following rates of change in

price about a turning point, and the total change in price

over a turning point. The average absolute change over a

turning point was 27.0 cents per bushel. Excluding turns

occurring during harvest, the average absolute change was

slightly greater at 28.6 cents per bushel. The average

absolute price change represents about a 7.8 percent

change in the average price for the sample period

($3.70/bu.). The greatest turning point increase for the

sample period was 94 cents per bushel. The greatest

turning point decline was 95 cents per bushel. The

standard deviation for absolute turning point changes was

21.2 cents per bushel for the complete sample and 20.3

cents per bushel excluding harvest periods.



aSource Wheat Situation: various issues.

Table 4.10. Wheat prices; turning point changes:
Red Winter at Kansas

No. 1 Hard

Dates
Total
Change Dates

E'

Total
Change

Jan/Feb 73 5 -19 -24 Sept/Oct 79 -22 14 36

Mar/Apr 73 -6 9 15 Nov/Dec 79 14 -2 -16
Sept/Oct 73 34 -34 -68 Apr/May 80 -11 20 37

Oct/Nov 73 -34 11 45 May/Jun* 80 20 -3 -23
Feb/Mar 74 14 -81 -95 Jun/Jul* 80 -3 14 17

May/Jun* 74 -48 46 94 Nov/Dec 80 19 -35 -54
Jun/Jul* 74 31 -3 -34 Dec/Jan 81 -35 6 41
Jui/Aug* 74 -3 2 5 Jan/Feb 81 6 -13 -19
Oct/Nov 74 59 -6 -65 Mar/Apr 81 -12 13 25
Jun/Jul* 75 -11 38 49 Apr/May 81 13 -12 -25
Sept/Oct 75 9 -12 -21 Jun/Jul* 81 -12 13 25

Dec/Jan 76 -21 7 28 Jul/Aug* 81 1 -11 -12
Mar/Apr 76 0 -20 -20 Aug/Sept* 81 -11 5 16

Nov/Dec 76 -15 2 17 Nov/Dec 81 15 -11 -26
Feb/Mar 77 3 -10 -13 Mar/Apr 82 -1 3 4

Jun/Jul* 77 -5 4 9 Apr/May 82 3 -6 -9
Jul/Aug* 77 4 -4 -8 Aug/Sept* 82 -4 5 9

Aug/Sept* 77 -4 16 20 Sept/Oct 82 5 -14 -19
Nov/Dec 77 25 -1 -26 Oct/Nov 82 -14 25 39

Dec/Jan 78 -1 2 3 Apr/May 83 3 -16 -19
Apr/May 78 14 -9 -23
May/Jun* 78 -9 0 9

Nov/Dec 78 6 -9 -15
Dec/Jan 79 -9 3 12 * denotes harvest period
Aug/Sept* 79 17 -22 -39
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It is evident that wheat prices do tend to turn

sharply. In 40 percent of the observations, turning point

changes were greater than or equal to 25 cents per bushel,

22 percent were greater than or equal to 35 cents per

bushel and 16 percent exceeded 45 cents per bushel. It

would not appear inappropriate to refer to changes of this

magnitude as being sudden or abrupt. However, these

changes are not necessarily linked to speculative

behavior.

Zeeman derived a hypothesis based on an underlying

dynamic structure of a cusp catastrophe with slow

feedback; at a turning point, the greater the rate of

increase in price the greater the rate of decline.32 We

can extend this hypothesis to a jump to a rising market;

the greater the rate of decline the greater the rate of

increase. If speculative reservation demand gives rise to

a cusp dynamic then we should expect to observe a

significant correlation between price changes preceding

and following a turning point. For the sample period, the

correlation between preceding and following price changes

is - .588, which is significantly greater than zero at the

99 percent confidence level. The square of the

correlation coefficient is the coefficient of the



determination for the simple regression prediction

equation:

= -1.17 + -0.620 APti R2 = .345

(0.458) (0.130) MSE = 265.00

The predictive accuracy of the regression equation

compares favorably with the lagged adjustment models

developed earlier.

Wheat Prices: Stability I

A large amount of attention has been focused on

market stability. For the most part, stability has been

defined mathematically and has been used in reference to

market structure. Here, we will consider the common

concept of stability. Interestingly, this does not lead

to a more concrete definition. The terms stable and

unstable relate to the variability of prices. However,

there is no definitive way to measure stability. We can

use statistical measures to describe the apparent

distribution of prices and price changes for an

arbitrarily specified observation interval. If these

distributions appear to be normal, then we may make

statistical inferences concerning relative price

variation. Nevertheless, to describe a market as stable

or unstable is purely a subjective evaluation.
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A primary hypçthesis of this paper is that

speculative behavior introduces greater instability into

market prices. This should be reflected in the

distribution of price changes for a given stored

commodity. This might be measured by an increase in the

variance of price change. Earlier we compared the

variance in monthly price changes between two periods;

period I, 1972/73 to 1977/78 and period II, 1978/79 to

1982/83. The variance in period I was found to be

significantly greater than in period II:

V( AP)1 = 1198.64

V( P)11 = 222.65
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The extent to which this difference can beattributed to

higher levels of speculative demand in period I is

unknown. Both speculative and external changes in supply

and demand may have an equivalent impact on the variance

of price movements.

If greater price variability in period I was due to a

corresponding increase in the variance of ncDntransitory

supply and demand, then, the only difference we would

expect to observe between the distribution of price

changes for the two periods is a higher variance. If the

greater price variability in period I was due, in part, to
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higher levels of speculative demand, we should observe a

difference in the shape of the price change

distributions. As speculative content increases, sudden

jumps occur with increasing frequency and magnitude. The

increase in variation is introduced at the tail ends of

the price change distribution. The distribution of price

changes may exhibit positive kurtosis (leptokurtic); with

a large number of observations concentrated near the mean

and with the remaining observations tending towards the

extreme ends of the distribution. In contrast to a normal

distribution (Figure 4.20a), a leptokurtic distribution

(Figure 4.20b) tends to be more peaked and have elevated

tails.

Kurtosis coefficients can be estimated from the second

and fourth moments of the observed price changes in

periods I and II. The formula for the kurtosis

coefficient is given by:

g = (U /u2) - 3
2

where;

g2 = coefficient of kurtosis
= second sample moment

U4 = fourth sample moment

u1=(1/n)Z (P-K)
j=1



P (x)

P lx)

P ()

figure a

figure b
x

x
figure C

Figure 4.20. ProbabIlity distributions: a) normal, b)
leptokurtjc (positive kurtosis), C) bimodal.
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The estimated standard error for the coefficient of

kurtosi.s is given by the formula:

SE = 2(6/n)
g2

The coefficients of kurtosis and their respective standard

errors for periods I and II are:

(g2)1 = 8.057

(g2)11= 1.288

Assuming that the periods can be treated as independent

samples and the sample coefficients are distributed

normally, the significance of the difference between the

coefficients Qf kurtosis can be tested by computing a

standard normal variate:33

= (8.057-1.288)/( .5862+.6322)h12

7.854

The degree of kurtosis is significantly greater in period

I at the 99.9 percent confidence level.

The preceding test for kurtosis was applied directly

to monthly price changes. In considering market

adjustment and movements along a price dynamic, it is more

appropriate to evaluate the distribution of first

differences in price changes (second differences in

1/2

(SE ) = 0.586
g2 I

(SE ),.,.= 0.632
g2

303



price). In other words, the contrast between a smooth

movement along a dynamic versus a sudden jump between

alternative dynamics is more evident in the rate of change

in price adjustment, as opposed to the magnitude of price

adjustment. First differences in price changes for

periods I and II were calculated. The variances for the

distributions of first differences in the two periods are:

V( A2?)1 = 39.350

V( A2P)11= 19.525

The coefficients of kurtosis and their respective standard

errors for the two periods are:

(g2)1 = 4.814

(g2)11= 0.361

The standard normal deviate for the difference between the

sample period coefficients Is:

= (4.453)/(0.869) = 5.126

The coefficient of kurtosis for the distribution of first

differences in price changes is significantly greater in

period I at the 99.9 percent confidence level. The

distribution is apparently normal in period II and

leptokurtotic in period I. This is some indirect evidence

(SE ) = 0.590
g2 I

(SE )
0.638
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that one: speculative behavior is, in part, responsible

for the greater variation in prices in period I; and two:

lower levels of speculative reservation demand are

associated with market conditions in period II, i.e.,

weaker price trends, higher interest rates and an active

government reserve program.

