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APPLICATION OF LINEAR QUADRATIC CONTROL DESIGN IN
REDUCTION OF AERODYNAMIC FORCES ON AIRCRAFT

I. INTRODUCTION

In order to improve the stability and handling quali-
ties for flight at low speed, the vertical tail of an
aircraft is often designed to be larger than required for
flight at higher cruise speeds. Because of this larger
tail area, excessive gust loading can occur at higher
flight speeds. The purpose of this report is to show the
feasibility of designing an autopilot which utilizes the
aileron and rudder in such a way as to reduce the gust
loading on the vertical tail while maintaining acceptable
levels of the lateral ride motion. The technique used
involves a linear quadratic regulator accomplished with a
stationary Kalman filter. The aircraft model is chosen to
be a typical business jet for which the equation of motion
of the aircraft was derived by the author in a previous
report(1). The equation of motion was linearized for the
nominal flight condition of 450 knots (231 m/s) at 20,000

feet (6.1 km) altitude.

The required theoretical background of the linear
quadratic regulator and the Kalman filter is presented in
Chapter II. In order to solve the regulator and the filter

problem, a Riccati equation has to be solved. An algorithm



is developed for solving this equation and is described in
Chapter III. Some of the numerical properties of the
algorithm are also discussed in this chapter. A computer
program implementing the proposed algorithm was written and
a user's manual is presented in Appendix E. Also, the

program listing is given in Appendix F.

Measurements are required in order to estimate the
system state. Due to the fact that the sensors for the
measurements are costly, it would be desirable to minimize
the number of sensors required while maintaining acceptable
information for state estimation. A new procedure for
measurement elimination is developed and presented in
Chapter IV. Also, a computer program is coded utilizing
the measurement elimination procedure and is presented in

Appendix G.



II. THEORETICAL BACKGROUND

II.1 Introduction

Optimal control is a technique used to determine the
minimum or maximum of some performance criteria related to
the performance of a dynamic system. A particular problem
may concern minimizing the pertubation from a nominal
trajectory of an aircraft, maximizing the flight range of a
rocket, minimizing the fuel consumption of a vehicle,
maximizing the profit in a business, or any of a vast

variety of similar problems.

The fundamental problem of optimal control theory may

be divided into four interrelated parts:

1. Definition of the desired goal.

2. Knowledge of our position with respect to the
desired goal.

3. Knowledge of all environmental factors influencing
the past, present, and future.

4, Determination of the optimal policy to achieve the

desired goal from the knowledge stated in (2) and

(3)o

The desired goal is defined as the performance criteria

which is to be minimized or maximized. For instance, the



pertubation from the nominal trajectory of an aircraft is
the performance criteria for one of the problems stated
earlier. To solve an optimal control problem, the knowl-
edge of the system and environmental factors influencing
the system is translated into mathematical terms. This is
called the system model. Realistically speaking, most
physical systems are nonlinear. However, since it is
rarely feasible to solve the optimal control problem for a
nonlinear system of any practical significance, the
development of explicit feedback control schemes for
nonlinear systems is usually out of reach. 1In many cases,
it is feasible to analyze small pertubations away from the
nominal trajectory. When characteristics of the system do
not significantly change with time, calculations for the
linear time-invariant system can be applied. 1In this
thesis, the linear time-invariant system model will be

assumed.

A linear time-invariant system can be described by a

set of first order differential equations

%(t) = A x(t) + B u(t) + T w(t)
y(t) = Cy x(t) + D, u(t) (2.1.1)
z(t) = C2 x(t) + D2 u(t) + v(t) + 9 w(t),



where
x(t) is the system state, u(t) is the control,
w(t) is the process noise, y(t) is the output,
z(t) is the measurement, v(t) is the measurement

noise. Note, all these quantities are vectors.

Equation (2.1.1) is called the state~variable description

of the system.

To effectively control the behavior of a system,
knowledge of the system state should be available. If
perfect knowledge of the system state is at hand, and, if
the performance criteria is chosen to be in quadratic form,
a linear quadratic regulator can be designed to solve the
state feedback control problem. In cases where perfect
knowledge of the system state is not available, a Kalman
filter can be used. The linear quadratic requlator
combined with the Kalman filter form a stochastic control

problem.

The focus of this chapter is classified into three

problems:

1. The linear quadratic regqulator,
2. The Kalman Filter,

3. The covariance properties.



These will be discussed sequentially in sections 2, 3, and

4 in this chapter.



IT.2 The Linear Quadratic Regulator

Consider a linear time-invariant system described by

Ax + Bu + I'w

e
]

(2.2.1)

C,x + D,u

o

It
-—
-—

where state x(t) is an n dimensional vector, the control
u(t) is an % dimensional vector, the process noise w(t) is
a p dimensional vector, and the output y(t) is an m dimen-
sional vector. Assume that the process noise w(t) is zero-
mean Gaussian white noise with non-negative definite power
spectral density matrix Q2, and assume that the initial
conditions x(to) and the process noise w(t) are

independent.

To design a linear quadratic regulator for the system
described by equation (2.2.1), the performance criteria is

chosen as the ensemble average of the quadratic form

- tf
J = E|lim % / (yTQ,]y + uTrR wat (2.2.2)
tf+m tO

where Q1, R, are positive-definite, constant matrices. The

1

linear quadratic regqulation problem is solved by minimizing



the performance criteria, equation (2.2.2), subject to the
constraints of the system equation described by equation
(20201)0

It is shown by Astr®m (1970) (%)

that the solution
of the above linear quadratic regulator problem is the same
as in the deterministic case when there is no process

noise,

te
Min 5 - 1im l/ (vTQ,y + u'R,u)dt (2.2.3)
u 2 1 1
tf+°° to

subject to the constraints of the system and the output

equations

Ax + Bu

Ke
il

(2.2.4)

C.x + D,u.

e
i

It is shown in Appendix A-1 that, by using Pontryagin's
maximum principle(3), the solution of the deterministic
linear quadratic regulator problem defined by equations

(2.2.3) and (2.2.4) is given by



The state feedback control law

Kx (2.2.5)

o
il

where the control gain K is given by

B'S (2.2.6)

and S satisfies the algebraic Riccati equation

1

T -1 T
0 =-SA, - A,°S + SBR, = B'S - Q,. (2.2.7)

The matrices in equations (2.2.6) and (2.2.7) are given by

the following equations

_ 4 T
Ry = D;° Q, Dy + Ry
_ g =1 T
Cy = =R, ' D~ 0 C,
(2.2.8)
A, = A + BC,

©
*
|
Q
©
Q
I
Q
*
o)
*
Q
*
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Combining equation (2.2.1) and (2.2.5), the closed loop

dynamic equation is

X = (A + BK) x + T'w . (2.2.9)
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II.3 The Stationary Kalman Filter

Consider a linear time-invariant system described by

Ax + Bu + Iw

Xe
]

(2.3.1)
z = C2x + D2u + v + Ow
where the state x(t) is an n dimensional vector, the
control u(t) is a 2-vector, the process noise w(t) is a
p-vector, and the measurement z(t) is a g-vector. Assume
that the process noise w(t) and the measurement noise v(t)
are zero-mean Gaussian white noise with power spectral

density matrices Q, and R, respectively. Furthermore,
2

2
assume that the initial condition x(to), the process noise

w(t) and the measurement noise v(t) are independent.

To estimate the state, it is desired to maximize the
probability of the state given the measurement (i.e. choose
the most probable state with knowledge of the measurement).

In this case, the performance criteria is given by

Max

ity T = PIx(®)] z(0), © < t] (2.3.2)
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When the probability density functions are Gaussian,
maximizing the conditional probability of equation (2.3.2)

is equivalent to minimizing the following criteria(u).

t

£
Min . _ lim l/ T, =1 T, =1
o T E[ D, oS iy e R, v)dt.]
42.3.3)

subject to the system dynamic constraints and that w and v

be causally related to z.

(4) (5) (6)

Many authors have solved the problem defined

by equations (2.3.1) and (2.3.3) when B, D O are zero

2'
matrices., The case of non=-zero, B, D2 and O is discussed
in Appendix A-2, where the solution of the stationary

Kalman filter described by equation (2.3.1) and (2.3.3) is

given.
The equation of the state estimate Xy 1s

i* = Ax, + Bu + G[-2z + D?u + sz*] . (2.3.4)

The filter gain G is given by

1 1

T - T -
G = =P Cy” Ryy = TQ, 07 Ryy (2.3.5)
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where P satisfies the algebraic Riccati equation

T T T
0 = AP + PA,,~ + TIQ,I" - PC, R

-1
2 2%

C2P . (2.3.6)

The matrices in equations (2.3.5) and (2.3.6) are given by

_ T
R —R2+OQ29

-1
* c (2.3.7)

Bye = A - T, of R :

2

_ _ T -1
Q2* - Q2 Q2 O R2* OQZ -

The equation of the estimated state X, can be rewritten as

Xge = (A + GC2)x* + (B + GD2)u - Gz . (2.3.8)
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IT.4 Discussion of the Covariance Properties

The description of the covariance properties can be

divided into four parts which are considered in the follow-

ing sections.

1. The system with process noise and zero control

In this case, the system is described by

Me
I

Ax + Tw (2.4.1)

y = C.X (2.4.2)
The state covariance matrix is defined by

T

X =E[x(t) x (£)] . (2.4.3)
A well known result from stochastic control theory
and described in Bryson and Ho (1969)(7) shows
that X satisfies the following Lyapunov equation
for the stationary case.

0 = AX + xaT + rQ2rT ) (2.4.14)

The rms state is the square root of each of the

diagonal elements of X.
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The output covariance matrix is defined by
T
Y = E[y(t) y (£)] . (2.4.5)
From equation (2.4.2), Y is given by

Y = E[C1 xxT C1T]

=c, E[xx'] ¢ T
1 1
_ T
= C1 X C1 . (2.4.6)
2. The linear quadratic regulator problem with

process noise.

The closed loop dynamic equation of a system
with the state feedback control law, u = Kx, is

given by

(A + BK) x + Tw (2.4.7)

Ye
]

<
I

(C1 + D1K) X (2.4.8)

where K is given by equation (2.2.6).

Comparing equations (2.4.7) and (2.4.8) with

equation (2.4.1) and (2.4.2), we find:
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The state covariance matrix X satisfies the

following Lyapunov equation

T T
0 = (A + BK)X + X(A + BK)™ + re,r- . (2.4.9)
The output covariance matrix Y is given by

Y = (c1 + D1K) X (c1 + D1K)T . (2.4.10)

The control covariance matrix, which is

defined as U = E[u(t) uT(t)], is given by

E[uuT]

c
I

I
=
7
b

I
=
3]

®
b
'_‘H
=

= K X K™ . (2.4.11)

The stationary Kalman filter problem

The solution of this problem is described in

section (II.3). The state estimation error is

defined by

X =x-x , (2.4.12)
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which is the difference between the actual state x
and the estimated state X,. The equation for the
state estimation error can be obtained by sub-
tracting equation (2.3.4) from (2.3.1). The
resulting equation is given by
2
X

= AX + I'w - G[~-z + D2u + sz*] . (2.4.13)

Using the measurement equation

z = C2x + D2u + v + 0w |,

and the equation for X, the quantity

=z + D,yu + Coxy is given by

=z + Dyu + Cox, = =CoX - v - Ow . (2.4.14)

Substituting equation (2.4.14) into (2.4.13),

it yields

[
X = (A + Gc2)§’+ 'w + GOw + Gv . (2.4.15)

Using the equation of the filter gain G, the

quantity I'w + G Ow + Gv can be rearranged as
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l'w + G Ow + Gv = Tw, + Gpv (2.4.16)

where

_ T -1
W, = W = Q2 e R2* Vg

_ T -1
G, = =P C2 R2* (2.4.17)
Ve =V + 0w ,

the equation (2.4.15) of the state estimation error

can then be written as

[ ]
X = (A+GC)X + Twy + Gy vy . (2.4.18)

It is shown in Appendix A-2 that the power
spectral densities of w, and v, are given by Qs %
and R2* which are defined in equation (2.3.7). 1In
addition, the assumption that x(to), w(t) and v(t)
are uncorrelated insures x(to), w, (t) and Vg (t)
are also uncorrelated. Comparing equation
(2.4.18) with (2.4.1) and using the uncorrelated

property of x(to), we(t) and v (t), the covariance
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~

matrix of the stationary state estimation error X

satisfies the following Lyapunov equation

= I+ X T T
0=(A+GC) X+ X(A+GCy) +T0Q,, T

T

+ G, R2* G, (2.4.19)
where
_ T 1
_ T -1
G, = -P C2 R2* (2.4.20)
= T
R2* = R2 + 0O Q2 0" .
To prove X is equal to P, the quantity E is first
defined:

E=P -X (2.4.21)

where P is the solution of the algebraic Riccati
equation (2.3.6). Subtracting equation (2.4.19)

from (2.3.6), making use of equations (2.4.20) and
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(2.4.20) and (2.4.21), the quantity E satisfies

the following Lyapunov equation
0= (A+GC,E+E®M+GC,) . (2.4.22)

(8)

It was shown by Kalman in 1960 that, if the
system is controllable and observable, the eigen-
values of A + G C2 are all in the open left-half
plane. With this eigenvalue property, it was

shown by Rutherford(g)

in 1932 that the unique
solution E of equation (2.4.22) is equal to zero.
Thus, the covariance of the state estimation error

is equal to the solution of the algebraic Riccati

equation (2.3.7), i.e.,
X=7P. (2.4.23)
The stochastic control problem

In cases when perfect knowledge of the state is
not available, a Kalman filter can be used to
estimate the state. This estimated state is then
used in the state feedback control law for the

(10) shows that the problem of

reqgulator. Wonham
filtering and control can be treated independently

in some cases. The result is called the
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separation theorem. According to this theorem,
the solution of the stochastic control problem is
given by the solution of the linear regulator and
the solution of the Kalman filter with the state

feedback control law.
(2.4,24)
where Xy is the estimated state.

These solutions for the linear regulator and the
Kalman filter were given in the previous two

sections.

The covariance of the estimated state is defined

by
_ T
X, = E[x* Xe 1 & (2.4.25)

It is shown in Appendix A-2 that X4, and X are

uncorrelated, i.e.,

Elx, X°1 = 0 . (2.4.26)

Using equations (2.4.26) and (2.3.4) and the pre-
vious steady covariance results, the estimated
state covariance satisfies the following Lyapunov

equation
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T

0 = (A +BK) X, + X,(A + BK)~ + GR,, G (2.4.27)

2%

_ T
where R2* = R2 + OQ2 0" .

The covariance of the actual system state is

defined by
T
X=E[xx"1 . (2.4.28)

Using equations (2.4.12), (2.4.23), (2.4.26), the
covariance of the state is given by the sum of the
covariance of the estimated state and the covari-

ance of the state estimation error
« TP (2.4.29)

where X, satisfies equation (2.4.27) and

P satisfies equation (2.3.7).

Using the equation (2.4.24) of the control, the

control covariance matrix is given by

U=KZX, K . (2.4.30)
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Substituting the equation (2.4.24), into the output

equation yields

y = (C1 + D1K) X, + C1 X . (2.4.31)

Since X, and X are uncorrelated, the output covari-

ance matrix is given by

- T T
Y = (Cy +D4K) X, (C; + D4K)" + C,PC," . (2.4.32)



24

III AN IMPROVED ALGORITHM FOR SOLVING THE
ALGEBRAIC RICCATI EQUATION

IIT.1 Introduction

From the discussion in Chapter II, it can be seen that,
in order to solve the linear quadratic regulator and the
stationary Kalman filter problem, the algebraic Riccati
equatibns (2.2.7) and (2.3.6) have to be solved. Many

(11) (12) (13) to solve these

authors have suggested methods
equations. One of the methods that has been most
successful is the eigenvector decomposition method proposed

(1) (12) in 1966. 1In

by MacFarlane in 1963 and by Potter
this method, the eigenvalues and the corresponding
eigenvectors of the Hamiltonian matrix are determined. The
Hamiltonian matrix is the coefficient matrix of the Euler-
Lagrange system discussed in Appendices A-1 and A~2. The
eigenvectors of the Hamiltonian matrix associated with

eigenvalues whose real parts are all of the same sign are

partitioned into the form of

X, X_
T = = [Ty T_) (3.1.1)
A+ A_
where
X, X_
T = and T_ =
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are eigenvectors associated with eigenvalues with positive
real parts and negative real parts respectively. In the
case that the system is not controllable or not observable,
then eigenvalues with zero real parts may exist, and the
algorithm can fail. Using two of the four submatrices in
equation (3.1.1), one forms a set of linear equations whose
solution yields the solution of the corresponding algebraic
Riccati equation. The choice of which two of the four
submatrices depends solely on which Riccati equation is to

be solved.

The success of this method requires that the parti-
tioned eigenvector matrices be non~singular. However, as

was discussed by Holley(1u)

and Wei in 1979, the resulting
matrices may be singular when one or more of the
eigenvalues are repeated. This difficulty can be overcome
by using the generalized eigenvectors, which, however, is
not an entirely satistactory method. In cases when two
eigenvalues are nearly equal, the partitioned eigenvector
matrices, while not singular, remain ill conditioned. This
can lead to errors in the computed solution. Small
perturbations in the system matrix elements can lead to

drastic changes in the partitioned eigenvector matrices,

which also causes poor numerical stability.

An improved algorithm for solving the algebraic Riccati

(14)

equation is presented in this chapter. 1In this
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algorithm, the Hamiltonian matrix is transformed into
quasi-upper triangular form by an orthogonal similarity
transformations. This transformation is chosen so that the
resulting quasi-upper triangular matrix has all the
eigenvalues with positive real parts in the lower right
hand corner when the regqgulator problem is solved, and all
the eigenvalues with negative real parts in this corner
when the filter problem is solved. The quasi-upper
triangularization is accomplished by using the stable QR
algorithm with implicit double shifts(15)(16). As in the
eigenvector decomposition method mentioned above, the
resulting orthogonal similarity transformation matrix is
partitioned into four n by n matrices. Using two of the
four submatrices, one forms a set of linear equations whose
solution yields the solution of the corresponding algebraic

Riccati equation.

In Section III.2, the proposed algorithm and its
theoretical basis are presented in more detail. An error
bound for the orthogonal similarity transformation to
quasi-upper triangular form and the operations count for
solving the Riccati equation are discussed in Section
III.3. A computer program which solves the optimal control
problem presented in Chapter II by using the proposed
algorithm was coded and is listed in Appendix F. The

user's manual for the program is presented in Appendix E.
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III.2 The Algorithm and its Theoretical Basis

The proposed algorithm for solving the algebraic

Riccati equation has three major steps:

1. Setting up the Hamiltonian matrix of the
corresponding algebraic Riccati equation,

2, From the Hamiltonian matrix, determine an
orthogonal basis of the invariant subspace(17)
associated with the desired eigenvalues, and
3. The symmetric, non-negative definite solution of

the Riccati equation is found by solving a set of

linear equations involving the orthogonal basis

vectors of the invariant subspace.
These steps will be described sequentially in this section.

As discussued in Chapter II, the algebraic Riccati
equation of the linear quadratic regulator is given by
equation (2.2.7) which is rewritten here

T -1 T
0=-SA, - A,'S+SBR, B S-0,. (3.2.1)

As described in Appendix A-1, the corresponding Euler-

Lagrange system has the form
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X A, -BR, B x
= (3.2.2)
A -0, -a, 7t A
where X is the system state and ) is the Lagrange multi-

plier resulting from the application of the

Pontryagin maximum principle

The Hamiltonian matrix is the coefficient matrix of the

Euler-Lagrange system and, in this case, is given by

H = (3.2.3)

Matrices A, Ry, Q, etc. are defined in Chapter II.

The Hamiltonian matrix for the stationary Kalman filter
is similarly defined. The Riccati equation of the Kalman

filter is given by equation (2.3.6), rewritten here as

T T T . -1
0 = Ay P+ PAy,” +TQy, T" = PC, Ry, ' C,P . (3.2.4)
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It is shown in Appendix A-2 that the corresponding Euler-

Lagrange system is given by

r I 1 2 =
FOT T rw
X Agy FQZ*F X By L u

= +
_3 T -1 - T - T, =1 T -1
| XJ C2 R2* C2 A** A C2 R2* D2 -C2 R2* Lz J
L JLJ N J
(3.2.5)

where AL gr Q2*, R2* are defined in Chapter II and Byr L

are defined in Appendix A-2.

The Hamiltonian matrix in this case is given by

r .
T .
Axx I'Qz* T

H = (3.2.6)

It is shown in Appendix B-1 that if Q, and R, are
symmetric, the eigenvalues of the Hamiltonian matrix
defined in equation (3.2.3) are symmetric with respect to
the imaginary axis in the eigenvalue plane, (i.e., if s is
an eigenvalue of H in equation (3.2.3), then, =-s is also an
eigenvalue). A similar result follows for the Hamiltonian
matrix defined in equation (3.2.6) if Q2* and R2* are

symmetric matrices.
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It is also shown in Appendix B-1 that, for a con-
trollable and observable system, the solution of the

control Riccati equation (3.2.1) satisfies the relation

Q11 S = Q12 ’ (3.2.7)

where Q11 and Q12 are submatrices of the orthogonal

similarity transformation matrix

Q = (3.2.8)

which transforms the Hamiltonian matrix of equation

(3.2.3) into the form

- N r - r _1 Tﬂ ~ ﬁT
Uil Uqg Q11 Qqaf |B«  “BRy BT [0, Q,,
_ (3.2.9)
T
0 Uy, Q1 Q| |79% A, Q1 Q)
L - - J - < U -

with U22 having all eigenvalues in the open right half plane.

The solution of the filter Riccati equation (3.2.4)

satisfies the following equation

Q,, P = 0y, (3.2.10)
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where Q11 and Q12 are also submatrices of the orthogonal
similarity transformation matrix
- 7
Q11 22
Q= (3.2.11)

which transforms the Hamiltonian matrix of equation (3.2.6)

into the form

r 1T 1 T( 1T
Uir Yo Q11 Q12 [P« FQy T7 Q1 Q5
_ (3.2.12)
T =1 T
0 U o0.. o c.Tr.."Te. -a Q,, Q
i 22 | 91 Q2% Fax S xx |91 Q2]

With U22 having all eigenvalues in the open left half plane.

The similarity transformation of equations (3.2.9) and

(3.2.12) has the following form

- . T
[ U1 U121 Q11 212 (911 Q12

= H (3.2.13)

22 Q51 szj Q1 Q2o .
L J L L J

Since Q is orthogonal, premultiplication by QT on both sides

of equation (3.2.13) yields
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8 9 ~ T B W
T T T T
Q11 9y Q17 Q17| |Y11 Upy
H = (3.2.14)
T T T T
Q27 99 Q2" o |0 Usa | .
. J L - L -

2] [ o I
Q1 Q1 Uq Q4
H = = U, (3.2.15)
Q5" Q,," Uy, Qp° .
S J L ]

Equation (3.2.15) shows that the linear operator,
represented by the matrix H, transforms the first n rows of
Q into linear combinations of themselves. This shows that

the first n rows of Q

form a set of orthogonal basis vectors for the invariant
subspace, which is associated with n eigenvalues of

submatrix U11 in equations (3.2.9) and (3.2.12).

The highly stable QR algorithm with implicit double
shifts of origin is employed to determine the orthogonal
similarity transformation matrix Q. Wilkinson and

Reinsch(15)(16) point out that for the QR algorithm,



the volume of work is greatly reduced if the matrix H is
first transformed to upper-Hessenberg form (i.e., to a
matrix H' such that hij =0 for i > j+1). The
transformation may be accomplished in a stable manner by
the use of Householder type orthogonal similarity
transformation matrices(15)(16). The transformation by

orthogonal matrices takes place in n-2 major steps.

Immediately before the r~th step H has been reduced to Hr
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which is of upper-Hessenberg form in its first r-1 columns.

The matrix Hr is derived from Hr via the relation

+1

H =Q_ H_Q . (3.2.17)

The orthogonal matrix Qr is of the form

_ - T

Q. =1 u.u_ /Br (3.2.18)
where
T (r) 1/2 (r) (r)
4 = [0,==-,0, hr+1,r * % ' hr+2,r,"'hn,r]

= - () 2 (3.2.19)
o= I | )
r . r+i,r

i=1
(r) 1/2

Br = Or * hr+1,r Or .

This transformation leaves the zeros already produced in the

first r-1 columns of Hr unaffected.
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Given the upper-Hessenberg matrix H', the QR algorithm

is used to accomplish the quasi-triangularization which was

described in equations (3.2.9) and (3.2.12).

s of the QR algorithm, we have

For iteration

— T T
HS+2 = QS+1 QS Hs QS QS+1 (3.2.20)
giving
T T T T
HS (QS Qs+1 ) (QS QS+1 )Hs+2 (3.2.21)
and
.o, TR, R) = (H.-k_I) (H.-k_..I). (3.2.22)
S s+1 s+1 "'s s s s "s+177° e
writing
Qs+1 Qs =T . Rs+1 Rs = N,
(3.2.23)
and (HS - kSI)(HS - kS+1 I) =M,
we have
T T _
H, T" =T H ,, » N = TN, (3.2.24)
where
k_ and k are shifts of origin and
S s+1
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N is an upper triangular matrix (since RS and

RS+1 are upper triangular).

(18)

Householder demonstrated in 1958 that any real
matrix can be triangularized by successive premultipli=-

cation with Q1, Q2""Qn—1' where Qi are of the form

Q. = I - 2 Wi oW (3.2.25)

and Wi is a unit vector with zeros for its first i-1

components,

Since the first row of the matrix Qn—1 Qn—2"°QZQ1 is
the first row of Q1 itself, it was pointed out by

Francis(19)

in 1961 that in triangularizing any matrix the
first factor, Q1, is determined only by the first column of

that matrix., The first column of M is of the form

T

(Byr dyr Tyr 0y weue ,0) (3.2.26)
where
_ 2 _
Py = hyy hyglkg + kgyq) *+ kg kgyq + hyy hoy
dq = hyqlhyy +hyy = ko = ko q) (3.2.27)
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h is the (i,j) element of the matrix H, and

ij

k ks+1 are either real or are complex conjugates

S'
giving real values for Pqr dqv and ry.

Because of these properties, the vector w, associated with

1
Q1 has only three non-zero elements, giving the matrix
Q1HSQ1T a maximum of three non-zero elements below the
diagonal element. The matrix with three non-zero elements
below the diagonal is then transformed back to an upper
Hessenberg matrix by using the algorithm for initial
Hessenberg reduction, which is described in equations

(19)

(3.2.17) to (3.2.19). Francis shows that this matrix

is the same as HS in the QR algorithm. A subroutine

+2
called HESS has been coded for the upper Hessenberg
reduction., Since the subroutine HESS is necessary for the
first Hessenberg reduction, the transformation Q1HSQ1T
described above is coded as a separate subroutine called
SHIFT2. The resulting matrix from subroutine SHIFT2, which
has three non-zero elements below the diagonal, is
transformed to the Hessenberg matrix by again using the
subroutine HESS. This subroutine was designed to take
advantage of zero subdiagonal elements. Subroutines HESS

and SHIFT2 are described in Appendix E and listed in

Appendix F.

In order to isolate eigenvalues with proper signs in

the U22 matrix in equations (3.2.9) and (3.2.12), several
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possible shifting strategies for choosing kS and k were

s+1

tried. Experiments indicated that choosing kS and kS to

+1
be the desired eigenvalues resulted in a stable and
efficient method. This results from the fact that the QR

(15). The

algorithm isolates zero eigenvalues in one step
eigenvalues of proper sign are chosen from the full set of
eigenvalues determined by a complete quasi-
triangularization of H with arbitrary ordering. This
results in a two step process: first, the eigenvalues of H
are computed by a full quasi-triangularization, and second,

this knowledge is used to isolate eigenvalues with proper

sign which involves only a partial quasi-triangularization.

It may happen during the course of the iteration that a
matrix HS has one or more sufficiently small (to be
regarded as zero) sub-diagonal elements in an undesirable
position. This split of HS may cause the isolation of the
desirable eigenvalue to be impossible. 1In this case, an
arbitrary Householder type similarity transformation is
performed to remove the undesired zero on the sub-diagonal

elements. The Householder type matrix is chosen to be in

the form
Q, O
Q:
0 I
where
T T
T
Qp =I-% , u =11, 1, ---,1], and 8 = L%,
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The similarity transformation for removing the undesirable
zero on the sub-diagonal is performed according to the

relation

I 3
r -
0, Hy Q Q, H,
0 H

3
L J

where H3 is the submatrix with desired eigenvalues pre-
viously isolated, and H1 is the submatrix with the
undesirable zero on the sub-diagonal. The submatrix

Q1 H1 Q1 of the resulting matrix Hé is no longer in upper
Hessenberg form, allowing use of subroutine HESS to reduce
it to an upper Hessenberg matrix. With the resulting

matrix, the QR algorithm is then used to continue the

isolation of the desired eigenvalues.

The Householder type reduction is also employed to
solve the linear equations given in (3.2.7) and (3.2.10).

In general, the method can be described as follows:
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Given a linear system

AX

I
W
~

(3.2.28)

a sequence of Householder-type matrices is found such

that the product Q satisfies

QAX = OB (3.2.29)

where T = QA is an upper triangular matrix. Back

substitution is performed to solve the equation

I
=

TX (3.2.30)

where Y = QB.

Once the solution of the Riccati equation found, the
control gains,the closed loop dynamics matrix etc. can be

found by simple matrix operations.

In order to solve the covariance equations discussed in

Chapter II, a Lyapunov type equation

ax + xa’ = ¢c (3.2.31)

(20)

has to be solved. Bartels and Stewart proposed a

method for solving the above Lyapunov equation in 1972. 1In
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this method, the matrix A is first transformed to a quasi-
upper triangular matrix by using the QR algorithm stated
above. The resulting matrix satisfies the following

equation
T
UY + YU =T (3.2.32)
where

U = QAQT is a quasi-upper triangular matrigx,

0xoT, and T = ocol.

<
I

Equation (3.2.32) can be written as

” = ( N l’ < r - =
u, u.lly Y Y v. | u.T o I—T T

1 Uy 1¥1q 12 11 12| Y1 11 12

+ =
T T T T T
0 T31|Y 45 Yy, Yi2° Yyl |Uy™ Ujg Tio™ Ty
L J L i L J L J L §
(3.2.33)

where U3 is a one-by-one or a two-by-two block.

Multiplying the partitioned matrices yields

u, Y + Y U + U, Y + Y U =T (3.2.34)

u, Y + U, Y + Y U =T (3.2.35)
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(3.2.36)

Since U is in quasi-upper triangular form, the submatrix U3

is either a one-by-one or a two-by-two matrix. If U3 is a
one-by-one matrix, equation (3.2.36) is a scalar equation
which can be solved immediately. If U3 is a two-by-two
matrix, equation (3.2.36) can be transformed into a stan-
dard linear system of equations of order four or less in the

form of equation (3.2.28). The linear equation can then be
solved by using the Householder type reduction which is
described by equations (3.2.28) to (3.2.30). The solution
Y22 obtained from equation (3.2.36) is back substituted

into equation (3.2.35). Since U1 is also in the quasi-
upper triangular form, equation (3.2.35) can be broken down
into sub-equations similar to equations (3.2.34), (3.2.35),
and (3.2.36). The back substitution method of matrix
blocks described above is again employed to solve equation
(3.2.35). The solution Y12 obtained from equation (3.2.36)
is then back substituted into equation (3.2.34). Now,
equation (3.2.34) is a reduced order Lyapunov equation with
U1 in the quasi-upper triangular form, the back
substitution method of matrix blocks can then be used to

solve equation (3.2.34). The solution of the Lyapunov

equation (3.2.31) is then obtained by the relation
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X =0Y ¥ o (3.2.37)

where Y is the solution of equation (3.2.32).

It is shown in Appendix B-1 that, if the eigenvalues of
A are all in the open left half plane, and if the C matrix
is negative definite, the solution of Lyapunov equation

(3.2.31) is a positive definite matrix.
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ITII.3 Numerical Properites of the Quasi-triangularization
and the Operations Count for Solving the
Riccati Egquation

The quasi-upper triangularization described in the

previous section can, in general, be written in the form

H =G, HG (3.3.1)

where G1 is the product of a sequence of Householder
type orthogonal similarity transformation matrices,
H is the original Hamiltonian matrix, HS is the

transformed matrix which is of the form

H = (3.3.2)

It is shown in Appendix C-1 that the computed matrix ﬁs

satisfies the following equation

T

H =G 1

s 1 (E + H) G

(3.3.3)

where ﬁs is the computed HS and E is a perturbation in H.

It is also shown in Appendix C-1 that the perturbation E,

for a machine with a t-digit mantissa, is bounded by



by

3

HEIT, < 27t [lu]], { 8 k n° + (3.82 + 4 k)n® + 44.5 n

2

+ 50.9 + (4 k n® + 50.9)s } (3.3.4)

norm of the matrix
2

is the L

where k = 2,12, | |, 2

and s is, in most cases, between 3/2 n

2

and

(3n® - n).

It should be pointed out that, since the transformation
removing undesired zeros on the sub-diagonal is unnecessary
in most cases, error caused by this transformation was not
included in equation (3.3.4). It can be seen from equation

4 term dominates the bound of the

(3.3.4) that an n
perturbation E. 1In order to have a quantitative feeling
for the above result, assume the order of the system, n, is

equal to 100 and the factors k and s to be the larger

values

(3.3.5)

s = 3 n2—n .

For the CDC CYBER machine, t = 48, and the bound given in

equation (3.3.4) is

5

[HEll, < (.91 x 107 [[H]], . (3.3.6)
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Thus, the computation is reasonably accurate even for such

a large-scale system,

An error bound for the computed similarity transforma-

tion, 51, can be derived as follows. First of all, a

supporting lemma for a derivation of the error bound, which

is proved in Appendix C, is stated as:
Lemma 3.1.

The floating point computation, fl1[ 1, of matrix

multiplication is given by

fl(A1A ceee AS) =AA, .... A +F (3.3.7)

2 172 s

where

[IFl], < 1.06 (s=1)n® 27F 12 || (3.3.8)

1 j 2

R

J

With this lemma, the error bound of 51 can then be derived.

G1 has the form

(3.3.9)

where Qi are Householder type matrices and s is

the number of orthogonal matrices required to
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accomplish the quasi-triangularization described

in equation (3.3.1).

The computed G1 can be written as

= _ = = (3.3.10)
G1 = QS ceee Q1

where 0. =Q. + e, is Q, with perturbation e .

With floating-point arithmetic, the computed matrix 51 is

given by

Qg *eg) Qg g +egq) vovn (Qp +ep) +e_

s
= Q. ee. Q. + X L (eije.. €14) T Q. + e
s 1 - . m**: 1 cwrs s+1
m=1 {1211<...<1m_<_s j¥{11...1m}}
(3.3.11)
where 41 is the error in matrix multiplication.

Using equations (3.3.7) and (3.3.8), the bound of ©ot in

equation (3.3.11) is given by
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[legpqlly < (1.06) (s=1) n® 27F |
1

IIhaw
-

[1Q; ||
17720 (3.3.12)

Substituting the equation

1R 1y = THQg Il + Ilelly = 1+ [lell,

where the fact IIQi||2 = 1 is used.

