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NOMENCLATURE

A system dynamics matrix

a
y

side acceleration of center of mass per
unit gravitational acceleration

a
ty

side acceleration of tail per unit gravitational
acceleration

a
ny

side acceleration of nose per unit gravitational
acceleration

Sa aileron deflection

B control distribution matrix

C
1

output scaling matrix for state

C
2

measurement scaling matrix for state

D
1

output scaling matrix for control

D
2

measurement scaling matrix for control

f
t

tail force

G filter gain

H Hamiltonian matrix

I expected value of the integrand of the
quadratic performance criteria

J performance criteria

K control gain

fuselage length

n order of the system

OP operations count

P solution of the filter Riccati equation

p roll rate

Q similarity transformation matrix



NOMENCLATURE (cont)

Q
1

weighting matrix of the output in performance
criteria

Q
2

power spectral density of process noise

R
1

weighting matrix of the control in performance
criteria

R
2

power spectral density of measurement noise

yaw rate

yaw acceleration

Sr rudder deflection

S solution of the regulator Riccati equation

U control covariance matrix

U control error covariance

u the control variable

uy lateral gradient of the longitudinal velocity

a control error

lateral aircraft velocity

v
o

lateral gust velocity

v
x

longitudinal gradient of the lateral velocity

w process noise

wy lateral gradient of normal gust velocity

X the state covariance matrix

X* the estimated state covariance matrix

X the state estimation error covariance matrix

x the system state

x* the estimated state

the state estimation error



NOMENCLATURE (cont)

Y the output covariance matrix

ti
Y output error covariance

y the output

output error

z the measurement

process noise distribution matrix

0 measurement coupling matrix for process noise

X eigenvalue

measurement noise

the correlation time factor of the measurement
noise power spectral density

roll angle



APPLICATION OF LINEAR QUADRATIC CONTROL DESIGN IN
REDUCTION OF AERODYNAMIC FORCES ON AIRCRAFT

I. INTRODUCTION

In order to improve the stability and handling quali-

ties for flight at low speed, the vertical tail of an

aircraft is often designed to be larger than required for

flight at higher cruise speeds. Because of this larger

tail area, excessive gust loading can occur at higher

flight speeds. The purpose of this report is to show the

feasibility of designing an autopilot which utilizes the

aileron and rudder in such a way as to reduce the gust

loading on the vertical tail while maintaining acceptable

levels of the lateral ride motion. The technique used

involves a linear quadratic regulator accomplished with a

stationary Kalman filter. The aircraft model is chosen to

be a typical business jet for which the equation of motion

of the aircraft was derived by the author in a previous

report (1) The equation of motion was linearized for the

nominal flight condition of 450 knots (231 m/s) at 20,000

feet (6.1 km) altitude.

The required theoretical background of the linear

quadratic regulator and the Kalman filter is presented in

Chapter II. In order to solve the regulator and the filter

problem, a Riccati equation has to be solved. An algorithm
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is developed for solving this equation and is described in

Chapter III. Some of the numerical properties of the

algorithm are also discussed in this chapter. A computer

program implementing the proposed algorithm was written and

a user's manual is presented in Appendix E. Also, the

program listing is given in Appendix F.

Measurements are required in order to estimate the

system state. Due to the fact that the sensors for the

measurements are costly, it would be desirable to minimize

the number of sensors required while maintaining acceptable

information for state estimation. A new procedure for

measurement elimination is developed and presented in

Chapter IV. Also, a computer program is coded utilizing

the measurement elimination procedure and is presented in

Appendix G.
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II. THEORETICAL BACKGROUND

II.1 Introduction

Optimal control is a technique used to determine the

minimum or maximum of some performance criteria related to

the performance of a dynamic system. A particular problem

may concern minimizing the pertubation from a nominal

trajectory of an aircraft, maximizing the flight range of a

rocket, minimizing the fuel consumption of a vehicle,

maximizing the profit in a business, or any of a vast

variety of similar problems.

The fundamental problem of optimal control theory may

be divided into four interrelated parts:

1. Definition of the desired goal.

2. Knowledge of our position with respect to the

desired goal.

3. Knowledge of all environmental factors influencing

the past, present, and future.

4. Determination of the optimal policy to achieve the

desired goal from the knowledge stated in (2) and

(3) .

The desired goal is defined as the performance criteria

which is to be minimized or maximized. For instance, the



pertubation from the nominal trajectory of an aircraft is

the performance criteria for one of the problems stated

earlier. To solve an optimal control problem, the knowl-

edge of the system and environmental factors influencing

the system is translated into mathematical terms. This is

called the system model. Realistically speaking, most

physical systems are nonlinear. However, since it is

rarely feasible to solve the optimal control problem for a

nonlinear system of any practical significance, the

development of explicit feedback control schemes for

nonlinear systems is usually out of reach. In many cases,

it is feasible to analyze small pertubations away from the

nominal trajectory. When characteristics of the system do

not significantly change with time, calculations for the

linear time-invariant system can be applied. In this

thesis, the linear time-invariant system model will be

assumed.

A linear time-invariant system can be described by a

set of first order differential equations

X(t) = A x(t) + B u(t) + r w(t)

y(t) = C
1
x(t) + D

1
u(t)

z(t) = C
2
x(t) + D

2
u(t) + v(t) + 0 w(t),

(2.1.1)

4
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where

x(t) is the system state, u(t) is the control,

w(t) is the process noise, y(t) is the output,

z(t) is the measurement, v(t) is the measurement

noise. Note, all these quantities are vectors.

Equation (2.1.1) is called the state-variable description

of the system.

To effectively control the behavior of a system,

knowledge of the system state should be available. If

perfect knowledge of the system state is at hand, and, if

the performance criteria is chosen to be in quadratic form,

a linear quadratic regulator can be designed to solve the

state feedback control problem. In cases where perfect

knowledge of the system state is not available, a Kalman

filter can be used. The linear quadratic regulator

combined with the Kalman filter form a stochastic control

problem.

The focus of this chapter is classified into three

problems:

1. The linear quadratic regulator,

2. The Kalman Filter,

3. The covariance properties.



6

These will be discussed sequentially in sections 2, 3, and

4 in this chapter.
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11.2 The Linear Quadratic Regulator

Consider a linear time-invariant system described by

.
x = Ax + Bu + rw

y = C
1
x + D1u

(2.2.1)

where state x(t) is an n dimensional vector, the control

u(t) is an Q dimensional vector, the process noise w(t) is

a p dimensional vector, and the output y(t) is an m dimen-

sional vector. Assume that the process noise w(t) is zero-

mean Gaussian white noise with non-negative definite power

spectral density matrix andand assume that the initial

conditions x(to) and the process noise w(t) are

independent.

To design a linear quadratic regulator for the system

described by equation (2.2.1), the performance criteria is

chosen as the ensemble average of the quadratic form

J = E lim *--;-

t
f
±co

[

t-
f

i
t
o

(y
TQ

1
y + uTR

1
u)dt (2.2.2)

where Q1, R1 are positive-definite, constant matrices. The

linear quadratic regulation problem is solved by minimizing
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the performance criteria, equation (2.2.2), subject to the

constraints of the system equation described by equation

(2.2.1).

It is shown by Istirm (1970)(2) that the solution

of the above linear quadratic regulator problem is the same

as in the deterministic case when there is no process

noise,

t
f

Min 1
J = lim

2
f (y

T
Q y + uTR

1
u)dt

u
t
f
4°3 t

0

(2.2.3)

subject to the constraints of the system and the output

equations

x = Ax + Bu

y = C1x + D
1
u.

(2.2.4)

It is shown in Appendix A-1 that, by using Pontryagin's

maximum principle (8)
, the solution of the deterministic

linear quadratic regulator problem defined by equations

(2.2.3) and (2.2.4) is given by



The state feedback control law

u = Kx (2.2.5)

where the control gain K is given by

K = C* -R*-1 B
T
S

and S satisfies the algebraic Riccati equation

0 = -SA* - A*
T
S + SBR*

-1
B
T
S - Q*.

(2.2.6)

(2.2.7)

The matrices in equations (2.2.6) and (2.2.7) are given by

the following equations

R* = D1T Q1 D1 + R1

C
*

= -R*-1 D1
T Q1 C1

(2.2.8)

A
* = A + BC*

9



Combining equation (2.2.1) and (2.2.5), the closed loop

dynamic equation is

x = (A + BK) x + rw .

10

(2.2.9)
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11.3 The Stationary Kalman Filter

Consider a linear time-invariant system described by

x = Ax + Bu + rw

(2.3.1)

z = C
2x

+ D
2u

+ v + Ow

where the state x(t) is an n dimensional vector, the

control u(t) is a k-vector, the process noise w(t) is a

p-vector, and the measurement z(t) is a q-vector. Assume

that the process noise w(t) and the measurement noise v(t)

are zero-mean Gaussian white noise with power spectral

density matrices Q2 and R2 respectively. Furthermore,

assume that the initial condition x(to), the process noise

w(t) and the measurement noise v(t) are independent.

To estimate the state, it is desired to maximize the

probability of the state given the measurement (i.e. choose

the most probable state with knowledge of the measurement).

In this case, the performance criteria is given by

Max
x(t)

J
*
= P[x(t)1 z(T), T < (2.3.2)
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When the probability density functions are Gaussian,

maximizing the conditional probability of equation (2.3.2)

is equivalent to minimizing the following criteria(4)

Min
w,v

J = E
lim
÷-c°to

1

f

b
(w
T
Q
2

-1 w + vTR2
-1

v)dt

J(2.3.3)

subject to the system dynamic constraints and that w and v

be causally related to z.

Many authors (4)(5)(6)
have solved the problem defined

by equations (2.3.1) and (2.3.3) when B, D2, 0 are zero

matrices. The case of non-zero, B, D2 and 0 is discussed

in Appendix A-2, where the solution of the stationary

Kalman filter described by equation (2.3.1) and (2.3.3) is

given.

The equation of the state estimate x* is

x
*
= Ax

*
+ Bu + G[-z + D

2
u + C2x*1

The filter gain G is given by

(2.3.4)

(2.3.5)



where P satisfies the algebraic Riccati equation

0 = A **P + PA**
T

+ FQ
2*

r
T

- PC
2

T
R
2*

-1
C
2
P . (2.3.6)

The matrices in equations (2.3.5) and (2.3.6) are given by

R
2*

= R
2

+ 0 Q
2

0
T

A ** = A - r()
2 OT R2*

-1
C
2

Q
2*

= Q2 Q2
0T

R
2*

-1
OQ

2

13

(2.3.7)

The equation of the estimated state x* can be rewritten as

x* = (A + GC
2
)x

*
+ (B + GD

2
)u - Gz . (2.3.8)
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11.4 Discussion of the Covariance Properties

The description of the covariance properties can be

divided into four parts which are considered in the follow-

ing sections.

1. The system with process noise and zero control

In this case, the system is described by

x = Ax + rw (2.4.1)

y = C
1

x

The state covariance matrix is defined by

X = E[x(t) xT (t)] .

(2.4.2)

(2.4.3)

A well known result from stochastic control theory

and described in Bryson and Ho (1969) (7) shows

that X satisfies the following Lyapunov equation

for the stationary case.

0 = AX + XAT + rc)
2
r
T

. (2.4.4)

The rms state is the square root of each of the

diagonal elements of X.



The output covariance matrix is defined by

Y = E[y(t) yT (t)] .

From equation (2.4.2), Y is given by

Y = E[Ci xxT Ci
T

]

= C1 E[xxT ]

1

C. X C

2. The linear quadratic regulator problem with

process noise.

15

(2.4.5)

(2.4.6)

The closed loop dynamic equation of a system

with the state feedback control law, u = Kx, is

given by

x = + BK) x + rw (2.4.7)

Y = (C
1
+ D

1
K) x

where K is given by equation (2.2.6).

Comparing equations (2.4.7) and (2.4.8) with

(2.4.8)

equation (2.4.1) and (2.4.2), we find:
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a. The state covariance matrix X satisfies the

following Lyapunov equation

0 = (A + BK)X + X(A + BK) T
+ FQ

2
r
T

. (2.4.9)

b. The output covariance matrix Y is given by

Y = (C
1
+ D

1
K) X (C

1
+ D

1
K)

T
. (2.4.10)

c. The control covariance matrix, which is

defined as U = E[u(t) uT (t)], is given by

U = E[uu
T

]

= E[Kx xT KT]

= K E[x xTJKT

= K X KT

3. The stationary Kalman filter problem

(2.4.11)

The solution of this problem is described in

section (11.3). The state estimation error is

defined by

(2.4.12)
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which is the difference between the actual state x

and the estimated state x*. The equation for the

state estimation error can be obtained by sub-

tracting equation (2.3.4) from (2.3.1). The

resulting equation is given by

x = Ax + rw - G[-z + D2u + C
2
x
*

.

Using the measurement equation

z = C2x + D2u + v + Ow

and the equation for x, the quantity

-z + D2u + C2x* is given by

-z + D2u + C2x* = -C v - Ow .

(2.4.13)

(2.4.14)

Substituting equation (2.4.14) into (2.4.13),

it yields

x= (A + GC
2
)3'c + rw + Gew + Gy . (2.4.15)

Using the equation of the filter gain G, the

quantity rw + G Ow + Gv can be rearranged as



where

18

Fw + G Ow + Gv = rw* + G*v* (2.4.16)

w* = w - Q2 OT R
2*

-1
v
*

G
*
= -P C

2

T
R

-1

v
* = v + Ow ,

(2.4.17)

the equation (2.4.15) of the state estimation error

can then be written as

x = (A + G C
2
)x + rw* + G* v* . (2.4.18)

It is shown in Appendix A-2 that the power

spectral densities of w* and v* are given by Q2*

and R
2*

which are defined in equation (2.3.7). In

addition, the assumption that x(to) , w(t) and v(t)

are uncorrelated insures x(t
o
), w*(t) and v*(t)

are also uncorrelated. Comparing equation

(2.4.18) with (2.4.1) and using the uncorrelated

property of x(to), w*(t) and v*(t), the covariance



matrix of the stationary state estimation error X

satisfies the following Lyapunov equation

0 = (A + G C2) X + 3C(A + G C2) T + r(2
2*

F T

+ G
*
R
2*

G
*

T

where

Q
2*

= Q2 - Q2 0T
R
2*

-1
0 Q

2

-1
G
*
= -P C2 R2*R

2*

R
2*

= R
2
+ 0 Q

2
0
T

.

19

(2.4.19)

(2.4.20)

ti
To prove X is equal to P, the quantity E is first

defined:

E = P - 5t (2.4.21)

where P is the solution of the algebraic Riccati

equation (2.3.6). Subtracting equation (2.4.19)

from (2.3.6), making use of equations (2.4.20) and



(2.4.20) and (2.4.21), the quantity E satisfies

the following Lyapunov equation

0 = (A + G C 2) E + E (A + G C2) T
.

20

(2.4.22)

It was shown by Kalman (8)
in 1960 that, if the

system is controllable and observable, the eigen-

values of A + G C
2
are all in the open left-half

plane. With this eigenvalue property, it was

shown by Rutherford(9) in 1932 that the unique

solution E of equation (2.4.22) is equal to zero.

Thus, the covariance of the state estimation error

is equal to the solution of the algebraic Riccati

equation (2.3.7), i.e.,

= P . (2.4.23)

4. The stochastic control problem

In cases when perfect knowledge of the state is

not available, a Kalman filter can be used to

estimate the state. This estimated state is then

used in the state feedback control law for the

regulator. Wonham (10) shows that the problem of

filtering and control can be treated independently

in some cases. The result is called the
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separation theorem. According to this theorem,

the solution of the stochastic control problem is

given by the solution of the linear regulator and

the solution of the Kalman filter with the state

feedback control law.

u = K x* (2.4.24)

where x
* is the estimated state.

These solutions for the linear regulator and the

Kalman filter were given in the previous two

sections.

The covariance of the estimated state is defined

by

X* = E[x* x*T] . (2.4.25)

It is shown in Appendix A-2 that x* and '2'c are

uncorrelated, i.e.,

T
E[x* x ] = 0 . (2.4.26)

Using equations (2.4.26) and (2.3.4) and the pre-

vious steady covariance results, the estimated

state covariance satisfies the following Lyapunov

equation



0 = (A +BK) X* + X*(A + BK) T
+ GR2* G

T

where R
2*

= R
2

+ OQ
2

0
T

.

22

(2.4.27)

The covariance of the actual system state is

defined by

X = E[x xT 1 . (2.4.28)

Using equations (2.4.12), (2.4.23), (2.4.26), the

covariance of the state is given by the sum of the

covariance of the estimated state and the covari-

ance of the state estimation error

X = X* + P (2.4.29)

where X* satisfies equation (2.4.27) and

P satisfies equation (2.3.7).

Using the equation (2.4.24) of the control, the

control covariance matrix is given by

U = K X* KT . (2.4.30)
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Substituting the equation (2.4.24), into the output

equation yields

y = (C1 + D K) x* + C
1 1

C1 (2.4.31)

Since x* and x are uncorrelated, the output covari-

ance matrix is given by

Y = (C1 +D1K) X* (C1 + D1K)T + C1PC1T . (2.4.32)
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III AN IMPROVED ALGORITHM FOR SOLVING THE
ALGEBRAIC RICCATI EQUATION

III.1 Introduction

From the discussion in Chapter II, it can be seen that,

in order to solve the linear quadratic regulator and the

stationary Kalman filter problem, the algebraic Riccati

equations (2.2.7) and (2.3.6) have to be solved. Many

authors have suggested methods (11)(12)(13)
to solve these

equations. One of the methods that has been most

successful is the eigenvector decomposition method proposed

by MacFarlane (11)
in 1963 and by Potter

(12)
in 1966. In

this method, the eigenvalues and the corresponding

eigenvectors of the Hamiltonian matrix are determined. The

Hamiltonian matrix is the coefficient matrix of the Euler-

Lagrange system discussed in Appendices A-1 and A-2. The

eigenvectors of the Hamiltonian matrix associated with

eigenvalues whose real parts are all of the same sign are

partitioned into the form of

where

T

T+
=

.-

_X
+

X

A
+ A-

,
X
+

A+

and

CT+ TA

T =

X

A

,

(3.1.1)



25

are eigenvectors associated with eigenvalues with positive

real parts and negative real parts respectively. In the

case that the system is not controllable or not observable,

then eigenvalues with zero real parts may exist, and the

algorithm can fail. Using two of the four submatrices in

equation (3.1.1), one forms a set of linear equations whose

solution yields the solution of the corresponding algebraic

Riccati equation. The choice of which two of the four

submatrices depends solely on which Riccati equation is to

be solved.

The success of this method requires that the parti-

tioned eigenvector matrices be non-singular. However, as

was discussed by Holley (14)
and Wei in 1979, the resulting

matrices may be singular when one or more of the

eigenvalues are repeated. This difficulty can be overcome

by using the generalized eigenvectors, which, however, is

not an entirely satistactory method. In cases when two

eigenvalues are nearly equal, the partitioned eigenvector

matrices, while not singular, remain ill conditioned. This

can lead to errors in the computed solution. Small

perturbations in the system matrix elements can lead to

drastic changes in the partitioned eigenvector matrices,

which also causes poor numerical stability.

An improved algorithm for solving the algebraic Riccati

equation (14)
is presented in this chapter. In this
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algorithm, the Hamiltonian matrix is transformed into

quasi-upper triangular form by an orthogonal similarity

transformations. This transformation is chosen so that the

resulting quasi-upper triangular matrix has all the

eigenvalues with positive real parts in the lower right

hand corner when the regulator problem is solved, and all

the eigenvalues with negative real parts in this corner

when the filter problem is solved. The quasi-upper

triangularization is accomplished by using the stable QR

algorithm with implicit double shifts (15)(16)
. As in the

eigenvector decomposition method mentioned above, the

resulting orthogonal similarity transformation matrix is

partitioned into four n by n matrices. Using two of the

four submatrices, one forms a set of linear equations whose

solution yields the solution of the corresponding algebraic

Riccati equation.

In Section 111.2, the proposed algorithm and its

theoretical basis are presented in more detail. An error

bound for the orthogonal similarity transformation to

quasi-upper triangular form and the operations count for

solving the Riccati equation are discussed in Section

111.3. A computer program which solves the optimal control

problem presented in Chapter II by using the proposed

algorithm was coded and is listed in Appendix F. The

user's manual for the program is presented in Appendix E.
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111.2 The Algorithm and its Theoretical Basis

The proposed algorithm for solving the algebraic

Riccati equation has three major steps:

1. Setting up the Hamiltonian matrix of the

corresponding algebraic Riccati equation,

2. From the Hamiltonian matrix, determine an

orthogonal basis of the invariant subspace (17)

associated with the desired eigenvalues, and

3. The symmetric, non-negative definite solution of

the Riccati equation is found by solving a set of

linear equations involving the orthogonal basis

vectors of the invariant subspace.

These steps will be described sequentially in this section.

As discussued in Chapter II, the algebraic Riccati

equation of the linear quadratic regulator is given by

equation (2.2.7) which is rewritten here

0 = -SA
*

- A*TS + S BR
*

1
B
T

S Q* . (3.2.1)

As described in Appendix A-1, the corresponding Euler-

Lagrange system has the form



x

A

A * -BR
*

1
B
T

-4* -A*T

1.

x

A
40.
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(3.2.2)

where x is the system state and A is the Lagrange multi-

plier resulting from the application of the

Pontryagin maximum principle

The Hamiltonian matrix is the coefficient matrix of the

Euler-Lagrange system and, in this case, is given by

H

A
* -BR*

1
B
T

T-Q* -A
*

AM.

Matrices A*, R*, Q* etc. are defined in Chapter II.

(3.2.3)

The Hamiltonian matrix for the stationary Kalman filter

is similarly defined. The Riccati equation of the Kalman

filter is given by equation (2.3.6), rewritten here as

0 = A** P + PA**
T

+ r(2
2*

rT - P C2T R
2*

-1
C
2

P . (3.2.4)
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It is

Lagrange

01111

x

where

shown in Appendix A-2

system is given by

A** rQ
2*

r
T

C2
T
R2*

-1
C2 -A**

T

A**, Q2*, R2* are defined

are defined in Appendix

that

x

-A

4_

A-2.

the corresponding Euler-

B*

T -1 TC
2

R
2*

D
2 -C2 R2

a..

(3.2.5)

in Chapter II and B*,

4.

z

L

The Hamiltonian matrix in this case is given by

r

-A

H =

A** rQ2*
rT.

C
2

T
R
2*

-1
C
2

-A** T

(3.2.6)

It is shown in Appendix B-1 that if Q* and R* are

symmetric, the eigenvalues of the Hamiltonian matrix

defined in equation (3.2.3) are symmetric with respect to

the imaginary axis in the eigenvalue plane, (i.e., if s is

an eigenvalue of H in equation (3.2.3), then, -s is also an

eigenvalue). A similar result follows for the Hamiltonian

matrix defined in equation (3.2.6) if Q2* and R2* are

symmetric matrices.



It is also shown in Appendix B-1 that, for a con-

trollable and observable system, the solution of the

control Riccati equation (3.2.1) satisfies the relation

Q
11

S = Q
12

30

(3.2.7)

where Q
11

and Q
12 are submatrices of the orthogonal

similarity transformation matrix

Q=

4
11

4
12

Q
21 422

which transforms the Hamiltonian matrix of equation

(3.2.3) into the form

U
11

U
12

0 U
22

4
11

Q
12

Q
21 Q22

A
* -BR* -1 B

T

-Q* -A *
T

Q11 4
12

4
21

4
22

T

(3.2.8)

(3.2.9)

with U
22 having all eigenvalues in the open right half plane.

The solution of the filter Riccati equation (3.2.4)

satisfies the following equation

4
12 P

Q11 (3.2.10)
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where Q
11

and Q
12

are also submatrices of the orthogonal

similarity transformation matrix

Q=

Q
11

4
12

Q
21

4
22

(3.2.11)

which transforms the Hamiltonian matrix of equation (3.2.6)

into

U
11

0

the form

U
12

U
22

4
11

Q
21

Q
12

422

A**

C2
T
R2*

-1
C2

,T

rQ* r 411 Q12

-A** T
421 422

(3.2.12)

With U
22 having all eigenvalues in the open left half plane.

The similarity transformation of equations (3.2.9) and

(3.2.12) has the following form

U
11

U
12

0 U
22

4
11

4
12

4
21

4 22

H

4
11

Q12

4
21 422

T

(3.2.13)

Since Q is orthogonal, premultiplication by QT on both sides

of equation (3.2.13) yields
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H

Q11
T

Q21
T

412
T

Q22
T

411
T

421
T

Q 12T
T

422

U
11

U
12

0 U
22

(3.2.14)

The following equation results

41.

Q11
T

Q11
T

U
11 411

T

H (3.2.15)U11

Q12
T

412
T

U
11

Q12
T

Equation (3.2.15) shows that the linear operator,

represented by the matrix H, transforms the first n rows of

Q into linear combinations of themselves. This shows that

the first n rows of Q

(3.2.16)

form a set of orthogonal basis vectors for the invariant

subspace, which is associated with n eigenvalues of

submatrix U
11 in equations (3.2.9) and (3.2.12).

The highly stable QR algorithm with implicit double

shifts of origin is employed to determine the orthogonal

similarity transformation matrix Q. Wilkinson and

Reinsch (15)(16)
point out that for the QR algorithm,
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the volume of work is greatly reduced if the matrix H is

first transformed to upper-Hessenberg form (i.e., to a

matrix H' such that h!. = 0 for i > j+1). The
13

transformation may be accomplished in a stable manner by

the use of Householder type orthogonal similarity

transformation matrices (15)(16)
. The transformation by

orthogonal matrices takes place in n-2 major steps.

Immediately before the r-th step H has been reduced to Hr

which is of upper-Hessenberg form in its first r-1 columns.

The matrix H
r+1

is derived from H
r
via the relation

H
r+1 Qr r r

The orthogonal matrix Q
r

is of the form

where

Q
r
=I-uu T

/13
r r r

(3.2.17)

(3.2.18)

(r) 1/2 Cr) (r)
u
r
T
= [0,---,0 h

6r .h+
r+1,r r '

h
r+2,r, n,r]

n (r)
2a

r
= E (h )

r+i,r
i=1

(r) 1/2

r
= a

r
± hr+1,r a

r

(3.2.19)

This transformation leaves the zeros already produced in the

first r-1 columns of H
r

unaffected.
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Given the upper-Hessenberg matrix H', the QR algorithm

is used to accomplish the quasi-triangularization which was

described in equations (3.2.9) and (3.2.12). For iteration

s of the QR algorithm, we have

T T
(3.2.20)H

s+2
= Q

s+1
Qs Hs Qs Q

s+1

giving

T
H
s

(Q
s

4s+1
T

) = (4
s

T
4s+1

T
)Hs+2 (3.2.21)

and

(Q
s

T
Q
s+1

T
) (R

s+1
R
s

) = (H
s
-k

s
I) (H

s
-k

s+1
I) . (3.2.22)

writing

Q
s+1

Qs = T , R R = N,
s+1 s

(3.2.23)

and (H
s

- k
s
I) (H

s
- k

s+1
I) = M

we have

Hs TT = TT H
s+2 ,

N = TM, (3.2.24)

where

k
s
and k

s+1 are shifts of origin and
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N is an upper triangular matrix (since Rs and

R
s+1

are upper triangular) .

Householder (18)
demonstrated in 1958 that any real

matrix can be triangularized by successive premultipli-

cationwithQvQ2,...Q11-1,where Qi are of the form

Q. .
1 1

I - 2 w. w.
T

(3.2.25)

and w. is a unit vector with zeros for its first i-1
1

components.

Since the first row of the matrix Qn-1 Qn-2Q2Q1 is
the first row of Q1 itself, it was pointed out by

Francis(19) in 1961 that in triangularizing any matrix the

first factor, Q1, is determined only by the first column of

that matrix. The first column of M is of the form

where

(p
1'

q1, r1, 0, .... .0)T (3.2.26)

p
1

= h
11

2 - h
11

(k
s

+ k
s+1

) + k
s

k
s+1

+ h
12

h
21

q
1

= h
21

(h
11

+ h
22

- k
s

- k
s+1

) (3.2.27)
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h..
13 is the (i,j) element of the matrix Hs and

k
s'

k
s+1 are either real or are complex conjugates

giving real values for p1, q1, and r1.

Because of these properties, the vector w1 associated with

Q
1
has only three non-zero elements, giving the matrix

Q1HsQ1T a maximum of three non-zero elements below the

diagonal element. The matrix with three non-zero elements

below the diagonal is then transformed back to an upper

Hessenberg matrix by using the algorithm for initial

Hessenberg reduction, which is described in equations

(3.2.17) to (3.2.19). Francis(19) shows that this matrix

is the same as H
s+2 in the QR algorithm. A subroutine

called HESS has been coded for the upper Hessenberg

reduction. Since the subroutine HESS is necessary for the

first Hessenberg reduction, the transformation Q111sQl
T

described above is coded as a separate subroutine called

SHIFT2. The resulting matrix from subroutine SHIFT2, which

has three non-zero elements below the diagonal, is

transformed to the Hessenberg matrix by again using the

subroutine HESS. This subroutine was designed to take

advantage of zero subdiagonal elements. Subroutines HESS

and SHIFT2 are described in Appendix E and listed in

Appendix F.

In order to isolate eigenvalues with proper signs in

the U
22 matrix in equations (3.2.9) and (3.2.12), several
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possible shifting strategies for choosing ks and ks+1 were

tried. Experiments indicated that choosing ks and ks+i to

be the desired eigenvalues resulted in a stable and

efficient method. This results from the fact that the QR

algorithm isolates zero eigenvalues in one step (15)
. The

eigenvalues of proper sign are chosen from the full set of

eigenvalues determined by a complete quasi-

triangularization of H with arbitrary ordering. This

results in a two step process: first, the eigenvalues of H

are computed by a full quasi-triangularization, and second,

this knowledge is used to isolate eigenvalues with proper

sign which involves only a partial quasi-triangularization.

It may happen during the course of the iteration that a

matrix H
s
has one or more sufficiently small (to be

regarded as zero) sub-diagonal elements in an undesirable

position. This split of Hs may cause the isolation of the

desirable eigenvalue to be impossible. In this case, an

arbitrary Householder type similarity transformation is

performed to remove the undesired zero on the sub-diagonal

elements. The Householder type matrix is chosen to be in

the form

where

Q
1
= I -

Tuu

Q

Q
1

0

0 I

T
uT u u= [1, 1, ---,1], and 13

2
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The similarity transformation for removing the undesirable

zero on the sub-diagonal is performed according to the

relation

H' = Q Hs Q

Ql 0 H
1

H
2

Ql 0

0 I

Q
1

H
1

Q

0 H
3,

1

Q
1

0

H
2

I

0 H3

where H
3
is the submatrix with desired eigenvalues pre-

viously isolated, and H
1
is the submatrix with the

undesirable zero on the sub-diagonal. The submatrix

Q
1

H
1

Q
1
of the resulting matrix H' is no longer in upper

Hessenberg form, allowing use of subroutine HESS to reduce

it to an upper Hessenberg matrix. With the resulting

matrix, the QR algorithm is then used to continue the

isolation of the desired eigenvalues.

The Householder type reduction is also employed to

solve the linear equations given in (3.2.7) and (3.2.10).

In general, the method can be described as follows:
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Given a linear system

AX = B, (3.2.28)

a sequence of Householder-type matrices is found such

that the product Q satisfies

QAX = QB (3.2.29)

where T = QA is an upper triangular matrix. Back

substitution is performed to solve the equation

TX = Y (3.2.30)

where Y = QB.

Once the solution of the Riccati equation found, the

control gainsithe closed loop dynamics matrix etc. can be

found by simple matrix operations.

In order to solve the covariance equations discussed in

Chapter II, a Lyapunov type equation

AX + XAT = C (3.2.31)

has to be solved. Bartels and Stewart (20)
proposed a

method for solving the above Lyapunov equation in 1972. In



this method, the matrix A is first transformed to a quasi-

upper triangular matrix by using the QR algorithm stated

above. The resulting matrix satisfies the following

equation

where

UY + YUT = T

40

(3.2.32)

U = QAQT is a quasi-upper triangular matrix,

Y = QXQT , and T = QCQT .

Equation (3.2.32) can be written as

U
1

U
2

0 U
3

Y
11

Y
12

T
12 Y22

Y
11

Y
12

Y
12

T
Y
22

0
1

U2 U3U3T

T
11

T
12

T12
T

T
22

(3.2.33)

where U
3
is a one-by-one or a two-by-two block.

Multiplying the partitioned matrices yields

U
1

Y
11

+ Y
11

U1T + U2 Y
12

T
+ Y

12
U
2

T = T
11

U
1

Y
12

+ U
2

Y
22

+ Y
12

U
3

T = T
12

(3.2.34)

(3.2.35)



U
3

Y
22

+ Y
22

U
3

T
= T

22
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(3.2.36)

Since U is in quasi-upper triangular form, the submatrix U3

is either a one-by-one or a. two-by-two matrix. If U3 is a

one-by-one matrix, equation (3.2.36) is a scalar equation

which can be solved immediately. If U3 is a two-by-two

matrix, equation (3.2.36) can be transformed into a stan-

dard linear system of equations of order four or less in the

form of equation (3.2.28). The linear equation can then be

solved by using the Householder type reduction which is

described by equations (3.2.28) to (3.2.30). The solution

Y
22

obtained from equation (3.2.36) is back substituted

into equation (3.2.35). Since U1 is also in the quasi-

upper triangular form, equation (3.2.35) can be broken down

into sub-equations similar to equations (3.2.34), (3.2.35),

and (3.2.36). The back substitution method of matrix

blocks described above is again employed to solve equation

(3.2.35). The solution Y
12

obtained from equation (3.2.36)

is then back substituted into equation (3.2.34). Now,

equation (3.2.34) is a reduced order Lyapunov equation with

U
1
in the quasi-upper triangular form, the back

substitution method of matrix blocks can then be used to

solve equation (3.2.34). The solution of the Lyapunov

equation (3.2.31) is then obtained by the relation



X = QT Y Q

where Y is the solution of equation (3.2.32).

(3.2.37)
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It is shown in Appendix B-1 that, if the eigenvalues of

A are all in the open left half plane, and if the C matrix

is negative definite, the solution of Lyapunov equation

(3.2.31) is a positive definite matrix.



111.3 Numerical Properites of the Quasi-triangularization
and the Operations Count for Solving the
Riccati Equation

The quasi-upper triangularization described in the

previous section can, in general, be written in the form

Hs = G
1
H G

1

T
(3.3.1)
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where G
1
is the product of a sequence of Householder

type orthogonal similarity transformation matrices,

H is the original Hamiltonian matrix, Hs is the

transformed matrix which is of the form

H
s

=

U
11

U
12

0 U
22,

(3.3.2)

It is shown in Appendix C-1 that the computed matrix Hs

satisfies the following equation

Rs = G
1

(E + H) G
1
T (3.3.3)

where Hs is the computed H
s
and E is a perturbation in H.

It is also shown in Appendix C-1 that the perturbation E,

for a machine with a t-digit mantissa, is bounded by
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11E112 < 2-t 11E112 f
8 k n

3 + (3.82 + 4 k)n 2 + 44.5 n

+ 50.9 + (4 k n
2

+ 50.9)s } (3.3.4)

where k = 2.12, 11'112 is the L
2
norm of the matrix

and s is, in most cases, between 3/2 n
2

and

(3n
2

- n).

It should be pointed out that, since the transformation

removing undesired zeros on the sub-diagonal is unnecessary

in most cases, error caused by this transformation was not

included in equation (3.3.4). It can be seen from equation

(3.3.4) that an n4 term dominates the bound of the

perturbation E. In order to have a quantitative feeling

for the above result, assume the order of the system, n, is

equal to 100 and the factors k and s to be the larger

values

k = 2.12

(3.3.5)

s = 3 n2-n

For the CDC CYBER machine, t = 48, and the bound given in

equation (3.3.4) is

11E112 < (.91 x 10-5) 11E11
2

(3.3.6)
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Thus, the computation is reasonably accurate even for such

a large-scale system.

