SHOU YUAN WEI for the degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering presented on August 11, 1980.

Title: APPLICATION OF LINEAR QUADRATIC CONTROL DESIGN IN REDUCTION OF AERODYNAMIC FORCES ON AIRCRAFT

Redacted for Privacy

Abstract approved:
Dt: William E: Holley
A problem found in high speed transport aircraft is excessive tail loading when flying at cruise speeds through turbulence. Attempts to reduce these areodynamic forces on the tail may result in unstable aircraft motions. Using a linear quadratic regulator in conjunction with a Kalman filter, the feasibility of designing an autopilot utilizing the ailerons and rudder is studied in terms of minimal combined lateral ride motion and aerodynamic tail force.

A new numerical algorithm for solving general quadratic regulator and state estimation problems is developed, and is presented with a computer program to solve the complicated matrix equations involved. A systematic procedure is also developed for choosing a reduced combination of sensors which gives near optimal performance. With this approach, aerodynamic tail forces can be theoretically reduced by 20 to 50 percent.

Application of Linear Quadratic Control in Reduction of Aerodynamic Forces on Aircraft
 by
 SHOU YUAN WEI

A THESIS
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of
 Doctoral of Philosophy
 June, 1981

APPROVED:

Redacted for Privacy

Professor of Mechañical Eng
in charge of mojor

Redacted for Privacy

Head of vepartment of mecnanlq尹 \perp tingineering Redacted for Privacy
$\overline{\text { Dean of }}$ Gyaduate Schoo \mid

Date thesis is presented August 11,1980

Typed by J. Togger for SHOU YUAN WEI

First and foremost, I would like to express my appreciation to Dr. William E. Holley without whose help this paper would not have been possible. His knowledge, ingenuity, and expert direction guided me to the completion and presentation of this paper.

To my wife, Jane, I owe much. Without her encouragement and patience, this paper might never have been completed.

I also would like to take this opportunity to thank my parents for their support and to thank my brother-in-law, Dr. M.H. Chen, for his encouragement.

Financial assistance in the form of computer time was provided for me by the O.S.U. Computer Center Unsponsored Research Fund.

I wish to thank the people at Litton Guidance and Control for their gracious help in getting my thesis typed.

TABLE OF CONTENTS

Chapter
I INTRODUCTION 1
II THEORETICAL BACKGROUND 3
II. 1 Introduction 3
II. 2 The Linear Quadratic Regulator 7
II. 3 The Stationary Kalman Filter 11
II. 4 Discussion of the Covariance Properties 14
II AN IMPROVED ALGORITHM FOR SOLVING THE ALGEBRAIC RICCATI EQUATION 24
III. 1 Introduction 24
III. 2 The Algorithm and Its Theoretical Basis 27
III. 3 Numerical Properties of the Quasi- triangularization and the Operations Count for Solving the Riccati Equation. 43
IV ELIMINATION OF UNNECESSARY MEASUREMENTS 51
IV. 1 Introduction 51
IV. 2 The Measurement Elimination Criteria 52
IV. 3 Application of the Measurement Elimination Procedure 63
V RESULTS AND DISCUSSION 72
V. 1 Results of Tail Force Reduction 72
V. 2 Discussion 80
VI CONCLUSIONS 93
REFERENCES 95
APPENDIX A 98
A-1 The Solution of the Linear Quadratic Regulator Problem 99
A-2 The Solution of the Stationary Kalman Filter Problem 105
APPENDIX B - SOME PROPERTIES OF THE HAMILTONIAN MATRIX 115
APPENDIX C - THE ERROR ANALYSIS OF THE SIMILARITY REDUCTION TO QUASI- TRIANGULAR FORM 125
C-1 Error Analysis of the Algorithm Proposed in Chapter III 126
C-2 The Operations Count of the Algorithm 157
APPENDIX D - MEASUREMENT ELIMINATION THEOREMS AND THE SYSTEM MODEL 168
APPENDIX E - USER'S MANUAL 182
I. Theory of the Linear Quadratic Regulator and Stationary Kalman Filter 183
I. 1 Introduction 183
I. 2 The Control Problem without Process Noise 184
I. 3 The Control Problem with Process Noise 184
I. 4 The State Estimation Problem 186
I. 5 The Stochastic Control Problem 187
I. 6 Stationary Response of the System with Zero Control 189
II. Logical Contruction of the Algorithm and the Description of the Subroutines 190
II. 1 Introduction 190
II. 2 Proposed Algorithm for Solving the Algebraic Riccati Equation 190
II. 3 Description of Main Program OPTIMAL and Subroutines 193
III. The User's Manual for OPTIMAL and its Subroutines with Several Examples 200
III. 1 Introduction 200
III. 2 User's Manual for the Control and Estimation Problem 200
III. 3 User's Manual for Other Utility Subroutines 204
III. 4 Error and Warning Messages 204
III. 5 Examples 205
REFERENCES FOR MANUAL 217

TABLE OF CONTENTS (cont)

APPENDIX F - THE OPTIMAL PROGRAM LISTING . . . 218
APPENDIX G - THE SENSOR ELIMINATION PROGRAM
LISTING 259

LIST OF TABLES

Number
Page

THE LATERAL FEEDBACK CONTROL GAIN 73
THE FILTER GAIN 73

THE CLOSED LOOP EIGENVALUES OF CONTROLLER AND FILTER74
THE RMS VALUES OF AIRCRAFT AND WIND STATES 76
THE RMS VALUES OF CONTROL AND OUTPUT 76
THE OUTPUT REDUCTION ACCOMPLISHED WITH STATE ESTIMATION 77
THE PERCENTAGE CHANGE IN THE RMS AIRCRAFT STATE IN RELATION TO THE CASE $z=x$ 78
THE PERCENTAGE CHANGE IN THE RMS CONTROL AND OUTPUT IN RELATION TO THE CASE $z=x$ 78
CASES TESTED FOR DIFFERENT VALUES OF THE CORRELATION TIME FACTOR τ IN R_{2} 80
THE EIGENVALUES OF THE STATE ESTIMATION ERROR DYNAMICS FOR DIFFERENT VALUES OF τ IN R_{2} 81
RMS RESPONSES OF THE AIRCRAFT STATE, THE CONTROL, AND THE OUTPUT FOR DIFFERENT VALUES OF τ IN R_{2} 83
THE RMS RESPONSE CALCULATION WITH $\mathrm{R}_{2}=0$ 85
THE RELATIVE R_{2} SENSITIVITY FOR $\mathrm{z}=\mathrm{x}$ 86
THE RELATIVE R_{2} SENSITIVITY FOR $\mathrm{z}=8$ SENSORS 86
THE RELATIVE R_{2} SENSITIVITY FOR $\mathrm{z}=3$ SENSORS 87

NOMENCLATURE

A system dynamics matrix
a_{y} side acceleration of center of mass per
unit gravitational acceleration
$a_{\text {ty }}$ side acceleration of tail per unit gravitational acceleration
$a_{n y}$ side acceleration of nose per unit gravitational acceleration
§a aileron deflection
B control distribution matrix
C_{1} output scaling matrix for state
C_{2} measurement scaling matrix for state
D_{1} output scaling matrix for control
D_{2} measurement scaling matrix for control
$f_{t} \quad$ tail force
G filter gain
H Hamiltonian matrix
I expected value of the integrand of the quadratic performance criteria
performance criteria
K control gain
\& fuselage length
n order of the system
OP operations count
P solution of the filter Riccati equation
p roll rate
Q similarity transformation matrix

```
NOMENCLATURE (cont)
```

Q1 weighting matrix of the output in performance criteria

Q 2 power spectral density of process noise
$R_{1} \quad$ weighting matrix of the control in performance criteria
R_{2} power spectral density of measurement noise r yaw rate
$\dot{\text { r }}$ yaw acceleration
δr rudder deflection
S solution of the regulator Riccati equation
U control covariance matrix
$\widetilde{\mathrm{U}}$ control error covariance
u the control variable
$u_{y} \quad$ lateral gradient of the longitudinal velocity
\widetilde{u} control error
v lateral aircraft velocity
vo lateral gust velocity
v_{x} longitudinal gradient of the lateral velocity
w process noise
$w_{y} \quad$ lateral gradient of normal gust velocity
X the state covariance matrix
X* the estimated state covariance matrix
$\widetilde{\mathrm{X}} \quad$ the state estimation error covariance matrix
$x \quad$ the system state
x* the estimated state
$\widetilde{x} \quad$ the state estimation error

NOMENCLATURE (cont)

Y the output covariance matrix
$\widetilde{Y} \quad$ output error covariance
y the output
\widetilde{y} output error
z the measurement
Γ process noise distribution matrix
θ measurement coupling matrix for process noise
$\lambda \quad$ eigenvalue
ν measurement noise
τ the correlation time factor of the measurement noise power spectral density
ϕ roll angle

APPLICATION OF LINEAR QUADRATIC CONTROL DESIGN IN REDUCTION OF AERODYNAMIC FORCES ON AIRCRAFT

I. INTRODUCTION

In order to improve the stability and handling qualities for flight at low speed, the vertical tail of an aircraft is often designed to be larger than required for flight at higher cruise speeds. Because of this larger tail area, excessive gust loading can occur at higher flight speeds. The purpose of this report is to show the feasibility of designing an autopilot which utilizes the aileron and rudder in such a way as to reduce the gust loading on the vertical tail while maintaining acceptable levels of the lateral ride motion. The technique used involves a linear quadratic regulator accomplished with a stationary Kalman filter. The aircraft model is chosen to be a typical business jet for which the equation of motion of the aircraft was derived by the author in a previous report ${ }^{(1)}$. The equation of motion was linearized for the nominal flight condition of 450 knots ($231 \mathrm{~m} / \mathrm{s}$) at 20,000 feet (6.1 km) altitude.

The required theoretical background of the linear quadratic regulator and the Kalman filter is presented in Chapter II. In order to solve the regulator and the filter problem, a Riccati equation has to be solved. An algorithm
is developed for solving this equation and is described in Chapter III. Some of the numerical properties of the algorithm are also discussed in this chapter. A computer program implementing the proposed algorithm was written and a user's manual is presented in Appendix E. Also, the program listing is given in Appendix F.

Measurements are required in order to estimate the system state. Due to the fact that the sensors for the measurements are costly, it would be desirable to minimize the number of sensors required while maintaining acceptable information for state estimation. A new procedure for measurement elimination is developed and presented in Chapter IV. Also, a computer program is coded utilizing the measurement elimination procedure and is presented in Appendix G.

II. THEORETICAL BACKGROUND

II. 1 Introduction

Optimal control is a technique used to determine the minimum or maximum of some performance criteria related to the performance of a dynamic system. A particular problem may concern minimizing the pertubation from a nominal trajectory of an aircraft, maximizing the flight range of a rocket, minimizing the fuel consumption of a vehicle, maximizing the profit in a business, or any of a vast variety of similar problems.

The fundamental problem of optimal control theory may be divided into four interrelated parts:

1. Definition of the desired goal.
2. Knowledge of our position with respect to the desired goal.
3. Knowledge of all environmental factors influencing the past, present, and future.
4. Determination of the optimal policy to achieve the desired goal from the knowledge stated in (2) and (3).

The desired goal is defined as the performance criteria which is to be minimized or maximized. For instance, the
pertubation from the nominal trajectory of an aircraft is the performance criteria for one of the problems stated earlier. To solve an optimal control problem, the knowledge of the system and environmental factors influencing the system is translated into mathematical terms. This is called the system model. Realistically speaking, most physical systems are nonlinear. However, since it is rarely feasible to solve the optimal control problem for a nonlinear system of any practical significance, the development of explicit feedback control schemes for nonlinear systems is usually out of reach. In many cases, it is feasible to analyze small pertubations away from the nominal trajectory. When characteristics of the system do not significantly change with time, calculations for the linear time-invariant system can be applied. In this thesis, the linear time-invariant system model will be assumed.

A linear time-invariant system can be described by a set of first order differential equations

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t)+\Gamma w(t) \\
& y(t)=C_{1} x(t)+D_{1} u(t) \tag{2.1.1}\\
& z(t)=C_{2} x(t)+D_{2} u(t)+v(t)+\theta w(t),
\end{align*}
$$

where
$x(t)$ is the system state, $u(t)$ is the control, $w(t)$ is the process noise, $y(t)$ is the output, $z(t)$ is the measurement, $v(t)$ is the measurement noise. Note, all these quantities are vectors.

Equation (2.1.1) is called the state-variable description of the system.

To effectively control the behavior of a system, knowledge of the system state should be available. If perfect knowledge of the system state is at hand, and, if the performance criteria is chosen to be in quadratic form, a linear quadratic regulator can be designed to solve the state feedback control problem. In cases where perfect knowledge of the system state is not available, a Kalman filter can be used. The linear quadratic regulator combined with the Kalman filter form a stochastic control problem.

The focus of this chapter is classified into three problems:

1. The linear quadratic regulator,
2. The Kalman Filter,
3. The covariance properties.

These will be discussed sequentially in sections 2,3 , and 4 in this chapter.
II. 2 The Linear Quadratic Regulator

Consider a linear time-invariant system described by

$$
\dot{x}=A x+B u+\Gamma w
$$

$$
\begin{equation*}
y=C_{1} x+D_{1} u \tag{2.2.1}
\end{equation*}
$$

where state $x(t)$ is an n dimensional vector, the control $u(t)$ is an ℓ dimensional vector, the process noise $w(t)$ is a p dimensional vector, and the output $y(t)$ is an m dimensional vector. Assume that the process noise $w(t)$ is zeromean Gaussian white noise with non-negative definite power spectral density matrix Q_{2}, and assume that the initial conditions $x\left(t_{0}\right)$ and the process noise $w(t)$ are independent.

To design a linear quadratic regulator for the system described by equation (2.2.1), the performance criteria is chosen as the ensemble average of the quadratic form

$$
\begin{equation*}
J=E\left[\lim _{t_{f} \rightarrow \infty} \frac{1}{2} \int_{t_{o}}^{t_{f}^{f}}\left(y^{T} Q_{1} y+u^{T} R_{1} u\right) d t\right] \tag{2.2.2}
\end{equation*}
$$

where Q_{1}, R_{1} are positive-definite, constant matrices. The linear quadratic regulation problem is solved by minimizing
the performance criteria, equation (2.2.2), subject to the constraints of the system equation described by equation (2.2.1).

It is shown by Aström (1970) ${ }^{(2)}$ that the solution of the above linear quadratic regulator problem is the same as in the deterministic case when there is no process noise,

$$
\begin{equation*}
\min _{u} J=\lim _{t_{f} \rightarrow \infty} \frac{1}{2} \int_{t_{0}}^{t_{f}^{f}}\left(y^{T} Q_{1} y+u^{\left.T_{R_{1}} u\right) d t}\right. \tag{2.2.3}
\end{equation*}
$$

subject to the constraints of the system and the output equations

$$
\begin{align*}
& \dot{x}=A x+B u \\
& y=C_{1} x+D_{1} u . \tag{2.2.4}
\end{align*}
$$

It is shown in Appendix A-1 that, by using Pontryagin's maximum principle ${ }^{(3)}$, the solution of the deterministic linear quadratic regulator problem defined by equations (2.2.3) and (2.2.4) is given by

The state feedback control law

$$
\begin{equation*}
u=K x \tag{2.2.5}
\end{equation*}
$$

where the control gain K is given by

$$
\begin{equation*}
\mathrm{K}=\mathrm{C}_{*}-\mathrm{R}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{~S} \tag{2.2.6}
\end{equation*}
$$

and S satisfies the algebraic Riccati equation

$$
\begin{equation*}
0=-\mathrm{SA}_{*}-\mathrm{A}_{*}^{\mathrm{T}} \mathrm{~S}+\mathrm{SBR}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{~S}-\mathrm{Q}_{*} \tag{2.2.7}
\end{equation*}
$$

The matrices in equations (2.2.6) and (2.2.7) are given by the following equations

$$
\begin{aligned}
& \mathrm{R}_{*}=\mathrm{D}_{1}^{\mathrm{T}} \mathrm{Q}_{1} \mathrm{D}_{1}+\mathrm{R}_{1} \\
& C_{*}=-\mathrm{R}_{*}^{-1} \mathrm{D}_{1}^{\mathrm{T}} Q_{1} C_{1}
\end{aligned}
$$

$$
\begin{align*}
& A_{*}=A+B C_{*} \tag{2.2.8}\\
& Q_{*}=C_{1}^{T} Q_{1} C_{1}-C_{*}^{T} R_{*} C_{*}
\end{align*}
$$

Combining equation (2.2.1) and (2.2.5), the closed loop dynamic equation is

$$
\begin{equation*}
\dot{x}=(A+B K) x+\Gamma w . \tag{2.2.9}
\end{equation*}
$$

II. 3 The Stationary Kalman Filter

Consider a linear time-invariant system described by

$$
\dot{x}=A x+B u+\Gamma w
$$

$$
\begin{equation*}
z=C_{2} x+D_{2} u+v+\theta w \tag{2.3.1}
\end{equation*}
$$

where the state $x(t)$ is an n dimensional vector, the control $u(t)$ is a ℓ-vector, the process noise $w(t)$ is a p-vector, and the measurement $z(t)$ is a q-vector. Assume that the process noise $w(t)$ and the measurement noise $v(t)$ are zero-mean Gaussian white noise with power spectral density matrices Q_{2} and R_{2} respectively. Furthermore, assume that the initial condition $x\left(t_{0}\right)$, the process noise $w(t)$ and the measurement noise $v(t)$ are independent.

To estimate the state, it is desired to maximize the probability of the state given the measurement (i.e. choose the most probable state with knowledge of the measurement). In this case, the performance criteria is given by

$$
\begin{equation*}
\operatorname{Max}_{x(t)} J_{*}=P[x(t) \mid z(\tau), \tau \leq t] \tag{2.3.2}
\end{equation*}
$$

When the probability density functions are Gaussian, maximizing the conditional probability of equation (2.3.2) is equivalent to minimizing the following criteria ${ }^{(4)}$.

$$
\operatorname{Min}_{w, v} J=E\left[\lim _{t_{0} \rightarrow-\infty} \frac{1}{2} \int_{t_{0}}^{t_{f}}\left(w^{T} Q_{2}{ }^{-1} w+v^{T} R_{2}^{-1} v\right) d t\right]_{(2.3 .3)}
$$

subject to the system dynamic constraints and that w and v be causally related to z.

Many authors (4) (5) (6) have solved the problem defined by equations (2.3.1) and (2.3.3) when B, D_{2}, θ are zero matrices. The case of non-zero, B, D_{2} and θ is discussed in Appendix A-2, where the solution of the stationary Kalman filter described by equation (2.3.1) and (2.3.3) is given.

The equation of the state estimate x_{*} is

$$
\begin{equation*}
\dot{x}_{*}=A x_{*}+B u+G\left[-z+D_{2} u+C_{2} x_{*}\right] \tag{2.3.4}
\end{equation*}
$$

The filter gain G is given by

$$
\begin{equation*}
G=-P C_{2}^{T} R_{2 *}{ }^{-1}-\Gamma Q_{2} \theta^{T} R_{2 *}{ }^{-1} \tag{2.3.5}
\end{equation*}
$$

where P satisfies the algebraic Riccati equation

$$
\begin{equation*}
0=\mathrm{A}_{* *} \mathrm{P}+\mathrm{PA}_{* *}{ }^{\mathrm{T}}+\Gamma \mathrm{Q}_{2 *} \Gamma^{\mathrm{T}}-\mathrm{PC}_{2} \mathrm{~T}_{2 *}{ }^{-1} \mathrm{C}_{2} \mathrm{P} \tag{2.3.6}
\end{equation*}
$$

The matrices in equations (2.3.5) and (2.3.6) are given by

$$
\begin{aligned}
& \mathrm{R}_{2 *}=\mathrm{R}_{2}+\theta \mathrm{Q}_{2} \Theta^{\mathrm{T}} \\
& \mathrm{~A}_{* *}=\mathrm{A}-\Gamma \mathrm{Q}_{2} \Theta^{\mathrm{T}} \mathrm{R}_{2 *}{ }^{-1} \mathrm{C}_{2} \\
& Q_{2 *}=Q_{2}-Q_{2} \Theta^{\mathrm{T}} \mathrm{R}_{2 *}{ }^{-1} \theta Q_{2} .
\end{aligned}
$$

The equation of the estimated state x_{*} can be rewritten as

$$
\begin{equation*}
\dot{x}_{*}=\left(A+G C_{2}\right) x_{*}+\left(B+G D_{2}\right) u-G z . \tag{2.3.8}
\end{equation*}
$$

II. 4 Discussion of the Covariance Properties

The description of the covariance properties can be divided into four parts which are considered in the following sections.