Since Qi is an orthogonal matrix, equation (3.3.12) becomes

s
||es+1||2 < (1.06) (s-1)n% 27 ‘n1 (1 + [|ei||2) .
1=

(3.3.13)

It is shown in appendix C-1 that e; satisfies the inequality
-t
lle; 1, < Ilell, < (4.8 n + 11.2) 27~ . (3.3.14)

Using equation (3.3.14) and the relation

S
(1 + [legl1) < (1 + [le]],)

23w
-

| A

exp []]e]],s]

1+ 1.01s |lef], .

| A

if s||e||, < .01, equation (3.3.13) becomes
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t

llegyqll, < (s=1n? (1.06)27% (1 + 1.01 sllel],) (3.3.15)

where the higher order term is neglected and

t

|lell, < (4.8 n + 11.2)27

The L2 norm of the summation term in equation (3.3.11) can

be simplified as follows:

Using equation (3.3.14) and ]Iqill = 1, the quantity
: |
[ 1€ = z (ei ...ei1) ™ q;i |
=1 1<ig<o..<i <8 J&{i .. 1)

A

mi1<m) I'ellz )
25 e,

=1+ (1 + |le]] S

1l
|
+
™

<=1+ 1+ 1.01 s||e||2 , if s||e|12§.01, (3.3.17)
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where

(3) - mT‘jg%%yT— . (3.3.18)

Substituting equations (3.3.14), (3.3.15) and (3.3.17) into

(3.3.11), the resulting equation is given by

= |le

HeGllz 1_G1H2

S

1.01 sllell, lle,,qll,

(s-1)n® (1.06)2" ¢

In

t

+ 1.01[s(s=1)n° (1.06)2"% + s] (4.8 n

+11.2) 27 | (3.3.19)

If s = 3n2 - n, n= 100, and t = 48, the above bound is

llegll, < 1.2 x 107°, (3.3.20)

The accuracy of the computed orthogonal matrix is

acceptable even for a large scale system with n = 100.

One way to express the efficiency of an algorithm is by
an operations count; the number of arithmetic operations
required for the algorithm. Since the computational time

for multiplication and division is usually much larger than
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for addition and substraction, it is customary to count
only the number of multiplications and divisions. The
operations count of multiplications and divisions for
solving the algebraic Riccati equation is now determined.
This operations count has three major parts: (1) OP for
finding the eigenvalues of the Hamiltonian matrix, (2) OP
for isolating the n desired eigenvalues on the lower right
hand corner of the transformed Hamiltonian matrix, and (3)
OP for solving the linear equations formed by the parti-
tioned matrix of the orthogonal similarity transformation
matrix. It is shown in Appendix C-2 that the total OP
required for solving the algebraic Riccati equation using
the algorithm described in the previous section is usually

between limits

op = 186.2 n3 + 81 n® - 56.2 n - 67
max
and (3.3.21)
OP . = 186.2 n3 + 57 n® - 83.2 n - 41
min
where n is the order of the system.
In the case n = 100,
8
OP = 1.870 x 10
max
_ 8
OP = 1.868 x 10 .

min
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IV ELIMINATION OF UNNECESSARY MEASUREMENTS

IVv.1 Introduction

State estimation accuracy is highly dependent on which
measurements are used. When more measurements are
available, the estimation of the state will be more
accurate. These measurements of the system outputs are
gathered by sensors. However, due to sensor cost, it is

desirable to minimize the number of sensors required.

In the following section, possible criteria for
measurement elimination are discussed, and an elimination
procedure is described. At the end of this chapter, the
proposed procedure is applied to a small jet aircraft
control problem. A computer program was developed for the
application of the proposed general procedure and is

presented in Appendix G.
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IV.2 The Measurement Elimination Criteria

The system model is assumed to be linear and time-

invariant with the state equation
X = Ax + Bu + Tw . (4.2.1)

The controlled outputs and measurements satisfy

y = C1x + D1u (4.2.2)
z = C2x + D2u + v + 0w , (4.2.3)
where z represents the vector of sensor measurements.

The criteria for measurement elimination depends on the
purpose of the state estimation. For instance, when state
estimation alone is desired, the accuracy of the estimated
state is the obvious criterion. However, if the estimated
state is used in state feedback control, the accuracy of
the control variable is more important. When the objective

of the controller is to minimize the quadratic performance
T T
E[ S (y Q1Y + u R1u)dt 1, (4.2.4)
o)

the stationary expected value of the integrand
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ElyTo,y + uTR u] (4.2.5)

is another possible criterion. If the output y is the

variable of interest, the output could also be a criterion.

Therefore, four criteria for measurement elimination are

discussed.

a.

The rms state estimation error

As discussed in Chapter II, the state estimation
error satisfies equation (2.4.15) which is
rewritten here

2
X

= (A + GC2)’>? + ’'w + GOW + Gv (4.2.6)

where G is the filter gain and is given in equa-
tion (2.3.5). Also shown in Chapter II is the

covariance of the state estimation error, given by

>
I
=

e

(4.2.7)

where P satisfies the algebraic Riccati equation

_ T T T, -1
0 = AP + PA,,~ + TQ,,I" - PC, R,,

2 R, C,P , (4.2.8)

2
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and A,,, Q2*’ R,y are defined in equation (2.3.7).

The rms state estimation error, which is defined as

rms X. = _[E[%.2] , (4.2.9)

is equal to the square root of the diagonal elements

of the state estimation error covariance X.

The rms control error

The control error is defined as

U = Kx - Kx,
= KX . (4.2.10)
The control error covariance is given by
U= BI¥W YT
= KPK . (4.2.11)
The rms control error
ms ¥, = [B[ 21 (4.2.12)
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is given by the square root of the diagonal ele-

ments of ﬁ.

c. The rms output error

The output error is defined as

w0
I

(C1 + D1K)(x - X,)

(c1 + D1K)’i . (4.2.13)

The rms output error

ms V. =,/E[ ¥ 2] (4.1.14)

is given by the square root of the diagonal ele-

ments of the output error covariance

~ NNT
Y = Ely v
= (¢, +D,K) P (C; +D,K)T | (4.2.15)
d. The expected integrand of the control performance

criterion

It is shown in Appendix D that the expectation of

the integrand is given by
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-
|

- E[yTQ1y + uTR1u]

tr[SPQZPT + KT(R1 + D1TQ1D1) KP] , (4.2.16)

where tr[A] iS the trace of the matrix A, S is the
solution of the regulator Riccati equation (2.2.7),
and P is the solution of the filter Riccati equa-

tion (4.2.8).

It is also shown in Appendix D that the rms values of
§i, ﬁi,'yi, and I are non-decreasing as the number of
measurements decreases. The properties of non-decreasing

error are stated in the following theorems.
Theorem 4.1.

Let Pj, Pjx be the covariance of the state estimation

th and kth measurements

error without ith and without i
respectively. These covariances satisfy the following
algebraic Riccati equations

T T _

T T

BysPip + PipPay + Q.00 = P RLP. = 0. (4.2.18)
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The matrices in the above equations are defined in

equations (2.3.7) of Chapter II. Ri and Ri are the term

k
T -1 . .th th th
C2 R2* C2 with the 1 and k

measurements eliminated. Assuming that the estimation

and with the i

error dynamic equation is asymptotically stable (i.e., the
eigenvalues of A, -~ PikRik and A, - PiRi are all in the

open left half eigenvalue plane), then,

AP = P, - P, >0 (4.2.19)
if
AR = R, = R, >0 (4.2.20)
Also,
(rms Xj)ix - (rms Xj)i > 0 ' (4.2.21)
if
AR = R, = Ry > o , (4.2.22)
where subscripts j means jth element of the vector X and

subscripts ik and i indicate the elimination of the

ith and kth and the ith measurements.
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Theorem 4.2.

Under the same condition as in theorem 4.1, the follow-

ing results are concluded.

If AR = R, = R, >0 , (4.2.23)
then

a. U, - U, >0 (4.2.24)
and

(rms ﬁﬁ)ik - (rms’ﬁ’j)i >0 , (4.2.25)

b. Y, =Y >0 (4.2.26)
and

(rms ?ﬁ)ik - (rms yj)i >0, (4.2.27)

c. I, - I; >0, (4.2.28)

where subscripts j, ik, and i have the same meaning

as in the above theorem.
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The proof of theorems 4.1 and 4.2 is given in Appendix D.

If the matrix R

R, + OQZOT is a diagonal matrix, AR in

2% T T
equations (4.2.20), (4.2.22), and (4.2.23) is given by
_ T -1
AR = Cop” Tome ok
= (cy, T e )/ (4.2.29)
2k 2k 2%k ! e
where c is the kth row of the C, matrix and r is the
2k 2 2%k
kth diagonal element of R matrix.

It is understood that AR in

2%

equation (4.2.29) is a rank 1

matrix, provided c is not a zero row vector, and the non-

2k

zero eigenvalue is given by which is a

T
(CokCak )/ Toux

positive real number. This shows that if R is a diagonal

2%
matrix, AR is theorem 4.1 and 4.2 is always a non-negative

definite matrix.

From theorem 4.1 and 4.2, a measurement elimination

procedure is developed and is described as follows.
Step 1.

Decide the desirable criteria and an acceptable
percentage of the relative difference. The relative

difference is defined as
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(rms X,), - rms X.
RD, = 1k _ L (4.2.30)
i rms X,
i
where rms §i is chosen for the criterion example, the

subscript k refers to the elimination of the
kth measurement, and rms §i is the value with

all the available measurements.

For discussion purposes, the criterion is chosen to
be rms §i and 10 percent is chosen as the acceptable

percentage.

Step 2.

Calculate rms ﬁi with all the g measurements.
Step 3.

Take out one measurement at a time and calculate the

maximum relative difference

MRD, = ™ pp. . (4.2.31)
1 1

Again, subscript k refers to the elimination of the

kth measurement.
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Step 4.

Store all the indices k such that

MRD, < 0.1 (10%) (4.2.32)

h

and eliminate the jt measurement
where
_ min
MRDj X { MrRD, } . (4.2.33)
Step 5.

If there are none or only one k satisfying equation
(4.2.32), we are done. Otherwise, go back to step 3

and eliminate measurements among the remaining.

Step 2 and Step 3 require the calculation of the
Riccati equation solution, which dominates the computation
required. The maximum number of times Step 3 will be
carried out is given by

G+ (@ = 1) + counn. +2+1=ﬁ—4’2J (4.2.304)

where q is the number of measurements to start with.

However, since it is impossible to eliminate all the mea-

surements, in most cases, the number of times Step 3 is



carried out is usually much less than gig—%—ll. The

minimum number of times Step 3 is carried out will be g,

the number of original measurements.

The proposed measurement elimination procedure is
applied to the small jet aircraft problem described in

Chapter I and the results presented in the next section.

62
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IV.3 Application of the Measurement Elimination Procedure

The measurement elimination procedure proposed in the
previous section is applied to a small jet aircraft. The
aircraft model is a business transport flying at a constant
altitude of 20,000 feet (6.1 km) and a nominal cruise speed
of 450 knots (231 m/s). The stability derivative data was

. 22
supplied by G.D. Park( ) and resulted in a standard fourth

order lateral aircraft model previously developed by
Wei(1). The model was linearized about the nominal flight

condition.

The aircraft model is augmented with a fourth order
wind gust model previously developed by Holley and
Bryson(23). The resulting eighth order linear system

forced by white noise has two controls, aileron and rudder,

and can be described as

% = Ax + Bu + Tw (4.3.1)
where
xT = [p, ¥, v, &, V., V., u,, w,]
Pro Lo Vo 01 Vor Vyr Hyr Wy

uT = [sa, or]

p = roll rate (rad/sec)

r = yaw rate (rad/sec)

v = lateral aircraft velocity (ft/sec)



§a =

§r =

64

roll angle (rad)

lateral gust velocity (ft/sec)
longitudinal gradient of the lateral
velocity (sec-1)

lateral gradient of the longitudinal
velocity (sec-1)

lateral gradient of normal gust velocity
(sec-1)

aileron deflection (rad)

rudder deflection (rad)

The optimization criterion chosen for this study is given

by
Min
sa,dr 9
where
a =
Y
®
r =
£f =
t

The criterion

minimizes the

(4.3.2)

lateral acceleration per unit gravitational
acceleration

yaw acceleration (rad/sec2)

side force on vertical tail per unit weight

of the aircraft.

of equation (4.3.2) seems reasonable since it

expected deviations in the lateral and yaw

acceleration (ride performance) and in the tail side force.

The control deviations are not explicitly weighted in the
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performance criterion because they are already indirectly

included in the response variables chosen,
The criterion above is of the general form
Min

J =

1 " yTo.y + uTR
a > EI é (y Q1y u 1u)dt] (4.3.3)

subject to the constrains

X = AX + Bu + I'w
(4.3.4)
y = C1x + D1u
where yT = [ay, o ' ft] is the output of the system and

w is the white noise disturbance vector with power

spectral density Q2.
In the case when perfect state information is not available,
additional measurement and causality constraints are added.

z = C.x + D.u + v (4.3.5)

where z is the measurement vector and v is the white
measurement noise with power spectral density R)

and uncorrelated with w.

Equations (4.3.4) and (4.3.5) are discussed in detail in

Appendix D.



Application of the measurement elimination procedure
and solution of the control synthesis problem requires a
reasonable choice of weighting factors Ay fo, and fto
appearing in the performance criteria (4.3.2) as well as a
choice of the measurement vector z. 1In order to provide
reasonable aircraft ride performance, it is desirable to
keep lateral acceleration small all along the fuselage.
This can be achieved with a rigid aircraft if the nose and
tail accelerations are kept small. Averaging the squares

of these dquantities yields

66

1 2 2_1 _&02 _1_ ____&02
5 (any + aty ) = 5 (ay + g r)® + 5 (ay g Y)
2 L e,2
= a + (5= 1 4.3.6
y ot g D ( )
where 2 = fuselage length
any = non-dimensional nose side acceleration
aty = non-dimensional tail side acceleration.
. . _ s _ 29 _
Thus, the weighting factors a, = 1 and I, =¢= = 1.323 are

chosen., It is pointed out by Holley and wei(28) that a
reasonable control implementation occurs when fto is

designated as 0.3.

The measurement vector is chosen to be

zT = [p, r, ¢, aty, ay, ft, v, Vv - vO] (4.3.7)
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where v - v, is the relative velocity of the aircraft

with respect to the surrounding air.

The sensors used for the measurement (4.3.7) are described
as follows. The roll and yaw rates, p, r, can be measured

(25)

by mounting rate gyros on the body of the aircraft. A

(25), whose spin axis is

two-degree-of-freedom vertical Gyro
vertical, can be placed on the body of the aircraft to
measure the roll angle ¢ . The side acceleration of the
center of mass and of the vertical tail, ay and a,_, can be

ty
(25) near the mass center

obtained by placing accelerometers
and on the vertical tail of the aircraft respectively.
Strain gauges can be used to measure the strain in the
tail. The strain gauge can be mounted on the tail near the
main fuselage structure to prevent a possible large ampli-
fication of noise. The tail strain can then be converted
to the tail loading, ft , 1f linear elastic properties of
the tail are assumed. The side velocity can be calculated
from the outputs of the horizontal accelerometers(ZS).
However, since outputs of accelerometers may have bias, the
integrated signal is potentially unstable. To overcome

(25)

this difficulty, a doppler radar system can be used to
measure the velocity. A low pass filter is applied on the
velocity signal from the doppler radar and a high pass
filter is applied on the velocity integrated from the

accelerometers outputs. The combined signals from the low-

pass and high-pass filters give a good estimation of the
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side velocity. To measure the relative velocity of the
aircraft with respect to air A A pitot-static tube(zs)
can be used. A pitot-static tube consists of a static-
pressure port which measures the static pressure and a
pitot tube which measures the stagnation pressure. A
pitot-static tube is mounted in such a way that it aims
directly into the relative wind component to be measured
(in this case laterally). The precise location of a pitot-
static tube is selected by wind-tunnel tests and by tests
at numerous locations on the actual aircraft, in order to
be as free from error as possible at all flight speeds and

attitudes. The static and stagnation pressures can then be

converted to the relative side velocity VeV o

The power spectral densities for the measurement noise
were chosen on the following basis. The two rate gyros for
p and r being similar, should have the same error
characteristics. The two accelerometers for aty and ay ’
also, should have the same error characteristic. Thus, the

following form for the measurement noise power spectral

density was assumed.
R, = diagonal [r1, For Tgr eeces r8] (4.3.8)

where



2 2
(rms p)” + (rms r")
= = *
o T B 2
r, = 1.,% (rms ¢)2
3 3
2
= = *
r, r5 Ty (rms ay)
r. = 1,.% (rms f )2
6 6 “t
r, = 1% (rms V)2
7 7
r, = 1.,% [rms v)2 + [rms v )2
8 8 o

and the rms values are the controlled responses

assuming perfect state knowledge.

The correlation time constants T1 to 1, were

8

achieve reasonable eigenvalues for the state

error dynamics. The result turns out to be

_ —4 _
r. =r,=0.9387082 * 10°%, T, =
r. = 0.14625 * 1072 T. =
3 . v T3
r = r. = 0.1901376 * 10°%, ©, =
4 5 . Ty
r. = 0.1123035 * 1072 , 14 =

]

varied to

estimation

1 sec

0.05 sec

0.3 sec

0.3 sec

69
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0.1270288 * 1072, 1

i

0.002 sec

al
it

7

0.33143 , T

i

0.2 sec .

al
i

The resulting eigenvalues of the controller and the esti-

mator are given by

The controller The estimator
(sec™1) (sec™ 1)
-1.0227 -2.5493 %0.977263
-2.1709 +2,8732j -5.6246 +6.8560]
-3.9502 +0.33407] -13.259
-16.788 -16.606
-25.181 -25.502
-89.863 -90.712

The measurement elimination procedure is now applied to
the system model described above. Since the purpose of the
Kalman filter in this case is to provide state estimates
for the controller, the rms control error, which is
described in equations (4.2.10) to (4.2.12), is used as the
criterion of the elimination procedure. The acceptable
percentage of the relative difference, which is described
by equation (4.2.30), is chosen to be 10 percent for

engineering purposes.
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The results of the measurement elimination procedure
can be described as follows. First, application of Step 1
through Step 5 of the elimination procedure will eliminate
the measurement r and will recognize the measurements p, ¢,

a f

yr Tyr and v=v_ are potential candidates for further
elimination. Step 3 through Step 5 of the procedure is
then applied to those potential candidates which yield the
elimination of the measurement V=V which leaves p, ¢, ay
and ft' Again, these potential candidates are used for
further elimination. This yields the elimination of p

followed by ay and ft' The resulting measurement is given

by

T

z° = [¢, a vl . (4.3.9)

ty’
This procedure resulted in 22 computations of Step 3
requiring approximately 90 cpu seconds on the CDC CYBER 73

system.
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V RESULTS AND DISCUSSION

V.1 Results of Tail Force Reduction

As discussed before, the aircraft used for the tail
force reduction is a small business jet flying at a
constant altitude of 20,000 feet (6.1 km) and a nominal
cruise speed of 450 knots (231 m/s). This system model is
described in more detail in Chapter I, Chapter IV, and
Appendix D. Equations (4.3.1) through (4.3.5) give the
system equations as well as the performance criterion. The
measurement for state estimation described in equation
(4.3.5) is given by

T

z- = [¢, a_.., V] (5.1.1)

ty
which results from the measurement elimination procedure

discussed in the previous chapter.

The computations were carried out on a CDC Cyber 73
computer system using the program listed in Appendix F.
Tables 1 and 2 give the resulting control gain and filter
gain. The closed loop eigenvalues of the controller and

the estimation eigenvalues are given in table 3,



73

TABLE 1. THE LATERAL FEEDBACK CONTROI, GAIN
P r v ¢
sa .59479x10 2 .32849 .97467x10™3 -.10210
Sr .54081x10" .64000 .63828x10 3 .12039
VO Vx uy uy
-2 -1 -1 -1
sa |-.12611x10 ~.27779%10 -.41981x10 -.36929%10
Sr | -.13524x10" 2| .72326x10" " |-.1722ux10"" |.16450x10""
TABLE 2. THE FILTER GAIN
P aty v
~5.0915 -3.6635 -.46825
.50090 .35463 .75626x10" ]
-64.884 ~11.320 -10.937
-2.1789 -.21271 -.74704x10" ]
v, ~129.33 -251.98 -18.459
Vo .14908 .55355 .23344x10"
y .42505x10 1 -.22464 -.25350x10" ]
v -.22901 -.65860 ~.41956x10 2
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TABLE 3. THE CLOSED LOOP EIGENVALUES OF
CONTROLLER AND FILTER

Controller Filter
-.21709 £2.87323 -2.4759 #1,0159j3
-3.9502 £,334073 -5.3053 +7.5734j
-1.0227 -12.094
-89.863 =90.001
-16.788 -16.731
-25.181 -25.516

In state estimation, obviously the best estimated state
can be achieved when the measurement is equal to the state
, W_ are

Yy Yy
difficult to measure, the case z = X is not of interest in

itself. However, since the wind states Vor Ver U

practice. However, in order to see the effect of the

measurement, comparison between four cases: (1) z = x, (2)

T
2T = [p, r, ¢, aty, agr ft, v, V-vo], (3) z= = [¢, Ay

and (4) open loop, is of interest. The power spectral

r V1,

density of the measurement noise for the case z = x is

assumed tO be

R, = diagonal [r1, r

5 Tar eeeey r8] (5.1.2)

2'

where Tyr T,y Iy, r, are for the variables p, r, v, ¢

and are assumed to have the same values as in the case

T

z- = [p, ¥, ¢, atyl a f

yr fer v, v—vo]. The remaining terms
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r and r. are for the variables Vor Ver U, W

6’ ~7' 8 Y Yy
which are assumed to be of the form (choosing v, as an

rg, r
example)
r. = 1T * (rms v )2 (5.1.3)
5 o}
where the correlation time constant T is chosen to be 0.2

for all cases. The resulting noise power spectral densities

are given by

-4
r, = r, = .93871 x 10
_ -2
r3 = .12703 x 10
-5
r, = .14625 x 10
rp = .20438
-4
re = .30812 x 10
-4
r, = .15158 x 10
-4
r8 = ,15842 x 10 .

The rms state for those four cases is presented in table 4

and the rms control and output is given in table 5.
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TABLE 4. THE RMS VALUES OF AIRCRAFT AND WIND STATES
P r v )
Cases
1 .17654x107 1 | .21546x1072 .92196 .59229x10" 2
2 .16461x10" 1 | .18770x1072 .87406 .60863x10™ 2
3 .16924x10” 1 | .19824x1072 | .89189 .60645x10" 2
4 .28081x10™ " .37140x1072% | 1.2102 12334107
v o VX uy Wy
Cases
1 1.0109 | .12413x10"" .87058x10°2 | .89001x10™2
2 1.0109 | .12413x10"" .87058x10"2 | .89001x10 2
3 1.0109 | .12413x10”" .87058x102 .89001x10™2
4 1.0109 | .12413x10"" | .87058x102 | .89001x10"2
TABLE 5. THE RMS VALUES OF CONTROL AND OUTPUT
Sa Sr ay
Cases
1 .12177x10"2 .66513x10™3 .77019x10™ 2
2 .13342x1072 .71589x10™ > .82503x10™2
3 .12971x10™2 .69302x10" 3 .81018x10 2
4 .12042x10"]
r £y
Cases
1 .13958x10" .23506x10™2
2 .11915x10”" .22995x10"2
3 .12645x107] .23267x10™2
4 .17959x%10" .33337x10"2
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From table 5, the reduction of ay, f, and ft with respect
to the open loop can be calculated and is presented in

table 6.

TABLE 6. THE OUTPUT REDUCTION ACCOMPLISHED WITH
STATE ESTIMATION

Re

d ®

uoti ay r ft

Cases {Q
1 36.04% 22.28% 29.49%
2 32.49% 33.65% 31.02%
3 32.72% 29.59% 30.21%

It is also interesting to see the percentage change in the
rms state, control, and output in relation to the case 1
where of z = x. It can be calculated from table 4 and 5 and
is presented in table 7, 8. Due to the fact that the wind
state variables, Vor VX, uy, and wy are not controllable,
the rms values of those state variables are not affected by
the controller. The unchanged property of the wind state
variables can be seen in table 4. Because of this

property, only the aircraft state variables are presented

in table 7.
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TABLE 7. THE PERCENTAGE CHANGE IN THE RMS AIRCRAFT
STATE IN RELATION TO THE CASE z = X

p r v o)
Cases
2 -6.76% -12.88% -5.19% -2.76%
3 -4.13¢% -7.99% -3.26% -2.39%

TABLE 8. THE PERCENTAGE CHANGE IN THE RMS CONTROL
AND OUTPUT IN RELATION TO THE CASE z = x

da Sr a s f
Yy t
Cases
2 9.57% 7.63% 7.12% -14.64% -2.17%
3 6.52% 4.19% 5.19% -9.41% -1.02%
As shown in table 6 that, with the measurement zT = [¢,

aty' v],a reduction of 30 percent in the open loop response
of the aerodynamic tail forces appears to be feasible for

the aircraft flying in turbulence. Also, a reduction of 30
percent of the open loop response in the side acceleration
a_ and the yaw acceleration P appear to be feasible in the

case of zT = [¢, a,.., v]l]. This shows that the aircraft

ty
ride performance is improved while reducing the tail

loading.

It is evident that, for state estimation, the best
filter can be achieved with the measurement z = x.

However, from tables 7 and 8, the percentage change in the



rms responses of the state output, and control are within
15 percent of the case when z = x. The filter with

measurement zT = [¢, a,_._, V] is evidently feasible, and

ty
gives nearly optimal results.
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V.2 Discussion

It is pointed out in Chapter IV, that the correlation
time factor 1t of the power spectral density R2 is wvaried to
achieve reasonable eigenvalues for the state estimation
error dynamics. Nine cases were tested to determine
appropriate values of T . The values tested are listed in

table 9.

TABLE 9., CASES TESTED FOR DIFFERENT VALUES OF THE
CORRELATION TIME FACTOR T IN R3

’Ona% 1 2 3 s |5 |se 7 8 9
measurement
p, r I T IR T A TR R A A I .1 .1
¢ .01 .1| .o1| .01 .01 .o1| .01 | .01 | .05
agr @, | +3| 303003333 |3 |3
£, 3 w3 3 3] 3] 3.3 3 |3
v 20 .20 .2 | .4 | 02| .02 .002| .002] .002
v - v, 2.0 2.0 2. | 2. | 2. | .02 2. 2 | .2

It is useful to see how the eigenvalues of the state
estimation error dynamics, and the rms response of the
state, control, and output change as T changes. The

eigenvalues are listed in table 10 for the nine cases.



TABLE

10.

THE EIGENVALUES OF THE STATE ESTIMATION

ERROR DYNAMICS FOR DIFFERENT VALUES OF T IN Ry
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Case 1 Case 2 Case 3
=-1.1231 +.90455j -1.2169 %.70785j -1.1394 +.91480j
=-5.4053 *+5.9140j -3.8116 +3.3171j =5.5202 *+7.26467
-12.646 -11.863 -9.3924
-16.626 -16.649 -16.779
-25.512 -25.488 -25,204
-90.743 -90.743 -90.636

Case 4 Case 5 Case 6
-.98103 +.746123j -1.8842 +1,5805j -1.8825 +1.58013
-5.4018 +¥5.90193 -5.4699 $6.1216j =5.4925 +6.0562j
-12.640 -12.740 -12.901
-16.626 -16.624 -16.609
-25.512 -25.513 -25.514
-90.743 -90.743 -90.711

Case 7 Case 8 Case 9
-2.9015 +2,1613j -2,9009 $2.16217j -2.5493 *+,977263
-6.0415 +7.50747 -6.0631 +7.44487 -5.6246 *6.8560]
-13.484 -13.631 -13.259
-16.600 -16.580 -16.606
-25,523 -25.524 -25,502
-90.743 -90.711 =-90.712
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As shown in table 10, different eigenvalues are changed
when different values of T are changed. However, when the
T associated with the measurements p, r, and v-vg is
changed, the eigenvalues do not change very much. Thus, it
is predicted that the filter is not very sensitive to the
elements of the R2 matrix corresponding to the measurements

p, r, V-Voo

The rms response of the aircraft state, the control,
and the output for the nine cases is listed in table 11.
Again, the reason that the rms wind state are not listed is
because those states are uncontrolled and are not effected
by the controller or filter. From table 11, it can be seen
that the maximum percentage change in the state is 17
percent, 18 percent in the control, and 14 percent in the
output. Since the accuracy of the estimated state depends
on the measurement noise, the power spectral density R

2
plays an important role in the state estimation. As the R2
matrix is not determined by real sensor tests, it is
necessary to study the sensitivity of the R2 with respect

to the rms responses. This sensitivity study will show the

effect of the R2 matrix in this autopilot design.
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AND THE OUTPUT FOR DIFFERENT VALUES OF T IN R,
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RMS RESPONSES OF THE AIRCRAFT STATE, THE CONTROL,

cas:bs oF P r v
1 .17526x10" | .20229x10"2 .93212
2 .17958x10" | .20987x102. .94845
3 .18481x10" 1 .22202x10™2 .96243
4 .17724x10~" .20424x10™2 94871
5 .16986x10" ! .19567x102 .89555
6 .16943x10"" .19457x10"2 .89364
7 .16449x10™ " .18706x10™2 .87369
8 1641710 .18612x10" 2 .87204
9 .16461%10 ] .18770x102 .87406
ca;?ko, b sa St
1 .63770x10™2 .13800x10" 2 .64370x10"3
2 .65659x10 2 .13650x10™2 .63387x10 3
3 .63347x102 .12930x10™2 .59499x10™3
4 .6484U4x10"2 .13977x102 .62330x10" 3
5 .61143x10~2 .13412x10" 2 .69037x10™3
6 .61184x10™2 .13451x10™2 .69239x%10" 3
7 .59645%10 2 .13316x102 .71811x10"3
8 .59706x10™2 .13352x10™2 .71970x10"3
9 .60863x10™2 .13342x1072 .71589x10™3
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TABLE 11. RMS RESPONSES OF THE AIRCRAFT STATE, THE CONTROL,
AND THE OUTPUT FOR DIFFERENT VALUES OF T IN Ry (cont)

caser Ms o - a, r £

1 .87087x102 .12128x%10" | .24385x10™ 2
2 .87952x10™2 .12210x%10" .24955x10™2
3 .83987x10 2 .13636x10" | .24677%10™2
4 .88696x10™2 .12147x10" ] .24691x10" 2
5 .83231x102 .12065x%10" .23558x10" 2
6 .83398x10" 2 .11981x10~" .23538x10" 2
7 .81437x10™2 .11932x10" .22879x10" 2
8 .81613x10™2 .11853x10" | .22867x10" 2
9 .82503x10™2 .11915x10" | .22995x10™ 2

From table 11, it is expected that changes in the R2 matrix

will not cause drastic changes in rms responses. However,

since the change in 1 for these nine cases is only a factor

of 10 to 100,

this is not a sufficient evidence for

complete insensitivity of the rms responses to all possible

changes in the R2 matrix,

One reasonable way to study the sensitivity of the rms

responses with respect to the R2 matrix is to set R2 =0

when the rms response is calculated.

Since the state

covariance X is the sum of the estimated state covariance

X4 and the estimation error covariance P, which is shown in

equation (2.4.29), the effect of Ry is through X* and P.
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If R2 is set to zero when the rms response is calculated,
then R, will not effect the calculation of the covariance
properties. In this case, the only effect of R2 with
respect to the rms response is through the filter which can

not be avoided. However, when R, = 0, the filter is no

2
longer optimal, and the expectation E[x*'iT] is no longer
equal to zero. In this case, a 2n'th order system is set

up to calculate the rms reponse. The 2n'th order state

equation is given by

r—~ - - - r - r~
% A BK x r1
= + ] (5.2.1)
[ ]
tx*d b-GC2 A + BK + GCZJ -x*J .0.
where X is the actual state, Xy is the estimated state,

w is the process noise.
The covariance matrix satisfies the usual Lyapunov equation
for a linear system forced by white noise. The resulting

rms response are listed in table 12.

TABLE 12. THE RMS RESPONSE CALCULATION WITH Ry = 0

case rms P t v
z = x .17143x10” " | .20821x1072 | .91620
2=8 measurements | .15943x10” | .17893x10"2 | .86647
z=3 measurements | .16336x10” | .18865x10™2 | .88355
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Ry = 0 (cont)

case I'ms ) da Sr
—2 -2 -3
2=x .57535%10 .10670x10 .51991x10
2=8 measurements | .59402x10°2 | .12243x10"2 | .60378x10™3
2=3 measurements | .59034x10°2 | .11629x10°2 | .56600x10"3
rms a r £
case Yy t
2=x .75261x10°2 | .12789x10” 1 | .22571x10™2
z=8 measurements | .80792x10°2| .10727x10” 1] .21945%10"3
z=3 measurements .79136x10"2 [ .11358x10"" .22148x10"3

The percentage change for the case R

2

= 0 relative to the

nominal R, case and the open loop can be calculated from

2

tables 4, 5, and 12,

The results are listed in tables 13,

14, and 15.
TABLE 13. THE RELATIVE R2 SENSITIVITY FOR z=Xx
P r v ¢ da §r ay 3 fe
% g § g g g g g g
R2 2.89 3.36 «62 2.86[12.38121.83 2.28 8.66 3.98
Open
Tron |38-95(43.94 24,29 |53.35 37.50(|29.01(32.29
TABLE 14. THE RELATIVE Ry SENSITIVITY FOR z = 8 SENSORS
P r v () Sa Sr ay r fe
% g g g g g g % g
R, 3.15| 4.67| .87| 2.40!8.24(15.66| 2.07| 9.97| 4.57
Open |, 55(51.82|28.40(51.84 32.91(40.27|34.17

loop
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TABLE 15. THE RELATIVE Ry SENSITIVITY FOR z = 3 SENSORS

P r v ¢ Sa Sr | ay r fe

% % % % % % % % %
R2 3.47) 4.84 .93} 2.66110.35{18.33} 2.32{10.18]| 4.81
Open
loop 41.83149.211(26.99 {52.14 34.28{36.76|33.56

From tables 13, 14, and 15, it can be seen that the effect
of the zero R2 matrix is less than five percent in the rms
aircraft state, is less than 11 percent in the rms output,
and is less than 22 percent in the rms control. Again,
since the wind states are uncontrollable, the Ry matrix

will not effect them.

The effect of the measurement z in the control u can be
better understood by examining the filter transfer function

of z to u. From the filter implementation equation

x X4 — Gz (5.2.2)
and the optimal control law

u=Kx,, (5.2.3)
the transfer function of z to u is given by

_ L{u(t)}
zZu Liz(t)}

K (B, - Is)G . (5.2.4)
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The notation L{u(t)} in equation (5.2.4) is the Laplace
transformation of u(t). If the eigenvalues of the matrix

A, are distinct (as in this case) the transfer function,

*

equation (5.2.4), can be represented as

n
121 Hi/(s - Xi) (5.2.5)

H
Il

~

where n is the order of the matrix Ay, Ai is the
eigenvalue of K*, and Hi is the matrix of residues
of the transfer function associated with the

eigenvalue Ai.

Since the value of Hi/(s - Ai) is small at high frequency
(which means the effect of z in u is small at high
frequency), the following transfer function discussion is
focussed on the case of low frequency (i.e., when s is
small compared with Ai) where the transfer function is

approximately given by

n 1
T,y A I (= a— Ho) . (5.2.6)

The residues Hi of the transfer function Tzu can be found
as follows. Since the eigenvector matrix of X* diagonal-

izes the matrix ﬁ;, equation (5.2.4) can be transformed to
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T = KE (sI - DS)' E = G, (5.2.7)

where E is the eigenvector matrix and DS is in the

diagonal form.