An error bound for the computed similarity transforma-

tion, G1, can be derived as follows. First of all, a

supporting lemma for a derivation of the error bound, which

is proved in Appendix C, is stated as:

Lemma 3.1.

The floating point computation, fl[ ], of matrix

multiplication is given by

where

fl(A
1
A
2

.... As) = A1A2 .... A
s

+ F (3.3.7)

[

11F112 < 1.06 (s-1)n2 2 -t r 11A 11 (3.3.8)
j=1 j 2

With this lemma, the error bound of d
1
can then be derived.

G
1
has the form

G1
Q
s Q11 (3.3.9)

where Q. are Householder type matrices and s is

the number of orthogonal matrices required to
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accomplish the quasi-triangularization described

in equation (3.3.1).

The computed G can be written as
1

G
1

(3.3.10)

where Q. = Qi + e. is Qi with perturbation ei.

With floating-point arithmetic, the computed matrix 51 is

given by

f1 (Qs
11)

= Qs Q
1
+ e

s+1

(Q
s

+ e
s
)(Q

s-1
+ e

s-1
) (Q

1
+ e

1
) + e

s+1

= QS Q
1

+ E E (eim... ei1) u Qj e
s+1m =1 1<ii...<i < s- I M-

(3.3.11)

where e
s+1 is the error in matrix multiplication.

Using equations (3.3.7) and (3.3.8), the bound of e
s+ 1 in

equation (3.3.11) is given by
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Iles+1112 (1.06) (s -1) n2 2-t 7r 11-(57_112

[
i=1 ' (3.3.12)

Substituting the equation

11Qi112 11e112 = 1 11e112

where the fact 11QiI12 = 1 is used.

Since Qi is an orthogonal matrix, equation (3.3.12) becomes

s

Iles+1112 < (1.06)(s -1)n2 2-t Tr (1 + Ilei112)
i=1

(3.3.13)

ItisshowninappendixC-1thate.satisfies the inequality

Ilei112 < 11e112 < (4.8 n + 11.2) 2-t . (3.3.14)

Using equation (3.3.14) and the relation

Tr (1 liei112) < (1 + Ilell2)S
i=1

< exp [11e112s]

< 1 + 1.01 s IIe112

if sIlell2 < .01, equation (3.3.13) becomes



48

I1es+1112 < (s-1)n2 (1.06)2-t (1 + 1.01 slle112) (3.3.15)

where the higher order term is neglected and

11e112 < (4.8 n + 11.2)2-t

The L
2
norm of the summation term in equation (3.3.11) can

be simplified as follows:

Using equation (3.3.14) and 11gi11 = 1, the quantity

1E E (eim...eil) qi
1<ii< M..<i <S j4{i

1...iM

m=1 m

s

= -1 + Hell 2m
m=0 m

-1 + (1 + 11012)s

< -1 + 1 + 1.01 s11e112 , if s11e112 < .01, (3.3.17)



where

(s s!
m) m! (s-m) !
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(3.3.18)

Substituting equations (3.3.14), (3.3.15) and (3.3.17) into

(3.3.11), the resulting equation is given by

IleG112 = 111 G1112

< 1.01 sliell2 Iles+1112

< (s-1)n 2
(1.06)2-t

+ 1.01 [s (s-1 )n
2

(1.06) 2
-t

+ s] (4.8 n

+ 11.2) 2 (3.3.19)

If s = 3n 2
- n, n = 100, and t = 48, the above bound is

IleGil < 1.2 x 10-6.

The accuracy of the computed orthogonal matrix is

(3.3.20)

acceptable even for a large scale system with n = 100.

One way to express the efficiency of an algorithm is by

an operations count; the number of arithmetic operations

required for the algorithm. Since the computational time

for multiplication and division is usually much larger than



50

for addition and substraction, it is customary to count

only the number of multiplications and divisions. The

operations count of multiplications and divisions for

solving the algebraic Riccati equation is now determined.

This operations count has three major parts: (1) OP for

finding the eigenvalues of the Hamiltonian matrix, (2) OP

for isolating the n desired eigenvalues on the lower right

hand corner of the transformed Hamiltonian matrix, and (3)

OP for solving the linear equations formed by the parti-

tioned matrix of the orthogonal similarity transformation

matrix. It is shown in Appendix C-2 that the total OP

required for solving the algebraic Riccati equation using

the algorithm described in the previous section is usually

between limits

OPmax
= 186.2 n3 + 81 n

2 - 56.2 n 67

and (3.3.21)

OPmin = 186.2 n
3 + 57 n 2 - 83.2 n - 41

where n is the order of the system.

In the case n = 100,

OP
max

= 1.870 x 10
8

OP = 1.868 x 10
8

.

min
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IV ELIMINATION OF UNNECESSARY MEASUREMENTS

IV.1 Introduction

State estimation accuracy is highly dependent on which

measurements are used. When more measurements are

available, the estimation of the state will be more

accurate. These measurements of the system outputs are

gathered by sensors. However, due to sensor cost, it is

desirable to minimize the number of sensors required.

In the following section, possible criteria for

measurement elimination are discussed, and an elimination

procedure is described. At the end of this chapter, the

proposed procedure is applied to a small jet aircraft

control problem. A computer program was developed for the

application of the proposed general procedure and is

presented in Appendix G.
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IV.2 The Measurement Elimination Criteria

The system model is assumed to be linear and time-

invariant with the state equation

A = Ax + Bu + rw . (4.2.1)

The controlled outputs and measurements satisfy

y = C1 x + D1 u (4.2.2)

z = C2x + D2u + v + Ow (4.2.3)

where z represents the vector of sensor measurements.

The criteria for measurement elimination depends on the

purpose of the state estimation. For instance, when state

estimation alone is desired, the accuracy of the estimated

state is the obvious criterion. However, if the estimated

state is used in state feedback control, the accuracy of

the control variable is more important. When the objective

of the controller is to minimize the quadratic performance

co

J =
2

E[ f (y
TQ y + uTR

1
u)dt ],

the stationary expected value of the integrand

(4.2.4)
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E[yTQly + uTRiu] (4.2.5)

is another possible criterion. If the output y is the

variable of interest, the output could also be a criterion.

Therefore, four criteria for measurement elimination are

discussed.

a. The rms state estimation error

As discussed in Chapter II, the state estimation

error satisfies equation (2.4.15) which is

rewritten here

x = (A + GC
2
) i + rw + GOw + Gv (4.2.6)

where G is the filter gain and is given in equa-

tion (2.3.5). Also shown in Chapter II is the

covariance of the state estimation error, given by

YC = E (X' xT1

(4.2.7)

= p

where P satisfies the algebraic Riccati equation

0 = A** P + PA**
T

+ rQ
2*

r
T
- PC

2
TR

2*
-1

C
2

,P (4.2.8)
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and A**, Q2*, R2* are defined in equation (2.3.7).

The rms state estimation error, which is defined as

rms x. = (4.2.9)

is equal to the square root of the diagonal elements

of the state estimation error covariance X.

b. The rms control error

The control error is defined as

u = Kx - Kx
*

= Kx . (4.2.10)

The control error covariance is given by

= E [

= K P KT .

The rms control error

rms u_ =

(4.2.11)

(4.2.12)



is given by the square root of the diagonal ele-

ments of V.

c. The rms output error

The output error is defined as

= (C1 + DiK)(x - x*)

= (C
1

+ D
1

K)il

The rms output error

ti
rms y.
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(4.2.13)

(4.1.14)

is given by the square root of the diagonal ele-

ments of the output error covariance

Y = E [-Y VT]

= (C
1
+ D

1

K) P (C
1

+ D
1
K)

T
. (4.2.15)

d. The expected integrand of the control performance

criterion

It is shown in Appendix D that the expectation of

the integrand is given by



I = E[y
TQ

1
y + uTR

1
u]

= tr[SFQ
2
rT + KT (R

1
+ D1

TQ1
D1 ) Kip]

56

(4.2.16)

where tr[A] iS the trace of the matrix A, S is the

solution of the regulator Riccati equation (2.2.7),

and P is the solution of the filter Riccati equa-

tion (4.2.8).

It is also shown in Appendix D that the rms values of

and I are non-decreasing as the number of

measurements decreases. The properties of non-decreasing

error are stated in the following theorems.

Theorem 4.1.

Let
f

Pi Pik be the covariance of the state estimation

error without ith and without i th and kth measurements

respectively. These covariances satisfy the following

algebraic Riccati equations

A
**
P. + P.A *T + FQ

2*
r
T - P.R.P. = 01 1 1

(4.2.17)

A
**

P
ik

+
PikA * *T

Pik+ FQ
2*

r
T - Pik Rik

Pik 0. (4.2.18)



The matrices in the above equations are defined in

equations (2.3.7) of Chapter II. Ri and Rik are the term

C
2

T
R
2*

-1
C
2
with the

.th .thand with the and k
th

measurements eliminated. Assuming that the estimation

error dynamic equation is asymptotically stable (i.e., the

eigenvalues of A** - Pik
Rik

and A** - PiRi are all in the

open left half eigenvalue plane), then,

if

Also,

if

AP .= Pik
1

- P. > 0

AR. = 11i > 0
1 k

(rms X-))ik - (rms SI))i > 0

DR =
1 ik

- R > 0 ,
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(4.2.19)

(4.2.20)

(4.2.21)

(4.2.22)

th.where subscripts j means 3 element of the vector a' and

subscripts ik and i indicate the elimination of the

.th
and k

th .th
and the measurements.
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Theorem 4.2.

Under the same condition as in theorem 4.1, the follow-

ing results are concluded.

then

If

a.

b.

c.

and

and

AR. =
i1 k

R > 0 ,

ti
ik 1

> o

(rms a.3 )
ik 3

- (rms u.). > 0

>Yik o

(4.2.23)

(4.2.24)

(4.2.25)

(4.2.26)

(rms Yi)ik (rms 37))i > 0 , (4.2.27)

Ii I. > 0,
k 1

(4.2.28)

where subscripts j, ik, and i have the same meaning

as in the above theorem.



The proof of theorems 4.1 and 4.2 is given in Appendix D.

If the matrix R
2*

= R
2

+ 0(2
2
0
T
is a diagonal matrix, AR in

equations (4.2.20), (4.2.22), and (4.2.23) is given by

T -1
AR = c2k

r2 *k
c
2k

(c2kT c2k) /r2*k
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(4.2.29)

where c
2k

is the kth row of the C
2
matrix and r

2*k
is the

kth diagonal element of R
2*

matrix.

It is understood that AR in equation (4.2.29) is a rank 1

matrix, provided c2k is not a zero row vector, and the non-

zero eigenvalue is given by (c2kc2k T)/r2*k which is a

positive real number. This shows that if R
2*

is a diagonal

matrix, AR is theorem 4.1 and 4.2 is always a non-negative

definite matrix.

From theorem 4.1 and 4.2, a measurement elimination

procedure is developed and is described as follows.

Step 1.

Decide the desirable criteria and an acceptable

percentage of the relative difference. The relative

difference is defined as



RD. =
1 rms I

(rms X.)
k

- rms xi
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(4.2.30)

where rms 'ii is chosen for the criterion example, the

subscript k refers to the elimination of the

ktilmeasurement,andrmsX%is the value with

all the available measurements.

For discussion purposes, the criterion is chosen to

be rms x. and 10 percent is chosen as the acceptable

percentage.

Step 2.

Calculate rms xi with all the q measurements.

Step 3.

Take out one measurement at a time and calculate the

maximum relative difference

maxMRD
k i

RD.
1

(4.2.31)

Again, subscript k refers to the elimination of the

k
th measurement.



Step 4.

Store all the indices k such that

MRD
k

0.1 (10%)

and eliminate the jth measurement

where

MRD. = min { MRD
k

}

Step 5.
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(4.2.32)

(4.2.33)

If there are none or only one k satisfying equation

(4.2.32), we are done. Otherwise, go back to step 3

and eliminate measurements among the remaining.

Step 2 and Step 3 require the calculation of the

Riccati equation solution, which dominates the computation

required. The maximum number of times Step 3 will be

carried out is given by

q + (q 1) + + 2 + 1 -
q(q + 1)

2
(4.2.34)

where q is the number of measurements to start with.

However, since it is impossible to eliminate all the mea-

surements, in most cases, the number of times Step 3 is
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carried out is usually much less than q(q
2

1). The

minimum number of times Step 3 is carried out will be q,

the number of original measurements.

The proposed measurement elimination procedure is

applied to the small jet aircraft problem described in

Chapter I and the results presented in the next section.
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IV.3 Application of the Measurement Elimination Procedure

The measurement elimination procedure proposed in the

previous section is applied to a small jet aircraft. The

aircraft model is a business transport flying at a constant

altitude of 20,000 feet (6.1 km) and a nominal cruise speed

of 450 knots (231 m/s). The stability derivative data was

supplied by G.D. Park(22) and resulted in a standard fourth

order lateral aircraft model previously developed by

Wei (1)
. The model was linearized about the nominal flight

condition.

The aircraft model is augmented with a fourth order

wind gust model previously developed by Holley and

Bryson (23)
. The resulting eighth order linear system

forced by white noise has two controls, aileron and rudder,

and can be described as

where

.
x = Ax + Bu + rw

x
T = [p, r, v, (P., v

o
, v

x,
u
y,

w
y

]

u
T = [Sa, Sr]

p = roll rate (rad/sec)

r = yaw rate (rad/sec)

v = lateral aircraft velocity (ft/sec)

(4.3.1)



(I) = roll angle (rad)

v
o

= lateral gust velocity (ft/sec)

v
x

= longitudinal gradient of the lateral

velocity (sec
-1

)

u = lateral gradient of the longitudinal

velocity (sec -1
)

w = lateral gradient of normal gust velocity

(sec-1 )

Sa = aileron deflection (rad)

Sr = rudder deflection (rad)

The optimization criterion chosen for this study is given

by

co a 2 2 f 2Min 1

Sa,Sr J = E I [ (a yo) + (x--) + (t
fto

) at }
Lo

where
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(4.3.2)

a = lateral acceleration per unit gravitational

acceleration

r = yaw acceleration (rad/sec 2
)

f = side force on vertical tail per unit weight

of the aircraft.

The criterion of equation (4.3.2) seems reasonable since it

minimizes the expected deviations in the lateral and yaw

acceleration (ride performance) and in the tail side force.

The control deviations are not explicitly weighted in the
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performance criterion because they are already indirectly

included in the response variables chosen.

The criterion above is of the general form

Min 1
J = E[ I (YT4 Y + uTR u )dt]

z o 1 1

00

subject to the constrains

X = Ax + Bu + rw

y = C
1
x + Diu

(4.3.3)

(4.3.4)

where y
T = [ay, r , ft] is the output of the system and

w is the white noise disturbance vector with power

spectral density Q2.

In the case when perfect state information is not available,

additional measurement and causality constraints are added.

z = C2x + D2u + v (4.3.5)

where z is the measurement vector and v is the white

measurement noise with power spectral density R2

and uncorrelated with w.

Equations (4,3.4) and (4.3.5) are discussed in detail in

Appendix D.



Application of the measurement elimination procedure

and solution of the control synthesis problem requires a

reasonable choice of weighting factors ayo, ;.0, and fto

appearing in the performance criteria (4.3.2) as well as a

choice of the measurement vector z. In order to provide

reasonable aircraft ride performance, it is desirable to

keep lateral acceleration small all along the fuselage.

This can be achieved with a rigid aircraft if the nose and

tail accelerations are kept small. Averaging the squares

of these quantities yields

1 1 9, 2 1 .

-2- (any
2 + at 2) = (ay + r) + -2- (a r)

2

2

2,

= ay2 + (-- r)
2

2g

where Q = fuselage length
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(4.3.6)

a
ny

= non-dimensional nose side acceleration

a
ty

= non-dimensional tail side acceleration.

Thus, the weighting factors a
o

= 1 and t.
o

= = 1.323 are

chosen. It is pointed out by Holley and Wei(24) that a

reasonable control implementation occurs when f
to

is

designated as 0.3.

The measurement vector is chosen to be

[p, ft. v, v vol10, r, (1), aty' ay' t
(4.3.7)
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where v - v
o

is the relative velocity of the aircraft

with respect to the surrounding air.

The sensors used for the measurement (4.3.7) are described

as follows. The roll and yaw rates, p, r, can be measured

by mounting rate gyros
(25)

on the body of the aircraft. A

two-degree-of-freedom vertical Gyro
(25)

, whose spin axis is

vertical, can be placed on the body of the aircraft to

measure the roll angle cp . The side acceleration of the

center of mass and of the vertical tail, a and aty, can be

obtained by placing accelerometers (25)
near the mass center

and on the vertical tail of the aircraft respectively.

Strain gauges can be used to measure the strain in the

tail. The strain gauge can be mounted on the tail near the

main fuselage structure to prevent a possible large ampli-

fication of noise. The tail strain can then be converted

to the tail loading, ft , if linear elastic properties of

the tail are assumed. The side velocity can be calculated

from the outputs of the horizontal accelerometers
(25)

However, since outputs of accelerometers may have bias, the

integrated signal is potentially unstable. To overcome

this difficulty, a doppler radar system
(25) can be used to

measure the velocity. A low pass filter is applied on the

velocity signal from the doppler radar and a high pass

filter is applied on the velocity integrated from the

accelerometers outputs. The combined signals from the low-

pass and high-pass filters give a good estimation of the
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side velocity. To measure the relative velocity of the

aircraft with respect to air v-v
o

, a pitot-static tube (25)

can be used. A pitot-static tube consists of a static-

pressure port which measures the static pressure and a

pitot tube which measures the stagnation pressure. A

pitot-static tube is mounted in such a way that it aims

directly into the relative wind component to be measured

(in this case laterally). The precise location of a pitot-

static tube is selected by wind-tunnel tests and by tests

at numerous locations on the actual aircraft, in order to

be as free from error as possible at all flight speeds and

attitudes. The static and stagnation pressures can then be

converted to the relative side velocity v-vo .

The power spectral densities for the measurement noise

were chosen on the following basis. The two rate gyros for

p and r being similar, should have the same error

characteristics. The two accelerometers for at and a ,

also, should have the same error characteristic. Thus, the

following form for the measurement noise power spectral

density was assumed.

R
2

= diagonal [1.
1'

r
2'

r
3

r 8

where

(4.3.8)
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(rms p) + (rms r2
)

r
1
= r

2
= T

2

1 L 2

,,
r
3
= T

3
* (rms p)

2

r
4

= r
5

= T
4
* (rms a

y
)

2

,

r
6

= T
6
* (rms )

, 2
r
7
= T

7
* (rms v)

, 2 ,

r
8
= T

8
* [rms v) + [rms v

o
)

2,

and the rms values are the controlled responses

assuming perfect state knowledge.

The correlation time constants T
1
to T

8
were varied to

achieve reasonable eigenvalues for the state estimation

error dynamics. The result turns out to be

ri = r2 = 0.9387082 * 10 -4 , T
1

= 1 sec

r
3
= 0.14625 * 10-5 T

3
= 0.05 sec

r
4
= r

5
= 0.1901376 * 10-4, T

4
= 0.3 sec

r
6
= 0.1123035 * 10-5 , T6 = 0.3 sec



r
7
= 0.1270288 * 10 -2

, T
7
= 0.002 sec

r
8
= 0.33143 T

8
= 0.2 sec

The resulting eigenvalues of the controller and the esti-

mator are given by

The controller The estimator
(sec-1) (sec-1)

1.0227

-2.1709 ±2.8732j

3.9502 ±0.33407j

16.788

-25.181

- 89.863

- 2.5493 ±0.97726j

- 5.6246 ±6.8560j

-13.259

- 16.606

-25.502

- 90.712
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The measurement elimination procedure is now applied to

the system model described above. Since the purpose of the

Kalman filter in this case is to provide state estimates

for the controller, the rms control error, which is

described in equations (4.2.10) to (4.2.12), is used as the

criterion of the elimination procedure. The acceptable

percentage of the relative difference, which is described

by equation (4.2.30), is chosen to be 10 percent for

engineering purposes.



The results of the measurement elimination procedure

can be described as follows. First, application of Step 1

through Step 5 of the elimination procedure will eliminate

the measurement r and will recognize the measurements p,

a
y'

f
t'

and v-v
o are potential candidates for further

elimination. Step 3 through Step 5 of the procedure is

then applied to those potential candidates which yield the

elimination of the measurement v-v
o
, which leaves p, 4), a

and ft. Again, these potential candidates are used for

further elimination. This yields the elimination of p

followed by a and TheThe resulting measurement is given

by

71

z
T

= [4), aty, v] . (4.3.9)

This procedure resulted in 22 computations of Step 3

requiring approximately 90 cpu seconds on the CDC CYBER 73

system.
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V RESULTS AND DISCUSSION

V.1 Results of Tail Force Reduction

As discussed before, the aircraft used for the tail

force reduction is a small business jet flying at a

constant altitude of 20,000 feet (6.1 km) and a nominal

cruise speed of 450 knots (231 m/s). This system model is

described in more detail in Chapter I, Chapter IV, and

Appendix D. Equations (4.3.1) through (4.3.5) give the

system equations as well as the performance criterion. The

measurement for state estimation described in equation

(4.3.5) is given by

z
T

= aty, v] (5.1.1)

which results from the measurement elimination procedure

discussed in the previous chapter.

The computations were carried out on a CDC Cyber 73

computer system using the program listed in Appendix F.

Tables 1 and 2 give the resulting control gain and filter

gain. The closed loop eigenvalues of the controller and

the estimation eigenvalues are given in table 3.
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TABLE 1. THE LATERAL FEEDBACK CONTROL GAIN

p r v
(1)

Sa

Or

.59479x10
-2

.54081x10
-1

.32849

.64000

.97467x10
-3

.63828x10
-3

-.10210

.12039

v
o

vx u
Y

u
Y

Sa -.12611x10
-2

-.27779x10
-1

-.41981x10
-1

-.36929x10
-1

or -.13524x10
-2

.72326x10
-1

-.17224x10-1 -.16450x10
-1

TABLE 2. THE FILTER GAIN

(1) at v

P -5.0915 -3.6635 -.46825

r .50090 .35463 .75626x10
-1

v -64.884 -11.320 -10.937

(i) -2.1789 -.21271 -.74704x10-1

v
o

-129.33 -251.98 -18.459

v
x .14908 .55355 .23344x10

-1

u .42505x10
-1

-.22464 -.25350x10
-1

Y

w -.22901 -.65860 -.41956x10
-2

Y
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TABLE 3. THE CLOSED LOOP EIGENVALUES OF
CONTROLLER AND FILTER

Controller Filter

-.21709

-3.9502

-1.0227

-89.863

-16.788

-25.181

±2.8732j

±.33407j

-2.4759

-5.3053

-12.094

-90.001

-16.731

-25.516

±1.0159j

±7.5734j

In state estimation, obviously the best estimated state

can be achieved when the measurement is equal to the state

itself. However, since the wind statesv,v,u,w are
o x y y

difficult to measure, the case z = x is not of interest in

practice. However, in order to see the effect of the

measurement, comparison between four cases: (1) z = x, (2)

zT = [p, r, (I), aty, ay, ft, v, v-v0], (3) z
T

= [(1), aty, v],

and (4) open loop, is of interest. The power spectral

density of the measurement noise for the case z = x is

assumed to be

R
2
= diagonal [r1, r

2
, r3, 0.001 r8] (5.1.2)

where r1, r2, r
3,

r
4
are for the variables p, r, v, cl)

and are assumed to have the same values as in the case

z
T = [p, r, 4, aty, ay, ft, v, v-v0]. The remaining terms



r5, r6, r7, and r
8
are for the variablesvo,vx,u, wyy,

which are assumed to be of the form (choosing vo as an

example)

r
5

= T * (rms v
o

)

2
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(5.1.3)

where the correlation time constant T is chosen to be 0.2

for all cases. The resulting noise power spectral densities

are given by

r
1

= r
2

= .93871 x 10
-4

r
3

= .12703 x 10
-2

r
4

= .14625 x 10
-5

r
5

= .20438

r6 = .30812 x 10-4

r
7

= .15158 x 10
-4

r
8

= .15842 x 10
-4

The rms state for those four cases is presented in table 4

and the rms control and output is given in table 5.
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TABLE 4. THE RMS VALUES OF AIRCRAFT AND WIND STATES

Cases
P r v

(1)

.

1

2

3

4

.17654x10
-1

.16461x10
-1

.16924x10-1

.28081x10
-1

.21546x10
-2

.18770x10
-2

.19824x10 -2

.37140x10
-2

.92196

.87406

.89189

1.2102

.59229x10
-2

.60863x10
-2

.60645x10-2

.12334x10-1

Cases

v
o

v
x

u
Y

w
Y

1

2

3

4

1.0109

1.0109

1.0109

1.0109

.12413x10
-1

.12413x10-1

.12413x10 -1

.12413x10-1

.87058x10
-2

.87058x10
-2

.87058x10-2

.87058x10
-2

.89001x10
-2

.89001x10-2

.89001x10-2

.89001x10-2

TABLE 5. THE RMS VALUES OF CONTROL AND OUTPUT

Cases

6a 6r ay

1

2

3

4

.12177x10
-2

.13342x10
-2

.12971x10-2

.66513x10-3

.71589x10
-3

.69302x10-3

.77019x10
-2

.82503x10-2

.81018x10-2

.12042x10-1

Cases
r ft

1 .13958x10
-1

.23506x10
-2

2 .11915x101 .22995x10-2

3 .12645x10-1 .23267x10
-2

4 .17959x10
-1

.33337x10
-2
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From table 5, the reduction of a r, and f
t
with respect

to the open loop can be calculated and is presented in

table 6.

TABLE 6. THE OUTPUT REDUCTION ACCOMPLISHED WITH
STATE ESTIMATION

ii)ecioot

Cases
2o

12

a
Y

.
r f

t

1 36.04% 22.28% 29.49%

2 32.49% 33.65% 31.02%

3 32.72% 29.59% 30.21%

It is also interesting to see the percentage change in the

rms state, control, and output in relation to the case 1

where of z = x. It can be calculated from table 4 and 5 and

is presented in table 7, 8. Due to the fact that the wind

state variables, vo, vx, u
y'

and wy are not controllable,

the rms values of those state variables are not affected by

the controller. The unchanged property of the wind state

variables can be seen in table 4. Because of this

property, only the aircraft state variables are presented

in table 7.
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TABLE 7. THE PERCENTAGE CHANGE IN THE RMS AIRCRAFT
STATE IN RELATION TO THE CASE z = x

P r v
cl)

Cases

2 -6.76% -12.88% -5.19% -2.76%

3 -4.13% -7.99% -3.26% -2.39%

TABLE 8. THE PERCENTAGE CHANGE IN THE RMS CONTROL
AND OUTPUT IN RELATION TO THE CASE z = x

Sa Sr a t.
ftY

Cases

2 9.57% 7.63% 7.12% -14.64% -2.17%

3 6.52% 4.19% 5.19% -9.41% -1.02%

As shown in table 6 that, with the measurement zT = [b,

a
ty

, v],a reduction of 30 percent in the open loop response

of the aerodynamic tail forces appears to be feasible for

the aircraft flying in turbulence. Also, a reduction of 30

percent of the open loop response in the side acceleration

a
y and the yaw acceleration r appear to be feasible in the

case of zT = [cp, aty' v]. This shows that the aircraft

ride performance is improved while reducing the tail

loading.

It is evident that, for state estimation, the best

filter can be achieved with the measurement z = x.

However, from tables 7 and 8, the percentage change in the
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rms responses of the state output, and control are within

15 percent of the case when z = x. The filter with

measurement ZT = aty, V] is evidently feasible, and

gives nearly optimal results.



80

V.2 Discussion

It is pointed out in Chapter IV, that the correlation

time factor T of the power spectral density R2 is varied to

achieve reasonable eigenvalues for the state estimation

error dynamics. Nine cases were tested to determine

appropriate values of T The values tested are listed in

table 9.

TABLE 9. CASES TESTED FOR DIFFERENT VALUES OF THE
CORRELATION TIME FACTOR T IN R2

°,c
'4

measurement

1 2 3 4 5 6 7 8 9

p, r 1. 1. 1. 1. 1. 1. 1. .1 .1

(I) .01 .1 .01 .01 .01 .01 .01 .01 .05

a
ty

, a
y

.3 .3 3. .3 .3 .3 .3 .3 .3

f
t

.3 .3 .3 .3 .3 .3 .3 .3 .3

v .2 .2 .2 .4 .02 .02 .002 .002 .002

V - v
0

2. 2. 2. 2. 2. .02 2. .2 .2

It is useful to see how the eigenvalues of the state

estimation error dynamics, and the rms response of the

state, control, and output change as T changes. The

eigenvalues are listed in table 10 for the nine cases.
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TABLE 10. THE EIGENVALUES OF THE STATE ESTIMATION
ERROR DYNAMICS FOR DIFFERENT VALUES OF T IN R2

Case 1 Case 2 Case 3

-1.1231

-5.4053

-12.646

-16.626

-25.512

-90.743

±.90455j

±5.9140j

-1.2169

-3.8116

-11.863

-16.649

-25.488

-90.743

±.70785j

±3.3171j

-1.1394

-5.5202

-9.3924

-16.779

-25.204

-90.636

±.91480j

±7.2646j

Case 4 Case 5 Case 6

-.98103

-5.4018

-12.640

-16.626

-25.512

-90.743

±.74612j

±5.9019j

-1.8842

-5.4699

-12.740

-16.624

-25.513

-90.743

±1.5805j

±6.1216j

-1.8825

-5.4925

-12.901

-16.609

-25.514

-90.711

±1.5801j

±6.0562j

Case 7 Case 8 Case 9

-2.9015

-6.0415

-13.484

-16.600

-25.523

-90.743

±2.1613j

±7.5074j

-2.9009

-6.0631

-13.631

-16.580

-25.524

-90.711

±2.16217j

±7.4448j

-2.5493

-5.6246

-13.259

-16.606

-25.502

-90.712

±.97726j

±6.8560j
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As shown in table 10, different eigenvalues are changed

when different values of T are changed. However, when the

T associated with the measurements p, r, and v-vo is

changed, the eigenvalues do not change very much. Thus, it

is predicted that the filter is not very sensitive to the

elements of the R
2
matrix corresponding to the measurements

p, r, v-v
o

.

The rms response of the aircraft state, the control,

and the output for the nine cases is listed in table 11.

Again, the reason that the rms wind state are not listed is

because those states are uncontrolled and are not effected

by the controller or filter. From table 11, it can be seen

that the maximum percentage change in the state is 17

percent, 18 percent in the control, and 14 percent in the

output. Since the accuracy of the estimated state depends

on the measurement noise, the power spectral density R2

plays an important role in the state estimation. As the R
2

matrix is not determined by real sensor tests, it is

necessary to study the sensitivity of the R
2
with respect

to the rms responses. This sensitivity study will show the

effect of the R
2
matrix in this autopilot design.
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TABLE 11. RMS RESPONSES OF THE AIRCRAFT STATE, THE CONTROL,
AND THE OUTPUT FOR DIFFERENT VALUES OF T IN R2

%ofme
p r v

1

2

3

4

5

6

7

8

9

.17526x10
-1

.17958x10
-1

.18481x10-1

.17724x10 -1

.16986x10 -1

.16943x10
-1

.16449x10
-1

.16417x10 -1

.16461x10 -1

.20229x10
-2

.20987x10
-2

.

.22202x10
-2

.20424x10
-2

.19567x10
-2

.19457x10
-2

.18706x10
-2

.18612x10
-2

.18770x10
-2

.93212

.94845

.96243

.94871

.89555

.89364

.87369

.87204

.87406

1;74 0 f
caw CP (Sa or

1

2

3

4

5

6

7

8

9

.63770x10
-2

.65659x10
-2

.63347x10
-2

.64844x10
-2

.61143x10 -2

.61184x102

.59645x10
-2

.59706x10-2

.60863x10
-2

.13800x10
-2

.13650x10
-2

.12930x10-2

.13977x10
-2

.13412x10-2

.13451x10-2

.13316x10
-2

.13352x10
-2

.13342x10
-2

.64370x10
-3

.63387x10
-3

.59499x10-3

.62330x10
-3

.69037x10-3

.69239x10-3

.71811x10
-3

.71970x10
-3

.71589x10
-3
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TABLE 11. RMS RESPONSES OF THE AIRCRAFT STATE, THE CONTROL,
AND THE OUTPUT FOR DIFFERENT VALUES OF T IN R2 (cont)

ci
iset).40, ay r f

t

1

2

3

4

5

6

7

8

9

.87087x10
-2

.87952x10
-2

.83987x10
-2

.88696x10 -2

.83231x10
-2

.83398x10
-2

.81437x10
-2

.81613x10
-2

.82503x10
-2

.12128x10_1

.12210x10 -1

.13636x10-1

.12147x10_1

.12065x10-1

.11981x10 -1

.11932x10
-1

.11853x10
-1

.11915x10-1

.24385x10
-2

.24955x102

.24677x10
-2

.24691x10-2

.23558x10
-2

.23538x10
-2

.22879x10
-2

.22867x10
-2

.22995x10-2

From table 11, it is expected that changes in the R2 matrix

will not cause drastic changes in rms responses. However,

since the change in T for these nine cases is only a factor

of 10 to 100, this is not a sufficient evidence for

complete insensitivity of the rms responses to all possible

changes in the R
2

matrix.

One reasonable way to study the sensitivity of the rms

responses with respect to the R2 matrix is to set R2 = 0

when the rms response is calculated. Since the state

covariance X is the sum of the estimated state covariance

X* and the estimation error covariance P, which is shown in

equation (2.4.29), the effect of R2 is through X* and P.
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If R
2
is set to zero when the rms response is calculated,

then R
2 will not effect the calculation of the covariance

properties. In this case, the only effect of R2 with

respect to the rms response is through the filter which can

not be avoided. However, when R2 = 0, the filter is no

rurlonger optimal, and the expectation E[x, x is no longer

equal to zero. In this case, a 2n'th order system is set

up to calculate the rms reponse. The 2n'th order state

equation is given by

X

[x

A BK

-GC
2
A + BK + GC

2

x

x
*

410

r

0

w (5.2.1)

where x is the actual state, x* is the estimated state,

w is the process noise.

The covariance matrix satisfies the usual Lyapunov equation

for a linear system forced by white noise. The resulting

rms response are listed in table 12.

TABLE 12. THE RMS RESPONSE CALCULATION WITH R2 = 0

mu
case

p r v

z = x

z=8 measurements

z=3 measurements

.17143x10
-1

.15943x10
-1

.16336x10
-1

.20821x10
-2

.17893x10
-2

.18865x10
-2

.91620

.86647

.88355
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TABLE 12. THE RMS RESPONSE CALCULATIONS WITH R2 = 0 (cont)

rms
case ($ )

6a Sr

z=x

z=8 measurements

z=3 measurements

.57535x10-2

.59402x10
-2

.59034x10
-2

.10670x10 -2

.12243x10_2

.11629x10_2

.51991x10-3

.60378x10
-3

.56600x10
-3

case

rms a
y

r f
t

z=x

z=8 measurements

z=3 measurements

.75261x10
-2

.80792x10
-2

.79136x10
-2

.12749x10-1

.10727x10-1

.11358x10 -1

.22571x10-2

.21945x10-3

.22148x10-3

The percentage change for the case R2 = 0 relative to the

nominal R
2
case and the open loop can be calculated from

tables 4, 5, and 12. The results are listed in tables 13,

14, and 15.