The potential for speculative behavior to increase

the variance in prices may appear much more important than

the introduction of kurtosis into the distribution of

price changes. To a large extent this is true, kurtosis

was introduced as a test for speculative behavior.

However, the presence of positive kurtosis holds some

interesting implications towards the assessment of price

risk. An evaluation of price risk is commonly based on

the mean and variance of price distribution which is

assumed to be normal. A significant level of kurtosis may

create serious errors in the estimation of confidence

intervals and probabilities for price changes. The

positive kurtosis exhibited in the distribution of wheat

price changes would lead to an under estimation of both

the probability of small and very large price movements.

Using the standard deviation of wheat price change over

the sample period, 27.5, would overstate nominal price

risk as too much weight is given to the middle of the
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distribution. At the same time, catastrophic risk is

understated as the tail is discounted. This is an area

that warrants future research.

Bimodality, the tendency f or a market to exist in

either a rising or a falling state, is another

characteristic or flag of catastrophic behavior.

Bimodality is closely related to inaccessibility. If a

stable state of equilibrium is inaccessible, then a market

must be either rising or falling. We might expect that

the distribution of monthly price changes should exhibit

bimodality, if there exists an underlying cusp structure.

A bimodal distribution is illustrated in Figure 4.20c.

Histograms for the monthly distribution of price changes

and first differences in prices changes are illustrated in

Figures 4.21 and 4.22 respectively. Clearly, these

distribution are unimodal (the figures also show the

kurtosis of the distributions). The level of speculative

reservation demand in the wheat market is not sufficient

to sustain alternating states of rapidly rising and

falling prices. Nontransitory supply and demand are the

primary determinants of prices and price movements.

However, the distribution of monthly price movements

provides a myopic view of market stability. Monthly price

movements give no indication whether if prices tend to be



20

15

10

I

0

-, L)note exnectcd freanency
uixn norml distribution

1

1

-410K-Go -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -S 0 5 10 15 20 25 30 35 40 45 50 55 GO 160

Figure 4.21. Histogram: Distribution of monthly wheat
price changes; Hard Red Winter wheat at Kansas City,
1972/73 to 1982/83.
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Figure 4.22. Histogram: Distribution of second
differences in monthly wheat prices; Hard Red Winter
wheat at Kansas City, 1912/73 to 1982/83.
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rising or falling over any extended period of time. The

plot of price changes over the sample period, Figure 4.16,

provides a better picture of the pattern of market

adjustment. This pattern is consistent with the concept

of a bimodal market. An examination of pricing patterns

over time, price trends, may yield a broader perspective

of market stability.

Wheat Price Stability: II

The most tangible, and perhaps the most important,

hypothesis that can be drawn from a cusp market model of

speculative behavior is that speculation artificially

sustains price trends. The simulation model was used, in

part, to demonstrate the irregular cycles of

overevaluation and underevaluation (relative to an

exogenously defined state of equilibrium) created by a

positive link between current price trends and transitory

demand. Aside from simply attempting .to find some

empirical verification of this hypothesis, it would be

desirable to find a measure of speculative content which

gives a prior indication of the risk of catastrophic price

changes.

Given that individuals are willing to speculate on

current price trends, an existing trend is some measure of
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speculative content. Hence, we should observe positive

relationships between the magnitude of successive price

trends. We may also anticipate that price trends are a

poor measure of speculative content, as trends vary with

changes in nontransitory supply and demand. In previous

efforts to account for nontransitory supply and demand,

the rate of inventory consumption was used as an indirect

measure of relative value. Generally, there may exist a

qualitative correspondence between relative value and the

rate of consumption. Prices and the rate of consumption

should rise (fall) with a decline (increase) in supplies.

Prices and the rate of consumption should rise (fall) with

an increase (decrease) in the level of final demand. An

inversion of this relationship may occur with rising

prices and increasing inventory demand; the rate of

consumption may fall with an upward movement along the

utilization demand schedule. An inversion may also occur

with falling prices and declining reservation demand; the

rate of consumption may increase with an upward movement

along the utilization demand schedule.

An inverted relationship between price movements and

the rate of inventory consumption may be a fairly good

indication of ongoing speculation. This inversion may not

yield a qualitatively equivalent measure of speculative



content but it may lead to a reasonable approximation.

Current price trends can be decomposed into two

components: one, price changes accompanied by an

equivalent directional change in the rate of consumption

and two, price changes accompanied by an inverse

directional change in the rate of consumption. The

results of this decomposition for the sample period are

presented in Table 4.11. Included in the table are the

dates and magnitudes of price trends over the sample

period, the average rate of change in price and the change

in the monthly rate of consumption as a percentage of

beginning inventories. The final two entries of the table

are the decomposed price changes (computed on a cumulative

month to month basis over a trend).

As a basis for comparison, the following estimation

equation was estimated using OLS:

Tt = b0 + b1 ( M4D%BI)t + b2 Tt-1
where;

= the price trend

MD%BI = change in the rate of monthly
disappearance as a percentage of
beginning inventories

t = time over successive price trends.
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Table 4.11. Wheat price
City 1972/73

trends; HardaRed Winter at
to 1982/83.

Kansas

n Dates T MD%BI T
*P

1 Jul/Jan 73 109 6 18.2 -95 52 57
2 Feb/Mar 73 -25 2 -12.5 24 0 -25
3 Apr/Sep 73 259 6 43.2 355 225 34
4 Oct 73 -34 1 -34.0 -87 -34 0

5 Nov/Feb 74 115 4 28.8 -316 0 115
6 Mar/May 74 -223 3 -74.3 -83 -175 -48
7 Jun/Jul 74* 77 2 38.5 200 77 0

8 Aug 74* -3 2. -3 38 0 -3
9 Sep/Oct 74 61 2 30.5 9 2 59

10 Nov/Jun 75 -171 8 -21.4 -111 -71 -100
11 Jul/Sep 75* 98 3 32.7 117 98 0

12 Oct/Dec 75 -71 3 -23.7 -82 -71 0

13 Jan/Mar 76 31 3 10.3 -70 0 32.

14 Apr/May 24 2 -12.0 -31 -24 0

15 Jun 76* 18 1 18.0 15 18 0

16 Jul/Nov 76 -113 5 -22.6 -67 -59 54
17 Dec/Feb 77 ii. 3 3.7 -18 0 11

18 Mar/Jun 77 -42 4 -10.5 106 0 -42
19 Jul 77* 4 1. 4.0 38 4 0
20 Aug 77* -4 1 -4.0 10 0 -4
22. Sep/Nov 77 50 3 16.7 -191 50 50
22 Dec 77 -1 1 -1.0 0 -1 0
23 Jan/Apr 78 41 4 10.3 118 41 0
24 May 78 -9 1 -9.0 28 0 -9
25 Jun 78* 0 1 0 -86 0 0

26 Jul 78* 2 1 2.0 31 2 0

27 Aug 78* 0 1 0 3 0 0
28 Sep/Nov 78 34 3 11.3 -151 0 34
29 Dec 78 -9 2. -9.0 -40 -9 0

30 Jan/Jul 79 95 7 13.6 117 84 12.

31 Aug 79* -22 1 -22.0 26 0 -22
32 Sep/Nov 79 41 3 13.7 -65 0 41
33 Dec/Apr 80 -63 5 -12.6 -85 -63 0

34 May 80 20 1 20.0 17 20 0

35 Jun 80* -3 1 -3.0 41 0 -3
36 Jul/Nov 80 82 5 16.4 0 -38 44
37 Dec 80 -35 2. -35.0 -3 -35 0

38 Jan 81 6 1 6.0 22 6 0

39 Feb/Mar 81 -25 2 -12.5 -31 -25 0

40 Mar 81 13 1 13.0 -61 0 13



a Variable Codes:

AT? = price trehd

T = trend durration in months

A? = average rate of change in price

AMDSI = change in rate of monthly dissappearance as
a precentage of beginning inventories

= corresponding change in price

= inverted change in price
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Table 4.11. Continued.

n Dates AT? T A? AMD%BI AT? A
T

*

41 May/Jun 81 -24 2 -12.0 135 0 -24

42 Jul 81 1 1 1.0 66 1 0

43 Aug 81* -11 1 -11.0 21 0 -11

44 Sep/Nov 81 32 3 10.7 -245 0 32

45 Dec/Mar 82 -21 4 -5.3 63 -12 -9

46 Apr 82 3 1 3.0 -34 0 3

47 May/Aug 82 -56 6 -9.3 126 -2 -54

48 Sep 82* 5 1 5.0 -43 0 5

49 Oct 82 -14 1 -14.0 -193 -14 0

50 Nov/Apr 83 60 6 10.0 -80 22 38

51 May/Jul 83 -50 3 -16.7 110 0 -50



Results are summarized in Table 4.12. The results are

similar to those obtained for estimated monthly price

changes, in terms of relative predictive accuracy and the

significance levels of the variables. The model accounts

for roughly 23 percent of the variation in price trends.

Trend variation is substantial; the sample standard

deviation for price trends is over 70 cents per bushel.

Within the model, the contribution of information by the

nearby trend is more significant than current information

on changes in the rate of consumption. If this is purely

due to that fact that the rate of inventory utilization is

a very poor measure of relative value, then decomposing a

price trend on the basis of a qualitative change in the

rate of consumption would not tend to improve the

explanatory power of the model. If the unexplained

variation in price trends is, to a significant extent, due

to speculation, then, decomposing trends into a

speculative component should significantly improve the

explanatory power of the model.

The estimation equation for the speculative

decomposition model was estimated using OLS:

= b + b ( MD%BI) + b (
P*)

t o 1 t 2 T t-1
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Base Model

= 5.33 + 0.113(MDBI)t +

(8.972) (0.082) (0.129)

t*=0.59 t*=1.37 t*=3.58

= .228
MSE = 3994

RMSE = 63.2
df 47

Speculative Decomposition Model

Tt = 7.03 + 0.098( M4D%BA)t + -1.250(

(7.880) (0.072) (0.129)

t*=0.89 t*=1.35 t*=5.11

= .407
MSE = 3068

RMSE = 55.4
df = 47

Comparison of Model Error Variances

F*(4747) = (3994)/(3068) = 1.30

Significance level = 85 (one-tailed test)
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Table 4.12. Results for wheat price trend estimations;
Hard Red Winter wheat at Kansas City, 1972/73
to 1982/83.
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The speculative decomposition model yields a surprisingly

better estimate (Table 4.12). There is a 23 percent

reduction in the unexplained variation and an increase in

the significance of the nearby trend variable intended to

measure speculative content. The model by no means

explains the variation in wheat price trends: 60 percent

of the variance in price trends remains unexplained.

However, the reduction in error variance in the

speculative decomposition model is significant at the 85

percent confidence level.

These results do suggest that wheat prices are

subject to speculative fluctuations. Furthermore, an

inversion in the relationship between prices and the rate

of utilization appears to indicate that prices are tending

to be over or undervalued. Certainly, wheat prices

exhibit wide erratic price swings which are, for the most

part, unpredictable. This too, is an expected consequence

of speculative behavior.

Summary

In this chapter we have explored a cusp dynamic as a

pricing structure through simulation experiments. The

simulated link between the formation of expectations and

price determination yielded pricing patterns that closely
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resembled actual price movements. A graphical

presentation of wheat prices and price changes over time

was made for comparison. While this comparison could not

validate the hypothesis of an underlying cusp structure in

the wheat market, it did suggest that the model offers a

plausible picture of the dynamics of price adjustment for

stored commodities.

The wheat production and marketing system was

examined to determine potential sources of variability in

wheat prices. Aggregate changes in production and export

demand appear to be the principal determinants of general

price movements. In investigating the impacts of

inventory demand and government farm policies, a

consideration of speculative behavior led to a pair of

interesting hypotheses. These hypotheses were evaluated

and the results were found to be consistent with the

occurrence of speculative price cycles in the wheat

market.

To attempt to develop more conclusive tests for

speculative behavior, a linear pricing model was estimated

to control for external sources of price variation. The

modelts predictive accuracy, in estimating monthly changes

in wheat prices, was judged inadequate for this purpose.
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However, the model did provide some indirect evidence of

speculative behavior.

In the remainder of this chapter, a direct

examination of wheat prices was conducted. Turning

points, the distribution of price changes, and market

trends were explored. Hypotheses based on a postulated

cusp dynamic were developed and tested. In general, the

results were consistent with these hypotheses. As with

the other guantitative tests conducted to evaluate the

significance of speculative behavior, no truly conclusive

evidence was found. Considerable evidence was found to

suggest that speculative reservation demand is a potential

source of price instability in the wheat market. Whether

or not this compilation of indirect evidence supports a

specific set of conclusions is taken up in the following

chapter.
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Endnotes

1
Saunders, An Introduction to Catastrophe Theory, p.
83.

2
Thom, "Catastrophe Theory: Its Present State and
Future Perspectives." Published in E.C. Zeeman,
Catastrophe theory Selected Papers 1972-1977, pp.
635-38.

This conclusion is based on a review of unconstrained
nonlinear minimization techniques. Source material
was found in Himmelblau (1972). Marquardt's method
is a frequently used algorithm for nonlinear least
squares estimation.

This is a fundamental criticism of the equilibrium
versus disequilibrium hypothesis tests developed by
Fair and Jaffe (1972), Bowden (1978), Quandt (1978)
and Ziemer and White (1982).

The magnitude and duration of the current trend are
discontinuous but they are piecewise continuous with
respect to time. The integral value, S, of a piece
wise continuous function is continuous. See Braun,
Differential Equations and Their Applications, p.
221.

The simplest example of a discontinuous differential
equation is an exogenously determined jump in the
time dependent parameter of the equation. See Braun,
pp. 214-19.

An excellent text on the subject of system simulation
by Gordon (1978), provided much of the information
used in the design and construction of the
simulation.

The occurrence of discontinuous jumps may increase
the order of error.

A development of the formulas used to solve the cubic
equation may be found in: Conkwright, Introduction
to the They of Equations, pp. 68-78.
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10
Conditions required for determining the stability of
nonlinear differential equation systems are not met
by the cusp dynamic equation. The stability matrix
is degenerate. The only conclusion we may draw from
the qualitative theory of differential equations is
that the stability of the static equilibrium solution
is unknown: See Braun, 361-62.

11
This idea is examined in greater detail and subjected
to statistical evaluation later in this chapter.

12
The general material presented here on wheat
production and utilization was gathered from Leonard
and Martin (1963).

13
Figures presented here are cited from Michael
Martin, "United States and World Grain Production."
In: Grain Economics, ed. Gail Cramer and
Walter Held (New York: John Wiley and Sons, 1983)
pp. 2-21.

14
Figures presented here are cited from Gail Cramer,
"World Grain Trade." In: Grain Marketi Economics,
ed. Gail Cramer and Walter Held (New York: John
Wiley and Sons, 1983) pp. 238-262.

15
Figures presented here are cited from Walter Held,
"Grain Supply and Utilization." In: Grain Marketiflg
Economics, ed. Gail Cramer and Walter Held (New York:
John Wiley and Sons, 1983) pp. 24-59

16
The assumption of normally distributed price changes
is examined in greater detail in a following section.
The assumption proves to be poor.