The coefficient matrix Hi is obtained by multiplying the

. th th 1

i row of the KE matrix and the i G

matrix. The resulting coefficient Hi/ki for the case zT =

column of the E
[d, aty’ v] is listed as follows

for A, = -89.860

~ 3
-.3086x10™°  .4340x10"% -.2882x10°
H
—-—1:
o -4 -3 -5
.1603x10 -.2255%10 .1497x10
i J
for A, = -25.195
-.4879x1073  -.1208x107% .4554x10" >
H
- 2 _
X
2 -3 -3 -5
-3.175x10"3  -.7833x10 .2964x%10



-7.2636 +7.40723

31 Ay
i -1 -2
-.3401x10" 1 .6401x10
_H3,4
A3, 4 -1 -2
' L-.2977X10 .2677x10
_
-.1463x10""  -.1573x10"
t]
‘ -2 -1
-.6426x1072 -.1372x10
for Ay, Ag = -3.7736 £3.37643
[ -1 -1
-.1819x10" 1 =.1197x10
_H56
‘s & -1 -1
' L5474x107 1 =.2222x10
L
-1 -2
.2225%x10" 1 —.4452x10
t]
.7153%10° " .3329x10" "
L
for A7 = -7,4058
- 1448x10" " -.3912x10
H7
R -1 -
—.1497x107 " —.4044x10

-.5871x10 2

-.4912x10"2

-.1082x102

.5616x10" "

~.3984x10"°>

-.5171x10"3

-.2637x1073

2

-.1406x10 )

1 3.1

.9875x10"

1 2

.1021x10°
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for Ay = -16.784
F.5710x10—3 .2887x10"3 -.1373x10~ %
H
- 8 _
rg -3 -y -5
.1785x10 .9023x10"%  =.4292x10
L . J

To determine any weakly observable modes of the system,

Equation (5.2.2) is transformed into

V=D y-E ' Gz (5.2.8)

where y = E X

T,, = (Dg - Is) ' E ' G . (5.2.9)

From equation (5.2.9), if it row of the matrix E-| G is
small compared with the rest of the rows, the measurement z
weakly effects the mode Y which means Yy is weakly
observable. The matrix E~1 G in equation (5.2.12) is given

by



14535  ~2.0440  .13574x10" )
.32685 .80641 ~.30512x10"2
~162.95 -11.784 -24.819
~22.456  74.552  =9.3690

576 = 75.970  -83.853  —.96848x10
-225.34  -64.318  3.9530
58.064  156.81  =3.9586
.28530  .14424  -.68614x10"2

From the matrix E_1

G,

modes associate with eigenvalues

are weakly observable.

A1 = =-89.860
Az = =25.195
A8 = =-16.784

However,

it can be seen that the wind state

it is found that the

coefficients Hi/)\i corresponding to those wind state modes
are relatively small in magnitude. This result shows that
the weakly observable modes have a small effect on the

control and hence will play a minor roll in the

effectiveness of the control design.

92
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VI CONCLUSIONS

The capability of a linear quadratic regulator for the
reduction of aerodynamic tail forces was investigated.
The results indicate a 30 percent reduction of the tail
force is feasible while maintaining acceptable performance
of the aircraft lateral motion. The number of measurements
required for state estimation can be reduced to three by
the application of the procedure described in Chapter 1IV.
The results also indicate that the tail force reduction is
about the same with all eight feasible measurements and
with the three measurements resulting from the elimination
procedure. However, the elimination of the five
measurements will significantly reduce the cost of the

resulting control system.

The sensitivity of the system to changes in the noise
power spectral density, R2, of the measurements was also
investigated. The results show that the estimated state
and output are relatively insensitive to R2.

The study of the filter transfer function of z to u
indicates that weakly-observable wind state modes will not
drastically effect the controller. This result is expected
since the wind state modes have large negative real

eigenvalues causing the modes to be damped out faster.
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Realistically, the system model is not known precisely.
Future research on this project should be directed toward
studying the sensitivity of the control system to modeling

errorse.

It is discussed in Chapter II that the solutions of the
control and the filter problems are mainly dependent on the
solution of the Riccati equation. However,.concerning the
numerical conditioning of the Riccati equation, almost no
analytical results are known. The conditioning of the
Riccati equation is also an important subject for future

research.
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APPENDIX A-1

The Solution of the Linear Quadratic Regulator Problem

Lemma A, 1

The problem,

. : tf
Min lim 1 T T
y  J = tere 2 é (y"Q.y + u'Rju)dt (a.1.1)
(o]
subject to
X = AX + Bu (A.1.2)
y = C,x + Du (A.1.3)
(1) (2)

is equivalent to the problem,

. t
Min lim 1 f T T
u J= e 2 i (x7Q,x + u, "Ru,)dt (A.1.4)
* £ o
subject to
X = Ayx + Buy (A.1.5)
where
T

(A.1.6)

c, =- R, D, o.C (A.1.7)
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A, = A + BC, (A.1.8)
T T
Qp = C1 Q1C1 - C,” R,C, (A.1.9)
and
u, = u-=2C, x . (A.1.10)
Proof:

The integrand of the performance criteria (A.1.1) can
be expressed in terms of x. Using the output equation
(A.1.3), the integrand is given by

yTQ1 y + uT R1 u

T T
(C1x + D1u) Q1 (C1x + D1u) + u R1u

T T T T . T
=X C1 Q1C1 X + u D1Q1C1 X + x C1 Q1D1 u
T T
+ u (D1 Q1D1 + R1)u (A.1.11)
Let
T
R, = D1 Q1D1 + R1 (A.1.12)
_ -1 T
C* = R, D1 Q1C1 (A.1.13)
u, = u - C.x (A.1.14)
T T
Qp = C1 Q1C - C, R, C, ' (A.1.15)



101

Rearranging equation (A.1.11) results in

yT oy +uf Rju=x" 0 x +u,’ Ryu, . (A.1.16)

Combining equation (A.1.14) and A.1.2), the system equation

is given by

X = px + Bu
= Ax + Bu, + B C, x
= (A + B C,)x + Bu,
= A.x + Bu, (A.1.17)
where
A, =A + BC, (A.1.18)
Q.E.D.

Lemma A.2

The solution of the problem

. . tf
Min _ lim 1 T T
u, 7Tt 2 fc (X0, X + u, Ryu,)dt (A.1.19)
o
subject to
X = A,x + Bu, (A.1.20)

is given by
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u, = - R, BT s x (A.1.21)
where S satisfies the algebraic Riccati equation
0=-sa, -2a"Ts+ser, " B's -0, (A.1.22)
Proof:
Using the Pontryagin's maximum principle(3), the

Hamiltonian of the given system is
H = l(xT Q.x + u T R,u,) + f%A X + Bu,)
2 * * * ok * *
where A is the adjoint variable.
The necessary conditions for optimal trajectory are

T

[ ]
s A= Qe x + A, As A(tf) =0 (A.1.23)
0H _ . _ T
ﬁ*_ 0 = R* u* + B A . (A-1-2u)

From equation (A.1.24), the optimal control is defined as

Substituting equation (A.1.25) into (A.1.20) and combining

(A.1.20), (A.1.23), the Euler-Lagrange system is given by



103

xo‘
b
[os}
*
-
™
_J

x(to) is given
= : (A.1.26)
Mg = 0

>e
|
0
5%
I
>
5%
>

which is a two point boundary value problem.

For state feedback, assume A has the following form

Substituting the above equation into (A.1.23) results

Rearrange the above equation and substitute the equation

(A.1.20) for x. The following equation results:

T

. -1 T
(S + SA, + A, S - SB R,

B™ S + Q,)x = 0.

Since x can not be identically zero, the quantity inside

the parenthesis has to be zero, i.e.,

® T -1 _T
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(26)

It is discussed by Bryson and Ho that, for a stationary
system, i.e., A, B are constant matrices, and Q4 s R, are
constant matrices, it is possible that a steady state,
finite solution exists when tf -ty e

T 1 7T

A,” S +SBR, B S~-0,.

e
Il
(=]
|

i
(:II’)
*
i

In this case, the optimal control law is given by

u, = - R, B S x
where S satisfies the above steady state Riccati
equation.
Q.E. Do

From Lemma A.1 and Lemma A.2, the solution of the

problem defined by equations (A.1.1), (A.1.2), and (A.1.3)

is gven by
u=u, +C.x
(A.1.27)
- T
= (C, - R, " BT 5)x
where S satisfies the algebraic Riccati equation

T -1 T
0=-8SA, -A,  S+SBR, B S=-0,. (A.1.28)
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APPENDIX A-2

The Solution of the Stationary Kalman Filter Problem

To solve the stationary Kalman filter defined in

(16)

Section II.3, one approach is to convert the problem
into one with no correlation between noise in the process
and in the measurement. To do this, add zero to the right-

side of equation (2.3.1), in the form

Ke
]

Ax + Bu + Tw + L(z - C.x - D

5 ou - vV - Ow)

(A - LC2)x + (B - LD2)u + Lz + Fw*

where L =To. 0T(0 ¢ oT + r )"1 . The filtering problem
2 2 2

now under consideration is

X = A eX + By u + Lz + Tw, (A.2.1)
z = C2 x + D2 u + v, (A.2.2)
where
Ay, = A - LC, (A.2.3)
By = B - LD, (A.2.4)

L = FQ2 © R (A.2.5)

2%
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Ryp = 00, 07 + R, (A.2.6)
we =w=-0,0" R, ow -0, 0T Ry, | v (A.2.7)
Ve =V + Ow (A.2.8)

Q, =0 -0 o' r " og (A.2.9)
2¢ T M2 T % 2% 2

With the assumption that w(t) and v(t) are uncorrelated,

it is not difficult to show that w,(t) and v, (t) are also
uncorrelated. The power spectral densities of w, and v, can
be found as follows. The power spectral density of v, is

given by

Flv, (t+1) v, T(£)] = F[v(t+T)vT (£)] + Fv(t+T)wT (£) 0]
+ F[O w(t+t) vT(t)]

+ F[O w(t+t) wl(t) 0Ty .

where the operator F is defined as the Fourier transform

of the expected value.

Since v and w are uncorrelated, the above expression is

given by

Fv(t+t) vI(t)] + o{F([w(t+t) wl(t)1}eT

Flv, (t+1) v, T(t)]

T
R2+OQ29

= Ry, -
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Since

Wy =w - Q0  R,TO W + V),

* 2

the same procedure results in

Flw, (£+T)w, " (t)]

i
L@
[\ ]
I
L@
[\ ]
@
s
N
*
@
L@
[\ ]

It is discussed by Sage and Melsa(u) (1972) that the

above Kalman filter problem can be formulated in the follow-

ing lemma.

Lemma A.3

The Kalman filter problem can be formulated as

w*?iz J=E {téiﬂ 7 i:f ‘W*Toz*'1w* + ViR, v, )dtha.2.10)
subject to
X =A,, X+ B + Lz + Tw, (A.2.11)
z = C2x + D2u + v, (A.2.12)
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where the power spectral densities of w, and v, are given
by Q2* and R2* respectively and matrices Agxr Byr L, Wyy Vv,

are defined in equations (A.2.3) through (A.2.9).

The solution is given by:

u+ C,ox,]1 + Lz (A.2.13)

[ ]
Xe = BApy Xo + By u + Gy[-2z + D2 5

where the estimated state is Ky

The filter gain G, is

TR, 1 (A.2.14)

where P satisfies the algebraic Riccati equation

_ T T -1 T
0 =2, P+ PA,," - PCy~ Ry,  C,P +TQ,, T" .  (A.2.15)

Proof:

Using the maximum principle(3), the Hamiltonian of

the system is
1T -1 T, -1 T P
H = §[w* Q5% Wi * 2% Vgl [Agex + Byu

+ Tw, + Lz]

where ) is the adjoint variable.
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The necessary conditions for the optimal solution are

T -1

3% 2 Ryx (Cox + ALTA 4 czTRz*-1D2u
¢, "Ry Mz 5 Aty = 0
M _ 5= g 1T (A.2.16)
oW 2%
Subject to
>'<=A**x+B*u+Lz+I'w*

Combining the above equations, the Euler-Lagrange system

is given by

r- - [’ - ~ -~ ol - of 1
% a,, ro, I | | x B, L u
= +
_e T, -1, _, T -1 T, =1
KJ C2 R2* C2 A** I XJ C2 R2* D2 C2 R2* | z

For the filter, assume A has the following form

A== P N (x - x,) (A.2.17)

where Xy 1is the estimated state with a priori estimate

of the state xxo .
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Differentiating equation (A.2.17) and combining with

equations (A.2.16), the resulting equation turns out to be

Setting the coefficient of the x term to zero, the follow-

ing equation results after some matrix manipulation

-1 T

T
C,P + IQ,,T

T
AyyP + PR~ = PC, Ry,

tJe
1}

A

e
1}

+ B - pc,TR," [~z + D

2 Ry u + sz*] + Lz

* %X % 2

For the stationary case, J 0, and the solution is

u + C,x,] + Lz

[ ]
X, = A,.x 2 2 ¥

% % + Byu + G*[-z + D

*
The filter gain G, is

-1

T
Gy = = PC, Ry,
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where

-1 T

T
C,P + IQ,,T

_ T
0 = AP+ PA," - PC,°R,,

Q.E.D.

From Lemma A.3 and equations (A.2.1) to (A.2.9), the solu-
tion of the stationary Kalman filter problem defined in

Section II.3 is given by

i* = Ax, + Bu + G[-z + D2u + sz*]

where
G =G, - L
= -pc,"r,,”" - r0,0"R,,”"
and
0 = a,,p +pa,T+ro, T - pc, TR, o p
with

2% 2

* %

]
e
1
—
L]

(]
©

H

o

()
*

t

@]

()
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_ ) T -1
Qpx = Q) = Q; 07 Ry, ~ 0Q, .

The uncorrelated property of X, and the estimated error

X = x-X, is stated as the following lemma.

Lemma A.Y4

The estimated state X, and the state estimation error x
is uncorrelated, i.e.,
T

X = E[x, X

12 1=0 .

Proof:

Using equations for x and X, stated above and u = KXy

the equations of x, and X are given by

e
]

+ = (A + BK)x, = GC,x - G(v + Ow)

e
l

(A + Gc2)§’+ T'w + G(v + Ow) .

From the above two equations, X12 satisfies the following

equation
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X.. = (A + BK)X,, - GC,P = GE[vV + Ow)¥']

12 2

T T,.T
+ X5(A + GC,)" + E[x, (v + Ow) ]G

+ ElxwiirT .

(6)

It can be shown that

Elw XT] = % Q, (I + GoyT

E[x, w'] = E[x w'] - E[¥ w']

= -1
=" 326909

Elx, V1] = BE[x v'] - E[X v']
_ 1

Substituting above equation into the equation of X12 yields

o B T
x12 = (A + BK)x12 + X12(A + GC2)

T

- G[c, P + R, Gt + 0 Q, r* + 00, of GT].

Using the expression for G given in equation (2.3.5), after

some matrix manipulation, the above equation yields
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s _ T
X, = (A +BK)X , + X (A +GC))" .

For the stationary case, i12 = 0, it yields

_ T
0 = (A + BK)X12 + X12(A + GC2) .

It is shown by Kalman(7) in 1960 that, if the system is

controllable and observable, the eigenvalues of A+BK and

A+GC2 are all in the open left-half plan. The unique solu-

tion of the above Lyapunov equation is equal to zero, i.e.,
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APPENDIX B

SOME PROPERTIES OF THE HAMILTONIAN MATRIX
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Lemma B.1

The eigenvalues of the Hamiltonian matrix

H = (R, Q symmetric), (B.1.1)

are symmetric with respect to the imaginary axis in the
eigenvalue plane, i.e., if XA is a eigenvalue of H, then

~X is also a eigenvalue of H.

Proof:

If A is an eigenvalue of H, then there exist a eigen-

vector, such that

|
l-Q -aT szJ L X, .

The above equation can be rewritten as

[ N r 7 7
2 (xz

-R -AJ L-X1J L-—x1 ] ’



i.e., A is the eigenvalue of HT. The eigenvalues are
invariant under the transposition of the matrix. Thus

-2 is an eigenvalue of H.

QoEoDo

Proofs of the following classical theorems (listed as
Lemmas B.2-B.5) will not be included here. The interested
reader may refer to the indicated references.

Lemma B.2: (Kalman(s), 1960)

The algebraic Riccati equation

SA + ATS + cTc - SBBTS =0 (B.1.2)

has a unique positive definite solution, S, if the matrices
(A,B) are controllable and (A,C) are observable. Also the
matrix A—BBTS has eigenvalues in the open left-half plane.

It is pointed out by Wonham(27)

in 1968 that the properties
of controllability and observability can be changed to
stabilizability and detectability respectively.

Lemma B.3: (MacFarlane(11), 1963)

Under the conditions of Lemma B.2 the eigenvalues of

the matrix A-BBTS are the same as the left half plane



eigenvalues of the Euler-Lagrange system matrix

Lemma B.l4:

The solution, X, for the linear matrix equation

(Rutherford

(9)

AX - XB

1932)

=0

(B.1.3)

is unique and equal to zero if A and B have no common

eigenvalues.

Lemma B.5:

There exists an orthogonal transformation

which transforms

(Schur

angular form

0

11

12

U22 |

11

Py

(28)

1909)

12

P22

—CTC

-BB

-AT

11

21

12

22
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From Lemma B.1, B.2, and B.3 the orthogonal transformation
matrix can be chosen so that U11 has all eigenvalues in the
left (right) half plane and U22 has all eigenvalues in the

right (left) half plane.

Theorem B, 1

Under the conditions of Lemma B.1, namely that the
given system is controllable and observable, the symmetric
positive definite solution of the algebraic Riccati

equation (3.2.1) and (3.2.4) satisfies the following

relations
a. For the linear regulator problem
where P11, Pyy satisfy the following equation.
( -1 [ 17
Y11 Uz P11 Pag|| Bx “BRy BUIIPyy Py
0 U p,. P, ||-0, -a,T P.. P (B.1.5)
f 22 | |21 22 * * JU21 Faz) et

with U22 having all the eigenvalues in the right

half plane.
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b. For the stationary Kalman filter

(B.1.6)

where P11, P12 satisfy the following equation
- T
i A 8 Ar T) 7
U1 Ui Prr Pao||Pex TQ I P11 Pra
T 1 T
10 Yoo | P21 Fazf (%2 Rax G2 "Rew [|P21 Pap
(B.1.7)
with U22 having all eigenvalues in the left half
plane.

Proof:

a. Pre-multiplying equation (B.1.5) by the orthogonal

matrix yields

[ T flr T i 1 ﬂ [ T TT
Pi1 Pop | 1Y1q Up2 By -~BR, BT IPyqT Poy
T T T T T
P12 22 || 22| | | B2 22
®

B™ P =P §) (B.1.8)
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=Qy Pyt = A PLT =P UL, (B.1.9)

Solving the Riccati equation (3.2.1) for Q. Yields

T
*

1

_ -1 T
Q, =S BR, B S=-SA,-A, S, (B.1.10)

Using (B.1.10) in (B.1.9) gives

1 T T T T T
B's - sa, - a,'s) Pt - At T =p Tu .

(B.1.11)

- (SBR,,

Using (B.1.8) in (B.1.11) yields

-SBR,” ' B'S P

which can be rearranged to give

a, - Br,”' BTs)T (sp, T - 2, + (sp,,T - B, U, =0
(B.1.12)
From Lemma B.2, B,3, B.4, B.5
SPyy = Pyy = 0
or
P,, S =P, . Q.E.D.
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The same procedure can be followed for the Kalman

filter case:

Expanding equation (B.1.7) yields

T T, T _ T
+ TQ,,I"P,," =P U

A 2 11 Y11

**P‘| 1

Solving the Riccati equation (3.2.4) for

T

PQZ*P yields

A

- PA P =P

** 712 11

Using (B.1.14) in (B.1.16) yields

T T, -1 T T
+ PC, R,y C,PP " = A, PP,

ByaP g 2 Ry

- pc,r,, 'c,p., T + PP, U, =P T

2 Ra 2P 11 12 Y11 11 U

11

which can be rearranged to give

(B.1.13)

(B.1.14)

(B.1.15)

(B.1.16)



123

-1 T T
Co)(Pyy” = PPyy7) = (Pyy

(A,. - PC.TR T . PP12T)U

* % 2 TNox =0,

11

From Lemma B.2, B.3, B.4, B.5

T T
P197 = PPy =0
or
P12 = %qq.
Q.E.D.

Theorem B.2

Under the conditions of Theorem B.1, the matrices

and P in equations (B.1.4) and (B.1.6) are

P11 12

non-singular.

Proof:

Since the same procedure can be followed for the Kalman
filter case, only the regulator case will be proved here.
Expanding equation (B.1.5) yields four equations, one of
which is

T 1T T

U, = PyqA P " - P, BR, BP.,

11

T T, T
= PoQuPiyT = PoATP, T (B.1.17)

Using equation (B.1.10), (B.1.4) in (B.1.17) gives
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-1
*

T

T
B S)P11 .

_ 2
Ujq =Py +8% (A, - BR (B.1.18)

11

1

Since U S, and A*-BR*- BTS are non=singular, P11 must

117

also be non-singular. In addition, P12 = P11 S is

non-singular.

Theorem B.3

If C is symmetric negative definite and if A has all
eigenvalues in the open left half plane, then the solution

of the Lyapunov equation

AX + XaT = ¢ , (B.1.19)

X, is symmetric positive definite.

Proof:

Using classical system theory, the solution of equation

(B.1.19), as described by Kwakernaak and Sivan(zg), is
given by

T
X=-f eAt C eA t dt

when the system is asymptotically stable.

The matrix is symmetric positive definite since C is

symmetric negative definite.

Q-E.D-
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APPENDIX C

THE ERROR ANALYSIS OF THE SIMILARITY REDUCTION TO
QUASI-TRIANGULAR FORM



APPENDIX C-1

Error Analysis of the Algorithm Proposed in Chapter III

In this appendix, the following topics will be

discussed:

126

1. The error analysis of the quasi-traingularization

using the QR algorithm

2. The error analysis of the Householder type
similarity transformation

3. The operations count of the program which solves
the algebraic Riccati equation (the program is

presented in Appendix G).

The following useful error bounds for some basic
floating=-point computations, which are presented by

(21) [1965], are stated without proof. The in-

Wilkinson
terested reader may refer to the reference. The notation

fl1(+) is the result of floating point computation, || is

absolut value, | is the 2-norm of the matrix, t, is

2

defined by the relation 2"t = (1.06)2—t with the t-digit
mantissa machine.
n n
(i) f1 (I x.) = (1 + E) I x, (C-1)
. i . i
i=1 i=1

-t
where |E| < (n - 1) 2 .
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n n

(ii) f1 ( x, = z {xi (1 + Ei)} (C=2)
i=1 i-1

where |E,| < (m=1)2"%1, |E;| < (n+1-)27%1 i=2,...n.

n n
(iii) fl(.X xiyi) = _Z { X:Ys (1 + Ei)} (C=3)
i-1 i=1
-1 sy o=t . _
where |E1| < n2 1, ]Ei| < (n+2-i)2 i=2, ..., n .
(iv) f1 (A + B) =A + B+ F (C=4)
-t
where IIFH2 <2 ||la + B]|2 .
(v) fl (AB) = AB + F (C=5)

2 -t1

where ||F||, < n? 271 ||a]|, [IB]], .

There are two important properties of the 2-norm of a

matrix which is formed by the outer product of two vectors.
Lemma C.1

Let u and Su be two column vectors. The following two

identities hold:
(@ |lw®|], = [la]],” (c-6)

() |lusu’|], = [lsull, [lull, . (c=7)
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Proof:

From the definitions of the 2-norm of a matrix and

a vector, the following argument results:

1/2

||uuT||2 [max A (uuTuuT)]

1/2
[(uTu) max A (uuT)]

1/2
||u||2 [max A (uuT)] , (C-8)

where A(A) is an eigenvalue of A.

Since uuT is symmetric, the eigenvalues of uuT are equal

to the square roots of the eigenvalues of uuTuuT, i.e.,

1/2
A(uuT) = [X (uuT uuT)] . (C-9)
Substitute (C-9) into (C-8),
T _ r r iz V?
|[Jua™ ||, = [|ul], [max X (uu” uu®) ]
T 1/2
“ Nlall, e,
1/2
i.e., l|uuT||2 = ||ul||,, which is equation (C-6).

The same procedure can be followed for equation (C-7)
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1/2
u suTll, = [max A (u 6ur Suul)]
2

1/2
[(6uT6u) max A (uuT)]

1/2 1/2

[18ul|, { [max A (uu” wuT)] }

1/2

[Hull, € 1Twa®l],3 " .

Substitute (C-6) into the above equality

5 1/2

|JwsuT ||, = [|sull, € ||u]]? 3}
2 2

2

[eully [Tall, &

the equation (C-7) results.

Q-E-D-

Lemma C.2

The floating point computation, f1 [ ], of matrix

multiplication is given by

where [IF[], < 1.06 (s=1) n

if s+27% < 0.01 .
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Proof:

(21)

Analogous to Wilkinson (1965), an error bound for

the multiplication of two n by n matrices is given by
fl1(AB) = AB + F
where  ||F|[, < (1.onn® 27F ||a|], ||B]],, if n2”F < .01.

The error bound for multiplication of several matrices

is then given by

f1(AA, ... A)) = f1If1(A; ... A__)A_]
= fl(A1 cee As—1)As + F
= f1(A; ...A _,))A, A+ F, A +F_
=A; ... A _ A+ FALA ... Al
+ FAA; W..A  + ... +F__ A +F_,
2 -t o
where [[F. |], < (1.06)n" 2 [j£1 IIAj||2].
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The above expression can be rearranged as

fl(A1 PR AS) = A1 cee AS + F

where [EL], = |]F2A3Au cee A+ L.o v F__ A+ F_||

-1 2

t

< (=1 (0e)n® 27F [ | |agll] .

(=]
-

J

Q.E.D.

The following error analysis of the QR quasi-
triangularization follows the work done by Wilkinson(21) in
1965. The error bound for a sequence of orthogonal

similarity transformations can be stated as a therorem.

Theorem C.1

Let Ks be the computed result of the similarity trans-
formation; then
T

s G1

o]

(E + Ao) G (C-10)

17

where

G1 = Q1 Q2 eee Q (C_11)
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and Qi is the orthogonal matrix corresponding to the

exact application of the pth step of the algorithm to

Kb_1 . Also, let the computed Qi correspnding to Q. be
given by
Qi = Qi + e; (C=-12)
where
. -t
[le;ll, < a(i, m)27" . (C=13)

If the error bound of the matrix Fp which satisfies the

equation
Q + F (C-14)

is of the form

£(p,n)2"t

| A

[P 1, 241150 (C-15)

then, the error bound of E is given by

™M W

X (C-16)

Bl <275 1agll, 2%

where

x, = [2a(p,n) + a’(p,m27" + £(p,n)ly,_, (c=17)
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and

t,2

P - -t
y = T { (1+a(p,m2 )"+ £(i,n)2"" 1}

vy =1 (C-18)
The values a (p,n) and f(p,n) depend on the algorithm used.
Proof:

Let Qp be the exact orthogonal matrix corresponding
to the exact application of the pth step of the algorithm
to the computed transformed matrix at the (p-1)st step
Xp_1. The computed matrix Gb correponding to the matrix
Qp satisfies the relation

Q =Q +e_. (C-19)

At the pth step, the orthogonal similarity transformation

can be written as
Q. + F (C-20)

where F_ is the difference between the accepted Kb and the

exact product GpT A Substituting (C-19) into

p-1 % -
(C-20), the resulting equation is given by
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— T—
A = + A + + F
p - Op rep) Ay (O tey) +Fy
=0 TE o +v (Cc-21)
p p-17p p
where
T — T —
Y = +
P~ % Pp-1% T P O
+ e T A e + F

and QpT Ap_1 Qp is an exact orthogonal similarity transfor-
mation of Zb_1. Combining equation (C-21) for p = 1,2,

.«« S, we have

R =Y,  +G," Y _ 4G, + G, " Y _ 5 G, + ...
T T
+G,” Y, G, +G;7 AJ G, (C-23)
where Gp = Qp Qp+1 -e- Qg . (C~24)
Equation (C-23) can be rewritten as
A =Y +G,T A G (C-25)
S 1 o 1
with
_ T T T
Y = Yo+ Gy Y 46  + Gy g Yo ,G 3 + ... G, Y.G, (C-26)
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or alternatively
A =G (E +A)) G, (C=-27)

with

E = LY L™ + Ly ¥ 4Lg_ " + ... + LY.L, (C-28)
and
Lp = Q1 Q2 .o Qp . (C-29)
Since Lp is exactly orthogonal for p=1, 2, ... s, the

2-norm of Ly ||Lp||2, is equal to one. Taking the

2-norm of equation (C-28), we obtain

el < = Ozl Tl e Tl

A
I ™m0

Il
N~

: llYp||2 . (C-30)

Assuming that the error bound of ep can be formulated as

[le 11, < a(p,n)27" (C-31)

equation (C-22) gives

e 1 < 1A, 411 ,t2amem2™ + a®(p,n)2”
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where I]Qp[]2 = 1, since O is orthogonal.

Using (C-32), equation (C-21) gives

1A, 11,

| A

A, 1y + Y,

I~

-ty2 1% -
(1+a(p,n)2~%) llAp_1||2 + l]Fp]|2 . (C-33)

Also, if the error bound of Fp can be formulated as

[IF 11, < £em 27"

||Kb_1l|2 , (C-34)
where f(p,n) is some function of p and n, then combing

(C-32), (c-33), (C-34), gives

[E ], < { (1+a(e,m 2752 + £(p,n)2"t } ||a

p''2 p-1||2

{ (+ad,m2™®? 4 £(i,m27C } [[a]], (Cc-35)

A
[I=Ne}

and

t

1Y |l < { 2a(p,n) +a’(@,m)2"% + £(p,n)} 2~ [1a,_q115 .

(C-36)

Substituting (C-35), (C-36) into (C-30), an a priori bound
for the norm of the equivalent perturbation E in AO (see

equation (C-27)) is giwven by
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-t S
'lEllz <2 llellz E Xp, (C-37)
p=1
where
2 -t
xp = [2a(p,n) + a“(p,n)2 + f(p,n)]yp_1 (C-38)
and
P : 2 -t
¥, = 1 { (1 +a(i,n)27%)° + £(i,n)2" "} . (C-39)

i=1

The problem is reduced to finding expressions for

a(p,n) and f(p,n) for the particular algorithm used.

Q.E.D.

Theorem C.2

A bound for the difference between the computed Q

and the exact Q is given by

llell, = 113 - all,

(4.82 - 11.2)27% (C-140)

| A

where

T
0=1-% (C-11)
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T _

u’ = (x1+-S, Xyr Xgr eeey xz)

2k = g2 + %, 8 (C-42)
2 _ 2 2 2

5" = X4 + X, + ... + Xy .

Proof:

The algorithm used to quasi-triangularize the
Hamiltonian matrix is the Householder reduction. The

orthogonal similarity transformation matrix is of the form

T
Q=1 - 255 . (C-143)
2K
where,
T _ ( ¥ S X X,)
u = X1+ ’ X2, 3, e ooy ,Q,
2k% = 5?3 x, s (C-414)
2 _ 2 2
S5° = + Xy

The error of the computed Q is given by



e =0-20
T —T
== - = (C-45)
2k 2K

where u, K are computed values of u and K respectively.

By using the equation (C-3)

_ 2 2
b= fl(x," + ... + X,")
L 2
= I {x," (1 +E., } (C-16)
L 1 1
i=1
Byl <22, B | < @ +2-m2 " forr =2, ...0,
the following equation results
= (% + oo+ xh) (14 E) (c-47)
=s?(1 + E)
with
|E] < & 27F1 . (C-48)

The computed S is given by

139
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0|
It

£1 (\/;12 oo+ x22) = £1(b"/?)

1/2

b (1 + n)

where we shall assume that

t (21)

In] < (1.00001)2" - (Wilkinson 1965) . (C-149)
Substitute (C-47) into the above equation, the resulting

equation is given by

S=s(1+8)"72 (1 +n) (C-50)
where
= S(1 + 1)
M+ =0 +8)72 (1 +n)

[1 + .5E + o (E®)] (1 + n)

= [14 .5E +n + G(E2)+ G(EN) + ... ]

[1 + .500001 E + n] . (C~51)

| A
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In the above equation, the reasonable assumption

6(E®) + 0(En) + ... < .000001 E

is made. From equation (C-48),(C-49),(C-51), the following

inequality can be formed

lz] < .500001 |E| + |n]

< (.500001) £ 27%1 4+ (1.00001)27 ¢
< [(.500001) (1.06)% + 1.00001]12"¢
< [.530001 £ + 1.00001]27%
Equation (C-50) can be rewritten as
S =801+ 1) (C-52)
with
|z] < [.53001 &£ + 1.00001]2"% (C-53)

The computed K is given by

2K2 = fl((x12 ¥ oo+ x,0) + x, §)

2

[x1

2 —
(1+O1) + c.. + X, (1+92) + X, S(1+@2+1)]



where
o ] < #2751 Jo_| < (243-r)27"1 for r=2,
so that
2?2—(x2+ oo+ x. 2 4 x S) (1 + 0)
1 £ 1
_ 2
= [S8° + X, S(1 +z)] (1 + 9)
_ 2
= [8° + x1 S] (1 + 8) (1 + 0)
where
lo| < (e+1)2"t1
and
xX,S
§ = —— r
s + x1S
<lC
-2 (since xq < S).

Let us define Yy by

(1 + v) (1 + 8)(1 + 0)

1+ 68 + 0 + 680

LI N 4 QI+1

(C-54)

142



then

Iyl < [s] + lo] + |s0]

1 (.530001% + 1.00001)2" t

2

t o 1.06(2+1)2”

A

+

{ %(.5300011 + 1.00001) - 1.06(2+1) } 2-2t

(1.3250012 + 1.560005)2" ¢ |

| A

Again, the reasonable assumption

{ % (.530001% + 1.00001) (1.06) (2+1)} 27% < ,00000052

is made. The equation (C-54) can then be rewrit;en as

282 = 2k% (1 + ¥) (C=55)

with

ly] < (1.3250012 + 1.560005)27 % | (C-56)

From equation (C-44)

= fl(x, + S)

el
—

1

= (x1 + 8) (1 + ¢)

143
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[x; + S(1 +2)] (1 + ¢)

= (x1 + 8)(1 + V)
= u1(1 + Y)
where
o] < 27F
and

lv| < |z + [¢] + [ze]

(.530001 & + 2.00002)2"F

A

with the reasonable assumption that

(.53001 £ + 1.000001)27% < .00001 .

The computed u can then be written as

=u” + 0u (C-57)

with

du” = (Su 0, eeo , 0) (C-58)

1’
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Gu1 = u1w (C-59)

lsull, = T ] |v]

(.530001 & + 2.00002)2"F

A

[lull, »  (c-60)

and

[Tally = [la + sull,

< {1+ (.530001 2 +2.00002)27% } [|u[|, , (c-61)
Equation (C-45) can be rewritten as
e=0-29
_bu_ uu
2k? 2K
—T
_ uu 2uu + Tul _15 - 7%5 )
2K 2K 2K
- - (usu” + Suu’ + Sudu’) + qut (1 - 2K° )
2K2 2K2 2K2(1+y)

so that,



[lel],

<

146
113 - oll,

T T T
2| éuu”| ], + ||susu”|], . | [wa™] ],

(1 - =],
2K2 2K2 1+y

Using the results stated in Lemma C.1, the above

inequality becomes

Hellz

But

| 1

A

| A

=112
2| lall, Ilsull, + [lsull5 . | 1al ] -

—) |
2K2 2K2 1+y

2(.26500058 + 1.50001)27¢ ||ul|2 + lléullg

2K2

{1 + (.2650005% + 1.50001)27t }2 ||u| |2 | )
(1 )| .