TABLE 13. THE RELATIVE R
2
SENSITIVITY FOR z=x

P r v
(i)

Sa Sr a
Y

r ft
% % % % % % % % %

R
2

2.89 3.36 .62 2.86 12.38 21.83 2.28 8.66 3.98

Open
loop 38.95 43.94 24.29 53.35 37.50 29.01 32.29

TABLE 14. THE RELATIVE R2 SENSITIVITY FOR z = 8 SENSORS

P
%

r
%

v
%

4)

%

6a
%

Sr
%

ay
%

r

%
ft
%

R
2

Open
loop

3.15

43.22

4.67

51.82

.87

28.40

2.40

51.84

8.24 15.66 2.07

32.91

9.97

40.27

4.57

34.17



87

TABLE 15. THE RELATIVE R2 SENSITIVITY FOR z = 3 SENSORS

P r v $ Sa Sr ay r ft

R
2

Open
loop

3.47

41.83

4.84

49.21

.93

26.99

2.66

52.14

10.35 18.33 2.32

34.28

10.18

36.76

4.81

33.56

From tables 13, 14, and 15, it can be seen that the effect

of the zero R
2
matrix is less than five percent in the rms

aircraft state, is less than 11 percent in the rms output,

and is less than 22 percent in the rms control. Again,

since the wind states are uncontrollable, the R2 matrix

will not effect them.

The effect of the measurement z in the control u can be

better understood by examining the filter transfer function

of z to u. From the filter implementation equation

x
*

= x* - Gz

and the optimal control law

u = K x*
F

the transfer function of z to u is given by

T L{u(t)}
zu L{z(t)}

= K (K* - Is) G .

(5.2.2)

(5.2.3)

(5.2.4)



The notation L{u(t)} in equation (5.2.4) is the Laplace

transformation of u(t). If the eigenvalues of the matrix

A* are distinct (as in this case) the transfer function,

equation (5.2.4), can be represented as

n
T
zu 1

E H./(s - Ai)
.

1=1

88

(5.2.5)

where n is the order of the matrix A*, Ai is the

eigenvalue of K*, and Hi is the matrix of residues

of the transfer function associated with the

eigenvalue Ai.

SincethevalueofH./(s-A) is small at high frequency

(which means the effect of z in u is small at high

frequency), the following transfer function discussion is

focussed on the case of low frequency (i.e., when s is

small compared with A ) where the transfer function is

approximately given by

n
1

T E (- H. ) .

zu A
i

1
i=1

(5.2.6)

The residues H. of the transfer function T can be found
1 zu

as follows. Since the eigenvector matrix of X* diagonal-

izes the matrix X*, equation (5.2.4) can be transformed to



T
zu

-1= KE (sI D
s

) E
-1

G,

89

(5.2.7)

where E is the eigenvector matrix and Ds is in the

diagonal form.

Mecoefficientmatrixl-is obtained by multiplying the

ith row of the KE matrix and the ith column of the E-1 G

matrix. The resulting coefficient H./X for the case zT =
i

[y!), a
ty

, v] is listed as follows

for A
1
= -89.860

-.3086x10-5 .4340x10 -4 -.2882x10-6

H
1

A
1

for A
2
= -25.195

H
2

A
2

.1603x10
-4 -.2255x10 -3 .1497x10

-5

-.4879x10
-3

-.1204x10
-2

.4554x10
-5

-3.175x10
-3

-.7833x10-3 .2964x10
-5
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for X
3'

X
4
= -7.2636 ±7.4072j

H
3.4

A
3.4

-.3401x10 -1 .6401x10
-2

-.5871x10
-2

-.2977x10 -1 .2677x10 -2 -.4912x10 -2

--.1463x10 -1 -.1573x10 1
-.1082x10 2

-.6426x10-2 -.1372x10 -1
.5616x10-4

for A5, A
6
= -3.7736

H
5.6

±3.3764j

-.1819x10
-1

-.1197x10 -1

.5474x10
-1 -.2222x10 -1

-.3984x10-3

-.5171x10 -3
A
5.6

410

.2225x10 -1 -.4452x10-2 -.2637x10-3

±j
.7153x10

-1
.3329x10

-1
-.1406x10-2

for A
7
= -7.4058

-.1448x10 -1
-.3912x10

-1 .9875x10 -3

H7

A7
-.1497x10

-1
-.4044x10 -1 .1021x10

-2



for A
8
= -16.784

Ow.

H8

8

.5710x10
-3

.2887x10
-3

-.1373x10 -4

.1785x10
-3

.9023x10
-4

-.4292x10-5
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To determine any weakly observable modes of the system,

Equation (5.2.2) is transformed into

Y=Dsy-E-1
G z

where y = E-1 x* .

The transfer function of z to y is given by

T
zy

= (D
s

- Is)
-1 1

E G .

(5.2.8)

(5.2.9)

From equation (5.2.9), if ith row of the matrix E-1 iG is

small compared with the rest of the rows, the measurement z

weakly effects the mode yi, which means yi is weakly

observable. The matrix E-1 G in equation (5.2.12) is given

by
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E
-1

G =

.14535 -2.0440 .13574x10 -1

.32685 .80641 -.30512x10
-2

162.95 -11.784 -24.819

- 22.456 74.552 -9.3690

75.970 -83.853 -.96848x10
-1

225.34 -64.318 3.9530

58.064 156.81 -3.9586

.28530 .14424 -.68614x10-2

From the matrix E-1 G, it can be seen that the wind state

modes associate with eigenvalues

Al = -89.860

A
2
= -25.195

A
8
= -16.784

are weakly observable. However, it is found that the

coefficients Hi /Ai corresponding to those wind state modes

are relatively small in magnitude. This result shows that

the weakly observable modes have a small effect on the

control and hence will play a minor roll in the

effectiveness of the control design.
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VI CONCLUSIONS

The capability of a linear quadratic regulator for the

reduction of aerodynamic tail forces was investigated.

The results indicate a 30 percent reduction of the tail

force is feasible while maintaining acceptable performance

of the aircraft lateral motion. The number of measurements

required for state estimation can be reduced to three by

the application of the procedure described in Chapter IV.

The results also indicate that the tail force reduction is

about the same with all eight feasible measurements and

with the three measurements resulting from the elimination

procedure. However, the elimination of the five

measurements will significantly reduce the cost of the

resulting control system.

The sensitivity of the system to changes in the noise

power spectral density, R2, of the measurements was also

investigated. The results show that the estimated state

and output are relatively insensitive to R2.

The study of the filter transfer function of z to u

indicates that weakly-observable wind state modes will not

drastically effect the controller. This result is expected

since the wind state modes have large negative real

eigenvalues causing the modes to be damped out faster.
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Realistically, the system model is not known precisely.

Future research on this project should be directed toward

studying the sensitivity of the control system to modeling

errors.

It is discussed in Chapter II that the solutions of the

control and the filter problems are mainly dependent on the

solution of the Riccati equation. However, concerning the

numerical conditioning of the Riccati equation, almost no

analytical results are known. The conditioning of the

Riccati equation is also an important subject for future

research.
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APPENDIX A



APPENDIX A-1

The Solution of the Linear Quadratic Regulator Problem

Lemma A.1

The problem,

fMin lim
1 f

t
(y
T
Qiy + u

T
Riu)dtJ =u t

f
4-c° 2 t

o

subject to

(A.1.1)

X = Ax + Bu (A.1.2)

y = C
1
x + Du

is equivalent to (1)(2)
the problem,

Min lim 1
tf

J =
t .4-.

T f (x Q*x + u*
T
R*u*)dt

u*
f to

subject to

where

X = A *x + Bu *

(A.1.3)

(A.1.4)

(A.1.5)

R* = D1 T
Q

1
D1 + R

1

(A.1.6)

C* = - R* -1
D1

T
Q1 C1 (A.1.7)

99



and

A * = A + B C*

Q* = C1T Q1C1 - C*T R*C*

u* = u C* x

100

(A.1.8)

(A.1.9)

(A.1.10)

Proof:

The integrand of the performance criteria (A.1.1) can

be expressed in terms of x. Using the output equation

(A.1.3), the integrand is given by

Let

yTQ
1
y + uT R

1
u

= (C
1
x + D

1
u)

T
Q

1
(C1x + D

1

u) +uTR1 u

= xT C1T Q1C1 x + uT D1Q1C1 x + xT C1T Q1D1 u

+ u
T
(D

1

T
Q

1
D

1
+ R

1

)u

R* = D1T Q1D1 + R1

C
*
= - R -1

D1
T
Q1C1

u* = u - C*x

(A.1.11)

(A.1.12)

(A.1.13)

(A.1.14)

(A.1.15)
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Rearranging equation (A.1.11) results in

yT Qiy + u T R1u = x
T
Q* x + u*

T
R* u* . (A.1.16)

Combining equation (A.1.14) and A.1.2), the system equation

is given by

x = fix + Bu

= Ax + Bu* + B C* x

= (A + B C*) x + Bu*

= A
*
x + Bu *

where

A* = A + B C*

Lemma A.2

Q.E.D.

The solution of the problem

Min J = lim 1 f
tf

(x
TQx + u*TR*u*)dt

u
*

2
t
o

subject to

x = A
*
x + Bu

*

is given by

(A.1.17)

(A.1.18)

(A.1.19)

(A.1.20)



u* = - R;
1

BT S x

where S satisfies the algebraic Riccati equation

0 = - SA* - A*T S + SBR*
-1

B
T
S - Q*

Proof:

102

(A.1.21)

(A.1.22)

Using the Pontryagin's maximum principle (3)
, the

Hamiltonian of the given system is

1
T

H= 7(xT Q*x + u* T R*u*) + A(A
*
x+ Bu )

where A is the adjoint variable.

The necessary conditions for optimal trajectory are

9H
9x

= - A = Q* x + A*T A; X(tf) = 0

aU= 0 = R* u* + BT X
*

(A.1.23)

(A.1.24)

From equation (A.1.24), the optimal control is defined as

u* = - R*
-1

B
T

X (A.1.25)

Substituting equation (A.1.25) into (A.1.20) and combining

(A.1.20), (A.1.23), the Euler-Lagrange system is given by



x

7
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41.

A*
-BR

*
-1

B
T-

-Q* -A*
T

x

A
., .0.

x(t
o

) is given

X(tf) = 0
(A.1.26)

which is a two point boundary value problem.

For state feedback, assume A has the following form

A = Sx

Substituting the above equation into (A.1.23) results

5 = Ax + SX

= -A*T Sx - Q*x

Rearrange the above equation and substitute the equation

(A.1.20) for x. The following equation results:

(A + SA * + AT S - SB R*
-1 BT S + Q*) x = 0.

Since x can not be identically zero, the quantity inside

the parenthesis has to be zero, i.e.,

S = - SA* - A*
T

S + SBR*
-1

B
T

S Q* .
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It is discussed by Bryson and Ho
(26)

that, for a stationary

system, i.e., A, B are constant matrices, and Q*, R* are

constant matrices, it is possible that a steady state,

finite solution exists when tf - to 4- 00

S = 0 = - SA* - A*
T

S + SB R* -1 B
T

S Q* .

In this case, the optimal control law is given by

u
* = - R-1 BT S x

where S satisfies the above steady state Riccati

equation.

Q.E.D.

From Lemma A.1 and Lemma A.2, the solution of the

problem defined by equations (A.1.1), (A.1.2), and (A.1.3)

is gven by

u = u* + C*x

(A.1.27)

= (C* - R*-1 B
T

S) x

where S satisfies the algebraic Riccati equation

0 = - SA* - A* T S + SB R*-1 B
T S - Q* . (A.1.28)
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APPENDIX A-2

The Solution of the Stationary Kalman Filter Problem

To solve the stationary Kalman filter defined in

Section 11.3, one approach (16)
is to convert the problem

into one with no correlation between noise in the process

and in the measurement. To do this, add zero to the right-

side of equation (2.3.1), in the form

x = Ax + Bu + rw + L(z - C2x - D2u - v - Ow)

= (A - LC2) x + (B - LD2) u + Lz + rw*

where L = N2 eT(p Q2 0T + R2)-1 The filtering problem

now under consideration is

where

x = A**x + B * u + Lz + rw *

z = C2 x + D2 u + v*

A** = A - LC
2

B * = B - LD
2

(A.2.1)

(A.2.2)

(A.2.3)

(A.2.4)

L = N2
T

R2*
-2

(A.2.5)



R
2*

= 0Q
2

0
T + R

2
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(A.2.6)

w
*
= w - Q

2
0T R

2*
-1

Ow - Q
2

0
T

R
2*

-1
v (A.2.7)

V * = V + Ow

Q
2*

= Q
2

Q
2
OT R2*

-1 OQ
2

(A.2.8)

(A.2.9)

With the assumption that w(t) and v(t) are uncorrelated,

it is not difficult to show that w*(t) and v*(t) are also

uncorrelated. The power spectral densities of w* and v* can

be found as follows. The power spectral density of v* is

given by

F[v*(t+T)v*T(t)] = F[v(t+T) vT(t)] + F[v(t+T)wT(t)0T]

+ F[0 w(t+T) vT(t) ]

+ F[0 w(t+T) wT(t) OT] .

where the operator F is defined as the Fourier transform

of the expected value.

Since v and w are uncorrelated, the above expression is

given by

F[v*(t+T)v*T(t)] = F[v(t+T) vT(t)] + 0{F[w(t+T) wT(t)1}0T

= R
2
+ 0 Q

2
OT

= R
2*
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Since

w* = w - Q2 0T R2*
-1

(0 w + v),

the same procedure results in

F[w*(t+T
)w*Tcol

-
0T R2*-1

= 4
2*

It is discussed by Sage and Melsa (4)
(1972) that the

above Kalman filter problem can be formulated in the follow-

ing lemma.

Lemma A.3

The Kalman filter problem can be formulated as

MinMin lip i_ Itf T

2*
-1w* 1w* + R* V*)dtl(A.2.10)w *,v* to 2 t0

subject to

.x = A** x + B
*u + Lz + Fw*

z = C2x + D2u + v*

(A.2.11)

(A.2. 12)
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where the power spectral densities of w* and v* are given

by Q2* and R2* respectively and matrices A**, B*, L, w*, v*

are defined in equations (A.2.3) through (A.2.9).

The solution is given by:

x
*
= A** x* + B* u + G*[-z + D2u + C2x

*
] + Lz (A.2.13)

where the estimated state is x*.

The filter gain G* is

G* = - P C2T R
2*

-1

where P satisfies the algebraic Riccati equation

0 = A** P + PA**T - PC2T R2* -1
C
2
P + rQ

2*
r
T

Proof:

(A.2.14)

(A.2. 15)

Using the maximum principle (3)
, the Hamiltonian of

the system is

H =
1

-[w*
T

Q2*
-1

w* + v*
T

R2*
-1

v*] + T
[A**x + B*u

+ rw* + Lz)

where A is the adjoint variable.



The necessary conditions for the optimal solution are

axDH
= - = C

2
TR

2*
-1C

2
x + A *TA

2

TR
2*

-1D
2

-C2 TR2*-1 z ; A(t ) = 0

DH
E".7 = 0 = -Q2* rT A

Subject to

x = A **x + B *u + Lz + rw*

z = C
2x

+ D
2u

+ v*

109

(A.2.16)

Combining the above equations, the Euler-Lagrange system

is given by

x

-A

A ** r(22*r
T

T -1
C
2

-A**
TC

2
R
2*

x

A

B*

C2 R2 -1
D C

TR -1
2 2* 2 2 2*

For the filter, assume A has the following form

-1= P-1 - x*)

u

z

(A.2.17)

where x* is the estimated state with a priori estimate

of the state x*0 .
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Differentiating equation (A.2.17) and combining with

equations (A.2.16), the resulting equation turns out to be

-1 -1 -1 -1(-P - P A** - P rQ2* r
T

P + C T
R2* -1 C

2
- A**

T
P
-1

)

*-1 -1 T -1 -1 -1x + l(P + P rQ
2*

r P + A*
*

P )x* + P x*

-1- P-1 B*u - P-1 Lz + C
2

T
R
2*

-1
D2u - C2T R

2*
z} = 0

Setting the coefficient of the x term to zero, the follow-

ing equation results after some matrix manipulation

P = A**P + PA**
T

- PC
2
T
R -1 C P + rQ

2* r
T

x
*

= A**x * + B
*
u - PC

2

T
R
2

-1
[-z + D2u + C2x*] + Lz

For the stationary case, P 4 0, and the solution is

x
*
= A**x* + B*u + G* [-z + D2u + C2x*] + Lz

The filter gain G* is



where

T -1
r
TT

- pc R C P rQ2*0 = A **P PA ** 2 2* 2

Q.E.D.
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From Lemma A.3 and equations (A.2.1) to (A.2.9), the solu-

tion of the stationary Kalman filter problem defined in

Section 11.3 is given by

where

and

with

x
*
= Ax * + Bu + G[-z + D2u + C2x*]

G = G
* - L

= -PC2
T
R2*

-1 - FQ20T R2*-1

0 = A **P + PA **
T + rQ

2*
r
T

- PC
2

TR
2*

-1
C
2
P

R
2*

= R
2

+ OQ
2
0
T

A ** = A - LC
2

= A - r(22 OT R2 *
-1

C2
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Q = Q - Q OT R2*
-1

2 2

The uncorrelated property of x* and the estimated error

x = x-x * is stated as the following lemma.

Lemma A.4

The estimated state x* and the state estimation error

is uncorrelated, i.e.,

X
12

= E[x* xT ] = 0

Proof:

Using equations for x and x* stated above and u = Kx*,

the equations of x* and x are given by

x
*

= (A + BK)x* - GC
2
x - G(v + Ow)

= (A + GC2)ic' + rw + G(v + Ow) .

From the above two equations, X12 satisfies the following

equation
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(A + BK)X12 - GC2P - GE[v + Ow)aT]

+ x
12

(A + GC
2

)

T
+ E[x* (v + Ow)

T
] G

T

+ E[x*wT ] r T .

It can be shown (6)
that

1 GT
] =

2
R_G T

T
2

1E[w x ] = Q
2

(r + GO)
T

E[x* wT ] = E[x wT ] - E[x wT ]

= -1GOQ
2 Q2

E[x* Tiv = E[x VT] - E[x v T ]

-
1 GR

2

Substituting above equation into the equation of X12 yields

12
= (A + BK)X

12
+ X

12
(A + GC

2
) T

P
GT FT OT GT]- G[C2

Using the expression for G given in equation (2.3.5), after

some matrix manipulation, the above equation yields
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X
12

= (A + BK)X
12

X
12

(A + GC
2

)
T

.

For the stationary case, 3112 = 0, it yields

, T0 = (A + BK)X
12

+ X
12

(A + GC
2

) .

It is shown by Kalman () in 1960 that, if the system is

controllable and observable, the eigenvalues of A+BK and

A+GC
2
are all in the open left-half plan. The unique solu-

tion of the above Lyapunov equation is equal to zero, i.e.,

X12 = 0 .

Q.E.D.
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APPENDIX B

SOME PROPERTIES OF THE HAMILTONIAN MATRIX



Lemma B.1

The eigenvalues of the Hamiltonian matrix

H =

-,

A -R

-Q -AT
- ..

116

(R, Q symmetric), (B.1.1)

are symmetric with respect to the imaginary axis in the

eigenvalue plane, i.e., if A is a eigenvalue of H, then

-A is also a eigenvalue of H.

Proof:

If A is an eigenvalue of H, then there exist a eigen-

vector, such that

r A -R [xi]

= x

-Q -AT
.

l[xi
"

x
1

x2

The above equation can be rewritten as

AT -Q

-R -A

x
2

-x
1

_.

A

ye.

x
2

I



i.e., X is the eigenvalue of HT. The eigenvalues are

invariant under the transposition of the matrix. Thus

-X is an eigenvalue of H.

Q.E.D.
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Proofs of the following classical theorems (listed as

Lemmas B.2-B.5) will not be included here. The interested

reader may refer to the indicated references.

Lemma B.2: (Kalman (8)
, 1960)

The algebraic Riccati equation

SA + ATS + CTC - SBB TS = 0 (B.1.2)

has a unique positive definite solution, S, if the matrices

(A,B) are controllable and (A,C) are observable. Also the

matrix A-BBTS has eigenvalues in the open left-half plane.

It is pointed out by Wonham(27) in 1968 that the properties

of controllability and observability can be changed to

stabilizability and detectability respectively.

Lemma B.3: (MacFarlane
(11)

, 1963)

Under the conditions of Lemma B.2 the eigenvalues of

the matrix A-BB TS are the same as the left half plane



eigenvalues of the Euler-Lagrange system matrix

e-

H =

A -BB
T

118

(B.1.3)

-C C -AT

Lemma B.4: (Rutherford (9)
, 1932)

The solution, X, for the linear matrix equation

AX - XB = 0

is unique and equal to zero if A and B have no common

eigenvalues.

Lemma B.5: (Schur (28)
, 1909)

There exists an orthogonal transformation

P
11

P
12

P
21

P
22

which transforms the matrix H into quasi-upper tri-

angular

U
11

0

form

U
12

U22_

P
11

P 21

P
12

P2 2J

A

-CTC

-B137

-AT

P
11

P
21

,T
P
12

P
22



119

From Lemma B.1, B.2, and B.3 the orthogonal transformation

matrix can be chosen so that U
11

has all eigenvalues in the

left (right) half plane and U
22

has all eigenvalues in the

right (left) half plane.

Theorem B.1

Under the conditions of Lemma B.1, namely that the

given system is controllable and observable, the symmetric

positive definite solution of the algebraic Riccati

equation (3.2.1) and (3.2.4) satisfies the following

relations

a. For the linear regulator problem

where

U
11

U
12

0 U
22

P11,

P
11

S =

P
12

satisfy

P
11

P
12

P21 P
22

P
12

the following

A* - BR
-1BT

-
T

Q
*

-A*

equation.

-
P11 P

12

P
21

P
22_

(B.1.4)

T

(B.1.5)

with U
22

having all the eigenvalues in the right

half plane.
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b. For the stationary Kalman filter

where

P
12

P =

P11, P
12

satisfy

P
11

the following

(B.1.6)

equation

T
U
11

U
12

P
11

P
12

A** rc:,
2*

T
P
11

P
12

0 U
22

P21 P22 C R2*
-1

C2 -A**
T

P
21

P
22

(B.1.7)

with U
22

having all eigenvalues in the left half

plane.

Proof:

a. Pre-multiplying equation (B.1.5) by the orthogonal

matrix yields

11

T
P21

1 U
11

U
12

A* -BR*-1 B P
11

T
P
21

T

P
12

T
P
22

T
0 U

22 -Q* -A*
T

P
12

T
P
22

T

6.-

Expanding yields four equations, two of which are

- BR*-1 B
T

P
T

A
*

P
11

T
12

=
11 11

(B.1.8)



T-Q
*

P
11

T
- A*T P

12

T = r
12 11 '

121

(B.1.9)

Solving the Riccati equation (3.2.1) for Q* yields

Q* = S BR*-1 BT S - SA* - AT S. (B.1.10)

Using (B.1.10) in (B.1.9) gives

-1 T
P

T nT T-(SBR* B S - SA* - A* S) P
11 e12 12

U
11'

(B.1.11)

Using (B.1.8) in (B.1.11) yields

-SBR*-1 B
T
S P11

T
+ S(P11

T U11 + BR*-1 BT P
T)

12

T
+ A

*

T
SP

11

T
- A* P12P

12

T =
12

u
11

which can be rearranged to give

(A* - BR*
-1

B
T
S)

T
(SPil

T
- P12 T) (SP11T

P12 )U11

(B.1.12)

From Lemma B.2, B.3, B.4, B.5

or

SP111' P 12

T

P
11

S = P
12

Q.E.D.
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b. The same procedure can be followed for the Kalman

filter case:

Expanding equation (B.1.7) yields

A
**

P
11

T
+

2*
r
T
P
12

T
= P11 U11

T
-1

C2
R2*

C
2
P
11

T
-

T T
=

T
A ** P12 P12 U11'

Solving the Riccati equation (3.2.4) for

rQ2JT yields

rQ2,,r
T = PC2

T
R2*

-1
C2P A**P - PA * *T.

Using (B.1.15) in (B.1.13) gives

A
**

P
11

T + PC
2

T
R
2*

-1
C
2
PP

12
T - A

**
PP

12
T

- PA
**

T
P
12
T

= P
11

T
U
11

Using (B.1.14) in (B.1.16) yields

A
**

P
11

T + PC
2

T
R
2*

-1
C
2
PP

12
T - A

**
PP

12
T

- PC
2
TR

2*
-1

C
2
P
11

T + PP
12

T
U
11

= P
11

T
U
11

which can be rearranged to give

(B.1.13)

(B.1.14)

(B.1.15)

(B.1.16)
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-(A** - PC2
T
R2*

-1
C2 ) (P11T PP 12

T
)

(P11T
12 11PP

T
)U o

From Lemma B.2, B.3, B.4, B.5

P11
T

- PP
12

T
= 0

or

P
12

P = P
11

Theorem B.2

Q.E.D.

Under the conditions of Theorem B.1, the matrices

P
11

and P
12

in equations (B.1.4) and (B.1.6) are

non-singular.

Proof:

Since the same procedure can be followed for the Kalman

filter case, only the regulator case will be proved here.

Expanding equation (B.1.5) yields four equations, one of

which is

U
11

= P
11 *

P
11

T
- P

11
BR

*

-1
B
T
P
12

T

- P
12

Q
*
P
11

T
- P

12
A
*

T
P
12

T

Using equation (B.1.10), (B.1.4) in (B.1.17) gives

(B.1.17)



U
11

= P11 (I + S
2
) (A* - BR *- 1BTS)P11T

124

(B.1.18)

Since U11, S, and A*-BR*
-1

B
TS are non-singular,

P11 must

also be non-singular. In addition, P
12

= P
11

S is

non-singular.

Theorem B.3

Q.E.D.

If C is symmetric negative definite and if A has all

eigenvalues in the open left half plane, then the solution

of the Lyapunov equation

AX + XAT = C ,

X, is symmetric positive definite.

Proof:

(B.1.19)

Using classical system theory, the solution of equation

(B.1.19), as described by Kwakernaak and Sivan(29), is

given by

0.

X = eAt C eATt-f
o

dt

when the system is asymptotically stable.

The matrix is symmetric positive definite since C is

symmetric negative definite.

Q.E.D.
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APPENDIX C

THE ERROR ANALYSIS OF THE SIMILARITY REDUCTION TO
QUASI-TRIANGULAR FORM
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APPENDIX C-1

Error Analysis of the Algorithm Proposed in Chapter III

In this appendix, the following topics will be

discussed:

1. The error analysis of the quasi-traingularization

using the QR algorithm

2. The error analysis of the Householder type

similarity transformation

3. The operations count of the program which solves

the algebraic Riccati equation (the program is

presented in Appendix G).

The following useful error bounds for some basic

floating-point computations, which are presented by

Wilkinson (21) [1965], are stated without proof. The in-

terested reader may refer to the reference. The notation

fl() is the result of floating point computation, 11 is

absolut value, 11'112 is the 2-norm of the matrix, t
1

is

defined by the relation 2-t1 = (1.06)2-t with the t-digit

mantissa machine.

n n
(i) fl ( x.) = (1 + E) II xi

i=1 1 i=1

where 1E1 < (n - 1) 2
-ti

(C-1)



n
(ii) fl ( E xi

1=1

n
=

1-1
(1 + Ei)1 (C-2)
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where IE
1 '

I < (n-1)2-t1 IE.! < (n+1-1)2-t1 i=2,...n.

n n
(iii) fl( E xiyi) = E { xiyi (1 + Ei) }

1-1 1=1
(C-3)

where1E1 1<n2-",1E.I< (n+2-1)2-t1 i=2, n .

(iv) fl (A + B) =A+B+ F (C-4)

where I1F112 < IIA + BII2 .

(v) fl (AB) = AB + F (C-5)

where IIFI12 < n2 2-t1 1111112 11B112 -

There are two important properties of the 2-norm of a

matrix which is formed by the outer product of two vectors.

Lemma C.1

Let u and Su be two column vectors. The following two

identities hold:

(a) iluuTII2 = Ilu1122

(b) Ilu 611T112 11611112 Ilull2

(C-6)

(C-7)
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Proof:

From the definitions of the 2-norm of a matrix and

a vector, the following argument results:

1/2
uuT 112 =

1/2
= [(u

T
u) max A (uu

T
)]

Ilul 12 ]

1/2
(C-8)

where A(A) is an eigenvalue of A.

Since uuT is symmetric, the eigenvalues of uuT are equal

to the square roots of the eigenvalues of uu
T
uu

T
i, i.e.,

1/2
X(uuT ) = [A (uu

T
uu

T
) ] . (C-9)

Substitute (C-9) into (C-8),

1/2

IluuT112 1111112 [max A (uuT uuT)1/''1 ]

i e

= 1112112 f iluuT11 21'2

Iluu
21/2

11u112, which is equation (C-6).

The same procedure can be followed for equation (C-7)
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u SuT112 = [max A (u SuT
csuuT)]1/2

1/2
= [(Su TSu) max A (uu

T
)]

= IISu112 { [max A (uuT uuT)]1/2
1/2

= 11611112 f iluuTil 2'1/2

Substitute (C-6) into the above equality

IluSuT112 = 11,5u1I2 { 111111

= 11611112 1111112

the equation (C-7) results.

Lemma C.2

Q.E.D.

}

1/2

The floating point computation, fl [ ], of matrix

multiplication is given by

fl (A
1
A
2

... As) = A1A2 .. A
s

+ F

where IIFII < 1.06 (s-1) n 2
2
-t

[ II 11A.1121
j=1

if s.2-t < 0.01 .
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Proof:

Analogous to Wilkinson (21)
(1965), an error bound for

the multiplication of two n by n matrices is given by

fl(AB) = AB + F

where 11F112 < (1.01)n2 2-t 11A112 11B112, if n2-t < .01.

The error bound for multiplication of several matrices

is then given by

fl(A1A2 ... As) = fl[fl(A1 As...1)As]

= fl(A1 As_i)As + Fs

= fl (A1 ...As-2 ) A2-1As + F
2-1

As + Fs

= Al ... A
s-1

As + F2A3A4 ... A
s

+ F
3
A
4
A
5

...A
s

+ + F
s-1

As + Fs ,

n
where < (1.06)n2 2-` [ n IITY121-

j=1
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The above expression can be rearranged as

fl(A1 ... As) = Al ... As + F

where 11F112 = 11F2A3A4 ... As + + Fs_lAs + Fs112

< (s-1) (1.06)n
2

2
-t

[
II 11A113 2

Q.E.D.

j=1

The following error analysis of the QR quasi-

triangularization follows the work done by Wilkinson (21) in

1965. The error bound for a sequence of orthogonal

similarity transformations can be stated as a therorem.

Theorem C.1

Let As be the computed result of the similarity trans-

formation; then

As = G
1
T (E + Ao ) G1

'

where

(C-10)

( C- 1 1 )



and Qi is the orthogonal matrix corresponding to the

exact application of the pth step of the algorithm to

T
p-1

Also, let the computed Qi correspnding to
Qi

be

given by

where

Qi = Q. + e. (C-12)

Ileill2 < a(i, n)2-t (C-13)

If the error bound of the matrix F which satisfies the

equation

T = 7,TK + F
P P-1 P

is of the form

11Fp112 < f(P01)2-t 1111p-1112'

then, the error bound of E is given by

where

(C-14)

(C-15)

11E112 < 2-t 11Ao 11 2 E xp1 P
(C-16)

x = [2a(p,n) + a 2 (p,n)2 -t + f(p,n)117p_i (C-17)
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and

y = II { (1 + a(p,n)2-t )

2 + f(i,n)2-t }

P i =11=1

y
o

= 1 (C-18)
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The values a (p,n) and f(p,n) depend on the algorithm used.

Proof:

Let Q be the exact orthogonal matrix corresponding

to the exact application of the pth step of the algorithm

to the computed transformed matrix at the (p-1)st step

1D-1 . The computed matrix U correponding to the matrix

Q satisfies the relation

0
P

= Q
P

+ e
P

. (C-19)

At the pth step, the orthogonal similarity transformation

can be written as

K =UTK U +F
P P P-1 P P

(C-20)

where F is the difference between the accepted K and the

exact product .5
p
T A"p-1 Qp

. Substituting (C-19) into

(C-20), the resulting equation is given by



where

Ap = (Q
P

+ e
P
)TK

P-1
(Q
P

+ e
P

) + Fp

T
= Q

P
A
P-1

QP + yp

T TY =Q A e+e AQ
P P P-1 P P P-1 P

+ epT A
p-1

e
p

+ Fp

(C-21)
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and QpT A
p-1

Q
p is an exact orthogonal similarity transfor-

mation of A .p-1. Combining equation (C-21) for p = 1,2,

s, we have

K =Y +GTY G + G
s s s-1 s s-1 Ys -2

G
s-1

+

+ G2T Y. G2 + G1T Ao G1

where Gp = Qp Qp+1 Qs

Equation (C-23) can be rewritten as

A = Y + G1T Ao G
1

with

(C-23)

(C -24)

(C-25)

Y = Ys + G Y GT + G
s-1

Y
s-2

G
s-1

+ G2 Y GT (C-26)s s-1 s 2 1 2
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or alternatively

with

and

T = G
1
T (E + Ao) (C-27)

E =Ls
S S
YL + L

s-1
Y
s-1

L
s-1

T
+ + L1Y1L1T (C-28)

L = Q
1

Q
2

... Q
p

. (C-29)

Since L is exactly orthogonal for p=1, 2, ... s, the

2-norm of Lp, IlLp112, is equal to one. Taking the

2-norm of equation (C-28), we obtain

11E112 < E p 11 2 IlYp Il 2 IILp
T

II 2 I

p=1

p=1
IlYp II 2

(C-30)

Assuming that the error bound of e can be formulated as

Ilep112 < a(p,n)2-t (C-31)

equation (C-22) gives

IlYp 11 11A P-1 11 2{2a(p,n)2-t + a
2
(p,n)2

-2t
} + IlFp112

(C-32)
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where IIQp II 2
= 1, since Q

p
is orthogonal.

Using (C-32), equation (C-21) gives

1lAp112 < 11A13_1112 11 1,112

< (1+a(p,n)2-t)2 IIA P-1 II 2 IIFp 2II (C-33)

Also, if the error bound of F can be formulated as

IIFp112 < f(p,n)2-t IIA
p -1 11 2 (C-34)

where f(p,n) is some function of p and n, then combing

(C -32) , (C -33) , (C -34) , gives

11Kp 11
2

< { (1+a(p,n)2-t)2 + f(p,n)2-t } 11A
p-1

II
2

< { (1+a(i,n)2--4- )
2
+ f(i,n)2-t } IIAo 11 2 (C-35)1=1

and

IlYp II 2
{ 2a(p,n) + a2(p,n)2-t + f(p,n)} 2-t IIA

p-1 II 2

(C-36)

Substituting (C-35), (C-36) into (C-30), an a priori bound

for the norm of the equivalent perturbation E in A
o

(see

equation (C-27)) is given by



where

and

IIEII2 < 2 -t IIAo 11 2 E
p=1

xp = [2a(p,n) + a2(p,n)2 -t +

p
y = II { (1 + a(i,n)2-t)2 +

i=1

x
P

f(p,n) l y
p-1

f(i,n)2-t1

(C-37)

(C-38)

(C-39)

The problem is reduced to finding expressions for

a(p,n) and f(p,n) for the particular algorithm used.

Theorem C.2

Q.E.D.

A bound foi the difference between the computed U

and the exact Q is given by

where

11e112 = 11U QII2

< (4.8k - 11.2)2 -t , (C-40)

Q = I - uu
(C-41)

2K 2
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uT = (x1 -T- S, x2, x3, ..., xt)

2K
2

= S
2 T x

1
S

S
2 = x

1

2
+ x

2

2
...+ + x9, 2

Proof:

(C-42)
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The algorithm used to quasi-triangularize the

Hamiltonian matrix is the Householder reduction. The

orthogonal similarity transformation matrix is of the form

where,

Q = I uuT

2K
2

u
T
= (x1 T S, x2, x3, ..., xt)

2K
2

= S2 T x
1

S

S
2 = x

1

2 + .... + x
9,

2

The error of the computed Q is given by

(C-43)

(C-44)



e =

T T
uu uu

2
172

2K 2
(C-45)

where u, R are computed values of u and K respectively.