1. The system with process noise and zero control

In this case, the system is described by

$$
\begin{align*}
& \dot{x}=A x+\Gamma w \tag{2.4.1}\\
& y=C_{1} x \tag{2.4.2}
\end{align*}
$$

The state covariance matrix is defined by

$$
x=E\left[x(t) \quad x^{T}(t)\right]
$$

A well known result from stochastic control theory and described in Bryson and Ho (1969) ${ }^{(7)}$ shows that X satisfies the following Lyapunov equation for the stationary case.

$$
\begin{equation*}
0=A X+X A^{T}+\Gamma Q_{2} \Gamma^{T} \tag{2.4.4}
\end{equation*}
$$

The rms state is the square root of each of the diagonal elements of X .

The output covariance matrix is defined by

$$
\begin{equation*}
Y=E\left[Y(t) Y^{T}(t)\right] \tag{2.4.5}
\end{equation*}
$$

From equation (2.4.2), Y is given by

$$
\begin{align*}
Y & =E\left[C_{1} x x^{T} C_{1}^{T}\right] \\
& =C_{1} E\left[x x^{T}\right] C_{1}^{T} \\
& =C_{1} X C_{1}^{T} . \tag{2.4.6}
\end{align*}
$$

2. The linear quadratic regulator problem with process noise.

The closed loop dynamic equation of a system with the state feedback control law, $u=K x$, is given by

$$
\begin{align*}
& \dot{x}=(A+B K) x+\Gamma w \tag{2.4.7}\\
& y=\left(C_{1}+D_{1} K\right) x \tag{2.4.8}
\end{align*}
$$

where K is given by equation (2.2.6).

Comparing equations (2.4.7) and (2.4.8) with equation (2.4.1) and (2.4.2), we find:
a. The state covariance matrix X satisfies the following Lyapunov equation

$$
0=(A+B K) X+X(A+B K)^{T}+\Gamma Q_{2} \Gamma^{T} \cdot(2.4 .9)
$$

b. The output covariance matrix Y is given by

$$
Y=\left(C_{1}+D_{1} K\right) X\left(C_{1}+D_{1} K\right)^{T}
$$

c. The control covariance matrix, which is defined as $U=E\left[u(t) u^{T}(t)\right]$, is given by

$$
\begin{align*}
& \mathrm{U}=\mathrm{E}\left[\mathrm{uu}^{\mathrm{T}}\right] \\
& =E\left[\begin{array}{lll}
K x & x^{T} & K^{T}
\end{array}\right] \\
& =K E\left[x x^{T}\right] K^{T} \\
& =K X K^{T} .
\end{align*}
$$

3. The stationary Kalman filter problem

The solution of this problem is described in section (II.3). The state estimation error is defined by

$$
\begin{equation*}
\widetilde{x}=x-x_{*} \tag{2.4.12}
\end{equation*}
$$

which is the difference between the actual state x and the estimated state x_{*}. The equation for the state estimation error can be obtained by subtracting equation (2.3.4) from (2.3.1). The resulting equation is given by

$$
\begin{equation*}
\dot{\widetilde{x}}=A \widetilde{x}+\Gamma w-G\left[-z+D_{2} u+C_{2} x_{*}\right] \tag{2.4.13}
\end{equation*}
$$

Using the measurement equation

$$
z=C_{2} x+D_{2} u+v+\theta w
$$

and the equation for \widetilde{x}, the quantity
$-z+D_{2} u+C_{2} x_{*}$ is given by

$$
\begin{equation*}
-z+D_{2} u+C_{2} x_{*}=-C_{2} \widetilde{x}-v-\theta w \tag{2.4.14}
\end{equation*}
$$

Substituting equation (2.4.14) into (2.4.13), it yields

$$
\begin{equation*}
\stackrel{\stackrel{\widetilde{x}}{x}}{ }=\left(A+G C_{2}\right) \widetilde{x}+\Gamma w+G \Theta w+G \nu . \tag{2.4.15}
\end{equation*}
$$

Using the equation of the filter gain G, the quantity $\Gamma w+G \Theta w+G \nu$ can be rearranged as

$$
\begin{equation*}
\Gamma \mathrm{w}+\mathrm{G} \theta \mathrm{w}+\mathrm{G} \nu=\Gamma \mathrm{w}_{*}+\mathrm{G}_{*} \nu_{*} \tag{2.4.16}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{w}_{*}=\mathrm{w}-\mathrm{Q}_{2} \Theta^{\mathrm{T}} \mathrm{R}_{2 *}{ }^{-1} \nu_{*} \\
& \mathrm{G}_{*}=-\mathrm{P} \mathrm{C}_{2}^{\mathrm{T}} \mathrm{R}_{2 *}^{-1} \tag{2.4.17}
\end{align*}
$$

$$
v_{*}=v+\theta w,
$$

the equation (2.4.15) of the state estimation error can then be written as

$$
\begin{equation*}
\dot{\dot{x}}=\left(A+G C_{2}\right) \tilde{x}+\Gamma w_{*}+G_{*} \nu_{*} \tag{2.4.18}
\end{equation*}
$$

It is shown in Appendix A-2 that the power spectral densities of w_{*} and v_{*} are given by $Q_{2 *}$ and $R_{2 *}$ which are defined in equation (2.3.7). In addition, the assumption that $x\left(t_{0}\right), w(t)$ and $v(t)$ are uncorrelated insures $x\left(t_{0}\right), w_{*}(t)$ and $v_{*}(t)$ are also uncorrelated. Comparing equation (2.4.18) with (2.4.1) and using the uncorrelated property of $x\left(t_{0}\right), w_{*}(t)$ and $v_{*}(t)$, the covariance
matrix of the stationary state estimation error $\widetilde{\mathrm{X}}$ satisfies the following Lyapunov equation

$$
\begin{align*}
0= & \left(A+G C_{2}\right) \widetilde{X}+\widetilde{X}\left(A+G C_{2}\right)^{T}+\Gamma Q_{2} * \Gamma^{T} \\
& +G_{*} R_{2} * G_{*}^{T} \tag{2.4.19}
\end{align*}
$$

where

$$
\begin{align*}
& Q_{2 *}=Q_{2}-Q_{2} \theta^{T} R_{2 *}{ }^{-1} \theta Q_{2} \\
& G_{*}=-P C_{2}^{T} R_{2 *}-1 \tag{2.4.20}\\
& R_{2 *}=R_{2}+\theta Q_{2} \theta^{T} .
\end{align*}
$$

To prove \widetilde{X} is equal to P, the quantity E is first defined:

$$
\begin{equation*}
E=P-\widetilde{X} \tag{2.4.21}
\end{equation*}
$$

where P is the solution of the algebraic Riccati equation (2.3.6). Subtracting equation (2.4.19) from (2.3.6), making use of equations (2.4.20) and
(2.4.20) and (2.4.21), the quantity E satisfies the following Lyapunov equation

$$
\begin{equation*}
0=\left(A+G C_{2}\right) E+E\left(A+G C_{2}\right)^{T} \tag{2.4.22}
\end{equation*}
$$

It was shown by Kalman ${ }^{(8)}$ in 1960 that, if the system is controllable and observable, the eigenvalues of $A+G C_{2}$ are all in the open left-half plane. With this eigenvalue property, it was shown by Rutherford ${ }^{(9)}$ in 1932 that the unique solution E of equation (2.4.22) is equal to zero. Thus, the covariance of the state estimation error is equal to the solution of the algebraic Riccati equation (2.3.7), i.e.,

$$
\begin{equation*}
\widetilde{\mathrm{X}}=\mathrm{P} \tag{2.4.23}
\end{equation*}
$$

4. The stochastic control problem

In cases when perfect knowledge of the state is not available, a Kalman filter can be used to estimate the state. This estimated state is then used in the state feedback control law for the regulator. Wonham ${ }^{(10)}$ shows that the problem of filtering and control can be treated independently in some cases. The result is called the
separation theorem. According to this theorem, the solution of the stochastic control problem is given by the solution of the linear regulator and the solution of the Kalman filter with the state feedback control law.

$$
\begin{equation*}
\mathrm{u}=\mathrm{K} \mathrm{x}_{*} \tag{2.4.24}
\end{equation*}
$$

where x_{*} is the estimated state.

These solutions for the linear regulator and the Kalman filter were given in the previous two sections.

The covariance of the estimated state is defined by

$$
\begin{equation*}
\mathrm{X}_{*}=\mathrm{E}\left[\mathrm{x}_{*} \mathrm{x}_{*}^{\mathrm{T}}\right] \tag{2.4.25}
\end{equation*}
$$

It is shown in Appendix A-2 that x_{*} and \tilde{x} are uncorrelated, i.e.,

$$
\begin{equation*}
E\left[x_{*} \widetilde{x}^{T}\right]=0 \tag{2.4.26}
\end{equation*}
$$

Using equations (2.4.26) and (2.3.4) and the previous steady covariance results, the estimated state covariance satisfies the following Lyapunov equation
$0=(A+B K) X_{*}+X_{*}(A+B K)^{T}+G R_{2 *} G^{T}$
where $R_{2 *}=R_{2}+\theta Q_{2} \theta^{T}$.

The covariance of the actual system state is defined by

$$
\begin{equation*}
x=E\left[x x^{T}\right] . \tag{2.4.28}
\end{equation*}
$$

Using equations (2.4.12), (2.4.23), (2.4.26), the covariance of the state is given by the sum of the covariance of the estimated state and the covariance of the state estimation error

$$
\begin{equation*}
X=X_{*}+P \tag{2.4.29}
\end{equation*}
$$

where X_{*} satisfies equation (2.4.27) and P satisfies equation (2.3.7).

Using the equation (2.4.24) of the control, the control covariance matrix is given by

$$
\mathrm{U}=\mathrm{K} \mathrm{X}_{*} \mathrm{~K}^{\mathrm{T}}
$$

Substituting the equation (2.4.24), into the output equation yields

$$
\begin{equation*}
y=\left(C_{1}+D_{1} K\right) x_{*}+C_{1} \widetilde{x} \tag{2.4.31}
\end{equation*}
$$

Since x_{*} and \widetilde{x} are uncorrelated, the output covariance matrix is given by

$$
\begin{equation*}
Y=\left(C_{1}+D_{1} K\right) X_{*}\left(C_{1}+D_{1} K\right)^{T}+C_{1} P C_{1}^{T} \tag{2.4.32}
\end{equation*}
$$

III AN IMPROVED ALGORITHM FOR SOLVING THE ALGEBRAIC RICCATI EQUATION

III. 1 Introduction

From the discussion in Chapter II, it can be seen that, in order to solve the linear quadratic regulator and the stationary Kalman filter problem, the algebraic Riccati equations (2.2.7) and (2.3.6) have to be solved. Many authors have suggested methods (11)(12)(13) to solve these equations. One of the methods that has been most successful is the eigenvector decomposition method proposed by MacFarlane ${ }^{(11)}$ in 1963 and by Potter ${ }^{(12)}$ in 1966. In this method, the eigenvalues and the corresponding eigenvectors of the Hamiltonian matrix are determined. The Hamiltonian matrix is the coefficient matrix of the EulerLagrange system discussed in Appendices A-1 and A-2. The eigenvectors of the Hamiltonian matrix associated with eigenvalues whose real parts are all of the same sign are partitioned into the form of

$$
T=\left[\begin{array}{l}
X_{+} X_{-} \tag{3.1.1}\\
\Lambda_{+} \\
\Lambda_{-}
\end{array}\right]=\left[T_{+} T_{-}\right]
$$

where

$$
T_{+}=\left[\begin{array}{l}
X_{+} \\
\Lambda_{+}
\end{array}\right] \text {and } \quad T_{-}=\left[\begin{array}{l}
X_{-} \\
\Lambda_{-}
\end{array}\right]
$$

are eigenvectors associated with eigenvalues with positive real parts and negative real parts respectively. In the case that the system is not controllable or not observable, then eigenvalues with zero real parts may exist, and the algorithm can fail. Using two of the four submatrices in equation (3.1.1), one forms a set of linear equations whose solution yields the solution of the corresponding algebraic Riccati equation. The choice of which two of the four submatrices depends solely on which Riccati equation is to be solved.

The success of this method requires that the partitioned eigenvector matrices be non-singular. However, as was discussed by Holley (14) and Wei in 1979, the resulting matrices may be singular when one or more of the eigenvalues are repeated. This difficulty can be overcome by using the generalized eigenvectors, which, however, is not an entirely satistactory method. In cases when two eigenvalues are nearly equal, the partitioned eigenvector matrices, while not singular, remain ill conditioned. This can lead to errors in the computed solution. Small perturbations in the system matrix elements can lead to drastic changes in the partitioned eigenvector matrices, which also causes poor numerical stability.

An improved algorithm for solving the algebraic Riccati equation ${ }^{(14)}$ is presented in this chapter. In this
algorithm, the Hamiltonian matrix is transformed into quasi-upper triangular form by an orthogonal similarity transformations. This transformation is chosen so that the resulting quasi-upper triangular matrix has all the eigenvalues with positive real parts in the lower right hand corner when the regulator problem is solved, and all the eigenvalues with negative real parts in this corner when the filter problem is solved. The quasi-upper triangularization is accomplished by using the stable QR algorithm with implicit double shifts (15)(16). As in the eigenvector decomposition method mentioned above, the resulting orthogonal similarity transformation matrix is partitioned into four n by n matrices. Using two of the four submatrices, one forms a set of linear equations whose solution yields the solution of the corresponding algebraic Riccati equation.

In Section III.2, the proposed algorithm and its theoretical basis are presented in more detail. An error bound for the orthogonal similarity transformation to quasi-upper triangular form and the operations count for solving the Riccati equation are discussed in Section III.3. A computer program which solves the optimal control problem presented in Chapter II by using the proposed algorithm was coded and is listed in Appendix F. The user's manual for the program is presented in Appendix E.
III. 2 The Algorithm and its Theoretical Basis

The proposed algorithm for solving the algebraic Riccati equation has three major steps:

1. Setting up the Hamiltonian matrix of the corresponding algebraic Riccati equation,
2. From the Hamiltonian matrix, determine an orthogonal basis of the invariant subspace (17) associated with the desired eigenvalues, and
3. The symmetric, non-negative definite solution of the Riccati equation is found by solving a set of linear equations involving the orthogonal basis vectors of the invariant subspace.

These steps will be described sequentially in this section.

As discussued in Chapter II, the algebraic Riccati equation of the linear quadratic regulator is given by equation (2.2.7) which is rewritten here

$$
\begin{equation*}
0=-\mathrm{SA}_{*}-\mathrm{A}_{*}^{\mathrm{T}} \mathrm{~S}+\mathrm{SBR} \mathrm{BR}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{~S}-\mathrm{Q}_{*} . \tag{3.2.1}
\end{equation*}
$$

As described in Appendix $A-1$, the corresponding EulerLagrange system has the form

$$
\left[\begin{array}{c}
\dot{\mathrm{x}} \tag{3.2.2}\\
\dot{\lambda}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{A}_{*} & -\mathrm{BR}_{*}^{-1} & \mathrm{~B}^{\mathrm{T}} \\
-\mathrm{Q}_{*} & -\mathrm{A}_{*}^{\mathrm{T}} &
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\lambda
\end{array}\right]
$$

where $\quad x$ is the system state and λ is the Lagrange multiplier resulting from the application of the Pontryagin maximum principle

The Hamiltonian matrix is the coefficient matrix of the Euler-Lagrange system and, in this case, is given by

$$
H=\left[\begin{array}{ccc}
\mathrm{A}_{*} & -\mathrm{BR}_{*}^{-1} & \mathrm{~B}^{T} \tag{3.2.3}\\
-Q_{*} & -\mathrm{A}_{*} &
\end{array}\right]
$$

Matrices A_{*}, R_{*}, Q_{*} etc. are defined in Chapter II.

The Hamiltonian matrix for the stationary Kalman filter is similarly defined. The Riccati equation of the Kalman filter is given by equation (2.3.6), rewritten here as

$$
0=\mathrm{A}_{* *} \mathrm{P}+\mathrm{PA}_{* *}{ }^{\mathrm{T}}+\Gamma \mathrm{Q}_{2 *} \Gamma^{\mathrm{T}}-\mathrm{P} \mathrm{C}_{2}^{\mathrm{T}} \mathrm{R}_{2 *}{ }^{-1} \mathrm{C}_{2} \mathrm{P} \cdot(3.2 .4)
$$

It is shown in Appendix $\mathrm{A}-2$ that the corresponding EulerLagrange system is given by
where $A_{* *}, Q_{2 *}, R_{2 *}$ are defined in Chapter II and B_{*}, L are defined in Appendix A-2.

The Hamiltonian matrix in this case is given by

$$
H=\left[\begin{array}{ll}
\mathrm{A}_{* *} & \Gamma \mathrm{Q}_{2 *} \Gamma^{\mathrm{T}} \tag{3.2.6}\\
\mathrm{C}_{2}{ }^{\mathrm{T} \mathrm{R}_{2 *}{ }^{-1} \mathrm{C}_{2}} & -\mathrm{A}_{* *} \mathrm{~T}
\end{array}\right]
$$

It is shown in Appendix $B-1$ that if Q_{*} and R_{*} are symmetric, the eigenvalues of the Hamiltonian matrix defined in equation (3.2.3) are symmetric with respect to the imaginary axis in the eigenvalue plane, (i.e., if s is an eigenvalue of H in equation (3.2.3), then, $-s$ is also an eigenvalue). A similar result follows for the Hamiltonian matrix defined in equation (3.2.6) if $Q_{2 *}$ and $R_{2 *}$ are symmetric matrices.

It is also shown in Appendix $B-1$ that, for a controllable and observable system, the solution of the control Riccati equation (3.2.1) satisfies the relation

$$
\begin{equation*}
Q_{11} S=Q_{12} \tag{3.2.7}
\end{equation*}
$$

where $\quad Q_{11}$ and Q_{12} are submatrices of the orthogonal similarity transformation matrix

$$
Q=\left[\begin{array}{ll}
Q_{11} & Q_{12} \tag{3.2.8}\\
Q_{21} & Q_{22}
\end{array}\right]
$$

which transforms the Hamiltonian matrix of equation (3.2.3) into the form

$$
\left[\begin{array}{ll}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]\left[\begin{array}{ll}
A_{*} & -{B R_{*}{ }^{-1} B^{T}}^{-Q_{*}}-^{-A_{*}}
\end{array}\right]\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]^{T} \text { (3.2.9) }
$$

with U_{22} having all eigenvalues in the open right half plane.

The solution of the filter Riccati equation (3.2.4)
satisfies the following equation

$$
\begin{equation*}
Q_{12} P=Q_{11} \tag{3.2.10}
\end{equation*}
$$

where Q_{11} and Q_{12} are also submatrices of the orthogonal similarity transformation matrix

$$
Q=\left[\begin{array}{ll}
Q_{11} & Q_{12} \tag{3.2.11}\\
Q_{21} & Q_{22}
\end{array}\right]
$$

which transforms the Hamiltonian matrix of equation (3.2.6) into the form

$$
\left[\begin{array}{ll}
\mathrm{U}_{11} & \mathrm{U}_{12} \\
0 & \mathrm{U}_{22}
\end{array}\right]=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & \Omega_{22}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{A}_{* *} & \Gamma Q_{*} \Gamma^{\mathrm{T}} \\
\mathrm{C}_{2}{ }^{\mathrm{T}_{2}}{ }^{-1} \mathrm{C}_{2} & -A_{* *}{ }^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{Q}_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]_{\text {(3.2.12) }}^{\mathrm{T}}
$$

With U_{22} having all eigenvalues in the open left half plane.