17 This is not a criticism of the rational expectations
hypotheses. From the simple predictive model
introduced by Muth (1961), current rational
expectations models now include an adaptive
learning process based on past performance (Bray,
1982 and Blume and Easley 1982). The criticism here
extends to any model which equates storage demand
with expectations for increasing prices over a crop
year.

18
As noted earlier, adaptive learning has been
incorporated into rational expectations models; see
endnote 17.



321

19
Rational expectations models have received a vast
amount of attention in economic literature over the
past several years. Theoretical interest has focused
on the existence of rational expectations equilibrium
when expectations are conditioned by current market
information: Radner (1978), Jordan and Radner
(1982), Hellwig (1982) are just a few prominent
examples. I have two criticisms of this work.
First, the existence of a stable market equilibrium
in a rapidly changing market environment is of less
interest than the dynamic flows of adjustment, and
how these flows exist within a structurally stable
system. We do not observe stable economic states nor
do we observe the collapse of exchange. Second, to
assume that market participants run about adjusting
an explicit set of economic forecasting models to new
information, represents an irrational assessment of
economics as a forecasting tool. Economic models are
not good unbiased predictors of the future, (though
we may desire these properties in our statistical
estimates we know they elude us). Combining the
problem of utility maximization or profit
maximization with assigning probabilities to possible
future outcomes represents an extremely complex task,
which further removes economic behavioral assumptions
from reality. One might argue that this still leads
to more realistic economic models in which the
importance of uncertainty is accounted for. However,
this realism reflects the fact that the level of
complexity in the model more closely resembles the
level of complexity in the system being modeled, not
a correspondence between the two. More is to be
gained by relaxing behavioral assumptions and
attempting to cope with the analytical problems this
presents.

20
This was shown in the first section of Chapter Three.

21
For a more complete discussion of grain contracting
see Dahl (1983).

22
This is an area of active research interest. Some
recent publications on the subject include Kawai
(1983) and Sarri.s (1984).

23
A specific reference for the material presented here
is Bob Jones, "Government Policy." In: Grain
Marketing Economics, ed. Gail Cramer and Walter Held
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25

26

27

28

(New York: John Wiley and sons, 1983) PP. 266-298.
These conclusions are based on a residual supplier
model of coarse grain trade developed by Bredahl and
Green (1983).

Equilibrium system models include both static
equilibrium adjustment models (adjusting through a
continuous set of alternative equilibria) and
disequilibrium adjustment models specifying an
equilibrium rate of adjustment to excess demand.

Explicit supply and demand relationships are not
specified in a lagged price adjustment equation. The
exogenous variables are intended to approximate the
current equilibrium price directly. Predicted prices
reflect a partial adjustment toward an imputed
equilibrium price. If the exogenous variables
properly specify an implicit set of supply and demand
relationships, the predicted price change may be
interpreted as an equilibrium rate of adjustment.

For a complete consideration of predictive accuracy,
relative to predicted values versus predicted changes
in values, see Henri Theil, Applied Economic
Forecasting, (Chicago: Rand McNally, 1966) pp. 15-
40.

Two perfectly correlated variables are being added to
both sides of the regression equation, hence, there
is no new source of unexplained variation. The
impact of the added explanatory variable has already
been accounted for, hence, there is no new source of
explained variation. The errors remain unchanged.
The reduction in the coefficient of determination
given a decrease in the variance of the dependent
variable, errors held constnt, is clear from a
computational formula for R
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R2 = 1 -
Var (Error)

Var (D. Var)

29 A Lagrangian interpolating polynomial is used in
place of the more standard differencing polynomial
interpolations of Gauss and Newton because of the
uneven spacing of the intervals.
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30
This would seem to preclude developing meaningful
tests for two catastrophe flags, inaccessibility and
divergence.

31 Binary interaction variables are used to estimate
separate slopes for the lagged price change variable
in the two periods. For a detailed treatment of
binary interaction variable see John Neter and
William Wasserman, Applied Linear Statistical
Models, (Homewood, Illinois: Richard D. Irwin, Inc.,
1974) pp. 304-309.

32
This hypothesis was discussed in detail in the review
of Zeeman's model of a stock exchange in Chapter
Three.

33
Procedures for testing for kurtosis were adapted from
McNemar (1962).



CHAPTER V

IMPLICATIONS AND CONCLUSIONS

An Evaluation of the Empirical Results

In considering all of the empirical evidence gathered

in the previous chapter, one must conclude that the

results do not validate the hypothesis of an underlying

catastrophe structure in competitive markets for stored

commodities. The results do not prove, in any formal

sense, that speculative inventory demand is a significant

source of price instability. The results do suggest that

a model of a cusp catastrophe with slow feedback is a

useful framework for market analysis. In a descriptive

sense, the empirical results support the hypothesis that

speculative behavior exacerbates price instability in the

wheat market.

A market based on a cusp catastrophe or any other

structure is a frame of reference. It shapes how we

define and measure observable characteristics of the

system it is intended to represent. A frame of reference

can not be validated. Consistency can be demonstrated

but not completeness. Godel's incompleteness theorem

demonstrates that incompleteness is inherent in any
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categorical system of thought.1 Given this limitation, we

may be willing to accept a sufficiently large number of

statistical tests of consistency as validation for an

economic model.

The hypothesis tested in Chapter Four demonstrates a

reasonable degree of consistency. However, consistency is

not unique to a given interpretation of observed events or

statistical tendencies. The Loenheim-Skolem theorem

demonstrates that within a categorical system of thought,

there exist radically different explanations which are

consistent with a given set of observations.2

Fortunately, as observers of economic systems, we are not

constrained to view economic activity within the framework

of a given theory. We can, to a limited extent, transcend

the frame of reference and make use of intuition.

Subjective evaluations can be made which are more

meaningful than refusals to accept or deny a hypotheses.

Intuition reflects conditioning as well as insight but the

pure application of the scientific method in economics is

often sterile.

In evaluating the application of a cusp catastrophe

as a model of the pricing process for a stored commodity,

the questions presented under the objective of this thesis

should be addressed. Is the model useful in the analysis
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of wheat prices? Cn we identify conditions under which

speculation is more likely to occur? Can we better assess

marketing risks and public policy alternatives?

A cusp model of speculative market behavior does

offer a plausible explanation for the irregular price

cycles which commonly occur in grain prices during a crop

year. There does appear to be a tendency for commodities

to become over or undervalued as price trends are

sustained by speculative changes in inventory demand.

Harvest trends are frequently extended into a crop year

and a period of readjustment often follows. The

relationship between expectations and price determination

does establish a link between past and present price

movements. This link can and often is exploited in

attempts to forecast commodity prices. However, the most

relevant implication that the model offers is that

speculative inventory demand leads to very unpredictable

short-term price behavior. The psychological impact of

market conditions on expectations is not readily

measurable. Hence, the effect of expectations on prices

can not be accounted for in a forecasting model. This

explains, in part, why econometric models are not

generally regarded as good short-term forecasting tools.
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Speculation has not been considered as a primary

source of price variation in agricultural markets. Price

movements are postulated to generate speculative inventory

demand. Tests conducted on the distribution of price

changes indicated that the level of speculation increased

with existing variation in wheat prices. In other words,

speculative reservation demand tended to increase under

more unstable market conditions. The simulation models

provided a clear demonstration of how a positive flow

between prices and expectations over a cusp catastrophe

surface may generate speculative variation about an

externally induced trend.

An attempt was made to approximate the level of

speculative content in the wheat market by decomposing

recent price trends. Price changes which varied inversely

with the rate of inventory consumption were used as a

measure of speculative content. Current price trends were

then estimated using current changes in the rate of

inventory utilization and nearby estimates of speculative

content as dependent variables. In the relative context

of trying to explain the variation in wheat prices,

decomposed price trends appear to be a relatively good

measure of speculative content. In the absolute terms of
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a predictive tool, this measure of speculative content was

moderately significant.