By using the equation (C-3)

b = fl(x
1

2
+ xt

2
)

2
= E { x. (1 + E.) }

i=1
(C-46)

1E11 < k 2-t1 IE
ri

I < (k + 2-r)2-t1 for r = 2, ... k ,

the following equation results

with

b = fl (x12 + +
1

2
x

2

= (x
1

2
+ + x

2)
(1 + E)

= S
2
(1 + E)

1E1 < k 2 -t1

The computed S is given by

(C-47)

(C-48)
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= fl ( x12 + ... + xt2) = fl(b1/2)

= b
1/2

(1 + 11)

where we shall assume that

In' < (1.00001)2-t (Wilkinson(21) 1965) . (C-49)

Substitute (C-47) into the above equation, the resulting

equation is given by

S = S(1 + E)1/2 (1 + n) (C-50)

where

= S(1 + c)

(1 + c) = (1 + E)
1/2 (1 + n)

= [1 + .5E + a(E 2
)] (1 + n)

= [1 + .5E + n + a(E
2
)+ a(En) + ... l

< [1 + .500001 E + n] (C-51)



141

In the above equation, the reasonable assumption

u(E
2

) + a(En) + < .000001 E

is made. From equation (C-48),(C-49),(C-51), the following

inequality can be formed

IC1 < .500001 1E1 + Inl

< (.500001) 2, 2
-t1

+ (1.00001)2
-t

< W500001)(1.06)2, + 1.00001]2-t

< [.530001 2, + 1.00001]2-t

Equation (C-50) can be rewritten as

with

= S(1 + (C-52)

ICI < [.53001 2, + 1.00001]2-t . (C-53)

The computed K is given by

2K2 = fl((x
1

2
+ + x

2,

2
) + x

1
)

[x
1

2
(1+9

1
) + + x (1+0 ) + x

1
§(1+0

2, + 1
)]

2



where

1°11 < (k+1)2-t1

so that

I 1
0
r 1

< (k+3-r)2-t1 for r=2, ..., k+1

2
R2

= (x
1

2
...+ + x

k

2
+ x

1
§)(1 + 0)

where

and

= [S
2

+ x
1
S(1 + 0] (1 + 0)

= [S 2 + x
1

S] (1 + 6)(1 + 0)

101 < (k+1)2-t1

6

x S
1

S
2

+ x S
1

< 1
c

2

C

(since x1 < S).

Let us define y by

(1 + y) = (1 + 6)(1 + 0)

= 1 + 6 + 0 + 60

(C-54)
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then

IY1 161 101 1601

<
2

(.530001k + 1.00001)2-t + 1.06(2. +1)2
-t

1

+ { -2-(.530001Z + 1.00001) 1.06(2. +1) } 2
-2t

< (1.3250012. + 1.560005)2-t

Again, the reasonable assumption

1
{

2
(.5300018, + 1.00001)(1.06)(2.+1)} 2 -t < .0000005k

is made. The equation (C-54) can then be rewritten as

with

2K2 = 2K
2

(1 + 1) (C-55)

ly1 < (1.325001Z + 1.560005)2-t . (C-56)

From equation (C-44)

1
= fl(x

1
+

= (x1 + ) (1 + (p)



where

and

= [x1 + s(1 + (1 + (I))

= (x
1

+ S) (1 +

= u
1

( 1 + tp)

10 < 2-t

ICI < ICI + ICI + IW

< (.530001 k + 2.00002) 2-t

with the reasonable assumption that

(.53001 k + 1.000001)2-t < .00001 .

The computed u can then be written as

uT = u T + Su
T

with

(C-57)

Su
T
= (Su1, 0, , 0) (C-58)
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Su
1
= u

1
ip

116u112 = lull lPl

< (.530001 k + 2.00002)2-t 1111112

and

11T1112 = 1111 611112

(C-59)

(C-60)

< { 1 + (.530001 k + 2.00002)2-t } IIu112 (C-61)

Equation (C-45) can be rewritten as

e = Q - Q

T T
uu uu

2K22K
2

T --Tuu - uu --T 1 1+ uu (

2
)

2K 2K2 2K2

--
- (OuT + Suu

T
+ (SucSu

T
) uu

T
(1

2K2

2K
2

2K
2

2K
2
(1+y)

so that,
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11e112 = IIQ Q112

211(suuT112 11611611T112 11171171T112 1

)1
2K

2
2K

2 1(1 1+y

Using the results stated in Lemma C.1, the above

inequality becomes

21111112 11611112 4' 116u11 111.7111
1

11e112 < (1 )2 1 1.4.y- 1

2K
2

2K

But

1

2(.2650005Z + 1.50001)2-t 111-11q 116111q

2K
2

{1 + (.2650005k + 1.50001)2-t }2 11u112
2 1

((1 TT7)1
2K2

1

1 + y'
- (1 - y + a(12)1

< 1y +6(y2)1

< Ill la(Y2)1

from equation (C-56) with the assumptions that

G(y2) < .00000n 2-t

and
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116121122 < .0000018 2 -t 11u1122

the error bound of Hell
2
is given by

(.5300028, + 3.00002)2-t 111111
2 2

IIe112 <
2K

2

Since

{ 1 + (.26500058, + 1.50001)2-t }2 ilu112
2

21
2

(1.325002Z + 1.560005)2-t .

Hull 2 2

2K
2

2

the above inequality can be rewritten as

IIe112 < (2.120006Z + 8.00008)2-t

+2(1.3250038. + 1.560006)2-t

where the assumption

2(.530001k + 2.00002) 2-t + (.5300018, + 2.00002)2

2-2t } (1.3250028, + 1.560006)2-t

< .0000018, 2
-t



is made. The error bound of e is thus given by

11e112 = 11U QII2

< (4.77002% + 11.12009)2
-t

(C-62)

The quantity a(p,k) in equation (C-37), (C-38), (C-39)

is then given by

a(p,k) = 4.77002k + 11.12009 (C-63)

Q.E.D.

The error analysis of the QR algorithm will be discussed

next.

Theorem C.3

The quasi-upper-triangularization of the Hamiltonian

matrix stated in Chapter III is formulated in general as

As = G
1
T (E + A

o
) G

1 '

where the a priori error is bounded by

11E112 < 2-t 11%11 { 8kn3 + (38.2 + 4k)n2

+ 44.5n + 50.9 + (4kn 2
+ 50.9)s }

(C-64)

(C-65)
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with

k = 2.12

and s, the number of QR iterations, is given by

(i) if all the eigenvalues are real

s = 3n2 - n

(ii) if all the eigenvalues are complex

3 2s = 2 n .

Proof: From equation (C-5), we have

fl(ABC) = fl(fl(AB)C)

= fl(AB)C + F2

= ABC + F
1
C + F

2

where m is the dimension of matrices A, B, C,

and

11F1112 < m2 2 -t1 11A112 11B112

11F2112 < m2 2 -t1 11AB112 11C112

m2 -t1
11A112 11B112 11C112
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so that,

with

fl(ABC) = ABC + F

IIFII2 < 2m2 2 -t1 IIAII2 IIBII2 IICII2

If A
p-1 is upper Hessenberg and Q

p is orthogonal, then

with

and

fl(Q
p
T A

p-1
Q
p
) =Q A Q+ F

P P-1 P P

IIFp II 2
< k m2 2-t IIAp_ill2

k = 2.12

(C-66)

(C-67)

Then quantity f(p,m) in equation (C-37), (C-38), (C-39),

is, then, given by

where

f(P,m) = k m2 (C-68)

k = 2.12 .
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The algorithm proposed in Chapter III for quasi-upper

triangularizing the Hamiltonian matrix has two major steps.

First, m-1 Householder type similarity transformations are

performed to transform the original Hamiltonian matrix into

an upper Hessenberg matrix. Second, the QR algorithm is

performed on the upper Hessenberg matrix. The error bound

of E in equation (C-37) can be described as

11E11
2

2
-t

11A
o

11
2

{ So+ E Sp }

p=1
(C-69)

where s is the number of similarity transformations

required for quasi-triangularization

d
o

is due to the Hessenberg reduction and

d
p

is due to the pth iteration of QR algorithm.

The quantity So is given by

m-1
.S0=E-f[2a(i,m)+a2 (1,m)2.--t+km21.y1.-1 )-(C-70)

i=1

i-1

II { [1 + a(j,m)2- t12 km2 2-t
(C-71)

where m is the dimension of the Hamiltonian matrix.

The quantity d can be found as follows. At the pth step,

m-ne-1 Householder type similarity transformations are

required. Here ne is the number of eigenvalues which have

already been isolated. For simplicity, n2 is assumed to

have the following form
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n
e

= P - 1

ne = 2 (p - 1)

if all the eigenvalues are real

if all the eigenvalues are complex.

Further more, if the eigenvalues are known a priori, it

is estimated that the number of iterations, ITE, required

to isolate a real (or complex pair of) eigenvalue(s) is

ITE = 2 if a real eigenvalue is to be isolated

ITE = 3 if a pair of eigenvalues is to be isolated.

Under these assumptions, Sp can be expressed as

d = { 2a(p,3) + a2
(p,3)2-t + km

2
} yp-1 (C-72)

p-1
y
p-1

= II { [1 + a(i,3)2-t ]

2
+ km2 2

-t
} . (C-73)

.

1=1

The number of similarity transformations required for tri-

angularization is given by

ki
s = E ITE * (m - n

e
-1)

p=1

where, for isolating n eigenvalues.

k
1
= n if all the eigenvalues are real

k
1 -2-

= n if all the eigenvalues are complex.

(C-74)
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The reason for a(i,3) is that the QR algorithm is applied

to a the Hessenberg matrix. Combing equation (C-63),

(C-70), (C-71), gives

m-1
= E { [9.54004m + 22.24081 + km 2

So

+ (22.75309m2
+ 106.0861m + 123.6564)2-t ]

Yi-1 /

It is reasonable to assume that

and

(22.75309m2 + 106.0861m + 123.6564)2-t

< .00001m

2

[1 + a(i,m)2 -t] + km2
2
-t < 1.000001 .

The expression of So can then be simplified to be

m-1 i-1
So < [9.54005m + 22.24018 + km2

] II (1.000001] }

i =11=1 j=1

n-1
= [9.54005m ± 22.24018 + km

2
] E (1.000001)

i-1
.

i=1

With the aid of the identify

m-1 m-2
E (1.000001) 1

-1
= E (1.000001)

i=1 j=0

(1.000001)m-1 - 1

1.000001 - 1
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= [(1.000001)m -1 -1]10

< { 1 + (m -1 +1) (.000001) - 1]10 6

= m, if m is less than 10000. ,

we get,

o
< km3 + 9.54005m 2 + 22.24018m .

The same procedure can be followed that under the

assumptions

and

2

[1 + a(i,3)2-' + km2 2
-t

< 1.000001,

a
2
(P,3)2

-t
< .00001,

the expression of Sp can be simplified as

Sp < { 28.62015 + 22.24018 + km2
(1.000001)-p-1

(C-75)

= { (50.86033 + km2 } (1.000001)P-1 . (C-76)

Substituting (C-75), (C-76) into (C-69), we obtain

11E11 2 <
n-t IIA

o 2
{ km

3+ 9.54005m 2

+ 22.24018m + (50.86033 + km2 ) E (1.000001)P-1 } .

p=1
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The dimension of the Hamiltonian matrix is equal to 2n, and

the above expression can be simplified to

11E112 < 2-t IIA0112 { km3 + 9.54005m2 + 22.24018m

+ (km2 + 50.86033) (s + 1) } .

The quantity s is given by

(i) if all the eigenvalues are real

n
s = E 2(2n - P)

p=1

= n(4n) - 22 (n + 1)

= 3n 2
- n

(ii) if all the eigenvalues are complex

n/2
s = E 2(2n - 2P + 1)

p=1

nf n. n
2 (2n + 1) - 4 T (T + 1)

n
2

= 2n 2
+ n -

2
-- - n

3 2
- 2- n .

(C-77)

(C-78)



The bound for 11E112 is then given by

11E112 < 2-t 11A0112 { 8kn
3
+ (38.1602 + 4k)n2

where

+ 44.8036n + 50.86033 + (4kn2
+ 50.86033)s } (C-79)

k = 2.12

and s is given by equation (C-77) or (C-78).

Q.E.D.
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C-2

The Operations Count of the Algorithm

The operations count for solving the algebraic Riccati

equation has three major parts: (1) OP count for finding

eigenvalues of the Hamiltonian matrix, (2) OP count for

isolating n desired eigenvalues in the lower-right hand

corner of the Hamiltonian matrix, (3) OP count for solving

the linear system of equations. In this discussion, the OP

count is found for each required subroutine.

1. Operations count for subroutine HESS

For the similarity transformations, the OP count is

given by

n2-1
OP

HT
= E { (nn - k + 1) + 1 + (nn - k + 1)

k=n1+1

where

+ 2(nn - k + 1) (m - k + 1) + 2(nn - k + 1)n2 }

n2-1
= E { 2 (nn - k + 1) (m - k + n2 + 2) + 1 }

k=n1+1

nn = min {(nz + k-1, n2 }

nz = number of non-zero elements below

the diagonal
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n1, n2 = row indices of current isolated

diagonal block

m = matrix size = 2n in our case.

For accumulating the orthogonal similarity

transformation matrix, the OP count is given by

n2-1
OP

HP
= E { 2(nn - k + 1) m }

k=n1+2
(C-80)

There are two situations in subroutine HESS.

When the first Hessenberg reduction is performed,

i.e., nz = m - 1, n1 = 1, n2 = m, the OP count is

given by

m-1
OP

HTf
= E {2(nn - k + 1) (2m - k + 2) + 1 }

k=2

and

m = min { (rn + k - m }

= m, for all k

so that,

m-1
OP

HTf
= E { 2(m k + 1) (2m - k + 2)+ 1 }

k=2

5 3 2 5-m - i m- 6. (C-81)



The well known identities

and

m
E k = 111 (m + 1)

2
k=1

m
E k

2 m
= (m + 1) (2m + 1)

k=1

are used in equation (C-81).

m-1
OP

HPf
= E { 2m(m + 1 - k) }

k=2

= m
3
- m

2
- 2m. (C-82)
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When the QR algorithm is performed on the upper

Hessenberg matrix (i.e, nz = 3, n1 = 1, n2 = m -s,

and s is the number of eigenvalues which have been

isolated), the OP count is given by

m-s-1
OP

HT
= E { 2(nn - k + 1) (2m - k - S + 2) + 1 }

k=2

with

nn = min { (2 + k), m - s }

2+ k, if k c [2, m- s- 2]

m s, if k = m - s - 1
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Using the expression for nn, the OP
HTS is given by

OP
HTS

= (9m2
- 10m - 26) - 4(3m + 1) s + 3s 2

(C-83)

m-s-1
OP = E { 2m (nn - k + 1) }HPS k=2

= (6m2
- 14m) - 6ms (C-84)

In summary, we have the following OP counts for

the subroutine HESS:

(a) For the first Hessenberg reduction

5 5OP
HTf 7 m

3

m
2

-5 m 6
(C-85)

OP
HPf

= m3
- m

2
- 2m (C-86)

(b) For the QR algorithm

OP
HTS = (9m2 - 10m - 26) - 4(3m + 1) s + 3s

2
(C-87)

OP
HPS

= (6m2
- 14m) 6ms . (C-88)



2. Operations count for subroutine SHIFT2

For the similarity transformations, the OP count

is given by

OP
ST

= 1 1 + 6(m + 1 - n1) + 6n2 .

For accummulating the transformation matrix

OP
SP = 6m .

For the case, n1 = 1, n2 = m - s, the OP count

is given by

OP
ST = 12m + 11 - 6s

OP
SP

= 6m .

(C-89)

(C-90)

Again, s is the number of eigenvalues which

have been isolated.

3. Operations count for subroutine TRIA

(a) For real eigenvalues

OP
TT

= 4m +15

OP
TP

= 4m

(C-91)

(C-92)
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(b) For complex eigenvalues

OP
TT

= 4

OP
TP = 0 .

4. Operations count of Subroutine QR

(C-93)

(C-94)
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The OP count in subroutine QR is the sum of the

OP count for first Hessenberg reduction and the OP

count for QR iteration applied to an upper

Hessenberg matrix. For similarity transformation,

the OP count is given by

ne
OP

QT = 2 + 0 PHTf + E { IT * [2 + OPHTS + OPST ] }

s=0

ne
+ E OP

TTs=1
(C-95)

where n
e

is the number of eigenvalues to be

isolated and IT is the number of

iterations required per eigenvalue.

Substituting equations (C-85) to (C-94) into

equation (C-95), we have

ne
{ IT * [2 + OP

HTS
+ OP

ST
}

s=0

ne
= IT * E [(2 + 9m 2 - 10m -26) - 4(3m + 1)s + 3s 2

s=0
+12m + 11 - 6s]
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n
e

(n
e
+1)

= IT * { (n
e

+ 1)(9m2 + 2m - 13) (12m + 10)
2

n
e+ 3 (ne + 1) (2ne + 1) 1

= IT * (n
e

+ 1) [9m2 + 2m - 13 + n
e
2 - (6m + 4.5)n

e
]

ne
(51;

T
= E OP

TT
s=1

so that

ne(4m + 15) if eigenvalues are

real

e
4 if eigenvalues are

complex

5OP
QT

= 2 + -m3 - m
2 -m- - 6 + IT*(n

e
+ 1) [9m

2

3 3

+ 2m - 13 + n
e
2 - (6m + 4.5)n

e
] + 613T . (C-96)

The number of iterations required per eigenvalue,

IT, is estimated to be equal to 2.

The OP count for the orthogonal transformation

matrix accumulation is given by

ne
OP

QP
= m

3
- m2 - 2m + E { IT * [6m

2
- 14m - 6ms

s= 0

ne
+ 6m] } + E OP ,

s=1 TP

and,



ne
OP P= E OP

TP
s=1

4 ne if eigenvalues are all real
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0 if eigenvalues are all complex

The OP
41)

is then given by

OP
QP

= m3 - m
2
- 2m + IT * (n

e
+ 1) [6m

2 8m - 3mn
e

]

6f3p

The total OP count for upper-quasi triangularizing

the Hamiltonian matrix is given by

ne=2n-2 ne=n ne=n
OPuQ = OPQT + OPQT + OP

QP
(C-97)

Since m = 2n and IT = 2, the OP
uQ

is given by

ne 40
=2n-2

10
OP

QT
= 2 + n

3 - 4n2 - --n - 6 + 2 * (2n-1)
3

[36n
2 + 4n - 13 + (2n -2) 2

- (12n + 4.5) (2n - 2)] + OPT

232 3
8n2

76
ne=2n-2

= n + 8n - Jn - 4 +
T

(C-98)

ne 40OP
QT

=n
= 2 + n

3 - 4n 2 1 0
- n - 6 + 2 * (n + 1)

[36n
2
+ 4n - 13 + n

2
- (12n + 4.5)n] + OPT

n
e
=n

=
190

n
3 + 45n

2 91
- - 30 + 61)

T3
(C-99)



ne.n
OP

QP
= 8n 3 - 4n 2 - 4n + 2 (n+1) [24n

2
16n

6n
2

] + (54,

= 44n 3 - 36n + OP
ne=n

Substituting (C-98), (C-99), (C-100) into

(C-97), the OP
uQ

is given by

(a) for real eigenvalues

165

(C-100)

OP
uQ 3 3

232
n
3 + 8n 2 76

- n - 4 + (2n - 2) (8n +15)

190 3 2 91
+ -7- n + 45n - n - 30 + n (8n + 15)

3

+ 44n3 - 36n + 4n

554 3 2 176
n + // n - n 64

3 3

(b) for complex eigenvalues

7
OP

uQ 3

232
n
3 + 8n

2

3

6
- n - 4 + 4 n - 4

(C-101)

+ 130 0 n
3 + 45 n 2

-
3

91
- n - 30 + 2 n + 44 n 3 - 36 n

= 534 n
3

+ 53 n
2 257

n - 38 . (C-102)
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5. OP count of subroutine HSOLVE

The OP count of subroutine HSOLVE is given by

n-1
OPL = 1 + E

k=1
- k + 1) + 2 + 4(n k) + 1 }

n-1
+ n { E [ (2n + 3) - k] + 1 }

k=1

3 3 2 5
= n + 4 n + n- 3

2

Total OP count required for solving the algebraic

Riccati equation is given by

OP
Total

= OP
uQ

+ OP
L

(a) for real eigenvalues

OP
Total

=
1 17

n
3 + 81n

2
-

(b) for complex eigenvalues

337
n - 67

6

16
6

117
n
3 + 57n2

-
499

OP
Total

n - 41 .

In summary, we have the following theorem.
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Theorem C.4

If it is estimated that two QR iterations are needed

for isolating one eigenvalue, then the operations count of

the algorithm proposed in Chapter III for solving the

algebraic Riccati equation is given by

and

where

OP
max

= 186.2 n3
+ 81 n

2 - 56.2 n 67

OPmin = 186.2 n
3
+ 57 n

2
- 83.2 n - 41

OP
max

means the larger OP count assuming all

real eigenvalues

OP
min

means the smaller OP count assuming all

complex eigenvalues

n is the order of the system.
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APPENDIX D

MEASUREMENT ELIMINATION THEOREMS AND THE SYSTEM MODEL

In Appendix D, proofs of the theorems in Chapter III

are given. A supporting Lemma is also described.

Proof of Equation (4.2.16)

I = E[yTQ
1
y + uTR

1
u = tr[SrQ 2rT + KT (R

1
+ D1TQ1D1 )KP]

As discussed in Chapter II, the solution of the regu-

lator Riccati equation S, the covariance of the estimated

scale X* and the solution of the filter Riccati P satisfy

following equations

0 = - SA* - A*TS + SBR*-1 B
TS - Q*

0 = + BK) X* + X* + BK) T + GR
2
G
T

0 = A **P + PA **
T + rQ

2*
r
T
- PC

2

T
R
2*

-1
C
2
P

'

where the definition of matrices is given in Chapter II.

With these three equations, the following equation is

established
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St = 0 = (- SA* - A*TS + SBR*-1BTS - Q*)X*

+ (- SA* - A* TS + SBR*-1BTS - Q*)P

+ S[(A + BK)X* + X* (A + BK)T + GR2 *GT]

+ S[A**P + PA**T + rn rT - PC
2
TR

2*
-1C

2
1P .
J

After some matrix manipulation, the above equation becomes

= 0 = - SBKP - ATSX* - C1T Q1C1X*

- C1T(21D1KX* - A
T
SP - C1TQ1C1P

- C1
TQ

1
D1 KP + SX*A

T + SX*KTBT

+ SPAT + srQ
2
r .

The expectation of the integrand is then given by

I = E[yTQ y + uTR1u]

= tr[Q1Y + R1U]

= tr[Q1Y + R1U + Q],

where Y = E[yy T], U = E[uuT

Substituting equation of Y, U from Chapter II and 0 from

above, the quantity I is given by
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I = tr[Q
1
C

1
X*C

1

T
+ Q

1
C

1
PC

1

T
+ Q1 C

1
X *KTD 1

T

+ Q
1

D
1
KX

*C1
T

+ Q1 D1 KX *KTD
1

T
+ R1 KX

*
K
T

- SBKP - ATSX* - C1T Q1C1X* - C1TQ1D1KX*

- ATSP - C1 TQ
1
C1 P - C1

TQ1
D1 KP + SX*AT

+ SX KTBT + SPAT + srQ2rT]

= tr[- SBKP - ATSP - C1 TQ
1
D1 KP + SPA

T + srQ
2
r
T

]

= tr[sN2rT - C1TQ
1
D

1
KP - SBKP] ,

where the equality tr[AB] = tr[BA] was used to simplify the

above result. Also, since -C1TQ1D1 - SB = KTR*, the above

equation reduced to the form

I = E[yTQ
1
y + uTR

1
u]

= tr[sN2rT + KT (R1 + D1 TQ1D1)KP] .

Lemma D.1

Q.E.D.

If the matrix U is symmetric positive semi-definite,

then, the matrix product of K and U

K U KT
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is also symmetric positive semi-definite, i.e.,

K U KT > 0 if U > 0 .

Proof:

For the symmetric property, take the transpose of

KUKT and use the fact that U is symmetric. The result is

given by

(K U KT)
T = K UT KT = K U KT

which is symmetric.

For the positive semi-definite property, consider the

following. Since U > 0, there exists a matrix V such that

U = VVT . Then

K U KT = KV VT KT = (KV) (KV) T

which is positive semi-definite.

Q.E.D.

With the above lemma, an important theorem of the mea-

surement elimination procedure can then be established.
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Theorem D.1

Let P P
ik

be the covariance of the state estimation

error without ith and without ith and kth measurements

respectively. These covariance matrices satisfy the fol-

lowing algebraic Riccati equations

A **P. + P.A ** + rQ
2*

r
T
- P.R.P. = 0

1 1 1

A
**

P
ik

+ Pi A + rQ
2
r
T
- Pik Pi = 0 .k ** ik k k

The matrices in above equations are defined in equations

(2.3.7) of Chapter II except that the Ri and Rik are the

.term C
2

TR
2*

-1
C
2
with ith 1thand with 1 and k th measurements

eliminated. Also, assuming that the estimation error

dynamic equation is asymptotically stable, i.e., the eigen-

values of A** - Pik Rik and A** - PiRi are all in the

open left half plane.

Then

if

Also,

DP =
Pik 1

>

AR=R.1 -Rik > 0

(rms xj)ik - (rms X))i > 0
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if

AR. = -- > 0
1 ik '

th
where the subscript j means the j element of the error

state vector k and the subscripts ik and i mean that the

ith and kth and that the ith measurements are eliminated.

Proof:

Subtracting the equations for P
i

and P
ik'

the resulting

equation is given by

A **AP + APA **
T - Pik

ik
Rik

Pik
P.R.P.

2.
= 0 .

Using the equations of AR and AP, the above equation

becomes

0 = A ** AP + APA**
T - PikRik(AP + Ri)

+ P.R.P. - APRik
ik

P + APR. P.
ik

= (A** - PikRik) AP + AP(A** - PikRik) T

- Pik
ik

R P.
1

+ P.R.1 p.
1

+ APRi P.
k ik

= (A** - PikRik) AP + AP (A ** - PikRik)

So that

T

- Pik
ik 1

R P. + P.ARP. + P.R. P. + APR. P.
1 ik 1 ik ik



0 = (A** PikRik)AP + AP (A** - PikRik) T

+ APRi . P.ARP.kAP

Since Rik > 0, from lemma D.1, APRikAP + P1AR . > 0 if

AR > 0. Also, from theorem B.3,

if

AP > 0

(A** - PikRik)

is asymptotically stable. The result

(rms R))i.k - (rms a))i > 0

follows immediately.

Theorem D.2

Q.E.D.
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Under the same condition as in theorem D.1, the follow-

ing results are concluded.

If

then

AR=R.1 -Rik > 0
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Vik - Ui > 0

and

(rms i".1))ik - (rms 0

ti
b.

c.

Proof:

and

(rms YJ)ik - (rms > 0

Iik - 0,

where subscripts j, ik, and i have the meaning

as in the above theorem and V.,
1 1 3

'i. etc. are defined in equations (4.2.10)

through (4.2.16) of Chapter IV.

From the theorem D.1, if AR > 0, then AP > 0. The

following results follows.

. AU. = K(Pik - P.)K
T

AUlk
1 1k

)KT

K AP K
T

> 0
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AY. AY.
1

= (C
1
+ D

1
K) AP(C

1
+ D

1
K)T > 0 .

ik

The result

(rms Au.3 )
ik 3

(rms Au.). > 0

and

(rms Ayj)ik - (rms Ayj)ik > 0

follow immediately.

Iik
1

- I. = tr[R* AP] ,

where

R* = KT(R1 + D1TQ1D1)K > 0.

Since R* > 0, there exists a matrix L such that R* = LTL,

the quantity Iik I. is given by

Iik
1

- I. = tr[R* AP]

= tr[L
T

L AP]

= tr[L T AP L] .



Since

so that,

AP > 0, LTAPL > 0,

Iik I. = tr[L
T

AP L] > 0 .

Q.E.D.
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The System Model

The model of the aircraft used is given by (see

equation (4.3.3))

where

x = Ax + Bu + rw

y =C1 x+D1 u

z = C2x + D2u + v

x
T

= [p, r, v, q, vo, vx, uy, wy]

u
T = [Sa, Sr]

yT = [ay, r, ft]

z
T = [p, r, aty, ay, ft, v, v-vs].

The notation has the following meaning:

p = roll rate, rad/s

r = yaw rate, rad/s

v = lateral aircraft velocity, ft/s

= roll angle, rad

v
o

= lateral gust velocity, ft/s

v
x

= longitudinal gradient of the lateral

velocity, sec -1

u = lateral gradient of the longitudinal

velocity, sec-1
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w = lateral gradient of normal gust

velocity, sec-1

Sa = aileron deflection, rad

Sr = rudder deflection, rad

a = lateral acceleration per unit

gravitational acceleration

r = yaw acceleration (rad/sect)

f
t
= side 'force on vertical tail per unit

weight of the aircraft

a
ty

= tail side acceleration per unit

gravitation acceleration

v-v
o
= the relative side velocity of the

aircraft with respect to air

The matrices are given as follows.
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.07
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I. THEORY OF THE LINEAR QUADRATIC REGULATOR AND STATIONARY KALMAN FILTER

I.1 Introduction

In part I, the basic theory of the linear quadratic regulator and the stationary Kalman filter

will be presented. These problems are classified into five catagories:

1. The control problem without process noise,

2. The control problem with process noise,

3. The state estimation problem,

4. The stochastic control problem, and

5. The stationary behavior of the system with zero control.

The solution of the five problems stated above will be discussed sequentially in the following.

In this report, a linear time-invariant system will be assumed. Mathematically, the system

equations can be formulated as follows:

x Ax + Bu + rw

y = Cix + 0 u
1

z * CZx + 02u + v + ew

where x system state, n x 1 vector

u control variable, t x 1 vector

w process noise, p x 1 vector

y output, m x 1 vector

z measurement, q x 1 vector

measurement noise, q x 1 vector

A system dynamics matrix, n x n matrix

8 control distribution matrix, n x t matrix

r process noise distribution matrix, n x p matrix

C
1

output scaling matrix for state, m x n matrix

D
1

output scaling matrix for control, m x t matrix

C
2

measurement scaling matrix for state, q x n matrix

0
2

measurement scaling matrix for control, q x t

measurement coupling matrix for process noise, q x p matrix.

The power spectral densities of the zero mean, white, process and measurement noise are Q2 and R2

'respectively.



1.2 The Control Problem without Process Noise

The problem is formulated as follows:

Min 1
J = f (y

T
Ql y + u

T
RI u) dt

0

subject to constraints of the system and the output equations

= Ax + Bu

184

(1.2)

y = Cix + Olu (1.3)

the matrices Ql and R/ are assumed to be symmetric and positive definite.

It is shown in the thesis (1) that the solution of the problem defined by equations (1.2) and

(1.3) is given by

u K
1
x

-
where K1 = C, - R B

T
S

and the matrix S satisfies the algebraic Riccati equation

0 = -SA, - A*
TS + SBR B

T
S Q*

The remaining matrices are defined by

R* DiTCli + Ri

0 In InC, . n* wi 4/.r

A, = A + B C

Q. * CiTQIC1 - CTRC

The closed loop dynamic equation is

= (A + x

1.3 The Control Problem with Process Noise

The problem is formulated as follows:

(1.4)

(1.5)

(1.6)



min 1 ,

J = EiT I lY
T
Q

1
Y u

T
R u)dtI

0
1

subject to constraints of the system and the output equations

= Ax + Bu + rw

y = C1x + D
1
u
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(1.7)

(1.8)

Again, the matrices 01 and R1 are assumed to be symmetric and positive definite.

Davis and others (2, 3, 4) have shown that the solution of the problem defined by equations

(1.7) and (1.8) is the same as the solution given in section 1.2 which is rewritten here:

u = K
1
x

where

K1 = C1 - R,
1

B
T

S

and the matrix S satisfies the algebraic Riccati equation

0 = -SA, - A,
T
S + SBR

-1
B
T
S - Q,

(1.9)

The remaining matrices are defined in equation (1.5). The closed loop dynamics equation is given

by

= (A + BKI)x + rw (1.10)

The statistical properties are described by the following:

a. The state covariance matrix is defined as

X = Efx(t)xT(t)1 (1.11)

It is shown in the thesis (1), that X satisfies the following Lyapunov equation for

the stationary case:

0 = (A + BK)X + X(A + BK)T +
2
r
T

(1.12)

The rms response of the state is given by the square root of the diagonal elements of X.

b. The control covariance matrix is defined as
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U = E {u(t) uT(t)} (1.13)

which is given by

U = K
1
XK

1

T

c. The output covariance matrix is defined as

Y = Etr(t)yT(t)}

and is given by

Y = (C1 + D1KI)X(C1 + D1K1)T

1.4 The State Estimation Problem.

The problem is formulated as follows:

max

x
1
1

= p[x(t)lz(T), < tl

(1.14)

(1.15)

(1.16)

(1.17)

where p(xlz] is the conditional probability of the system state, subject to constraints of the

system and the measurement equations

; = Ax + Bu + rw
(1.18)

z = C2x.+ 02u + + ew

It is shown by Sage and Melsa (5) that, if the conditioned probability function and the joint density

function of x and z are Gaussian and if w and v are causally related to z, maximizing the conditional

probability function, p[x)z), is equivalent to minimizing another performance criteria (for the

stationary case)

min
J = Efl I (w

T
Q
2

-1
w +

T
R2

-1
v)dtl

w,v 2
(1.19)

The solution of the problem defined by equations (1.18) and (1.19) is given by the stationary

Kalman filter (see thesis (1)).



The dynamic equation of the stationary Kalman filter

X, = Ax, + Bu - K2(z - C2x, - D2u)

The filter gain

K2 = - PC2
T
R2,

-1
- rQ20

T
R2,-

1

and the matrix P satisfies the algebraic Riccati equation

0 = AP + PA
T + m

2*
r
T

- PC 2
T
R
2*

-1
C
2
P

x, is the filtered state estimate and the remaining matrices are defined by

R2, = R
2
+ eQ20T

A = A - 112e
T
R2*

-1
C2

02, = Q2 - g29
TR2-10Q2

The state estimation error covariance matrix is defined by

-
X = E{x(t)x

T
(t)}
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(1.20)

(1.21)

(1.23)

where the estimation error x = x - x,.

It is shown in the thesis (1), that the state estimation error covariance matrix for the stationary

case is given by the solution of the algebraic Riccati equation in equation (1.20), i.e.,

P .
(1.24)

1.5 The Stochastic Control Problem

The stochastic control problem is a combination of problems stated in section 1.3 and 1.4.

The problem is formulated as follows:

Find u as a function of z(T), T < t, to minimize



1J = E, _ (yTg1 y+uT R1 u)at:

C'

subject to constraints of the system, output and measurement equations

= Ax + Bu + rw

y = Clx + 0/u

z = C2x + D2u + v + Ow
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(1.25)

(1.26)

According to the separation theorem (6, 7, 8), the problem defined by equations (1.25) and

(1.26) can 'be treated as two separate problems: 1) the optimal control problem (section 1.3), and

2) the state estimation problem (section 1.4). The solution is given by a combination of the sol-

utions of the optimal control problem and the state estimation problem:

The stationary Kalman filter implementation dynamic equation

Z* = Alx* - K2z

with

Al = A + BK1 + K2C2 + K2D2K1

The controller

u = K
1
x
*

with the control gain

K1 * C* - R*
-1

B
T
S

where S satisfies the algebraic Riccati equation

0 = -SA* - A*
T
S + 56R*

-1 8T
- Q*

and the filter gain

K2 = - "2
T
R2*

1
- 112

T
9 R2*

-1

where P satisfies the algebraic Riccati equation

0 = A*P + PA**T +
2*
r
T

- PC 2
T
R
2*

-1
C
2
P .

The definition of the matrices in equation (T.27) are given in equations (1.5) and (1.21).