2K2

1= (1 -y +o0(y))|

< |y + o(v?)]

| A

Iyl + |o(y2)] ,

from equation (C-56) with the assumptions that

and

o(y2) < .000001% 2-t



147

lléullzz < .000001% 27% [|u|],?,

the error bound of ||e||, is given by

(-530002% + 3.00002)27% |]u]] 2

llell, <
2 k2

2

{ 1+ (.2650005% + 1.50001)2"% 32 ull,

2K

+

. (1.325002% + 1.560005)2" ¢ .

Since

| lal],”

—=2,
2K 2

the above inequality can be rewritten as

[lel], < (2.120006% + 8.00008)2" "

+2(1.325003% + 1.560006)2"F

where the assumption

{ 2(.530001% + 2.00002)2~t + (.530001% + 2.00002)2

« 2=2t } (1.325002% + 1.560006)2"t

-t
< ,0000012 2
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is made. The error bound of e is thus given by

Hellz ”6"QH2

(4.77002% + 11.12009)2°F . (C-62)

A

The quantity a(p,%) in equation (C-37), (C-38), (C-39)

is then given by

a(p,%) = 4.770022 + 11.12009 (C-63)

QoEoDo

The error analysis of the QR algorithm will be discussed

next,

Theorem C.3

The quasi-upper=-triangularization of the Hamiltonian

matrix stated in Chapter III is formulated in general as

A, =G,  (E + A) Gy (C-64)
where the a priori error is bounded by
[IEIl, < 27% |[a_|| { 8kn® + (38.2 + 4x)n?
+ 44.5n + 50.9 + (4kn? + 50.9)s } (C-65)



149

with

k = 2.12

and s, the number of QR iterations, is given by

(i) 1if all the eigenvalues are real

(ii) 1if all the eigenvalues are complex

Proof: From equation (C-5), we have

f1(ABC) = fl(f1(AB)C)
= fl1(AB)C + F2
=ABC+F.]C+F2
where m is the dimension of matrices A, B, C,
and
11F. ], < m® 2781 ||a]], ||B]]
1 2 - 2 2
117, 1], < n® 271 ||aB||, ||c]||
2 2 — 2 2
2 -t
<m® 278 | [all, [1B]1, llcll, .
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so that,

f1 (ABC) = ABC + F

with

2 ,-tq

HEI, < 20® 2270 |[a[[, [IBI], llcll, .

If Ap__1 is upper Hessenberg and Qp is orthogonal, then

T

1" A,y o) = A _ o +F (C-66)
with
[1E 11, <k m? 275 1,11, (c-67)
and
k = 2,12 .,

Then quantity f(p,m) in equation (C-37), (C-38), (C-39),

is, then, given by

£(p,m) = k m° (C-68)

where

k =2.12 .
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The algorithm proposed in Chapter III for quasi-upper
triangularizing the Hamiltonian matrix has two major steps.
First, m-1 Householder type similarity transformations are
performed to transform the original Hamiltonian matrix into
an upper Hessenberg matrix. Second, the QR algorithm is
performed on the upper Hessenberg matrix. The error bound

of E in equation (C-37) can be described as

| ]
Bl < 275 | ll, (ot 58 (c-69)

where s is the number of similarity transformations
required for quasi-triangularization
60 is due to the Hessenberg reduction and

6p is due to the pth iteration of QR algorithm,

The quantity 60 is given by

m=1 . 2. -t 2
60 = % { [2a(i,m) + a“(i,m)?2 + km“] - yi_1} (C-70)
i=1
i-1
vy .= 01 { [1+a(jm27t12 4 xn? 27t 3} (Cc-71)
1-1 J:‘]
where m is the dimension of the Hamiltonian matrix.

The quantity Gp can be found as follows. At the pth step,
m-ne—1 Householder type similarity transformations are

required. Here ng is the number of eigenvalues which have

already been isolated. For simplicity, n, is assumed to

have the following form



n =P -1 if all the eigenvalues are real

n,=2((pP-1) if all the eigenvalues are complex.
Further more, if the eigenvalues are known a priori, it
is estimated that the number of iterations, ITE, required

to isolate a real (or complex pair of) eigenvalue(s) is

ITE = 2 if a real eigenvalue is to be isolated

ITE = 3 if a pair of eigenvalues is to be isolated.

Under these assumptions, 6p can be expressed as

s, = { 2a(p,3) + a(p,3)2”% + km? } Yoot (C=72)
p=1 -t.2 2 -t

yp_1 = 0 { [1+ a(i,3)2 "1° + km“ 2 } . (C=73)
i=1

152

The number of similarity transformations required for tri-

angularization is given by

ITE * (m-n_ -1) (C=74)

e

n
il
N ™M=

1

where, for isolating n eigenvalues.

k, =n if all the eigenvalues are real

k1 = % if all the eigenvalues are complex.
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The reason for a(i,3) is that the QR algorithm is applied

to a the Hessenberg matrix. Combing equation (C-63),

(C-70), (C=71), gives

8, = I { [9.54004m + 22.24081 + km?2

+ (22.75309m° + 106.0861m + 123.6564)27 %]

" Yiq b
It is reasonable to assume that

(22.75309m® + 106.0861m + 123.6564)2 "
< .00001m

and

2

[1 + a(i,m2"% + km? 27F < 1.000001

The expression of 60 can then be simplified to be

m-1 i
§ < I

i=-1
{ [9.54005m + 22.24018 + kmZ]

I (1.000001] }
=1

o — .

i=1

J

[9.54005m + 22.24018 + km2]

5 (1.000001) 1]

With the aid of the identify

m~1 i=1 m-2 3
L (1.000001) = I (1.000001)
=1 j=0

1

(1.000001)™=1 _ 1
1.000001 = 1
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[(1.000001)™ 1 -1710°

{1+ (m=1+1) (.000001) - 1110°

IA

m, if m is less than 10000. ,

6, < km> + 9.54005m

2 4 22.24018m . (C-75)

The same procedure can be followed that under the

assumptions

£ 2 2 .-t

[1 + a(i,3)2""] + km“ 27° < 1.000001,

and

a%(p,3)27% < .o0001,

the expression of §p can be simplified as

2} (1.000001)P""

(o)
A

< { 28.62015 + 22.24018 + km

{ (50.86033 + km2 } (1.000001)P~1 . (C=76)

Substituting (C-75), (C=76) into (C-69), we obtain

2

[IEl], < 27° |]a { km’+ 9.54005m

o||2

S
+ 22.24018m + (50.86033 + km2) z (1.000001)p—1 } .

p=1
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The dimension of the Hamiltonian matrix is equal to 2n, and

the above expression can be simplified to

lEll, < 27t |]a )], { kn3 + 9.54005m2 + 22.24018m

+ (km® + 50.86033) (s + 1) } .
The quantity s is given by

(1) if all the eigenvalues are real

n
s = ¥ 2(2n - P)
p=1
= n(4n) - 23 (n + 1)
= 3% - n (C-77)

(ii) if all the eigenvalues are complex

n/2
s = I 2(2n - 2P + 1)

TN

n
(5 + 1)

=3 -
=5 n" . (C-78)
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The bound for ||E||, is then given by

3

Ell. < 2°t ||a { 8kn> + (38.1602 + 4k)n?
2_..

o||2

+ 44.8036n + 50.86033 + (uan

+ 50.86033)s } (C-79)
where

k = 2.12

and s is given by equation (C-77) or (C-78).

Q.E.D.
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Cc-2

The Operations Count of the Algorithm

The operations count for solving the algebraic Riccati
equation has three major parts: (1) OP count for finding
eigenvalues of the Hamiltonian matrix, (2) OP count for
isolating n desired eigenvalues in the lower-right hand
corner of the Hamiltonian matrix, (3) OP count for solving
the linear system of equations. In this discussion, the OP

count is found for each required subroutine.

1. Operations count for subroutine HESS

For the similarity transformations, the OP count is
given by
n2-1

pX { nn -k +1) +1+ (nn -k + 1)
k=n1+1

OPHT

il

+2(nmn -k + 1)(m -k + 1) + 2(nn - k + 1)n2 }

n2-1
= b} {2(nn -k + 1) (m~-k +n2 +2) + 1}
k=n1+1

where

nn = min {(nz + k-1, n2 }

number of non-zero elements below

il

nz

the diagonal
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n1, n2 = row indices of current isolated
diagonal block

m = matrix size = 2n in our case.

For accumulating the orthogonal similarity
transformation matrix, the OP count is given by
n2-1

OPHP = )3 { 2(nn -k + 1)m } (C~80)
k=n1+2

There are two situations in subroutine HESS.

When the first Hessenberg reduction is performed,
i.e., nz=m= 1, nl =1, n2 = m, the OP count is
given by

m-1

= I {2(nn -k + 1)(2m -k + 2) + 1}
k=2

and
m=min { (m+ k - 2), m }
= m, for all k
so that,
m-1
= % {2m-k + 1)@2m -k + 2)+ 1}
k=2

_5 -2 - -



159

The well known identities

(m + 1)

[l
e
I
Nk

1

and

(m + 1) (2m + 1)

[ R=]
o
I
o8

1

are used in equation (C-81).

m-1
oP = Z {2m(m+ 1 - k) }
HPE © D)
- m® - m? - 2m. (C-82)

When the QR algorithm is performed on the upper
Hessenberg matrix (i.e, nz = 3, n1 =1, n2 = m -s,
and s is the number of eigenvalues which have been
isolated), the OP count is given by

m-s-1

S
OPHTS = kiz { 2(nn ~k +1)2m -k - S + 2)+ 1}

with

nn =min { (2 +k), m~-s }

{ 2 +k, if k € [2, m - s - 2]

m-s, ifFk=m=3s -1 .
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Using the expression for nn, the OPHTS is given by

_ 2 _ _ _ 2 _
OPHTS = (9m 10m 26) 4(3m + 1) s + 3s (C-83)
m-s-1
oP = I {2m(mn-%k+ 1)}
HPS k=2
2
= (6m”~ - 14m) - 6ms . (C-84)
In summary, we have the following OP counts for
the subroutine HESS:
(a) For the first Hessenberg reduction
_ 5 _3 2 5 - _
OPHTf = § m m -3— m 6 (C 85)
o w32 _
OPHPf = m m 2m (C-86)
(b) For the QR algorithm
2 2
OPHTS = (9m” - 10m - 26) - 4(3m + 1) s + 3s (C-87)
OP.__ = (6m®> - 14m) - 6ms . (C-88)

HPS
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2. Operations count for subroutine SHIFT2

For the similarity transformations, the OP count

is given by

OPST =11 + 6(m + 1 - n1) + 6n2 .

For accummulating the transformation matrix

OPSP = 6m .
For the case, n1 = 1, n2 = m - s, the OP count
is given by
OPST = 12m + 11 - 6s (C-89)
OPSP = 6m . (C-90)

Again, s is the number of eigenvalues which

have been isolated.

3. Operations count for subroutine TRIA

(a) For real eigenvalues

OPTT

4m +15 (C-91)

OPTP

4m (C-92)
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(b) For complex eigenvalues

OP ., = 4 (C-93)
OPTP =0, (C=94)
4. Operations count of Subroutine QR

The OP count in subroutine QR is the sum of the

OP count for first Hessenberg reduction and the OP
count for QR iteration applied to an upper
Hessenberg matrix. For similarity transformation,

the OP count is given by

Ne
= *
OPQT 2 + OPyne + sio { 1T [2 + OPyng + OPgql }
Ng
+ I OP (C-95)
s=1 TT
where n, is the number of eigenvalues to be

isolated and IT is the number of

iterations required per eigenvalue.

Substituting equations (C=85) to (C-94) into

equation (C-95), we have

Ne
r {IT * [2 + OPng + OPgp] }
s=0
e 2 2
=IT * Z [(2 + 9m” - 10m -26) - 4(3m + 1)s + 3s
s=0

+12m + 11 - 6s]
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n (ne+1)

* { (n_ + 1) (9m2 + 2m - 13) - (12m + 10) ez—

n

= (ng + 1) (2n, + 1)}

+ 3 3

2

2
* (ne + 1) [9m° + 2m - 13 + n® - (6ém + 4.5)ne]

n
L OP = rne(um + 15) if eigenvalues are

ﬁ real

o

- 4 if eigenvalues are

N

complex

so that

OP

OP

QT

QP

5 5 2
= + - - - + * +
2 §m m §m 6 IT (n 1 ) [9m

+ 2m - 13 + n“ - (ém + u.5)ne] + OPT . (C~96)

The number of iterations required per eigenvalue,
IT, is estimated to be equal to 2.

The OP count for the orthogonal transformation
matrix accumulation is given by

n
e
= m3 - m2 -2m+ I { IT * [6m2 - 14m - 6ms

s=0

Ne
+ 6m] } + I OP

r
s=1 TP

and,
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~ Ne
OPP=S£1 OPTP =14 n, if eigenvalues are all real
0 if eigenvalues are all complex
The OPQP is then given by
oP = m3 - m2 - 2m + IT *¥ (n_ + 1) [6m2 - 8m - 3mn ]
QP e e
+OPP.
The total OP count for upper-quasi triangularizing
the Hamiltonian matrix is given by
ne=2n-2 Ne=n Ne=n
OPuQ = OPQT + OPQT + OPQP . (C-97)
Since m = 2n and IT = 2, the OPuQ is given by
n,=2n-2
e - 80 3 _ yp2 - 19, _ * -
OPQT =2 + 3 N Un 3N 6 + 2 (2n 1)
[36n° + 4n - 13 + (2n -2)°
- (12n + 4.5) (2n - 2)] + OP,
. he=2n-=2
= 3%3 n + 8n® - Do - 4 + P, (C-98)
n_.=n
e = 80 3 _ 442 - 10 *
OP o7 =2+ 3 n 4n 3= n - 6 + 2 (n + 1)
2 2 o~
[36n” + 4n - 13 + n° - (12n + 4.,5)n] + OPT
n_=n
= B8 0% 4 usn® - 3 - 30 + 62, ° (C-99)
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=n
OPQS = 8n3 - 4n? - 4n + 2 (n+1) [24n® - 16n
- 6n2] + 6§P
3 . he=n
= U44n~ -~ 36n + OPP . (C=-100)
Substituting (C-98), (C-99), (C-100) into
(C-97), the OPuQ is given by
(a) for real eigenvalues
_ 232 _3 2 _ 76 _ -
OPuQ = =3 n~ + 8n 3 n 4 + (2n 2) (8n +15)
+ 1%9 n3 + LISn2 - %1 n- 30+ n (8n + 15)
+ 44n3 - 36n + Un
= E%E n3 + 77 n2 - l%é n - 64 (C-101)
(b) for complex eigenvalues
_ 232 _3 2 _ 76 - _
OPuQ = =5 n~ + 8n 3 n 4 + 4 n 4
+ 1%9 n3 + 45 n? - %l n-30+2n+ 44 n3 - 36n
2
= E%E n3 + 53 n - —%Z n - 38 . (C-102)
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OP count of subroutine HSOLVE

The OP count of subroutine HSOLVE is given by

n-1
1+ Z { m=-k+1) +2+4(n-%k) + 11}
k=1
n-1
+n{ Z [ (2n + 3) -k] + 11}
k=1

Total OP count required for solving the algebraic

Riccati equation is given by

o) 10) 3 + OP

PTotal = uQ L

(a) for real eigenvalues

_ 1117 3 2 _ 337 _
OPTotal =< n~ + 81n < F 67
(b) for complex eigenvalues
_ 1117 3 2 _ 499 _
OPTotal = % n~ + 57n < n 41

In summary, we have the following theorem.
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Theorem C.4

If it is estimated that two QR iterations are needed
for isolating one eigenvalue, then the operations count of
the algorithm proposed in Chapter III for solving the

algebraic Riccati equation is given by

3

oP + 81 n% - 56.2 n - 67

186.2 n
max

and

3

oP + 57 n2 - 83.2 n - 41

min 186.2 n

where

OPmax means the larger OP count assuming all
real eigenvalues
OPmin means the smaller OP count assuming all

complex eigenvalues

n is the order of the system.
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APPENDIX D

MEASUREMENT ELIMINATION THEOREMS AND THE SYSTEM MODEL



APPENDIX D

MEASUREMENT ELIMINATION THEOREMS AND THE SYSTEM MODEL

In Appendix D, proofs of the theorems in Chapter III

are given. A supporting Lemma is also described.

Proof of Equation (4.2.16)

I = E[yTQ1y + uTR1u = tr[SFQZFT + KT(R1 + D1TQ1D1)KP]

As discussed in Chapter II, the solution of the regu-
lator Riccati equation S, the covariance of the estimated
scale X, and the solution of the filter Riccati P satisfy

following equations

- - _ AT -1 T
0 =-85A,-A,"S +SBR, B'S -0,
. T T
0 = (A + BK)X, + X, (A + BK)" + GR,G
_ T T T, -1
0 = AP + PA,,~ +TQ,,I" - PC,"R,, C,P,

where the definition of matrices is given in Chapter II.
With these three equations, the following equation is

established

169
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@ =0= (- sa, - A,Ts + sBr,~1BTs - Q,)x,

1

+ (- sA, - A,'s + sBR,” 'B"s - Q,)P

+ S[(A + BK)X, + X, (B + BK)" + GR,,G"]

T T Ty =1
+ S[A,P + PA,, " + TQ,,T" - PC,"R,,”'C

2 Ry Pl .

2

After some matrix manipulation, the above equation becomes

-0 = - caTey _ T
Q=0 =- SBKP - A"SX, - C,7Q,C.X,

T T T
- C1 Q1D1KX* - A'SP - C1 Q1C1P

T T T T
C, Q,D,KP + SX,A” + SX,K'B

+ SPAT + STQ,T .
The expectation of the integrand is then given by

I = E[yTQ1y + uTR1u]

tr[Q1Y + R1U]

tr[Q1Y + R.U + Q],

1

where Y = E[ny], U = E[uuT].

Substituting equation of Y, U from Chapter II and  from

above, the quantity I is given by
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_ T T
I = tr[Q,C X c1 +0,C Pc1 + 0,C,X4K D,

+ Q,D,KX,K'D.T + R.KX,KT

+ QD KX,C : :

-
- sBkP - a'sx, - C,"0,c,X, - c,7Q,D KX,

- aTsp - C1TQ1C1P - c, Q1D KP + SX,AT

+ SX*KTBT + SPAT + STQZTT]

tr[- SBKP - Algp - c, Q D,KP + spAaT + erZPT]

tr[SPQZPT - ¢, Q1D KP - SBKP] ,

where the equality tr[AB] = tr([BA] was used to simplify the

T

above result. Also, since —C1TQ1D - SB = K'R,, the above

1

equation reduced to the form

I= E[yTQ1y + uTR1u]

T

tr [STQ,TT + KT(R1 + D1TQ1D1)KP] .

Q.E.D.

Lemma D.1

If the matrix U is symmetric positive semi-definite,

then, the matrix product of K and U
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is also symmetric positive semi-definite, i.e.,

Proof:

For the symmetric property, take the transpose of
KUKT and use the fact that U is symmetric., The result is

given by

T
(KU KY) =KUl kT = K UK

which is symmetric.

For the positive semi-definite property, consider the

following. Since U > 0, there exists a matrix V such that

U = VVT. Then

K UKL = kv VT KT = (RV) (KV) T

which is positive semi-definite.

Q.E.D.

With the above lemma, an important theorem of the mea-

surement elimination procedure can then be established.
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Theorem D.1

Let Pi' Pik be the covariance of the state estimation

th h

error without ith and without i and kt measurements

respectively. These covariance matrices satisfy the fol-

lowing algebraic Riccati equations

T T _
PuuPy + PLAL," +TQ, T - P.R.P, =0

T T
+ P Ay, + QT -

k =0.

BarPix PikRikPik

The matrices in above equations are defined in equations

(2.3.7) of Chapter II except that the R; and Ri are the

k

term CZTRZ*-1C2 with ith and with ith and kth measurements

eliminated. Also, assuming that the estimation error
dynamic equation is asymptotically stable, i.e., the eigen-
values of Apy ~ PikRik and A, - PiRi are all in the

open left half plane.

Then

AP = Pik - Pl >0
if

AR = Ri - Rik >0 .
Also,

(rms Xj)ik - (rms Xj)i >0
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if

where the subscript j means the jth element of the error
state vector ¥ and the subscripts ik and i mean that the

th th

i and k and that the ith measurements are eliminated.

Proof:

Subtracting the equations for Pi and Pik’ the resulting
equation is given by
A, AP + APA T . P..R.,P. + P.R.P, =0
* ¥ * ¥ ik ik ik ititi *
Using the equations of AR and AP, the above equation
becomes

T—

0 = A, AP + APA,, (AP + R,)

ik 1k

+ PiRiPi - APRikPik + APlePlk

_ - T

= (Ag, ikRig)AP + AP(A,, - Po Ry )
- P Ry P + P.R/P. + APR; Py

= (Ayy = PRy AP + AP(A,, - P. Roy)

- PllekP + P ARP + P R. kP + APR, kPlk .

So that



= - _ T
0 = (Ayy = PyycRyp ) AP + AP (Ayy = PyyRyy)

+ APR.. AP + P.ARP. .,
i i i

k

Since Rik > 0, from lemma D.1, APRi AP + PiAR

k
AR > 0. Also, from theorem B.3,

AP > 0
if

(a )

ek T PipRip
is asymptotically stable. The result

(rms Xj)ik - (rms Xj)i >0

follows immediately.

Q.E.D.

Theorem D.2

Under the same condition as in theorem D.1,

ing results are concluded.

If

then

175

>0 if
1l —

the follow-
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a. Ujk ~ U3 2 O
and
(rms uj) x (rms uJ) > 0
and

where subscripts j, ik, and i have the meaning

as in the above theorem and ﬁi' ?i, ﬁs,
?5 etc. are defined in equations (4.2.10)

through (4.2.16) of Chapter IV.
Proof:

From the theorem D.1, if AR > 0, then AP > 0. The

following results follows.

Il

. T
AUi - AU K(P - Pi)K

k i ik

K AP K© > 0

Il
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AY .

ik ~ AYi = (C

T
; *+ DK) AP(c, + D.K)T > 0 .

The result

(rms Auy) - (mms Auj), > 0

ik i

and

(rms ij)ik - (rms ij)ik > 0

follow immediately.

- = *
Iik Ii tr [R¥ AP] ,

where

R* = KT(Rq + D;TQqD4)K > 0.

Since R* > 0, there exists a matrix L such that r* = LTL,

the quantity I, - I, is given by
ik i

L]
|
H
{

tr[R* AP]

tr[LT L AP]

tr[LT AP L] .
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Since
T
AP > 0, L APL > O,
so that,

tr(t? AP L] > 0 .

-
|
-
l



179

The System Model

The model of the aircraft used is given by (see

equation (4.3.3))

Ax + Bu + I'W

Me
]

y = C1x + D1u

z =C.x + D.u + v

2 2
where
XT=[plerI¢lV,V,u,W]
O X Y Y
ul = [sa, 6r]
T
Y = [ayl r, ft]
T
z" = [p, r, ¢, atyl ayl ft' v, V"VO].

The notation has the following meaning:

p = roll rate, rad/s
r = yvyaw rate, rad/s
v = lateral aircraft velocity, ft/s
¢ = roll angle, rad
v_ = lateral gust velocity, ft/s
v. = longitudinal gradient of the lateral
velocity, sec” |

u_ = lateral gradient of the longitudinal

velocity, sec_1
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Sr =

The matrices
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lateral gradient of normal gust
velocity, sec_1

aileron deflection, rad

rudder deflection, rad

lateral acceleration per unit
gravitational acceleration

yaw acceleration (rad/secz)

side force on vertical tail per unit
weight of the aircraft

tail side acceleration per unit
gravitation acceleration

the relative side velocity of the

aircraft with respect to air

are given as follows.
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1. THEORY OF THE LINEAR QUADRATIC RESULATOR AND STATIONARY KALMAN FILTER

1.1 Introduction

183

In part I, the basic theory of the linear quadratic regulator and the stationary Kalman filter

will be presented. These problems are ciassified into five catagories:

1. The control problem without process noise,

2. The control problem with process noise,

3. The state estimation probiem,

4, The stochastic control problem, and

5. The stationary behavior of the system with zero control.

The solution of the five problems stated above will be discussed sequentially in the following.

In this report, a linear time-invariant system will be assumed.

equations can be formulated as follows:

e

= Ax + Bu + Tw

y= CIX + D1u

Z= sz + Dzu +v+ow

where X

system state, n x 1 vector

control variable, 2 x 1 vector

process noise, p x 1 vector

output, m x 1 vector

measurement, q x 1 vector

measurement noise, q x 1 vector

system dynamics matrix, n x n matrix

control distribution matrix, n x £ matrix
process noise distribution matrix, n x p matrix
output scaling matrix for state, m x n matrix
output scaling matrix for control, m x £ matrix
measurement scaling matrix for state, q x n matrix

measurement scaling matrix for control, g x £

measurement coupling matrix for process noise, q x p matrix.

Mathematically, the system

(1.1)

The power spectral densities of the zero mean, white, process and measurement noise are Qz and Rz

" respectively.
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1.2 The Control Problem without Process Noise

The problem is formulated as follows:

Min , _ 1 i ¥ T .
y V%3 of (¥ Qyy+u R u) dt (1.2)

subject to constraints of the system and the output equations

x = Ax + Bu
y = C]x + Dlu (1.3)

the matrices Q1 and R1 are assumed to be symmetric and positive definite.
It is shown in the thesis (1) that the solution of the problem defined by equations (1.2) and

(1.3) is given by

us=s K1x
where ki = C, - R,78'S | (1.4)
and the matrix S satisfies the algebraic Riccati equation

0= -SA, - A'S + SBR,TB'S - Q,
The remaining matrices are defined by

T
Re ® Dy 40 * Ry

AT
Co = Ry Dy 4G4

(1.5)
A,=A+BC,
0w * €70, - Ca'RuC
The closed loop dynamic equation is. )
x = (A+BK)x . . (1.6)

1.3 The Control Problem with Process Noise

The problem is formulated as follows:



185

min .ol ol T T y
g 9 E3 Of (y'Qy + uRyu)dt] (1.7

subject to constraints of the system and the output equations

X = Ax + Bu + Iw
(1.8)

ys C1x + DTu

Again, the matrices 01 and R] are assumed to be symmetric and positive definite.
Davis and others (2, 3, 4) have shown that the solution of the problem defined by equations

(1.7) and (1.8) is the same as the solution given in section 1.2 which is rewritten here:

u= K1x
where

Ky =Gy - R,'f B s (1.9)

and the matrix S satisfies the algebraic Riccati equation

0= -SA, - A,TS + SBR,B'S - q,

The remaining matrices are defined in equation (1.5). The closed loop dynamics equation is given

by
xs= (A+BK)x+Tw . ' _ (1.10)
1

The statistical properties are described by the following:

. The state covariance matrix is defined as
X = Ex(t)x (1)} . (1.11)

It is shown in the thesis (1), that X satisfies the following Lyapunov equation for

the stationary case:
T T
0= (A +BK)X+ X(A+BK) + TQZF . (1.12)

The rms response of the state is given by the square root of the diagonal elements of X.

b. The control covariance matrix is defined as
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U= Efu(t) U ()}, (1.13)

which is given by

TS AL (1.18)
¢. The output covariance matrix is defined as

Y = Ey(t)yT(t)) (1.15)

and is given by

Yom(Cy + DK X(E, + DK)T (1.16)

1.4 The State Estimation Problem.

The problem is formulated as follows:
X3 e plx(t) ) T t] (1.17)

where p(x|2z] is the conditional probability of the system state, subject to constraints of the

system and the measurement equations

x = Ax + Bu + I'w
(1.18)
zZ= sz-+ Dzu + V+ow

It is shown by Sage and Melsa (5) that, if the conditioned probability function and the joint density
function of x and z are Gaussian and if w and v are causally related to z, maximiZing the conditional
probability function, p[x|z], is equivalent to minimizing another performance criteria (for the
stationary case)

min 1 bt T,

WV J = E{2 -£‘ (w Q w*v R, vidt} (1.19)
The solution of the problem defined by equations (1.18) and (1.19) is given by the stationary

Kalman filter (see thesis (1)).



187

The dynamic egquation of the stationary Kalman filter

Xa = Axy + Bu = Ky(Z = Coxe = Dou)-
The filter gain

1

Ty - L
Ky ® = PCy Ryy = 10,0 Rou (1.20)

and the matrix P satisfies the algebraic Riccati equation

i

T 1

+ T IT = PC, Ry,

0= AP +PA,, c,P

%, is the filtered state estimate and the remaining matrices are defined by

. T

Row = Ry + e°z$ :

Ape * A - T0,0 Rz,' c, (1.21)
. 1.

Qe = Qg = Q8 Rpw 90y

The state estimation error covariance matrix is defined by
- S A
X = E{x(t)x (t)} (1.23)

where the estimation error x = x - Xx,.
It is shown in the thesis (1), that the state estimation error covariance matrix for the stationary

case is given by the solution of the algebraic Riccati equation in equation (1.20), i.e.,

X=p (1.24)
1.5 The Stochastic Control Problem
The stochastic control problem is a combination of problems stated in section [.3 and I.4.

The problem is formulated as follows:

Find u as a function of z(t), t < t, to minimize
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= Ed Oy ¢ uRudE (1.25)
[#]
subject to constraints of the system, output and measurement equations

X = Ax + Bu + I'w
y = Cyx + Dyu (1.26)
zZ= czx + Dzu + v+ ow

According to the separation theorem (6, 7, 8), the problem defined by equations (1.25) and
(1.26) can be treated as two separate problems: 1) the optimal control problem (section I.3), and
2) the state estimation broblem (section [.4), The solution is given by a combination of the sol-
utions of the optimal control problem and the state estimation problem:
The stationary Kalman filter implementation dynamic equation
Xe = Ayxy = Ky2
with
Ay = A+ BK, + chz + K202K1 (1.27)
The controller
us K1x*
with the control gain
Ky = Cu - RBTS
where S satisfies the algebraic Riccati equation
0= -SA, - A,Ts + sBR,'8'S - Q,
and the filter gain
Ky = = PC, Ry, = T0,T6 R,
where P satisfies the algebraic Riccati egquation

T, -1
RZ* CZP

1

0= AP+ PAT 4 TQTT - PC,

The definition of the matrices in equation (1.27) are given in equation§ (1.5) and (1.21).
The statistical properties are described by the following:

a. It is shown in the thesis (1), that the covariance matrix of the estimated state

X, = E{x,(t)x, (t)} (1.28)

is given by the solution of the following Lyapunov equaticn

) T T
0= (A + BK )Xy + XKy(A + BKy)T + KylR, + 80,00 K, (1.29)
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It is also shown in the thesis (1) that the covariance matrix of the actual state is given

by
T
X = E{x(t)x {t)}
EY X* + P
The cbvariance matrix of the controi is given by
T/ans
U= E{u(tlu (t)}
T
= K.IX.,K1

The covariance matrix of the output is given by

Y = EQy(t)y ()}
.
= (61 + D1K1)x*(c1 + DIK1) + C.‘PC1

T

1.6 Stationary Response of the System with Zero Control

The system equation and the output with zero control is given by

X *Ax + Iw

ys= C1x

The statistical properties are described by the following:

a.

The covariance matrix of the system state

X = E{x(t)x ()}

is given by the solution of the following Lyapunov equation for the stationary case

0=AX + XAT + roer
The covariance matrix of the dutput is given by

Y = EQy(t)yT ()}
T
= CTXC1

(1.30)

(1.31}

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)
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II. LOGICAL CONSTRUCTION OF THE ALGORITHM AND DESCRIPTION OF THE SUBROUTINES

I1.1 Introduction

From the discussion in part I, we know that in order to solve the problems of the linear
quadratic regulator and the stationary Kalman filter, the algebraic Riccati equations (1.4), (1.9),
{1.20) and (1.27) have to be solved. Many authors have suggested methods to solve the algebraic
Riccati equation. One of the methods that has been most successful is the eigenvector decomposi-
tion method first proposed by MacFarlane (9) and by Potter (10). In this method, the eigenvalues
and the corresponding eigenvectors of the Euler-lLagrange system are determined. The eigenvectors
associated with eigenvalues whose real parts are all of the same sign are partitioned into two
matrices. These matrices form a set of linear equations which yield the solution of the alge-
braic Riccati equation.

The success of thiﬁ method hinges on the requirement that the partitioned eigenvector
matrices be nonsingular. Unfortunately, in the case when one or more of the eigenvalues are
repeated, the resulting matrices may be singular. The singularity can be removed by using the
generalized éigenvectors. However, this method is not entirely satisfactory, because when the
eigenvalues are nearly equal, the partitioned eigenvector matrices are not singular, but they
remain il1-conditioned. This iTl-conditioning can lead to errors in the computed solution.

Also, small perturbations in the system matrix elements can lead to drastic changes in the parti-
tioned eigenvector matrices, which, in turn, causes poor numerical stability.

In order to alleviate these difficulties, the method presented in this report is proposed.

In this method, the Hamiltonian matrix is transformed into a quasi-upper triangular matrix, such
that the lower n x n corner of the matrix contafns all the positive {negative) eigenvalues for

the regulator (filter) problem. The highly stabie QR algorithm is used to accomplish this orthog-
onal similarity transformation. The orthogonal matrix is then partitioned into four n x n matrices.
These matrices form a set of linear equations which yield the solution of the algebraic Riccati
equation.

In section II.2, the logical construction of the proposed algorithm will be presentad. The
supporting theorems of the proposed algorithm will be given without proof. Such proof is found
in references 11, 12, 13. In section II.3, a description of the main program and subroutines

will be presented.

11.2 Proposed Algorithm for Solving the Algebraic Riccati Equation.
The proposed algorithm for solving the algebraic Riccati equation is given by the following

steps:
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Determine the Hamiltonian matrix 4 of the tuler-Lagrange system.
a. For the linear quadratic regulator, the resulting algebraic Riccati equation

(1.4) is in the form
sA, + ATs +q, - SBR,'BTs =0 . (2.1)

The corresponding Hamiltonian matrix is given by
A, -8R, 18"

H= (2.2)

'Q* 'AtT

B. For the stationary Kalman filter, the resulting algebraic Riccati equation (1.20) is in
the form

1

AP+ PALT + rqz,rT - PC Ry 1CP = O (2.3)

The corresponding Hamiltonian matrix is. given by
T

A I'QZJ
H= (2.4)

T, -1 T
CaRpe € Aw

Determine the eigenvalues of Hamiltonian matrix.
The 2n eigenvalues of H can be found by the following procedure:
a. Use the Householder reduction (17) to transform H into upper Hessenberg form. This

method transforms H into the upper Hessenberg matrix H' by the reduction

H s QHQ (2.5)

where Q = Qn-Z’ Qn-3 . .. Q.', with Qi of the form

U1U-T
Q 2] -—1—
1 8

i
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b. Use the highly stable OR algorithm (18) with implicit double shifts of origin to
transform the upper Hessenberg matrix H' into the quasi-upper triangular matrix H". The
QR algorithm with double shift of origin is described as follows:

At the j iteration of the algorithm,

E ] T v
HJ+Z QjHij (2.7)
i = H, = k H, = k, ,I 2.8
given Ry = Qu(H; = k I)(H; = k0 T) (2.8)
where Rj is a triangular matrix and Qj {s an orthbgonal matrix. The matrices Rj and

Qj are again determined by Householder's algorithm. In the program, the algorithm is imple-
mented in implicit form where the first Householder transformation is followed by a Hessen-
burg reduction (see 12.).