The model was not used as a tool for risk analysis in

the wheat market. The perception of risk should have a

significant impact on the flow of information between

prices and the formation of expectations. Results did

indicate that speculative demand increases with a

reduction in downside risk. Specific tests of the

distribution of price changes indicated a significant

level of positive kutosis. As a result, normative

measures of risk tend to understate the risk of both

relatively small and large price changes, while tending to

overstate the risk of a moderate change.

The two major price support policies in effect

between 1973 and 1983 roughly divided the sample period in

half. An open market policy, tending to eliminate

downside risk, was in effect through the 1977/78 crop

year. This was postulated to result in an upward

speculative bias in inventory demand. Upward price

movements showed a significantly greater variation than

downward price movements over this period. The farmer

owned reserve system was placed into effect in 1978.

Participation required that grain be held for a minimum

period of three years. This was postulated to temporarily
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eliminate any speculative bias as the gain of a secure

price eliminated upward speculation on the open market.

The variances for upward and downward price changes over

the subsample period were nearly identical. The total

variances in price changes for the subsample periods was

significantly lower under the farmer owned reserve. It is

tempting to conclude that the farmer owned reserve was a

better policy implement. However, at the end of three

years, farmers held mature grain which could be sold on

the open market or be kept in reserve for up to two more

years while receiving subsidy storage costs. This

amounted to free speculation. The policy self-destructed

into the Payment in Kind program in 1983.

An Evaluation of the Theoretical Perspective

A market was defined as a categorical system of

thought in the previous section. Every possible influence

in the exchange environment is classified as either a

determinant of supply or a determinant of demand.

Competitive markets, monopolistic markets and speculative

markets classify exchange into a few simple analogous

structures. Catastrophe theory classifies mathematically

defined systems into analogous structures; qualitatively

linear families of functions (one-determined),
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qualitatively quadratic families of function (two-

determined), qualitatively cubic and so forth. There is a

natural correspondence between the two systems of thought.

Hence, the claim that catastrophe theory is well suited to

economic theory.

Catastrophe theory, as an independent body of

mathematics, is being combined with bifurcation theory and

perturbation theory to form a broader system of

differential topology. It is of interest to note that

differential topology is the mathematical basis for many

of the proofs of rational expectations equilibrium theory.

There is also the subject of potential abuse. It is easy

to become lost in the abstractions one can create with the

tools of qualitative mathematics. As a model becomes

irreversibly abstract, information is lost. There is a

constant need for effective verbalization.

A market model based on a cusp catastrophe with slow

feedback provided a basis for examining the relationship

between the formation of expectations and price

determination. The model synthesized two critical

elements. One, the interaction between price information

and expectations could be represented by simply describing

tendencies in the flow of information along the

catastrophe surface. Second, the concept of transitory
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demand could be incorporated into a structurally stable

model of price determination.

The principal advantage of a cusp over higher

catastrophe structure Is that it may be visualized.

Higher catastrophes may hold any number of interesting

implications. However, they can not be applied with the

flexibility that geometric intuition provides.
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Endnotes

1 This simple interpretation of Godelts theorem was
given by Morris Kline, Mathematics the Loss of
Certainty, (Oxford: Oxford University Press, 1980)
p. 272.

2 This is not a correct statement of the Loenheim-
Skolem theorem. The terms referring to observation
have been freely substituted for the axioms of a
categorical system. The interpretation of the
theorem on which this intuitive generalization is
based was given by Kline, p. 272.



BIBLIOGRAPHY

Arzac, Enrique R. and Wilkinson, Maurice. "A Quarterly
Econometric Model of United States Livestock and Feed
Grain Markets and Some of Its Policy Implications.
American Journal of Agricultural Economics 61 (May
1979) 297-308.

Blume, Lawrence E. and Easley, David. "Learning To Be
Rational." Journal of Economic Theory 26 (April
1982) pp. 340-351.

Blume, L.E., Bray, M.M., Easley, D. "Introduction to the
Stability of Rational Expectations Equilibrium."
Journal of Economic Theory 26 (April 1982) p. 313-
339. New York: Academic Press, Inc.

Bowden, Roger J. "Specification, Estimation and Inference
for Models of Markets of Disequilibrium."
International Economic Review 19 (1978): 711-26.

Braun, Martin. Differential Equations and Their
applications. New York: Springer-Verlog 1975-1978.

Bray, Margaret. "Learning, Estimation, and the Stability
of Rational Expectations." Journal of Economic
Theory 26 (April 1982) PP. 318-339.

Bredahl, Maury E. and Green, Leonardo. "Residual Supplier
Model of Coarse Grains Trade." American Journal of

ricultural Economics 65 (April 1983) pp. 785-790.

Conkwright, Nelson Bush. Introduction to the Theory of
Equations. New York: Ginn and Company, 1957.

Cramer, Gail L. "World Grain Trade." In: Grain
Marketing Economics, pp. 238-262. Edited by Gail
Cramer and Walter Heid. New York: John Wiley and
Sons, 1983.

Dahl, Reynold P. "Futures: Markets, Prices and Hedging."
In: Grain Marketing Economics. Edited by Gail
Cramer and Walter Heid. New York: John Wiley and
Sons, 1983.

333



Einstein, Albert. Sideliqhts on Relativity, 1921.
Quoted in Kline, Morris, Mathematics, the Loss of
Certaiy, p. 340. New York: Oxford University
Press, 1980.

Fair, Ray C., Jof fee, Dwight M. "Methods of Estimation
for Markets in Disequilibrium." Econometrica 40 (May
1972) p. 495-514.

Fang, Joong. Theory and Problems of Abstract Alqebra.
New York: Schaum Publishing Company, 1963.

Fisher, Brian S. "Rational Expectations in Agricultural
Economics Research and Policy Analysis." American
Journal of Aqricultural Economics 64 (May 1982) 260-
265.

Fraleigh, John B. A First Course in Abstract Algebra, 2nd
ed. Reading, Mass: Addison-Wesley Publishing
Company, 1976.

Gallagher, Paul; Lancaster, Michael; Bredahi, Maury; and
Ryan, Timothy J. The United States Wheat Economy In
An International Settinq: An Econometric
Investiqation. United States Department of
Agriculture, Economics and Statistic Services (March
1981) #1644.

Gilmore, Robert. Catastrophe LY for Scientists and
Enqineers. New York: John Wiley and Sons, 1981.

Grennes, Thomas; Johnson, Paul R.; and Thursby, Marie.
The Economics of World Grain Trade. New York:
Praeger Publishers, 1978.

Gordon, Geoffry. System Simulation. Englewood Cliffs,
N.J.: Prentice-Hall, 1978.

Harlow, W.H. Mathematics for Operation Research. New
York: John Wiley and Sons, 1978.

Held, Walter G. "Grain Supply and Utilization." In:
Grain Marketing Economics, pp. 24-59. Edited by Gail
Cramer and Walter Held. New York: John Wiley and
Sons, 1983.

334



335

Heiner, Ronald A. "On the Origins of Predictable
Behavior." American Economic Review 73(4): 560-595.

HelJ.wig, Martin F. "Rational Expectations Equilibrium
with Conditioning on Past Prices: A Mean-Variance
Example." Journal of Economic Theory 26 (April 1982)
pp. 279-312.

Heimberger, Peter and Weaver, Rob. "Welfare Implications
of Commodity Storage Under Uncertainty." American
Journal of Aqricultural Economics 59 (Nov. 1977) 639-
651.

Helmberger, Peter 6.; Weaver, Robert D.; and Haygood,
Kathleen T. "Rational Expectations and Competitive
Pricing and Storage." American Journal
Aqricultural Economics, 64 (May 1982) 266-270.

Hi.lbert, D.; Cohn-Vossen, S. Geomey and
Imagination, Translated by P. Nemenyl. New York:
Chelsea Publishing Company, 1952.

Hildebrand, F.B. Introduction to Numerical Analysis. New
York: McGraw-Hill, 1956.

Himmelblau, D.M. Applied Nonlinear Progaming. New
York: McGraw-Hill, 1972.