The statistical properties are described by the following:

a. It is shown in the thesis (1), that the covariance matrix of the estimated state

(1.27)

X* = E{x*(t)x*T(t)) (1.28)

is given by the solution of the following Lyapunov equation

0 = (A + 81(1)X* + X*(A +
T

+ K2(R2 + 0020
T
)K2

T
(1.29)



189

b. It is also shown in the thesis (1) that the covariance matrix of the actual state is given

by

X = Efx(t)xT(t)}

= X* + P

c. The covariance matrix of the control is given by

U = E {u(t)uT(t)}

KiX*K1
T

.

d. The covariance matrix of the output is given by

Y = Ety(t)YT(t)}

= (C
1
+ D

1
K
1
)X
*
(c

1
+ D

1
K
1
)T + C1PC1T

/.6 Stationary Response of the System with Zero Control

The system equation and the output with zero control is given by

= Ax + rw

y = Cix .

The statistical properties are described by the following:

a. The covariance matrix of the system state

X = E {x(t)xT(t)}

is given by the solution of the following Lyapunov equation for the stationary case

0 = AX + XA
T
+ Mar

T

b. The covariance matrix of the output is given by

Y = Ety(t)Yr(t)}

= C
I
XC

1

T

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)
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II. LOGICAL CONSTRUCTION OF THE ALGORITHM AND DESCRIPTION OF THE SUBROUTINES

II.1 Introduction

From the discussion in part I, we know that in order to solve the problems of the linear

quadratic regulator and the stationary Kalman filter, the algebraic Riccati equations (1.4), (1.9),

(1.20) and (1.27) have to be solved. Many authors have suggested methods to solve the algebraic

Riccati equation. One of the methods that has been most successful is the eigenvector decomposi-

tion method first proposed by MacFarlane (9) and by Potter (10). In this method, the eigenvalues

and the corresponding eigenvectors of the Euler-Lagrange system are determined. The eigenvectors

associated with eigenvalues whose real parts are all of the same sign are partitioned into two

matrices. These matrices form a set of linear equations which yield the solution of the alge-

braic Riccati equation.

The success of this method hinges on the requirement that the partitioned eigenvector

matrices be nonsingular. Unfortunately, in the case when one or more of the eigenvalues are

repeated, the resulting matrices may be singular. The singularity can be removed by using the

generalized eigenvectors. However, this method is not entirely satisfactory, because when the

eigenvalues are nearly equal, the partitioned eigenvector matrices are not singular, but they

remain ill-conditioned. This ill-conditioning can lead to errors in the computed solution.

Also, small perturbations in the system matrix elements can lead to drastic changes in the parti-

tioned eigenvector matrices, which, in turn, causes poor numerical stability.

In order to alleviate these difficulties, the method presented in this report is proposed.

In this method, the Hamiltonian matrix is transformed into a quasi-upper triangular matrix, such

that the lower n x n corner of the matrix contains all the positive (negative) eigenvalues for

the regulator (filter) problem. The highly stable QR algorithm is used to accomplish this orthog-

onal similarity transformation. The orthogonal matrix is then partitioned into four n x n matrices.

These matrices form a set of linear equations which yield the solution of the algebraic Riccati

equation.

In section 11.2, the logical construction of the proposed algorithm will be presented. The

supporting theorems of the proposed algorithm will be given without proof. Such proof is found

in references 11, 12, 13. In section 11.3, a description of the main program and subroutines

will be presented.

11.2 Proposed Algorithm for Solving the Algebraic Riccati Equation.

The proposed algorithm for solving the algebraic Riccati equation is given by the following

steps:



1 Determine the Hamiltonian matrix H of the Euler-Lagrange system.

a. For the linear quadratic regulator, the resulting algebraic Riccati equation

(1.4) is in the form

SA, + A
T
S + Q - SBR

-1
B
T
S = 0

The corresponding Hamiltonian matrix is given by

A,

H =

-8R,
-1

B
T

A,T
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(2.1)

(2.2)

b. For the stationary Kalman filter, the resulting algebraic Riccati equation (1.20) is in

the form

AP + PAT + 112,rT PC
2

T
R2

-1
C
2
P = 0

The corresponding Hamiltonian matrix is given by

H =

A

T -1
Cz Rz Cz

rQ2.,T

-A

2. Determine the eigenvalues of Hamiltonian matrix.

The 2n eigenvalues of H can be found by the following procedure:

a. Use the Householder reduction (17) to transform H into upper Hessenberg form. This

method transforms H into the upper Hessenberg matrix H' by the reduction

H' = Q H QT

where Q = (1114$ Qn.3 Q1, with Qi of the form

uiui

Qi = I -
Bi

(2.3)

(2.4)

(2.5)
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b. Use the highly stable QR algorithm (18) with implicit double shifts of origin to

transform the upper Hessenberg matrix H' into the quasi-upper triangular matrix H". The

QR algorithm with double shift of origin is described as follows:

At the j iteration of the algorithm,

H
J4.2

= QjH.QjT

given R.
J

= Q
J
(H

J
- k.I)(H

J
- k

J+1
I)

(2.7)

(2.8)

where Rj is a triangular matrix and Q. is an orthogonal matrix. The matrices R. and

Ql are again determined by Householder's algorithm. In the program, the algorithm is imple-

mented in implicit form where the first Householder transformation is followed by a Hessen-

burg reduction (see 12.).

3. Isolate the eigenvalues with proper sign of real part in lower right-hand corner.

Use the QR algorithm with implicit double shifts of origin at the eigenvalues previously

computed from step 2 to transform the Hamiltonian matrix, H, into the form

QHQ

U 12

-
U11 12

0 U22

with the orthogonal similarity transformation matrix

Q

Q11

Q21

Q12

Q22

(2.9)

(2.10)

and U
22

containing all the eigenvalues with positive (negative) real part for regulator (filter)

problem. In cases when any undesired zero sub-diagonal elements appear and/or any undesired

eigenvalues are isolated, an arbitrary Householder type similarity transformation is performed

to remove the undesired zero sub-diagonal elements and/or the undesired eigenvalues.

4. Solve the linear system of equations.

a. The solution of the regulator Riccati equation (2.1) is given by

(2.11)



b. The solution of filter Riccati equation (2.3) is given by

n "ln
P 412
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(2.12)

The matrices Q11 and Q12 are nonsingular if the systems associated with equations (2.1) and

(2.3) are controllable and observable.

Once the solution of the algebraic Riccati equation (2.11) and (2.12) are found, the

calculation of the control gain, filter gain, closed loop dynamics matrix, etc. are simple

matrix computations.

11.3 Description of main program OPTIMAL and Subroutines

In this section, the main program OPTIMAL and the following fifteen subroutines are des-

cribed:

1. READM

2. PRINT

3. PREVAL

4. CONTRL

5. FILTER

6. RICCAT

7. QR

9. HESS

9. SHIFT2

10. PERMUT

11. TRIA

12. HSOLVE

13. EIGVC

14. SOLYAP

15. LYAPUN

O. Main program OPTIMAL

The main program carries out input, output, and also drives the subroutines to compute

solutions.

1. Subroutine READM

This subroutine reads in necessary information to set up an n/ by n2 matrix, then prints

it out.
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SIBROUTINE REND4(A.N1,N2.N3.NT,NA.I.P1 -

DIMENSION A(43,42) -

- REND AND ?RIND N1*42 MATRIX k C
.

_ Ispur... ...

N1=R04 DIMENSION OF A (NUMBER OF ROWS) -

- N2OLUAN DIMENSION OF A -

N3=DECLNRED R3I DIMENSION 0? k
xr.z IF N IS ZERO MATRIX -

- -Nr=c IF A IS IDENTITY INTRIX -

- NI' S IF N IS SYMMETRIO MATRIX -

NTRO IF N Is DIAGONAL MATRIX -

MAME OF MATRIX 4
LPIBO FROM REGULAR LINE PRINTER

. -.

. LABI FROM TERMINAL PRINTER -

SU3ROUTINS READ.- PRINT

2. Subroutine PRINT

This subroutine prints out a given n1 by n2 matrix.

SO3RWTINE Pl/NT(N.NI,N2,NO,I0)
DIMENSION k(ND,N2)
PRINT N1'42 'MATRIX k
row_

;MATRIX TO 3E PRINTED
N1mR04 DIMENSION 3F N (N:143ER OF R3431

N2ADOLUMN DIMENSION OF N
NO=DECLARED ROI DIMENSION OF A
2101 REGULAR LINE PRINTER (121 'COLUMN)

roi TERMINAL PRINTER (SD :muim

3. Subroutine PREVAL

This subroutine prints out the given eigenvalues and the corresponding normalized eigenvectors,

if desired.

SUBROUTINE pRem(ps,c, Et.. NO, N. ID. SlO)

DIMENSION M(N') ,ELND.H0)
COMPLEX VIAL

PRINT EIGENVNLUES NNO EIGENVEZTORS. THE E/GENVECTORS WILL
SE NORMALLIZED

C INPUT....
O VAL=EIGENVNLUES (FROM ?1)

EL=SIGENVECTOR MATRIX (FROM EIOVI:e
NOwDEZLNRED DIMENSION OF VNL,EL
NmOIML4SION OF VAL.EL
SMOIRPRECISION OF EIGENVNLUES COMPUTINTION

.?MIN: EIGENVALLIE3 ONLY

IDsI =TN EIGSWALUE3 AND emmunnas PRINTED

4. Subroutine CONTRL

This subroutine takes the given matrices to set up the regulator Hamiltonian matrix of equa-

tion (2.2). The proper subroutines are called in this program to solve the Riccati equation (2.1).

Also, the control gain is computed.



ww...wwwwwwww
. ,
. SU3ROUTINE CD4TRL(A.3.C.D,O.R.S.CAMH.2,VAL.N.1,L.4D.N132.NCM.
C 140L.W.ID)

DIMENSION A(NO,N0) ,3(N0.40L),C404.401.0(40MeNCL) .0(4DeN0) . ..
.
- la (ND. ND) , S (ND, NO) 'SABI (NOL, ND) , H (NM. 402) ,P (ND2. NO2) ,VAL(ND2) . .

C 1.4 (402) ...

^
.

. COMPLEX VAL .

.̂. SOLVE THE RESULNT1R PRO3LEI
C DX/DTIBA*4+310

.

Y.FC*K+D*U
..

^ . WITH 2JADRATIC PERFORMANCE CRITERION
Js {t /2) *WM (YT*2tY+Or*R10)1

... INPUT.... .

1...
. ApS.C.D.2.R. ARE MATRIZES DEFINED ABOVE WITH ONENSIONS
.
. N*N.N*L.I*4,A*L.414.L*L RESPECTIVELYC.. 2.. .

C. N.A,L.DIMENS/ON OF MATRIX ..

.
. NO.N111.NOL ARE DECLARED otlem3t0N3 ASSOCIATED WIN N. 4.L
. ..

. 3... 14022ND*2 DECLARED DIMENSION OF MATRICES H.P.VNL,W

. .

. It00 ,D MATRIX CS EQ. ZERO . OrHER4I3E st
C .0urpur..
,- 3.0,,,N MATRIX , SOLUTION 0? RICCATI EQUATION
. ININ*L*4 ANraix. CO4TROL CAIN ,Um3AIN*X
. NL* FIRST N ELEMENTS ARE EICENVALUES( CLOSED LOOP)

.

C. LAST N ELEMENTS ARE WORKING SPACE .-

.
.. SOME NOTES.... .

C. N.S.C.D. WILL 3E SAVED
^ I R. WILL SE MSTROYED- .

R.P.W ARE WORK/NS SPACE
S'M ROLITINF.3 noc."HSOLVE . RI:CAT. 24. HESS , SHIFT2. MIA. namur _

wwwwWwwwwwwwwwwWWWww=wWW...WWWWWW/WWWWWWWWWWWWW MowoWwWWWWWWwWW,...

5. Subroutine FILTER

This subroutine takes the given matrices to set up the filter Hamiltonian matrix of equa-

tion (2.4). The proper subroutines are called in this program to solve the Riccati equation

(2.3). Also, the filter aain is cnmoutPd.

wwwwwwWwwwWwWWWWW/W.WWWWWWWWWWWWWWWW WWWWWWWWW.......!....WWWWWWWW

SUSROUTINE FILTER(A.C.SAMA.THETA.2.R.S.GNIN.H.P.VAL.N.M.L.ND.
1W02.ND4.NDL.W,I01
DI ENS ION (ND. ND) ,C(ND4. ND) 'GANA (NO .14"/.1 Ten (404.10L)

C 12IND.N01.R(ND.ND/.14(472.NO2).P(NO2.02),W(NO2),S(40.N7).
1VAL(4132),3ALN(NO.NDAN
COMPLEX VAL

SOLVE FOR STATIONARY KALMAN FILTER OF THE SYSTEM
-re DX/DratAIX+81U+GAMA*W

ZICX+04"..1+V+THETAW

re

2 AND R ARE POWER SPECTRAL DENSITIES OF W AND V
riOur...
A.C.3k44.THETA.IR AS DEFINED ASOVS ARE Nr4,MN,N*L,ML.L*L,MM
RESPECTIVELY.
N,L.M.ND.NDL.NOM ARE DIMENSION AND DECLARED DIMENSION RESPECTIVELY.
NO2=40*2 DECLARED DIMENSION OF H.P.VAL.W
ID.0 CF MATRIX MEMO. offt OTHERWISE

curpur...
s,vu.,:ArN ARE smumm 0? RICCATI E2VATION, CLOSED LOOP
EISENVALLUES, AND FILM CAIN RESPECTIVELY.

C NOTICE.. 2. R 'MILL 3E DESTROYED.
4.P,W ARE 4DRKENS SPACE

SU3R0UTINES 4SOLVE,R/CCAT.2R.SESS.SSIFTLIRIN.PERMUT..,,,,,,,.. www WWWWwwWWWWw. wwww

C
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6. Subroutine RICCAT

This subroutine takes the given Hamiltonian matrix to call the proper subroutines for perform-

ing the Riccati equation solution. The Hamiltonian matrix is transformed into the form given by equa-

tion (2.9). The solution of the corresponding algebraic Riccati equation is computed corresponding

to equation (2.11) or equation (2.12).

................... m...... .A. ......
- .- SOROUrTNE RICCkT(H,P,S,VAL.K1,N.N1.N12,4,11)
- OtAENSION H(NO2,ND2),P(ND2.NO2),S(NO,N0),VAL(NO2),W(NO2),n(NO.NO)

:04PE,EX VAL,VNT

RETZATOR PRO312:4-.- S*A+AT*3 -1+S*R*Sal. ,..-
-

FILTER PRO3LE4--- N*5+3 *AT+R-S*1*520. C
c imPur...
, .- ii02N2N MATRIX, DEFINTO AS FOLLOWS ,
C 41121A
. .

111211R
. .
. H21

H21z-4T
. -k.1,R NS IN THE =Goys RMONTI EQUATION FOR REGULATOR kNO FILTER
C _ K1=C7frRlf. PARAMETER, C
C Kist FOR REGULkT31(ISOLkTE RIGHT RAL? PLANE EIGENVALUES1
- K1=-L FOR FILTER(ISOLNTE LEFT HALF MANE EI5ENVNLHES) -

- N=014EN3ION OF S
NO*D=ARED DIMENSION OF S AND M .

N0220E:LARED DIMENSION OF H NNO P(USUNLLY 2*NOl
C W IS WORKING SPACE. 2N*t .
. .. n IS N*4 4ORMN1 SPACE
- ourpu-
C sencartom OF RIT:NTI T1ATION.N*4 4ATRIX
C 411UASI-UPPER TRIkNIULNR 4kTRIX,2N*2N -

PoORTHOGONNL 3I4I4NRIIT TRNNSFORMATION MATRIX. 2N*2N :
VALHI LEFT HALF MANE EIGENVALUES etNO d LOCATION'S OF WORKING SPACE C

C 7.13ROUrENE3 REP.- 1R,HSOLVE.HESS.SHIFT2,TRIN,PER4Hr

7. Subroutine QR

This subroutine performs the quasi-upper triangularization of the given matrix by using the QR

algorithm with implicit double shifts of origin. Knowledge of the eigenvalues can be given or not.

Also, the number of eigenvalues to be isolated is specified by the calling program. The order of the

computed eigenvalues corresponds to the ordering of the isolated diagonal blocks in the resulting

quasi-upper triangular matrix. When a priori eigenvalue information is given, this ordering is forced

to be the same as the input eigenvalues.

SU3ROUTINE 71(N,P.N,NO,VALMV,SNO,ITR,I1,K1)
C COMPLEX VAL,V

DIMENSION R(NO,NO1,P(NO.ND),VXL001,1/(1)
: 1R REDUCTION In 7iNSI-JIPPIR TRIIMULAR FORM
CINPIT.....
C Nit MATRIX TO 3E REDUCED
,- ITR.10I4ENSION 0? PREVIOUSLY rRINNIULARI2E0 CORNER OF H

.

Ills. 1. NO k PRIORI EIGENVALUE KNOWLEDGE
- Ils 1, miler ON mum SISENVALLES

Kl* 1, NO :U41ULATED P CLCULATED
.

Kl* t, OAMUEATED P :AU: MATED
C MV*MUM3ER OF EIOSNVALUES TO 3E ISOLATED

.
. .

Milk PRIORI EIGSNVALUES ( IF KNOWN )
.

SNO*REWIRED PRECISION AS N FRACTION OF THE MATRIX 4014
C Nalt4ENSION OF MATRIX H
- .

ACw474SER OF RO1S IN 44.14 PROa2k4 OtIENSION 0? H
, pur -our

.

. m-luksi-uppn TRINNTILNR MATRIX
P*ORrHOIONNL MATRIX ( tF Klm, l 1

VLs:ACZUGNTED EISENVNLUSS
. SNOsISNO*4114-35SO FOR DISTINGHISHING ZERO 1U3OrkIONNL ELE4E4 r2 -

IN lESULIING 7INSI-MINNIT-NR 4k-rRIX
SH3ROUrINE3 1E71.- lESS,S1IFT1.TRIN,PSR4Hr
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8. Subroutine HESS

This subroutine performs the orthogonal similarity transformation to transform the given

matrix into the upper Hessenberg form. Advantage is taken of zero elements if the lower right

triangle is known to be null.

------ ...-..---- ----- -- ---,----- ------------,-,-.^---------------

C SUSROUTINE HESS(A.P.N.NO,NZ.N1,N2.SAALL.K11-
-

C DIMENSION WID,NOI ,P(NO.NO)

C. PERFORAES ORTHOGONAL SIMILARITY REDUCTION TO UPPER HESSENSERI FORA. C

C MATRIX CS FULL N*N OR HAS ZERO LONER-LEFT ramzus. C

C PARAMETERS- A- INPUT- N*14 MATRIX ro SE REDUCED.
-

OUTPUT- REDUCED MATRIX
,.. P- ACCUMULATED ORTHOGONAL TRANSFORMATION MATRIX. C

C N- :MATRIX SIZE
N3- NJ43ER 3? R-14S IN MAIN PROGRAM DIMENSION ?OR 4 AND 2C.- NZ- NUMBER OF NON-ZERO ELEMENTS SEWN THE DIAGONAL IN A.

...

...
NI.N2- ao4 INDICIES OF CURRENT ISOLATED DIAGONAL SLOCK .-

C SMALL- A SMALL NURSER w MECH. PRE:. * NORM(A)

KlwO NO ACCUMULATED P MATRIX
Klwt vccuAucAre ORTHOGONAL TRANSFORAATIONS

-

-----...--------...------------.....-----------------....-----..---
.....--...------

--- ....

9. Subroutine SHIM

This subroutine performs the first step of the QR algorithm with implicit double shifts of

origin. To complete one iteration of the QR algorithm, the resulting matrix is transformed back

to upper Hessenberg form using subroutine HESS above.

C SUSROUTINE SHIFT2(A.P,N,N1.N1,N2.C1.22,SMALL,K1)
C DIMENSION AIND.N1),P(NO.NO)
C PERFORMS 0033LE SHIFT WITH IRIOINS 31,52 WHICH SATISFY C13S1+52

AND 7.22151*S2, FriLONED 3Y tiE FIRST SIMILARITY TRANSFORMATION

C IN DR FACTORIZATION. MATRIX A IS UPPER RES3Em3ER3 3N LNPJT.
C PARAMETERS- k- INPUT4*M UPPSR HESSENSERI MATRIX

OUTPUT- TRANSFORMED 4ATRIX'4ITH 3 ELEMENTS 3ELOW DINO
P- ION ACCUMULATED ORTHOGONAL TRANSFORMATION MATRIX
N- MATRIX SIZE

NURSER OF RON'S IN MAIN PROGRAM DIMENSION FORA \MD 2

vo

M1,N2- R34 IMCMCIES OF ISOLATED Otk3ONAL 3LXX
-
-

Cl, 22- 2aNSTANTS FO2 07U3GZ 7RI3IN SHIFT
C VALE.- SMALL NUMSER s VCR. PRE:. * NORM(A)

43 ASCLMULATE73 P

Kiwi ACCUMULATE 3R1HIS3441. rAARSFORM4,1134S ..........

10. Subroutine PERMUT

This subroutine performs an orthogonal similarity transformation on the given matrix by

using a Householder type orthogonal matrix. The purpose of this subroutine is to remove any

undesirable zero sub-diagonal elements. Notice that the resulting matrix is no longer in

upper Hessenberg form.



MOO MO. AN, 0,80....0 MO,

SBROWINE PE14=1,P,N,40,NX.N2,540,K1,IP)
DIMENSION 4010,NOI,P(43.ND)

AR3ITRARY ORTNOSINAL( HOUSEHOLDER ) SI4ILARITY
TRANSFORMATION co 'REMOVE* AN U4DESIRA3L1 ZERO ON SU3DIN3ONAL
OR EXCHANIS POSITION OF 740 REAL EISENVALUES ON 2*7 DIAGONAL 3LOCK

404ATRIX ro 3E TIANSFORMED
N*DIMENSION OF
MD*OECLARED DIMENSION OF 3,P

C NX,N2*R04 INDICIES OF TIE 3L3CX 70 3E TRANSFORMED
C*7 43 CU44ULNTED P CALCULATED

C KI*1 CUMULATED P CALCULATED
C IN! IF POSITION EX:HANCE PERFORMED WHER4ISE*0
C S400PRECISION CRITERION FROM 21 swourims
C ourpur

WRANSFORMED MATRIX
C P IS ORTHOGONAL MATRIX

,.....................----

C
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11. Subroutine TRIA

This subroutine performs an orthogonal similarity transformation to triangularize an isolated

2 x 2 diagonal block if the eigenvalues of that block are real.

"106.01./..14.00^0,....M
. -

SU3R7JTINE TRIA(4.P,N,NDIM,M2,VAL.S4ALL,K1) -

DIMENSION A(NOIM.NDI* ,PCMDIA,NDI4 ,VAL(2) -

_ :cipux VAL .
_
. COMPUTES EIGENVALUES OF 2*2 DIAGONAL 3LOCR . IF EIGENVALUES ARE

REAL , AN ORTHOGONAL SIMILARITY IRANSFORIATION IS PERFORMED ro -

C TRIANGJLARIZE DIAGONAL BLOCK. C

C- 3*P*AITT AND SET Age .

INPUT.
:.. AulUASI-TRIANGULAR MATRIX In 3E TRANSFORMED
. .
. PerrIE ORTHOGONAL MATRIX FRO4 PREVIOUS SIMILARITY TRANSFORMATION .

'..
^. N*DIMENSION OF MATRIX 4 -

NOIM*03CLEARED DIMENSION OF ARRAY A
.-

C. N2=INDEX OF 2*1 3LOCK * R34 AND COLUMN NUM3ER OF LONER
. .

RIG4T CORNER
. -- S4ALL*NOR4*MACRINE PRECIS/1N
C '" K1=1, NO CUMULATED P CALCULkTED

Kligt, CUMMULATED P CALCULATED
: =Rm....
C. N* 2U4SI1PFER TRIANGULAR MATRIX 3 .

. P*CUMMULATED ORTHOGONAL TRANSFORMATION MATRIX
.
.

,. MP:04MM EIGENVALUES IN VAL(L1 AND VAL(?) .
......... ............ ----,-

.. . . ..... . .... --- ... ...........

12. Subroutine HSOLVE

This subroutine solves the linear system equation A * X = B by using the Householder reduc-

tion.

C 313ROUTINS 4SOLVE(A.4.3.N.4,NDIM.ID.IE)
C DIMENSION 4(40[1,NON. AIM+ .3INDI40$

.
-

C SOLVE THE LINEAR EGUATION A*K*3 3Y HOUSEHOLDER METHOD
: INpur... .̂

C A.ris MATRIX 3F 4114 saceR 3!' A*X*8 -

3*MATRIX OF A*(*)3 ,N*M -
. Wm4ORHING SPACE

410/4
-

.0F A -

NOIM* DECLARED 404 DIMENSION OF A.B. MOW
ID* INDICATOR. 20*) - TRIANGULARIZE A AND SOLVE.

rp.t - 3YPASS TRIANSULARIZATION (PREVIOUS CALL RE2D.1

1...1*N.TRINT.4211. RIZED MATRIX

31373E sourIoN x
IE* ERROR INDICATOR. IE*0 NO ERROR

Mal MONU4I2JE SOLUTION (NO ERROR)
IS*? UNDEFINED smurioN

00060.060S,04,
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13. Subroutine EIGIIC

This subroutine computes the matrix of eigenvectors for a given matrix which was previously

put in quasi-upper triangular form using subroutine QR. The knowledge of the orthogonal similarity

transformation matrix, which reduced the original matrix to quasi-upper triangular form, is then

used to compute the eigenvectors of the original matrix.

suamirre EIGV:(A.VNL.N,NDIM,EL.2.C.S40.IE)
DIMENSION ANDIM,NDINg ,VAL(NDIM. ,ET-(4Dthi,NDIMi ,A1(2,21,A2(2,2),

C ,.. 1N3(1.21,C(NDIN1k ,2(NDIM,NOINO
- CO4PLEX.V4L
' COAPUTE THE EIGENVECTORS OF A 7.JA.SI-:JPPER TRIO! GLEAR MATRIX

mpur...
C 4=7U45I-UPPER TRIANGULAR MATRIX m-14 ROUTINE 71

VAL=THE EIGENVALUSS OF A :OAP:MD IN lourtNs 7R
22,SIMILARITY TRANSFORMATION IATRIX FRO4 71

C t.ODNENSION 0? N EL
C NDIMDECLARED DIMENSION OF , EL . /

SMDCONVERSENOE CRITERION FRO.' OR=44CH.PREC."NORM A
C ourpur...

EL=THE EIGENVECTOR M.4T31X OF A
C=INTERIEDIATE STORAGE VECTOR
IE=1 INDEPENDENT EIGENVECTOR
IElgt DEFECTIVE EIGENSYSTEM

SUBROJTINSS READ. - LYNPUN.H3OLVE
. ............

14. Subroutine SOLYAP

This subroutine solves the Lyapunov equation A * X + X * AT = C. Before entering this sub-

routine, the matrix A must be transformed into quasi-upper triangular form. With the knowledge

of the orthogonal similarity transformation matrix, the resulting solution X will be the solu-

tion of the original Lyapunov equation.

...... .........
su3RourrmsSOGY3P(A.C.N.N0,541./LP.4

C DIMENSION AND,NDIX(40,N01,AA(2,7) ,CT(1.210,4T(2.2) ,P(140,N1),
C t4(ND)

SOLVE A6x+x*AT*:
INPUT.

AgN*4 AATRIX IN 7.1451-UPPER TRIANOuLAR FORM FRD4 22 su3aoucriz
C144*N SY4METRIC MATRIX
Psi SIMILARITY TRANSFORMATION MATRIX FRO4 2R SURROUTINS
*WORMING SPACE
tf>=03CLARED DImENSION OF A , C , P
S40.C34VERSEME CRITERION FROM 71=4.ACH.PR=.*NORM A

C OUTPUT...
CSC, THE SOLUTION OF LYAPUNOY EATION A*x+x*Nri.:
210 NO ERROR
IEst ERROR-SOLUTION NOT COMM

C SBROUTINES RE7D.- LYNPUM.HSOLVE

15. Subroutine LYAPUN

This subroutine solves the Lyapunov equationA*X+X*B=Cwhen the dimensions of

A, B are 1 x 1 or 2 x 2.
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C sunoungs LY4FUA(A,N4.3.N3.C.IE)
DIMENSION 44(1,4),M1.2),3(1.2),C(1,2),W(3)

SOLVE k*X+X*3=C 4N7 3 i :=X,
INPJr....

. A \ND 3 ARE l*l 3a 2*2 .

: NA=OIMENSION OF A (l OR 2)
N3=0I4LISION OF 3 (1 OR 2)

: :=44 *43 MATRIX -

C: OUrPUT... ,-

: C=33LUTION X
C /E=1 NONSINSULAR :ASE

C IE*1. N3N-qNIQUE smurioN _

: IE=2 UNDEFINED soLurioN -

C 51.13WYZINF. REQO. HSOLVE
sW04,11.010.110WMP. PYWI"IsMOWMONOWMbe. ....../.0,0006...MOW amee....."...0.......

,...,

III. THE USER'S MANUAL FOR OPTIMAL AND ITS SUBROUTINES WITH SEVERAL EXAMPLES

III.1 Introduction

In this part, a user's manual for the main program OPTIMAL and the subroutines is presented.

The error and warning messages which are printed directly from the subroutines are also discussed.

Several examples are given at the end of this part.

III.2 User's manual for the control and estimation problem

In this section, the user's manual for the main program OPTIMAL will be presented. Also,

the user's manual for the subroutines CONTRL, FILTER, RICCAT will be given in case the user pre-

fers using his own main program.

A. The user's manual for the main program OPTIMAL

INPUT requirement:

The program OPTIMAL is designed so that the required matrices can be input in arbitrary order

preceeded by a matrix ID card. Two control cards must be input before the required matrices for

any given problem. The required data cards are described sequentially as follows:

Card A: print control card (NN, 10, LP),FORMAT (A6, 213)

NN = PRINT

IO = 0, if no optional print wanted.

= 1, if optional print wanted.

LP = 0, if regular line printer will be used.

= 1, if terminal line printer will be used.

Card B: Eigensystem control card (NN, LO, LV), FORMAT (A6, 213)

NN = OPTION

LO = 0, no optional open loop eigensystem.
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= 1, open loop eigensystem will be computed.

LV = 0, eigenvectors will not be computed.

= 1, eigenvectors will be computed.

The following set of cards is for reading in the required matrices.

Card C: matrix ID card (NN, NI, N2, NT), FORMAT (A6, 213, ZX, Al)

NN = name of the matrix to be input. This name is the same as the name used in part I, such as

A, B, Cl, 01, C2, 02, RI, R2, Q1, Q2, except LAMA for r and THETA for O.

'N1 = number of rows of the matrix.

N2 = number of columns of the matrix.

NT = blank for a regular matrix.

= Z for a zero matrix.

= 0 for a diagonal matrix.

= I for an identity matrix.

= S for a symmetric matrix.

Matrix input cards (free format):

1. If NT = blank, the matrix is entered by rows. For example,

1. 2. 3.

A * 4. 5. 6.

7. 8. 9.

requires three cards to be typed.

first card 1., 2., 3.

second card 4., 5., 6.

third card 7., 8., 9.

2. If NT = Z or I, no matrix input cards required.

3. If NT = 0, the diagonal elements only are entered. For example,

1. O. O.

R1 = O. 2. O.

O. O. 3.

requires one card to be typed.

card 1., 2., 3.
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4. If NT = S, the matrix is entered by row with the lower triangular part only. For

example,

02'

1.

2.

4.

2.

3.

5.

4.

5.

6.

requires three cards to be typed.

first card 1.

2.,

4.,

3.

5., 6.

second card

third card

Following all the data cards for the required matrices for a given problem, a blank card is used to

indicate another set of data cards for a second problem will follow.

Output Information

1. The stochastic control problem.

The output information contains items:

a. solution of regulator Riccati equation

b. regulator control gain

c. closed loop dynamics matrix

d. closed loop eigenvalues for controller

e. closed loop eigenvectors for controller

f. open loop eigenvalues

g. open loop eigenvectors

h. rms control

i. control covariance matrix

j. rms output

k. output covariance matrix

1. solution of the filter Riccati equation

m. filter gain

n. rms estimation error

o. estimation error dynamics matrix

p. estimation eigenvalues

q. estimation eigenvectors

r. rms state

s. state covariance matrix
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t. filter implementation dynamics matrix

u. eigenvalues of filter implementation

v. eigenvectors of filter implementation

If IC = 0, items c, i, k, o, s, t, u, v will not be printed.

If LO = 0, items f, g will not be computed or printed.

If LV = 0, items e, g, q, v will not be computed or printed.

2. The control problem without process noise.

The output information contains items: a, b, c, d, e, f, g.

If IC) = 0, item c will not.be printed.

If LO = 0, items f, g will not be printed.

IF LV = 0, items e, g will not be printed.

3. The control problem with process noise.

The output information contains items: a, b, c, d, e, f, g, h, i, j, k plus

w. rms regulator state

x. regulator state covariance matrix.

If IO = 0, items c, i, k, x will not be printed.

If LO = 0, items f, g will not be computed or printed.

If LV = 0, items e, g will not be computed or printed.

4. The state estimation problem.

The output information contains items: f, g, 1, m, n, o, p, q.

If IO = 0, item o will not be printed.

If LO = 0, items f, g will not be computed or printed.

If LV * 0, items g, q will not be computed or printed.

5. Steady state response of the system with zero control.

The output information contains items: f, g, j, k, w, x.

If IO = 0, items k, x will not be printed.

If LV = 0, item g will not be computed or printed.

Parameter LO does not play a role in this problem.

B. Subroutines CONTRL, FILTER, and RICCAT.

Under some circumstances, the user may prefer to use his own main program. In this case,

subroutines CONTRL and FILTER can be used for control and estimation purposes. In cases when

the given problem can not be formulated as one of the cases in part I, the subroutine RICCAT

can be used to solve control and estimation problems if the Hamiltonian matrix of the Euler-Lagrange

system can be formulated. With the given Hamiltonian matrix, RICCAT will give the solution of

the corresponding Riccati equation as well as the closed loop eigenvalues. The calling proce-

dure of subroutine CONTRL, FILTER and RICCAT is given in section 11.3.
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111.3 User's manual for other utility subroutines.

There are several subroutines that can be used for various purposes. The required calling

procedures are as follows:

1. Solving the linear system equation A * X = B

a. for single B (i.e., solve A * X = B only)

call HSOLVE (A, W, B, N, M, NDIM, 0, IE)

b. solve A * X1 B
1,

then solve A * X
2

= B
2

etc.

call HSOLVE (A, W, Bl, N, Ml, NDIM, 0, IE),

call HSOLVE (A, W, B2, N, M2, NDIM, 1, IE),

etc.

2. Computing the eigenvalues and eigenvectors of matrix A

a. compute the eigenvalues of A only

call QR (A, P, N, ND, VAL, MV, SNO, 0 , 0, 0)

b. compute the eigenvalues and eigenvectors of A

call QR (A, P, N, ND, VAL, N, SNO, 0, 0, 1)

call EIGVC (A, VAL, N, ND, EL, P, C, SNO, IE).

c. determination of invariant subspace

Let A be an n x n matrix. In order to determine the invariant subspace associated

with m desired eigenvalues, the following calling sequence is needed.

Set P A

call QR (P, A, N, ND, VAL1, N, SNO, 0, 0, 0)

take n-m undesired eigenvalues and set VAL2 to these eigenvalues, then

call QR (A, P, N, NO, VAL2, N-M, SNO, 0, 1, 1).

The first m rows of the matrix P form an orthogonal basis of the desired invariant

subspace.

3. Solving the Lyapunov equation A * X + X * AT = C

call QR (A, P, N, ND, VAL, N, SNO, 0, 0, 1)

call SOLYAP (A, C, N, ND, SNO, IE, P, W).