Isolate the eigenvalues with proper sign of real part in lower right-hand corner.

Use the QR algorithm with implicit double shifts of origin at the eigenvalues previously

computed from step 2 to transform the Hamiltonian matrix, H, into the form

M = (2.9)

Q . . (2.10)

and UZZ containing all the eigenvalues with positive (negative) real part for regulator (filter)
problem. In cases when any undesired zero sub-diagonal elements appear and/or any undesired
eigenvalues are isolated, an arbitrary Householder type similarity transformation is performed
to remove the undesired zero sub-dfagonal elements and/or the undesired eigenvaijues.

Solve the linear system of equations.

a. The solution of the regulator Riccati equation (2.1) is given by

S = Q”" O, - (2.11)
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The solution of filter Riccati equation (2.3) is given by
P =0, (2.12)
12 "1 ' . .

The matrices 01] and 012 are nonsingular if the systems associatad with equations (2.1) and
(2.3) are controllable and observabie.

Once the solution of the algebrajc Riccati equation (2.11) and (2.12) are found, the
calculation of the control gain, filter gain, closed loop dynamics matrix, etc. are simple

matrix computations.

I1.3 Description of main program OPTIMAL and Subroutines

In this section, the main program OPTIMAL and the following fifteen subroutines are des-

cribed:
1.

w o N o ;W N

b —t
- o
. .

12.
13.
14.
15.
0. Main

READM
PRINT
PREVAL
CONTRL
FILTER
RICCAT
QR
HESS
SHIFT2
PERMUT
TRIA
HSOLVE
EIGVC
SOLYAP
LYAPUN
program OPTIMAL

The main program carries out input, output, and also drives the subroutines to compute

solutions.

1. Subroutine READM

This

it out.

subroutine reads in necessary information to set up an n by n, matrix, then prints

2
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v -— -

SUBRIUTING R;\Dd”\ N1, N2, N3 NT,NA,LPY
DIMENSION A(N3,N2)
READ AND 2RTINT NI™2 44TRIX A
INPJT. ..
N1=RJY DIMENSION OF A (NU43ER oF RIWS)
N2=COLUMN DIMENSION OF A
N3=DITLARED RV DIMENIION OF 3
NT=Z IF & I3 ZERD 4MATRIX
NI'={ [F ! IDINTITY JATRIX
NT=5 IF SYMMETRIZ YATRIX
NT=) IF DIASONAL MATRIX
NASNAME OF ATRIX A&
L2=) FRO4 REGULAR LINE PRINTER
LP=l FROM TERYINAL PRINTZER
SU3ROUTINT REYD.- PRIND

[}
[}
[}

(NEO RV N

e

I
I
I

DAV OONOOOOLOY
O QOGO O0n

2. Subroutine PRINT

This subroutine prints out a given n by ny matrix.

SBRIITINE P'(I‘T['(A..Nl NZ.ND i)}
DIMENSION A(ND,N2)
PRINT NI™2 4ATRIX a
INPJT...
A=AATRIX T2 3E PRINTED
N1aRO4¥ DU4ENSION OF A (NJM3ER OF RINS)
N2=COLUAN DIMENSION JF A
ND=DTILARED RJv DTMENSION I A
D=3 RESTLAR LINS PRINTER (127 J0LUMN)
D=l TEZRYINAL PRINTER (57 20LUuN)

DO ONOLLO
OO OO

3. Subroutine PREVAL

This subroutine prints out the given eigenvalues and the corresponding normalized eigenvectors,

if desired.

SIBRUCINS PREVAL(VAL, EL,ND, N, ID, S49)
OT4ENSION VAL(ND) ,EL (ND,ND)
So1PLEX VAL
SRINT EISINVALUTS AND TIGINVIZTORS, THE SISSNVECSTORS WILL
3E NORYALLIZED
INPUT. ...

VALSEIGENVALUZS (FROA R)

EL=CISENVEITOR MATRIX (FROM EISVD:

ND=DZTLARED DIMENSION JF VAL, EL

N=DTMENSION OF VAL.EL

SA0=2RECISION JF EISSNVALUZS SOMPUTATION

ID=) ,BRINT ETISSNVALUZS ONLY .

ID={ ,B3TY TIGENVALUIS AND ZIGENVEITORS PRINTED

TN ON
QDD INY

4. Subroutine CONTRL
. This subroutine takes the given matrices to set up the regulator Hamiltonian matrix of equa-
tion (2.2). The proper subroutines are called in this program to solve the Riccati equation (2.1).

Also, the control gain is computed.



B R O R S s e R K N NP e NP RO O R R F NS NP N

-

SUSRIUTINE CONTRL(A.3,T,D,2,R,S,GAIN, 4, 2, VAL, N, 4,L, N3, ND2, N,
1NOL, W, D)
DIMENSION A{ND,ND) ,3(ND,N2L) ,S{ND4.ND) ,D(ND4,NOL} , (ND, NI ,
1R (ND. ND) , S(ND, ND) ,GAIN (NOL, ND) , H(ND2, NI2) , P (ND2,ND2) ,VAL(ND2) ,
1A (ND2)
2OMPLEX VAL
3OLVE THE REGULATIR PROILIY
DX/DT=A* {43
YeC*X4D%Y
WITH JJADRATIC PSRFORMANCE CRITERITN
T= (1 /2) *(THTS(YT**Y £IT*R*U))
INPUT. .,
l...
3,B8,2,0,2,R, ARE 4ATRICES DEFINSD ASOVE WIIY DIMENSIONS
N¥N, NWT, MN, MAL, M4, L*L RESPECTIVELY
2.
N, 1,L, DIMENSION 29 MATRIX
ND,NJ4.NOL ARE DECLARED DIMENSIONS ASSOCIATED JITH N, 4L
3... ND2=ND¥2 DSCLARED DIMENSION OF YATRIZES 4,2,VAL,W
ID=) ,D 4ATRIX (S EQ. 2ERD , OTHERWISE =t
ULPUL. ..
SsN*N MATRIX , SOLUTION OF RITTATI SQUATIN
FAINSL*N MATRIX, CONTROL GAIN ,UsSAIN™X
Val= FIRST N CLIENTS ARE SISINVALUES( CLISED LI2P)
LAST N SLEMENTS ARE ¥9RKING SPACE
S74E NOTES....
3,3,C,D, WILL 3E SAVED
2R, WILL 3E DESTROYED
H,P,4 ARE WORKING SPACE

{
{
{
(4

DOOOAOIAOAVOOAAOAVNNOOGOKLOOONLOOOND

FRIUTINES RED.-43LVE,RICCAT, R, HES3, SHITTZ, TRIA, PERWIT

e

§. Subroutine FILTER

This subroutine takes the given matrices to set up the filter Hamiltonian matrix of equa-

tion (2.4).

(2.3).

Also.

The proper subroutines are called in this program to solve the Riccati equation

the filter adain is comoutad.

OQOOONONNANN0ANONONONONO

SRRYIPINE FILTER(A,S,3AMA, THETA, 2, R, S,GAIN, 4, P, VAL, N, 4,L, ND,
IND2, NOM, NDL., W, ID)
DIMENSION A(ND,ND)} ,C{NDM,ND) ,3aMA(ND, NL) , THETA(ND4,NDL) ,
17(ND,ND} ,R(ND, NJ) ,4(NI2,ND2) ,P(ND2, ND2) ,W{ND2) ,S(ND, NI ,
VAL (ND2) ,GATN (ND, N4
T4PLEX VAL
SLVE FOR STATIONARY KALMAN FILTZR OF THS SYSTEM
DX/ITEASXH3 ¥ +3AMAR W
24OV W HTHI AW
g\ND R ARE PIWER SPSTTRAL DENSITIES OF W AND V
INPJT. ..
3,C,50MA, THSTA, Q,R AS PEFINED ASOVE ARE NN, MAN, N*L, ML, L*L, MM
RESPECTIVILY.

N,L,™,NO, NJL,ND4 ARE DIMENSION AND DETLARED DIMENSION IESPITTIVELY.

ND2=DJ*2 DITLARED DIMENSION JF H,P,VAL,W
D=) (F MATRIX THETA=). ,=| OTHIINISE
SUTPIT. ..
S, VAL,SAIN ARE SOLUTION 2F RICCATI SQUATION, CLISZD LOJP
EISINVALUES, AND FILTER GAIN RESPECTIVELY.
NOTICE.. 2,R WILL 3E DESTROYED.
4,8, 4 ARE YORKING SPATE

OO OAONAOKOO00ANOGAONIONO00

SUSRWTINES REQP. - HSWVE,RICCAT, R, HESS, SHIFT2, TRIA, PERWUT

195
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6. Subroutine RICCAT

This subroutine takes the given Hamiltonian matrix to call the proper subroutines for perform-
ing the Riccati equation solution. The Hamiltonian matrix is transformed into the form given by equa-
tion (2.9). The solution of the corresponding algebraic Riczati equation is computed corresponding
to equation (2.11) or equation {2.12).

QOO NOOOO0OO0OAANILAAOANNONNNO/C

SUSRUTINE RICCAT(H.P,S.VAL, K1, N, N, NJ2, A, Q)
DIMENSION 4 (ND2,ND2) ,P{ND2.ND2) , S{ND, NJ) ,VAL(ND2) ,W(ND2) ,Q2(ND,ND)
S04PLEX VAL, VAT
REGULATOR PROILEA-—— S*AFATHI-Y43*R* 5],
FILTER PRO3LEM==- Af3+5*AT4R=3*J*52).
INPUT. ..
d=2N*2N MATRIX, DEFINID AS FOLLOAS...
H11=a
H12=R
H21=)
H22==AT
A,3,R AS IN THE A30VE RITCATI SQUATION FOR RETULATOR AND FILTER
RI=CONTROL PARAMETER,
Kist FOR RESULATIR(ISAATE RIGIT YALT PLANE TISSNVALUES)
Kl=s- FOR FILTER(ISOLATE LEFT HALF PLANE SISINVALUES)
NsDIMENSION JF S
NOwDIZLARED DIMENSION JOF S AND
ND2=DSTLARZD DIMENSION JF H AND P(JSUALLY 2*ND)
W IS 'WORKING SPACE, u*t
N 15 N™ WORKINT SPATE
oresl. ...
S=SOLUTTION JF RICSTATT SQUATION,N®N 4ATRIX
HeYJASI-JPPER TRIANSULAR MATRIX, 24*2N
PR THIGONAL STMILARITY TRANSFORMATION MATRIX, 24*2N
VALsN LSFT HALF PLANT SISINVALUSS AND N LOZATIONS OF WORKING SPACE
SUSROUTTINES REYD. ~ W HSILVE, HESS, SHIFT2, TRIA, PSRWUT

QOO ONNOGO0ON

7. Subroutine QR

This subroutine performs the quasi-upper triangularization of the given matrix by using the QR
algorithm with implicit double shifts of origin. Knowledge of the eigenvalues can be given or not.
Also, the number of eigenvalues to be jsolated is specified by the calling program. The order of the
computed eigenvaiues corresponds to the ordering of the isolated diagonal blocks in the resulting
quasi-upper triangular matrix. When a priori eigenvalue information is given, this ordering is forced
to be the same as the input eigenvalues.

SU3RWIINE R(H,P,N,NI, VAL, W/, SNJ, TTR, I1,K1)
CO4PLEX VAL,V
DIMENSION H(ND, NV ,P (NI, NDY ,VAL(NDY ,V(2)
R REDITION I JIASI-IPBIR TRIANGULAR FORY
INPIT. .0 s
fi= MATRIX D 3E REDICED
ITR=DIMENSION OF PREVIOUSLY PRIANSILARIZED SORMNER OF H
I1s 9, NO A PRIDRI EISSNVALUE NOALEDSE
Il1= |, SHIFT ON XNJWN SIGENALLES
Kls 7, NO TUAMJLATED P CALTZULATED
Kl= t, CMMULATED P JALTULATED
4VaNUM3ER JF EISSNVALUSS TO 3E ISOLATED
VAL=A PRIJRI SISINVALUZS ( [F KNOWN )
SNI=RETIRED PRECISION AS A FRACTION JF THE “ATRIX NOIM
N=JTMENSION OF MATRIX %
"ND=N'MBER OF ROYS IN MAIN PRIGRAM DIYENSION OF
QUTPU e ceeecssnceces
H=YJASI-IPPZR TRIANGULAR YATRIX
P=)RTHISINAL MATRIX ( (F Kl= | )
VAL=ZALTULATZD SISSNVALULS
SNI=SNIWIM=I3ED FIR DISTINTITSHING ZERD 3U3IDIATONAL SLIAENTS
IN REIULTING YASI-TRAIANGILAR 4ATRIX
SUIRIYLINES RTP. - 12535, SHIFT2, TRIN, 22RAUT

QOO ANNGOOOON
VUNOLOAVOOONOOOOOO0GO00




8. Subroutine HESS

This subroutine performs the orthogonal similarity transformation to transform the given

matrix into the upper Hessenberg form.

triangle is known to be null.

Advantage is taken of zero elements if the lower right

~

NN OGO0NON € ¢

SUBRIUTINE HESS (A, P, N, ND, NZ,N1, N2, S4ALL.K1)
DIMENSION AND,ND) ,P(ND,ND)
PERPORAES MTHIGONAL SIMILARITY REDJSTION TJ UPBER HESSENIERS FORM.
MATRIX [5 FULL N™N 93 HAS 2ERQ LOWNER-LEFT TRIANGLE.
PARAMETERS- A= [NPUD- N*N MATRIX O 3E REDUCED.

-

FITPJT- REDUCED MATRIX
8- ACTUAILATED JRTHIGONAL TRANSFORMATION MATRIX.
N~ MATRIX 3IZE
ND~ NJ43ER OF ROWS IN MAIN PRIGRAM DIMENSIN #R A aND 2
NZ- NUMBER OF NN-ZERQ ELIVMENTS 3ELON THI DIAGONAL IN AL
N1,N2- R3O+ INDIZIES OF CURRENT ISOLATED DIAGONAL 3LICK
S4ALL- A S1ALL NUM3ER = ¥ald. PREC. * N2RM(A)
K1=) NI ASCUMULATED ° 4ATRIX

QIO LOON WA aa

Klal \CCUMULATE ORTHOSONAL TRANSTORMATIONS

3. Subroutine SHIFT2

This subroutine performs the first step of the QR algorithm with implicit double shifts of

-
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origin. To complete one iteration of the QR algorithm, the resulting matrix is transformed back

to upper Hessenberg form using subroutine HESS above.

OO NONNNONN

SUSRDUTINS SHIFT2(A,P.N,NJ,N1,N2,31,32,SMALL, K1)
DIMENSION A(ND,ND) ,P(ND,ND)
PERFORMS DOUILET SHIFT AITH RISINSG 31,52 W4ISH SATISFY C1sS1432
AND 22251%32, FOLLOWED 3Y [HE £IRST SIMILARITY [RANGTORYATION
IN R FASTORIZATION. MATRIX 4 13 UPPSR HIS3ETN3ERS N INRUT.
PAQAMETERS~ A~ INPIP-N'N JPOSR HESSENBERS MATRIX

YJTPUT- TRANGEORMED 4ATRIX WITH 3 SLEMENTS 3ELON O[AS
P= N®N ACSUMULATED JRTHISINAL TRANGPORMATION 4ATRIX
Ne MATRIX SIZE
NP=- NM3ER OF ROWS IN YAIN PROGRAM DIMENSION FOR A WD
N1,N2- R04 INDISISS 37 ISOUATED DTASONAL 3L3CK
21, T2= TONSTANTS FOR DDU3LIT RISIN SHIFT
S4ALL- A SMALL NUM3ER = YATH. PRET. * NORM(A)
Kls) NI ACTUMULATED P 4ATRIX
Klsl ACCIMULATE MRTHIGONAL TRANSEORMATIONS

(343402 LRI DI CDADEDIND

n

10. Subroutine PERMUT

This subroutine performs an orthogonal similarity transformation on the given matrix by

using a Householder type orthogonal matrix.

undesirable 2ero sub-dfagonal elements. Notice that the resulting matrix is no longer in

upper Hessenberg form.

The purpose of this subroutine is to remove any
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- - - - - e

DIMENSION 4(ND, N3 ,P(ND,ND)

ARIITRARY JRTMOGNAL( HOUSEHILDEIR IrPZ ) SIMILARITY
TRANSFORMATION D REMOVE AN 'NDISIRAILI 2ERD N SUIDIASONAL
(II‘PE)IE:H-\NSE POSITION OF TWO REAL TTIGINVALUIS 0N 2*7 DIAGINAL 3LITK
NPUT....

HsMATRIX [ 3E TRANSFORMED

N=DIMENSION OF d,P

ND=DECLARED DTMENSION OF 4,P

NX,N2#RJ¥ INDICIES OF THT 3LOCK TO 3E TRANSFORMED

Kl=) NI CUMYULATED 2 CALTULATED

Ki=t JUMMULATED P CALTULATED

IPst [F POSITION SXCHANSE PERFORMED JTHERAISEW)

S10=PRECISION IRITERION FROM R SUROUTINT
QUIrPJIT.cceennes

AsTRANSFORMED 4ATRIX

P 1S RTHIGONAL YATRIX

IO OO 3L

QOO AQDOO OO0

11. Subroutine TRIA
This subroutine performs an orthogonal similarity transformation to triangularize an jsolated
2 x 2 diagonal block if the eigenvalues of that block are real.

k.

SU3RWTINT IRIA{A,P,N,NOLM, N2, VAL, S4ALL, K1)
DIMENSIN A(NDIM.NDUS ,P(NDIY,NDI4 ,VAL(2)
S39LEX VAL
SOMBUTES EISENVALUSS OF 2%2 JIAGONAL 3COCK . IF EISENVALUIS ARE
REAL , AN JRTHIGONAL SIMICARITY TRANSFORMATION [S PERFORMED T3
TRIANGJULARIZE DTASONAL 3LICK.
3=D*A*PT AND 3ET Ae3
IN®JT....
AWYIAST-TRIANGILAR MATRIX TJ 3E TRANSFORMED
Pel4E ORTHIGONAL YATRIX FRI4 PREVIQUS STMILARITY TRANSFOR4ATION
NeDTMENSION O MATRIX A
NDI4=OICLEARED DIMENSION OF ARAAY A
N2={NDEX T 2% 3LOTK = ROV AND ZOLUMN NUM3ER OF LONER
RIZAT TORNER
* SAALLNRY*MACHING PRECISIN
Ki=), NO SUMYXATED P CALTULATED
Kl=l, CUMULATED P CALTULATED
XITPIT. ..t
A= YJASI-JPPER TRIANSULAR MATRIX 3
PeCUAMILATED JRTHYSINAL TRANSFORMATION MATRIX
VALSCOMPJTED SISINVALUSS IN VAL(L) AND VAL(?)

DDA aANROOAAO0O0NALOL

! (OO NANNINOOAONONLOO
4

12. Subroutine HSOLVE
This subroutine solves the linear system equation A * X = 8 by using the Householder reduc-
tion.

SBRWTINT 452LVE (AW, 3,N, M, NDIM, 1D, IE)
DIMENSTION A(NDIM, NDU4 ,A(NDI% ,3(NDI4,.»
30LVE TYS LINSAR SJATION A*X=3 3Y dOUSEHOLDIR 4ETHID
INPUT. ..
AsTHE VMATRIX IF NN DRDER OF A*X=3
3=3IRIX IF A*K{=3 ,N*"M
ASARKING SPACE
N=DIY. OF 3
NDIM= DETLARED 0¥ DIMENSION OF 4,8, AND W
ID= [NDICATOR. ID=) - TRIANGULARIZE A AND 30LVI,
R IDel - 3YPAS3 TRIANGILARIZATION (PREVIDUS JALL REQ,:
urevT. ...
A=)*A=TRIANGULARIZED 4ATRIX
3= SOLUYTIN X
IS= ZRRIR INDICATOR, IEa) ND ERRIR
2=l NONNTIZ SOLUTION (ND ERRIA)
IS=2 JNDEFINED 3OLUTION

QOO OAOOOONON
OO GUOQHKY
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13. Subroutine EIGVC

This subroutine coﬁputes the matrix of eigenvectors for a given matrix which was previously
put in quasi-upper triangular fo}m using subrcutine GR. The knowledge cf the orthogonal similarity
transformation matrix, which reduced the original matrix to guasi-upper triangular form, is then

used to compute the eigenvectors of the oricinal matrix.

oy

: ~ m—e——r ‘ o
SBROUTINE EIGVC(A, VAL, N, NDIM, EL, 2, 2, SMD, IE)
DIMENSION A (NDIM,NDI# ,VAL(NDI“ ,EL(NDIM,NDI™ ,Al(2,2),A2(2,2),

1A3(2,2) ,CINDIW ,2(NDIM, NDI%
SJ4PLEX. VAL

CO4PUTE THT EIGTNVICTORS OF A ASI-JPPER TRIANZULAR 4ATRIX

IN®IT. .. -
AQUAST-JPPER TRIANGULAR YATRIX FROY ROUTINE R
VAL=THZ ET3ENVALUZS OF a ZOMPUTED [N RWPLINZ R
FSTMILARITY TRANSFORMATION 4ATRIX FROA R
N=DIMENSION 3% 4, EL , )

NDI4=DSZLARED DIMENSION 37 A , EL , 2

SMO=CONVERSENCE CRITERION FRO4 QR=4ACH.PREC.*NJRM A
QUrAJT...

EL=THZ EIGINVECTIR MATRIX 2F A

C=INTERMEDIATE STORASE VECTR

1227 [NJTPENENT EIGINVECTR

IE=t DIFECTIVE EIGENSYSTEM
SUBRYIPINES REQD. -~ LYAPUN, HSOLVE

IO IIEIIEININILINL)

OO LBONDG

14. Subroutine SOLYAP

This subroutine solves the Lyapunov equation A * X + X * AT = C. Before entering this sub-
routine, the matrix A must be transformed into quasi-upper triangular form. With the knowledge
of the orthogonal similarity transformation matrix, the resulting soiution X will be the solu-

tion of the or1éina1 Lyapunov equation.

SHBRUCINE SULYAP(A,C,N,ND, 54),1%,P, W
DIMENSTON A(ND,NDY ,S(ND, NDY ,AA(2, 2) , 222, 2) ,AAT(2,2) ,P(ND,ND),

TA(ND}
SOUVE AN HX*ATZ
INPJD. ..

AsNMN 4ATRIX (N JUASI-JPPSR TRIANGULAR PORM FRO4 R SUIRFILING
CaNN SY4YETRIC ¥ATRIX
P= SIMILARITY TRANSFORMATION MATRIX TROM R SUBROUTINE
WeAORKING 3PACE
NDsOSJLARED DIMENSIN OF A , C , P
SOCINVIRGINCE CRITZRION FROM RevACH. PRET.™OIRM A
UTPIT. ..
C=¢X, THT SOLULION OF LYAPUNIV TQUATION A*X+X*AT=C
IE=) NJ ERRR
ISsl SRRORA-30CUTION NOT ZO4PUTED
SBRITINTS REP. - LYAPN, HSALVE

QOO AO0N
DO OOOOONIIANEI) G

15. Subroutine LYAPUN
This subroutine solves the Lyapunov equation A * X +X *B = when the dimensions of

A,Barel xlor2x2.



Bt R KR YR P PR N XS]

FJIRFITINT LYAPIN (A, NN, 8,N3,C, 1)
DIMENSION AAL%,4) ,A72,2),B8(2,2),2(2,2) ,4(3)

SOLVE AN #X*3aC aND 3BT =X

INPJT. ...
A AND 3 ARE 1*1 OR 2%2
NA=DIMENSION 2F 3 {1 OR 2}
NIADIMENSION OF 3 {1 IR 2}
CAAN3 ATRIX

QUTPJT. ..

- C=30LUTION X
IE23  NON-3INGULAR CASE
IE=l NON=JNIQJE SILUTION
IE=2 UNDEFINED S0LUTION

SU3ROUTINT REQD. ~ H3OLVE

v

-

- - e @ P

QOO

III.1 Introduction

III. THE USER'S MANUAL FOR OPTIMAL AND ITS SUBROUTINES WITH SEVERAL EXAMPLES
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In this part, a user's manual for the main program OPTIMAL and the subroutines is presented.

The error and warning messages which are printed directly from the subroutines are also discussed.

Several examples are given at the end of this part.

I11.2 User's manual for the control and estimation problem

In this section, the user’s manual for the main program OPTIMAL will be presentad.

the user's manual for the subroutines CONTRL, FILTER,

fers using his own main program.

A,

INPUT regquirement:

The user’'s manual for the main program OPTIMAL

Also,

RICCAT will be given in case the user pre-

The program OPTIMAL is designed so that the required matrices can be input in arbitrary order

preceeded by a matrix 1D card.

any given problem.

Card A:

NN = PRINT

10 =

Lp =

Card 8:

L0 = 0, no optional open loop eigensystem.

0, if no optional print waﬁted.
1, if optional print wanted.
0, if regular line printer will be used.

1, if terminal line printer will be used.

print control card (NN, 10, LP), FORMAT (A6, 213)

Eigensystem control card (NN, LO, LV), FORMAT (A6, 2I3)
NN = OPTION

The required data cards are described sequentially as follows:

Two control cards must be input before the reguired matrices for
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= 7, open loop eigensystem will be computed.
LV = 0, eigenvectors will not be computed.
= 1, eigenvectors will be comp&ted.
The following set of cards is for reading in the reqﬁired matrices.
Card C: matrix ID card (NN, N1, N2, NT), FORMAT (A6, 2I3, 2X, Al)
NN = name of the matrix to be input. This name is the same as the name used in part I, such as

A, B, C1, D1, €2, B2, R1, R2, Q1, Q2, except GAMA for ' and THETA for @.

N1 = number of rows of the matrix.
N2 = number of columns of the matrix.

NT

blank for a regular matrix.

L for a Zero matrix.

D for a diagonal matrix.
= ] for an identity matrix.
= S for a symmetric matrix.

Matrix input cards (free format):

1. If NT = blank, the matrix is entered by rows. For example,

1. 2. 3.
A={4, 5. 6.
7 8. 9.

requires three cards to be typed.
first card 1., 2., 3.
second card 4., 5., 6.
third card 7., 8., 9.
2. If NT = Z or I, no matrix input cards required.

3. If NT = D, the diagonal elements only are entered. For example,

1. 0. O.
Rl =j0. 2. O.
0. 0. 3.} ,

requires one card to be typed.

card 1., 2., 3.



4,

If NT = S, the matrix is entered by row with the lower triangular part only.

example,
1. 2. 4
Q= 12. 3 5
4 5. 6

requires three cards to be typed.
first card 1.
second card 2., 3.

third card 4., 5., 6.

For
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Following all the data cards for the required matrices for a given problem, a blank card is used to

indicate another set of data cards for a second problem will follow.

Qutput Information

1. The stochastic control problem.

The output information contains items:

b.

solution of regulator Riccati equation

regulator control gain

closed loop dynamics matrix

closed loop eigenvalues for controller

closed loop eigenvectors for controller
open loop eigenvalues

open loop eigenvectors

rms control

control covariance matrix

rms output

output covariance matrix

solution of the filter Riccati equation

filter gain

ms estimation error

estimation error dynamics matrix
estimation eigenvalues
estimation eigenvectors

rms state

state covariance matrix
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t. filter implementation dynamics matrix

u. eigenvalues of filter implemantation

v. eigenvectors of filter implementation

1f 10 = 0, items ¢, i, k, 0, S, t, u, ¥ will not be printed.

If LO =0, items f, g.wﬂl not be computed or printed.

If LV = 0, items e, g, q, v will not be computed or printed.

2. The control problem without process noise.

The output information contains items: a, b, ¢, d, e, f, g.

If 10 = 0, item ¢ will not.be printed.

If LO = 0, items f, g will not be printed.

IF LY =0, items e, g will not be bm‘nted.

3. The control problem with process noise.

The output information contains items: a, b, ¢, d, e, f, g, h, i, j, k plus

w. rms regulator state

x. regulator state covariance matrix.

1f 10 = 0, items ¢, i, k, x will not be printed.

If LO = 0, items f, g will not be computed or printed.

If LY = 0, items e, g will not be computed or printed.

4. The state estimation problem. _

The output information contains items: f, g, 1, m, n, 0, p, Q.

If 10 = 0, item o will not be printed.

If LO = 0, items f, g will not be computed or printed.

If LY = 0, items g, g will not be computed or printed.

5. Steady state response of the system with zers control.

The output information contains items: f, g, j, k, w, x.

If 10 = 0, items k, x will not be printed.

If LY = 0, item g will not be computed or printed.

Parameter LO does not play a role in this problem.

B. Subroutines CONTRL, FILTER, and RICCAT.

Under some circumstances, the user may prefer to use his own main program. In this case,
subroutines CONTRL and FILTER can be used for control and estimation purposes. In cases when
the given problem can not be formulated as one of the cases in part [, the subroutine RICCAT
can be used to solve control and estimation problems if the Hamiltonian matrix of the Euler-Lagrange
system can be formulated. With the given Hamiltonian matrix, RICCAT will give the solution of
the corresponding Riccati equation as well as the closed loop eigenvalues. The calling proce-

dure of subroutine CONTRL, FILTER and RICCAT is given in section II.3.
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I11.3 User's manual for other utility subroutines.

There are several subroutines that can be used for various purposes. The required calling
procedures are as follows:
1. Solving the linear system equation A * X = B

a. for single B (i.e., solve A * X = B only)

call HSOLVE (A, W, B, N, M, NDIM, 0, IE)

2 ® B2 etc.
call HSOLVE (A, W, B1, N, MI, NDIM, O, IE),

call HSOLVE (A, W, B2, N, M2, NDIM, 1, IE),

b. solve A * X1 s B1, then solve A * X

etc.
2. Computing the eigenvalues and eigenvectors of matrix A

a. compute the eigenvalues of A only
call QR (A, P, N, ND, VAL, MV, SNC, O , O, 0)

b. compute the eigenvalues and eigenvectors of A
call QR (A, P, N, ND, VAL, N, SNO, O, O, 1)
call EIGVC (A, VAL, N, ND, EL, P, C, SNO, IE).

¢. determination of invariant subspace
Let A be an n x n matrix. In order to determine the invariant subspace associated
with m desired eigenvalues, the following calling sequence is needed.
Set P = A
call QR (P, A, N, ND, VAL, N, SNO, O, O, 0)
take n-m undesired eigenvalues and set VAL2 to these eigenvalues, then
call QR (A, P, N, ND, VALZ, N-M, SNO, 0, 1, 1).
The first m rows of the matrix P form an orthogonal basis of the desired invarfiant
subspace.

3. Solving the Lyapunov equation A * X + X * AT s C
call QR (A, P, N, ND, VAL, N, SNO, 0, 0, 1)

call SOLYAP (A, C, N, ND, SNO, IE, P, W).

II1.4 Error and Warning Messages

In the subroutine QR, if a particular eigenvalue or eigenvalue pair takes more than 20
iterations of the QR.algorithm to converge, then the iteration process will be terminated and
an error message - QR NOT CONVERGING - will be printed cut. Usually, the algorithm will con-
verge with an error equal to the machine precision times norm of the matrix within 20 itera-
tions. However, in the case of repeated eigenvalues, the algorittm is very likely to converge

only with the square root of the machine precision times norm of the matrix. To avoid the



205

error termination in this case, the convergence criterion is changed to the sguare root of
the machine precision times norm of the matrix on the twentieth iteration step.

In subroutine RICCAT, if the Hamiltonian matrix has repeated eigenvalues on (or near) the
imag{nary axis and/or the origin, the message - WARNING HAMILTONIAN HAS EIGENVALUES ON IMAGINARY
AXIS -, or - WARNING HAMILTONIAN MATRIX MEARLY SINGULAR - will be printed. In this situation,
the problem is i11-conditioned, but the execution is not terminated. When this happens, it
is suggested to check the solution of the Riccati equation as well as the eigenvalues of the
closed Toop system. Since it is very unlikely that the Hamiltonian matrix would have more than
two pairs of eigenvalues at the origin or have more than one pair of eigenvalues at the same
point on the imaginary axis, no error message is printed out to indicéte these possible program

failure modes.

I11.5. Examples

In this section, five example problems and the corresponding input and output for the
program are given.

Input Cards:

12345679901234547890123454678901234567890 .
PRINT 1t 0
gPTION ! O

A 228

1.

2.,3.

B 2

1.

2.

Ct 2 I

] 2 1

2.

3.

a1 223D
2.,1.

R1 LI}

2.

PRINT 1 O
OPTION O !

A i
0.,14,0.,0.
0.,=.415,=.0111,0,
9.8,-1.43,-.0198,0.
0.y0.,1.,0.

B 4 1

0. -

6.27

9.8

0.

Ct 1 4 ®
0.y9.,0.,1.

D1 LI B 4
GAMNA 4 1

0.

=.0111

-,01%8

0.

(continued on next page)
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a1 1
.25

R1 R
131.3314

62 11
490,

PRINT 0 0
OPTION 1 1

A 2 2§
1,

2.,3.

] 2 1

1.

2.

c2 2 21
2 2.1 1
GAMA 2 2 D
1e,1.

TNETA 2 2 2
a2 2 2D
2,1,

R2 11

2.

PRINT 1 0
OPTION 1 1

A A4

Oupel,y0.,0.
0.y, 413,-.0111,0.
9.8,-1.43,-.0198,0.

0.,0.,1.,0.

B 41

0.

6.27

9.8

0.

GANA 4 1

0.

-0

-.0198

0.

ct 1 4
0000001,

1 112
c2 2 4
0up00,00,1e
1.,0.,00,0.

B2 2 1 1
THETA 2 1 2
a1 11
.25

R 1
131.3316 :
a2 11
490,

R2 2 20
.272,.0000153
PRINT 0 0
OPTION ¢ 1

A 22§ ~
-7.

2.,-3.

GARA 2 1

1.

2.

c1 12
3.,2.

a2 11



Results generated by the program:

4 MATRIX
1.0000 2.0000
2.0000 3.0000

3 NATRIX
1.0000
2.0000

ct NATRIX
1.0000 0.

0. 1.0000

M HATRIX
2.0000
31.0000

o HATRIX
2.0000 R

2. 1.0000

RY NATRIX

2.0000

PRINT  10st LP=0
OPTION LO=1 Lv=¢

**3CONTROL PROBLEM s»=
SOLUTION OF REGULATOR RICCATI EQUATION

?.5518 10.382
10,3582 22,133

REGULATOR CONTRGL GAIN
-1.8272 =3.0444

CLOSED LOOP EIGENVALUES FOR CONTROLLER

EIGENVALUE( 1 )

-.22402 +J 0.

EIGENVALUE( 2 )
-3.4924 +J 0.

OPEN LOOP EIGENVALUES

EIGENVALUE( 1 )

4,2381 +J J.

EIGENVALUE( 2 )

~.23607 +J 9.
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[} MATRIX
0. 1.0000
0. -, 41500
$.5000 -1.4300
0. 0.
B RATRIX
0.
£.2700
9.8000
0.
o1 MATRIX
0. 0.
B HATRIX
0.
BaRA NATRIX
0.
<.11100E=01
-, 19800801
0.
TR HATRIX
.25000
R1 HATRIX
131.33
82 KATRIX
490.00

PRINT  10%) LP=0
OPTION LOe9 Lust

*3333CONTROL PROBLEM WITH PROCESS NOISE2es

0. 0.
=.11100E-01 0.
-,19800E-01 0.

1.0000 9.

0. 1.0000

SOLUTION OF REGULATOR RICCATI EQUATION

41,393 10.2%2
10,2352 3.7933
4.8948 .64336

2.6306 .13243
REGULATOR CONTROL GAIN

-.85487 -.32475

CLOSED LOOP DYNAMICS MATRIX OF CONTROLLER

2. 1.0000
-5.3600 -2.4512
1.4223 ~4,612%

0. 9.