The similarity transformation of equations (3.2.9) and (3.2.12) has the following form

$$
\left[\begin{array}{ll}
U_{11} & U_{12} \tag{3.2.13}\\
0 & U_{22}
\end{array}\right]=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right] \mathrm{H}\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]^{T}
$$

Since Q is orthogonal, premultiplication by Q^{T} on both sides of equation (3.2.13) yields

$$
H\left[\begin{array}{ll}
Q_{11} T^{T} & Q_{21}{ }^{T} \tag{3.2.14}\\
Q_{12}^{T} & Q_{22}^{T}
\end{array}\right]=\left[\begin{array}{ll}
Q_{11} T^{T} & Q_{21}{ }^{T} \\
Q_{12}^{T} & Q_{22} T
\end{array}\right]\left[\begin{array}{ll}
\mathrm{U}_{11} & \mathrm{U}_{12} \\
0 & U_{22}
\end{array}\right]
$$

The following equation results

$$
H\left[\begin{array}{l}
Q_{11} T \tag{3.2.15}\\
Q_{12} T
\end{array}\right]=\left[\begin{array}{ll}
Q_{11} & U_{11} \\
Q_{12} T & U_{11}
\end{array}\right]=\left[\begin{array}{l}
Q_{11} T \\
Q_{12} T
\end{array}\right] \mathrm{U}_{11}
$$

Equation (3.2.15) shows that the linear operator, represented by the matrix H, transforms the first n rows of Q into linear combinations of themselves. This shows that the first n rows of Q

$$
\begin{equation*}
\left[Q_{11} \quad Q_{12}\right] \tag{3.2.16}
\end{equation*}
$$

form a set of orthogonal basis vectors for the invariant subspace, which is associated with n eigenvalues of submatrix U_{11} in equations (3.2.9) and (3.2.12).

The highly stable QR algorithm with implicit double shifts of origin is employed to determine the orthogonal similarity transformation matrix Q. Wilkinson and Reinsch (15)(16) point out that for the $Q R$ algorithm,
the volume of work is greatly reduced if the matrix H is first transformed to upper-Hessenberg form (i.e., to a matrix H^{\prime} such that $h_{i j}^{\prime}=0$ for $i>j+1$). The transformation may be accomplished in a stable manner by the use of Householder type orthogonal similarity transformation matrices (15)(16). The transformation by orthogonal matrices takes place in $n-2$ major steps. Immediately before the $r-t h$ step H has been reduced to H_{r} which is of upper-Hessenberg form in its first r-1 columns. The matrix H_{r+1} is derived from H_{r} via the relation

$$
\begin{equation*}
H_{r+1}=Q_{r} H_{r} Q_{r} \tag{3.2.17}
\end{equation*}
$$

The orthogonal matrix Q_{r} is of the form

$$
\begin{equation*}
Q_{r}=I-u_{r} u_{r}^{T / \beta_{r}} \tag{3.2.18}
\end{equation*}
$$

where

$$
\begin{gather*}
u_{r}^{T}=\left[0,--\infty, 0, h_{r+1, r}^{(r)} \pm \sigma_{r}^{1 / 2}, h_{r+2, r, \ldots}^{(r)} h_{n, r}^{(r)}\right] \\
\sigma_{r}=\sum_{i=1}^{n}\left(h_{r+i, r}^{(r)}\right)^{2} \tag{3.2.19}\\
\beta_{r}=\sigma_{r} \pm h_{r+1, r} \sigma_{r} .
\end{gather*}
$$

This transformation leaves the zeros already produced in the first $r-1$ columns of H_{r} unaffected.

Given the upper-Hessenberg matrix H^{\prime}, the $Q R$ algorithm is used to accomplish the quasi-triangularization which was described in equations (3.2.9) and (3.2.12). For iteration s of the $Q R$ algorithm, we have

$$
\begin{equation*}
H_{s+2}=Q_{s+1} Q_{S} H_{s} Q_{S}^{T} Q_{S+1}^{T} \tag{3.2.20}
\end{equation*}
$$

giving

$$
\begin{equation*}
H_{S}\left(Q_{S}^{T} Q_{S+1}{ }^{T}\right)=\left(Q_{s}^{T} Q_{S+1}{ }^{T}\right) H_{s+2} \tag{3.2.21}
\end{equation*}
$$

and

$$
\left(Q_{s}^{T} Q_{s+1}^{T}\right)\left(R_{S+1} R_{s}\right)=\left(H_{S}-k_{s} I\right)\left(H_{S}-k_{S+1} I\right)
$$

writing

$$
Q_{S+1} Q_{S}=T \quad, \quad R_{S+1} R_{S}=N
$$

and

$$
\begin{equation*}
\left(H_{s}-k_{s} I\right)\left(H_{s}-k_{s+1} I\right)=M \tag{3.2.23}
\end{equation*}
$$

we have

$$
\begin{equation*}
H_{S} T^{T}=T^{T} H_{S+2}, N=T M \tag{3.2.24}
\end{equation*}
$$

where

$$
k_{s} \text { and } k_{s+1} \text { are shifts of origin and }
$$

$$
\begin{aligned}
& N \text { is an upper triangular matrix (since } R_{s} \text { and } \\
& R_{s+1} \text { are upper triangular). }
\end{aligned}
$$

Householder ${ }^{(18)}$ demonstrated in 1958 that any real matrix can be triangularized by successive premultiplication with $Q_{1}, Q_{2}, \cdots Q_{n-1}$, where Q_{i} are of the form

$$
\begin{equation*}
Q_{i}=I-2 w_{i} w_{i}^{T} \tag{3.2.25}
\end{equation*}
$$

and w_{i} is a unit vector with zeros for its first i-1 components.

Since the first row of the matrix $Q_{n-1} Q_{n-2} \ldots Q_{2} Q_{1}$ is the first row of Q_{1} itself, it was pointed out by Francis ${ }^{(19)}$ in 1961 that in triangularizing any matrix the first factor, Q_{1}, is determined only by the first column of that matrix. The first column of M is of the form

$$
\begin{equation*}
\left(p_{1}, q_{1}, r_{1}, 0, \ldots, 0\right)^{T} \tag{3.2.26}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{p}_{1}=\mathrm{h}_{11} 2-\mathrm{h}_{11}\left(\mathrm{k}_{\mathrm{s}}+\mathrm{k}_{\mathrm{s}+1}\right)+\mathrm{k}_{\mathrm{s}} \mathrm{k}_{\mathrm{s}+1}+\mathrm{h}_{12} \mathrm{~h}_{21} \\
& \mathrm{q}_{1}=\mathrm{h}_{21}\left(\mathrm{~h}_{11}+\mathrm{h}_{22}-\mathrm{k}_{\mathrm{s}}-\mathrm{k}_{\mathrm{s}+1}\right) \tag{3.2.27}\\
& \mathrm{r}_{1}=\mathrm{h}_{32} \mathrm{~h}_{21},
\end{align*}
$$

```
hij is the (i,j) element of the matrix H}\mp@subsup{H}{S}{}\mathrm{ and \(k_{s}, k_{s+1}\) are either real or are complex conjugates giving real values for \(p_{1}, q_{1}\), and \(r_{1}\).
```

Because of these properties, the vector w_{1} associated with Q 1 has only three non-zero elements, giving the matrix $Q_{1} H_{s} Q_{1}{ }^{T}$ a maximum of three non-zero elements below the diagonal element. The matrix with three non-zero elements below the diagonal is then transformed back to an upper Hessenberg matrix by using the algorithm for initial Hessenberg reduction, which is described in equations (3.2.17) to (3.2.19). Francis ${ }^{(19)}$ shows that this matrix is the same as H_{S+2} in the $Q R$ algorithm. A subroutine called HESS has been coded for the upper Hessenberg reduction. Since the subroutine HESS is necessary for the first Hessenberg reduction, the transformation $Q_{1} H_{s} Q_{1}{ }^{T}$ described above is coded as a separate subroutine called SHIFT2. The resulting matrix from subroutine SHIFT2, which has three non-zero elements below the diagonal, is transformed to the Hessenberg matrix by again using the subroutine HESS. This subroutine was designed to take advantage of zero subdiagonal elements. Subroutines HESS and SHIFT2 are described in Appendix E and listed in Appendix F.

In order to isolate eigenvalues with proper signs in the U_{22} matrix in equations (3.2.9) and (3.2.12), several
possible shifting strategies for choosing k_{s} and k_{s+1} were tried. Experiments indicated that choosing k_{s} and $\mathrm{k}_{\mathrm{s}+1}$ to be the desired eigenvalues resulted in a stable and efficient method. This results from the fact that the QR algorithm isolates zero eigenvalues in one step ${ }^{(15)}$. The eigenvalues of proper sign are chosen from the full set of eigenvalues determined by a complete quasitriangularization of H with arbitrary ordering. This results in a two step process: first, the eigenvalues of H are computed by a full quasi-triangularization, and second, this knowledge is used to isolate eigenvalues with proper sign which involves only a partial quasi-triangularization.

It may happen during the course of the iteration that a matrix H_{s} has one or more sufficiently small (to be regarded as zero) sub-diagonal elements in an undesirable position. This split of H_{s} may cause the isolation of the desirable eigenvalue to be impossible. In this case, an arbitrary Householder type similarity transformation is performed to remove the undesired zero on the sub-diagonal elements. The Householder type matrix is chosen to be in the form

$$
Q=\left[\begin{array}{ll}
Q_{1} & 0 \\
0 & I
\end{array}\right]
$$

where

$$
Q_{1}=I-\frac{u^{T}}{\beta}, u^{T}=[1,1, \ldots, 1], \text { and } \beta=\frac{u^{T} u}{2}
$$

The similarity transformation for removing the undesirable zero on the sub-diagonal is performed according to the relation

$$
\begin{aligned}
H_{S}^{\prime} & =Q \quad H_{S} Q \\
& =\left[\begin{array}{ll}
Q_{1} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
H_{1} & H_{2} \\
0 & H_{3}
\end{array}\right]\left[\begin{array}{ll}
Q_{1} & 0 \\
0 & I
\end{array}\right] \\
& =\left[\begin{array}{ll}
Q_{1} & H_{1} Q_{1} \\
0 & Q_{1} \\
H_{2} \\
0 & H_{3}
\end{array}\right]
\end{aligned}
$$

where H_{3} is the submatrix with desired eigenvalues previously isolated, and H_{1} is the submatrix with the undesirable zero on the sub-diagonal. The submatrix $Q_{1} H_{1} Q_{1}$ of the resulting matrix H_{s}^{\prime} is no longer in upper Hessenberg form, allowing use of subroutine HESS to reduce it to an upper Hessenberg matrix. With the resulting matrix, the $Q R$ algorithm is then used to continue the isolation of the desired eigenvalues.

The Householder type reduction is also employed to solve the linear equations given in (3.2.7) and (3.2.10). In general, the method can be described as follows:

Given a linear system

$$
\begin{equation*}
A X=B, \tag{3.2.28}
\end{equation*}
$$

a sequence of Householder-type matrices is found such that the product Q satisfies

$$
\begin{equation*}
\mathrm{QAX}=\mathrm{QB} \tag{3.2.29}
\end{equation*}
$$

where $T=Q A$ is an upper triangular matrix. Back substitution is performed to solve the equation

$$
\begin{equation*}
T X=Y \tag{3.2.30}
\end{equation*}
$$

where $\quad Y=Q B$.

Once the solution of the Riccati equation found, the control gains, the closed loop dynamics matrix etc. can be found by simple matrix operations.

In order to solve the covariance equations discussed in Chapter II, a Lyapunov type equation

$$
\begin{equation*}
A X+X A^{T}=C \tag{3.2.31}
\end{equation*}
$$

has to be solved. Bartels and Stewart ${ }^{(20)}$ proposed a method for solving the above Lyapunov equation in 1972. In
this method, the matrix A is first transformed to a quasiupper triangular matrix by using the $Q R$ algorithm stated above. The resulting matrix satisfies the following equation

$$
\begin{equation*}
\mathrm{UY}+\mathrm{YU}^{\mathrm{T}}=\mathrm{T} \tag{3.2.32}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{U}=Q A Q^{T} \text { is a quasi-upper triangular matrix, } \\
& \mathrm{Y}=Q X Q^{T}, \text { and } T=Q C Q^{T} .
\end{aligned}
$$

Equation (3.2.32) can be written as

$$
\left[\begin{array}{ll}
\mathrm{U}_{1} & \mathrm{U}_{2} \tag{3.2.33}\\
0 & \mathrm{U}_{3}
\end{array}\right]\left[\begin{array}{lll}
\mathrm{Y}_{11} & \mathrm{Y}_{12} \\
\mathrm{Y} & \mathrm{~T} & \mathrm{Y}_{22}
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{Y}_{11} & \mathrm{Y}_{12} \\
& \\
\mathrm{Y}_{12} \mathrm{~T} & \mathrm{Y}_{22}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{U}_{1}^{\mathrm{T}} & 0 \\
\mathrm{U}_{2}^{\mathrm{T}} & \mathrm{U}_{3} \mathrm{~T}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{T}_{11} & \mathrm{~T}_{12} \\
\mathrm{~T}_{12} \mathrm{~T} & \mathrm{~T}_{22}
\end{array}\right]
$$

where U_{3} is a one-by-one or a two-by-two block.

Multiplying the partitioned matrices yields

$$
\begin{align*}
& \mathrm{U}_{1} \mathrm{Y}_{11}+\mathrm{Y}_{11} \mathrm{U}_{1}^{\mathrm{T}}+\mathrm{U}_{2} \mathrm{Y}_{12}^{\mathrm{T}}+\mathrm{Y}_{12} \mathrm{U}_{2}^{\mathrm{T}}=\mathrm{T}_{11} \tag{3.2.34}\\
& \mathrm{U}_{1} \mathrm{Y}_{12}+\mathrm{U}_{2} \mathrm{Y}_{22}+\mathrm{Y}_{12} \mathrm{U}_{3}^{\mathrm{T}}=\mathrm{T}_{12} \tag{3.2.35}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{U}_{3} \mathrm{Y}_{22}+\mathrm{Y}_{22} \mathrm{U}_{3}^{\mathrm{T}}=\mathrm{T}_{22} \tag{3.2.36}
\end{equation*}
$$

Since U is in quasi-upper triangular form, the submatrix U_{3} is either a one-by-one or a. two-by-two matrix. If U_{3} is a one-by-one matrix, equation (3.2.36) is a scalar equation which can be solved immediately. If U_{3} is a two-by-two matrix, equation (3.2.36) can be transformed into a standard linear system of equations of order four or less in the form of equation (3.2.28). The linear equation can then be solved by using the Householder type reduction which is described by equations (3.2.28) to (3.2.30). The solution Y_{22} obtained from equation (3.2.36) is back substituted into equation (3.2.35). Since U_{1} is also in the quasiupper triangular form, equation (3.2.35) can be broken down into sub-equations similar to equations (3.2.34), (3.2.35), and (3.2.36). The back substitution method of matrix blocks described above is again employed to solve equation (3.2.35). The solution Y_{12} obtained from equation (3.2.36) is then back substituted into equation (3.2.34). Now, equation (3.2.34) is a reduced order Lyapunov equation with U_{1} in the quasi-upper triangular form, the back substitution method of matrix blocks can then be used to solve equation (3.2.34). The solution of the Lyapunov equation (3.2.31) is then obtained by the relation

$$
\begin{equation*}
X=Q^{T} Y Q \tag{3.2.37}
\end{equation*}
$$

where $\quad Y$ is the solution of equation (3.2.32).

It is shown in Appendix B-1 that, if the eigenvalues of A are all in the open left half plane, and if the C matrix is negative definite, the solution of Lyapunov equation (3.2.31) is a positive definite matrix.
III. 3 Numerical Properites of the Quasi-triangularization and the Operations Count for Solving the Riccati Equation

The quasi-upper triangularization described in the previous section can, in general, be written in the form

$$
\begin{equation*}
H_{S}=G_{1} H G_{1}^{T} \tag{3.3.1}
\end{equation*}
$$

where $\quad G_{1}$ is the product of a sequence of Householder type orthogonal similarity transformation matrices, H is the original Hamiltonian matrix, H_{S} is the transformed matrix which is of the form

$$
\mathrm{H}_{\mathrm{s}}=\left[\begin{array}{ll}
\mathrm{U}_{11} & \mathrm{U}_{12} \tag{3.3.2}\\
0 & \mathrm{U}_{22}
\end{array}\right]
$$

It is shown in Appendix $C-1$ that the computed matrix \bar{H}_{S} satisfies the following equation

$$
\bar{H}_{s}=G_{1}(E+H) G_{1}^{T}
$$

where \bar{H}_{S} is the computed H_{S} and E is a perturbation in H.

It is also shown in Appendix C-1 that the perturbation E, for a machine with a t-digit mantissa, is bounded by

$$
\begin{align*}
&\|E\|_{2} \leq 2^{-t}\|H\|_{2}\left\{8 \mathrm{kn}^{3}+(3.82+4 \mathrm{k}) \mathrm{n}^{2}+44.5 \mathrm{n}\right. \\
&\left.+50.9+\left(4 \mathrm{kn}^{2}+50.9\right) \mathrm{s}\right\} \tag{3.3.4}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{k}=2 \cdot 12,\left||\cdot \||_{2} \text { is the } \mathrm{L}_{2}\right. \text { norm of the matrix } \\
& \text { and } \mathrm{s} \text { is, in most cases, between } 3 / 2 \mathrm{n}^{2} \text { and } \\
& \left(3 \mathrm{n}^{2}-\mathrm{n}\right) \text {. }
\end{aligned}
$$

It should be pointed out that, since the transformation removing undesired zeros on the sub-diagonal is unnecessary in most cases, error caused by this transformation was not included in equation (3.3.4). It can be seen from equation (3.3.4) that an n^{4} term dominates the bound of the perturbation E. In order to have a quantitative feeling for the above result, assume the order of the system, n, is equal to 100 and the factors k and s to be the larger values

$$
k=2.12
$$

$$
\mathrm{s}=3 \mathrm{n}^{2}-\mathrm{n}
$$

For the CDC CYBER machine, $t=48$, and the bound given in equation (3.3.4) is

$$
\begin{equation*}
\left|\left|E\left\|_{2} \leq\left(.91 \times 10^{-5}\right) \mid\right\| H \|_{2}\right.\right. \tag{3.3.6}
\end{equation*}
$$

Thus, the computation is reasonably accurate even for such a large-scale system.

An error bound for the computed similarity transformation, \bar{G}_{1}, can be derived as follows. First of all, a supporting lemma for a derivation of the error bound, which is proved in Appendix C, is stated as:

Lemma 3.1.

The floating point computation, fl[], of matrix multiplication is given by

$$
\begin{equation*}
f 1\left(A_{1} A_{2} \cdots A_{s}\right)=A_{1} A_{2} \ldots A_{s}+F \tag{3.3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\|F\|_{2} \leq 1.06 \quad(s-1) n^{2} 2^{-t}\left[\left.\underset{j=1}{s}| | A\right|_{2}\right] \tag{3.3.8}
\end{equation*}
$$

With this lemma, the error bound of \bar{G}_{1} can then be derived. G_{1} has the form

$$
\begin{equation*}
G_{1}=Q_{s} \ldots Q_{1} \tag{3.3.9}
\end{equation*}
$$

where Q_{i} are Householder type matrices and s is the number of orthogonal matrices required to
accomplish the quasi-triangularization described in equation (3.3.1).