111.4 Error and Warning Messages

In the subroutine QR, if a particular eigenvalue or eigenvalue pair takes more than 26

iterations of the QR algorithm to converge, then the iteration process will be terminated and

an error message - QR NOT CONVERGING - will be printed out. Usually, the algorithm will con-

verge with an error equal to the machine precision times norm of the matrix within 20 itera-

tions. However, in the case of repeated eigenvalues, the algorithm is very likely to converge

only with the square root of the machine precision times norm of the matrix. To avoid the
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error termination in this case, the convergence criterion is changed to the square root of

the machine precision times norm of the matrix on the twentieth iteration step.

In subroutine RICCAT, if the Hamiltonian matrix has repeated eigenvalues on (or near) the

imaginary axis and/or the origin, the message - WARNING HAMILTONIAN HAS EIGENVALUES ON IMAGINARY

AXIS -, or - WARNING HAMILTONIAN MATRIX 'NEARLY SINGULAR - will be printed. In this situation,

the problem is ill-conditioned, but the execution is not terminated. When this happens, it

is suggested to check the solution of the Riccati equation as well as the eigenvalues of the

closed loop system. Since it is very unlikely that the Hamiltonian matrix would have more than

two pairs of eigenvalues at the origin or have more than one pair of eigenvalues at the same

point on the imaginary axis, no error message is printed out to indicate these possible program

failure modes.

M.S. Examples

In this section, five example problems and the corresponding input and output for the

program are given.

Input Cards:

1234567890123456789012345678901234567190
PRINT
OPTION

t

I

0

0

A 2 2 S

1.

2.,3.
2 1

1.

2.

Cl 2 2 I

Di 2 1

2.

3.

01 2 2 D

R1 1 1

2.

PRINT 1 0

OPTION 0 1

A 4 4

0.,-.415,-.0111,0.

4 1

0.

6.27

9.8

0.

C1 1 4

D1 1 1 Z

GANA 4 1

0.
-.0111

-.0198

O.

(continued on next page)
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01 I 1

.25

RI 1 I

131.3316

02 1 1

490.

PRINT 0 0

OPTION I 1

A 2 2 S

1.

2.,3.

8 2 1

1.

2.

C2 2 2 I

D2 2 1 Z

GANA 2 2 D

1.0.
THETA 2 2 Z

02 2 2 D

2.,I.

R2 1 1

2.

PRINT 1 0

OPTION 1 1

A 4 4

0.,.1,0.,0.

0.,-.415,-.0111,0.
9.8,-I.43,-.0198,0.
0.,0.,1.,0.

B 4 I

O.

6.27
9.8

O.

GANA 4 1

O.

-.0111

-.0198
O.

CI 1 4

0.,0.,0.,1.
DI I r z

C2 2 4

0.,0.,0.0.
1.,0.,0.,0.

D2 2 1 Z

THETA 2 1 Z

01 I I

.25

RI 1 1

131.3316

02 1 1

490.

R2 2 2 D

.272,.0000153

PRINT 0 0

OPTION 0 I

A 2 2 S

-7.

2.,-3.

GANA 2 1

1.

Cl 1 2

3.,2.

02 1 1

3.
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Results generated by the program:

A MATRIX

1.0000 2.0000
2.0000 3.0000

B MATRIX

1.0000

2.0000

Cl MATRIX

1.0000 0.

0. 1.0000

DI MATRIX

2.0000

3.0000

01 MATRIX

2.0000 0.

0. 1.0000

RI MATRIX

2.0000

PRINT 1081 LP*0

OPTION 1.021 LV=0

***CONTROL PROBLEM ***

SOLUTION OF REGULATOR RICCATI EQUATION

9.5518 10.582

10.582 22.133

REGULATOR CONTROL GAIN

-1.8272 -3.0446

CLOSED LOOP EIGENVALUES FOR CONTROLLER

EIGENVALUE( 1 )

-.22402 +J 0.

EIGENVALUE( 2 )

-3.6924 +J 0.

OPEN LOOP EIGENVALUES

EIGENVALUE( 1 )

4.2361 +J 0.

EIGENVALUE( 2 )

-.23607 +J 0.
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A MATRIX

O. 1.0000 O. 0.

O. -.41500 -.11100E-01 0.

9.8000 -1.4300 -.19800E-01 O.

O. O. 1.0000 0.

O.

6.2700

9.8000

O.

Cl

0.

111

0.

MATRIX

MATRIX

O. O. 1.0000

MATRIX

GANA MATRIX

O.

-.11100E-01

-.19800E-01

O.

01 MATRIX

.25000

RI MATRIX

131.33

02 MATRIX

490.00

PRINT '081 LPO
OPTION L00 1.961

*****CONTROL PROBLEM WITH PROCESS NOISE***

SOLUTION OF REGULATOR RICCATI EQUATION

41.393 10.252 4.8968 2.6306

10.252 5.7935 .64536 .13263

4.8968 .64536 .73072 .49984

2.6306 .13263 .49984 .50035

REGULATOR CONTROL GAIN

-.85487 -.32475 -.85337E-01 -.43630E-01

CLOSED LOOP DYNAMICS MATRIX OF CONTROLLER

O. 1.0000 O. O.

-5.3600 -2.4512 -.54616 -.27356

1.4223 -4.6125 -.85610 -.42757

O. O. 1.0000 O.
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CLOSED LOOP EISENVALUES AND VECTORS FOR CONTROLLER

EIGENVALUE( 1 ) EIOENUECTCR( 1 )

-.41983 +J 1.1353

-.62002E-01 +J .85322E-01

.70835E-01 +J -.10621

.7602? 0.

-.21786 +J -.58913

EIGENVALUE( 2 ) EIBENVECTORt 2 )

-.41983 +J -1.1353

-.62002E-01 +J -.85322E-01
-.70835E-01 +J .10621

.76029 +J O.

-.21786 +J .58913

EIGENVALUE( 3 ) EIGENVECTOR( 3 )

-1.2138 +J .55452

-.81159E-01 +J .18382E-01

.89942E-01 +J -.67685E-01

.79621 +J O.

-.53688 +J -.2412?

EIGENVALUE( 4 )

-1.2333 +J -.55452

EIGENVECTOR( 4 )

-.81159E-01 +J -.18382E-01

.89942E-01 +J .67685E-01

.79621 +J O.

-.53688 +J .24129

RMS REGULATOR STATE

.69020E-01 .12859 .46711 .62056

REGULATOR STATE COVARIANCE MATRIX

.47637E-02 -.27756E-16 -.38103E-02 -.25286E-01

.34694E-16 .16535E-01 -.20849E-01 .38103E-02

-.38103E-02 -.20849E-01 .21819 .54262E-14

- .25286E -0t .38103E-02 .58495E-14 .38509

RMS CONTROL

.63698E-01

CONTROL COVARIANCE MATRIX

.40574E-02

RMS OUTPUT

.62056

OUTPUT COVARIANCE MATRIX

.38509



A

1.0000

2.0000

MATRIX

2.0000

3.0000

a MATRIX

1.0000

2.0000

12 MATRIX

1.0000 0.

0. 1.0000

B2 MATRIX

0.

0.

GAMA MATRIX

1.0000 0.

0. 1.0000

THETA MATRIX

0. 0.

0. 0.

02 MATRIX

2.0000 0.

0. 1.0000

R2 MATRIX

2.0000

PRINT I020 LP20

OPTION L021 LV21

ESTIMATION PROBLEM

SOLUTION OF FILTER RICCATI EQUATION

18.184 31.740

31.740 62.626

FILTER GAIN

-9.0920
-15.870

RMS ESTIMATION ERROR

4.2643 7.9136

ESTIMATION EIGENVALUES AND VECTORS

EIGENVALUE( 1 1 EIGENVECTOR( 1 I

-.80876 +J 0.

-.26480

- .96430

EIGENVALUEI 2 1 EIGENVECTOR( 2

-4.2832 +J 0.

.46491

.08336

210
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OPEN LOOP EIGENVALUES AND VECTORS

EIGENVALUE( 1 ) EIGENvECTORt

4.2361 +J O.

.52573

.85065

EIGENVALUE( 2 ) EIGENVECTOR( 2 )

-.23607 +J 0.

.85065

-.52573

A MATRIX

O. .10000 O. 0.

O. -.41500 -.11100E-01 O.

9.8000 -1.4300 -.14800E-01 0.

O. 0. 1.0000 O.

MATRIX

O.

6.2700
9.8000

O.

6AMA MATRIX

O.

-.11100E-01

-.19800E-01

O.

Cl MATRIX

O. O. O. 1.0000

Dt MATRIX

0.

C2 MATRIX

O. O. O. 1.0000

1.0000 O. O. 0.

D2 MATRIX

O.

O.

THETA MATRIX

O.

0.

al MATRIX

.25000

R1 MATRIX

131.33



02 MATRIX

490.00

R2 MATRIX

.27200 O.

O. .15300E-04

PRINT I0=1 LP=0

OPTION L0=1 LV=1

CONTROL PLUS ESTIMATION PROBLEM

SOLUTION OF REGULATOR RICCATI EQUATION

1305.2

-47.809

75.603
17.194

-47.809 75.603

8.4142 - 5.8381

-5.8381 6.0205

-2.1559 1.9640

17.194

-2.1559
1.9640

.99210

REGULATOR CONTROL GAIN

-3.3590 .33927E-01 -.17053 -.43630E-01

CLOSED LOOP DYNAMICS MATRIX OF CONTROLLER

O. .10000 O. O.

-21.061 -.20228 -1.0803 -.27356

-23.118 -1.0975 -1.6910 -.42757

O. O. 1.0000 O.

CLOSED LOOP EIGENVALUES AND VECTORS FOR CONTROLLER

EIGENVALUE( 1 ) EIGENVECTOR( 1 )

-.74398 +J .39390

.18996E-01 +4 -.95168E-02
-.10384 +J .14563

- .55985 +J .29641

.75251 +.1 O.

EIGENVALUE( 2 ) EIGENVECTOR( 2 )

-.74398 +4 -.39390

.18996E-01 +J .95168E-02
-.10384 +J -.14563

-.55985 +J -.29641

.75251 +.1 O.

EIGENVALUE( 3 ) EIGENVECTOR( 3

-.20266 +4 .58072

-.60327E-03 +J -.29726E-01
.17385 +.1 .56739E-01

-.16963 +4 .48608

.83703 +J O.

EIGENVALUE( 4 ) EIGENVECTOR( 4 )

-.20266 +J -.58072

-.60327E-03 +.1 .29726E-01

.17385 +J -.56739E-01

-.16963 +J -.48608

.83703 +J O.

212
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SOLUTION OF FILTER RICCATI EQUATION

.47608E-04 .74876E-03 .11386E-02 .66270E-03

.74876E-03 .26823E-01 .42586E-01 .11909E-01

.11386E-02 .42586E-01 .75314E-01 .36511E-01

.66270E-03 .11909E-01 .36511E-01 .10979

FILTER GAIN

-.24364E-02 -3.1116
-.43794E-01 -48.939
-.13423 -74.420

-.40365 -42.314

RMS ESTIMATION ERROR

.68998E-02 .16378 .27443 .33135

ESTIMATION ERROR DYNAMICS MATRIX

-3.1116 .10000 O. -.24364E-02

-48.939 -.41500 -.11100E-01 -.43784E-01

-64.620 -1.4300 -.19800E-01 -.13423

-43.314 O. 1.0000 -.40365

ESTIMATION EIGENVALUES AND VECTORS

EIGENVALUE( 1 I EIGENVECTOR( I )

-1.7955 +J 1.644
.10481E-01 +J -.18999E-01
.47797 +J -.73433E-01

.78127 +J O.

.19729 +J -.34113

EIGENVALUEt 2 ) EIGENVECTOR( 2 )

-1.7955 +J -1.7644
.10481E-01 +J .18999E-01

.47797 +J .73433E-01

.78127 +J 0.

.19729 +J .34113

EIGENVALUE( 3 ) EIGENVECTOR( 3 )

-.17958 +J .20152
-.89984E-03 +J -.20609E-04
-.283265 -02 +J -.24176E-02
.17724 +J .19356

.96494 +J O.

EIGENVALUE( 4 ) EISENVECTOR( 4 )

-.17458

RMS STATE

.36583E-01

+J -.20152

.32692

-.89984E-03 +J .20609E-04

-.28326E-02 +J .24176E-02

.17724 +J -.19356

.96494 +J O.

.52505 1.1939



STATE COVARIANCE MATRIX

.13383E-02 .72741E-12 -.10573E-01 -.14016E-01

.60673E-12 .10688 .35638E-01 .10573

-.10573E-01 .35638E-01 .27567 .21030E-11

-.14016E-01 .10573 .34808E-11 1.4255

RMS CONTROL

.68533E-01

CONTROL COVARIANCE MATRIX

.46968E-02

RMS OUTPUT

1.1939

OUTPUT COVARIANCE MATRIX

1.4255

FILTER IMPLEMENTATION DYNAMICS MATRIX

-3.1116 .10000 O. -.24364E-02

-70.000 -.20229 -1.0803 -.31734

-97.538 -1.0975 -1.6910 -.56181

-43.314 O. 1.0000 -.40365

FILTER IMPLEMENTATION EISENVALUES AND VECTORS

EIGENVALUE( 1 EIOENVECTOR( 1 )

-2.5838 +J 2.5680
. 16424E-02 +J -.18667E-01

.48907 +J -.64200E-01

.80686 +J O.

.41632E-07 +J -.32184

EIGENVALUE( 2 EIDENVECTOR( 2 )

-2.5838 +J -2.5680
.16424E-02 *J .18667E-01

. 48907 +J .64200E-01

. 80686 +J O.

.41632E-01 +J .32184

EIGENVALUE( 3 ) EIGENVECTOR( 3 )

-.39114E-01 +J O.
.57668E-02

.15325

-.10828

- .98222

EIGENVALUE( 4 ) EIGENVECTORt 4 )

-.20189 +J O.

-.45560E-02

-.10835

. 32326E-02

.99410

214
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EIGENVALUE( 1 EIGENVECTOR( 1 )

.29960E-01 +J .14523

-.22300E-02 +J .72784E-03

-.17251E-02 +J -.30205E-02

.29636E-01 +j .14365

.98918 +J O.

EIGENVALUEf 2 1 EIOENVECTORl 2

.29960E-01 +J -.14523
-.22300E-02 +J -.72784E-03

-.17251E-02 +J .30205E-02

.29636E-01 +J -.14365
.98918 +J O.

EIGENVALUE( 3 ) EIOENVECTOR( 3

-.49472 +J O.

-.12455E-01
.61618E-01

.44255

-.89454

EIGENVALUE( 4 EIGENVECTOPI 4

-.34168E-01 +J O.

.73534E-14

..42177E-13
1.0000

A MATRIX

-7.0000 2.0000

2.0000 -3.0000

GAMA MATRIX

1.0000

2.0000

CI MATRIX

3.0000 2.0000

02 MATRIX

3.0000

PRINT I0s0 LP20

OPTION L0.0 LVal

*****STEADT STATE COVARIANCE PROBLEM
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OPEN LOOP EIGENVALUES AND VECTORS

EIGENVALUE( 1 ) EIGENVECTOR( 1

-2.1716 +J O.

.38268

.92388

EIGENVALUE( 2 ) EIOENVECTOR( 2 )

-7.8284 +J 0.

.92388

-.38268

RMS STEADY STATE

.76312 1.6908

RNS OUTPUT FOR ZERO CONTROL

5.6688

216
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APPENDIX F

THE OPTIMAL PROGRAM LISTING
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PROGRAM oprIAAL (INPUT,OUrpuT,TApE5=iNpUT)

DIMENSION A(30,30), 9(30,10), C1(10,30), D1(10,10), c2(10,30), D2
1(10,10), THETA(10,10), GAIN(10,30), GK(30,10), GA4A(30,10), Q1(30,
230), R1(30,30) , Q2(30,30), R2(30,30) , 5(30,30), H(50,50) , P(30,50)
3, VAL(50), W(50), EL(30,30), P1(30,30)
COAPLEX vAL
DATA ND/30/,NDD/50/,NDL/10/,t4DA/10/,NOP/10/,NOW10/
DATA NA/lHA/,g8/11 3/,NC1/2321/,ND1/2aD1/,NC2/2H7.2/,ND2/2HD2/,NGA/

14HGAMA/,N,Q1/2HQ1/,NR1/2HR1/,NQ2/2HQ2/,NR2/2HR2/,NTH/SITHETA/,NZ/
21112/,NPRi5HPRINT/,NOP/5110PTION/
DATA 34ALL/1.E-14/
DATA IUNT/5LINPUT/

SOLVE OPTIMAL CONTROL AND ESTIMATION PROBLEMS.
INPUT*****
I0=0 NO OPTIONAL PRINT WANTED
I0=1 OPTIONAL PRINT WANTED
LP-43 REGULAR LINE PRLNTER WILL 3E USED
LP=1 TERMINAL LINE PRINTER WILL 3E USED
L.W NO OPTIONAL OPEN LOOP EIGENSYSTEM
LC=. compurE OPEN LOOP EIGENSYSTEM
LV=) EIGENVECTORS NOT COMPUTED
LV=1 COMPUTE EIGENVECTORS
INPUT NECCERSARY AATRICES

0

ID1 =0
ID2 = 0
IS1 = 0
TO = 0
LP = 0
LO = 0
LV= 0

20 tQl = 0
IR1 = 0
IR2 = 0
IQ2 = 0

30 READ (5,910) NN,N1,N2,NT
IF (E0F(IUNT)) 40,50,40

40 IEOF = 1
30 TO 200

50 IF (NN.EQ.NA) GO TO 30
IF CNN. EQ. NPR) 30 TO 50
IF (N14.EQ.NOP) 30 TO 70
IF (NN.EQ.NB* GO TO 90
IF (NN.EQ.NC1) 30 TO 100
IF (fN.EQ.ND1) GO TO 110
IF (NN.EQ.NQ1) 30 TO 120
IF (CA.EQ.NR1) GO TO 130
IF (NN.EQ.NaA) GO TO 140
IF (NN.EQ.NQ2) GO TO 150
IF (NN.EQ.NC2) 30 TO 160
IF (NN.EQ.ND2) 30 TO 170
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IF (N14.E0.NR2) 10 ro 130
IF (NN.EQ.NTH) 10 TO 190
10 TO 200

50 IO =N1
LP = N2
00 To 30

70 LO = NI
LV = N2
GO TO 30

30 CALL REARM (A,N1,N2,ND,NT,NA,LP)
N =N1
GO TO 30

90 CALL READM (B,N1,N2,ND,NT,N3,LP)
N = Ni
L = N2
GO TO 30

100 CALL REARM (C1,N1,N2,NUM,NT,NCI,LP)
= N1

N =N2
GO ro 30

110 CALL READM (D1,N1,N2,NDM,NT,ND1,LP)
M = NI
= N2

ID1 = 1
IF ONT.EQ.N2w IDl = 0
GO ro 30

120 CALL READ4 (Q 1,N1,N2,ND,NT,NQ1,LP)
IQl = 1
4 = N1
GO TO 30

130 CALL REARM (R1,N1,N2,NO,NT,NR1,LP)
IR1 = 1
L = N1
GO TO 30

140 CALL READ4 (LAMA,N1,N2,ND,NT,NGN,LP)
N = N1
NP = N2
GO TO 30

150 CALL READ4 (02,N1,N2,ND,NT,NO2,LP)
NP = N1
IQ2 =
GO TO 30

160 CALL REARM (C2,N1,N2,NDQ,NT,NC2,LP)
NQ = NI
N =N2
GO TO 30

170 CALL READM (02,N1,N2,NDQ,NT,NO2,LP)
ID2 = 1
IF OIT.EQ.N21 ID2 = 0
NQ = N1
L = N2
GO TO 30
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.30 CALL READ4 (R2,N1,N2,ND,NT,NR2,LP)
IR2 =
IQ = N1
30 TO 30

190 CALL READ4 (THETA,N1,N2,NOQ,NT,NTH,LP)
NQ = N1
NP = N2
IS1 = 1

IF (NT.EQ.NZ, IS1 = 0
GO TO 30

200 IPR = IR1+1,12+IR2+IR2

IF (IPR.EQ.1.AND.IQl.EQ.0) IPR = 0
PRINT 920, IO,LP
PRINT 930, LO,LV

IPR IS THE PROBLEM INDICATOR
=) STEADY STATE COVNRINNCE
=1 CONTROL WITHOUT PROCESS NOISE
=2 CONTROL WITH PROCESS NOISE
=3 ESTIMATION
=4 CONTROL + ESTIMATION

IF(IPR.EQ.0) PRINT*,42H *****STEADY STATE COVARIANCE PRO3LE4*****
IF(IPR.EQ.1)PRINT*,23H ***CONTROL PROBLEA k**
IF(IPR.EQ.2)PRINT*,43H *****CONTROL PRO3LEA WITH PROCESS NOISE***
IF(IPR.EQ.3)PRINT*,29H *****ESTIMATION PROBLEA*****
IF(IPR.EQ.4)PRINT*,421 ** ** *CONTROL PLUS ESTIIATION PROBLEM*****
IF (IPR.EQ.0) GO TO 250
IF (IPR.EQ.3) GO TO 470
CALL cown (A,B,C1,D1,Q1,R1,S,GAIN,H,P,VNL,N,A,L,ND,NOD,N34,NDL,W
1,ID1)

PRINT 940
CALL PRINT (S,N,N,NO,LP)
PRINT 950
CALL PRINT (SAIN,L,N,NOL,I2)
IF (LV.EQ.1) GO TO 210
PRINT 550
CALL PREVAL (VAL,EL,ND,N,O,SMO)
IF (IPR.EQ.1) GO TO 300

210 00 230 I=1,N
CO 230 J=1,N

SU4 = O.
DO 220 X=1,L

220 SU4 = SUM+8(I,K)*3ALN(K,J)
230 R1(I,J) = A(I,J)*SUM

IF (IO.EQ.0) GO TO 240
PRINT 970
CALL PRINT (11,N,N,ND,LP)

240 IF (IPR.EQ.4.CR.IPR.EQ.1) 30 DO 290
250 DO 250 I=1,NP

DO 260 J=1,N
H(I,J) = 0.
DO 250 :<=1,NP
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260 H(I,J) = 3(I,J)4-22(I,K)*GAMA(J,K)
00 230 I=1.,N

DO 230 3=1. , N
SUM = 0.
DO 270 K =1, NP

270 SLM = SLX4-IGA.MA( , K) *11(X , J)
280 Q2(I,J) = -SUM

IF (IPR.EQ.0) GO TO 31.0
290 SMO = SMALL

CALL cR (R1,P.1,N,ND,VNL,N,S40,0,0,1)
IF (1.V.EQ.0) GO TO 300
CALL EIGVC (R1,VNL,N,ND,EL,P4,W,S40,IE)
PRINT 930
CALL PREVAL (VAL,EL,ND,N,1,340)

300 IF (IPR.EQ.1) GO TO 300
IF (IPR.EQ.4) ro 420
CALL SWAP (R1, 02, N, ND, S40, IE,Pg,',AN
DO 31.0 I=1,N

310 '4(1) = SQRT(Q2(I,I))
PRINT 990
CALL PRINT (W,1,N,1,LP)
IF (IO.EQ.0) ro 320
?RINT 1000
CALL PRINT (Q2,N,N,ND,LP)

320 30 330 I=1.,N
DO 330 J=1,L

= 0.
DO 330 K=1,N

330 r.-I(I,J) = H(I,J)*Q2(I,K)*GAIN(J,K)
DO 340 I=1,L

CO 340 J=1,L
P(I,J) = 0.
DO 340 K=1,N

340 ? (I ,J) = P (I,J) fGALN1 (I ,K) (K,J)
DO 350 I=1,L

350 'Al(I) = S2:2T(P(I,I)1
PRINT 101.0
CALL PRINT (W,1,L,1,LP)
IF (IO.EQ.0) GO TO 360
PRINT 1020
CALL PRINT (P,L,L,NOD,LP)

350 DO 380 I=1,M
CO 380 3=1,N

S1.14 = 0.
IF (IDI.EQ.0) GO TO 380
DO 370 K=1,L

370 SUM = Stkl+D1 (I , K) *GAIN (K,J)
330 S(I,J) = Cl(I,J)÷SIM

DO 390 I=1,M
DO 390 3=1.,N

R1(I,J) = 3.
DO 390 K=1.,N
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391 R1(I,J) = R1(I,J)I-S(I,K)*Q2(K,J)
DO 400 I=1.,M

00 400 J=1,4
H(I,J) = 0.
00 400 'C=1,N

400 4(I,J) = 3(I,J)f-R1(I,K)*S(7,K)
00 410 I=1,M

410 W(I) = SQRT(H(I,I))
PRINT 1030
CALL PRINT (W,1,1,1,LP)

IF (IO.EQ.0) GO ro 300
PRINT 1040
CALL PRINT (H,M,A,NDD,LP)
CO TO 300

420 IF (IS1.EQ.0) GO TO 440
00 433 L=1,NP

DO 430 3=1,NQ
H(I,J) = O.
DO 430 'C=1,N12

430 i(I,J) = 3(I,J)*Q2(T,K)*T9ETN(J,K)
440 DO 460 I=1, NQ

00 450 3=1,N,Q

SUM = 0.

IF (IS1.EQ.0) GO TO 460
DO 450 K=1,NP

450 SUM = SUM+THETA(I,K)*H(K,J)
460 Ql(I,J) = R2(I,J)*SU1
470 CALL FILTER (A,C2,GAMA,THETN,Q2,R2,S,GK,11,P,VAL,N,NQ,NP,ND,NDO,NDQ

1,NDP,W,IS1)
PRINT 1050
CALL PRINT (S,N,N,ND,LP)
PRINT 1060
CALL PRINT (3K,N,NQ,ND,LP)
DO 480 I=1,N

480 W(I) = SQRT(S(I,I))
PRINT 1070
CALL PRINT (W,1,N,1,LP)
IF (LV.EQ.1) 00 TO 490
PRINT 1080
CALL PREVNL (VAL,EL,ND,N,0,340)
GO TO 530

490 DO 510 I=1,N
DO 510 J=1,N

SUM =0.
oa 500 'C =1, NQ

500 SUM = SUM+3K(I,K)*C2(K,J)
510 R2(I,J) = A(I,J)+SUM

IF (IO.EQ.0) GO TO 520
PRINT 1090
CALL PRINT (R2,N,N,ND,LP)

520 340 = SMALL
CALL QR (112,Q2,N,ND,VAL,N,S40,0,04)
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CALL EIGVZ (R2,VNL,N,IsID,EL,Q2,,1,310,IE)
PRINT 1100
CALL PREVNL (VAL,EL,NO,N,I,S40)

530 IF (IPR.EQ.3) 10 TO 300
DO 540 I=1,N2

DO 540 .7=1,N
T-I(I,J) = 0.
CO 540 :<=1,NQ

540 = H(I,J)+-Q1(t,K)*3X(3,K)
DO 550 I=1,N

DO 560 1=1,N
3114 = 0.
DO 550 <-=.1.,NQ

550 3114 = str4+7,x(I,K)*H (K,J)
560 )I(I,J) SUM

CALL SOLY4P (R1, Ql, N, ND, S40, IE,PS,W1
00 570 I=1,N

DO 570 J=1,N
570 PW(I,J) = Ql(I,J)*S(I,J)

DO 530 L=1,14
530 ti( I ) = STT (PW( , I) )

PRINT 111.0
CALL PRINT (W,I,N,I,LP)
IF (IO.EQ.0) 30 TO 590
PRINT 1123
CALL PRINT (PW,N,N,ND,LP)

590 DO 600 I=l,N
DO 600 1=1.,L

= 0.
CO 600 {=1,N

600 14(I,J) =
DO 51.0 L=1.,L

00 61.0 J=1.,L
P(I,J) = 0.
CO 61.0 It=1,N

61.0 P(I,J) = ?(I,J)-I-GAIN(I,K)*H(K,J)
DO 520 I=1.,L

620 rti(t) = SUIT(P(I,I))
PRINT 1130
CALL PRINT (W,1,L,1,LP)
IF (IO.EQ.0) 30 TO 530
PRINT 1140
CALL PRINT (P,L,L,N33,LP)

630 DO 640 I=1,N
DO 640 J=1,14

= 0.
DO 640 { =1,N

640 Ql(I,J) = Q1(I,J)+PW(I,K)*C1(3,K)
IF (ID1.EQ.0) 30 TO 680
DO 650 I=1,N

DO 650 3=1,M
5(1,3) = O.
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DO 550 K=1., L
550 3 (I ,3) = S(I,J)+-S(I,K)*D1(3,K)

DO 650 I=1,
DO 550 J=1., M

H (I ,J) = 0.
DO 660 K =1 ,N

550 1-1(I,J) = 9(I,J)+C1 (I,K)*S (K,J)
DO 670 I=1. , L

DO 570 J=1 M
S (I ,J) = 0.
DO 670 K =1 ,L

670 S (I ,J) S (E,J)4-P(I,K)*01(J,K)
530 00 71.0 I =1. ,

DO 71.0 3 =1,M
S114 =0.
DO 690 K=1 ,N

590 SIM = Stft+Cl (I ,K)*Q1 (K,J)
XW = 0.
IF (101. EQ.0) GO TO 71.0
00 700 K=1., L

700 = V401 (I ,K)*S (1t,J)
= XVI++! (I,J) (1, I)

71.0 ? ,J) 31.74-Kol
DO 720 I=1 M

720 '4( = SQRT(P(I,I))
PRINT 1150
CALL PRINT (W, 1 , M, 1, LP)
IF ( IO. SQ. 0) GO TO 900
PRINT 1160
CALL PRINT (P M,M,NDO, LP)
DO 740 I=1.,NQ

DO 740 1=1. , N
SUM = 0.
IF ( /D2. EQ.0) GO TO 740
00 730 K =1 ,L

730 SLIM = 3114-H02 (I K) *GAIN (K ,J)
740 PPi(I ,J) = C2 (/ ,J) *SUM

DO 770 I=1,N
CO 770 .3=1.,N

SIM = 0.
DO 750 K =1 ,L

750 SUM = SLE4+8 ( I K) *GAIN (K,J)
X'd = 0.
DO 750 K=1 ,NQ

760 = Kg+GK (I K) *74 ( J)
770 R1 (I ,J) = A( I ,J) +51.14+V.41

PRINT 1170
CALL PRINT (R1,N,N,ND,LP)
SMO = SMALL
CALL 71 (R1, PPI S'40, 0, 0,1)
IF (LV. EQ.1) GO TO 790
PRINT 1180
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oo ro 790
730 CALL TIGliC (R1,VNL,N,ND,EL,P4,W,SAO,IE)

?RINT 1190
799 CALL PREVNL (iNL,EL,ND,N,LV,S10)
330 IF (LO.EQ.0) GO ro 900
310 SMO = SMALL

DO 320 I=1,N
DO 3207 =1,N

320 R1(I,J) = N(I,J)
SALL 71 (11,PW,N,ND,VAL,N,340,0,0,1)
IF (LV.EQ.1) GO TO 330
?RINT 1200
10 TO 840

330 CALL EIGIC (R1,VAL,N,ND,EL,P4,W,S40,IE)
?RINT 1210

340 CALL PREVNL (VAL,EL,ND,N,LV,SMO)
IF (IPR.NE.0) GO ro 900
CALL SOLYAP (R1,Q2,N,N7,540,IE,P4,1*
DO 950 E=1,N

350 4(I) = SQRT(Q2(I,I))
?RLNT 1220
CALL PRINT (4,1,N,1,LP)
IF (IO.EQ.0) GO TO 850
PRINT 1230
CALL PRINT ()2,N,N,ND,LP)

360 DO 870 I=1,M
DO 370 J=1,N

H(I,J) = 0.
C10.370 K=1,N

370 H(I,J) = H(I,J)iC1(I,K)*Q2(K,J)
DO 393 I=1,M

DO 330 J=1,M
Q2(r,J) = 0.
CO 330 K=1,N

880 Q2(I,J) = Q2(I,J)+H(I,K)*C1(J,K)
390 W(I) = SQRT(Q2(I,I))

PRINT 1240
CALL PRINT (W,l,M,1,LP)
IF (IO.EQ.0) GO TO 900
?RINT 1250
CALL PRINT (Q2,M,M,ND,LP)

900 PRINT 1260
IF (IEOF.NE.0) STOP
GO TO 20

910 FO RINT (A5,2I3,2X,A1)
920 FORINT (/,12H PRINT I0=,I1,7H LP=,I1)
930 FORMAT (12H OPTION LO=,I1,7H LV=,I1,/,
940 FORMAT (/,39H SOLUTION OF RMULATOR RICCATI EQUATION)
350 FCRAAT (1,23H REGULATOR CONTROL GAIN)
950 FORMAT (/,3911 CLOSED LOOP EIGENVALUES FOR CONTROLLER)
970 FCRMAT (1,42H CLOSED LOOP DYNAMICS MATRIX OF CONTROLLER)
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)30 FORMAT (/,51A CLOSED LOO? EIGENVALUES AND VECTORS FOR CONTROLLER)
390 FORMAT (/,213 RMS REGULATOR STATE)
1000 FORMAT (/,341 REGULATOR STATE COVARIANCE MATRIX)
1010 FCRMAT (/,1311 RMS CONTROL)
1020 FORMAT (/,26H CONTROL COVARIANCE AATRIX)
1030 FORMAT (/,12H RAS OUTPUT)
1040 FORMAT (/,2511 OUTPUT COVARIANCE MATRIX)
1050 FORMAT (/,36H SOLUTION OF FILTER RICCATI EQUATION)
1060 FORMAT (/,12H FILTER GAIN)
1070 FORMAT (/,22H RMS ESTIMATION ERROR)
1030 FORMAT (/,23H ESTIMATION EIGENVALUES)
1090 FORMAT (/,3313 ESTIMATION ERROR DYNAMICS MATRIX)
1100 FORMAT (/,35H ESTIMATION EIGENVALUES AND VECTORS)
1110 FORMAT (/,10H RMS STATE)
1120 FORMAT (/,24H STATE COVARIANCE MATRIX)
1130 FORMAT ( /,12H RNIS CONTROL)

1140 FORMAT (1,26H CONTROL COVARIANCE MATRIX)
1150 FORMAT (/,1111 RMS OUTPUT)
1160 FORMAT (/,2511 OUTPUT COVARIANCE MATRIX)
1170 FORMAT (/,3311 FILTER IMPLEMENTATION DYNAMICS MATRIX)
1130 FORMAT (/,3411 FILTER IMPLEMENTATION EIGENVALUES)
1190 FORMAT (/,4511 FILTER IMPLEMENTATION EIGENVALUES AND VECTORS)
1200 FORMAT (/,2211 OPEN LOOP EIGENVALUES)
1210 FORMAT (f,34H OPEN LOOP EIGENVALUES AND VECTORS)
1220 FORMAT ( /,181 RMS STEADY STATE)
1230 FORMAT (/,31H STEADY STATE COVARIANCE MATRIX)
1240 FORMAT (/,29H RMS OUTPUT FOR ZERO CONTROL)
1250 FORMAT (/,3513 OUTPUT COVARIANCE FOR ZERO CONTROL)
1260 FORMAT WA

END
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SU3ROUTINE REAIJ'4 (A,N1,N2,N3,NT,UN,LP)
DIMENSION A(N3,N2)
DATA NZAHZ/,N0/1.30/,NSA13 /,NI/IHI/

CCCCCCOCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCOCCCCCCCCCCCCCCCCC
C READ AND PRINT N1/1742 MATRIX A
C rmpur...
C NI =RO DIMENSION OF A (N'J4SER OF RCVS)
C N2=COLUMN DIMENSION OF A
C N3=DECLARED RCW DIMENSION OF A
C NT=Z IF A IS ZERO MATRIX
C 1T=t IF A IS IDENTITY MATRIX
C NT=S IF A IS SYMMETRIC MATRIX
C NT=O IF A IS DIAGONAL MATRIX
C NA=NAME OF MATR/X A
C LP=0 FROM REGULAR LINE PRINTER
C LP=1 FROM TERMINAL PRINTER

C

C SUBROUTINE REQD.- PRINT
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCOCCCCCCCCCCOCCCOCCCOCCCCC

IF VAT.EQ.NZI GO TO 20
IF (NT.EQ.ND) GO TO 40
IF (NT.EQ.NS) 10 ro 50
IF (NT.EQ.NI) 30 TO 30
READ (5,19 ((A(I,J),J=1,N2),I=1,N1)

1.0 ?Rim lto, NA
CALL PRLVT (A,N1,N2,N3,LP)
RETURN

20 00 30 I =1, N1

DO 30 J=I,N2
30 A(I,J) = 0.