Hofstadter, Douglas R. Godel, Escher, Bach: An Eternal
Golden Braid. New York: Basic Books, Inc., 1979.

Isnard, C.A. and Zeeman, E.C. "Some Models from
Catastrophe Theory in the Social Sciences." Use
of Models in the Social Sciences. Edited by L.
Collins. London: Tavistock Publications, 1976.

Johnson, Paul R.; Grennes, Thomas; and Thursby, Marie.
"Devaluation, Foreign Trade Controls, and Domestic
Wheat Prices." American Journal of Agricultural
Economics 59 (Nov. 1977) 619-627.

Johnston, J. Econometric Methods, second edition. New
York: McGraw-Hill Book Company, 1972.

Jones, Bob F. "Government Policy." In: Grain Marketing
Economics, pp. 266-298. Edited by Gail Cramer and
Walter Held. New York: John Wiley and Sons, 1983.



336

Jordan, James S.; Radner, Roy. "Rational Expectations i.n
Microeconomic Models: An Overview." Journal of
Economic Theory 26 (April 1982) P. 201-223. New
York: Academic Press, Inc.

Kawal, Masahiro. "Price Volatility of Storable
Commodities Under Rational Expectations in Spot and
Futures Markets.'t International Economic Review 24
(June 1983) p. 435-459. Japan: Letterpress Co.,
Ltd.

Kline, Morris. Mathematics, the Loss of Certainty. New
York: Oxford University Press, 1980.

Konandreas, Panos A. and Schmitz, Andrew. "Welfare
Implications of Grain Price Stabilization: Some
Empirical Evidence for the United States." American
Journal of Agricultural Economics 60 (Feb. 1978) 74-
84.

Leonard, Warren H. and Martin, John H. Cereal Crops. New
York: The Macmillan Company, 1963.

Leshan, Lawrence and Margenau, Henry. Einstein's Space
and Van Gogh's Sky Physical Reality and Beyond. New
York: Macmillan Publishing Co., Inc., 1982.

MacGregor, R.J. and Kolshreshtha, SN. "Pricing in the
International Coarse Grain Market." Canadian Journal
of Agricultural Economics 28 (1980) 110-118.

Maddala, G.S. "Methods of Estimation for Models of
Markets with Bounded Price Variation." International
Economic Review 24 (June 1983) p. 361-378. Economics
Dept., Univiersity of Pennsylvania.

Madden, Paul. "Catastrophic Walrasian Equilibrium from
the Non-Walrasian Viewpoint: A Three-good
Macroeconomic Example." The Review of Economic
Studies 49 (Oct. 1982) P. 661-667. Avon, England.

Martin, Michael V. "United States and World Grain
Production." In: Grain Marketing Economics, PP. 2-
21. Edited by Gail Cramer and Walter Held. New
York: John Wiley and Sons, 1983.

McNemar, Quinn. Psychological Statistics, Third Edition.
New York: John Wiley and Sons, Inc., 1962.



Muth, John. "Rational Expectations and the Theory of
Price Movement." Econometrica, 29 (July 1961).

Neter, John and Wasserman, William. Applied Linear
Statistical Models. Homewood, Illinois: Richard D.
Irwin, Inc., 1974.

Olmsted, John M.H. Solid Analytic Geometry. New York:
Ginn and Company, 1947.

Poston, Tim and Stewart, Ian. Catastrophe Theory and Its
Application. London: The Pitman Press, 1978.

Quandt, Richard E. "Tests of the Equilibrium vs.
Disequilibrium Hypotheses." International Economic
Review 19 (1978): 435-52.

Radner, Roy. "Rational Expectations Equilibrium: Generic
Existance and the Information Revealed by Prices."
Econometrica 47 (1979), pp. 655-678.

Samuelson, Paul Anthony. Foundations of Economic
Analysis. Cambridge Harvard University Press, 1947
reprint edition Atheneum, New York, 1979.

Samuelson, Paul Anthony. "Intertemporal Price
Equilibrium: A Prologue to the Theory of
Speculation." Collected Scientific Papers, I,

Cambridge: MIT Press, 1966.

Sarris, Alexander H. Speculative Storage, Future Markets,
and the Stability of Commodity Prices." Economic
Inquiry, 22 (Jan. 1984) p. 80-97. Western Economic
Association: Huntington Beach Calif.

Sarris, Alexander H.; Freebairn. "Endogenous Price
Policies and International Wheat Prices." American
Journal of Aqricultural Economics 65 (May 1983) 214-
224.

Saunders, P.T. An Introduction to Catastrophe They.
Cambridge: Cambridge University Press, 1980.

Shei, Shun-Yi and Thompson, Robert L. "The Impact of
Trade Restrictions on Price Stability in the World
Wheat Market." American Journal of Aqricultural
Economics 59 (Nov. 1977) 628-638.

337



,Shonkwiler, J. Scott and Spreen, Thomas H.
"Disequilibrium Market Analysis: An Application to
the U.S. Fed Beef Sector: Comment." American
Journal of Agricultural Economics 65 (May 1983) p.
360-363.

Theil, Henri. Applied Economic Forecasting. Chicago:
Rand McNally and Company, 1966.

Thom, Rene. Stabilite Structurelle et Morphoqenese. New
York: Benjamin, 1972. English trans., Fowler, D.H.
Structural Stability and Reading
Mass.: Benjamin. 1975.

Thom, Rene. "Catastrophe Theory: Its Present State and
Future Perspectives." Published In: Zeeman, E.C.
Catastrophe Theory Selected Papers 1972-1976, pp.
615-38. Reading, Mass.: Addison-Wesley Publishing
Co., 1977.

U.S. Department of Agriculture. Wheat Situation 1977-
1984, various issues.

Varian, H.L. "Catastrophe Theory and the Business Cycle."
Economic Inquiry 17 (1979) pp. 14-28.

Wison, A.G. "Aspects of Catastrophe Theory and
Bifurcation Theory in Regional Science." Papers of
the Regional Science Association 44 (1980) London,
pp. 108-118.

Wison, A.G. and Clarke, M. "Some Illustrations of
Catastrophe Theory Applied to Urban Retailing
Structure." London Papers in Reqional Science.
London: Pion (1979).

Working, Holbrook. "The Theory of the Price of Storage."
American Economic Review 39 (1949) 1254-1262.

Zeeman, E.C. Catastrophe Theory Selected Papers 1972-1974
Reading Mass: Addison Wesley Publications. Advanced
Book Program, 1977.

Ziemer, Rod F. and White, Fred C. "Disequilibrium Market
Analysis: An Application to the U.S. Fed. Beef
Sector." American Journal of Agricultural Economics
64 (Feb. 1982) p. 56-62.

338



APPENDIX



APPENDIX A

Simulation Program Listing and Tabular Results
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Program Listing and Operating Procedures: Hewlett-Packard.
67 Programmable Calculator.

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CO0 COMMCNTS

I 1 Start Qbservati

Ma a ta r Lo
B eq in R- K Proc.

Call for N & S
for p

Cal 1 for N & S
Cal 1 for

Call for N & S

Call for P

Turning Point
Test

n d R- K Proc.

' ' omputatjofl of

Di a Cr ± m in ant

Check

Method

M tho d of
Co a inca

ICardans

&I1WU 060

-15
3 °

S I
34 15

010

__________e2W*1
:20 -

RC L 0 080

RCL9

5L A 34 11

:3:

-

COO 35 4
03P__________________

+ 44
- r 51'

________
II0

TOO

l

0

4

Lao p Con rca 1

,, tr Looc

___________
0

,., , I
O T

REI$TERS
1 2 3 14 -

I P(t)
6 7

t T. tP
8 0

IP

0
SI

rDo- I
52

root
53 54

2 roct 3 rised
55 S6 7

Used Used sc
56 '51

-Sr. Used Used

S A? 5 N Concr:i



Program Listing (continued).