The computed G_{1} can be written as

$$
\begin{equation*}
\overline{\mathrm{G}}_{1}=\bar{Q}_{\mathrm{s}} \ldots \overline{\mathrm{Q}}_{1} \tag{3.3.10}
\end{equation*}
$$

where

$$
\bar{Q}_{i}=Q_{i}+e_{i} \text { is } Q_{i} \text { with perturbation } e_{i}
$$

With floating-point arithmetic, the computed matrix $\overline{\mathrm{G}}_{1}$ is given by

$$
\begin{aligned}
& \overline{\mathrm{G}}_{1}=\mathrm{fl}\left(\overline{\mathrm{Q}}_{\mathrm{s}} \ldots \overline{\mathrm{Q}}_{1}\right) \\
& =Q_{s} \cdots Q_{1}+e_{s+1} \\
& =\left(Q_{s}+e_{s}\right)\left(Q_{s-1}+e_{s-1}\right) \ldots\left(Q_{1}+e_{1}\right)+e_{s+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3.3.11) }
\end{aligned}
$$

where

$$
e_{s+1} \text { is the error in matrix multiplication. }
$$

Using equations (3.3.7) and (3.3.8), the bound of e_{s+1} in equation (3.3.11) is given by

$$
\begin{equation*}
\left\|e_{s+1}\right\|_{2} \leq(1.06)(s-1) n^{2} 2^{-t}\left[\underset{i=1}{s}| | \overline{Q_{i}} \|_{2}\right] \tag{3.3.12}
\end{equation*}
$$

Substituting the equation

$$
\left\|\bar{Q}_{i}\right\|_{2} \leq\left\|Q_{i}\right\|_{2}+\|\mathrm{e}\|_{2}=1+\|\mathrm{e}\|_{2},
$$

where the fact $\left\|Q_{i}\right\|_{2}=1$ is used.
Since Q_{i} is an orthogonal matrix, equation (3.3.12) becomes

$$
\left\|e_{s+1}\right\|_{2} \leq(1.06)(s-1) n^{2} 2^{-t}\left[\prod_{i=1}^{s}\left(1+| | e_{i} \|_{2}\right)\right]_{(3.3 .13)}
$$

It is shown in appendix $C-1$ that e_{i} satisfies the inequality

$$
\begin{equation*}
\left\|e_{i}\right\|_{2} \leq\|e\|_{2} \leq(4.8 n+11.2) 2^{-t} \tag{3.3.14}
\end{equation*}
$$

Using equation (3.3.14) and the relation

$$
\begin{aligned}
\prod_{i=1}^{s}\left(1+\left\|e_{i}\right\|_{2}\right) & \leq\left(1+\|e\|_{2}\right)^{s} \\
& \leq \exp \left[\|e\| \|_{2}\right] \\
& \leq 1+1.01 \mathrm{~s}\|\mathrm{e}\|_{2},
\end{aligned}
$$

if $s\left||e| \|_{2}<.01\right.$, equation (3.3.13) becomes

$$
\begin{equation*}
\left\|e_{s+1}\right\|_{2} \leq(s-1) n^{2}(1.06) 2^{-t}\left(1+1.01 \mathrm{~s}\|\mathrm{e}\| \|_{2}\right) \tag{3.3.15}
\end{equation*}
$$

where the higher order term is neglected and

$$
\|e\|_{2} \leq(4.8 \mathrm{n}+11.2) 2^{-\mathrm{t}} .
$$

The L_{2} norm of the summation term in equation (3.3.11) can be simplified as follows:

Using equation (3.3.14) and $\left|\left|q_{i}\right|\right|=1$, the quantity

$$
\begin{align*}
& \|\left\{\begin{array}{ccc}
s \\
\sum_{m=1}^{s} & \left.\sum \sum_{1 \leq i_{1}<\ldots<i_{m}-s}^{\left(e_{i_{m}}\right.} \ldots e_{i_{1}}\right) & j \notin\left\{i_{1} \ldots i_{m}\right.
\end{array}\right\}| | \\
& \leq \sum_{m=1}^{s}\binom{s}{m}\|e\|_{2}^{m} \\
& =-1+\sum_{m=0}^{s}\binom{s}{m}\|e\|_{2}^{m} \\
& =-1+\left(1+\|e\|_{2}\right)^{s} \\
& \leq-1+1+1.01 \mathrm{~s}\|\mathrm{e}\|_{2} \text {, if } \mathrm{s}\|\mathrm{e}\| \|_{2} \leq .01 \text {, } \tag{3.3.17}
\end{align*}
$$

where

$$
\begin{equation*}
\binom{s}{m}=\frac{s!}{m!(s-m)!} \tag{3.3.18}
\end{equation*}
$$

Substituting equations (3.3.14), (3.3.15) and (3.3.17) into (3.3.11), the resulting equation is given by

$$
\begin{align*}
\left\|\mathrm{e}_{\mathrm{G}}\right\|_{2}= & \left\|\overline{\mathrm{G}}_{1}-\mathrm{G}_{1}\right\|_{2} \\
\leq & 1.01 \mathrm{~s}\|\mathrm{e}\|_{2} \quad\left\|\mathrm{e}_{\mathrm{s}+1}\right\|_{2} \\
\leq & (\mathrm{s}-1) \mathrm{n}^{2}(1.06) 2^{-\mathrm{t}} \\
& +1.01\left[\mathrm{~s}(\mathrm{~s}-1) \mathrm{n}^{2}(1.06) 2^{-\mathrm{t}}+\mathrm{s}\right] \quad(4.8 \mathrm{n} \\
& +11.2) 2^{-t} \tag{3.3.19}
\end{align*}
$$

If $s=3 n^{2}-n, n=100$, and $t=48$, the above bound is

$$
\begin{equation*}
\left\|e_{G}\right\|_{2} \leq 1.2 \times 10^{-6} \tag{3.3.20}
\end{equation*}
$$

The accuracy of the computed orthogonal matrix is acceptable even for a large scale system with $n=100$.

One way to express the efficiency of an algorithm is by an operations count; the number of arithmetic operations required for the algorithm. Since the computational time for multiplication and division is usually much larger than
for addition and substraction, it is customary to count only the number of multiplications and divisions. The operations count of multiplications and divisions for solving the algebraic Riccati equation is now determined. This operations count has three major parts: (1) OP for finding the eigenvalues of the Hamiltonian matrix, (2) OP for isolating the n desired eigenvalues on the lower right hand corner of the transformed Hamiltonian matrix, and (3) OP for solving the linear equations formed by the partitioned matrix of the orthogonal similarity transformation matrix. It is shown in Appendix $C-2$ that the total OP required for solving the algebraic Riccati equation using the algorithm described in the previous section is usually between limits

$$
\begin{equation*}
\mathrm{OP}_{\max }=186.2 \mathrm{n}^{3}+81 \mathrm{n}^{2}-56.2 \mathrm{n}-67 \tag{3.3.21}
\end{equation*}
$$

and

$$
O P_{\min }=186.2 n^{3}+57 n^{2}-83.2 n-41
$$

where n is the order of the system.

In the case $\mathrm{n}=100$,

$$
\begin{aligned}
& \mathrm{OP}_{\max }=1.870 \times 10^{8} \\
& \mathrm{OP}_{\min }=1.868 \times 10^{8}
\end{aligned}
$$

IV ELIMINATION OF UNNECESSARY MEASUREMENTS
IV. 1 Introduction

State estimation accuracy is highly dependent on which measurements are used. When more measurements are available, the estimation of the state will be more accurate. These measurements of the system outputs are gathered by sensors. However, due to sensor cost, it is desirable to minimize the number of sensors required.

In the following section, possible criteria for measurement elimination are discussed, and an elimination procedure is described. At the end of this chapter, the proposed procedure is applied to a small jet aircraft control problem. A computer program was developed for the application of the proposed general procedure and is presented in Appendix G.

IV. 2 The Measurement Elimination Criteria

The system model is assumed to be linear and timeinvariant with the state equation

$$
\begin{equation*}
\dot{x}=A x+B u+\Gamma w . \tag{4.2.1}
\end{equation*}
$$

The controlled outputs and measurements satisfy

$$
\begin{align*}
& y=C_{1} x+D_{1} u \tag{4.2.2}\\
& z=C_{2} x+D_{2} u+v+\theta w \tag{4.2.3}
\end{align*}
$$

where $\quad z$ represents the vector of sensor measurements.

The criteria for measurement elimination depends on the purpose of the state estimation. For instance, when state estimation alone is desired, the accuracy of the estimated state is the obvious criterion. However, if the estimated state is used in state feedback control, the accuracy of the control variable is more important. When the objective of the controller is to minimize the quadratic performance

$$
\begin{equation*}
J=\frac{1}{2} E\left[\int_{o}^{\infty}\left(y^{T} Q_{1} Y+u^{T} R_{1} u\right) d t\right] \tag{4.2.4}
\end{equation*}
$$

the stationary expected value of the integrand

$$
\begin{equation*}
E\left[y^{T} Q_{1} Y+u^{T} R_{1} u\right] \tag{4.2.5}
\end{equation*}
$$

is another possible criterion. If the output y is the variable of interest, the output could also be a criterion. Therefore, four criteria for measurement elimination are discussed.
a. The rms state estimation error

As discussed in Chapter II, the state estimation error satisfies equation (2.4.15) which is rewritten here
$\dot{\widetilde{x}}=\left(A+G C_{2}\right) \tilde{x}+\Gamma w+G O w+G \nu$
where G is the filter gain and is given in equation (2.3.5). Also shown in Chapter II is the covariance of the state estimation error, given by

$$
\widetilde{\mathrm{x}}=\mathrm{E}\left[\begin{array}{lll}
\widetilde{\mathrm{x}} & \widetilde{\mathrm{x}}^{\mathrm{T}} \tag{4.2.7}
\end{array}\right]
$$

$$
=P
$$

where P satisfies the algebraic Riccati equation
$0=\mathrm{A}_{* *} \mathrm{P}+\mathrm{PA}_{* *} \mathrm{~T}^{\mathrm{T}}+\Gamma \mathrm{Q}_{2} \boldsymbol{r}^{\mathrm{T}}-\mathrm{PC}_{2} \mathrm{~T}_{2}{ }^{-1} \mathrm{C}_{2} \mathrm{P}, \quad(4.2 .8)$
and $A_{* *}, Q_{2 *}, R_{2 *}$ are defined in equation (2.3.7).

The rms state estimation error, which is defined as

$$
\begin{equation*}
\operatorname{rms} \widetilde{x}_{i}=\sqrt{E\left[\widetilde{x}_{i}^{2}\right],} \tag{4.2.9}
\end{equation*}
$$

is equal to the square root of the diagonal elements of the state estimation error covariance $\widetilde{\mathrm{X}}$.
b. The rms control error

The control error is defined as

$$
\begin{align*}
\widetilde{\mathrm{u}} & =\mathrm{Kx}-\mathrm{K} \mathrm{x}_{*} \\
& =\mathrm{K} \widetilde{\mathrm{x}} . \tag{4.2.10}
\end{align*}
$$

The control error covariance is given by

$$
\begin{align*}
\widetilde{U} & =E\left[\widetilde{u} \widetilde{\mathrm{u}}^{\mathrm{T}}\right] \\
& =K P K^{T} . \tag{4.2.11}
\end{align*}
$$

The rms control error

$$
\begin{equation*}
\operatorname{rms} \widetilde{\mathrm{u}}_{i}=\sqrt{E\left[\widetilde{\mathrm{u}}_{i}^{2}\right]} \tag{4.2.12}
\end{equation*}
$$

is given by the square root of the diagonal elements of \widetilde{U}.
C. The rms output error

The output error is defined as

$$
\begin{align*}
\widetilde{Y} & =\left(C_{1}+D_{1} K\right)\left(x-x_{*}\right) \\
& =\left(C_{1}+D_{1} K\right) \widetilde{x} . \tag{4.2.13}
\end{align*}
$$

The rms output error

$$
\begin{equation*}
\operatorname{rms} \widetilde{\mathrm{Y}}_{i}=\sqrt{E\left[\widetilde{\mathrm{Y}}_{i}^{2}\right]} \tag{4.1.14}
\end{equation*}
$$

is given by the square root of the diagonal elements of the output error covariance

$$
\begin{align*}
\widetilde{Y} & =E\left[\widetilde{y} \widetilde{y}^{T}\right] \\
& =\left(C_{1}+D_{1} K\right) P\left(C_{1}+D_{1} K\right)^{T} \tag{4.2.15}
\end{align*}
$$

d. The expected integrand of the control performance criterion

It is shown in Appendix D that the expectation of the integrand is given by

$$
\begin{align*}
I & =E\left[y^{T} Q_{1} y+u^{T} R_{1} u\right] \\
& =\operatorname{tr}\left[S \Gamma Q_{2} \Gamma^{T}+K^{T}\left(R_{1}+D_{1} T_{Q_{1}} D_{1}\right) K P\right] \tag{4.2.16}
\end{align*}
$$

where $\operatorname{tr}[A]$ iS the trace of the matrix A, S is the solution of the regulator Riccati equation (2.2.7), and P is the solution of the filter Riccati equation (4.2.8).

It is also shown in Appendix D that the rms values of $\widetilde{x}_{i}, \widetilde{u}_{i}, \widetilde{Y}_{i}$, and I are non-decreasing as the number of measurements decreases. The properties of non-decreasing error are stated in the following theorems.

Theorem 4.1.

Let $P_{i}, P_{i k}$ be the covariance of the state estimation error without $i^{\text {th }}$ and without $i^{\text {th }}$ and $k^{\text {th }}$ measurements respectively. These covariances satisfy the following algebraic Riccati equations

$$
\begin{align*}
& A_{* *} P_{i}+P_{i} A_{* *}^{T}+\Gamma Q_{2 *} \Gamma^{T}-P_{i} R_{i} P_{i}=0 \tag{4.2.17}\\
& A_{* *} P_{i k}+P_{i k} A_{* *}^{T}+\Gamma Q_{2 *} \Gamma^{T}-P_{i k} R_{i k} P_{i k}=0 \tag{4.2.18}
\end{align*}
$$

The matrices in the above equations are defined in equations (2.3.7) of Chapter II. R_{i} and $R_{i k}$ are the term $C_{2}{ }^{T} R_{2 *}{ }^{-1} C_{2}$ with the $i^{\text {th }}$ and with the $i^{\text {th }}$ and $k^{\text {th }}$ measurements eliminated. Assuming that the estimation error dynamic equation is asymptotically stable (i.e., the eigenvalues of $A_{* *}-P_{i k} R_{i k}$ and $A_{* *}-P_{i} R_{i}$ are all in the open left half eigenvalue plane), then,

$$
\begin{equation*}
\Delta P=P_{i k}-P_{i} \geq 0 \tag{4.2.19}
\end{equation*}
$$

if

$$
\begin{equation*}
\Delta R=R_{i}-R_{i k} \geq 0 \tag{4.2.20}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\left(\operatorname{rms} \widetilde{x}_{j}\right)_{i k}-\left(\operatorname{rms} \widetilde{x}_{j}\right)_{i} \geq 0 \tag{4.2.21}
\end{equation*}
$$

if

$$
\begin{equation*}
\Delta R=R_{i}-R_{i k} \geq 0 \tag{4.2.22}
\end{equation*}
$$

where subscripts j means $j^{\text {th }}$ element of the vector \widetilde{x} and subscripts ik and i indicate the elimination of the $i^{\text {th }}$ and $k^{\text {th }}$ and the $i^{\text {th }}$ measurements.

Theorem 4.2.

Under the same condition as in theorem 4.1, the following results are concluded.

If

$$
\begin{equation*}
\Delta R=R_{i}-R_{i k} \geq 0 \tag{4.2.23}
\end{equation*}
$$

then

$$
\begin{equation*}
\text { a. } \quad \tilde{\mathrm{U}}_{i k}-\widetilde{\mathrm{U}}_{i} \geq 0 \tag{4.2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(r m s \widetilde{u}_{j}\right)_{i k}-\left(r m s \widetilde{u}_{j}\right)_{i} \geq 0 \tag{4.2.25}
\end{equation*}
$$

b.

$$
\begin{equation*}
\widetilde{Y}_{i k}-\widetilde{Y}_{i} \geq 0 \tag{4.2.26}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\operatorname{rms} \widetilde{Y}_{j}\right)_{i k}-\left(\operatorname{rms} \widetilde{Y}_{j}\right)_{i} \geq 0 \tag{4.2.27}\\
& I_{i k}-I_{i} \geq 0 \tag{4.2.28}
\end{align*}
$$

where subscripts j, $i k$, and i have the same meaning as in the above theorem.

The proof of theorems 4.1 and 4.2 is given in Appendix D. If the matrix $R_{2} *=R_{2}+\theta Q_{2} \Theta^{T}$ is a diagonal matrix, ΔR in equations (4.2.20), (4.2.22), and (4.2.23) is given by

$$
\begin{align*}
\Delta R & =c_{2 k}^{T} r_{2 * k}^{-1} c_{2 k} \\
& =\left(c_{2 k}^{T} c_{2 k}\right) / r_{2 * k} \tag{4.2.29}
\end{align*}
$$

where $\quad c_{2 k}$ is the k th row of the C_{2} matrix and $r_{2 * k}$ is the $k^{\text {th }}$ diagonal element of R_{2} * matrix.

It is understood that $\Delta \mathrm{R}$ in equation (4.2.29) is a rank 1 matrix, provided $c_{2 k}$ is not a zero row vector, and the nonzero eigenvalue is given by $\left(c_{2 k} c_{2 k}{ }^{T}\right) / r_{2} *_{k}$ which is a positive real number. This shows that if $R_{2 *}$ is a diagonal matrix, $\Delta \mathrm{R}$ is theorem 4.1 and 4.2 is always a non-negative definite matrix.

From theorem 4.1 and 4.2, a measurement elimination procedure is developed and is described as follows.

Step 1.

Decide the desirable criteria and an acceptable percentage of the relative difference. The relative difference is defined as

$$
\begin{equation*}
\mathrm{RD}_{i}=\frac{\left(\operatorname{rms} \widetilde{\mathrm{x}}_{i}\right)_{k}-\mathrm{rms} \widetilde{\mathrm{x}}_{i}}{\mathrm{rms} \widetilde{\mathrm{x}}_{i}} \tag{4.2.30}
\end{equation*}
$$

where $r m s \widetilde{x}_{i}$ is chosen for the criterion example, the subscript k refers to the elimination of the $k^{\text {th }}$ measurement, and rms \widetilde{x}_{i} is the value with all the available measurements.

For discussion purposes, the criterion is chosen to be rms \tilde{x}_{i} and 10 percent is chosen as the acceptable percentage.

Step 2.

Calculate rms $\widetilde{\mathrm{x}}_{\mathrm{i}}$ with all the q measurements.

Step 3.

Take out one measurement at a time and calculate the maximum relative difference

$$
\begin{equation*}
\mathrm{MRD}_{\mathrm{k}}=\underset{\mathrm{i}}{\max } \quad \mathrm{RD}_{\mathrm{i}} \tag{4.2.31}
\end{equation*}
$$

Again, subscript k refers to the elimination of the $k^{\text {th }}$ measurement.

Step 4.

Store all the indices k such that

$$
\begin{equation*}
M R D_{k} \leq 0.1 \quad(10 \%) \tag{4.2.32}
\end{equation*}
$$

and eliminate the $j^{\text {th }}$ measurement where

$$
\begin{equation*}
M R D_{j}=\min _{k}\left\{M R D_{k}\right\} \tag{4.2.33}
\end{equation*}
$$

Step 5.

If there are none or only one k satisfying equation (4.2.32), we are done. Otherwise, go back to step 3 and eliminate measurements among the remaining.

Step 2 and Step 3 require the calculation of the Riccati equation solution, which dominates the computation required. The maximum number of times Step 3 will be carried out is given by

$$
\begin{equation*}
q+(q-1)+\ldots \ldots+2+1=\frac{q(q+1)}{2} \tag{4.2.34}
\end{equation*}
$$

where q is the number of measurements to start with.

However, since it is impossible to eliminate all the measurements, in most cases, the number of times Step 3 is
carried out is usually much less than $\frac{q(q+1)}{2}$. The minimum number of times Step 3 is carried out will be q, the number of original measurements.