GO TO 10
40 DO 50 I=t,N1

DO 50 J=I,N2
50 A(I,J) = O.

READ (5,*1
30 ro 10

50 READ (5,1tt ((A(I,J),J=1,I),/=1,N1)
DO 70 I =L, N1

00 70 J=I,N1
70 A(I,J) = A(J,I)

30 TO 10
30 DO 100 I=t,N1

DO 90 J=1,N1
90 A(I,J) = 0.
100 A(I,I) = I.

GO TO 10
C
110 FORMAT (/,1X,A10,7H MATRIX)

END
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SU3ROUTINE PRINT (A,N1,N2,NO,ID)
DIMENSION A(ND,N2)

CCCCOCCOCCCCCCCCOCCCOCCCCCCCCCCOCCCCCCCCOCCCOCCCCCCCCCCCCCCCCCCCCCCCC
C PRINT N1*42 MATRIX A _
C INPUT...
C A=MATRIX TO 3E PRINTED
C N1 O4 DIMENSION OF A (NUMBER OF ROWS)
C N2=COLUMN DIMENSION OF A
C ND=DECLARED Rail DIMENSION OF A
C ID=) REGULAR LINE PRINTER (120 COLUMN)
C ID=1 TERMINAL PRINTER (50 COLUMN)
COCCCOCCCCCCCCCCCOCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCOCCCCCCC

PRINT*," "

MD = 10
IF (ID.EQ.1) MD = 5
71 = 1
12 = MD
IF (.72.GT.N2) 72 = N2
30 TO 20

10 IF (72.GE.N2) RETURN
PRINT*," "

11 = J1+AD
J2 = J2+MD
IF (J2.GT.N2) J2 = N2

20 DO 30 I=1,N1
30 PRINT 40, (MI,J),J=J1,72)

GO ro lo

40 FORMAT (1X,10312.5)
END
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SUBROUTINE PREVAL (VAL, EL, NO, N, ID, SMO)

DIMENSION VAL (ND) , EL (ND, NO)

C O4PLEX VAL
'-'^^CCCCCr'Cr"CCCC=CCCC=CC^C=C"Cr""^""=""CCCCCCCCOCCCCCCCCCC^CCCCC
C PRINT EIGENVALUES AND SIGENVECTaRS, 1'H EIGENVECTORS WILL
C BE NORIALLIZED
C INPUT....
C VAL=EIGENVALUES (FROM QR)
C EL=EIGENVECTOR MATRIX (FROM EIGVC,
C ND=OECLARED DIMENSION OF VAL,EL
C N=DIMENSION OF VAL,EL
C SAO=PRECISION OF EIGENVALUES comparyrtom
C ID=) ,PRINT EIGENVALUES ONLY
C ID=1 ,BOTH EIGENVALUES AND EIGENVECTORS PRINTED
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCC

DO 110 I=1,N
IF (ID.EQ.1) GO TO 10
?RIM' 120, I
GO TO 20

10 PRINT 130, I,I
20 RE = REALUAL(I))

AIM = AIMAG(VAL(I))
PRINT 140, RE,AIA
IF (ID.EQ.0) GO PO 110
IF (ABS(Ar*.LE.S40) GO TO 70
K = I-1
KP1 = I
SIGN = 1.
IF (AIA.LT.0.0 GO TO 50
K = I
KP1 = I+1
SIGN = -1.
SUA = 0.
VIAX = O.
DO 30 J=1,N

X = EL(J,K)*EL(J,K)*EL(J,KP1)*EL(7,K131)
IF (X.LE.XMAX) GO PO 30
XMAX = X
JAAX = 7

30 SUM = SUM+X
SUA = SQRT(SUM*XMAX)
X1 = EL(JMAX,K)
X2 = EL(JMAX,KP1)
DO 40 7=1,N

XX = (EL(J,K)*X1+EL(7,KP1)*X2)/SU4
EL(1,KP1) = (-EL(7,K)*X2+EL(J,KP1)*X1)/SU4

40 EL(7,K) = XX
50 DO 60 3=1,N

MR = EL(J,KP1)*SIGN
60 PRINT 150, EL(7,K),X4

GO TO 110
70 SU4 = 3.

C
C
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00 30 J=1,N
30 SUA = SU1+EL(J,I)*EL(J,I)

3J4 = STa(S1P10
DO 90 J=1,N

90 EL(J,I) = EL(J,I)/SU1
DO 100 J=1,N

100 ?RIM' 150, EL(J,I)
110 CONTINUE

RETURN

120 FORMAT (//,3X,125 EIGENVALUE(,I2,2H )).
130 FORMAT (//,3X,12H EIGENVALUE(, I2,29 ),15X,13H EIGENVECTOR(42,2H )

1)

140 FORMAT (/,3X,612.5,33 +3,G12.5)
150 FORMAT (30X,612.5,3H +J,G12.5)
150 FORMAT (30X,G12.5)

END
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SUBROUTINE CONTRL (A,B,C,D,Q,R,S,GAIN,H,P,VAL,N,M,L,ND,ND2,NOM,NOL.
1,W, ID)

DIMENSION (ND, NO) , solo, Noto , C ( NON , ND) , (N74, NOE.) , (ND, ND) , R
1 (ND, NO) , S (ND, ND) , GAIN (NDL , ND) , H(ND2,ND2) , P(ND2,1402) , VAL(ND2) ,
2 W(ND2)

COMPLEX VAL
CCCC.:CCCCCCCCCCCCCCCCCCCCC"'"^"'"Cr"CC^^CCr'^=CCC^CCCCCC'''-^CC '''' ^""
C SOLVE THE REGULATOR PROBLEM
C DX/DT=N*X413*U -
C Y'''*X +01"J
C WITH QUADRATIC PERFORMANCE CRITERION C
C J= (1/2 ) * (Tam (YT*Q *Y+UT*R*1.1) )
C INPUT...
C 1. ..
C A, B, C,D, Q, R, ARE 'MATRICES DEFINED ABOVE WITH DIMENSIONS C
C N*N , N*L , MkN, Mkt. , 4 A, L*L RESPECTIVELY
C 2..
C N, A, L, DIMENS ION OF AATRIX
C ND, NMI , NDL ARE DECLARED OLMENSIO% ASSOCIATED WITH N, M,
C 3. .. ND2=ND*2 DECLARED DIMENSION OF MATRICES H, P, VAL, W C

C IC=0 , D .4ATR Ix LS EQ. ZERO , OTIERAISE =1
C OUTPUT. .
C S-=NI*N MATRIX , SOLUTION OF RICCATI EQUATION C

C MATRIX, CONTROL GAIN U=GAIN*X
C VAL = F MST N ELEMENTS ARE EIGENVALLES ( CLOSED LOOP)
C LAST N ELEMENTS ARE 'WORKING SPACE
C SOME NOTES....
C A, B,C,D, WILL BE SAVED
C Q, R, WILL BE DESTROYED
C H, P,W ARE WORKING SPACE
C SUBROUTINES REQD. -HSOLVE , RICCAT, QR , HESS, SHIFT2, TRLA, PERMUT
CCCCCCCCCCCCC.CCCCCCCCCCCC======CCCCCCCCCCCCCCC=CCCCCCCCC

NP = N
IF (ID. EQ.0) GO TO 60
P11=Q *0

00 10 I=1,M
DO 10 3 =1, L

P(I,J) = 0.
DO 10 K=1., M

10 P (I,J) = P(I,J)4-Q(I,K)*D(K,J)
C R=R+OT*Q *0

DO 30 I=1,L
DO 30 J=1 , L

SUM = 0.
DO 20 K=1 ,M

20 SU4 = SU4+0 (.( , I) *P (K ,J)

30 R(I,J) = SU4+R (I,J)
C GA.IN=P120T*Q*C

DO 50 I=1,L
DO 50 3=1. , N

SU4 = 0.
CO 40 X=1 ,
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40 SU4 = St14+P (7K I) *C , .3)

SAD! (I ,J) = SU4
50 ? (I ,S4+.1) = SU4

NP = N+N
P11=3T

60 DO 30 I=1,L
DO 70 J=1 , N

70 ?(I.J) = 3(J,I)
DO 30 3=1..,

30 = R(I,J)
C P11=INV(R) *BT AND P12=INV(R) *OT*Q*C

CALL HSOLVE (1i,W,P, L, ND2, 0, IE)
C 1-1=-Q*C

DO 90 I=1,M
DO 90 J =1, N

H(I,J) = 3.
DO 90 X=1. M

90 = li(I,J)+Q(I,K)*C(X,J)
C ii21Tn*D*INV(R) *DT*Q*C-CT*Q*C

DO 130 I=1,N
NPI = N+I
DO 130 3=1,N

NPJ = N+3
ST.14 = 3 .

IF (ID.EQ.0) 30 TO 110
DO 100 K =1 ,L

100 SEM = SU44GALN (K I) *? NPJ)
1.1.0 DO 120 K=1
120 SU4 = S114-C(K, I) *H (K,J)
130 (NPI ,J) = SU4
C R=-INV(R)*BT AND CAIN=-INV(R)*DT**Q*C

DO 140 I=1,L
DO 140 J=1. , N

IF (ID.EQ.0) 30 TO 140
SAIN(I,J) = P(I,J+N)

1.40 R(I,J) =
C H11=A-B*INV(R) *OT442*C AND :122=-4111T AND H12=-3*INV(R)*BT

DO 180 I=1,N
NPI = N+I
DO 130 J =1 ,N

NP3 = N +3
SU4 = 0.
IF (ID.EQ.0) SO TO 160
DO 150 l<=1,L

150 SIR = SI.F4+6 ( I , K) *GAIN (K ,J)

1.60 H(I,J) = A(I,J)-S1.74

H(NPJ,NPI) = .3)

SIM = 0.
DO 170 r<=1, L

170 SUl = Stp--3(t,K) *R (K,J)

180 II (I , NPJ) = SU4

CALL RICCAT (1-1_,P,S,VNL,1,N,ND,NO2,W,Q)
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GAIN=Iav(R)*OT*TeC*4-INV(R)*BT*3
00 200 I=1., C.

00 200 3=1 ,

SU4 = 0.
DO 190 '<=1 , N

190 3T34 = 3U9R (I , EC) *S (X ,J)

IF ( ID.NE. 0) SUA = SUS!GAIN (I ,

200 GAIN (I ,J) = SUA
RETURN
END
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SUBROUTINE FILTER (A,C,GAMA,THETA,Q,R,S,GAIN,H,P,VAL,N,M,L,ND,NO2,
1NDM , NOL , , ID)

DIMENSION A (ND, ND) , C(NC/M, ND) , GAMIC ND, NDL) , THETA (NEM ,NDL) (ND,
1ND) , R(ND,ND) , H(402, NO2) , P (NO2, NO2) , W( -02) S NO) , VAL (NO2)
2 CAIN (ND, ND!te

ZNPLEX VAL

CCCOCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCC=C-r"'"7"r"C^r"CC^^=CCr'^'^r"
C SOLVE FOR STATIONARY KAL4AN FILTER OF THE SYSTEM
C DX/DT=A*X+3*U40AMAIrol
C Z=C*X+D*U+V+THETA*W
C Q AND R ARE Pa4VR SPECTRAL DENSITIES OF W AND V
C
C A,C,GAMA,THETA,Q,R AS DEFINED .ABOVE ARE N*N,leN,N*L,MkL,L*L,M0M C
C RESPECTIVELY.
C N,L,M,ND,N0L,NUM ARE DIMENSION AND DECLARED DIMENSION RESPECTIVELY. C
C NO2=ND*2 DECLARED DIMENSION OF H,P,VAL,W
C IM=3 IF MATRIX THETAS. , =t OTHERAISE
C OUTPUT...
C S,VAL,GAIN ARE SOLUTION OF RICCATI EQUATION, CLOSED LOOP
C EIGENVALUES, AND FILTER GAIN RESPECTIVELY.
C NOTICE.. 2, R 3 E DESTROYED.
C a,p,cot ARE :DORKING SPACE
C SUBROUTINES REQD. HSOLVE,RDCCAT,QR,HESS,SHIFT2,TRIA,PERAUT C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IF (ID.EQ.0) GO TO 20
DO 10 I=1.,M

DO 10 1=1,L

= 0..
DO 10 K=1,L

10 S(I,J) = S(I,J)+THETA(I,K)*Q(K,J)
20 DO 40 I=1,M

MO 40 1=1,M
SUM =3.
IF (ID.EQ.0) GO TO 40
DO 30 K=1,L

30 SUM = SU4+S(I,K)*THETA(7,K)
40 H(I,J) = R(I,J)+6134

DO 70 I=1,M
DO 50 7=1,N

50 2(I,J) = C(I,J)
IF (ID.EQ.0) GO TO 70
DO 60 1=1,L

60 P (I ,J+N) = S (I ,J)

70 CONTINUE
N+L

IF (ID.EQ.0) NE. = N
CALL HSOLVE (11,W,P,M,NL,NO2,0,IE)
IF (ID.EQ.0) 10 TO 100
DO 90 I=1.,L

DO 90 7=1,L
SUM = 0.
DO 80 K=1,M
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33 3J4 = 31.114-S (K , I) *.? ('C,J+N)
30 )(/ 2(I,J)-3114
100 DO 110 1=1 N

DO 110 1=1 N
S(T,J) = 0.
DO 11.0 K=1 ,

110 '3 (1 ,J) = S ,J)4-C.(K, I)*? (K,J)
IF ( /D. EQ.0) 30 TO 130
DO 120 I =1 ,N

DO 120 J=1 ,M
R(I ,J) = 0.
DO 120 K=1 L

120 R(1,3) = R(I,J)-K3N4A(I,K)*P(.3,K+N)
130 DO 140 I=1,N

DO 140 1=1 d4
140 ININ (I,J) -? (1 I)

DO 170 I=1,N
DO 170 1=1.

S154 = 3
IF ( /D. EQ. 0) GO TO 160
DO 150 K=1 ,N1

150 SIN = SIT4 +:1 (I ,K) *C(K,J)
150 1(I,J) = A(I,J)-SUN

Ei(I+N I+N) (/ ,3)
170 R (I+N,J) = S (I ,J)

DO 190 1=1 ,L
170 130 1=1,14

P(I,J) = 0.
CO 190 K=1. L

190 P (t ,J) = .? (I ,J)4-Q (I ,K) *3AMA(3,K)
DO 200 I =t ,N

DO 200 .1=1 ,N
SUM = 0.
CO 190 K=1, L

190 SUM = SUM-KIN:M(I K) (K J)
200 1:1(/ ,3-1+.1) = St./4

CALL RICCAT (H, P, S,73. ,N,ND,ND2,W,Q)
DO 230 3=1,M

DO 210 I=L,N
'-'4( I) = 3.
In 210 K =1. N

210 '4(I) = W(I)+S (I ,K) /e3AIN (X ,J)
DO 220 1 =1,N

220 GAIN (I ,J) = W( I )
230 CONTINUE

IF (ID. EQ. 0) 30 TO 250
DO 240 /=1,N

DO 240 .1=1 M
240 GAIN (I ,J) = GAIN (I ,J) -R (I ,J)
250 RETURN

?ND



237

SUBROUTINE RICCAT (H,P,S,T\L,KI,N,NO,NO2,W.22)
OIAENSION l(ND2,NO2), P(NO2,NO2), S(NO,N0), VAL(NO2), 'eir(NO2),
l(NO,ND)

COMPLEX 'JAL, VAT

avrA SAALLA E-1. 4/
CCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCC
C RMULA TOR PRC8 LEM *A-I-W*3 2+S *1 S .

C FILTER PRO:ILEA A* S +S *AT+R Sly) *3 .

INPUT. . .

C H=2N*2N AATRIX, DEFINED AS FOLLOWS...
C H11=k
C H12*R
C H21=Q
C H22=AT
C A,Q,R AS IN THE ABOVE RICCATI EQUATION FOR REGULATOR AND FILTER
C K1=CONTROL PARAMETER,
C K1=1 FOR REGULATOR (ISOLATE RIGHT HALF PLANE EIGENVALUES)
C K1=-1 FOR ,FILTER(ISOLATE LEFT RALF PLANE EIGENVALUES)
C N*DIMDISION OF S
C NC=DECLARED DIMENSION OF S AND QQ
C ND2DECLARED DIMENSION OF H AND P(USUALLY 21040)
C W IS WORKING SPACE, 2N*1.
C QQ IS N*N WORKING SPACE
C OUTPUT....
C S=SOLUTION OF RICCATI EQUATION,N*N MATRIX
C H=QUASIUPPER TRIANGULAR MATRIX,2N*2N
C P=ORTHOGONAL SIMILARITY TRANSFORMATION :MATRIX, 24*14
C VAL=M LEFT RALF PLANE EIGENVALUES AND N LOCATIONS OF WORKING SPACE C
C SUBROUTINES REQD. QR,HSOLVE,HESS,SHIFT2,TRIA,PERAUT
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

S40 = SMALL
N2 = N+N
DO 10 t=1, N2

DO 10 I=1,N2
10 P(I,J) = H(I,J)

C CALCULATE EIGENVALUES
CALL QR (?,H,N2,ND2,VAL,N2,SM0,0,0,0)

C REORDER EIGENVALUES
DO 20 r=1,N2

RE = REAL(VAL(I))*K1
IF (RE.LT.0./ VAL(t) = CMPLX(0.,0.0

20 CONTINUE
DO 40 J=1,N

IPP = N2+1I
VAT =VAL(IPP)
AMX = ABS(REALCVATII
IPP1 = IPP-1
IPP2 = 0
DO 30 I=1,IPP1

AMI = ABS(REAL(VAL(I))1
IF (AMI.LE.AMX) GO TO 30
IPP2 = I
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k4X = VII
30 CONTINUE

IF (IPP2.EQ.0) 10 TO 40
AL(IPP) = VAL(IPP2)
VAL(IPP2) = VAT

40 CONTINUE
CO 50 I=1,N

50 VAL(I) = VAL(I+N)
RE = REAL(ALM)
ALM = UMW/AL(L) )
S1 = SQRT(SMO)
52 = 5,:2T(S1)

DISO=SQRT(RE*RE+ADV,ALW
IF (DISO.GT.S2) 10 TO 70
IF (ABS(AIMe.GT.S40) 10' TO 50
RE = REAL(VAL(2))

IF (ABS(RE).LE.S2) 30 'TO 50
IF (DISO.GT.S1) GO TO 30

50 ?RINT 150
30 TO 30

70 I? (ABS(RE).3T.S1) GO TO 30
mar 160

30 340 = SMALL
C CALCULATE QUASI-TRIANGULAR DECOMPOSITION

CALL OR (i,P,N2,NO2,VAL,N,S40,0,1,1)
IF (K1.EQ.-1) 30 TO 100
DO 90 J=1,N

JJ = J+N
DO 90 I=1,N

QQ(I,J) = P(I,J)
30 S(I,J) = Par=

30 TO 120
100 DO 110 7 =1,N

JJ = 1+N
CO 110 I=1,N

5(I,J) = NI,J)
1.1.0 QQ(I,J) = P(I,JJ)

C
C SOLVE FOR S, THE RICCATI EQN. SOLUTION
C K1=1 , P11*S=P12
C K1=-1 , P129 =P11

120 CALL HSOLVE (72,W,S,N,N,ND,O,IE)
IF (Kl.EQ.-1) 30 TO 140
DO 130 I=1,N

130 VAL(I) = - VAL(I)
140 RETURN

150 FORMAT (//,47H "WARNING.HAMILTONIAN MATRIX NEARLY SINSILAR",//a
160 FORMAT (//,61H "WARNING.HAMILTONIAN HAS EICENVALUE AT MAMMARY

1 AXIS**,//4
END



3U3ROUTINE (1,P,N,NO,VAL,47,SNO,ICR,I1,K1)
COAPLEX VNL,V
ONEN3I04 i(ND,W)) P(10,1D) VAL(ND) , V(2)
OATH 34NLL/1.E-14/

^^ 4'9
4.0
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C )1 REDUCTION ro 2UNSI-UPPER InINNGULAR FORA -
,

S INPUT C

C 1= ANTRIX CO 3E REDUCED --C
ITR=DIAENSION 0? PREVIOUSLY rRINNGJLNRIZEO CORNER OF H ,

-

C - II= 1, NO X PRIORI EIGENVALUS K40.1LEOGE ,
-

C I1= !, SHIFT ON M74N SIGENVALU3SC-
C
- Kl= 1, NO CUAMULA TED P CALCULATED -

- Kl= t, CUt -AULNTED P CALCULNTED -
C - AV=1UA3ER OF EMI:NV-AWES ro 3E BOLATED -

-
e. VAL=A PRIORI EITENVALJES ( CT K404N ) C

,,

540=REQUIRED PRECISION AS N TRACTION OF rIE ANTRIX NORA -
-

C - N=DIAENSION OF ANTRIX i ,
-

C 10=U4BER OF 8313 IN AAIN PROS RX4 ONENSION OF H 3

c ourpur
C - H=QUNSI-UPPER ranNzut.AR ANCRIK ,

-

C - P=IATIOGONNL ANTRIX ( EF Kl= t )

-
-

C VAL=CALCULXTED EIGENVNLUES ,
-

C 3/0=343*I3a4 -USED FOR DISTINGUISHING ZERO 3U3DIAGONNL ELEAENCS -
,

C - Ul RESULTING QUASI- TRIANGULAR ANTRIX
C SUBROUTINES READ. - HESS,SHIFT2,TRIN,PERAUT

^^ ^ . ^^^^ ^^n nn

IPERV'? =3
CPERV = 3
IF (CTR.NE.0) 50 ro 13
IF (Kl.EQ.0) 10 ro 30
INITIALLIZE P AS IDENTITY
00 20 I=1,N

00 10 7=1,N
10 ?(I,J) = 3.
20 ?(I,I) = 1.
30 a4m = 3.

C CALCULUS THE ANXIAUA NORA 744
00 50 E=1,N

XA = 0.
!Y) 40 7=1,N

40 AA = NA*A3S(H(I,7)
CF (NA.GT.OAN) OAN = NA

53 CONTINUE
340 = SAALL*044N

SNO = SNO*)AN
10 11 =

N2 = i-IrR
4 = AV
CALL 4ESS (H,P,N,ND,N-t,N1,N2,340,K1)

C STNRT AMOR LOOP
70 IJ = 3
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IF ( 4.LS.9) ElErtilv
N241 = N2-1
N292 = N2 -2

3) N24\11 = N2-N1
IF (N24N1.S.?..0) SD PJ n
>11 =

N24N1 = N 2-N1
93 IF (N24NI.E). 1) S9 ro 15)

IF (N24N1.E).11 SD I'D 151
S rkqr ')1 irrs.1r[ol4
Dl 149 tr=1,20

IF (I1.E). 0) SD ro too
IF (tr.'-3r.10) so rJ 101
IF (IJ.NT,.01 SD I'D 110
ZE = RE \L. (JA,L

= \-3(J1LCI, I
01 = (RSI-r2F.)
02 = 2E*.lEI-11.4.14
IJ =
SD ro 111

109 Cl = H(N241,N1241)1---3(N2,N2)
02 = (N2, N2) *-1 (N241, N2411-:-1 (N241, N2) *1-1(N2, N241)
IF ( I P.VE.13) SJ ro 110

PT,RFO'24 EXCEPPI)N sInFr
\33 (1(N2,N241) I-N3S(-1(N2v11,N242)1

02 = Cl*C1
Cl =- . 5*C1

110 ALL s'itFr2 (!-I,P,N,ND,141,N2,C1,C2,S40,K11
CALL Tf.,3S 34D, K1)

TES7 FO1 CDNIVER.:EN:E
S1 = 3ND
IF ((r.E).2:)) 31 =-- 3)1r(3ND1
DD 133 I=1,N24N1

LH = N 2-1+1
IF ( SI) 33 I'D 131
IF ( [ P .E:Rp. -_-,r. 21 -"_;'D PD 12)
IF ( I . ST. 2. \ND. I 1 . E2. 11 SD PD 333

ZERO 3 J3DI 3N \C. LEA ENP

120 N1 = LU
C39 ro

133
140 CDNI'IN'TE,

paivr 331
Sr.)?
Q1 Inc; CC)NIVERSF,D - C LL',UL TY, EISENV \L'S-2,S

150 21LL Din (L1,P,N,ND,N2,V,SND,K1)
NV = 2
'3) 7D 171

151 J(1) = 24P(L..X(11(N2,N?) ,O.'
NV =I

173 IF ([1. .0) SD CD 191
DD 131 '4=1,W
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ill
&§(a = (47-"<-1-1 )

4 = 4-1
= N2-1

7,0 I'D 73
FIND 143\11E:37 E-7\L'YE

1.30 DO 2'53 ,

= 1V-<-1-1
1 =
D41 = 2 \33(7\L(1 )-7(4X)

( 4.Lr. 2) 10 CO 210
D') 203 { =2,4

CC = 2A33(ci\L(t)-1(4.<))
(CC.:12..D4IN) S0 C") 210

04IN = CC
H = I

201 CONCINJE
211 1F ( EPSRV.13,. 1. AND. E'2. 2) 1) I'D 221

IF ( P?,:1V1?. LI% 2) CIO Co 231
221 ?lINC 311, 4

ro
230 (041N.C,C. (-3N0**.251i 730 CO 271

CF (q1'L(7NL(CI)1*1ENr_.(J(4C) 13 CO 271
211 CF ( 4.E). II) 731 CO 251

VkL (IC) = J\E(+
251 7 \L(4 = V(K4)

IF ( LE .1 ) R r uim
4 = 4-1

2'5) 12 = N2-1
[P RV -=
C??,,RV? =
10 i 71
ari3E211 EIG1NVLLIZ

27) CF (12.L3.1) Sa ro 321
CF ( N.33 (1(42, N2-1 )1 51) 11 I'D 21')
EF(12. EQ.1) 10 Co 23')
IF( \.33(3(12-1,N2-2)) .r-F-S1) '31 TO 231
in ro 29/

231 IF ( Pi:R-1.'2'3.1) Sg Co 23)
C4.LE. ND, , N2, S40, , 1)
CPF,AV -= IPE1Vt-1.
SO Co 111

291 F E). 2) 130 70 311
311 CALL Pl.14'JC , P, N, ND, 1 , N2, S40, "<1, 0)

CXLL '1E13 ('-1, 2.N, ND, N2-1 ,I, N1, c-340,K1)
311 E Pa; RV? = I ??,17?

41 =
73 I'D 71

321 7 \L(4 = 7(1)
?AIN'T 3'11, 4

331 7J&4 \2 (25i E1101- ).1 CrN :24 I's4,1)
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31) F9.2'4\"7 :0,1?jtIE7 ,1'1:73ENTV\LJE,I3,27.1 » "s .3 4 \r :1 V\rji
1E)
:NJ
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SUBROUTINE HESS (A,P,N,NO,NZ,N1,N2,S4ALL,K1)
DIAENSION A(NO,ND), P(ND,90)...

C PERFORAES ORTHOSONNL SI7AILNRITY REDUCTION TO U?PER HESSENYERO FORA. C

C MATRIX IS FULL N*N OR HAS ZERO LJAIER-LEFT TRIAN3LE.
C PNRAAETERS- A- INPUT- N*N MNTRIX TO 3E REDUCED.
C OUTPUT- REDUCED 4ATRIX

P- NCCUAULATED ORTH03ONNL TRANSFORANTION MATRIX. C

C N- ANTRIX SIZE
C NO- NU43ER OF Rags IN AAIN PROaRAA DLAENSION FOR A AND Q C

C NZ- NUABER OF NON-ZERO ELEAENTS 3ELO4 THE DIAGONNL IN N. C
C N1,M2- ROI INDICIES OF CURRENT ISOLATED DIAGONAL 3LDCK

SMALL- A SMALL NUABER = MACH. PREC. * NORA(A)
C K1=0 NO NCCUMULATED P 4ATRIX
C K1=1 ACCUAULATE ORTHOGONAL TRANSFORMATIONS
COCCCCOCCCr-r"CC^CCr'"CCC'rrC=CCOCCC'CC===="-CCCCCCCCCCCC

N211 = N2-1
= N1+1

DO 120 K=N1?1,N241
KA1 = X-1
NN = KA1+NZ
IF (NN.MN2) NN = N2

= 3.
CO 10 I=K,NN

10 3 = 3+N(I,1C41)*A(I,K41}

S = SQRT(S)
IF (S.LT.SMNLL) SO TO 100
IF (A(K,K41).111.0.t S = -S
N(K,K41) = A(K,K41)-S
C = SQRT(-S*A(K,K41)1
DO 20 I=K,NN

20 \(t,K'41) = N(I,K41)/C
DO 40 J=K,N

C = O.
CO 30 I=K,NN

30 C = C+N(I,J)*A(I,K41)
DO 43 I=K,NN

40 A(t,J) = N(I,J)-C*A(I,X41)
00 50 I=1,N2

= 0.
00 50 J=K

50 0 = C+A(I
00 50 3=K

51 A(I,J) = N(I
IF (K1.EQ.0)
00 33 J=1,M

C = 3.
00 70 I=K

71 C = C+P(I
30 30 I=K

3'J ?(I,J) = ?(I
30 A(K,K41) = 3

,NN
,J)*A(3,K41)
,NN
,J)-C*A(J,K41)
730 TO 00

,NN
,J)*A(I,KA1)

,NN

,J)-C*A(I,KA1)
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100 ":<?1 = =.<+1
DO 110 I='<?1,NIN

11.0 MI,K41) = 0.
120 CONITIVE

ENo
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SU1ROUTINE SHIFT2 (A,P,N,NO,N1,N2,C1,C2,S4ALL,K1)
DIMENSION N(NO,NO), P(NO,ND)... . ......

C PERFORMS 00U3LE SHIFT "WITH ORIGINS S1, S7_ WHICH SATISFY C1=31f32 C

C AND C2=31*32, FOLL71ED 3Y THE FIRST SIMILARITY TRNNSFORANTION "-
C IN '21 FACTORIZATION. MATRIX k IS U ?PE1 HESSEN3ERG ON INPUT. C
C PNWIETERS- A- INPUT-N*N UPPER HESSEN3ER3 IATRIX -
C OUTPUT- TRANSFORMED 4NTRIX WITH 3 ELEMENTS 3ELDW DING ,

,-

C,. P- N *N ACCU4ULATED ORTHOSONNL TRANSFORMATION MATRIX
C N- :MATRIX SIZE ,

-

C ND- NUA3ER OF ROWS IN MAIN PRaTRAM DI4ENSION FOR N AND Q -
,,

C N1,N2- ROW INOICIES OF ISOLATED DIAGONAL 3E.= C
,-. Cl, C2- CONSTANTS FOR DOU3LE ORIGIN SHIFT C- -

C SANLL- N SiALL NU43ER = INCA. PREC. * NOR4(A) ,
.,

C K1=0 NJ ACCUMULATED P MATRIX
,
-

C K1=1 ACCUMULATE ORTHOGONAL TRANSFORANTIONS ,
-

CCCCCCCCCC=CnCCrCCCC=rr'rrr"r'CCr'Cr'"CCCr'CC("^CCC="'CCCCCC'r"CCC
N1P1 = N1+1
N1P2 = N1+2
X1 = N(N1,N1)-C1
W1 = A(N1,N1)*Xl+C2+A(N1,N1P1)*A(N1?1,N1)
W2 = (Xl+A(N1P1,N1P1) *A(N1?1,N1)
W3 = N(N1P2,N1P1)*A(N1?1,N1)
3 = 3 QRT(Wl*W1+42*W2+43*N3)
IF (S.LT.SMALL) RETURN
IF (Wl.GT.O., S = -S
W1 = dl -S

C = SQRT(-S*W1)
Wl = Wl/C
W2 = W2/C
W3 = W3/C
DO 10 3=N1,N

S = N(N1,J)*Wl+A(N1P1,J)*W2+A(A1?2,J)*W3
A(N1,J) = A(N1,J)-S*W1
A(N1P1,J) = N(N1P1,J)-S*W2

10 A(N1P2,J) = A(N1P2,J)-S*W3
00 20 I=1,N2

= N(I,N1)*Wl+A(I,N1P1)*W2+N(I,N1P2)*W3
A(I,N1) = N(I,N1)-S*W1
A(I,N1P1) = A(I,N1P1)-S*W2

20 N(I,N1P2) = A(I,N1P2)-3 *W3
IF (K1. E2.0) RETURN
00 30 J=1,N

S = ?(N1,J)*Wl+P(M1P1,J)*W2+?(N1P2,J)*W3
?(N1,J) = P(N1,J)-S*W1
P(N1?1,J) = P(4121,J)-3*W2

30 ?(N1?2,J) = ?(N1?2,J)-S*W3
RETURN
END
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SUBROUTINE PERAUT (H,P,N,ND,NX,N2,S.40,X1,IP)
DIMENSION H(NO,N0), P(ND,NO)

CarCCCCC-'Ca-CCOCC^ ........C(4^CCCC=CCCC^CCrC=7=CC=COCCOCCC^
C AR3ITRARY ORTHOGONAL( HOUSEHOLDER TYPE ) SIMILARITY
C TRANSFORMATION TO REMOVE AN UNCESIRA3LE ZERO ON SU3DIACONAL
C OR EXCHANGE POSITION OF Tg0 REAL EIGENVALUES ON 2*2 DIAGONAL 3LOCK

INpur....
C H=M r.ATRIX TO 3E TRANSFORMED .
C N=DIMENSION OF H,P ,

-

C 1\10=07:CURED DIMENSION OF H,P ,
-

C NX,N2=ROg INDICIES OF THE 3LOCK TO 3E TRANSFORMED -
,..

C r... K1=0 NO CUMMULATED P CALCULATED -C,- K1=1 CUMMULATED P CALCULATED -
C IP=1 IF PD3IrION EXCHANGE PERFORMED OTHER4ISE=0 ,

-
C SA0=?RECISION CRITERION FROM 2R SU3ROJrINE ,-

C OUTPUT C
C H=fRANSFORIED MATRIX --
C P IS ORTHOGONAL MATRIX C

ry,ry4^,MeNo.y Y Y y
IF (IP.NE.0) GO ro
= 2./(N2-NX+1)

DO 30 I=NX,N
44 = N2
IF (I+1.LT.N2) N4 = I+1
SUM = 0.
DO 10 K=NX,NM

10 3U4 = SUM-H(K,I)
DO 20 J=NX,N2

20 H(J,I) = H(J,I)+-X*3U4
30 coariNuE

DO 50 I=1,N2
SU4 = 3.
DO 40 K=NX,N2

40 SUM = SU4-9(I,K)
00 50 J=NX,N2

50 H(I,J) = H(I,J)i-X*SUA
11 CONTINUE

IF (Xl.E2.0) RETURN
00 30 I=1,N

SU4 = 0.
00 70 X=NX,N2

70 SUM = SU4-?(X,I)
DO 30 J=NX,N2

31 ?(J,I) = ?(J,I)X*SUA
30 CONTINUE

RETURN
100 N241 = 12-1

1242 = N2-2
NP1 = N2+1
A = 3(N241,N241)
3 = l(N241,N2)
C = H(12,N2)
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IF ( A3S (20 .31'.510) 333 TO 110
Y11 = 3.
X12 = 1..
X22 = 0.
GO To 120

1.10 X =
XX = SQRT ( X*X +3* Big
422 = 3/XX
X11 = -X22
X12 = X/YX

120 a (N 241 N241) = C
(N2, N2) =

H(4241, N2) = X11*(X12*A-FX22*3 +.X12*X22*C
(12?1.1T.N) 30 TO 149

Do 130 I=N2P1,N
= X11*q (N241, I) -i-X12*3 (`12, I)

1-1(42, I) = Y12*:-1(4241, I) <22*H (N2, I)
130 H (N211, I) = X\
140 IF (4212. LE. 0) CO ro

00 150 I=1 N242
= 11241)*X12*1-1(I N2)

1-1(I N2) = ( I N241)1-X22*H (I N2)
1.50 (I,N241) =
160 IF (Xl. EQ. 0) RETURN

DO 173 I=1. do:
(zk = X11"? (N211, I) +-X12*? (N2, I)
? (42, I) = X12*? (N241, I) +-X22*? (N2, I)

173 ? (N241, I) = X3
R E TUR N

LN0
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3:J3ROUrIN--2, rRIN ( N, P,N,N0E4,N2,nL,S4XLL, XI)
7CAEN3I3N 1(NOC4,N014, , ?(ND1 VXL(2)
C04?C:::X VNL,

C :...34P'.11'S3 5.',I'.3EN'AUJ-E-3 OF 2*7 DI1.30N \L 3L,73K . IF EI1ENVNL`l:',3 NlE

C RE\L , 514 3117-FXDNINL 3I4ILNRITY 21 XN1F011 NTIDN (3 21',RF714ED ro
c rlI XN1:JCARIZ E DI V..;31 XL 3L73K.