Pi'ur;ini Lisiiiig
V S1EP KEY ENTRY

0-
SCI 35 33 7

4I 5 04
20 z I1 Co np ut a S

i0
-

Root sorting AIsY._

cs
I30

71

o

A-RC 1. 1

_____

RV i* X

TO 2 33 02 .

:'?
)

Root Sale Ctio a

RLC 3 34 0 LSL c
o U tp Ut Tread

0 u ratio a_______

-- .'o

utput turn jag1

aaY P01 at Price
-_______

tGO I, a p U-
.I_

2:0 0

a NCo smut

PCL 14 CV'

LA8ELS FLAGS SET STATUS

A 8 C FLAGS TRIG CISP

a b
N & S

c
Reset

.

p
e

- FIX

asrer 2Used
GAO =

r cosines RA -. -
3

Used tA
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Program Listing (continued).

User InsIluelions

Cusp 4arket Simulation

342

INSTRUCflONS KEYS os
1 Initialize Simulation I e Hrt-r,i

Inout S s0 11 L._J
3 f 119,/51

4 Tnpn &.. .A.. Ls.TQJ EI1
5 Inout p p 1iil 2 I

6 Input 0
7

8 Inout T, k.rnIlI
9 Tn;it L..3J

10 Initiate Observation A

I Ii
90 next srvrrn H

qo to step 10.
- 1 I

r it

To change 6.p gn t erp q

II
L 1

II 1
If 1

1 1
I 11
I II
L If I

I II I

I ii I

L ii I

I If 1

I Ii 1



Program Listing (continued).

Program 1)eserip ion

343

eragramTitle Cusp Market Simulation

Name Stephen Carro1i Stare. Date .priL 1985

A::ess
State Zip Coce

Description. Equations, Variables, etc.Program

The following. paramebers must be loaded directly into

6. A1, A2. Cc.__program storage:

Locations noted in listing-- are program

were. obtained fromPsuado-rendom normal variables
Hewlett-Packard statistical library program

(# St-04A) . These were added at each observation
by utilizing LBL S.

Operating Limits and Warnings



Selected Tabular Results

Variable Identification Code: Model Variable

T = observation

P = price

N = normal factor; speculative content

= equilibrium price

= current price trend

t = trend duration in simulation time

Td = trend duration in observation time

u = random disturbance of equilibrium price

= initial price

Variable Identification Code: Model Parameters

cS = rate of normal factor adjustment parameter

= splitting factor dampening parameter

A2 = splitting factor dampening parameter

= splitting factor acceleration parameter

S = cusp point location parameter

= rate of adjustment in equilibrium price per
observation period

344
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C) Initialization Conditions: All Simulations

= 0.005 (iteration increment)

Tc = 5 (iterations per observation)

APt = 0

td = 0

S(t*) = 0 (value of splitting factor at a turning
point)



Table Al. Tabular results for pure disequilibrium
adjustment simulations; group one.

Parameter values:

=100 ct50
45 S = 2

A2- 3
0

346

P = (3.75, 4.00, 3.60)0

P = (4.00, 3.60, 3.75)
e

0 3.75 25 0 0 0 0
1 3.82 18 3.18 .07 .025 1

2 3.89 11 5.96 .14 .050 2

3 3.96 4 8.33 .21 .075 3

4 4.03 -3 10.27 .28 .100 4
5 4.09 -9 11.75 .34 .125 5
5 8 (4.13) -13 12.64 .38 .145 5.8
6 4.10 -10 9.75 -.03 .010 0.2
7 4.03 -3 7.16 -.10 .035 1.2
8 3.97 3 7.36 -.16 .060 2.2
8 8 (3.95) 5 7.48 -.18 .075 3.0
9 3.97 3 5.67 .02 .010 0.2
10 (4.01) -1 4.33 .04 .035 1.2
11 4.00 0 2.12 -.01 .025 1.0
12 4.00 0 0.85 .00
* 4.00 -40 0.00 .00 .000 0

13 3.92 -32 3.82 -.08 .025 1

14 3.83 -23 7.21 -.17 .050 2

15 3.75 -15 10.17 -.25 .075 3
16 3.66 -6 12.68 -.34 .100 4

17 3.57 3 14.76 -.43 .125 5

18 3.49 11 16.38 -.51 .150 6
19 3.41 19 17.55 -.59 .175 7
20 (3.36) 24 18.93 -.64 .200 8
21 3.46 14 11.60 .10 .025 1

22 3.54 6 10.39 .18 .050 2

23 3.62 -2 11.39 .26 .075 3
24 3.69 -9 12.80 .33 .100 4

25 (3.75) -15 13.94 .39 .125 5

T P N S P td Td



Table Al. (continued).

* Endogenous parameters reset
() denotes turning point

347

26 3.68 -8 8.43 -.07 .025 1

27 3.61 -1 7.85 -.14 .050 2

28 3.53 7 8.66 -.22 .075 3

29 (3.53) 7 8.12 -.22 .100 4

30 3.60 0 5.92 .09 .025 1

30.8 (3.62) -2 4.06 .09 .045 1.8
31 3.61 -1 3.89 -.01 .010 0.2
32 3.60 0 2.30 -.02 .035 1.2
33 3.60 0 1.29 .00
* 3.60 15 0.00 .00 .000 0

34 3.66 9 2.56 .06 .025 1

35 3.71 4 4.72 .11 .050 2

36 3.76 -1 6.44 .16 .075 3

37 (3.80) -5 6.03 .20 .100 4

38 3.74 1 4.44 -.06 .025 1

38.6 (3.74) 1 3.47 -.06 .040 1.6
39 3.75 0 2.97 .01 .010 0.4
40 3.75 0 1.54 .00
41 3.75 0 0.52
42 3.75 0 0.18

T p N S AP td Td



Table A2. Tabular results for continuous external
adjustment simulation: group 2, run 1.

Parameter Values:

A1 = 90 = (140.0)
12 9 S0=3

= 200
= (-0.075, 0.025)

T P N S P tP td Tde

348

() denotes turning point

0 4.00 0 0 4.00 0 0 0
1 3.97 -9.0 3.98 3.925 -.03 .025 1

2 3.90 -10.0 9.10 3.850 -.10 .050 2

3 3.82 -9.0 13.18 3.775 -.18 .075 3

4 3.72 -4.0 15.72 3.700 -.28 .100 4
5 3.63 -1.0 16.83 3.625 -.37 .125 5
6 3.54 2.0 16.79 3.550 -.46 .150 6
7 3.45 5.0 15.94 3.475 -.55 .175 7
8 3.37 6.0 14.61 3.400 -.63 .200 8
8.8 (3.34) 16.0 12.39 3.420 -.66 .220 8.8
9 3.38 9.0 12.70 3.425 .04 .005 0.2

10 3.46 -2.0 13.22 3.450 .12 .030 1.2
11 3.54 -13.0 16.64 3.475 .20 .055 2.2
12 3.61 -22.0 18.29 3.500 .27 .080 3.2
12.4 (3.62) -22.0 19.89 3.510 .28 .105 3.6
13 3.56 -7.0 12.04 3.525 -.08 .015 0.6
14 3.50 10.0 12.59 3.550 -.12 .040 1.6
14.2 (3.49) 13.0 10.51 3.555 -.13 .045 1.8
15 3.57 -1.0 10.43 3.575 .08 .020 0.8
16 3.64 -8.0 16.66 3.600 .15 .045 1.8
17 3.71 -18.0 16.75 3.625 .22 .070 2.8
17.6 (3.72) -16.0 17.18 3.640 .23 .085 3.4
18 3.68 -6.0 11.54 3.650 -.04 .010 0.4
19 (3.65) 5.0 8.26 3.675 -.07 .035 1.4
20 3.71 -2.0 9.58 3.700 .06 .025 1.0
21 3.77 -9.0 12.36 3.725 .12 .050 2.0
21.8 (3.81) -13.0 9.25 3.745 .16 .070 3.8
22 3.78 -6.0 8.98 3.750 -.03 .010 0.2
23 (3.77) 1.0 0.97 3.775 -.04 .035 1.2
24 3.78 -4.0 0.10 3.400 .01 .025 1.0



T P N S u
e

tP td Td
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Table A3. Tabular results for continuous external
adjustment simulation with randon disturbances:
run 1.