The proposed measurement elimination procedure is applied to the small jet aircraft problem described in Chapter I and the results presented in the next section.
IV. 3 Application of the Measurement Elimination Procedure

The measurement elimination procedure proposed in the previous section is applied to a small jet aircraft. The aircraft model is a business transport flying at a constant altitude of 20,000 feet (6.1 km) and a nominal cruise speed of 450 knots ($231 \mathrm{~m} / \mathrm{s}$). The stability derivative data was supplied by G.D. Park ${ }^{(22)}$ and resulted in a standard fourth order lateral aircraft model previously developed by Wei ${ }^{(1)}$. The model was linearized about the nominal flight condition.

The aircraft model is augmented with a fourth order wind gust model previously developed by Holley and Bryson ${ }^{(23)}$. The resulting eighth order linear system forced by white noise has two controls, aileron and rudder, and can be described as

$$
\begin{equation*}
\dot{\mathrm{x}}=A \mathrm{x}+\mathrm{Bu}+\Gamma \mathrm{w} \tag{4.3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{x}^{T} & =\left[\mathrm{p}, \mathrm{r}, \mathrm{v}, \phi, \mathrm{v}_{\mathrm{O}}, \mathrm{v}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{w}_{\mathrm{y}}\right] \\
\mathrm{u}^{\mathrm{T}} & =[\delta \mathrm{a}, \delta \mathrm{r}] \\
\mathrm{p} & =\text { roll rate (rad/sec) } \\
\mathrm{r} & =\text { yaw rate (rad/sec) } \\
\mathrm{v} & =\text { lateral aircraft velocity (ft/sec) }
\end{aligned}
$$

```
    \phi = roll angle (rad)
vo
v
    velocity (sec}\mp@subsup{}{}{-1}
u
    velocity (sec}\mp@subsup{}{}{-1}
w
        (sec}\mp@subsup{}{}{-1}
\deltaa = aileron deflection (rad)
\deltar = rudder deflection (rad)
```

The optimization criterion chosen for this study is given by

$$
\begin{equation*}
\operatorname{Min}_{\delta a, \delta r} J=\frac{1}{2} E\left\{\int_{o}^{\infty}\left[\left(\frac{a_{y}}{a_{y o}}\right)^{2}+\left(\frac{\dot{\dot{r}}}{\underline{F}_{o}}\right)^{2}+\left(\frac{f_{t}}{f_{t o}}\right)^{2}\right] d t\right\} \tag{4.3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{y}= & \text { lateral acceleration per unit gravitational } \\
& \text { acceleration } \\
\dot{r}= & \text { yaw acceleration (rad/sec }{ }^{2} \text {) } \\
f_{t}= & \text { side force on vertical tail per unit weight } \\
& \text { of the aircraft. }
\end{aligned}
$$

The criterion of equation (4.3.2) seems reasonable since it minimizes the expected deviations in the lateral and yaw acceleration (ride performance) and in the tail side force. The control deviations are not explicitly weighted in the
performance criterion because they are already indirectly included in the response variables chosen.

The criterion above is of the general form

$$
\begin{equation*}
\operatorname{Min}_{u} J=\frac{1}{2} E\left[\int_{0}^{\infty}\left(Y^{T_{Q}} y_{1}+u^{T_{R}} u\right) d t\right] \tag{4.3.3}
\end{equation*}
$$

subject to the constrains

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}+\Gamma w \tag{4.3.4}
\end{equation*}
$$

$$
y=C_{1} x+D_{1} u
$$

where $\quad y^{T}=\left[a_{y}, \dot{r}, f_{t}\right]$ is the output of the system and w is the white noise disturbance vector with power spectral density Q_{2}.

In the case when perfect state information is not available, additional measurement and causality constraints are added.

$$
\begin{equation*}
z=C_{2} x+D_{2} u+v \tag{4.3.5}
\end{equation*}
$$

where z is the measurement vector and v is the white measurement noise with power spectral density R_{2} and uncorrelated with w.

Equations (4.3.4) and (4.3.5) are discussed in detail in Appendix D.

Application of the measurement elimination procedure and solution of the control synthesis problem requires a reasonable choice of weighting factors $a_{Y_{O}}, \dot{r}_{O}$, and $f_{t_{0}}$ appearing in the performance criteria (4.3.2) as well as a choice of the measurement vector z. In order to provide reasonable aircraft ride performance, it is desirable to keep lateral acceleration small all along the fuselage. This can be achieved with a rigid aircraft if the nose and tail accelerations are kept small. Averaging the squares of these quantities yields

$$
\begin{align*}
\frac{1}{2}\left(a_{n y}^{2}+a_{t y}{ }^{2}\right) & =\frac{1}{2}\left(a_{y}+\frac{\ell}{2 g} \dot{r}\right)^{2}+\frac{1}{2}\left(a_{y}-\frac{\ell}{2 g} \dot{r}\right)^{2} \\
& =a_{y}^{2}+\left(\frac{\ell}{2 g} \dot{r}\right)^{2} \tag{4.3.6}
\end{align*}
$$

where

$$
\begin{aligned}
\ell & =\text { fuselage length } \\
a_{n y} & =\text { non-dimensional nose side acceleration } \\
a_{t y} & =\text { non-dimensional tail side acceleration. }
\end{aligned}
$$

Thus, the weighting factors $a_{0}=1$ and $\dot{r}_{0}=\frac{2 g}{l}=1.323$ are chosen. It is pointed out by Holley and Wei (24) that a reasonable control implementation occurs when $f_{\text {to }}$ is designated as 0.3.

The measurement vector is chosen to be

$$
\begin{equation*}
z^{T}=\left[p, r, \phi, a_{t y}, a_{y}, f_{t}, v, v-v_{o}\right] \tag{4.3.7}
\end{equation*}
$$

where $v-v_{o}$ is the relative velocity of the aircraft with respect to the surrounding air.

The sensors used for the measurement (4.3.7) are described as follows. The roll and yaw rates, p, r, can be measured by mounting rate gyros ${ }^{(25)}$ on the body of the aircraft. A two-degree-of-freedom vertical Gyro ${ }^{(25)}$, whose spin axis is vertical, can be placed on the body of the aircraft to measure the roll angle ϕ. The side acceleration of the center of mass and of the vertical tail, a_{y} and $a_{t y}$, can be obtained by placing accelerometers ${ }^{(25)}$ near the mass center and on the vertical tail of the aircraft respectively. Strain gauges can be used to measure the strain in the tail. The strain gauge can be mounted on the tail near the main fuselage structure to prevent a possible large amplification of noise. The tail strain can then be converted to the tail loading, f_{t}, if linear elastic properties of the tail are assumed. The side velocity can be calculated from the outputs of the horizontal accelerometers ${ }^{(25)}$. However, since outputs of accelerometers may have bias, the integrated signal is potentially unstable. To overcome this difficulty, a doppler radar system ${ }^{(25)}$ can be used to measure the velocity. A low pass filter is applied on the velocity signal from the doppler radar and a high pass filter is applied on the velocity integrated from the accelerometers outputs. The combined signals from the lowpass and high-pass filters give a good estimation of the
side velocity. To measure the relative velocity of the aircraft with respect to air $v-v_{o}$, a pitot-static tube can be used. A pitot-static tube consists of a staticpressure port which measures the static pressure and a pitot tube which measures the stagnation pressure. A pitot-static tube is mounted in such a way that it aims directly into the relative wind component to be measured (in this case laterally). The precise location of a pitotstatic tube is selected by wind-tunnel tests and by tests at numerous locations on the actual aircraft, in order to be as free from error as possible at all flight speeds and attitudes. The static and stagnation pressures can then be converted to the relative side velocity $\mathrm{v}-\mathrm{v}_{\mathrm{o}}$.

The power spectral densities for the measurement noise were chosen on the following basis. The two rate gyros for p and r being similar, should have the same error characteristics. The two accelerometers for $a_{t y}$ and a_{y}, also, should have the same error characteristic. Thus, the following form for the measurement noise power spectral density was assumed.

$$
\begin{equation*}
R_{2}=\text { diagonal }\left[r_{1}, r_{2}, r_{3}, \ldots, r_{8}\right] \tag{4.3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.r_{1}=r_{2}=\tau_{1} *\left[\frac{(\mathrm{rms} \mathrm{p})^{2}+(\mathrm{rms} \mathrm{r}}{} \mathrm{r}^{2}\right)\right] \\
& r_{3}=\tau_{3} *(\mathrm{rms} \phi)^{2} \\
& r_{4}=r_{5}=\tau_{4} *\left(\operatorname{rms~} a_{y}\right)^{2} \\
& r_{6}=\tau_{6} *\left(\begin{array}{rl}
& \left.\mathrm{fms}_{t}\right)^{2}
\end{array}\right. \\
& r_{7}=\tau_{7} *(\mathrm{rms} \mathrm{v})^{2} \\
& \left.r_{8}=\tau_{8} *[r m s ~ v)^{2}+\left(r m s v_{o}\right)^{2}\right]
\end{aligned}
$$

and the rms values are the controlled responses assuming perfect state knowledge.

The correlation time constants τ_{1} to τ_{8} were varied to achieve reasonable eigenvalues for the state estimation error dynamics. The result turns out to be

$$
\begin{aligned}
r_{1}=r_{2} & =0.9387082 * 10^{-4}, \tau_{1}=1 \mathrm{sec} \\
r_{3} & =0.14625 * 10^{-5}, \tau_{3}=0.05 \mathrm{sec} \\
r_{4}= & r_{5}=0.1901376 * 10^{-4}, \tau_{4}=0.3 \mathrm{sec} \\
r_{6} & =0.1123035 * 10^{-5}, \tau_{6}=0.3 \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& r_{7}=0.1270288 * 10^{-2}, \tau_{7}=0.002 \mathrm{sec} \\
& r_{8}=0.33143 \quad, \quad \tau_{8}=0.2 \mathrm{sec} .
\end{aligned}
$$

The resulting eigenvalues of the controller and the estimator are given by

\[

\]

The measurement elimination procedure is now applied to the system model described above. Since the purpose of the Kalman filter in this case is to provide state estimates for the controller, the rms control error, which is described in equations (4.2.10) to (4.2.12), is used as the criterion of the elimination procedure. The acceptable percentage of the relative difference, which is described by equation (4.2.30), is chosen to be 10 percent for engineering purposes.

The results of the measurement elimination procedure can be described as follows. First, application of Step 1 through Step 5 of the elimination procedure will eliminate the measurement r and will recognize the measurements p, ϕ, a_{y}, f_{t}, and $v-v_{o}$ are potential candidates for further elimination. Step 3 through Step 5 of the procedure is then applied to those potential candidates which yield the elimination of the measurement $v-v_{o}$, which leaves p, ϕ, a_{y} and f_{t}. Again, these potential candidates are used for further elimination. This yields the elimination of p followed by a_{y} and f_{t}. The resulting measurement is given by

$$
\begin{equation*}
z^{T}=\left[\phi, a_{t y}, v\right] . \tag{4.3.9}
\end{equation*}
$$

This procedure resulted in 22 computations of Step 3 requiring approximately 90 cpu seconds on the CDC CYBER 73 sys tem.

V RESULTS AND DISCUSSION

V. 1 Results of Tail Force Reduction

As discussed before, the aircraft used for the tail force reduction is a small business jet flying at a constant altitude of 20,000 feet (6.1 km) and a nominal cruise speed of 450 knots ($231 \mathrm{~m} / \mathrm{s}$). This system model is described in more detail in Chapter I, Chapter IV, and Appendix D. Equations (4.3.1) through (4.3.5) give the system equations as well as the performance criterion. The measurement for state estimation described in equation (4.3.5) is given by

$$
\begin{equation*}
z^{T}=\left[\phi, a_{t y}, v\right] \tag{5.1.1}
\end{equation*}
$$

which results from the measurement elimination procedure discussed in the previous chapter.

The computations were carried out on a CDC Cyber 73 computer system using the program listed in Appendix F. Tables 1 and 2 give the resulting control gain and filter gain. The closed loop eigenvalues of the controller and the estimation eigenvalues are given in table 3.

TABLE 1. THE LATERAL FEEDBACK CONTROL GAIN

	p	r	v	ϕ
$\delta \mathrm{a}$	$.59479 \times 10^{-2}$.32849	$.97467 \times 10^{-3}$	-.10210
δr	$.54081 \times 10^{-1}$.64000	$.63828 \times 10^{-3}$.12039

	v_{o}	v_{x}	u_{y}	u_{y}
$\delta \mathrm{a}$	$-.12611 \times 10^{-2}$	$-.27779 \times 10^{-1}$	$-.41981 \times 10^{-1}$	$-.36929 \times 10^{-1}$
δr	$-.13524 \times 10^{-2}$	$.72326 \times 10^{-1}$	$-.17224 \times 10^{-1}$	$-.16450 \times 10^{-1}$

TABLE 2. THE FILTER GAIN

	ϕ	$a_{\text {ty }}$	V
p	-5.0915	-3.6635	-. 46825
r	. 50090	. 35463	$.75626 \times 10^{-1}$
v	-64.884	-11.320	-10.937
ϕ	-2.1789	-. 21271	-. 74704×10^{-1}
V_{0}	-129.33	-251.98	-18.459
v_{x}	. 14908	. 55355	$.23344 \times 10^{-1}$
u_{y}	$.42505 \times 10^{-1}$	-. 22464	$-.25350 \times 10^{-1}$
${ }^{w} y$	-. 22901	-. 65860	-. 41956×10^{-2}

TABLE 3. THE CLOSED LOOP EIGENVALUES OF CONTROLLER AND FILTER

Controller	Filter
$-.21709 \pm 2.8732 \mathrm{j}$	$-2.4759 \pm 1.0159 \mathrm{j}$
$-3.9502 \pm .33407 \mathrm{j}$	$-5.3053 \pm 7.5734 \mathrm{j}$
-1.0227	-12.094
-89.863	-90.001
-16.788	-16.731
-25.181	-25.516

In state estimation, obviously the best estimated state can be achieved when the measurement is equal to the state itself. However, since the wind states $v_{o}, v_{x}, u_{y}, w_{y}$ are difficult to measure, the case $z=x$ is not of interest in practice. However, in order to see the effect of the measurement, comparison between four cases: (1) $z=x$, (2) $z^{T}=\left[p, r, \phi, a_{t y}, a_{y}, f_{t}, v, v-v_{o}\right],(3) z^{T}=\left[\phi, a_{t y}, v\right]$, and (4) open loop, is of interest. The power spectral density of the measurement noise for the case $z=\mathbf{x}$ is assumed to be

$$
\begin{equation*}
R_{2}=\text { diagonal }\left[r_{1}, r_{2}, r_{3}, \ldots, r_{8}\right] \tag{5.1.2}
\end{equation*}
$$

where $r_{1}, r_{2}, r_{3}, r_{4}$ are for the variables p, r, v, ϕ and are assumed to have the same values as in the case $z^{T}=\left[p, r, \phi, a_{t y}, a_{y}, f_{t}, v, v-v_{0}\right]$. The remaining terms
r_{5}, r_{6}, r_{7}, and r_{8} are for the variables $v_{0}, v_{x}, u_{y}, w_{y}$ which are assumed to be of the form (choosing v_{o} as an example)

$$
\begin{equation*}
r_{5}=\tau *\left(\mathrm{rms} \mathrm{v}_{\mathrm{o}}\right)^{2} \tag{5.1.3}
\end{equation*}
$$

where the correlation time constant τ is chosen to be 0.2 for all cases. The resulting noise power spectral densities are given by

$$
\begin{aligned}
r_{1}=r_{2} & =.93871 \times 10^{-4} \\
r_{3} & =.12703 \times 10^{-2} \\
r_{4} & =.14625 \times 10^{-5} \\
r_{5} & =.20438 \\
r_{6} & =.30812 \times 10^{-4} \\
r_{7} & =.15158 \times 10^{-4} \\
r_{8} & =.15842 \times 10^{-4}
\end{aligned}
$$

The rms state for those four cases is presented in table 4 and the rms control and output is given in table 5.

TABLE 4. THE RMS VALUES OF AIRCRAFT AND WIND STATES

Cases	p	r	v	ϕ
1	$.17654 \times 10^{-1}$	$.21546 \times 10^{-2}$.92196	$.59229 \times 10^{-2}$
2	$.16461 \times 10^{-1}$	$.18770 \times 10^{-2}$.87406	$.60863 \times 10^{-2}$
3	$.16924 \times 10^{-1}$	$.19824 \times 10^{-2}$.89189	$.60645 \times 10^{-2}$
4	$.28081 \times 10^{-1}$	$.37140 \times 10^{-2}$	1.2102	$.12334 \times 10^{-1}$

Cases	v_{0}	v_{x}	u_{y}	w_{y}
1	1.0109	$.12413 \times 10^{-1}$	$.87058 \times 10^{-2}$	$.89001 \times 10^{-2}$
2	1.0109	$.12413 \times 10^{-1}$	$.87058 \times 10^{-2}$	$.89001 \times 10^{-2}$
3	1.0109	$.12413 \times 10^{-1}$	$.87058 \times 10^{-2}$	$.89001 \times 10^{-2}$
4	1.0109	$.12413 \times 10^{-1}$	$.87058 \times 10^{-2}$	$.89001 \times 10^{-2}$

TABLE 5. THE RMS VALUES OF CONTROL AND OUTPUT

Cases	δa	δr	a_{y}
1	$.12177 \times 10^{-2}$	$.66513 \times 10^{-3}$	$.77019 \times 10^{-2}$
2	$.13342 \times 10^{-2}$	$.71589 \times 10^{-3}$	$.82503 \times 10^{-2}$
3	$.12971 \times 10^{-2}$	$.69302 \times 10^{-3}$	$.81018 \times 10^{-2}$
4			$.12042 \times 10^{-1}$

Cases	r	f_{t}
1	$.13958 \times 10^{-1}$	$.23506 \times 10^{-2}$
2	$.11915 \times 10^{-1}$	$.22995 \times 10^{-2}$
3	$.12645 \times 10^{-1}$	$.23267 \times 10^{-2}$
4	$.17959 \times 10^{-1}$	$.33337 \times 10^{-2}$

From table 5 , the reduction of a_{y}, \dot{r}, and f_{t} with respect to the open loop can be calculated and is presented in table 6.

TABLE 6. THE OUTPUT REDUCTION ACCOMPLISHED WITH STATE ESTIMATION

	a_{y}	\dot{r}	f_{t}
1	36.04\%	22.28\%	29.49\%
2	32.49\%	33.65\%	31.02\%
3	32.72\%	29.59\%	30.21\%

It is also interesting to see the percentage change in the rms state, control, and output in relation to the case 1 where of $z=x$. It can be calculated from table 4 and 5 and is presented in table 7, 8. Due to the fact that the wind state variables, v_{o}, v_{X}, u_{Y}, and w_{y} are not controllable, the rms values of those state variables are not affected by the controller. The unchanged property of the wind state variables can be seen in table 4. Because of this property, only the aircraft state variables are presented in table 7.

TABLE 7. THE PERCENTAGE CHANGE IN THE RMS AIRCRAFT STATE IN RELATION TO THE CASE $z=x$

Cases	p	r	v	ϕ
2	-6.76%	-12.88%	-5.19%	-2.76%
3	-4.13%	-7.99%	-3.26%	-2.39%

TABLE 8. THE PERCENTAGE CHANGE IN THE RMS CONTROL AND OUTPUT IN RELATION TO THE CASE $z=x$

	$\delta \mathrm{a}$	$\delta \mathrm{r}$	a_{y}	$\dot{\mathrm{r}}$	f_{t}
2	9.57%	7.63%	7.12%	-14.64%	-2.17%
3	6.52%	4.19%	5.19%	-9.41%	-1.02%

As shown in table 6 that, with the measurement $z^{T}=[\phi$, $a_{t y}$, vl, a reduction of 30 percent in the open loop response of the aerodynamic tail forces appears to be feasible for the aircraft flying in turbulence. Also, a reduction of 30 percent of the open loop response in the side acceleration a_{y} and the yaw acceleration \dot{r} appear to be feasible in the case of $z^{T}=\left[\phi, a_{t y}, v\right]$. This shows that the aircraft ride performance is improved while reducing the tail loading.