4.8948 2.48308
+64334 .132683
.73072 .49984
.499084 .30033

-.BSII7E-01 -.43830E-0!

0. 0.

-.54616 -.273%6

-.85810 -.427%7
1.0000 0.
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CLOSED LOOF TIGENVALUES AND VECTORS FOR CONTROLLER

EIGENVALUEC 1 )

EIGENVECTCRC 1)

-.41983 +J 1.1353
-.62002E-01 +J ,BYI22E-01
~.70833E~01 +J -.10621
.76029 +J 0.
-.21786 +J -.58913
EIGENVALUE( 2 ) EIGENVECTOR( 2
-.41983 +J -1.13533
=.62002E-01 +J -.83322E-01
-.70833E-01 +J .10621
+76029 +J 0.
-.21784 L5813
EIGENVALUE! 3 ) EIGENVECTOR( 3 )
-1.2238 +J 55452
-.81159E-01 +J .18382E-01
L89942E-91 +J -, 47483E-01
79621 +J 0.
-.53488 +J -.24129
EIGENVALUE( 4 ) EIGENVECTOR( 4 )
-1.2338 +J -.53452
-.81159E-01 +J -,18382E-01
.89942E~01 +J .47483E-01
79621 +J 0.
-.53488 +J .24129
RMS REGULATOR STATE
«69020E-01  .128%9 46711 .62036

REGULATOR STATE COVARIANCE MATRIX

.47637E-02
«34694E-16
-.38103E-02
-.25286€E-01

R¥S CONTROL

.63698E-01

-.27736E-14 -,IB103E-02 -.20284E-01
.18535€E-01 -.20849E-01 .38103E-02
-.20849€-01 .21819 .G4282E-14

.38103E-02 .38495E-14 .38%

CONTROL COVARIANCE MATRIX

.40574E-02
RMS OUTPUT

62056

OUTPUT COVARIANCE MATRIX

.38%09

09
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.0000
.0000

"~y

.0000
.0000

r —

1.0000

2.0000

PRINT I0=
OPTION LD=

sxxssESTINATION PROBLEMSs®3»

NATRIX

0.
1.0000

MATRIX

NATRIX

0.
1.0009

KATRIX

0.
0.

HATRIX

0.
1.0000

_MATRIX

0 LP=¢

! Ly=t.

SOLUTION OF FILTER RICCATI EQUATION

18.184
31.740

FILTER GAIN

-9.0920
-135.370

R¥S ESTIMATION ERROR

4.2643

31.740
62,426

7.91346

ESTIMATION EIGENVALUES AND VECTORS

EIGENVAL

-.808756

EIGENVAL

-4,2832

UE(C 1)

+J 0.

UE( 2)

+J 0.

EIGENVECTORC 1)

-.26480
-.96430

EIGENVECTOR(

46491
.88336

2

)
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OPEN LOOF EIGENVALUES AND YECTORS

EIGENVALUEC 1) EIGENVECTOR( 1 )
4.2361 +J 0.
.52573
.83065
EIGENVALUEC 2 ) EIGENVECTOR( 2 )
-.23607  +J 0.
.85065
-.52573
4 MATRIX
0. .10000 0. 0.
0. -.41500  -.11100E-01 0.
9.8000  -1.4300  -.19800E-01 0.
0. 0. 1.0000 0.
B HATRIX
0.
6.2700
9.8000
0.
GANA  NATRIX
¢.
-.11100E-01
-.19800€-01
0.
t1 NATRIX
0. 0. 0. 1.0000
3 MATRIX
0.
€2 MATRIX
2. 0. 0. 1.0000
1.0000 0. 0. 0.
2 NATRIX
9.
0.
THETA NATRIX
0.
0.
a NATRIX
.25000
R1 HATRIX
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a2 RATRIX
490.00
R2 HATRIX
.27200 0.
9. . 15300E-04

PRINT  10=g LP=0
OPTION LO=t LV=1

+3333CONTROL PLUS ESTIMATION PROBLEM®manas

SOLUTION OF REGULATOR RICCATI EQUATION

1305.2 -47.809 79.603 17.194
-47.809 8.4142 -3.8381 -2.1339
79.603 -9.8381 6.0205 1.9640
17.194 -2.1359 1.9640 99210

REGULATOR CONTROL GAIN
-3.3590 L33927E-01 -, 17033 -.43630E-01

CLOSED LOCP DYNAMICS NATRIX OF CONTROLLER

0. .10000 0.

-21.041 -.20228 -1.0803 2735
=23.118 -1.097% ~1.6910 -.427%7
0. 9. 1.0000 9.

CLOSED LOOP EIGENVALUES AND VECTORS FOR CONTROLLER

EIGENVALUE( 1) EIGENVECTORSC 1 )

-.74398 +J 39390
L18998E-01 +J -.93168E-02
-.10384 +J 14583
-.3598% +J 29441
. 79251 +J 0.

EIGENVALUEC 2) EIGENVECTOR( 2 )

-.74398 +J -.39390
.18996E-01 +J .95148E-02
-.10384 +J -.14563
-.55983 +J -.29441
.75251 +J 0.

EIGENVALUE( 3 ) EIGENVECTOR( 3 )

~.20268 +J  .58072
-.40327E-03 +J -.29724E-01
.17385 +J  .54739E-01
. 16963 +J  .48408
.83703 +J 0.

EIGENVALUE( 4 ) EIGENVECTOR( 4 )

-.20266 +J -.58072
-.60327E-03 +J .219726E-01
.1738% +J -.56739E-01
-. 16963 +J -.48608
.83703 +J 0.



SOLUTION OF FILTER RICCATI EDQUATION

FILTER GAIN

24364E-02 -3.111¢6
43794E-01 -48.939
13423 -74.420
40343 -43.314

.47508E~-04 . T4E74E-03
L7AB76E-03 . 26823E-01
L113B6E-02 .42586E-01
.66270E-03 .11709E-01

RMS ESTIMATION ERROR

48998E-02 .16378

L11386E-02  .442

TOE-23

LA2586E-01 . 11909E-01
L7S314E-01  JJ&ST1E-O1
L36511E-01 10979

27443 .33133

ESTIMATION ERROR DYNAMICS NATRIX

=3.1116 .10000
-48.93% -.413500
-54.620 -1.4300
-43.314 0.

9.

«11100E-01

-.243484E-02
.43784E-01

.19800E-01 -.13423
1.0000 -.403685

ESTIMATION EIGENVALUES AND VECTORS

EIGENVALUE( 1 )

-1.79535 +J

EIGENVALUEC 2 )

1.7644

-1.7933 +J =1.7644

EIGENVALUE! 3
-.17958 +J

EIGENVALUE( 4 )

-.17958 +J -.20132

RMS STATE

.34583E-01 32592

EIGENVECTOR( 1 )

.10481E-01
A7797
.78127
19729

+J -.18999E-01
+J -, 73433E-01
+J 0.

+J4 -.34113

EIGENVECTORC 2 )

+10481E-01
47797
.78127
.1972¢

+J .18999E-01
+J  .73433E-01
+J 0.

+J 34113

EIBENVECTOR( 3 )

~.899094E-03

-.28326E-02
12724
56494

+J -,20609E-04
+J ~.24176E~02
+J 19356

+J 0.

EIGENVECTOR( 4 )

~.89984E-03
-.28328E~02
72

296494

+J  .20609E-04
+J L24174E-02
+) -.19356

+J3 0.

-1 4] 1.1939
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ETATE COVARIANCE MATRIX

L13383E-02 .P2T41E-12 -, 10573E-01 -.14016E-01

L60873E-12  .10688 LJ583BE-01  .10573
- 10573E-01 .3563BE-01 .273547 J21030E-i1
-.14016E-01 .10573 .J480BE-11 1.4205

EMS CONTROL
.68533E-01

CONTROL COVARIANCE MATRIX
.46948E-02

RMS OUTPUT
1.193¢9

BUTPUT COVARIANCE MATRIX
1.4258

FILTER IMPLEMENTATION DYNARICS MATRIX

=3.1114 .10000 g. -.24364E-02
-70.000 -.20228 -1.0803 -.31734
-97.538 -1.0973 -1.6910 -.56181
-43,314 0. 1.0000 -, 40343

FILTER IHPLEMENTATION EIGENVALUES AND VECTORS

EIGENVALUEC 1 EIGENVECTOR( 1 )

-2.3838 +J 2.3480

+14424E-02 +J -.18667E-01
.48907 +J -.864200E-01

.80486 +J 0.

L41832E-01 +J -.32184

EIGENVALUE( 2 EIGENVECTOR( 2

-2.5838  +J -2.5480

+18424E-02 +J .18667E-01
.48907 +J  .64200E-01

.80686 +J ¢,

LA1832E-01 +J .32184

EIGENVALUE( 3 ) EIGENVECTOR( 3 )
- 39114E-01 +J 0.
.57668E-02
.1532%
-.10828
-.98222 _
EIGENVALUEC 4 ) EIGENVECTOR( 4 )
-.20189 +J 0.
-.45560€-02
-.10830

.32328E-02
.79410

214



OPEN LOOF EIGENVALUES AND VECTORS

EIGENVALUEC 1)

.29940E-01 +J 143523

EIGENVALUE! 2)

L29960E-01 +J -.14523

EIGENVALUE! T )

-.49472 +J 0.

EIGENVALUE( 4 )

=.34148E-13 +J 0.

A . NATRIX
-7.0000 2.0000
2.0000 -3.0000
GANA NATRIX
1.0000
2.0000
¢ HATRIX
3.0000 2.0000
g MATRIX
3.0000

PRINT  10s¢ LP=0
OPTION LO=0 LV=1

EIGENVECTOR( 1 )

.22300E-42
L17251E-02
.29634E-01
.58918

+J  72784E-03
+J -.30205E~¢02
+5 14363

+J Q.

EIGENVECTOR( 2 )

.332300E-02
L17231E-02

.29634E-01
.98¢918

1

+J -.72784E-03
+J .J0203E-92
+J =.14365

+J 0.

EIGENVECTORC 3 )

.12435E-01

L61418E-01
L44253

.894354

EIGENVECTOR( 4 )

L14319E-14 .

.73534E-14
42177E-13
1.0000

t323+STEADY STATE COVARIANCE PROBLEMe»u2x
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OPEN LOOP EIGENVALUES

EIGENVALUE( 1)

=2.1714 +J 0.

EIGENVALUE( 2 )

-7.8284 +J 0.

RMS STEADY STATE

278312 1.6908

RMS OUTPUT FOR ZERO CONTROL

S.6488

#NL VECTORS

EIGEMVECTORC 1)

.38248
.92388

EIGENVECTORC 2 )

.92388
-.38268
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10.
1.
12.

13.
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APPENDIX F

THE OPTIMAL PROGRAM LISTING



QOO O0O0000000

20

30
40

50

219

PROGRAM OPTIMAL (INPUJT,OUTPUT, TAPES=INPUT)

DIMENSION A(39,392), 3(30,10), C1(L0Q,39), D1{(L0,10), C2(L0,30), D2
1(10,10), THETA(10,10), GAIN(L0,39), GX(397,10), GA41A(30,10), Q1(30,
233) , R1(30,30), Q2(30,30), R2(30,30), S(30,30), H(50,53), P(50,59)
3, VAL(50), W(50), EL(30,39), Bv(30,30)

COMPLEX VAL

DATA ND/30/,NDD/53/,NDL/10/ ,NDW/10/,NDP/10/ ,NDQ/10/

DATA NA/1H%/ ,NB/143/,NC1/24C1/,ND1/24D1/,NC2/2d432/ ,ND2/24D2/ , NGV
144GAMA/ ,NQL/2HQ1/,NR1/2HR1/,NQ2/2402/ ,NR2/2HR2/ , NTH/SHTHETA/ ,NZ/
21HZ/ ,NPR/SHPRINT/ ,NOP/5HOPTION/

DATA SMALLAN.E-14/

DATA IUNT/SLINPUT/

SOLVE OPTIMAL CONTROL AND ESTIMATION PROBLEMS.
INPUT **x %

TI0=0 NO OPTIONAL PRINT WANTED

I0=1 OPTIONAL PRINT WANTED

LP=0 REGULAR LINE PRINTER WILL 3E USED
LP=1 TERMINAL LINE PRINTER WILL 3E USED
LO=0 NO OPTIONAL OPEN LOOP EIGENSYSTEM
LO=1 COMPUTE OPEN LQOOP ZIGENSYSTEM
Lv=) EIGENVEITORS NOT COMPUTED

Lv=1 COMPUTZ EIGENVECTORS

INPUT NECCERSARY MATRICES

IECF =90

IDl =9

D2 = 9

[S1 =9

10=29

Lp=9

L =9

Ltv=9

Q1 =9

IR1 =90

IR2 =90

Q2 =9

READ (5,910) NN,N1,N2,NT

IF (EOF(IUNT)) 40,50,40

[ECF =1

GO TO 200

I[F (NN.EQ.NA) GO TO 30

IF (NN.EQ.NPR) 30 TO 50

IF (NN.EQ.NOP) 30 TO 70

IF (NN.EQ.NB+ GO TO 90

IF (NN.EQ.NC1l) 30 TO 100
I[F (NN.EQ.ND1l) GO TO 110
IF (NN.EQ.NQLl) GO TO 120
IF (NN.EQ.NR1) G0 TO 1390
IF (NN.EQ.NGA) GO TO 140
I[F (NN.EQ.NQ2) 30 TO 150
IF (NN.EQ.NC2) 3D TO 160
[F (NN.EQ.ND2) GO TO 170



70

80

99

100

110

120

130

140

150

160

170

IF (NN.EQ.NR2) 30 TO 139

IF (NN.EQ.NTY) 30 T0 199

30 TO 200

10 = N1

LP = N2

30 T 30

Lo =11

LV = N2

G0 TO 30

CALL READM (A,N1,N2,ND,NT,NA,LP)

N = N1

30 TO 30

CALL READM (B,N1,N2,ND,NT,N3,LP)

N = N1

L =82

30 TO 30

CALL READM (Cl1,N1,N2,ND¥,NT,NC1,LP)
M =Nl

N = N2

30 TO 30

CALL READM (D1,N1,N2,NDM,NT,NDL,LP)
M= N1

L =N2

Dl =1

IF (NT.EQ.NZ¢ ID1 =9

30 TO 30

CALL READM (Q1,N1,N2,ND,NT,NQL,LP)
I21 = 1

M =Nl

30 TO 30

CALL READM (R1,N1,N2,ND,NT,NR1,LP)
IRL =1

L =N1

30 TO 30

CALL READM (GAMA,N1,N2,ND,NT,NGA,LP)
N =N1

NP = N2

30 TO 30

CALL READM (Q2,N1,N2,ND,NT,NQ2,LDP)
NP = N1

IQ2 =1

30 TO 30

CALL READM (C2,N1,N2,NDQ,NT,NC2,LP)
NQ = N1

N = N2

GO TO 30

CALL READM (D2,N1,N2,NDQ,NT,ND2,LP)

D2 =1

IF (NT.EQ.NZ+ ID2 =0
NQ = N1

L =N2

30 TO 30

220



130

130

200

QOOOOOAO

210

220
230

240
250

CALL READ41 (R2,N1,N2,ND,NT,MR2,LP)
IR2 =1

N2 = N1

32 TO 30

CALL READ4 (THETA,N1,N2,NDQ,NT,NTH,LDP)
NQ = N1
NP = N2-

[S1 =1

I[F (NT.EQ.NZ} IS1 =9

S0 TO 30

IPR = IR1+IQ2+IR2+IR2

IF (IPR.EQ.1.AND.IQl.EQ.0) IPR =0
9RINT 920, IO,LP

2RINT 330, LO,LV

IR IS THE PROBLEM INDICATOR

=) STEADY STATE COVARIANCE

=1 CONTROL WITHOUT PROCESS NOISE
=2 CONTROL WITH PROCESS NOISE

=3 ESTIMATION

=4 CONTROL + SSTIMATION

221

IF(IPR.EQ.0) PRINT*,42d *****STEADY STATE COVARIANCE DROBLEVA*#¥*

I[F(IPR.EQ.1)PRINT*,234 ***CONTROL PROBLEM ***

[F(IPR.EQ.2)PRINT*,43H *****CONTROL PROBLEM WITH PROCESS NOISE***

IF(IPR.EQ.3)PRINT*,29H *****SSTIMATION PROBLEMr**+*

I[F(IPR.EQ.4)2RINT* ,42H *****CONTROL PLUS ESTIMATION PROBLEM**#*+%

IF (IPR.EQ.0) GO TO 250
IF (IPR.EQ.3) GO TO 470

CALL CONTRL (A,8,C1,D1,Q1,R1,S,GAIN, H,P,VAL,N, M, L, ND,NDD, NOM, NDL, W

1,1D1)
PRINT 940
CALL PRINT (S,N,N,ND,LP)
PRINT 950
CALL PRINT (GAIN,L,N,NDL,LP)
IF (LV.EQ.1) GO TO 210
" 2RINT 950
CALL PREVAL (VAL,EL,ND,N,0,S40)
IF (IPR.EQ.1) GO TO 800
DO 230 I=L,N
DO 230 J=1,N

SM = 0,

DO 220 X=1,L

SUM = SUM3(I,K) *3ADN(X,J)
RI(I,J) = A(L,J)+SWM
IF (I0.EQ.0) 30 TO 240
PRINT 970
CALL PRINT (R1,N,N,ND,LP)
[F (IPR.EQ.4.0R.IPR.EQ.1) 30 TO 230
00 260 I=1,NP

DO 2690 J=1,N
H(L,J3) = 0.
DO 250 X=1,NP



270
289

290

300

310

320

330

340
350

350

370
380

D0 230

1]
DO 270 X=1,NP
SUM = SUMGAMA(T,K) *4 (X,J)
22(I,J) = -5UM
IF (IPR.EQ.0) 3D TO 310
SMO = SMALL

CALL R (R1l,P¥,N,ND,VAL,N,SM0,0,0,1)

I# (LV.EQ.0) 30 TO 300

CALL EIGWC (R1,VAL,N,ND,EL,PA,W,SM0,IE)

PRINT 930

CALL PREVAL (VAL,EL,ND,N,1,S40)
IF (IPR.EQ.1) GO TO 300

IF (IPR.EQ.4) GO TO 420

CALL SOLYAP (R1,Q2,N,ND,S10,IE,PN,W

Do 310 I=1,N
N(1) = SRTR2(T,IN
PRINT 939
CALL PRINT (W,1,N,1,LP)
IF (I0.EQ.0) 30 TO 320
PRINT 1009
CALL PRINT (Q2,N,N,ND,LP)
20 330 1=1,N
H(I,J) = 9.
Do 330 X=1,N
9(T,J) = d3(I,J)+Q2(I,K)*SAIN(I,K)
DO 340 1=1,L
DO 340 J=1,L
P(I,J) = 9.
DO 340 %=1,N
2(I,J) = 2(I,)+GAIN(L,K) "™ (X,J)
DO 350 I=L,L
N(I) = SQRT(P(L,I))
PRINT 1010
CALL PRINT (W,1,L,1,LP)
IF (I0.EQ.0) GO TO 360
PRINT 1020
CALL PRINT (P,L,L,NOD,LP)
DO 380 1=L,M
Do 380 J=L,N
S = 9.
IF (ID1.EQ.0) GO TO 380
DO 370 X=1,L
SUM = SUM+D1(I,K) *3AIN(X,J)
S(I,J) = Z1(1,J3)+SM
o 39 I=1,M
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223

339 RI(1,J) = RI(I,J)+S(I,K)*2(X,J)
D2 400 I=1,M
20 400 I=1.,M
°I,J) = 9.
DO 400 %=1,N
430 4(I,J) = 4(1,J) FR1(I,K)*S(7,K)
20 410 1=1,M
410 W(I) = 3S'RT(H(T,I))
PRINT 1030
CALL PRINT (W,1,M,1,LP)
IF (I0.EQ.0) GO TO 300
2RINT 1040
CALL PRINT (4,M,M,NDD,LP)
30 TO 300
420 IF (IS1.EQ.0) 30 TO 440
20 4390 I=‘.INP
DO 430 7=1,NQ
H(I,J) = 90.
DO 430 X=1,NP
430 1(t,J) = 3(T,J)+Q2(1,XK) *THETA(J, K)
440 D0 450 I=1,N)
DO 450 T=1,NQ
SUM =0,
IF (IS1.EQ.DQ) 30 TO 4690
20 450 X=1,NP
450 SUM = SUM+THETA(T,K) * (X, J)
460 QL(I,J) = R2(I,J)+SU4
470 CALL FILTER (A,C2,GAMA, THETA, Q2, R2, S,GK, 4,P, VAL, N, NQ, NP, ND, NDD, NDQ
1,NDP,W, I51)
PRINT 1050
CALL PRINT (S,N,N,ND,LP)
PRINT 1060
CALL PRINT (GK,N,NQ,ND,LP)
DO 480 I=1,N
430 W(I) = SRT(S(I, I))
PRINT 1079
CALL PRINT (W,1,N,1,LP)
IF (LV.EQ.1) 30 TO 490
PRINT 1080
CALL PREVAL (VAL,EL, ND,N,O S10)
G0 TO 530
490 DO 510 I=1,N
Do 510 J=1,N
SU4 = 0,
DO 500 %X=1,NQ
530 S5UM = SUMGK(L,K) *C2(X,J)
510 R2(I,J) = A(I,J)+SUM
I® (I0.ER.0) 30 TO 520
PRINT 1030
CALL PRINT (R2,N,N,ND,LP)
520 SMO = 3SMALL
CALL R (R2,Q2,N,ND,VAL,N,S43,0, 0 1)



530

540

550
560

570

530

590

500

5390

540

CALL EIGVC (R2,VAL,N,ND,EL,Q2,W,S10, IE)

PRINT 1100
CALL PREVAL (VAL,EL,ND,N,1,S40)
IF (IPR.EQ.3) 30 TO 312
DO 540 I=1,N)Q
DO 540 J=1,N
H(IL,J) = 0.
DO 540 X=1,NQ
4(I,J) = 4(I,J)RL(T,K) *3K(T,K)
DJ 560 I=L,N
DO 560 71=1,N
SM =19.
DO 550 %X=1,NQ
5MM = SUMHSGK(T,K) *4 (X,J)
2L(L,J) = -suM
CALL SOLYAP (R1,Ql,N,ND,S90, IE,PVN,"
DO 570 I=L,N
Do 570 J=1,N
2A(L,J) = QL(I,J)+S(L,J)
DO 580 I=1,N
A(T) = SQRT(PAN(T,I))
PRINT 1110
CALL PRINT (W,1,N,1,LP)
I[F (I0.EQ.0) GO TO 590
PRINT 1120
CALL PRINT (PW,N,N,ND,LP)
0 600 I=L,N
D0 600 J=1,L
H(I,J) = 9.
DO 600 X=1,N
H(I,J) = H(I,J)+1(T,K)*GAIN(I,K)
DO 510 I=i,L
DO 5810 J=1,L
P(L,J3) = 9.
DO 610 X=1,N
P(I,J) = 2(1,J)+3AIN(L,K)* (X,J)
DO 520 I=l,L
W(I) = SRT(P(L,I))
PRINT 1130
CALL PRINT (W,1,L,1,LP)
IF (I0.EQ.0) 30 TO 630
PRINT 1140
CALL PRINT (P,L,L,NCD,LP)
DO 840 I=1l,N
DO 540 J=1,M
A((I,J) = 9.
. DO 640 X=1,N
AL(T,J) = Q1(I,J) +PW(T,K) *C1(J,K)
IF (ID1.EQ.0) GO TO 430
DO 650 I=1,N
© DO 650 J=1,M
s(L,J3) =9.
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550

670
530

590

700
710
720

730

740

750

750
770

D) 530 X=1,L
5(I,J) = S(1,J)+4(1,K)*D1(3,XK)
20 650 I=L,4

4(1,J) = 49(1,J)+C1(L,K) *S (X,J)
nO 470 1=1,L
Do 570 J=1,M
S(r,J) =90.
Do 570 X=1,L
s(r,J3) = S(T,J)+P(I,K)*D1(J,K)
20 710 1=1,M
SM = Q.
DO 590 X=1,N
SUM = SUM+CL(T,K) QL (K,
XN =0,
IF (ID1.EQ.Q0) 30 TQ 710
D0 730 X=1,L
XA = XN+HD1(L,K)*S (X,J)
XN = KW+ (T,T)+4(7, 1)
2(I,J) = SUM+HKA
Do 720 T=1,M
WN(I) = SRT(P(L, D))
PRINT 1150
CALL PRINT (W,1,M,1,LP)
IF (10.EQ.0) 30 TO 300
PRINT 1160
CALL PRINT (P,M,M,NDD,LP)
DO 740 1=L,NQ
DO 740 I=L,N
SM =9,
IF (ID2.EQ.0) GO TO 740
DO 730 X=1,L
SUM = SUM+HD2(T,K) *3AIN(X,J)
M(I,J) = C2(I,J)+SUM
Do 770 I=1,N
o 770 J=1,N
s = 9.
DO 750 X=1,L
SM = SUM+B(T,K) *GAIN (X, J)
N =12,
DO 750 X=1,NQ
XA = XN+3K(T,K) "N (X,J)
RLI(T,J) = A(I,J)+SUAXAN
PRINT 1179
CALL PRINT (R1,N,N,ND,LP)
SMO = SMALL
CALL 'R (Rl,P#4,N,ND,VAL,N,S40,0,0,1)
IF (LV.EQ.1) GO TO 730
PRINT 1180

225



739
739

320
310

320

330
340

350

360

870

830
390

300

910
920
330
240
350
950
370

30 TO 799
CALL 5IGVC (R1,VAL,N,ND,EL,PN,W,S540,I5)
PRINT 11390
CALL PREVAL (VAL,EL,ND,N,LV,340)
IF (LO.EQ.0) 32 TO 9092
S0 = SMALL
Do 320 1=1,N
20 320 J=L,N
RI(L,J) = A(T,d)
CZALL R (R1,PN,N,ND,VAL,N,M0,0,0,1)
IF (LV.EQ.1) GO TO 339
2RINT 12090
30 TO 840
CALL 2IGVC (R1,VAL,N,ND,EL,PN,W,SM0, IE)
PRINT 1210
CALL PREVAL (VAL,EL,ND,N,LV,SM0)
IF (IPR.NE.O) 30 TO 900
CALL soLwvap (R1,9Q2,N,ND,S40, IE, PN, W
20 959 [=,N
N(T) = SRT(Q2(I,I))
2RINT 1229
CALL PRINT (W,1,N,1,LP)
IF (120.EQ.0) G0 TO 3850
PRINT 1230
CALL PRINT (Q2,N,N,ND,LP)
nO 870 I=lpM
oo 370 1=1,N
H(I,J) = 3.
D0 .370 X=1,N
H(I,J) = 4(1,J)+C1(L,X)*2(X,J)
DO 393 I=l,M
DO 333 J=L,M
22(1,J3) = 2.
DO 330 K=l,N
22(L,J) = Q2(T,J)+4(I,K) *C1(J,K)
W(I) = SRT(Q2(1,I))
PRINT 1240
CALL PRINT (W,1,M,1,LP)
IF (10.EQ.0) 30 TO 9002

PRINT 1250

CALL PRINT (Q2,M,M,ND,LP)

PRINT 1260

[F (IEOF.NE.0Q) STOP

GO TO 290

PORMAT (AS,213,2X,Al)

FORMAT (/,124 PRINT I0=,I1, 7™ LP=,I1)

FORMAT (124 OPTION L(O=,Il, ™™ Lv=,11,/t

FORMAT (/,39H SOLUTION OF REGULATOR RICCATI EQUATION)
FORMAT (/,231 IEGULATOR CONTROL GAIN)

FORMAT (/,394 CLOSED LOOP? £IGENVALUES FOR CONTROLLIR)
FORMAT (/,428 CLOSED LOOP DYNAMICS 4ATRIX JF CONTROLLER)
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339

10903
tolo
1020
1030
1040
1059
1069
L1072
1080
1099
L1100
L1110
1120
1130
L1140
1150
1169
L1170
L1390
1190
1200
1210
1220
1230
1240
1250
1260

FORMAT
FORMAT
FORMAT
FORMAT
TORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
PORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(/,514
(/,211
(/,341
(/,134
(/,254
(/,124
(/,254
(/,354
(/,124
(/,228
(/,234
(/,334
(/354
(/,244
(/,124
(/,254
(/,111
(/,254
(/,334
(/,344
(/,454
(/,224
(/,341
(/,184
(/.34
(/,2%94
(/,354
(// /¢

ZLOSED LOOP2 ZIGENVALUIS AND VECTORS TOR CONTRO

MS  REGULATOR STATE)

REGULATOR STATE COVARIANCE YATRIX)
RMS CONTROL)

ZONTROL COVARIANCE 4ATRIX)

MS  OUTPUT)

QUTPJUT COVARIANCE MATRIX)

SOLUT'ION OF FILTER RICCATI EQUATION)
FILTER GAIN)

RMS ESTIMATION ZRROR)

ZSTTMATION SIGENVALUES)

ESTIMATION ERROR DYNAMICS ATRIX)
ESTIMATION ZIGENVALUES AND VECTTORS)

RMS STATE)

STATE COVARIANCE 4ATRIX)
RMS CONTROL)

CONTROL COVARIANCE MATRIX)
IMS QUTPUT)

OUTPUT COVARIANCE AATRIX)

FILTER IMPLEMENTATION DYNAMICS ¥ATRIX)
FILTER IAMPLEMENTATION STIGENVALUZS)

FILTER IMPLEMENTATION EIGEINVALUZS AND VECTORS)

OPEN LOOP ZIGENVALUZS)

OPEN LOOP EIGENVALUZS AND VETTORS)
RMS STEADY STATE)

STEADY STATE COVARIANCE MATRIX)

R4S OUTPUT FOR ZERO CONTROL)
OUTPUT COVARIANCE FOR ZERO CONTROL)

res
ot btid

227
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SUSROUTINE READYM (A, N1,N?2,N3,NT,NA,LP)
DIMENSION A(N3,N2)
DATA NZ/142/,ND/04D/,NS/1143/ ,NI/L4L/

O CCCCCCCCCCCCCC IO LTIl CC el oL ICCCCoCo oo CCCCCreoreioorreesese
READ AND PRINT N1*N2 YATRIX A
INPJT. ..

N1=ROYV DIMENSION OF A (NUMRER OF RONS)
N2=COLUMN DIMENSION 2OF A
N3=DECLARED RGN DIMENSION OF A
NT=Z IF A IS ZERO “ATRIX
NT=L IF A IS IDENTITY 4ATRIX
NT=S IF A IS SYMMETRIC MATRIX
NT=D [F A IS DIAGONAL MATRIX
NA=NAME OF MATRIX A
LP=) FROM RBGULAR LINE PRINTER
LP=1l FROM TERMINAL PRINTER
SUBRQUTINE REQD.- DRINT
L e e CCCCCCCCCCCCCCCCCCCCCeCCeClCcorecereercercceeeeeeceeeeececee
IF (NT.EQ.NZy 30 TO 20 ’
I[F (NT.EQ.ND) 30 TO 40
[F (NT.EQ.NS) 30 TO 40
[F (NT.EQ.NI) 30 TO 39
READ (5,* ((A(L,J),J=1,N2),I=L,N1)
L0 2RINT 110, NA
CALL PRINT (A,N1,N2,N3,LP)
RETURN
20 20 30 r=t,Nl1
DO 30 J=1,N2
30 A(L,T) = 9.
GO TO 10
40 20 S0 I=l,N1
DO 50 J=1,N2
50  A(I,J) =0.
READ (5,* (A(L,I),I=L,N1)

NOAOAO0OOONCO00

QOO0 O000n0n

)

30 TO 10
50 READ (5,* ((A(I,J),J=i,I),I=l,N1)
DO 73 I=1,N1l
DO 70 J=I[,N1
70 A(L,J) = A(J,I)
30 TO 10
30 DO 100 I=l,N1
DO 30 J=1,N1
90 A(I'J) =1,
100 A(L,I) = 1.
G TO 10

110 FORMAT (/,1X,Al0,7H MATRIX)
END :
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SU3ROUTINS PRINT (A,N1,N2,ND,ID)
DIMENSION A(ND,N2)
CCCTCCTCTColCZCCCICCICCCCCTTCCCTIonioCrecoeccceeoereeeeeereceeeeeeeeeeeecee
PRINT N1™N2 MATRIX A
INPUT. ..
A=MATRIX T0 3E PRINTED
N1=RON DIMENSION 2F A (NUMBER OF ROWNS)
N2=COLUMN DIMENSION OF A
ND=DZCLARED ROV DIMENSION OF A
ID=) REGULAR LINE PRINTER (120 COLUMN)
ID=1 TERMINAL PRINTER (50 ZOLUMN)
CCCCCCTCCCCCCCOCCTICCCCICCCCCTTrCotCCICCCCCorCococecerceeoocececceceeceese
PRINT*," L]
MD =10
IF (ID.EQ.1) MD =5
J1 =1
J2 =MD :
IF (J2.GT.N2) J2 = N2
G0 TO 20
10 IF (J2.GE.N2) RETURN
mm*'n L]
J1 = J1+1D
J2 = J2+MD
IF (J2.GT.N2) J2 = N2
20 20 30 [=1,Nl
30 2RINT 40, (A(T,J),J=J1,J2)
30 TO 10

QOO0 N0N

QOOO0NO000n

(9]

40 FORMAT (1X,10G12.5)
END
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SUBROUTINE PREVAL (VAL, EL,ND,N,ID,S10)

DIMENSION VAL(ND), EL({ND,ND)

COMPLEX VAL
CCCCCCCCCCCCCCCCTCCCCCCCCITCCCCCCTCoCCCTTCTICCTTCCCCCTTCCCeeeeeececeeceecee
c PRINT EIGENVALUES AND IIGENVEICTORS, THE EIGENVICTORS WILL
c BE NORMALLIZED
c INPUT. ...

c VAL=EIGENVALUSS (FROM 7R)
c EL=EIGENVECTOR MATRIX (FRO4M EIGVCs
c ND=DZCLARED DIMENSION OF VAL, EL
c N=DIMENSION OF VAL, EL
c SA0=PRECISION OF EIGENVALUZS CQMPUTATION
c ID=) ,PRINT EIGENVALUZS ONLY
C ID=1 ,BOTH SIGENVALUZS AND EIGENVECTORS PRINTED :
CCCCCCCCCCCCTCCCCCCCCTCCICCCCCTCCICCCCCTCTCCTCCCCCCCCICCCTCCCCCCeeccccceece
DO 110 I=i,N
IF (ID.EQ.1) SO TO 10
2RINT 120, I
GO TO 20
10 PRINT 130, I,I
20 RE = REAL (VAL(I))
AIM = AIMAG(VAL(IL))
PRINT 140, RE,ATM
IF (ID.EQ.0) GO TO 110
IF (ABS(ADW .LE.SMO) 30 TO 70
K =1I-1
KPl =1
SIGN = L.
IF (AIM.LT.0.r» GO TO S0
K=1I
KPl = I+l
SIN = -1.
SM = Q.
MAX = 0.
DO 30 J=1,N.
X = EL(J,K)*£L(J,K) +EL(J,KP1) *&L(J,KP1)
IF (X.LE.XvAX) 30 TO 30
XMAX = X
JMAX = T
30 SUM = SUMX
SIM = SORT (SUM*XMAX)
X1 = EL(IMAX,K)
X2 = EL(IMAX,KP1)
DO 40 J=1,N
XX = (EL(J,K)*X14EL(J,KP1) *X2) /S
EL(J,KPl) = (-EL(J,K)*X2+EL(J,KP1l)*X1)/StM

D00 0N

(

40 EL(J,K) = XX
30 DO &0 J=L,N
XN = EL(J,KP1l) *SIGN
60 PRINT 150, EL(J,K) ,XN
30 TO 1190

70 SM = 3.



O

231

0o 39 7=1,N
39 S5U4 = SUMHEL(T, I) *<=L(7, 1)
Si4 = SRT(SUS
D0 20 JI=L,N
29 EL(3,I) = EL(J,I)/St1
DO 100 J=L,N
100 2RINT 159, EL(J,I)
110 CONTINUE
RETURN

120 FORMAT (//,3X,124 SIGENVALUZ(,I2,24 ))

130 FORMAT (//,3X,124 SIGENVALUZ(,I2,24 ),15X,134 SIGENVECTOR(,I12,24 )
1)

140 FORMAT (/,3X,3512.5,34 +J,G12.5)

150 FORMAT (39X,G12.5,34 +3,G12.5)

150 FORMAT (30X,G12.5)
END
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SUBROUTINE CONTRL (A,8,2,D,2,R,S,GAIN,H,P,VAL,N,M,L,ND,ND2, ND1,NDL
1,%,ID)
DIMENSION A(ND,ND), 3(ND,NOL), C(NDM,ND), D(NM,NDL), 2(ND,ND), R
1(ND,ND) , S(ND,ND), SAIN(NDL,ND), H(ND2,ND2), P(ND2,ND2), VAL(ND2),
2 ‘N(ND2)
COMPLEX VAL
(0{0/0/0(0/6/0.6:0/6/0.6/6:00:8. (68 KA H S HELHHHEHIH U HESHHHN U HESHHH S LS HHEHH EH G A VAN SN GS
SOLVE THE REGULATOR PROBLEM c
DX/DT=A*X+3*() c
Y=C*X+D*) ot
WITH QUADRATIC PERFORMANCE CRITERION c
J=(1/2) * (INTG (YT*Q*Y+HUT*R*J)) c
INPUT. .. c
l... c
A,B,C,D,Q,R, ARE MATRICES DEFINED ABOVE WITH DIMENSIONS o]
N*N, N*L , MAN, M*C, MA M, L* RESPECTIVELY <
2.. c
N,M,L,DIMENSION OF MATRIX <
ND, NOY,NDL ARE DECLARED DIMENSIONS ASSOCIATED WITH N, M,L o
3. .. ND2=ND*2 DECLARED DIMENSION OF MATRICES 4,P,VAL,W z
ID=0) ,D 4AATRIX IS EQ. ZERDO , OTHERWISE =l c
OUTPUT. .. c
S=N*N MATRIX , SOLUTION OF RICCATI EQUATION c
GAIN=L*N MATRIX, CONTROL GAIN ,U=GAIN*X o
VAL= FIRST N ELEMENTS ARE EIGENVALUES( CLOSED LOO?) c
LAST N ELSMENTS ARE WORKING SPACE c
SOME NOTES.... c
A,B,C,D, WILL BE SAVED C
Q,R, WILL 3E DESTROYED c
d1,P,W ARE WORKING SPACE c
SUBROUT INES REQD.-HSOLVE, RICCAT, QR, HESS, SHIFT2, TRIA, PERMUT c
CCCCCCC e CCCCCCCCCCCOCCCCCCCCoCCeCCCTCCICCCCCCCCCCCCaceocceocTeecceee
NP =N
IF (ID.EQ.0) 30 TO 80
P11=0*D
DO 10 I=1,M
™ 10 3=1,L
P(I,J) = 0.
DO 10 X=L,M
10 P?(1,J) = P(I1,J)H(I,K)*D(X,J)
o R=R+DT*Q*D
Do 30 I=L,L
Do 30 J=L,L
SUM = ).
D0 20 X=L,M
20 SU4 = SUM+D (X, I) *P (K,J)
30 R(I,J) = SUMR(I,J)
c GAIN=P12=DT*)*C

QOOOQQQOOOOOOOOOOOOOO(JOO()

0

Do 50 I=1,L
Do 50 1=1L,N
SUt = 0.