Parameter Values:

= 90 a = (140,0) = 200 u-N(0,0.05)
= 9 S0 =

e
= (-0.75, 0.25)

0 4.00 0 0 - 4.00 0 0 0

1 3.97 -9 3.98 .06 3.925 -0.3 .025 1.

2 3.91 0 8.11 .01 3.910 -0.9 .050 2

3 3.84 -1 11.12 -.04 3.845 -.16 .075 3

4 3.76 -6 13.50 .00 3.730 -.24 .100 4

5 3.68 -3 14.83 -.02 3.655 -.32 .125 5

5 3.58 -4 15.14 -.01 3.560 -.42 .150 6

7 3.49 -3 14.71 .00 3.475 -.51 .175 7

8 (3.41) -2 13.75 .00 3.400 -.59 .200 8

9 (3.46) -7 10.75 .00 3.425 .05 .025 1

10 (3.42) 6 5.08 .08 3.450 -.04 .025 1

11 3.50 20 9.87 .05 3.600 .08 .025 1

12 3.60 15 16.01 -.01 3.675 .18 .050 2

13 3.70 -2 20.00 -.04 3.690 .28 .075 3

14 3.80 -25 21.26 -.04 3.675 .38 .100 4

.8 (3.81) -28 16.98 - 3.669 .39 .125 5

15 3.74 -16 13.17 .05 3.660 -.07 .145 5.8
16 3.66 15 15.22 -0.6 3.735 -.15 .005 0.2
.8 (3.62) 18 11.06 - 3.707 -.19 .030 1.2
17 3.65 10 10.60 .03 3.700 .03 .050 2

18 3.73 5 12.03 -.07 3.755 .11 .005 0.2
19 (3.79) -16 9.70 -.07 3.710 .17 .030 1.2
20 3.70 -7 10.88 .00 3.665 -.09 .025 1

21 3.63 12 14.42 -.06 3.690 -.16 .050 2

22 (3.57) 18 15.73 -.01 3.665 -.22 .075 3

23 3.62 10 1.07 .01 3.670 .05 .025 1

24 3.66 9 0.31 3.705 .09 .050 2

x - .01
S(x) .04



APPENDIX B

Transformed Data for Graphical and

Regression Ananlysis
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Table Bi. Actual and smoothed monthly wheat prices; No. 1

Hard Redawinter at Kansas city, 1972/73 to
1983/84.

Crop b c
S Crop b c

S
Crop

b c
S

72/73 75/76 323 336 78/79 312 312
158 361 351 314 313
182 172 412 388 314 314
210 195 421 408 324 320
215 207 409 408 342 333
225 218 371 386 348 342
262 244 350 364 339 340
267 258 357 360 342 341
248 252 381 373 350 347
242 246 381 378 352 350
251 249 361 368 353 352
263 257 357 361 364 359

73/73 269 264 76/77 375 370 79/80 417 394
290 280 363 366 434 418
467 392 321 339 412 414
501 457 301 316 426 421
467 463 277 293 439 432
478 472 262 274 453 445
522 502 264 268 451 448
568 542 270 269 433 439
582 566 273 271 432 435
501 527 263 266 407 418
407 455 252 258 390 401
359 397 236 245 410 407

74/75 405 402 77/78 231 236 80/81 407 407
436 422 235 236 421 415
439 429 231 233 43]. 425
435 433 247 241 445 437
494 469 256 250 470 457
488 481 281 269 489 476
466 472 280 275 454 463
415 438 282 279 460 461
393 411 284 282 447 453
369 386 307 297 435 442
366 374 321 311 448 446
334 356 312 312 436 440



Table B1. (continued).

Crop
b

81/82 424 430
425 427
414 419
419 419
431 426
446 438
435 436
433 434
426 429
425 427
428 427
422 424

82/83 406 413
374 390
370 378
375 376
361 367
386 378
398 390
400 396
408 403
418 412
421 417
405 410

83/84 392 399
371 382
388 386
390 388
384 386
382 383
385 384

asource; U.S.D.A., Wheat Situation, (Washington, D.C.)
b1arb0U5 issues 1978-1984.
Averae Monthly Price
Smoothed Price; P = .6(P) + .4(P5 )

t t-1
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Table B2. Monthly wheat data for regression analysis:
Prices, interpolated consumption (Lagranigian),
and consumption as a percentage of beginning
inventories; Pi.ces No. 1 Hard Red Winter at
Kansas

Crop
Year P P MDC MD%BId

Crop
Year P P MDC MD%BId

72/73 149 589 75/76 323 -11 153 595
158 164 648 361 38 170 661
182 24 173 684 412 51 180 700
210 28 175 691 421 9 183 712
215 5 161 636 409 -12 170 661
225 10 157 620 371 -38 167 679
262 37 153 605 350 -21 162 630
267 5 140 553 357 7 155 603
248 -19 141 557 381 24 150 585
242 -6 146 577 381 0 144 560
251 9 158 624 361 -20 136 529
263 12 171 676 357 -4 136 529

73/74 269 6 202 876 76/77 375 18 153 544
290 21 216 936 363 -12 158 562
467 177 221 958 321 -42 159 565
501 34 218 945 301 -20 156 555
467 -34 198 858 277 -24 139 494
478 11 185 802 262 -15 135 480
522 44 169 733 264 2 132 469
568 46 140 607 270 6 130 462
582 14 125 542 273 3 130 462
501 -81 114 494 263 -10 132 469
407 -94 105 455 252 -11 134 477
359 -48 106 459 236 -16 144 512

74/75 405 46 130 608 77/78 231 -5 179 568
436 31 141 659 235 4 191 606
433 -3 149 697 231 -4 194 616
435 2 154 720 247 16 186 590
494 59 151 706 256 9 140 444
488 -6 152 711 281 25 134 425
466 -22 152 711 280 -1 134 425
415 -51 156 730 282 2 148 470
393 -22 150 702 284 2 155 492
369 -24 139 650 307 23 163 517
366 -3 113 529 321 14 171 543
334 32 114 533 312 -9 180 571



Table 32. (continued).

Crop Crop
Year P P MDC MD%BI' Year P P MDC MD%BId

Source: Wheat Statistics
1nterp01at1on formula, see text page
m0flth1Y disappearance, million bushels
monthly disappearance as a percent beginning inventory x
100

354

78/79 312 0 204 685 81/82 424 -12 243 641
314 2 213 716 425 1 268 707
314 0 214 719 414 -11 276 728
324 10 207 696 419 5 266 702
342 18 180 605 431 12 193 509
348 6 169 568 446 15 183 483
339 -9 157 528 435 -11 181 478
342 3 138 464 433 -2 206 544
350 8 134 450 426 -7 209 551
352 2 135 454 425 -1 207 546
353 1 145 487 428 3 194 512
364 11 156 524 422 -6 200 528

79/80 417 53 185 603 82/83 406 -16 244 612
434 17 198 645 374 -32 256 643
412 -22 206 671 370 -4 254 638
426 14 206 671 375 5 237 595
439 13 191 622 361 -14 160 402
453 14 186 606 386 25 152 382
451 -2 180 587 398 12 158 397
433 -18 168 547 400 2 215 540
432 -1 163 531 408 8 220 552
407 -25 161 525 418 10 211 530
390 -17 160 521 421 3 168 422
410 20 165 538 405 -16 169 424

80/81 407 -3 190 579 83/84 393 -13 228 574
421 14 201 613 371 -21 251 632
431 10 207 631 388 17 262 660
445 14 207 631 390 2 260 655
470 25 191 582 384 -6
489 19 190 579 383 -2
454 -35 189 576 385 3
460 6 196 598
447 -13 193 589
435 -12 186 567
448 13 166 506
436 -12 175 534