It is evident that, for state estimation, the best filter can be achieved with the measurement $z=x$. However, from tables 7 and 8, the percentage change in the
rms responses of the state output, and control are within 15 percent of the case when $z=x$. The filter with measurement $z^{T}=\left[\phi, a_{t y}, v\right]$ is evidently feasible, and gives nearly optimal results.

V. 2 Discussion

It is pointed out in Chapter IV, that the correlation time factor τ of the power spectral density R_{2} is varied to achieve reasonable eigenvalues for the state estimation error dynamics. Nine cases were tested to determine appropriate values of τ. The values tested are listed in table 9.

TABLE 9. CASES TESTED FOR DIFFERENT VALUES OF THE CORRELATION TIME FACTOR τ IN R_{2}

	1	2	3	4	5	6	7	8	9
P, r	1.	1.	1.	1.	1.	1.	1.	. 1	. 1
ϕ	. 01	. 1	. 01	. 01	. 01	. 01	. 01	. 01	. 05
$a_{t y}, a_{y}$. 3	. 3	3.	. 3	. 3	. 3	. 3	. 3	. 3
f_{t}	. 3	. 3	. 3	. 3	. 3	. 3	. 3	. 3	. 3
v	. 2	. 2	. 2	. 4	. 02	. 02	. 002	. 002	. 002
$v-v_{0}$	2.	2.	2.	2.	2.	. 02	2 .	. 2	. 2

It is useful to see how the eigenvalues of the state estimation error dynamics, and the rms response of the state, control, and output change as τ changes. The eigenvalues are listed in table 10 for the nine cases.

TABLE 10. THE EIGENVALUES OF THE STATE ESTIMATION ERROR DYNAMICS FOR DIFFERENT VALUES OF τ IN R_{2}

Case 1	Case 2
$-1.1231 \pm .90455 j$	$-1.2169 \pm .70785 j$
$-5.4053 \pm 5.9140 j$	$-3.8116 \pm 3.3171 j$
-12.646	-11.863
-16.626	-16.649
-25.512	-25.488
-90.743	-90.743

Case 4	Case 5	Case 6
$-.98103 \pm .74612 \mathrm{j}$	$-1.8842 \pm 1.5805 \mathrm{j}$	$-1.8825 \pm 1.5801 \mathrm{j}$
$-5.4018 \pm 5.9019 \mathrm{j}$	$-5.4699 \pm 6.1216 \mathrm{j}$	$-5.4925 \pm 6.0562 \mathrm{j}$
-12.640	-12.740	-12.901
-16.626	-16.624	-16.609
-25.512	-25.513	-25.514
-90.743	-90.743	-90.711

Case 7	Case 8	Case 9
$-2.9015 \pm 2.1613 j$	$-2.9009 \pm 2.16217 j$	$-2.5493 \pm .97726 j$
$-6.0415 \pm 7.5074 j$	$-6.0631 \pm 7.4448 j$	$-5.6246 \pm 6.8560 j$
-13.484	-13.631	-13.259
-16.600	-16.580	-16.606
-25.523	-25.524	-25.502
-90.743	-90.711	-90.712

As shown in table 10, different eigenvalues are changed when different values of τ are changed. However, when the τ associated with the measurements p, r, and $v-v_{o}$ is changed, the eigenvalues do not change very much. Thus, it is predicted that the filter is not very sensitive to the elements of the R_{2} matrix corresponding to the measurements $p, r, v-v_{0}$.

The rms response of the aircraft state, the control, and the output for the nine cases is listed in table 11. Again, the reason that the rms wind state are not listed is because those states are uncontrolled and are not effected by the controller or filter. From table 11, it can be seen that the maximum percentage change in the state is 17 percent, 18 percent in the control, and 14 percent in the output. Since the accuracy of the estimated state depends on the measurement noise, the power spectral density R_{2} plays an important role in the state estimation. As the R_{2} matrix is not determined by real sensor tests, it is necessary to study the sensitivity of the R_{2} with respect to the rms responses. This sensitivity study will show the effect of the R_{2} matrix in this autopilot design.

TABLE 11. RMS RESPONSES OF THE AIRCRAFT STATE, THE CONTROL, AND THE OUTPUT FOR DIFFERENT VALUES OF τ IN R_{2}

mor case	p	r	v
1	$.17526 \times 10^{-1}$	$.20229 \times 10^{-2}$.93212
2	$.17958 \times 10^{-1}$	$.20987 \times 10^{-2}$.94845
3	$.18481 \times 10^{-1}$	$.22202 \times 10^{-2}$.96243
4	$.17724 \times 10^{-1}$	$.20424 \times 10^{-2}$.94871
5	$.16986 \times 10^{-1}$	$.19567 \times 10^{-2}$.89555
6	$.16943 \times 10^{-1}$	$.19457 \times 10^{-2}$.89364
7	$.16449 \times 10^{-1}$	$.18706 \times 10^{-2}$.87369
8	$.16417 \times 10^{-1}$	$.18612 \times 10^{-2}$.87204
9	$.16461 \times 10^{-1}$	$.18770 \times 10^{-2}$.87406

case $m_{\text {s }}$ or	ϕ	$\delta \mathrm{a}$	$\delta \mathrm{r}$
1	$.63770 \times 10^{-2}$	$.13800 \times 10^{-2}$	$.64370 \times 10^{-3}$
2	$.65659 \times 10^{-2}$	$.13650 \times 10^{-2}$	$.63387 \times 10^{-3}$
3	$.63347 \times 10^{-2}$	$.12930 \times 10^{-2}$	$.59499 \times 10^{-3}$
4	$.64844 \times 10^{-2}$	$.13977 \times 10^{-2}$	$.62330 \times 10^{-3}$
5	$.61143 \times 10^{-2}$	$.13412 \times 10^{-2}$	$.69037 \times 10^{-3}$
6	$.61184 \times 10^{-2}$	$.13451 \times 10^{-2}$	$.69239 \times 10^{-3}$
7	$.59645 \times 10^{-2}$	$.13316 \times 10^{-2}$	$.71811 \times 10^{-3}$
8	$.59706 \times 10^{-2}$	$.13352 \times 10^{-2}$	$.71970 \times 10^{-3}$
9	$.60863 \times 10^{-2}$	$.13342 \times 10^{-2}$	$.71589 \times 10^{-3}$

TABLE 11. RMS RESPONSES OF THE AIRCRAFT STATE, THE CONTROL, AND THE OUTPUT FOR DIFFERENT VALUES OF τ IN R_{2} (cont)

case insor $_{\text {of }}$	a_{y}	r	f_{t}
1	$.87087 \times 10^{-2}$	$.12128 \times 10^{-1}$	$.24385 \times 10^{-2}$
2	$.87952 \times 10^{-2}$	$.12210 \times 10^{-1}$	$.24955 \times 10^{-2}$
3	$.83987 \times 10^{-2}$	$.13636 \times 10^{-1}$	$.24677 \times 10^{-2}$
4	$.88696 \times 10^{-2}$	$.12147 \times 10^{-1}$	$.24691 \times 10^{-2}$
5	$.83231 \times 10^{-2}$	$.12065 \times 10^{-1}$	$.23558 \times 10^{-2}$
6	$.83398 \times 10^{-2}$	$.11981 \times 10^{-1}$	$.23538 \times 10^{-2}$
7	$.81437 \times 10^{-2}$	$.11932 \times 10^{-1}$	$.22879 \times 10^{-2}$
8	$.81613 \times 10^{-2}$	$.11853 \times 10^{-1}$	$.22867 \times 10^{-2}$
9	$.82503 \times 10^{-2}$	$.11915 \times 10^{-1}$	$.22995 \times 10^{-2}$

From table 11, it is expected that changes in the R_{2} matrix will not cause drastic changes in rms responses. However, since the change in τ for these nine cases is only a factor of 10 to 100 , this is not a sufficient evidence for complete insensitivity of the rms responses to all possible changes in the R_{2} matrix.

One reasonable way to study the sensitivity of the rms responses with respect to the R_{2} matrix is to set $R_{2}=0$ when the rms response is calculated. Since the state covariance X is the sum of the estimated state covariance X_{*} and the estimation error covariance P, which is shown in equation (2.4.29), the effect of R_{2} is through $X *$ and P.

If R_{2} is set to zero when the rms response is calculated, then R_{2} will not effect the calculation of the covariance properties. In this case, the only effect of R_{2} with respect to the rms response is through the filter which can not be avoided. However, when $R_{2}=0$, the filter is no longer optimal, and the expectation $E\left[x_{*} \widetilde{\mathbf{x}}^{T}\right]$ is no longer equal to zero. In this case, a 2 n'th order system is set up to calculate the rms reponse. The $2 n$ 'th order state equation is given by

$$
\left[\begin{array}{c}
\dot{\mathrm{x}} \tag{5.2.1}\\
\dot{\mathbf{x}}_{*}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{BK} \\
-G C_{2} & A+B K+G C_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{x}_{*}
\end{array}\right]+\left[\begin{array}{l}
\Gamma \\
0
\end{array}\right] \mathrm{w}
$$

where $\quad x$ is the actual state, x_{*} is the estimated state, w is the process noise.

The covariance matrix satisfies the usual Lyapunov equation for a linear system forced by white noise. The resulting rms response are listed in table 12.

TABLE 12. THE RMS RESPONSE CALCULATION WITH $R_{2}=0$

case	p	r	v
$\mathrm{z}=\mathrm{x}$	$.17143 \times 10^{-1}$	$.20821 \times 10^{-2}$.91620
$\mathrm{z}=8$ measurements	$.15943 \times 10^{-1}$	$.17893 \times 10^{-2}$.86647
$\mathrm{z}=3$ measurements	$.16336 \times 10^{-1}$	$.18865 \times 10^{-2}$.88355

TABLE 12. THE RMS RESPONSE CALCULATIONS WITH $R_{2}=0$ (cont)

case $r m s$	ϕ	δa	δr
$z=x$	$.57535 \times 10^{-2}$	$.10670 \times 10^{-2}$	$.51991 \times 10^{-3}$
$z=8$ measurements	$.59402 \times 10^{-2}$	$.12243 \times 10^{-2}$	$.60378 \times 10^{-3}$
$z=3$ measurements	$.59034 \times 10^{-2}$	$.11629 \times 10^{-2}$	$.56600 \times 10^{-3}$

case	a_{y}	\dot{r}	f_{t}
$z=x$	$.75261 \times 10^{-2}$	$.12749 \times 10^{-1}$	$.22571 \times 10^{-2}$
$z=8$ measurements	$.80792 \times 10^{-2}$	$.10727 \times 10^{-1}$	$.21945 \times 10^{-3}$
$z=3$ measurements	$.79136 \times 10^{-2}$	$.11358 \times 10^{-1}$	$.22148 \times 10^{-3}$

The percentage change for the case $R_{2}=0$ relative to the nominal R_{2} case and the open loop can be calculated from tables 4, 5, and 12. The results are listed in tables 13, 14 , and 15.

TABLE 13. THE RELATIVE R_{2} SENSITIVITY FOR $z=x$

	p $\%$	r $\%$	v $\%$	ϕ $\%$	$\delta \mathrm{a}$ $\%$	δr $\%$	a $\%$	\dot{r} $\%$	f_{t} $\%$
R_{2} Open loop	28.89	3.36	.62	2.86	12.38	21.83	2.28	8.66	3.98

TABLE 14. THE RELATIVE R2 SENSITIVITY FOR $z=8$ SENSORS

	p $\%$	r $\%$	v $\%$	ϕ $\%$	$\delta \mathrm{a}$ $\%$	$\delta \mathrm{r}$ $\%$	$\mathrm{a} y$ $\%$	\dot{r} $\%$	f_{t} $\%$
R_{2} Open loop	3.15	4.67	.87	2.40	8.24	15.66	2.07	9.97	4.57

TABLE 15. THE RELATIVE R_{2} SENSITIVITY FOR $z=3$ SENSORS

	p $\%$	r $\%$	v $\%$	ϕ $\%$	$\delta \mathrm{a}$ $\%$	$\delta \mathrm{r}$ $\%$	$\mathrm{a} y$ $\%$	$\dot{\mathrm{r}}$ $\%$	f_{t} $\%$
R_{2} Open loop	31.83	4.47	4.84	.93	2.66	10.35	18.33	2.32	10.18
4.81									

From tables 13,14 , and 15 , it can be seen that the effect of the zero R_{2} matrix is less than five percent in the rms aircraft state, is less than 11 percent in the rms output, and is less than 22 percent in the rms control. Again, since the wind states are uncontrollable, the R_{2} matrix will not effect them.

The effect of the measurement z in the control u can be better understood by examining the filter transfer function of z to u. From the filter implementation equation

$$
\begin{equation*}
\dot{\mathrm{x}}_{*}=\widetilde{\mathrm{A}}_{*} \mathrm{x}_{*}-\mathrm{Gz} \tag{5.2.2}
\end{equation*}
$$

and the optimal control law

$$
\begin{equation*}
\mathrm{u}=\mathrm{K} \mathrm{x}_{*}, \tag{5.2.3}
\end{equation*}
$$

the transfer function of z to u is given by

$$
\begin{align*}
T_{z u} & =\frac{L\{u(t)\}}{L\{z(t)\}} \\
& =K\left(\widetilde{A}_{*}-I s\right) G \tag{5.2.4}
\end{align*}
$$

The notation $L\{u(t)\}$ in equation (5.2.4) is the Laplace transformation of $u(t)$. If the eigenvalues of the matrix A* are distinct (as in this case) the transfer function, equation (5.2.4), can be represented as

$$
\begin{equation*}
T_{z u}=\sum_{i=1}^{n} H_{i} /\left(s-\lambda_{i}\right) \tag{5.2.5}
\end{equation*}
$$

where n is the order of the matrix $\widetilde{\mathrm{A}}_{*}, \lambda_{i}$ is the eigenvalue of $\widetilde{\mathrm{A}}_{*}$, and H_{i} is the matrix of residues of the transfer function associated with the eigenvalue λ_{i}.

Since the value of $H_{i} /\left(s-\lambda_{i}\right)$ is small at high frequency (which means the effect of z in u is small at high frequency), the following transfer function discussion is focussed on the case of low frequency (i.e., when s is small compared with λ_{i}) where the transfer function is approximately given by

$$
\begin{equation*}
T_{z u} \approx \sum_{i=1}^{n}\left(-\frac{1}{\lambda_{i}} H_{i}\right) \tag{5.2.6}
\end{equation*}
$$

The residues H_{i} of the transfer function $T_{z u}$ can be found as follows. Since the eigenvector matrix of $\widetilde{\mathrm{A}}_{*}$ diagonalizes the matrix $\widetilde{\mathrm{A}}_{*}$, equation (5.2.4) can be transformed to

$$
\begin{equation*}
\mathrm{T}_{\mathrm{zu}}=\mathrm{KE}\left(\mathrm{sI}-\mathrm{D}_{\mathrm{S}}\right)^{-1} \mathrm{E}^{-1} \mathrm{G}, \tag{5,2,7}
\end{equation*}
$$

where E is the eigenvector matrix and D_{S} is in the diagonal form.

The coefficient matrix H_{i} is obtained by multiplying the $i^{\text {th }}$ row of the $K E$ matrix and the $i^{\text {th }}$ column of the $E^{-1} G$ matrix. The resulting coefficient H_{i} / λ_{i} for the case $z^{T}=$ [$\left.\phi, a_{t y}, v\right]$ is listed as follows
for $\lambda_{1}=-89.860$

$$
-\frac{\mathrm{H}_{1}}{\lambda_{1}}=\left[\begin{array}{ccc}
-.3086 \times 10^{-5} & .4340 \times 10^{-4} & -.2882 \times 10^{-6} \\
.1603 \times 10^{-4} & -.2255 \times 10^{-3} & .1497 \times 10^{-5}
\end{array}\right]
$$

for $\lambda_{2}=-25.195$

$$
-\frac{\mathrm{H}_{2}}{\lambda_{2}}=\left[\begin{array}{lll}
-.4879 \times 10^{-3} & -.1204 \times 10^{-2} & .4554 \times 10^{-5} \\
-3.175 \times 10^{-3} & -.7833 \times 10^{-3} & .2964 \times 10^{-5}
\end{array}\right]
$$

for $\lambda_{3}, \lambda_{4}=-7.2636 \pm 7.4072 j$

$$
\begin{array}{r}
-\frac{\mathrm{H}_{3,4}}{\lambda_{3,4}}=\left[\begin{array}{lll}
-.3401 \times 10^{-1} & .6401 \times 10^{-2} & -.5871 \times 10^{-2} \\
-.2977 \times 10^{-1} & .2677 \times 10^{-2} & -.4912 \times 10^{-2}
\end{array}\right] \\
\quad \pm j
\end{array}\left[\begin{array}{lll}
-.1463 \times 10^{-1} & -.1573 \times 10^{-1} & -.1082 \times 10^{-2} \\
-.6426 \times 10^{-2} & -.1372 \times 10^{-1} & .5616 \times 10^{-4}
\end{array}\right]
$$

$$
\text { for } \lambda_{5}, \lambda_{6}=-3.7736 \pm 3.3764 j
$$

$$
\begin{array}{r}
-\frac{H_{5,6}}{\lambda_{5,6}}=\left[\begin{array}{lll}
-.1819 \times 10^{-1} & -.1197 \times 10^{-1} & -.3984 \times 10^{-3} \\
.5474 \times 10^{-1} & -.2222 \times 10^{-1} & -.5171 \times 10^{-3}
\end{array}\right] \\
\quad \pm j \quad\left[\begin{array}{lll}
.2225 \times 10^{-1} & -.4452 \times 10^{-2} & -.2637 \times 10^{-3} \\
.7153 \times 10^{-1} & .3329 \times 10^{-1} & -.1406 \times 10^{-2}
\end{array}\right]
\end{array}
$$

for $\lambda_{7}=-7.4058$

$$
-\frac{\mathrm{H}_{7}}{\lambda_{7}}=\left[\begin{array}{lll}
-.1448 \times 10^{-1} & -.3912 \times 10^{-1} & .9875 \times 10^{-3} \\
-.1497 \times 10^{-1} & -.4044 \times 10^{-1} & .1021 \times 10^{-2}
\end{array}\right]
$$

for $\lambda_{8}=-16.784$

$$
-\frac{H_{8}}{\lambda_{8}}=\left[\begin{array}{ccc}
.5710 \times 10^{-3} & .2887 \times 10^{-3} & -.1373 \times 10^{-4} \\
.1785 \times 10^{-3} & .9023 \times 10^{-4} & -.4292 \times 10^{-5}
\end{array}\right]
$$

To determine any weakly observable modes of the system, Equation (5.2.2) is transformed into

$$
\begin{equation*}
\dot{y}=D_{S} y-E^{-1} G z \tag{5.2.8}
\end{equation*}
$$

where

$$
y=E^{-1} x_{*}
$$

The transfer function of z to y is given by

$$
\begin{equation*}
T_{z y}=\left(D_{s}-I s\right)^{-1} E^{-1} G \tag{5.2.9}
\end{equation*}
$$

From equation (5.2.9), if $i^{\text {th }}$ row of the matrix $E^{-1} G$ is small compared with the rest of the rows, the measurement z weakly effects the mode Y_{i}, which means Y_{i} is weakly observable. The matrix $\mathrm{E}^{-1} \mathrm{G}$ in equation (5.2.12) is given by

$$
\mathrm{E}^{-1} \mathrm{G}=\left[\begin{array}{lll}
.14535 & -2.0440 & .13574 \times 10^{-1} \\
.32685 & .80641 & -.30512 \times 10^{-2} \\
-162.95 & -11.784 & -24.819 \\
-22.456 & 74.552 & -9.3690 \\
75.970 & -83.853 & -.96848 \times 10^{-1} \\
-225.34 & -64.318 & 3.9530 \\
58.064 & 156.81 & -3.9586 \\
.28530 & .14424 & -.68614 \times 10^{-2}
\end{array}\right]
$$

From the matrix $E^{-1} G$, it can be seen that the wind state modes associate with eigenvalues

$$
\begin{aligned}
& \lambda_{1}=-89.860 \\
& \lambda_{2}=-25.195 \\
& \lambda_{8}=-16.784
\end{aligned}
$$

are weakly observable. However, it is found that the coefficients H_{i} / λ_{i} corresponding to those wind state modes are relatively small in magnitude. This result shows that the weakly observable modes have a small effect on the control and hence will play a minor roll in the effectiveness of the control design.