-..

-

C 3=?*1k?T vao 3?..r X=3
C INI7J7 ,--

C- A=7JX13I-TRINI1JLXR 4NTRIX CO 3E TRNN3FOR4ED .-.

-
-, P=fiE ORNOGONINL '4 \MIX FRO4 PRWIDU3 3IAILvury L'RNN3FORANTION "- _

- N=014EN3I3N OF lArlIx x C
,

_
_- NDEA=DECLEAREO 0I4EN3ION OF ARRAY X -

C - N2=INDEX 3F 2*2 na:K = ROI MO COCA ...4N Nj43ER DF LONER -
...

- AIGi r cORNIn - "

S41LL=NO14*AA2HINE PRECI3CON ,..

-
- ,...

- K1=1, ND CTIAMArED P cm,cur_ArED
,
- ;(1=t , CUA4UL1IE0 9 CNLCMXTED .-

our?Jr....
N= )UNGI-j??Sa rAINNGTAR 4ArRIX 3
R=CJAAMXTED 311:1010NNL rR1I3F1A4NrION 4Ar7IX
VNG=C042i "ED ZI13NVNLTES IN 'AL (L ) %NO 'AL (2),, ..........

N241 = 42-t
CF NTS( N(11, N241)1 .LE.34ALL) ID 2-0 31

t? ( )k.33 (A(A241, M2)1 .1r.s4v_L) lo TO 11

?11 =3.
P22 = 1.
P12 = I .

221 = 1.
13 TO 20

11 Cl = 1,(N141,N241)-1(-12,N2)

X = Cl*C1*1.4N(N241,N2)*N2,N141)
CF (<.L11.1.1 13 TO 71
CX = (C1+371T(X)i*.5
CC = 3 2RT(CX*CX+A(N2,N241)*A(I2,N241)1
P11 = CX/CO
P21 = 1(N2, N241) /CC
212 = N33 (?2I )

?22 = ?II
CE (?21.17.0., ?22 = -022

23 DO 3) C=I , N2

3N2-41 = N( ,N241)*?114A( ,N2)*?2!
1N2 = X( , N241) *?121-X( I , N2) k?22

N( C ,N241) = 1N241
31 X( t ,12) = 1N2

D3 41 C=N241,N
AN241 = 1(4241, I) *?11 +-1(12, I) 4?21

NM? = VIZI] I) *?124-1(A2, I) *?22

1(4241, I) = 14241
11 X(12, I) = 1N2

C? (CI. 0) 13 171 11
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Y) 53 E =l ,
P12.41 = ? (V241,I) k?I'L (42, I)*?2t
?N2 = ? ('1241, I)*?124-? (V2, I) k?22
? (12\11 = ?1241

? (N2, I) = ?N2
5) \L (2) = C.4?t.,X (NO12, N12) to.'

/\L(l) = C4PCX(A(N241,N12.11) ,O.'
3 ro 33

C \LCT_ArE 17-E 00.1PLE ?, IGEITV\ WE'S

73 RE = (N(42\11,N1241)I-N(12,N12)1/2.
AI 4 =
\ALM =
T\L(2) = -CAPE.X(.171:,-,%I4t

33 AZ' roam
SID
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SU3ROUTINE HSOLVE (A,W,B,N,M,NDIA,ID,IE)
DIMENSION N(NDIA,NOTIv , , 3(NOT4,'4
DATA 34ALL/1. E-1.1/

SOLVE THE LINEAR EWNTION N*<=3 3Y HOUSEHOLDER MET7iDD
C INPUT...
C A =THE 4NTRIX OF N*N ORDER OF A*4=3 C
C B=4NTRIX OF NkX=3 ,N*M
C 4=4ORKING SPACE
C N= DIM.OF A
C NDIM= DECL\RED DI4ENSION OF A, B, AND 4
C ID= INDICATOR, ID=O - TRINNGULNRIZE N AND SOLVE,
C ID=1 - 3YPAS3 TRINNGULNRIZNTION (PREVIOUS CALL REQD.P C
C OUTPUT. ^
C A-=*A=TRI VIT1L.A1IZ ED INTRIX C

C B=THE SOLUTION x
C IE= ERROR INDICATOR, IE=0 NO ERROR C

C IE=1 NONUNIQUE soLurrom (NO ERROR) C

C IE=2 UNDEFINED smuttom

IE = 0

IF (ID.EQ.1) GO TO 33
04N = O.
DO 20 I=1,N

NN = O.

DO 10 J=1,N
10 NA = NN+NBS(A(I,J))

IF (AN.LT.OIN) GO TO 20
04N = NN

20 CONTINUE
S40 = SMALL*OAN
IF (N.EQ.1) GO TO 30
TRINNGULARIZE N
NM1 = 4-1
DO 70 K=1,N41

R = O.
DO 30 I=K,N

30 1 = R+N(I,K)*A(I,K)
= SQRT(1)

IF (N(K,K) .LT.0.1 R = -R
4(K) = N(K, K)i-R

C = SQ1T(R*W('. {) )

N(K,K) = -R
IF ( ASS (Co .LT.SMO) G3 TO 70

XP1 =
'n1 CO = 4(X) /C

DO 40 I=K'31,N
40 N(I,K) = N(I,K)/C

DO 53 J=( ?1,N
1R = 4(K)*N(K,J)
DO 53 L=K?1,N

5) 14 = RRAA(L,X)*N(r,,J)
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k(K,J) = X(K,J)-RRA".C)
DO 60 I=K?1,N

50 N(I,J) = X(I,J)-RRkA,(I,K)
70 CONTINUE

O TRNNSFORA 3 AND 3ACKSOLVE
30 DO 130 IJ=1,M

IF (N. E2.1) 1 TO 120
DO 110 K=1,NM1

RR = W(K)*B(K,IJ)

KP1 = K+L
DO 90 J=KP1,N

90 RR = RR+N(J,K)*B(J,IJ)
3(K,IJ) = 3(X,IJ)-RRkW(K)
DO 100 I=KP1,N

100 3(I,IJ) = 3(I,IJ)-RR4A(I,K)
110 CONTINUE
120 IF (A3S(A(N,N)).GT.S40) 10 TO 130

IE = 2
IF (A3S(B(N,IJ)).GT.S40) RETURN
IE = 1
3(N,IJ) = 1.
GO TO 140

130 3(N,IJ) = 3(N,IJ)/A(N,N)
140 IF (N. E2.1) 10 TO 130

DO 170 I =1, N'41

3 = N-I
L = N-I+1
XX = 1(1,0)
DO 150 K=L,N

150 XX = XX-A(J,K)*BMIJ)
IF (A3S(A(7,J)).GT.S43) GO TO 150
IE = 2
IF (A3S(XX).GT.S40) RETURN
IE = 1
3(1,IJ) = 1.
GO TO 170

150 3(1,IJ) = XX/k(J,J)
170 coarruz
130 CONTINUE

RETURN
ED



252

SU3ROUTINE EIGVC (A,VAL,N,NOIM,EL,Q,C,SMO,IE)
DIMENSION A(NOII,NOL4f, VAL(NDIMP, EL(NOIA,NDF4t, A1(2,2), A2(2,2)
1, A3(2,2) , c(mor4+ , Q(NDIA,NDIM4

COMPLEX VAL
CCCC=CC==CCC'CCC=CCCC CC C^C=C=CCOCC=C=C=CCCCOCCOCCO'CC
C COMPUTE THE EIGENVECTORS OF A 2UASI41PPER TRIANGTAR MATRIX
C INPUT... C

C A=QUASI-UPPER TRIANGULAR MATRIX FR O4 ROUTINE QR
C VAL=THE EIGENVALUES OF A COMPUTED IN ROUrINZ QR
C .Q=SIMILARITY TRANSFORMATION MATRIX FROM QR
C N=DIMENSION 0? A , EL ,
C NOIM=DECLARED DIMENSION 0? A , EL. , Q

C SMO=OONVERGENCE CRITERION ?Rail QR=MACH.PREC.*NORM A
C OUTPUT....
C EL =raE EIGENVECTOR MATRIX OF A
C C=INTERMEDINTE STORAGE VECTOR
C IE=) INDEPENDENT EIGENVECTOR
c. IE= DE?ECIVE EIGENSYSTEA
C SUBROUTINES REQO.- LYAPUN,HSOLVE

C INITIALIZE EL

IE = 0
DO 10 I=1,N

00 10 J=1,N
10 EL(I,J) = 0.

K = N
20 DELTA = REALUAL(X))

= NIMAG(VAL(K))
IF (ABS(`.O.Gr.s4o) GO ro 30
N2 =
A2(1,1) = DELTA
EL(K,K) = 1.
IF (X.EQ.1) GO TO 150
30 TO 40

30 N2 = 7
A2(1,1) = DELTA
N2(2,2) = DELTA
A2(1,2) =
A2(2,1) = -.4
XMl = K-1
L(K,K) = 0.

EL(K,KM1) = 1.
AC = A(X41,K41)-DELTA
AA = AC**2+44*2
EL(K1,K) = -(A(K41,K)*Wb/AA
EL(KA1,K41) = -(A(X41,',()*Ck /AA
IF (X. Q.2) GO TO 150
ELK = ;.:L(KM1,K)

ELK41 = EL(KA1,K41)
10 II = K-N2
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XK = II
LL = N2

50 N1 = I

IF (XX.EQ.1) 10 10 50
IF (ASS(A(KK,KX-1)).GT.S40) N1 = 2

50 NN = KK-N1
DO 70 I=I,N1

DO 70 3=1,N1
70 kl(I,J) = -k(NN+I,NN+3)

00 90 I=1,N1
DO 90 3=I,N2

SUI = 0.
DO 30 L=I,LL

90 SJ4 = SUA+N(NN+I,KX+L)*EL(KK+L,II+3)
90 k3(I,J) = 5th

CALL LYNPUN (X1,N1,A2,N2,k3,IT)
IF (IT.EQ.2) GD TO 110
DO 100 I=1,N1

00 100.3 =102
100 EL(NN+I,II+j) = A3(I j)

10 TO 140
110 IE = 1

NNP1 = NN+I
NNP2 = NN+2
IIP1 = II+1
IIP2 = 11+2
EL(NNP1,IIP1) = 1.
DO 120 I=NNP2,K

120 EL(1,IIP1) = O.
IF (N2.EQ.1) 10 TO 140
EL(NNP1,IIP1) = ELK41
EL(NNP1,IIP2) = ELK
EL(NNP2,IIP1) = 1.
CO 130 I=NNP2,K

130 EL(I,IIP2) = 0.
140 KK = NN

LL = LL+N1
IF (KK.GT.0) GO TO 50
K = II
IF (K.or.o) lo ro 20

C EL=W*EL

150 DO 190 1=1,N
00 170 I=I,N

C(I) = O.
00 150 KI=1,N

150 C(I) = C(I)*(XI,I)*EL(XI,J)
170 CONTINUE

DO 190 L=1,N
130 EL(L,J) = 0(L)
190 CONTINUE
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RETURN
al VD
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SUBROUTINE SOLYAP
DIAENSION A(ND,N0), C(NO,ND) , AA(2,2) , CC(2,2) , ANT(2,2), P(NO,NO)

1, W(ND)
CCCCCCCCCCCCCCOCCOCCCCC,"CrCCCr'r""^-rr"'"^CrC'r'CCCCCCCOCCCC C COCC("CCCCOCCC`rvv
C SOLVE A*X+X*AT=C
C INpur...
C A=N *N MATRIX IN QUASI-UPPER TRIANGULAR FORA FROI QR SU3ROUTINE C

C C=A*N SYMMETRIC MATRIX
C P= SIMILARITY TRANSFORINTION 'MATRIX FROM QR SU3R0UTINE
C W=WORNING SPACE
C NC=DECLARED DLAENSION 0? A , C , P
C SAO=CONVERGENCE CRITERION FRO4 QR=AACH.PREC.*NORA A C

C OUTPUT...
C C=X, THE SOLUTION OF LYAPUNOV EQUATION A*X+X*AT=C
C IE =0 NO ERROR C

C IE=1 ERROR-SOLUTION NOT COAPUTED C

C SU3ROUTINES READ.- LYNPUN,HSOLVE
CCCCCCCCCCCCCCCCOCCCCCCOCCCCCCCCCCC^^^C^C^C^C=C="("Cr-("^^Cr'"CCCCOCCC

DO 20 I=1,N
DO 10 J=1,N

W(1) = O.
DO 10 K=1,N

10 W(J) = W(J)WC(I,K)*?(1,K)
DO 20 1=1,N

20 C(I,J) = W(3)
00 40 1=1,N

DO 30 I=1,N
W(I) = 0.
DO 30 X=1,N

30 (I) = W(I)+?(I,K)*C(K,J)
DO 43 I=1,N

40 C(I,J) = W(I)
IE = 0
A =N

50 NA = 2
IF(M.CT.1) 00 TO 51
NA=1
30 TO 52

51 IF(A3S(A(M,M-1)1.LE.S40) NA=1
52 AM=A-NA

DO 50 I=1,NA
DO &3 J=1,NA

NNI = t4+I
NNJ = AM+1
NA(I,J) = A(NNI,NNJ)
CC(I,J) = C(NNI,NNJ)

50 ANT(I,J) = A(NNJ,NNI)
CALL LYNPUN (AA,NA,AAT,NA,CC,IT)
IF (IT.NE.0) IE =
NN = Al
N3 = NA

70 DO 80 I=1,NA



256

CO 30 1=1,N3
30 C(NN+I,AM+7) = CC(t,J)

IF (NN.LE.0) 30 ro 130
DO 100 I=1,NN

DO 100 J=1,N3
NNJ = AA+7
SUA = 0.
CO 99 X=1,NA

NNK = NN+K
90 SUM = SU4+A(I,NNX)*C(NNK,NNU)
100 C(I,NNJ)' = C(I,NNJ)-SUA

NA = 2

IF(NN.Gr.1) 10 TO 101
NA=1

GO TO 102
101 IF(A3S(A(NN,NN-1)).LE.S40) NA=1
102 NNA = NN-NA

DO 110 I=1,MA
CO 110 1=1,NA

110 AN(I,1) = A(NNA+I,NNA+J)
DO 120 I =1, NA

DO 120 1=1,N3
120 CC(t,J) = C(NNA+I,MA+J)

CALL LYNPUM (AA,NA,AAT,N3,CC,IT)
IF (IT.NE.0) IE = 1
MN = NNA
GO ro 70

130 IF (*1. L:.0) GO TO 150
=A4

CO 150 I=1,4
CO 150 J=1,M

SUM = 0.
CO 140 :C =1, N3

MPX = 1+K
140 3U4 = SU4+N(I,M?K)*C(3,1PK)i-C(I,MPK)*A(1,APK)
L50 C(I,J) = C(I,J)-S'34

10 TO 50
150 DO 170 I=2,N

II = I-1
DO 170 J=1,II

17') C(I,J) = C(7,I)
00 190 I=1,N

00 180 7=1,N
W(J) = 0.
00 130 X=1,N

130 4(7) = W(1)i-C(I,X)*9(X,J)

DO 190 J=1,N
190 C(I,J) =3(7)

00 .210 7=1,N
00 201 I=1,N

= 1.
CO 200 X=1,N
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200 g(I) = W(I)+-?(X,I)*C(.C, J)
DO 21.0 I=1,N

210 C(I,J) = W(I)
RETURN
ENT)
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SU3ROUTINE LYAPUN (A,UN,3,N3,C,IE)
DIAENSION NA(4,4), A(2,2), 3(2,2), C(2,2), W(3)

CCCCCOCCCCOCCCCOCCCCOCCCCCCCCOCCOCCCCCCCC=C"'-'"CC^CCrC=7"^CC-C'
C SOLVE A*X+X*3=C AND SET C=X C
C INPUT....
C A AND 3 ARE 1*1 OR 2*2
C NA=DIAENSION OF A (1 OR 2)
C N3=DIAENSION OF 3 (I OR 2)
C C=NN* N3 ANTRIX -

C
-

OUTPUT...
C C=SOLUTION X
C IE=0 NON-SINGULAR CASE
C IE=I NON-UNIQUE SOLUTION
C IE=2 UNDEFINED SOLUTION
C SU3ROUTINE READ.- HSOLVE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC=CC'"'"'"'"-C=CCCCCCCCCCCCCC

DO 10 I=1,NN
DO 10 J=I,NA

AN(I,J) = A(I,J)
AA(I+NA,J) = O.
AA(I,J+NA) = O.

10 XN(I+NA,J+NN) = N(I,J)
II = I
DO 30 I=I,N3

JJ = 1
DO 20 3 =I,N3

AA(II,JJ) = NN(II,JJ)1-3(T,I)
IF (NN.GT.1) AA(II+1,31+1) = ALA(II+1,JJ+1)+.3(J,I)

20 JJ = JJ-4-INN

30 II = II+NN
N = NMIN3
IF (N3.EQ.2.AND.NN.EQ.1) C(2,1) = C(1,2)
CALL HSOLVE
IF (N3.EQ.2.AND.NA.Q.1) C(1,2) = 0(2,1)
RETURN
END
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APPENDIX G

THE SENSOR ELIMINATION PROGRAM LISTING
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PROGRAM -SENSOR (TAPES, INPUT, ourpur)
DIMENSION N(30,30) ,3(30,10) ,C1 (10,30) ,D1 (10,10) ,C2 (10,30) r

1D2(10,10) ,THETA(10,10) 'GAIN (10,30) ,3130,10) ,3A.4A(30,10)

1Q1 (30,30) ,R1 (30,30) ,Q2(30,30) .R2(30,30) ,S(30,30) ,4(10,50)
12(10,50) ,VAL(10) ,W(10) ,EL (30,30) ,P4(30,30)

DIMENSION R11 (30,30) ,222 (30, 30) ,R22 (30,30) ,IELEM(10)

4-7,22 (10,30) ,022 (10,10) 'ST7\2(10,10) ,INDEX(10) ,XIAX(1.01

DIMENSION SO(30,30) ,U0 (10,10) ,Y0 (10,10) ,WS(30) ,vi(10),,Ari(10)

CDAPLEX VAL
DATA ND/30/ , NOD/10/ , NOLA 0/ , NDA/10/ , NOP/10/ N132/10/

DATA 1\114/"A"/,N3/"8"/ ,NC1/"C1"/,N01/"01"/,NC2/"CV/ ,NO2/902"/,
1NGA/"GAMA"/ ,W2 1/"2 19/,N111/"R1"/,NQ2/"22"/,NR2 /"R2"/,

1NZ/ "2"/ , NTIV" TI-LE TA" /

DATA STALL /1.E -14/

DATA IUNT/5L INPU r/
C
C SOLVE SENSOR C043INATION rESTING

INPUT*****
I0=0 FIND INFOR4ATION WTH ALL SENSORS
I0=1 SENSORS ELEMINIATION

C IP=0 NO OPTIONAL PRINT
IP=1 OFTINAL PRINT

C IP=2 PRINT EVERYTHING
C LP=0 REGULAR PR INTER
C LP=1 TERMINAL PRINTER
C ICR=1,2,3,3R 4 CRITERION CHOOSING (RELATIVE ERROR OF R4S
C CRITER= THE ACCEPTA3LE CRITERIA OF THE RELATIVE ERRORS
C INPUT NECCERSARY :MATRICES

300 READ(5,*)I0,IP,LP,ICR
IF(E0F(5).NE.0) STOP
ID1=1
ID2=0
IS1=0

1 REND(5,100)NN,N1,N2,NT
100 FORMAT(A5,2I3,2X,A1)
44 LF(g4.Q.NA) GO ro 11

tF(NN.Q.NBI 30 DO 12
IF(NN.EQ.NC1) 10 TO 13

IF(NN.EQ.N01) GO TO 14
IF(NN.Q.N01) GO TO 15
IF(NM.EQ.NR1) 10 TO 11
IF(NN.EQ.NGA) 30 TO 17
IF(NN.EQ.NQ2) 30 TO 19
IF(NN.EQ.NC2) 30 TO 19
IF(NN.EQ.NO2) 30 To 20
I?(NN.EQ.NR2) 30 TO 21

IF(IN.Q.NT1) 10 TO 22
13 To 23

11 CALL READ4(A,N1,N2,N0,Nr,NA,L2)
N=N1
10 In 1

12 CALL READ4(3,N1,N2,NO,NT,N3,LP)
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1=11
L=4 2

10 TO 1
13 C\LL REND4(C1,A1,A1,AD4,1T,AC1,L?)

4=11
1=12
GO TO 1

14 CALL REA04(01,141,N2,A04,NT,A01,L2)
4=11
L=N 2

tD1=1

IF(NT.EQ.AZ) I01=0
GO TO 1

15 CALL REN04(Q1,A1,A2,NO,NT,AQ1,LP)
4=41

GO To 1
15 CALL REND4(141,A1,A2,AD,AT,AR1,LP)

L=N1
10 TO 1

17 CALL REACt4 (INIA,A1,A2,A0,Ar,NGA,LP)
A=N1
NP=12
CO TO 1

11 CALL REN04(22,A1,112,AO,NT,NQ1,LP)
A2=41
IF(IO.Q.0) 03 ro 1
DO 73 I=1,A?
00 73 7=1,AP

73 222(t,7)=22(I,7)
GO TO 1

19 CALL READI(C2,NI,A2,NO2,AT,AC2,LP)
NQ11
A=42
IF(IO.EQ.0) 10 TO 1
00 74 I=1,AQ
DO 74 7=1,14

74 C22(I,J)=C2(I,7)
00 ro 1

20 CALL READ4(02,A1,A2,NOQ,AT,A02,LP)
?n=41
L=N2
C01=1

IF(AT.EQ.AZI tD1=0
IF(IO.EQ.0) 00 PO
oo 75 I =1, Nth

00 75 J=1,L
75 022(I,J)=01(I,J)

10 TO
21 CALL REND4(12,11,A2,\TO,NT,NR2,LP)

11=11
t?(tO.EQ.0) GO r0 1
00 75 I=1,NQ



262

D7 75 J=1,NQ
75 R22 (I , 3)=--R2 (I ,3)

.30 To 1
22 CALL READ4( , N2, N13', NT, Z\ITI-1, LP)

NQ=N1
NP=412
IS1=1
I?(NI'. EQ. NZI 131=0
IF ( TO. EQ. 0) GO To
Do 77 I=1 NQ
DO 77 .1=1 ,N?

77 3ITA2 ( I ,J) ---rHsrA(t,J)
30 To 1

23 PRINT 471
471 FOR NT( / /," *** SENSOR CCM3INNTION TESTING***",//,

IF( T.D1. EQ. 0) GO ro 303
00 31 t=1.,L
03 31. J=1,4

,J) =0 .
DO 31. K=1 ,f1

31. H(I,.7)=Fi (I,J) 1-01 (K,I)*Q1 (K,J)
503 DO 32 I =1 ,L

DO 32 3=1. , L
SLI4=0.
IF( ID1. EO. 0) GO TO 32
DO 33 K =1,

33 St3v1=SUM+1-1 (t, K) *01 (K,J)

32 EL(t,J)=R1(I,J)1.5134
CALL CONTRL(A.13,(21,131,1,R1,S,AIN,R,P,VAL,N, '4,L,NO,NOD,ND4,

1NDL,W,I01)
DO .37 I=1 N
30 37 3=1. N?
H (1,3)=0.
DO 37 K=1,N

37 Ei (t,J) =H (I ,.7) 4-S (I ,K)*3.A.1A('.<,J)
00 33 t=1,N
DO 33 J =1, NP
P(I,J)=,7).
DO 33 K=1 NP

33 2(r.,3) =-2(I,3)4-ti(I,K)n2(t.C,J)
MACE=1 .
DO 39 I=1,N

DO n
40 511434-4-P (I ,K)*INAN( I ,K)
39 TAACE=TRAC:E+3114

DO 33 1=1 ,
D3 93 1=1.,11
3114=0 .
IF( ID1. EQ. 0) GO ro 33
00 34 7(=1. L

34 SU4,---SI44-01 (I , *G.AIN (7.< ,J)



263

93 a1l(I,J)=21(I,J)i-SU4
00 50 I=1,NI
DO 50 7=1,L
PW(I,J)=3.
DO 59 K=1,L

51 PAI(I,J)=?I(I,J)+GNEN(K,I)*EL(K,T)

DO 51 I=1,N
DO 51 I=1,N
EL(I,J)=1.
CO 51 K=1,L

51 EL(I,J)=EL(I,J)4-PW(I,K)*GNIN(K,J)
ISEN=0
NTP2=NIQ1-2

N E:02=4Q4-2

112Q=N

IF(IO.EQ.0) GO ro 433
00 434 I =1, NQ

IELE4(I)=I
434 INDEX(I)=I
433 IN=S

00 103 IX=1,NQP2
[F(ISEN.EQ.0) GO ro 25
MISEN.Q.1) GO ro 423

425 MIX.LT.N2P2) GO ro 423
IF(IN.GT.0) 10 ro 423
NQ-J4W
DC4=1
GO TO 435

429 IF(IN.EQ.1) 10 ro 430
34IN=XMAX(1)
INEL=1
IXN=INDEX(1)
IXE=IELV4(1)
DO 105 I=2,IN
IF(X4AX(I).GE.A4IN) 30 r0 105
IM=INOEX(I)
INSL=I
k4r4=XANX(I)
IXE=EZLEA(I)

195 coNrINIE
GO ro 435

431 U(N=INDEX(1)
IXE=ZSLE4(1)

GO TO 435
423 I4=LX

IF(NW2.EQ.MTP2) I4=IX-1
IXN=ENOEX(I41
IXE=IELE4(E41

135 00 31 L =1., NP

30 30 7=1,N?
30 )2(I,J)=122(I,J)

IT=1
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DO 31 [Y=1,N22
IF(IY.EQ.IXN) lo ro 31
DO 32 J=I,N

32 C2(II,J)=C22(IY,J)
R2(Ir,IT)=R22(IY,IY)
DO 35 1=1,N?

95 TRETMIT,J)=SITA2(IY,J)
IT=IT+1

31 CONTINUE

IF(IN.E2.0.AND.IX.EQ.472) 10 TO 705
T422-1
IF(IX.LT.N72) ID TO 441
1QQQ
MIN.Q.1) 13 TO 431
00 441 I=1,NQ
03 442 J=1,N

442 C22(I,J)=C2(I,J)
00 444 7=1,N?

444 SIT\2(I,J)=171STI,J)
441 R22(t,I)=R2(I,I)
431 445,IXE
445 Faq4AT(///," ***SENSaR NO.',13, WAS ELS4INNTZD***",///1

IF(IN.E2.1) CO TO 795
GO TO 431

440 ?RINT 400,IXE
400 5n14Nr(//," ***TV our SENSOR N0.",I3," ***",

GO TO 431
795 nr9r 717
707 FOR4NT(////," NO 40RE SENSOR CAN 3E ELE4INWED"
735 ?RINT 703
709 FORINT(" FINAL FORK OF 4ATRICE3 CONCERNING SENSORS \R E''
431 ?SINT *," C2 4ATRIX"

CALL PRLNT(C2,NIN,NOIL?)
PRINT *," R2 INTRIX"
CALL PRINT(R2,NINQ,NO,LP)
?RINT *," =TN ANTRIX"
CALL MIN r ( ram, TvQ, , LP)
MIX.EQ.NW1) GO TO 701

25 CALL FILI7R(N,C2.111A,THLT'\,'22,R2,5,3K,1,?,VXL,N,NQ,NP,ND,NOD,
1N0Q,NDP,W,I3I)
IF(LP.EQ.O.NND.I3EN.NE.0) 10 ro 510
?TINT 99

30 FORANTV," ST1A0Y STATE SOLUTION OT ?TUF RIC1NTI EVNTION41
CALL R1INT(3,N,N,NO,LP)

510 MIO.EQ.0) 10 ro 403
tF(tSZN.NE.0) 10 To 111
00 402 r=1,N
00 412 1=I,N

402 30(1,1)=9(1,J)
30 TO 413

111 IF(tP.LE.1) 10 ro 403
DO 114 1=1,N
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DO 431 7=1,N
411 PW(I,J)=(S(I,7)-S3(I,J))/S0(I,7)

PRINT *," RELATIVE ERROR JF FILTER RICCATI SOLUTIDV
CALL PRINT(Pq,N,N,ND,LP)

403 00 45 r=1,N
45 g(I)=SRT(S(t,I))

IF(IP.E2.0.ANO.ISEN.NE.1) 30 ro 511
PRINT 41

45 FOR ANT R4S RESPONSE OF ESTIAATE ERR3RS41
CALL PRINT(4,1,N,1,LP)

511 IF(IO.Q.1) 10 ro 407
IF(ISEN.NE.0) 10 TO 405
DO 405 I=1,N

405 4S(I)=4(t)
lo ro 437

405 DO 403 t=1,N
403 4(T)=0M-WS(I))/WS(I)

PRINT *," RELATIVE ERROR OF R4S RESPONSE OF ESTIANTED ERROR"
CALL PRINT(W,1,N,1,L?)
A.AX=1.

IF(I2R.NE.1) SO ro 417
00 102 t=1,N
x=x3spqm
IF(X.GT.A4X) NAX=X

102 CONTINUE
407 00 3 I=1,L

00 3 J=1,N

Pg(I,J)=1.
00 3 '(=1,N

3 711(I,J)=74(I,J)VTAL4(I,K)*S(X,J)
00 9 I=1,L
1)) 3 7=1,L

Ql(I,J) =3.

DO 3 '<=1,N

3 21(E,J)=21(I,J),q4(t,K)*TAIN(J,K)
IF(IP.EQ.O.ANO.ISEN.NE.0) 10 TO 512
PRINT *," ERROR CONTROL COVARIANCE 4AT1IX"
CALL PRINT(21,L,L,NO,LP)

512 IF(IO.EQ.1) 11 in 411
IF(E3 EN.NE.0) 10 TO' 433
DO 410 t=1,L
00 111 7=1,L

410 UO(I,7)=21(I,J)
GO ro 411

409 IF(IP.LE.1) 10 To 411
00 412 I=I,L
DO 412 J=I,L

412 ?4(I,J)=Q1(I,7)-U0(t,J)1/J0(I,J)
PRINT *," RELATIVE ERROR OF ERROR COINTROL"
CALL PRINT(?4,L,L,NO,L?)

111 DO 35 I=1.L.
35 1(t)=3TiT(21(I,I))
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IF(IP.EQ.O.AND.ISEN.N'e..0) 0J ro 51.3
PRINT * ," RAS RESPONSE OF ERROR CONTROL"
CALL PRINT (ol, 1 , , 1 , LP)

51.3 tF(IO.EQ.fl) 10 ro 41.5
IF(ISEN.NE.1) 00 ro 41.3
00 41.4 I=1.,L

41.4 AU(t) =W(I)
GO TO 41.5

413 00 41.5 I=L,L
41.5 tfr/(I)=:(W(I)WU(I))/WU(I)

PRINT *," RELATIVE ERROR OF R45 RESPONSE OF ERROR CONTROL"
CALL parlr (W,1, L, 1 , LP)
IF(ICR.NE.2) 10 TO 41.5
0011.0 t=1.,L
X=ASS (W( I) )
IF(X.GT..A4X) AMX7X

11.0 CONTINUE
41.5 DO 95I =1,`4

00 95 1=1.,N
21(I,J)=1.
DO 95 7:<=1.,N

35 21(I,J)=-21(I,J)i-R11(I,K)*3(X,J)
DO 95 t=1.,N1
DO 95 J=1.,.4
Q2(I,J)=1.
DO 95 '..<=1,N

95 22(I,J)=Q2(I,J)Q1(I,f()*R11(3,K)
U(CP. EQ. 0. AND. ISSN. NE. 0) 00 To 514
PR * , ^ ERROR OUTPUT cOVARIVCE s4AIRIX"
CALL PRINT (2,M, 4,ND, LP)

51.4 IF(IO.EQ.0) 30 r0 41.9
IF(ISEN.NE.0) 30 ro 41.7
DO 41.9 I=1.,M
00 41.9 3=1:4

419 Y3(I,J)2(I,J)
00 ro 41.3

117 IP(IP.LE.1) 10 TO 41.3
00 420 I=1.,.4
00 420 7=1,M

420 PW(I,J)=(22(E,J)Y0(I,J))/Y0(I,J)
PRINT *," RELATIVE ERROR OF ERROR OUrPUT4
CALL PRINT M, 4, ND, LP)

41.3 00 .37 I=1,M
37 ',11(I)--3SQRT()2(I,I))

IFCIP.EQ.0..AND.ISEN.NE.0) 30 TO 51.5
PRINT * R4S RESPONSE OF ERROR OUTP'Jr"
CALL PRINT (w, 1 , :4,1, LP)

51.5 IF(IO.EQ.0) 03 ro 423
tF(ISEN.NE.0) 30 To 421.
00 422 I=1 ,4

422 WY(I)=7,4(I)
ro 423
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421 00 424 I=1,1
424 '4(I)=MI)-4Y(I))/WY(I)

PRINT *," REL\TIVE ERROR OF R1S RESPONSE OF ERROR ourpur"
CALL PRINT(W,1,1,1,LP)
IF(ICR.NE.3) GO TO 423
00 104 I=1,'4
X=NBS(W(I))
IF(X.GT.A1X) k4X=X

104 CONTINUE
423 TRACEX=O.

DO 52 E=1,N
SUM=0.

DO 53 X=1,N
53 SUM=SU41-EL(I,K)*S(K,I)
52 TRNCEX=TRNCEX+SUM

TRACEX=TRNCEX4-TRNCE
IF(IP.EQ.0.AND.ISEN.NE.0) GO ro 515
PRINT 54,TRACEX

54 FORANT(//," ***TINCE=",G13.5," ***",//1
515 EF(IO.E).0) GO ro 301

IF(ISEN.NE.0) GO TO 425
TRNCEO=TRNCEX
GO TO 700

425 TRNCEX=(TRACEX-rRACE0)/TINCEO
PRINT 427,TRACEX

427 FORMAT( / /," SS$$$ REL\TIVE ERROR OF T1NCE=",G13.5," 7$$$",//1
IF(ICR.EQ.4) NAX=TRNCEX
ISEN=2
IF(A4X.GT.CRITER) GO TO 103
IN=IN+1

INDEX(IN)=IXN
IELEA(IN)=IXE
X4NX(N)=NAX
10 TO 103

710 PRINT*," TYPE IN NE CRITERIA"
RENO*,CRITER
mar 111,CRITER

100 ?0[1.4kT(/," ELEMINNTION CRITERIN=",612.4)
ISEN=1

103 CONTINUE
701 IF(INI.LE.1) GO ro 301

4T2=IN
tT =INEL

ttP=IT+1
00 432 I=ILP,IN
rNDEX(I:)=LNOSX(I)-1
IELE4(IT)=IELZ4(I)
IT=tr+1.

432 CONTINUE
GO TO 433

301 I) TO 303
END