DO 40 X=L,M



47

)

79
39

(@)

(@)

9

~
e

100
110
120
130

140

O

150
160

170
180

SUM = SUA+P (X, I) *C(X,T)
SAIN(I,J) = S
2(L,JWN) = 5U4
NP = N¥N
P11=3T
D 3 I=1,L
Do 70 J=1,N
2(L,J) =3(J3,I)
DO 30 I1=1,L
H(I'J) = R(IrJ) -
P11=INV(R) *BT AND P12=INV(R) *DT*Q*C
CALL HSOLVE (H4,W,P,L,NP,ND2,0,IE)
H=Q*C
DO 30 1=1,M
Do 90 J=1,N
9(1,J) = 9.
DO 30 X=l,M
4(1,J) = 4(1,J3) +(I,K) *C(X,J)
H2L=CT*)*D* [NV (R) *DT*Q*C-CT*Q*C
o0 130 I=L,N
NPI = N+I
DO 130 3=1,N
NPJ = N+J
SM = 3,
IF (ID.EQ.0) G0 TO 110
20 100 X=1,L
5IM = SIM+GAIN (K, I) *2 (X, NPJ)
DO 120 %=1 ,M
50M = SUM-C(K, I)*d4 (X, J)
3 (NPL,J) = SUM
R=-INV(R) *BT AND GAIN=-INV(R)*DT*Q*C
DO 140 I=l,L
DO 140 J=1,N
IF (ID.EQ.0) 30 TO 140
GAIN(L,J) = P(L,J¥N)
R(L,J) = 2(1,J)
H11=A-B*INV(R) *DT*Q*C AND H422=-H11T AND H12==-3*INV(R) *3T
DO 180 1=1,N
NPT = N+I
DO 180 I=1,N
NPJ = N+J
SuUAs = 9,
IF (ID.EQ.0) 32 TO 160
20 150 K=1,L
S0 = SM+B(I,K) *3AIN(K,J)
H(T,J) = A(L,J)-SM
H(NPJ,NPL) = -H(I,J)
SM = 0.
D0 170 X=1,L
504 = SUM-B(T,K) *R (X,J)
4(I,NPJ) = SUM
CALL RICCAT (4,P,S,VAL,1,N,ND,ND2,W,Q)

233



(@]

120

200

GAIN=INV(R) *DT*Q*C* +INV(R) *3T*3
DO 290 t=l,L
0 200 J=1,N
S04 = ).
DO 199 %=1,N
SM = SU4-R(L,K)*S(X,J)
IF (ID.NE.Q) SU4A = SUM-GAIN(I,J)
SAIN(L,J) =S4
RETURN
END
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SUBROUTINE FILTER (A,C,GAMA,THETA,Q,R,S,GAIN, H,P,VAL,N,™,L, ND,ND2,
INDM, NDL, W, ID)
DIMENSTION A(ND,ND), C(ND4,ND), GAMA(ND,NDL), THETA(NDM,NDL), Q(ND,
IND) , R(ND,ND), H(ND2,ND2), P(ND2,ND2), W(ND2), S(ND,ND), VAL(ND2),

SAIN(ND, ND
COMPLEX VAL

O e e e e e ~ ’
CCCCCCCCCCTTCCCTCCCCCCCoorrooenee

SOLVE FOR STATIONARY KALYAN FILTER OF THE SYSTEM

DX/DT=A*Y 43 %(J +3AMAYW
Z=C*X HO*J+/+THETA*W

Q AND R ARE PONER SPECTRAL DENSITIES OF W AND V

PUT...

A,C,GAMA, THETA, Q, R AS DEFINED ABQVE ARE NN, WN,N*L,M*L, L*L, WM

RESPECTIVELY.

N,L,M,ND,NDL,NO4 ARE DIMENSION AND DECLARED DIMENSION RESPECTIVELY.

ND2=ND*2 DSCLARED DIMENSION OF H,

ID=) IF MATRIX THETA=0. ,=l OTHERWISE
OUTPUT. ..
S,VAL,GAIN ARE SOLUTION OF RICCATI EQUATION, CLOSED LOOP
EIGENVALUES, AND FILTER GAIN RESPECTIVELY.

NOTICE.. 2,R WILL 3E DESTROYED.

d,P,W ARE WORKING SPACE

SUBROUTINES REQD.- HSOLVE,RICCAT,QR,HESS, SHIFT2, TRIA, PERMUT

S 00 05010 0:0.0:0: 5.0/ 0,0:0: 0 G100 6010/ 0:0(0: 6010 0:0:5:0. 06

P,VAL,W

QOO0 O000aNOON0N

e CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCICCCICCCCCCCCCCeeeseee

10
20

30
40

IF (ID.EQ.0) G0 TO 20
DO 10 I=l,M
D0 10 I=1,L
S(I,J) =193.
DO 10 X=t,L
S(L,J3) = 5(I,J)+THETA(L,K)*)(X,J)
DO 40 I=1,M
DO 40 J=L,M
SM =93,
IF (ID.EQ.0) 30 TO 40
DO 30 X=1,L
SUM = SUMS (I,K) *THETA(JT,K)
a(I,J) = R(L,J)+5M
D0 7 I1=L,M
D0 50 J=L,N
2(1,J) = <(1,J)
IF (ID.EQ.0) 30 TO 70

DO 80 J=1,L
?(I,JW) = S(I,J)
CONTINUE
NL = N+L

IF (ID.EQ.0) NL =N
CALL HSOLVE (H,W,P,M,NL,ND2,0,IE)
IF (ID.EQ.0) 3O TO 109
D0 30 I=L,L
DO 20 J=1,L
SM =9,
DO 80 %X=L,M



39
29
109

110

120
130

140

159
150

170

180

190
200

210

220
230

240
250

SUMHS (X, I) *P (X, THN)
)J)"'S'Jﬂ :

( I)*? (X,J)
130

(.)
(6]
8’\"

DO 120 X=1,L
R(I,J) = R(T,J)+3AMA(TL,K)*P(J,K)
DO 140 I-l N
DO 140 J=L,M

GAIN(T,J) = -P(7,1)

00 170 1=i,N
20 170 I=L,N
SM = 3,
IF (ID.EQ.0) GO TO 140
DO 150 ¥X=1,M
SIM = SUAR (LK) *C(X,J)
9(T,J) = A(L,J)-SWM
H(THN,IHN) = -H(L,])
d(I«N,T) = S(1,d)
DO 180 I=i,L
DO 180 J=1,N
P(I,T) = 9.
DO 180 K=i,L .
P(L,J3) = 2(1,J)+(I,K) *GAMA(J,K)
DO 200 I=L,N '
Do 290 J=1,N
SUM = 0.
DO 120 K=1,L
SUM = SUM+IAMA(T,K) *P (X,J)
H(I,J"‘N) =

CALL RICCAT (d4,p,S,VAL,-l,N,ND,ND2,W,Q)

DO 230 J=L,M
D0 210 I=L,N
W(I) = 9.
DO 210 X=L,N
W(I) = W(T)+S(I,K) *3AIN(K,J)
DO 220 T=l,N
SAIN(L,J) = W(T)
CONTINUE
IF (ID.EQ.0) 30 TO 250
DO 240 I=l,N
DO 240 J=L,M
SAIN(I,J) = SAIN(L,J)-R(L,J)
RETURN
END

236
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SU3ROUTINE RICCAT (d4,P,S,VAL,X1,N,ND,ND2,W,2Q)
DIMENSTON 34 (ND2,ND2), P(ND2,ND2), S(ND,ND), VAL(ND2), 'N(ND2),
1(ND,ND)
COMPLEX VAL,VAT
DATA SMALL/L.E-14/
CCCCCCCCCCCCCCCCCTCTCCCCCCCCCCCCCTCTCCICCCICICCCCCTCCCCCCCTCICTeccecceceeece
REGULATOR PROBLEM—— S*AFATHS-YS*R*S=),
FILTER PRIBLEM—— A*S+S*ATHR-S*Q*3=),
INPUT. ..
H=2N*2N vATRIX, DEFINED AS FOLLOWS...
Hll=A
H12=R
H21=Q
H22=-AT
A,Q,R AS IN THE ASQVE RICCATI EQUATION #OR REGULATOR AND FILTER
K1=CONTROL PARAMETER,
Kl=1l FOR REGULATOR(ISOLATE RIGHT HALF PLANE EIGSNVALUES)
Kl=-1 FOR FILTER(ISOLATE LAFT HALF PLANE EIGENVALUZS)
N=DIMENSION OF S
ND=DECLARED DTMENSION OF S AND Q)
ND2=DECLARED DTMENSION OF H AND P(JSUALLY 2*ND)
W IS WORKING SPACE, 2N*1
N IS NN WORKING SPACE
OUTPUT. ...
S=SOLUTION OF RICCATI EQUATION,N*N MATRIX
H=QUASI-JPPER TRIANGULAR MATRIX, 2N#*2N
P=ORTHOGONAL STMILARITY TRANSFORMATION MATRIX, 2N*2N
VAL=N (EFT HALF PLANE EIGENVALUES AND N LOCATIONS OF WORKING SPACE
SUBROUTINES REQD.- QR,HSOLVE, HZSS, SAIFT2, TRIA, PERMUT
(S G060 50(0:00:0.0.0.0.0.0:6 6.6 6. 8(0:0 0: 5:0: 510 50 0. 0 5: 5 0: 601 0: LLLJCLCCLJCCC'Jv&.L&.L»LLVLCCLCLLLCLCL
SMO = SMALL
N2 = N®N
DO 10 I=1,N2
DO 10 7=1,N2
10 »(1,J3) = H4(1,J)
CALCULATE EIGENVALUZS
CALL R (P, H,NZ,NDZ,VAL,NZ, 340,0,0,0)
REORDER EIGENVALUES
DO 20 [=1l,N2
RE = REAL(VAL(T)) *<1
IF (RE.LT.0.r VAL(T) = CMPLX(D.,0.v
20 CONTINUE
DO 40 J=1,N
IPP = N2+L-J
VAT = VAL(IPP)
AMX = ABS(REAL(VAT))
IPP1 = IPP-L
IPP2 = 9
DO 30 r=1,IPPl
AMI = ABS(REAL(VAL(I)))
IF (AMI.LE.AMX) 30 TO 30
IpP2 = [

NAQAOOOO0O000000000000N000

OO0O0O00O0O00AO00000a0000000

O

0



39

40

77

30

(9]

30
100

110

OO0 O

120

1390

140
ﬂ

) 150
160

AMX = AMI
TONTINUE
IF (IPP2.EQ.0) 30 TO 49
VAL(IPP) = VAL(TPP2)
VAL(IPP2) = VAT
CONTINUZ
00 50 [=\,N
VAL(I) = VAL(I+N)
RE = REAL(VAL(L))
AIM = AIMAG(VAL(L))
51 = SORT{SMQ)
52 = SQRT(S1)
OISO = S/ RT(RE*RE+ATA*AIMs
IF (DISO.GIr.S2) G0 TO 7
I[F (ABS(AIM .GT.S410) 30 TO 50
RE = REAL(VAL(2))
[F (A3S(RE).LE.S2) 30 TO 50
IF (DI30.GT.S1) GO TO 39
PRINT 150
30 TO 30
[® (A3S(RE) .GT.S1) 32 TO 30
2RINT 169
3540 = SMALL
CALCULATE UASI-TRIANGULAR DECOMPOSITION
CALL R (4,P,N2,ND2,VAL,N,S40,0,1,1)
IF (X1.EQ.-1) 30 TO 100
20 30 J=1,N
JJ = JHN
D0 30 I=,N
N((I,T) = 2(1,J)
S(L,J) = P(L,3)
30 TO 120
DO 110 I=er
JJ = I
Do 110 1=1,N
S(I,J) = 2(1,J)
ANQ(L,J) =P(1,3T)

SOLVE FOR S, THE RICCATI EQN. SOLUTION
Kl=lL , Pl1*3=P12
Kl=-1 , P12*3=011

CALL HSOLVE (QQ,W,S,N,N,ND,0, IE)
IF (X1.EQ.-1) G0 TO 140

20 130 I=1,N
VAL(T) = -VAL(I)
RETURN

238

FORMAT (//,47d **WARNING. HAMILTONIAN MATRIX NEARLY SINGULARK*,//s
FORMAT (//,6lH **WARNING.HAMILTONIAN HAS EIGENVALUE AT IMASINARY

1 AXIS**,//s
END
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SUBRIUTING MR (1,2,N,ND, VAL, 47,382, IR, 11,XD)
SPLEX VAL,V

DU4ENSION 1(ND,NJ), P(ND,ND), VAL(NDY, V(?)
DATA S4ALL/.E-L4/

M“ﬂﬂﬂﬁﬂ"ﬁﬁﬂﬁﬂﬁ iala’/alale tatelalale Xote Te o te la ta ke e tala la o ta o T e T E T K T T T B T 2 T T P e Y T T Y T T Y B Za Ta T T Ve Yo ¥ P T T B )
N N N Mt L et S N P N e N N 2 N et N e N 8 o N 8 8 8 N e e N b o N e o b o 2 8 b N PP ' P

R REDUCTION IO WASI-JPOIR TRIANGILAR FIRY
INPJT.....
4= AATRIX [0 3E REDUCED
[TR=DIMENSTON JF PREVIIJUSLY [RIANGULARIZED CORNER OF H
[1=), NO A PRIDRI STIGENVALUT RNONLIDGE
I1= 1, GHIFT ON KNI TIGENVALUIS
XK1= ), M) ZUMMILATED P CALTULATED
Kl= 1, CUAMJILATED P CALCULATED
AV=NUM3ER OF EIGENVALUSS M 3E [5OLATED
VAL=A PRIDRT SISINVALUIS ( [F KNOAN )
SNO=REWIRED PREZISION AS A FRACTION OF [HE 4ATRIX NOR4
N=DIMENSTON I8 MAMRIX H
ND=NUMBER OF RON5 IN 4AIN PROGRAA DIMENSION O7F H
QUTPUl. ceeveceenanes
d=QUASI-JPPIR TRIANGULAR MATRIX
PORITIDGONAL 4AMRIX ( (7 Kl= 1 )
VAL=CALCULATED SIGEINVALUIS
SNO=SNO*NORM-J3IED FOR DISTINGUISHING ZERO SU3DIAGONAL TLIAENTS
IN RESULTING QASI-IRINWGULAR 4ARIX
SUBQOUI‘I\FS REQ. - 1255, 5417 T2, IRIA, PIRYUT

A A o A et et e s e et At o e s ot e ot e e e 2 w8

[PERV? = )
[PERV = 2
[F (ITR.NS.2) 30 T2 5)
[F (X1.EQ.0) 32 0 30
INITIALLIZE ? AS IDENTITY
DO 20 t=L,N
>0 10 I=t,N
10 2L, = 3.
20 2(L,D) = 1.
3 oM =2,
CALCULATE IHE VAXTMU4 NOIM AN
™ 50 (=,N
AA =7,
> 49 7=L,N
40 AA = \A+ASS(H (T, I
[F (AA.GT.O04N) OMN = AA
53  CONTINUZ
543 = SMALL*OMN
SNO = SNO*IMN
N \ll

(9]

QOAODOOOOOOOAOOOOOO00anT]
MDA OO0 OOAaON

(]

Q

{
N-LIR
= MV
C\LL 4255 (4,9, N,ND,N-t,N1,N2,3410,K1)
START 4AJIR LJ3OP
70N 1J3=9

(9]



(@]

@]

)

39

2

109

110

120

132
149

[F (4.LE.9) RETU3IN
N241 = N2~

[F (N24N1.52.0) 32 10 )
N1 =1
N24N] = N2N1
IF (N24N1.ED.1) 3D 1O 15D
TF (N24N1.ED.0) 3D D 15)
S5PART R ITTERATION
DO 143 (Ir=t,2)
[ (U1.EQ.9) 32 12 19)
[F (IT.37.19) 32 0O 1))
£ (LJ.NT.0) 32 D 110

?E REAL (VAL (%
AT = ATIAS (VAL (W)
Cl = (RE#RI)

C2 = RE*RATHATA*AT1H
1J =1

532 I 119

C1 = H(N241,N241) (N2, N2)

“7 =4 (N2,N2) *1(N211,N241) -3 (N241,N2) *1 (N2, N241)
F (IT.N2.10) 30 T 119
P"Rv)?4 EXCEPTIONAL SUHIFT
Cl = ASS(A(N2,N241) 1 FABS (4 (N211,N2412)
22 = C1*C1
Cl = 1.5*C]

ZaLlL 54112 (4,P,N,ND,N1,N?2,C1,C2,54D,K1)
CALL 4235 (H,P,N,ND, 3,N1,N?2,54D,X1)
TEST FOR CONVIRGENCE
S1 = SN2
1€ ({T.ED.22) 31 = 3DJIT(3ND)
DO 133 [=1,N24N1
LH = N2-[+1
Fo(A3S(1(LY, L=y .G2.31) 3D 1D 139
[F (IPZRV?.30.2) 3D D 129)
I {U.GT.2.AND.11.E2.1) 3D TD 33D
ZERD 3U3DIAGINAL SLT4ENT
N1 = LY
GO TO 3)
CONTINIZ
CONTINUS
PRINT 339
5TIO2
AR UAS TONVZR3ED - TALZULATE EI1SENVALUSS
CALL TRIA (Q,P,V,NU,N2,V,SVJ,K1)

NV =2

332 TO17)

V(1) = ZHAPLX(1(N2,N?2) 0.
NV =1

[F ([1.N2.0) 32 ' 17
D) 130 K=1,NV

240



13)

[P}

199

)
-
(]

[AV]
wl
[

(]

27

239

29
373
310

327

337

VAL (% = 7 (NV=X#1)
4= g
N2 = N2-1

30T 7

FIND NIAREST SIVIN I-VALIJE
02 233 K=l ,NV
NV-4{+L

%K = N
=1
MIN = CAIS(VAL(L) =7 (XK

(& (1.LT.2) 32 0O 219

7 293 (=2,4
CC = CAIS(VAL(D) -7 (XX
%3 (C:.S? J4AINY 30 1D 207
D4IN =
IT =1

CONPINIS

[F ([PIRV.GEL1.ANDONZ.EQ.2) 30 ™M 27)

[F (IPIRVR.LZ.2) 32 T2 23)

2INT 343, 4

50 T2 21D

U8 (D4AIN.GC. (BND*¥*,25) 30 D 27)

(8 (REAL(JAL(LD Y *REAL (J(XK) YV LLT. D

(& (M.EQ.(I) 32 T2 25)

JAL(TD) = VAL(®

AL (M = V(XX)

(7 (M.LZ.1) RETNRN

1= 41-1

= N2-t
[P’QV p)
[PZ3V2 =)

EPIRO YD

REJTTT ETSGINVALUS

(& {(N2.L2.1) 32 T2 329

[T (A3 (N2, N2~-L)v . 50.51) 320 T3 290
(F(N2.EQ.2) 303 M 230

[F{A3S (A (N2-1,N2-2)) LLE,ST) 3D 1O 2%
33 1D 23

(@ (23239.52.1) 32 T 20

CALL PER4IT (4,2,N,ND,N1, V?,ad? L, 1
PEIRV = IPIRVHL

30 T2 159

(& {N2.EQ.2) 320 2 313

ZALL PERAUT (4,2.N,ND,1,N2,340,X1,7)

CALL 4335 (4,2.N,ND,N2-1,1,N2,54D,K1)
[PIRV? = [23IV2+]

N1 = |

3007

IAL( = (L)

2RINT 319, A

RETIRN

2-

FORAALD (254 TIROR- IR NID 2WVIRSZING)

321027

241
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343 FOMAT (/,207 IOARPIDED EIGINVALIL, 13,271 DII3 NOT AATTH [H2JT VALY
12)
IND
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SUBROUTINT 4355 (A,P,N,ND,NZ,N1,N2,S34ALL, K1)
DIMENSION A(ND,ND}, P(ND,ND)

(010010001010 000 5.0 0. 5.0.010.00.00.0.0 .0/ 50000 5 00000 0100 SN G 0 SIS0 BSOS S oS SN SO0
wevlvweLll L Liouisuievin ULl LU L LU ULl ullLLlLUiv s L vian L iliviuvion v s el v vidiViciouiow

CERFORAES ORTHIGONAL STYWILARITY REDUCTION TO UPPEZR dI3S5IN3EZRG TFORY,. c
MATRIX [S FULL N* O HAS ZERD LONER-LEFT TRIANGLE.
PARAMETERS- A~ INPUT- N*N YATRIX TO 38 EDUCED.
QUTPJT- REDUCED AATRIX
P- ACCUAULATED ORTHOSGONAL TRANSTORMATION ATRIXK.
N- MATRIX SIZE '
ND- NUJA3ER OF RAYS IN 4AIN PROGRA4 DIMENSION FOR A AND 9
NZ- NUMBER OF NON-ZERQO ELE4ENTS 3ELON THZ DIAGONAL IN Al
N1,N2- ROV INDIZIES OF CURRENT ISOLATED DIAGONAL 3LOCK
SMALL- A SMALL NUMBER = 4ACH. PREC. * NORA(A)
K1=) NO ACCUMJLATED P2 4ATRIX
X1=1 ACCUAULATE ORTHOGONAL TRANSFORMATIONS

alalalelalalalelele ale’alale e el alala tals) e latale VeV talalalalell] lalalalalaletote et o alalale e Tele lale atoTalalalalale e le’alel
Cvvuvc--\.\.—\.‘e\«C’ubv\.’ucVuw\«\-\-CCC\,\,Cv'v\.\,uuv\.'-vcc\,Cv\.‘-.v\.\,c\..‘vb‘v\v\.\.v‘vw‘vw\.\.\.vvvvwvu\.\.

N211 = N2-1
N121 = N1+1
DJ 120 X=N121,N241
X4l = X-1
NN = KMLI#NZ
I& (NN.GT.N2) NN = N2

53 =19,

OO0 OO0O0O000Q00

OOOOOOOOOnNn

DO 10 I=X,N\NN
10 S5 = S+A(I, K1) *A(L, K411}
S = 37RT(S)
IF (S.LT.SYALL) 33 TO 109
I (A(X,K11) .GT.0. S = =5
A(X,K11) = A(X,K41)-S
T = SRT(-5*A(K,K41))
D3 20 I=X,\N
20 A(T,K41) = A(I,%11)/C
0 43 JXK,N
c =9
DO 30 I=X,\W
30 C = CHA(L,J) *A(T,K11)
20 40 I=X, W
49 A(L,J) = A(T,J)-C*A(T,XM1)
72 59 [=1,N2
T =19
D0 59 J=X,NN
59 C = CHA(L,J) *A(T,K11)
D0 39 =, N\N
3] A(T,J) = A(L,J)-C*A(7,%11)
I (X1.EQ.0) 323 TO 23
2 33 J=L,N
T =2
D0 72 I=X,\W
I8! S = CH(T,I)A(T,R41)
20 30 I=X,NN
37 2(T,J) = 2(T,J)-C*A(L,K11)

EM) A(X,K41) =3
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103 %2l = X+l

1 A(L,X41) = 0.
RETURN
ZND



lslelaieie/clalalalaalaaalelaa’aala’alalalal
vl L v v e e e e e e e e e e e et

PERFORMS DOUJ3LE SHIFT WITH ORIGINS 51,52 WHICTH SATISFY C1=51+52
AND C2=51%*32, FOLLONED 3Y THI FIRST SIMILARITY TRANSFORMATION
IN R FACTORIZATION. MATRIX A IS UPPER HISSEIN3ERS ON INPJT.
PARAMETERS- A- INPUT-N*N JPOSR HIS3EN3IERS MATRIX

D000 O00O00a0n

SUBRDJTING SHIFT2 (A,P,N,ND,NL,N2,C1,C2,S4AL
DIMENSION A(ND,ND), P(ND,ND)

‘alalalalalalelalalale e lele lalealele/a/alainlela/ad
A S L

QUTPJT- TRANSFOR4ED 1ATRIX WITH
P— N*N ACCUAJLATED ORTHOGONAL TRANS
N~ MATRIX SIZE .
ND- NUM3ER OF RONS IN MAIN 220GAM
N1,N2- ROV INDICIES OF ISOULATED DIA
Cl, C2- CONSTANTS FOR DOU3LE ORIGIN
SMALL- A SYALL NJ43ER = 4ACH. PREC.
K1=) NO ATCUMULATED P 4ATRIXK

Kl=t ACCUMULATE ORTHOGONAL TRANSTOR

C(‘\(Vv*ﬂccccccrvvvvv ﬂﬁ."ﬂﬂﬂcr‘r‘r‘r’f‘ﬁﬂﬂﬂcf‘f‘f‘ﬁf‘r""‘(‘f‘f‘f‘f‘.’"f‘

N o e

10

32

AL B S W L LR UL LA L R

N1P1 = N1+L
= N1+2
A(N1,N1)-C1
A(NL,N1) *1+C2+A(N1,N121) *A(N1P1,N1)
W2 (X1+A(N1P1,N1?l)\*A(Nl?l,Nl)
W3 A(N1P2,N121)*A(N121,N1)
3 = SORT(WL*WLHV2*W2FN3*W3)
IF (S.LT.31ALL) RETURN
IF (WL.GT.0.r S = -5
Al = W§1-S
C = SRT(-S*Wl)
Wl = W§1/C
‘N2 N2/C
‘N3 = W3/C
DO 10 J=N1,N
S = A(N1,J) *NL4A(N121,T) *N2+A(N1P2,J) *¥A3
A(N1,J) = A(N1,J)-S*A41l
A(N1PL1,J) = A(N1P1l,.J)-5*W2
A(N1P2,J) = A(N1P2,J)-3*W3
70 20 I=L,N2 B
3 = A(I,NL)*W1l+A({I,N1P1) *N24+A(I,N1P2) *¥3
A(L,N1) = A(I,N1)-S*Wl
A(L,N1P1l) = A(I,N1PL1)-S*W2
A(T,N1P2) = A{I, N1P2)-3*W3
IT (X1.EQ.0) RETURN
o 393 J=,N
S = P(N1,J)*WL+2 (N1PL,J) *W2+2 (N122,J) *W3
P2(N1,J) = 2(N1,J)-5*V1
D(N1P1,J) = 2(N1P1,J)-5*W2
P(N1P2,J) = P{(N1P22,J)-3*W3
RETIRN

o A v N N W N e N e N

<
'-—J
<
(3]

X1
ANl

245

L,X1)
ZCCTCCITTCTCToCooCletiele
C
3 ZLEMENTS 32ZLO4 DIAG  C
FORMATION 4ATRIX <
DIMENSION TOR A aND 3 C
GONAL 3LOCK C
SHIFT z
* NORM(A) c
MATIONS c

alaalalalalalalalelele’e lnlalalyle ' a D ol
C'.,vvvavvb\-\av\.\-\.CL;C\.Cy v
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SUBROJTINZ 2MUT (H,P,N,ND,NX,N2,S40,K1,IP)
DIMENSTON Jd(ND,ND), P(ND,ND)

ﬁhnn‘m‘—scnﬁ,ﬂnnnnnnn ﬂﬁf'\f‘f\ﬁﬁﬂﬂﬂﬁﬁﬂﬁﬁﬂﬁﬂﬂnﬁH("!r\ﬂﬁﬂ,ﬂﬂcﬁﬂcﬂﬁcﬂﬁﬁ_ﬂﬂf‘!ﬁ,“‘g-\,’!F,ﬂcﬂ"ﬁﬂ,-\c(-\ﬂ
R S S L UL PO I DL SU SN SO OISO e S U I I UL DL DR LR R A G L ) S S SO B UL UL L S S Y L L )

ARSITRARY ORTHOGONAL( HDUSEYUOLDEIR TYPEZ ) STMILARITY
TRANSFORMATION TO REMOVI AN 'WNDESIRA3BLI ZERO ON SU3DIAGONAL
OR EXCHANGE POSITION 37 TWO REAL SIGINVALUIS ON 2*2 DIAGONAL 3LOCK
INPJT. ...

H=MATRIX TO 3E TRANSFORMED

N=DTMENSION 0% H,P

ND=DICLARED DIMENSION OF H,P

NX,N2=RO¥ INDIZIZS OF THE 3LOCK TO 3E TRANSFORYED

K1=0 NO CUMMULATED ? CALTULATED

Kl=1l CUMMULATED P CALCULATED

IP=1L IF POSITION SXCHANGI PZRFORMED OTHERWNISE=D

SMO=PRECISION CRITERION FRO1 QR SU3IROUTINE

H=TRANSFORMED 4ATRIX
P IS ORTIOGONAL MATRIX

B e LA L BUPRDIULIR DI SISO LIS O 1 LD WA SN IR 1 S S G S SO S G G O U U S s

IF (IP.NE.0) 30 TO 109
X = 2./ (N2-NX+1)
20 30 I=NX,N
NM = N2
IF (I+l.LT.N2) N4 = T+l
SU1 = 9.
DO 10 X=X, N4
10 3U4 = S5UA-H(X, I)
D3 20 J=NX,N2
20 (T, I) = (I, I)+X*3U4
30 CONTINIJZ
DO 50 1I=1,N2

OAOO0OOOOOOOO VW00

QOO0 O0OO0O0O0a0000a0a0n0n

sSUd = 2.
DO 43 X=NX,N2
49 SUM = SUM-H(I,K)
DO 50 JI=NXK,N2
59 H(I,J) = 4(I,J)+X*3U4

59 CONTINUZ
IF (X1.E2.0) RETURN
o 3 I=L,N
304 = 2.
DO 70 X=AX,N2
79 504 = 3U4-2 (X, I)
00 30 JI=NX,N2
37 2(3,I) = 2(J,I)#X*3TU4
39 CONTINUS
RETUIN
103 N241 = N2-1
NZ242 = ¥2-2
N221 = N2+l
A = J(N211,N211)
3 = J(N2v1,N2)
S = d(N2,N2)



110

1293

130

140

152
1589

172

[F (A35(® .32.S5410) 30 TO 119

X1l = 9.

X12 = 1.

X22 = 19.