VI CONCLUSIONS

The capability of a linear quadratic regulator for the reduction of aerodynamic tail forces was investigated. The results indicate a 30 percent reduction of the tail force is feasible while maintaining acceptable performance of the aircraft lateral motion. The number of measurements required for state estimation can be reduced to three by the application of the procedure described in Chapter IV. The results also indicate that the tail force reduction is about the same with all eight feasible measurements and with the three measurements resulting from the elimination procedure. However, the elimination of the five measurements will significantly reduce the cost of the resulting control system.

The sensitivity of the system to changes in the noise power spectral density, R_{2}, of the measurements was also investigated. The results show that the estimated state and output are relatively insensitive to R_{2}.

The study of the filter transfer function of z to u indicates that weakly-observable wind state modes will not drastically effect the controller. This result is expected since the wind state modes have large negative real eigenvalues causing the modes to be damped out faster.

Realistically, the system model is not known precisely. Future research on this project should be directed toward studying the sensitivity of the control system to modeling errors.

It is discussed in Chapter II that the solutions of the control and the filter problems are mainly dependent on the solution of the Riccati equation. However, concerning the numerical conditioning of the Riccati equation, almost no analytical results are known. The conditioning of the Riccati equation is also an important subject for future research.

1. Wei, S.Y., Optimal Control of the Gate-Learjet Model 35 for Reduction of Tail Forces, Master Project Report, Mechanical Engineering Dept. Oregon State Univ., Corvallis, OR, June, 1977.
2. Åström, K.J., Introduction to Stochastic Control Theory, N.Y. and London, Acadamic Press, 1970, Chpt. 8.
3. Flïgge-Lotz, I. and Halkin, H., Pontryagin's Maximum Principle and Optimal Control, Stanford Univ., Stanford, CA, Tech. Rept. 130 (1961).
4. Sage, A.P. and Melsa, J.L., System Identification, N.Y., Acadamic Press, 1971, Chpt. 3.
5. Bryson, A.E. and Ho, Y.-C., Applied Optimal Control, Blaisdell, 1969, Chpt. 12.
6. Gelb, A., Applied Optimal Estimation, The M.I.T. Press, 1974, Chpt. 4.
7. Bryson, A.E. and Ho, Y.-C., op. cit. Chpt. 11 and 14.
8. Kalman, R.E., "Contributions to the Theory of Optimal Control," Bol. de Soc. Math. Mexicana, v. 5, 1960, pp. 102-119.
9. Rutherford, D.E. (1932), cited in Bellman, Introduction to Matrix Analysis, McGraw-Hill, pp. 283.
10. Wonham, W.M., "Random Differential Equations in Control Theory," In Probabilistic Methods in Applied Mathematics. Edited by A.T. Bharucha-Reid, Vol 2, Acadamic Press, N.Y. and London, 1970.
11. MacFarlane, A.G.J., "An Eigenvector Solution to the Optimal Regulator Problem," J. Electronics and Control, v. 14, June 1963, pp. 643-654.
12. Potter, J.E., "Matrix Quadratic Solution," SIAM J. Appl. Math., V. 14, May 1966, pp. 496-501.
13. Repperger, D.W., "A Factorization Solution of the Steady State Matrix Riccati Equation," Proc. 1978 JACC, Oct 18-20, Philadelphia, PA. 1978, V4. pp. 201-213.
14. Holley, W.E. and Wei, S.Y., "An Improvement in the MacFarlane-Potter Method for Solving the Algebraic Riccati Equation," Proc. 1979 JACC, Denver, Colorado, June 1979, pp. 921-923.
15. Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965, Chpt. 8.
16. Wilkinson, J.H. and Reinsch, C., Linear Algebra, Handbook for Automatic Computation, Vol. II, Springer-Verlag, N.Y., Heidelberg, Berlin, 1971, pp. 359-371.
17. Hohn, F.E., Elementary Matrix Algebra, 2nd Edition, The MacMillan Company, N.Y., 1964, p. 225.
18. Householder, A.S., "Unitary Triangularization of a Non-Symmetric Matrix," J. Assoc. Comput. Mach., 5, 1958, pp. 339-342.
19. Francis, J.C.F., "The QR Transformation - A Unitary Analogue to the LR Transformation," Comput. J., 4, (1961/62) pp. 265-271 and 332-345.
20. Bartels, R.H. and Stewart, G.W., "Algorithm 432 Solution of the Matrix Equation $A X+X B=C "$, COMM ACM, Vol. 15, No. 9, 1972 pp. 820-826.
21. Wilkinson, J.H., (1965) op. cit., Chpt. 3 .
22. Park, G.D., Private Communication.
23. Holley, W.E. and Bryson, A.E., "Wind Modeling and Lateral Control for Automatic Landing," AIAA J. of Spacecraft and Rockets, V. 14 (1977), pp. 65-72.
24. Holley, W.E. and Wei, S.Y., "Control Design for ReducReduction of Aerodynamic Tail Forces Using Quadratic Synthesis," Proc. 1979 Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove, CA, November, 1979.
25. Kayton, M. and Fried, W., Avionics Navigation Systems, John Wiley ε Son, Inc., N.Y. and London, 1969.
26. Bryson, A.E. and Ho, Y.-C., op. cit., Chpt. 5.

REFERENCES (cont)

27. Wonham, W.M., "On a Matrix Riccati Equation of Stochastic Control," SIAM J. Control, Vol. 6, No. 4, 1968, pp.681-697.
28. Schur, I. (1909) cited in Bellman R., Introduction to Matrix Analysis, McGraw-Hill, 1960, p. 219.
29. Kwakernaak H. and Sivan R., Linear Optimal Control Systems, Wiley - Interscience, New York, 1972, p. 100-103.

APPENDICES

APPENDIX A-1

The Solution of the Linear Quadratic Regulator Problem

Lemma A. 1

The problem,

$$
\begin{equation*}
\operatorname{Min}_{u} J=t_{f}^{\lim } \frac{1}{2} \int_{t_{O}}^{t_{f}}\left(y^{T} Q_{1} y+u^{T} R_{1} u\right) d t \tag{A.1.1}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \dot{x}=A x+B u \\
& y=C_{1} x+D u \tag{A.1.3}
\end{align*}
$$

$$
\text { (A. } 1.2 \text {) }
$$

is equivalent to (1)(2) the problem,

$$
\operatorname{Min}_{u_{*}} J=\lim _{t_{f}}^{\lim } \frac{1}{2} \int_{t_{\mathrm{O}}}^{t_{f}}\left(x^{T} Q_{*} x+u_{*}^{T} R_{*} u_{*}\right) d t
$$

subject to

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{A}_{*} \mathrm{x}+\mathrm{Bu}_{*} \tag{A.1.5}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{R}_{*}=\mathrm{D}_{1}^{\mathrm{T}} \mathrm{Q}_{1} \mathrm{D}_{1}+\mathrm{R}_{1} \tag{A.1.6}\\
& \mathrm{C}_{*}=-\mathrm{R}_{*}^{-1} \mathrm{D}_{1}^{T} \mathrm{Q}_{1} C_{1} \tag{A.1.7}
\end{align*}
$$

$$
\begin{align*}
& A_{*}=A+B C_{*} \tag{A.1.8}\\
& Q_{*}=C_{1}^{T} Q_{1} C_{1}-C_{*}^{T} R_{*} C_{*} \tag{A.1.9}
\end{align*}
$$

and

$$
\begin{equation*}
u_{*}=u-c_{*} x \tag{A.1.10}
\end{equation*}
$$

Proof:

The integrand of the performance criteria (A.1.1) can be expressed in terms of x. Using the output equation (A.1.3), the integrand is given by

$$
\begin{align*}
& Y^{T} Q_{1} Y+u^{T} R_{1} u \\
& =\left(C_{1} x+D_{1} u\right)^{T} Q_{1}\left(C_{1} x+D_{1} u\right)+u^{T} R_{1} u \\
& = \\
& x^{T} C_{1}^{T} Q_{1} C_{1} x+u^{T} D_{1} Q_{1} C_{1} x+x^{T} C_{1}^{T} Q_{1} D_{1} u \tag{A.1.11}\\
& \\
& +u^{T}\left(D_{1}^{T} Q_{1} D_{1}+R_{1}\right) u
\end{align*}
$$

Let

$$
\begin{align*}
& \mathrm{R}_{*}=\mathrm{D}_{1}^{\mathrm{T}} Q_{1} \mathrm{D}_{1}+\mathrm{R}_{1} \tag{A.1.12}\\
& \mathrm{C}_{*}=-\mathrm{R}_{*}^{-1} \mathrm{D}_{1}^{\mathrm{T}} Q_{1} \mathrm{C}_{1} \tag{A.1.13}\\
& \mathrm{u}_{*}=\mathrm{u}-\mathrm{C}_{*} \mathrm{x} \tag{A.1.14}\\
& Q_{*}=\mathrm{C}_{1}{ }^{T} Q_{1} \mathrm{C}-\mathrm{C}_{*}^{T} \mathrm{R}_{*} \mathrm{C}_{*} \tag{A.1.15}
\end{align*}
$$

Rearranging equation (A.1.11) results in

$$
Y^{T} Q_{1} Y+u^{T} R_{1} u=x^{T} Q_{*} x+u_{*}^{T} R_{*} u_{*} \quad \text { (A. 1.16) }
$$

Combining equation (A.1.14) and A.1.2), the system equation is given by

$$
\begin{align*}
\dot{x} & =A x+B u \\
& =A x+B u_{*}+B C_{*} x \\
& =\left(A+B C_{*}\right) x+B u_{*} \\
& =A A^{x}+B u_{*} \tag{A.1.17}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{A}_{*}=\mathrm{A}+\mathrm{B} \mathrm{C}_{*} \tag{A.1.18}\\
& \\
& \quad \text { Q.E.D. }
\end{align*}
$$

Lemma A. 2

The solution of the problem

$$
\begin{equation*}
\operatorname{Min}_{u_{*}}^{\operatorname{Min}}=\lim _{t_{f} \rightarrow \infty} \frac{1}{2} \int_{t_{o}}^{t_{f}}\left(x^{T} Q_{*} x+u_{*}^{\left.T R_{*} u_{*}\right) d t}\right. \tag{A.1.19}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{A}_{*} \mathrm{x}+\mathrm{Bu}_{*} \tag{A.1.20}
\end{equation*}
$$

is given by

$$
\begin{equation*}
u_{*}=-\mathrm{R}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{~S} \mathrm{x} \tag{A.1.21}
\end{equation*}
$$

where S satisfies the algebraic Riccati equation

$$
\begin{equation*}
0=-S A_{*}-A_{*}^{T} S+\mathrm{SBR}_{*}^{-1} \mathrm{~B}^{T} \mathrm{~S}-Q_{*} \tag{A.1.22}
\end{equation*}
$$

Proof:
Using the Pontryagin's maximum principle ${ }^{(3)}$, the Hamiltonian of the given system is

$$
H=\frac{1}{2}\left(x^{T} Q_{*} x+u_{*}^{T} R_{*} u_{*}\right)+\lambda^{T}\left(A_{*} x+B u_{*}\right)
$$

where

$$
\lambda \text { is the adjoint variable. }
$$

The necessary conditions for optimal trajectory are

$$
\begin{align*}
& \frac{\partial H}{\partial x}=-\dot{\lambda}=Q_{*} x+A_{*}^{T} \lambda ; \lambda\left(t_{f}\right)=0 \tag{A.1.23}\\
& \frac{\partial H}{\partial u_{*}}=0=R_{*} u_{*}+B^{T} \lambda . \tag{A.1.24}
\end{align*}
$$

From equation (A.1.24), the optimal control is defined as

$$
\begin{equation*}
\mathrm{u}_{*}=-\mathrm{R}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \lambda \tag{A.1.25}
\end{equation*}
$$

Substituting equation (A.1.25) into (A.1.20) and combining (A.1.20), (A.1.23), the Euler-Lagrange system is given by

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{\lambda}
\end{array}\right]=\left[\begin{array}{ll}
A_{*} & -B R_{*}^{-1} B^{T} \\
-Q_{*} & -A_{*}^{T}
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] \quad \begin{aligned}
& \quad \begin{array}{l}
x\left(t_{o}\right) \text { is given } \\
\lambda\left(t_{f}\right)=0
\end{array} \quad(A \cdot 1.26)
\end{aligned}
$$

which is a two point boundary value problem.

For state feedback, assume λ has the following form

$$
\lambda=s x
$$

Substituting the above equation into (A.1.23) results

$$
\begin{aligned}
\dot{\lambda} & =\dot{S} x+S \dot{x} \\
& =-A_{*}^{T} S x-Q_{*} x
\end{aligned}
$$

Rearrange the above equation and substitute the equation (A.1.20) for x. The following equation results:

$$
\left(\stackrel{S}{\mathrm{~S}}+\mathrm{SA}_{*}+\mathrm{A}_{*}^{\mathrm{T}} \mathrm{~S}-\mathrm{SB}_{\mathrm{R}_{*}^{-1}} \mathrm{~B}^{\mathrm{T}} \mathrm{~S}+\mathrm{Q}_{*}\right) \mathrm{x}=0 .
$$

Since x can not be identically zero, the quantity inside the parenthesis has to be zero, i.e.,

$$
\dot{\mathrm{S}}=-\mathrm{SA} *-\mathrm{A}_{*}^{\mathrm{T}} \mathrm{~S}+\mathrm{SBR}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{~S}-\mathrm{Q}_{*}
$$

It is discussed by Bryson and Ho ${ }^{(26)}$ that, for a stationary system, i.e., A, B are constant matrices, and Q_{*}, R_{*} are constant matrices, it is possible that a steady state, finite solution exists when $t_{f}-t_{o} \rightarrow \infty$

$$
\dot{S}=0=-\mathrm{SA}_{*}-\mathrm{A}_{*}^{T} \mathrm{~S}+\mathrm{SB} \mathrm{R}^{-1} \mathrm{~B}^{T} \mathrm{~S}-\mathrm{Q}_{*}
$$

In this case, the optimal control law is given by

$$
u_{*}=-R_{*}^{-1} B^{T} S x
$$

where S satisfies the above steady state Riccati equation.
Q.E.D.

From Lemma A. 1 and Lemma A.2, the solution of the problem defined by equations (A.1.1), (A.1.2), and (A.1.3) is gven by

$$
\begin{align*}
u & =u_{*}+C_{*} x \\
& =\left(C_{*}-R_{*}^{-1} B^{T} S\right) x \tag{A.1.27}
\end{align*}
$$

where S satisfies the algebraic Riccati equation

$$
\begin{equation*}
0=-S A_{*}-A_{*}^{T} S+S B R_{*}^{-1} B^{T} S-Q_{*} . \tag{A.1.28}
\end{equation*}
$$

APPENDIX A-2

The Solution of the Stationary Kalman Filter Problem

To solve the stationary Kalman filter defined in Section II.3, one approach ${ }^{(16)}$ is to convert the problem into one with no correlation between noise in the process and in the measurement. To do this, add zero to the rightside of equation (2.3.1), in the form

$$
\dot{x}=A x+B u+\Gamma w+L\left(z-C_{2} x-D_{2} u-v-O w\right)
$$

$$
=\left(A-L C_{2}\right) x+\left(B-L D_{2}\right) u+L z+\Gamma w_{*}
$$

where $\quad L=\Gamma Q_{2} \Theta^{T}\left(\Theta Q_{2} \Theta^{T}+R_{2}\right)^{-1}$. The filtering problem now under consideration is

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{A}_{* *} \mathrm{x}+\mathrm{B}_{*} u+\mathrm{Lz}+\Gamma \mathrm{w}_{*} \tag{A.2.1}
\end{equation*}
$$

$$
\begin{equation*}
z=C_{2} x+D_{2} u+v_{*} \tag{A.2.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{A}_{* *}=\mathrm{A}-\mathrm{LC} C_{2} \tag{A.2.3}\\
& \mathrm{~B}_{*}=\mathrm{B}-\mathrm{LD} \tag{A.2.4}\\
& 2 \tag{A.2.5}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{R}_{2 *}=\theta \mathrm{Q}_{2} \theta^{T}+\mathrm{R}_{2} \tag{A.2.6}\\
& \mathrm{w}_{*}=\mathrm{w}-Q_{2} \theta^{\mathrm{T}} \mathrm{R}_{2 *}{ }^{-1} \theta \mathrm{w}-Q_{2} \Theta^{T} \mathrm{R}_{2 *}{ }^{-1} \nu \quad(\text { A.2.7) } \\
& \nu_{*}=\nu+\theta_{\mathrm{w}} \tag{A.2.8}\\
& Q_{2 *}=Q_{2}-Q_{2} \theta^{T} R_{2 *}^{-1} \theta Q_{2} \tag{A.2.9}
\end{align*}
$$

With the assumption that $w(t)$ and $v(t)$ are uncorrelated, it is not difficult to show that $w_{*}(t)$ and $\nu_{*}(t)$ are also uncorrelated. The power spectral densities of w_{*} and ν_{*} can be found as follows. The power spectral density of v_{*} is given by

$$
\begin{aligned}
F\left[\nu_{*}(t+\tau) \nu_{*}^{T}(t)\right]= & F\left[\nu(t+\tau) \nu^{T}(t)\right]+F\left[\nu(t+\tau) w^{T}(t) \Theta^{T}\right] \\
& +F\left[\theta w(t+\tau) \quad \nu^{T}(t)\right] \\
& +F\left[\theta w(t+\tau) w^{T}(t) \Theta^{T}\right] .
\end{aligned}
$$

where the operator F is defined as the Fourier transform of the expected value.

Since v and w are uncorrelated, the above expression is given by

$$
\begin{aligned}
F\left[\nu_{*}(t+\tau) \nu_{*}^{T}(t)\right] & =F\left[\nu(t+\tau) \nu^{T}(t)\right]+\theta\left\{F\left[w(t+\tau) w^{T}(t)\right]\right\} \theta^{T} \\
& =R_{2}+\theta Q_{2} \theta^{T} \\
& =R_{2} *
\end{aligned}
$$

Since

$$
w_{*}=w-Q_{2} \Theta^{T} R_{2} *^{-1}(\theta w+\nu)
$$

the same procedure results in

$$
\begin{aligned}
F\left[w_{*}(t+\tau) w_{*}^{T}(t)\right] & =Q_{2}-Q_{2} \Theta^{T} R_{2}{ }^{-1} \Theta Q_{2} \\
& =Q_{2} * .
\end{aligned}
$$

It is discussed by Sage and Melsa (4) (1972) that the above Kalman filter problem can be formulated in the following lemma.

Lemma A. 3

The Kalman filter problem can be formulated as
$\underset{w_{*}, v_{*}}{\operatorname{Min}} J=E\left\{\underset{t_{O}^{\rightarrow-\infty}}{\lim } \frac{1}{2} \int_{t_{o}}^{t_{f}}\left(w_{*}^{T} Q_{2 *}^{-1} w_{*}+\nu_{*}^{T} R_{2}{ }^{-1} \nu_{*}\right) d t\right\}(A .2 .10)$
subject to

$$
\begin{align*}
& \dot{x}=A_{* *} \mathrm{x}+\mathrm{B}_{*} \mathrm{u}+\mathrm{Lz}+\Gamma \mathrm{w}_{*} \tag{A.2.11}\\
& \mathrm{z}=\mathrm{C}_{2} \mathrm{x}+\mathrm{D}_{2} \mathrm{u}+\nu_{*} \tag{A.2.12}
\end{align*}
$$

where the power spectral densities of w_{*} and ν_{*} are given by $Q_{2 *}$ and $R_{2 *}$ respectively and matrices $A_{* * r} B_{* r} L, w_{* r} \nu_{*}$ are defined in equations (A.2.3) through (A.2.9).