GO TO 129

X = A-C

XX = SRT(X*B*
22 = 3/XX

X1l = -X22

12 = X/XX

JENML NML) =2
H(N2ML,N2) = X1L*(X12*A+{22*%3 +X12*%K22*C
I (N2?1.5T.N) 3O TO 149
20 139 [=N221,N
XA = XL1*4 (N241, I)+X12*{(N2,I)
H(N2,I) = X12*q(N241, I)+¥22*4 (N2, I)
H(N2v1,1I) = XA
¥ (N212.L2.0) 32 TO 152
02 150 I=1,N242
XA = X11*{(T,N241) +X12*4 ([, N?2)
H(L,N2) = X12%1(1,N241) +X22* (T ,N2)
A(I,NZ41) = XA
I7 (X1.E2.0) RETURN
20 177 I=1,¥%
A = X11*2 (N241, I) #X12*2 (N2, I)
P(N2,I) = X12*2(N241,I)+X22*2(N2,1)
2(N241,I) = XA
RETURN
IND

247
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SU3RDJTINT DRIV (A, 2, N, MO0, N2, VAL, SAALL, K1)
DUAENSION A(NDUM, NDLA , P(NDLA,NDIA, VAL(R)
SOAPLIX VAL

il e e R e Y e e e R T Tt R e e T e Y T e T e R T T Ve T B Y e e ke e e R R R R e R e e L R N R lala el T Y R R N e T T v T ]
Nt P N B N Pl A Pt N Pt Pt it b P O P Bt P S b P b P P b N P N bt b b bt St 0

COMPUTES STSENVALUTS OF 2%2 DIAGONAL 3L7CK . IF EISENVALUTS ARE
REAL , AN DRTIDGONAL STATILARITY CRANSTORMATION [3 PIRFORJMED D
TRIANGILARIZE DIAGINAL 3L7TK.
3=DFAYOD AND 33T A=3
INPIT. ... '
A=QUAST-TRIANGULAR ATRIX [ 38 TRANZTORMED
P=[HI ORTHOGONAL MATRIX FRIA PRIVIDUS STAILARILY [RANSEFORMATION
N=DIMENSION OF MATRIX A
NOIM=DZCLIARED DIMENSTON JF ARRNY A
N2=[NDTX JOF 2% 3LDCK = ROV AND ZOLJAN NUA3ER OJF LIOVER
RIGIT ZORNER
SAALL=NORAFMATHING PRECISION
K1=), ND CUAMILATED P CALZULATED
X1=t, CU14JLATED P TALZTULATED
UTr2Ir. ...
A= QUASI-JPPIR TRIANGULAR MAMIX 3
P=CUAMILATED DRTHOGONAL TRANGF RMATION 4ATRIX
VAL=COMPUTED TTIGINVALUZS IN VAL(L) AND VAL(Y)

20242 (XY A0 IAICICILY C)AdCICD )

et R I R 1 R R I T R A R R A e R I i

)

37

49

N241 = 421
[T (A33(A(N2,N241)) LLE.34ALL) 33 ™ 3)
e (xso(x'u741 N2)1 J3T.SMALL) 39 0 19
211
P22
P12 l.
P21 l.
32O
Z1 = A(N211,N241) =A{(N2,N2)
£ = Z1*C21+1, A (N2M], N2) *A (42, N241)
(e (L.LTD0y 3D 2N
X = (CI+FSRT{O v *.5
2T = SRT(CK*TAFA(N2,N211) *A(N2,N241) o
P11l *X/C2
P21 A(N?2,N241) /CC
212 = A33(2721)
922 311
I {(221.37.0.0 222 =
30 37 C=t,N2
AN2M] = A(L,N241) %211 #\ ([, N2) *221
AN2 = A([,N241)*2 12 K\ ([, N2) #2722
A(T,N2T) = AN24]
A(T,N2) = AN2
) A T=N24,N
ANZAT = AIN241, D 211 A {N72, 1) #2728
AN? = AT241, T) #2128\ (N2, 1Y 2722
AIN24T, 1) = AN24]
12,1} = AN2
7 (LLLE2.?) 30 1Y ™)

Qu

[ T LI}

[ T I 1}

2

l\)
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227 5) [=1,N
PN241 = 2 (NMI, V#2111 +2 (N2, 1) %22
N2 = 2(3211, D *212+2 (N2, 1) ¥2722
2(N2M1, 1) = 2N241

2(N2, 1) = 2N2

JAL(2) = TAPLX(A(N2,N2) ,0..

VAL(1) = CAPLX(A(N24],N241) ,0.s

32 T3

CALTULATE TS CO4APLIX TIGINVALIZS

RE = (A[N2M1,N241) SA{N2,N2) 1 /2,
ATM = SQRT(-X) /2.

VAL(1) = CM2LX(RE,AL4
VAL(2) = 2YPLX(RE, Al -
RETRN :

IND
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SUBROJTINS HSOLVE (A,W,3,N, M,NDI4M,ID, IT)
DIMENSION A(NDIYM,NDIMy , W(NDI#4 , 3(NDI4,%
DATA SAALL/l.E-14/

lalalalalala’alelalalalele e le] Talal ~ lalalalalale X el Y Y R lalalalalalale e o Ve e e Y R e e e tale A Yalalalaly/a'alalalalate ]
CC-..«\-\..C\.V'-C‘..'.,C\....\.-...CC‘,.VCC\.CCCCV-..\..-..‘,.’-...\...\.\.vv».vs..\.‘..v\.v'.,‘..’-..c\.\.\.\.yc“.C\..\.v-, e i e

SOLVE THT LINEAR EQUATION A*X=3 3Y d4JJSIAILDER VMETHID
INPUT. ..
A=THZ AATRIX JF N*N OJRDER OF A*X=3
3=YATRIX JF A*X=3 ,N*1
N=NORKING SPACE
N=DIM.OF A
NDIM= DECLARED R3OY¥ DIMENSION OF 3,3, AND W
ID= INDICATOR, ID=0 - TRIANGULARIZZI A AND SOLVE,
ID=1l - 3YPASS TRIANGULARIZATION (PREVIOUS CALL REQD.r
QUTPIJT. ...
A=)*A=TRIANGULARIZED MATRIX
B=TdI SOLUTLION X
I[2= SRROR INDICATOR, IE=) NO ERRR
IS=1 NONUNIQUE SOLUTION (NJ SRRIR)
IE=2 JNDIFINID SJLUTION

f‘ﬂfsCCCf‘r“r‘V‘ﬂﬂC_CCcccnﬂnnnccnﬂmccnﬂr\r‘ﬂﬂﬂcﬂpﬂnpn(\f\,annﬂncccccnﬁnnnnnnpnnﬁi—n lalalalalel

OOOGOOOO0OaaOO0O00N00a

QOO OO0O0OO0ON0

o\t v ' Nttt ettt ot St "ot S N [N Pt s et et P\t 0 Nt Pt P o o N o N N e S vt st S S e S e Nt N ot N Vo e N N
I =9 :
IF (ID.EQ.1) 30 TO 32
2NN = 3,
D0 20 t=L,N
AA = ],
0 10 J=L,N
10 AA = AAHA3S(A(L,I))
I (AALLT.OMN) 30 TO 29

4N = AA
20 ZONTINUS
S0 = SMALL*OMN
If (N.EQ.1) 30 TO 39
TRIANGULARIZE A
N1l = N-L
DO 79 X=1,N41
R = 3.
DO 30 [=X,N
RA(L,K) *A(T,X)
SART(R)
? (A(X,K) .,LT.0.¢ R = =R
(%) = A(X,K) R
T = SQRT(R*W(X))
A(%,X) = =R
IF (A3S5(O JLLT.SMO) 32 TO 70
21 = X+L
W(XY = A(X)/C
D0 40 I=X?1,N
49 A(L,X) = A(T,K)/C
0 67 J=XP1L,N
RR = J(X)*A(X, D)
DO 50 L=XPl,N
59 RR = RRLA(L,R) *A(L,T)

)

30

Hou

R
]
T
W



39

70

(@]

39

20

100
110
120

130
140

159

132
170
1390

A(X,J) = A(KX,J)-RR*W(K)
DO 50 I=XPL,N

A(T,T) = A(1,J)-RR¥A(T,K)
SONTINIS -
TRANSFORY1 3 AND 3ATKSOLVE
20 180 1J=1,M

IF (N.EQ.1) 30 TO 120

20 110 X=L,N1l

]R = W(X)*B(X,1J)

KPl = X+1

DO 99 J=XP1,N

RR = RR+A(T,K)*8(7,1J)
3(%,17) = 3(X,I)-RIFNWN(X)
DD 100 1T=XP1,N

3(1,1J) = 3(1,1J)-RR*A(T,K)

CONTINUZ

IF (A35(A(N,N)) .GT.SM0) 32 TO 139
IE =2 :

IF (A3S(B(N,I1J)).5T.S10) RETURN
=1

3(N,1J7) = 1.

GO TO 149

3(N,1J) = B8(N,LJ)/A(N,N)

IF (N.EQ.1) 30 TO 189

D0 170 I=1,NMl

J = N-I
L = N-I+1
XX = 3(7,1J)

DO 150 X=L,N

XX = XX-A(J,K)*3(X,1J)

[F (A3S(A(7,J)).GT.S4J) 30 I'0 142
IE =2

IF (A3S(XX) .GT.SM2) RETURN

IE=1

3(7,17) = 1.
G0 TO 17
3(7,13) = XX/A(J,)
CONTINJUZ
CONTINUE
RETURN

IND

251
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SU3RJUTINE SIGVC (A,VAL,N,NDIM,EL,Q,C,540,18)

DTMENSION A({NDIM,NDIWs , VAL(NDIMr , EZL(NDIM,NDIMe, Al(2,2), A2(2,2)
L, A3(2,2), C(NDIL4 , Q(NDIM,NDIe

Ca42L=X VAL

alalalalelel Talalalalale Yoo lel T lalalalalale e Ve Y alalala ety R ol a P laTa el e lalalate RV e Y Y T e TaTa e Yo T ke B Vo o e Fa R Tad
- C\.\.C\.CC\,V-\,\.‘Vv‘vvvccvv\.\v‘vv\avuvwvvvvwvw’vaC'vccvv\.’-..CC'\.\..-.,\-vvv [ )

COMPUTE THZ ESIGENVICTORS OF A UASI-JPPER TRIANGILAR 4ATRIX
INPUT. ..
A=RUASI-JPPEIR TRIANGULAR ¥ATRIX FRO4 ROUITINE R
VAL=THZ ZTGENVALUZS 2JF A CTOMPUYTED IN ROUTINI ‘R
FSIMILARITY TRANSFORMATION AATRIX FR24 R
N=DIMENSION OF A, EL , 7
NDIM=DZCLARED DIMENSION OF A , EL., 2
SAO=CONVERZEINCE CRITERION FROM1 R=4ACH.PREZ.*NORY A
ouTPUT. ...
EL=TdZ SIGENVICTOR MATRIX JF A
C=INTEZRMEDIATE STORAGE VECTOR
IE=) INDEPENDENT EIGENVECTR
IS8=1 DEFECTIVZ BIGINSYSTSM
SU3RJUTINES REQD.- LYAPUN,HSOLVE

CCCCCCCCTCCCTCCICCCCCTCCCCCICCCCCCCCCrTIiCTTCTCCITCCCCCCCITCICCCCCroeoitic

(BPECEPECHNONONPESEPNCNONONO KD

INTTIALIZE EL

QOO QOGaOOOOaO0O000O0O0n

12 =9
20 10 r=1,N
20 10 J=1,N
10  2L(r,J) =219.
K =N

20 DELTA = REAL(VAL(X))
W = ATMAG (VAL(K))
IF (A3S( .GT.S42) 30 M 39

N2 =1
A2(1,1) = DELTA
EL(K,K) = 1.
IF (X.EQ.1) 30 TO 199
30 TO 40

30 N2 =2
A2(1,1) = DILTA
A2(2,2) = DILTA
A2(1,2) =W
A2(2,1) = =W
ML = K-1

EL(X,K) = 9.
EL(X,K11) = L.
AT = A(XM1,KM1)-DILTA
AN = ACH*2#VA*2
TL(KML,K) = = (A(X41,K) *ub /27
EL (XML, K1) = = (A(XL,K) *aD /AR
IT (X.EQ.2) 30 T 150
| ELX = EL(XML,K)
TLXAL = SL(X1L,K41)
10 II = X-N2



59

79

32
29

109

L10

120

139
149

Q0O

159

159
173

139
192

XK = 1I

LL = N2

N1l =1

[F (XX.EQ.1) 30 TO 30

IF (A3S5(A(XX,KX-1)).GT.510) N1 =2
NN = XKX-N1
Do 79 1=L,N1
DO 79 I=L,N1
AL(T,J) = —-A(NN+I,NN+T)
02 99 I=|,Nl
SUM = 9,
20 30 L=1,LL
SUA = SUARA(NN+L, RX+L) *EL (XK+L, II+7)
A3(1,J) = Su4 .
CALL LYAPUN (Al,N1,A2,N2,A3,IT)
IF (IT.EQ.2) 30 TO 110
20 100 I=1,N1
DD 100 J=1,N2
EL(NN+L,IT+J) = A3(I,T)

30 TO 140
E=1

NNP1 = NN+L
NNP2 = NN+2
IIPl = TI+l
[IP2 = II+2

EL(NNPL, IIP1) = 1.

DO 120 T=NN22,K -
aL(L,1I°1) = Q.

IF (N2.EQ.1) 30 TO 140
EL(NNP1, IIP1) BLX41
EL(NNPL, IIP2) BLX
SL(NNP2, IIP]) l. -
DO 130 I=NNP2,K
g8L(I,IIP2) = 0.

KK = NN

LL = LLML

IF (XX.GT.0) 32 TO 39
=11

IF (X.3T.0) 30 TO 20

EL=QT*ZL

30 19 J=1,N
0 179 I=1,N
(1) = 9.
D0 1490 XI=L,N
S(T) = C{D)+U(KT, I) *=L(XL,T)
CONTINUI

D0 130 L=L,N
EL(L,J) = C(L)
CONTINJZ

253
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RETURN
IND



255

SU3ROUTINZ 52LYAP (A,C,N,ND,SY0,1E,P, W
DTMENSION A(ND,ND), C(ND,ND), AA(?2,2), CC(2,2), AAT(2,2), P(ND,ND)
L, W(ND
CCCCCCéCCéCCéCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCTCCCCTTCCoCCCeeecee
SOLVE A*X+X*AT=C
INPUT. ..
AN*N MATRIX [N QUASI-JPPZR TRIANGILAR TORM FRO4 QR SUBROUTINI
C=aAMN SYMMETRIC YMATRIX
?= SIMICARITY TRANSFORMATION YATRIX #R04 QR SU3ROUTINT
W=AORKING SPACE
ND=DZCLARED DIMENSION 07 A , C, P
SMO=CONVZRGENCE CRITERION FRO4 QR=1MACH.PREZ.*NOR4 A
OUTPUT. ..
C=X, THI SOLUTION OF LYAPUNOV SQUATION A*{+X*AT=C
IE=) NO EZRROR '
IE=1 ERROR-SOLUTION NOT COMPUJTED
SU3ROUTINES REQD.~ LYAPUN,HSOLVE
CCCCCCCCCCCCCICCCTCCCCCTCCCCCTCICTCTTCCCTITCITCClCCTCCCClllCeClTcceceeece
DO 20 t=Ll,N
oo 10 J=1,%
W(I) =

QOO0 OaOn0n

QOOOOO000000000

0
10 N(I) =W I,X)*2(7,K)

20 C(L,J)

39 W(T) = A(T)
o0 40 I=L,N
40 Z(I,J) = WN(D)
IE =2
M=N
N NMA=2
IF(M.GT.1) 30 TO 51
NA=]
30 TO 52
51 TF(A3S(A(M,M~-1)) .LE.S10) NA=l
52 MM=M-NA
DO 50 [=1,NA
20 30 JI=1,\NA
NNI = 4M+1
NNJ = M+J
AA(T,J) = A(NNI,NND)
CC(T,J) = C(NNI,NNJ)
39 AAT(T,J) = A(NNJ,NNI)
TALL LYAPUN (A7, N),AAT,NA,CC,IT)
[F (IT.NZ.0) 12 =1
NN = 411
N3 = N3
77 20 83 I=L,NA

I,X)*C(X,J)



39

100

Lot

192

110

129

139

149
150

160

17

133

139

M 37 J=1,N3
C(NN+T , M+T) = CC(1,J)
IF (NN.LE.0) 32 IO 139
70 100 I=L,N\N
DO 100 J=1,N3
NNT = MM+J]
SUM = 9.
D0 99 X=l,NA
NNX = NN+
SUM = SUMHA(T, NNX) *C(NNK, NNJ)
C(T,NNJY = C(I,NNJ)-SU1
NA = 2
IF(NN.GT.1) 30 TO 101
NA=L
30 TO 102
IF(A3S(A(NN,NN-1)) ,LE.SMD) NA=l
NNA = NN-NA
DO 110 I=1,NA
DO 110 J=1,NA
AA(L,J) = A(NNA+L,NNA+T)
DD 120 I=1,NA
pe] 120 J=L,Na
r'!\LL LYAPUN (AA N3, AAT,N3,2C,IT)
I7 (IT.NE.0) IE =1

NN = NNA
3D T0T
[F (M1.L2.0) 32 TO 140
M =M
20 150 1=L,M
Do 150 J=i,4
St = 3.

MPY = K
31 = SUAHA (T, MPK) *C( T, MPK) #C( T, MPK) *A( 7T, 'LD'()

2(L,3) = Z(1,J)-3U
30 TO 50
20 170 1=2,N

IT = 1I-1

o) 170 J3=1,1I1
(L, = 2(7,1)

D0 180 J=1,N
W(J) = Q.

Do 139 X=1,N
) 199 J=L,N
2(L,J) =,9(7)
DJ 2130 71=L,N
0 200 I=L,N
W(T) = 3.
M 233 X=1,N

256
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200 A(L) = A(L)+2 (X, I)*C(X,T)
D) 210 I={,N
210 C(I,J) = W(I)
RETURN
END



O()OO(')O(')OO(')()(’)()

cC

10

SU3SROUTINE LYAPUN (A,NWA,3,N3,C,IE)
DIMENSION AA(4,4), A(2,2), 3(2

SOLVE A*X{+X*B=C
INPUT....
A AND 3 ARE 1*L OR 2*2
NA=DIMENSION O A (1 OR 2)
N3=DIMENSION OF B8 (1 OR 2)
C=NA*N3 MATRIX
OUTPUT. ..
C=SOLUTION X
IE=) NON-SINGULAR CTASE
[E=1 NON-INIQUE SOLUTION
[E=2 UNDEFINZID SOLUTION
SU3ROUTINE REQD.~- HSOLVE

AND SET C=X

-

12), C(2

cccceeeeeeeeeceeeececece CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

2) ’ "J(3)

CCCCCCCCCCCCTCCCCCCTTCTCCCCCCTCCTCCCCCCCCTCCCCCCeecTeeeeceececce

D0 10 I=1,MA
D0 10 J=1,NA
AA(L,J) = A(L,J)
AA(T+NA,J) = 3.
AA(L,J+NA) = 0.
AA(T4NA,JNA) = A(T,J)
II =1
D 30 I=1,\B
33 =1
DO 20 7=L,N3
AA(II,JJ) = AA(TT,JJ)+3(J, 1)
IF (NA.GT.1) AA(TI+L,JI+l)
= JJHA
II = II#NA
N = NA*N3
IF (N3.EQ.2.AND.NA.EQ.1) C(2,1)
CALL 4SOLVE (AA,W,C,N,1,4,0,IE)
IF (N3.EQ.2.AND.MA.ED.1) C(L,2)
RETURN
END

= AA(TI+L,JJ+L)#3(7,1)

C(L,2)

(2

258
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APPENDIX G

THE SENSOR ELIMINATION PROGRAM LISTING



DA OOOO0O0O00N

260

PROGRAM GZEN3IR (TAPTS, INPUT, 0UIPUT)

DIMENSION A(30,37),3(39,10),C1(19,32),D01(L0,19),C2(190,39),
1D2(10,13),THETA(13,10) ,GAIN(LD,39) ,GX(30,10) ,3313(39,19),
121(39,39) ,R1(37,32) ,22(39,39) ,R2(39, 32) ,5(32,32) ,4(59,57),
12(53,52) ,VAL(59) ,W(52) ,EL(39,3D) ,PN(33,39)

DIMENSION R1L(33,30),222(39,33),R22(30,30) ,IELZ4(1LD),
+222(10,39) ,D22(10,19) ,SITA2(19,13) ,INDEX(LJ) ,X4AX(LD
DTMENSION 50(39,37) ,Ud(1l9,10) ,¥YI(19,10) ,W5(32) ,NJ(LD) ,WY(LD)

COMPLEX VAL

DATA ND/39/,NOD/30/,NDL/10/,N34/10/,NDP/10/ ,N2QY/LO/
DATA NA/"A"/,N3/"8"/,NCl/"CLl"/,NDl/"D1"/,N22/%C2"/,ND2/"D2"/,
INGA/"SAMA" /, NQL/"QL"/ NRL/"RL"/,NQ2/")2"/ ,NR2/"R2"/,

z/"z*/ NTH/"THETA"/

DATA S4ALL/l.E-14/
DATA IUNT/SLINPUT/

SOLVE SENSOR CO4BINATION TESTING

INPUT *** %%

10=0 FIND INFORMATION ATH ALL 3ENSORS

I0=1 SENSORS ELZAINATION
[P=) NO OPTIONAL PRINT

IP=1 OPT'INAL PRINT
IP=2 2RINT EVERYTHING
LP=) REGULAR PRINTER
LP=1 TERMINAL PRINTER

ICR=L,2,3,0R 4 CRITERION CHOOSING

(RELATIVE EZRRIR OF R4S X,U,Y, IR)

CRITEZR= THZ ACCEPTA3LE CRITERIA OF THE RELATIVE ERRIRS

INPUT NECCERSARY MATRICES

300 READ(5,* I3,1pP,LP,ICR

IF(E0F(S) .NE.O) STOP

ID1=)
ID2=)
I51=)

L READ(5,100)NN,N1,N2,NT

109 FORMAT(AS, 213, 2X,Al)

44 TF(NN.EQ.NA) GO 10 11
TF(NN.EQ.N3) 3D T0 12

IF(NN.EQ.NC1)
[F(NN.EQ.ND1)
IF(NN.ED.NJL)
[F(NN.EQ.NR1)
IF(NN. EQ. NGA)
TF(NN. EQ.NQ2)
[F(NN.EQ.NC2)
TP (NN. ED.ND2)
[7(NN. £0.NR2)
[F(NN. EQ. NT4)
32 70 23

11 CALL READA(A,N1,N2,ND,NT,NA,LP)

N=N1
3001

12 CALL READA(3,N1,N2,ND,NT,N3,L?)

32
39
32
30
ele;
30
32
39
33
39

T
IO
TO
o
ro
TO
ro
70

TO

™
He

13
14
15
15
17
13
19
23
21
22



13

14

17

13

73

19

74

75

N=N1

L=N2

30 TO 1

ZALL READA4(C1,N1,N2,ND4,NT,NCL,LP
M=N1

N=N2

30 TO01

CALL READA(D1,N1,N2,ND4,NT,NDL,LP)
M=N1

L=N2

[D1=1

IF(NT.EQ.NZy ID1=0

30101

CALL READ4(Q1,N1,N2,ND,NT,NQL,LP)
M=N1

30T 1

CALL READ4(R1,N1,N2,ND,NT,NR1,LP)
L=N1

30TO 1

CALL READ4(3343,N1,N2,ND,NT,NGA,LP)
N=N1

NP=N?2

30 T01

CTALL READA(Q2,N1,N2,ND,NT,NQ2,LP)
N2=N1

IF(10.EQ.0) 30 Mo 1

22 73 I=L,NP

DO 73 J=1,NP

222(1,7)=02(L, D

301

TALL READA(C2,N1,N2,NDQ,NT,NC2,LP)
NQ=AN1

N=N2

[F(I2.EQ.0) 30 TO 1

20 74 1=L,NQ

D0 74 I=L,N

222(1,1=C2(1,0)

32 T0.1

CALL READM(D2,N1,N2,NDQ,NT,ND2,LP)
NO=N1

L=N?2

[D1=1

[F(NT.EQ.NZt [D1=)

TF(10.EQ.0) 30 ro 1

N2 75 I=1,NQ

7 75 3=1,L

222(1.7)=N2(1,J)

30701

L ZALL READA(R2,N1,N2,ND,NT,NR2,LP)

NQ=N1
I7(I0.EQ.0) 30 10 1
9 75 I[=Ll,N)

261



262

DD 75 I=1,NQ
75 R22(1,J)=R2(1,T)
3101
22 CALL READA({THZTA,N1,N2,NDQ,NT,NTH,LD)
NQ=N1
NP=N2
[31=1
[F(NT.EQ.NZy 151=)
[F(TJ0.EQ.0) GO TO 1
DO 77 I=1,NQ
Do 77 J=1 NP
77 SITA2(T,J)=THETA(L,T)
30 TO 1
23 9RINT 471
471 FORMAT(//," *** SENSOR TOM3INATION TESTING***" //)
© [F(IDL.EQR.N) 30 I'M 300 .
Do 31 t=1,L
oD 31 J=1,4
H4(I,J)=9.
o0 31 X=1,4
3V H(T, D) =H(T,T) MK, I) *1L (K, T)
593 029 32 1=L,L
D0 32 J=1,L
SU4=).,
TF(ID1.E82.0) 30 TO 32
20 33 X=1,1 :
33 SUM=SU4A+H (I, X) *M1(K,J)
32 28L(T,.7)=R1(T,J) +SU4
ZALL CONTRL(A,B,C1,D1,Q21,R1,5,GAIN,d,P,VAL,N, 4,L,ND,¥DD, N4,
INDL,W,ID1)
DO 37 1=1,N
o0 37 J=1,N2
d(L,J)=0.
D0 37 k=L, ,N
37 H(T,2)=4(I, ) +S(1,K) *3AMA(X,T)
DO 33 [=L,N
oo 3% J=1,NP
P(T,3)=).
m 33 X=1,NP
33 2(0,N=2(L,T)+4(L,X)*2(X,
IRACE=),
Do 32 t=1,N
SUM=)).
m 17 %=1, ,NP
410 SUA=STMHP (T, X) *3A01A(T1, %)
39 TMRACE=TRACE+3UM
0 23 I=1,1
™ 33 7=, ,N
SU4=).
IF{IDL.E2.0) 32 D 33
20 94 %X=L,L
34 SUM=SIMDL{L,K) *3AIN(X,J)



263

33 R1L(T,T)=C1(L,J) +SUA
D 50 T=L,N
D0 50 7=i,L
PY(T,J)=7.
o0 39 X=1,L
50 PA(T,J)=2W(T,J) +GAIN(X, I) *3L(X,.T)
D9 51 I=L,N
D0 51 I=1,N
EL(L,T)=0.
Do 5L K=1,L
61 EL(T,J)=SL(T,J) +PW(T,K) *3AIN(K,J)
ISEN=)
NTP2=NQ#2
NP2=NQH2
NQANQ
IF(10.EQ.0) 32 ID 433
0 434 1=1,NQ
[ELEA(T)=I
434 INDEX(T)=I
433 IN=)
70 103 TX=l,NQP2
[F(ISEN.EQ.0) GO TJ 25
IF(ISEN.EQ.1) 30 I 423
426 IF(TX.LT.NQP2) 32 IO 423
TF(IN.GT.0) 32 TO 42
NN
TXN=)
39 T 435
429 IF(IN.EQ.1) 30 IO 429
AMIN=XMAX(L)
INEL=L
TXN=TNDEX (1)
IXZ=TELEM(1)
DO 105 [=2,IN
IF (XMAX (D) .GE.AMIN) 32 ID 105
IXN=INDEX ()
INIL=T
AMIN=XMAX ()
IXS=[ELEM(T)
105 ZONTINUZ
3 0 435
130 [:N=INDEX (L)
TXE=TZLIM(1)
30 TO 435
423 [4=IX
TF(NQP2. EQ.NTP?) T4=IX-L
TXN=[NDEX (T
TXS=LELEA( T
135 D9 39 I[=L,NP
7 39 T=L,NP
30 2(T,J)¥=322(T, 1)
IT=t



444
441
435
445

440
400
735
737
735

718
431

25

B8]

510

DO 3L [¥=L,N)

[F(IY.EQ.I:N) 30 ro 3L

DO 32 J=L,N

22(IT,7)=C22(1Y,J)

R2(TT,IT)=R22(1Y,IY)

DO 35 7=1,N?

THETA(LT,J)=5ITA2(LY,J)

[T=IT+L

CONTINUG

IF(IN.EQ.0.AND. TX. EQ.NQP2) 30 TO 735

NFENN-L

IF(IX.LT.NQP2) 32 T2 449

NI=NQ

[F(IN.EQ.1) 32 T2 135

20 441 1=1,NQ

D2 442 I=1,N

222(T,N=C2(L,J)

DJ 444 7I=L,NP

SIM2(L,J)=TH42T\(T,J)

R22(T, )=R2(T, D)

PRINT 445, IXE

FORMAT(///," ***SEINSOR NO.",I13," WAS SLEAINATID***" ,///y
IF(IN.EQ.1) 3D-TO 75

50 TO 131

2RINT 400, IXE

FORAAT(//," ***TAKS OUT SENSOR NO.",I3," ***"
30 TO 431

2RINT 737

FORMAT(////," NO 4ORE SEN3OR ZAN 3E ELZYMINATED™
PRINT 793

PORMAT(" FINAL FORM OF YATRICES TONCEZRNING 3ENSORS ARE!,//
PR/INT *," C2 MATRIX" :
CALL PRINT(CZ,NQ,N,ND],LP)

PRINT *," R2 4ATRIX"

CALL PRINT(R2,NQ,NQ,ND,LP)

SRINT *," THETA MATRIX"

CALL PRINI(THSTA,NQ,NP,NDQ,LP)

[F(TX.EQ.NP2) G0 TO 71

ZALL FILTER(A,C2,.G\MA, THETA, 2, R2, 5,GX, 1,2, VAL, N, NQ, N2, ND, NDD,
INDQ,NDP, W, I51)

[F(TP.EQ.0.AND. ISEN.NE.J) 32 T2 519

PRINT 9

TRAAT(/," STIADY STATE SOLUTION OF FILTER RICCATI ZQJATION
CALL PRINT(S,N,N,ND,LP) '
IF(10.EQ.0) 3D 0 433

[F(CSEN.NE.Q) 32 IO 431

20 472 =L ,N

o0 4172 T=1,N

(T, D=S(L, N

32 1O 473

IF(TP.LE.1) 3D 10 423

D) 474 [=L,N

264



265

o0 424 J=1,N

431 OW(T,3)=(S(L,T)-S3(L, ) /32(L, N
PRINT #*," RELATIVE ERRIR OJF FILTER RICTATI SOLUTION'
CALL PRINT(PW,N,N,ND,LP)

403 20 45 I[=l,N

45 N(T)=3RT(S(L, 1))
IF(IP.EQ.N0.AND.ISEN.NE.7) 32 TO 511
PRINT 45

45 FORMAT(/,” R4S RESPONSE OF ESTIMATE SRRIR3™
CALL PRINT(W,1,N,1,LP)

511 [F(120.E82.7) 32 TO 407
IF(ISEN.NE.D) 32 TO 435
DO 405 I=L,N

405 AS(I)=W(L)
39 TO 437

405 DO 403 1=1,N

403 W(T)=(W(L)=AS(T)) /WS(T)
PRINT *," RELATIVE ERROR OF R4S RESPONSE OF ESLIMATED ZRRIR”
CALL PRINT(W,1,N,1,LD)
AMX=).
IF(ICR.NE.1) 3D TO 407
D0 102 I=L,N
X=A35(W(1))
[F(X.GT.AWMX) A4X=X

102 CONTINUZ

407 50 3 1=1,L

Ql(r J)=D.
D0 I X=L,N
9 AL(L, N=NU(T,T) *2N(L,R)*3AIN(T,X)

[F(TP.EQ.N.AND. ISEN.NE. D) 32 D 512
PRINT *," ERRDR TONTROL TOVARIANCE 4ATRIX"
CALL PRINT(Q1,L,L,ND,LD)

512 [F(I2.EQ.2) 32 TO 411
IF(ISEN.NE.Q) 32 T 49D
70 4110 I=L,L
D3 419 J=1,L

410 U2(L,=2L(L, )
32 0 411

433 [F(IP.LE.1) 32 TO 41l
22 412 1=1,L
Do 412 J=L,L

aAL2 ZA(T,D=(QL(T, H-JI(L,T))/II(L, T)
DRINT *," RELATIVE ZRR0R JF ERRIR TONTROL"
CALL PRINT(®W%,L,L,ND,LP)

111 20 35 1=1,L

35 W(I)=SRTIL(T, 1))



266

[F(IP.EQ.0.AND. I3EN.NE.0) 3D TO 513
DRINT *," R4S RESPON3E OF ERROR ZONTROL"
CALL PRINT(W,1,L,1,LD)

513 IF(19.82.9) 33 IO 415
IF(ISEN.NE.D) 30 TO 413
00 414 T=l,L

414 AI(T)=A(T)

30 TO 415

413 DO 415 I=l,L

415 W(T)=(W(T)-NU(T)) /WU(L)

PRINT *," RELATIVE ERROR OF R4S RESPONSE OF ERROR ZONTROL"
CALL PRINT(W,1,L,1,LD)

IF(ICR.NE.2) 30 TO 415

70 110 t=1,L

X=ABS (W(T))

TF(X.GT.A1X) AMX=X

110 CONTINUS

415 20 95 I=1,4
D0 95 J=1,N
(T, =.

D0 95 X=1,N

95 2L(L, 1)=2L(L,J) +R1L(L,X) *53 (X,T)
D0 95 T=1,4
o 95 J=1,4
22(1,J)=2.
D0 95 X=L,N

% 92(1,3)=22(T,J) ¥IL(L,K) *311(7,K)
[F(TP.EQ.0.AND. I3EN.NE.0) 30 [0 514
SRINT *," ERROR QUCPUL COVARIANCE MATRIX"
CALL BRINT(Q2,4,4,ND,LP)

514 IF(12.EQ.0) 30 D 419
IF(ISEN.NE.0) 30 TO 417
DO 413 [=1,M
™ 413 J=1,4

418 ¥2(1,3)=02(I,J)

39 0 419

117 T®(IP.LE.1) 30 TD 419
"0 420 T=1,4
o 420 1=1,4

420 2W(T,J)=(22(L, 1 ~¢(I, ) ~I(L,T)

DRINT *," RELATIVE ZRROR OF ERROR JUCPUT
CALL PRINT(24,M,¥,ND,LP)
413 0 97 T=1,M
37 W(T)=SRT(22(I, 1))
[F{IP.EQ.0.AND. ISEN.NE.D) 32 TO 515
SRINT *," R4S RESPONSE OF ERROR JUTRUT™
CALL PRINT(W,1,,1,LP)

515 [F(10.EQ.0) 30 I 123
TF(TSEN.NE.0) 32 TD 421
70 422 I=L,4

422 WY (T)=N(T)

30 10 423



121
4724

104
423

515

70

103
701

432

301

DI 424 1=1,M
'N(T)=(W(L)=NY(T)) /WY (L)

267

PRINT *," RELATIVE ERROR OF RVMS RESPONGE OF SRROR OUTPUT”

CALL PRINT(W,1,M,1,LP)
IF(IZR.NE.3) 30 T 423

DO 104 I=L,M

X=AB3(W(T))

IF(X.ST.AMX) AMX=X

CONTINUZ

TRACEX=).

D 52 [=\,N

SUM=).

o 53 X=1,N

SUM=SUM+EL(I,K) *3 (X, I)
TRACEX=TRACEX+5UM
TRAZEX=TRACEX +TRACE
IF(IP.EJ.0.AND. ISEN.NE.O) 30 I'Q 515
PRINT 54, TRACEX

FORMAT(//," ***PRACE=",G13.5," ***" //
[F(1D.EQ.0) 30 TO 391
IF(TSEN.NZ.0) 32 T 425
TRACEOQO=TRACEX

39 TO 790 ,
TRACEX=(TRAZEX-TRACED) /TRACEQ
PRINT 427, TRATEX

FORMAT(//," 35333 RELATIVE ERROR JF TRACE=",G13.5,"

[F(TCR.EQ.4) AMX=TRATEX
ISEN=2

IF(AMX.GT.CRITER) 32 TO 103
IN=TN+L

INDEX (IN)=TXN

IELEM(IN)=IXE

XMAX (IN) =AaMX

32 TO 133

PRINT*," TYPE IN THE CRITERIA"
READ* ,CRITER

PRINT 579,CRITER

TORMAT(/," ELEMINATION CRITERIA=",G12.4)
[SEN=1

CONTINUE

[F{IN.LE.1) 3O IO 301
NP2=IN

[T=INEL

ILP=IT+l

20 432 r=ILP,IN

INDEX (IT)=INDEX(L)-1
[ZLEA(IT)=TELEY(D)

IT=[T+1

CONTINUS

GO ™ 433

33 T2 399

END

3338",//h