The solution is given by:

$$
\begin{equation*}
\dot{\mathrm{x}}_{*}=\mathrm{A}_{* *} \mathrm{x}_{*}+\mathrm{B}_{*} \mathrm{u}+\mathrm{G}_{*}\left[-\mathrm{z}+\mathrm{D}_{2} \mathrm{u}+\mathrm{C}_{2} \mathrm{x}_{*}\right]+\mathrm{Lz} \tag{A.2.13}
\end{equation*}
$$

where the estimated state is x_{*}.

The filter gain G_{*} is

$$
\begin{equation*}
G_{*}=-P C_{2}^{T} R_{2 *}^{-1} \tag{A.2.14}
\end{equation*}
$$

where P satisfies the algebraic Riccati equation

$$
\begin{equation*}
0=A_{* *} P+P A_{* *}^{T}-\mathrm{PC}_{2}^{T} \mathrm{R}_{2 *}{ }^{-1} \mathrm{C}_{2} \mathrm{P}+\Gamma \mathrm{Q}_{2 *} \Gamma^{\mathrm{T}} \tag{A.2.15}
\end{equation*}
$$

Proof:

Using the maximum principle ${ }^{(3)}$, the Hamiltonian of the system is

$$
\begin{aligned}
\mathrm{H}= & \frac{1}{2}\left[\mathrm{w}_{*}^{\mathrm{T}} \mathrm{Q}_{2 *}{ }^{-1} \mathrm{w}_{*}+\nu_{*}^{\mathrm{T}} \mathrm{R}_{2 *}{ }^{-1} \nu_{*}\right]+\lambda^{\mathrm{T}}\left[\mathrm{~A}_{* *} \mathrm{x}+\mathrm{B}_{*} \mathrm{u}\right. \\
& \left.+\Gamma \mathrm{w}_{*}+\mathrm{Lz}\right]
\end{aligned}
$$

where λ is the adjoint variable.

The necessary conditions for the optimal solution are

$$
\begin{align*}
& \frac{\partial H}{\partial x}=- \dot{\lambda}= \\
& C_{2}{ }^{T} R_{2 *}{ }^{-1} C_{2} x+A_{* *} T_{\lambda}+C_{2}{ }^{T} R_{2 *}{ }^{-1} D_{2} u \\
&-C_{2}{ }^{T} R_{2 *}{ }^{-1} z ; \lambda\left(t_{f}\right)=0 \tag{A.2.16}\\
& \frac{\partial H}{\partial W_{*}}= 0=-Q_{2 *} \Gamma^{T} \lambda
\end{align*}
$$

Subject to

$$
\begin{aligned}
& \dot{\mathrm{x}}=\mathrm{A}_{* *} \mathrm{x}+\mathrm{B}_{*} \mathrm{u}+\mathrm{Lz}+\Gamma \mathrm{w}_{*} \\
& \mathrm{z}=\mathrm{C}_{2} \mathrm{x}+\mathrm{D}_{2} \mathrm{u}+v_{*} .
\end{aligned}
$$

Combining the above equations, the Euler-Lagrange system is given by

$$
\left[\begin{array}{r}
\dot{x} \\
-\dot{\lambda}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{A}_{* *} & & \Gamma \mathrm{Q}_{2 *} \Gamma^{T} \\
\mathrm{C}_{2} \mathrm{~T}_{\mathrm{R}_{2 *}-1} \mathrm{C}_{2} & - \text {-A }_{* *} \mathrm{~T}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\lambda
\end{array}\right]+\left[\begin{array}{llll}
\mathrm{B}_{*} & \mathrm{~L} & \\
\mathrm{C}_{2} & \mathrm{R}_{2 *}{ }^{-1} \mathrm{D}_{2} & \mathrm{C}_{2} \mathrm{~T}_{\mathrm{R}_{2 *}}-1
\end{array}\right]\left[\begin{array}{l}
\mathrm{u} \\
\mathrm{z}
\end{array}\right]
$$

For the filter, assume λ has the following form

$$
\begin{equation*}
\lambda=-\mathrm{P}^{-1}\left(\mathrm{x}-\mathrm{x}_{*}\right) \tag{A.2.17}
\end{equation*}
$$

where x_{*} is the estimated state with a priori estimate of the state $x *_{o}$.

Differentiating equation (A.2.17) and combining with equations (A.2.16), the resulting equation turns out to be
$\left(-\dot{P}^{-1}-P^{-1} A_{* *}-P^{-1} \Gamma Q_{2 *} \Gamma^{T} P^{-1}+C^{T} R_{2 *}^{-1} C_{2}-A_{* *}^{T} P^{-1}\right)$
$\mathrm{x}+\left\{\left(\dot{P}^{-1}+\mathrm{P}^{-1} \Gamma \mathrm{Q}_{2} \Gamma^{T} \mathrm{P}^{-1}+\mathrm{A}_{* *} \mathrm{P}^{-1}\right) \mathrm{x}_{*}+\mathrm{P}^{-1} \mathrm{x}_{*}\right.$
$\left.-P^{-1} B_{*} u-P^{-1} L z+C_{2}^{T} R_{2 *}{ }^{-1} D_{2} u-C_{2}^{T} R_{2 *}^{-1} z\right\}=0$

Setting the coefficient of the x term to zero, the following equation results after some matrix manipulation

$$
\begin{aligned}
& \dot{\mathrm{P}}=\mathrm{A}_{* *} \mathrm{P}+\mathrm{PA}_{* *} \mathrm{~T}-\mathrm{PC}_{2} \mathrm{~T}_{2 *}{ }^{-1} \mathrm{C}_{2} \mathrm{P}+\Gamma \mathrm{Q}_{2 *} \Gamma^{\mathrm{T}} \\
& \dot{\mathrm{x}}_{*}=\mathrm{A}_{* *} \mathrm{x}_{*}+\mathrm{B}_{*} \mathrm{u}-\mathrm{PC}_{2} \mathrm{~T}_{2}{ }^{-1}\left[-\mathrm{z}+\mathrm{D}_{2} \mathrm{u}+\mathrm{C}_{2} \mathrm{x}_{*}\right]+\mathrm{Lz}
\end{aligned}
$$

For the stationary case, $\dot{P} \rightarrow 0$, and the solution is

$$
\stackrel{\dot{x}}{*}=A_{* *} \mathrm{x}_{*}+\mathrm{B}_{*} \mathrm{u}+\mathrm{G}_{*}\left[-\mathrm{z}+\mathrm{D}_{2} \mathrm{u}+\mathrm{C}_{2} \mathrm{x}_{*}\right]+\mathrm{Lz}
$$

The filter gain G_{*} is

$$
G_{*}=-\mathrm{PC}_{2} \mathrm{~T}_{\mathrm{R}_{2}}-1
$$

where

$$
\begin{gathered}
0=\mathrm{A}_{* *} \mathrm{P}+\mathrm{PA}_{* *}^{\mathrm{T}}-\mathrm{PC}_{2}{ }^{\mathrm{T}} \mathrm{R}_{2 *}{ }^{-1} \mathrm{C}_{2} \mathrm{P}+\Gamma \mathrm{Q}_{2 *} \Gamma^{\mathrm{T}} \\
-
\end{gathered}
$$

From Lemma A. 3 and equations (A.2.1) to (A.2.9), the solustion of the stationary Kalman filter problem defined in Section II. 3 is given by

$$
\dot{\mathrm{x}}_{*}=A \mathrm{x}_{*}+\mathrm{Bu}+\mathrm{G}\left[-\mathrm{z}+\mathrm{D}_{2} \mathrm{u}+\mathrm{C}_{2} \mathrm{x}_{*}\right]
$$

where

$$
\begin{aligned}
\mathrm{G} & =\mathrm{G}_{*}-\mathrm{L} \\
& =-\mathrm{PC}_{2}{ }^{\mathrm{T}} \mathrm{R}_{2} *^{-1}-\Gamma \mathrm{Q}_{2} \Theta^{\mathrm{T}} \mathrm{R}_{2} *
\end{aligned}
$$

and

$$
0=\mathrm{A}_{* *} \mathrm{P}+\mathrm{PA}_{* *} \mathrm{~T}^{\mathrm{T}}+\Gamma \mathrm{Q}_{2} \Gamma^{\mathrm{T}}-\mathrm{PC}_{2} \mathrm{~T}_{2 *}{ }^{-1} \mathrm{C}_{2} \mathrm{P}
$$

with

$$
\begin{aligned}
\mathrm{R}_{2 *} & =\mathrm{R}_{2}+\theta \mathrm{Q}_{2} \theta^{T} \\
\mathrm{~A}_{* *} & =\mathrm{A}-\mathrm{LC} C_{2} \\
& =A-\Gamma Q_{2} \Theta^{T} R_{2} *^{-1} C_{2}
\end{aligned}
$$

$$
Q_{2 *}=Q_{2}-Q_{2} \Theta^{T} R_{2 *}{ }^{-1} \theta Q_{2}
$$

The uncorrelated property of \mathbf{x}_{*} and the estimated error $\widetilde{\mathrm{x}}=\mathrm{x}-\mathrm{x}_{*}$ is stated as the following lemma.

Lemma A. 4

The estimated state X_{*} and the state estimation error $\widetilde{\mathbf{x}}$ is uncorrelated, i.e.,

$$
\mathrm{x}_{12}=\mathrm{E}\left[\mathrm{x}_{*} \widetilde{\mathrm{x}}^{\mathrm{T}}\right]=0
$$

Proof:

Using equations for x and x_{*} stated above and $u=K x_{*}$, the equations of \mathbf{x}_{*} and $\widetilde{\mathbf{x}}$ are given by

$$
\begin{aligned}
\dot{\mathrm{x}}_{*} & =(\mathrm{A}+\mathrm{BK}) \mathrm{x}_{*}-\mathrm{GC}_{2} \mathrm{x}-\mathrm{G}(\nu+\theta \mathrm{w}) \\
\dot{\mathrm{x}} & =\left(\mathrm{A}+G C_{2}\right) \widetilde{\mathrm{x}}+\Gamma \mathrm{w}+G(\nu+\theta \mathrm{w})
\end{aligned}
$$

From the above two equations, X_{12} satisfies the following equation

$$
\begin{aligned}
\dot{\mathrm{X}}_{12}= & \left.(\mathrm{A}+\mathrm{BK}) \mathrm{X}_{12}-\mathrm{GC}_{2} \mathrm{P}-\mathrm{GE}[\nu+\theta \mathrm{W}) \widetilde{\mathrm{X}}^{\mathrm{T}}\right] \\
& +\mathrm{X}_{12}\left(\mathrm{~A}+G C_{2}\right)^{T}+E\left[\mathrm{x}_{*}(\nu+\theta \mathrm{W})^{T}\right] G^{T} \\
& +E\left[x_{*} W^{T}\right] \Gamma^{T} .
\end{aligned}
$$

It can be shown ${ }^{(6)}$ that

$$
\begin{aligned}
E\left[\nu \widetilde{x}^{T}\right] & =\frac{1}{2} R_{2} G^{T} \\
E\left[w \widetilde{x}^{T}\right] & =\frac{1}{2} Q_{2}(\Gamma+G \theta)^{T} \\
E\left[x_{*} w^{T}\right] & =E\left[x w^{T}\right]-E\left[\widetilde{x} w^{T}\right] \\
& =-\frac{1}{2} G \theta Q_{2} \\
E\left[x_{*} \nu^{T}\right] & =E\left[x \nu^{T}\right]-E\left[\widetilde{x} \nu^{T}\right] \\
& =-\frac{1}{2} G R_{2} \quad \cdot
\end{aligned}
$$

Substituting above equation into the equation of X_{12} yields

$$
\begin{aligned}
\dot{X}_{12}= & (A+B K) X_{12}+X_{12}\left(A+G C_{2}\right)^{T} \\
& -G\left[C_{2} P+R_{2} G^{T}+\theta Q_{2} \Gamma^{T}+\theta Q_{2} \theta^{T} G^{T}\right]
\end{aligned}
$$

Using the expression for G given in equation (2.3.5), after some matrix manipulation, the above equation yields

$$
\stackrel{\dot{X}}{12}=(A+B K) X_{12}+X_{12}\left(A+G C_{2}\right)^{T}
$$

For the stationary case, $\dot{\mathrm{X}}_{12}=0$, it yields

$$
0=(A+B K) X_{12}+X_{12}\left(A+G C_{2}\right)^{T}
$$

It is shown by Kalman (7) in 1960 that, if the system is controllable and observable, the eigenvalues of $A+B K$ and $A+G C_{2}$ are all in the open left-half plan. The unique solution of the above Lyapunov equation is equal to zero, i.e.,

$$
\mathrm{x}_{12}=0
$$

Q.E.D.

APPENDIX B

SOME PROPERTIES OF THE HAMILTONIAN MATRIX

Lemma B. 1

The eigenvalues of the Hamiltonian matrix

$$
H=\left[\begin{array}{cc}
A & -R \tag{B.1.1}\\
-Q & -A^{T}
\end{array}\right] \quad(R, Q \text { symmetric })
$$

are symmetric with respect to the imaginary axis in the eigenvalue plane, i.e., if λ is a eigenvalue of H, then $-\lambda$ is also a eigenvalue of H .

Proof:

If λ is an eigenvalue of H, then there exist a eigenvector, such that

$$
\left[\begin{array}{cc}
A & -R \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\lambda\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

The above equation can be rewritten as

$$
\left[\begin{array}{cc}
A^{T} & -Q \\
& \\
-R & -A
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
-x_{1}
\end{array}\right]=-\lambda\left[\begin{array}{c}
x_{2} \\
\\
-x_{1}
\end{array}\right]
$$

i.e., λ is the eigenvalue of H^{T}. The eigenvalues are invariant under the transposition of the matrix. Thus $-\lambda$ is an eigenvalue of H.
Q.E.D.

Proofs of the following classical theorems (listed as Lemmas B.2-B.5) will not be included here. The interested reader may refer to the indicated references.

Lemma B. 2: ($\operatorname{Kalman}^{(8), ~ 1960)}$

The algebraic Riccati equation

$$
\begin{equation*}
S A+A^{T} S+C^{T} C-S B B^{T} S=0 \tag{B.1.2}
\end{equation*}
$$

has a unique positive definite solution, S, if the matrices (A,B) are controllable and (A,C) are observable. Also the matrix $A-B B^{T} S$ has eigenvalues in the open left-half plane. It is pointed out by Wonham ${ }^{(27)}$ in 1968 that the properties of controllability and observability can be changed to stabilizability and detectability respectively.

Lemma B. 3: (MacFarlane (11), 1963)

Under the conditions of Lemma B. 2 the eigenvalues of the matrix $A-B B T^{T}$ are the same as the left half plane
eigenvalues of the Euler-Lagrange system matrix

$$
H=\left[\begin{array}{ll}
A & -B B^{T} \\
-C^{T} C & -A^{T}
\end{array}\right]
$$

(B. 1.3)

Lemma B. 4: (Rutherford ${ }^{(9)}$, 1932)

The solution, x, for the linear matrix equation

$$
A X-X B=0
$$

is unique and equal to zero if A and B have no common eigenvalues.

Lemma B.5: (Schur (28), 1909)

There exists an orthogonal transformation

$$
\left[\begin{array}{ll}
\mathrm{P}_{11} & \mathrm{P}_{12} \\
\mathrm{P}_{21} & \mathrm{P}_{22}
\end{array}\right]
$$

which transforms the matrix H into quasi-upper triangular form

$$
\left[\begin{array}{ll}
\mathrm{U}_{11} & \mathrm{U}_{12} \\
0 & \mathrm{U}_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{P}_{11} & \mathrm{P}_{12} \\
\mathrm{P}_{21} & \mathrm{P}_{22}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{A} & -\mathrm{BB}^{T} \\
-\mathrm{C}^{T} C & -A^{T}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{P}_{11} & \mathrm{P}_{12} \\
\mathrm{P}_{21} & \mathrm{P}_{22}
\end{array}\right]^{T}
$$

From Lemma B. 1, B.2, and B. 3 the orthogonal transformation matrix can be chosen so that U_{11} has all eigenvalues in the left (right) half plane and U_{22} has all eigenvalues in the right (left) half plane.

Theorem B. 1

Under the conditions of Lemma B.1, namely that the given system is controllable and observable, the symmetric positive definite solution of the algebraic Riccati equation (3.2.1) and (3.2.4) satisfies the following relations
a. For the linear regulator problem

$$
\begin{gather*}
P_{11} S=P_{12} \tag{B.1.4}\\
\text { (B.1.4) } \\
{\left[\begin{array}{ll}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{ll}
A_{*} & -B R_{*}{ }^{-1}{ }^{T}[\\
-Q_{*} & -A_{*} T
\end{array}\right]\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]_{(B .1 .5)}^{T}}
\end{gather*}
$$

$$
\begin{aligned}
& \text { with } U_{22} \text { having all the eigenvalues in the right } \\
& \text { half plane. }
\end{aligned}
$$

b. For the stationary Kalman filter

$$
\begin{gather*}
P_{12} P=P_{11} \tag{B.1.6}\\
\text { where } P_{11}, P_{12} \text { satisfy the following equation } \\
{\left[\begin{array}{ll}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{ll}
A_{* *} & \Gamma Q_{2 *} \Gamma^{T} \\
C_{2}^{T} & R_{2 *}{ }^{-1} C_{2} \\
-A_{* *}
\end{array}\right]\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]^{T}} \tag{B.1.7}
\end{gather*}
$$

with U_{22} having all eigenvalues in the left half plane.

Proof:

a. Pre-multiplying equation (B.1.5) by the orthogonal matrix yields

$$
\left[\begin{array}{ll}
P_{11} T & P_{21} T \\
P_{12} T & P_{22} T
\end{array}\right]\left[\begin{array}{ll}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{*} & -{B R_{*}}^{-1} B^{T} \\
-Q_{*} & -A_{*} T
\end{array}\right]\left[\begin{array}{ll}
P_{11} T & P_{21} T \\
P_{12} T & P_{22} T
\end{array}\right]
$$

Expanding yields four equations, two of which are

$$
\begin{equation*}
\mathrm{A}_{*} \mathrm{P}_{11}{ }^{\mathrm{T}}-\mathrm{BR}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{P}_{12}^{\mathrm{T}}=\mathrm{P}_{11}{ }^{\mathrm{T}} \mathrm{U}_{11} \tag{B.1.8}
\end{equation*}
$$

$$
\begin{equation*}
-Q_{*} P_{11}{ }^{T}-A_{*}^{T} P_{12}^{T}=P_{12}^{T} U_{11} . \tag{B.1.9}
\end{equation*}
$$

Solving the Riccati equation (3.2.1) for Q_{*} yields

$$
\begin{equation*}
Q_{*}=S \mathrm{BR}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{~S}-\mathrm{SA}_{*}-\mathrm{A}_{*}^{\mathrm{T}} \mathrm{~S} . \tag{B.1.10}
\end{equation*}
$$

Using (B.1.10) in (B.1.9) gives

$$
\begin{equation*}
-\left(\mathrm{SBR}_{*}^{-1} B^{T} S-S A_{*}-A_{*}^{T} S\right) P_{11}^{T}-A^{T}{ }_{*} P_{12}{ }^{T}=P_{12}{ }^{T} U_{11} . \tag{B.1.11}
\end{equation*}
$$

Using (B.1.8) in (B.1.11) yields

$$
\begin{aligned}
& -\mathrm{SBR}_{*}^{-1} B^{T} S \mathrm{P}_{11} \mathrm{~T}+\mathrm{S}\left(\mathrm{P}_{11}^{\mathrm{T}} \mathrm{U}_{11}+\mathrm{BR}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{P}_{12}^{\mathrm{T}}\right) \\
& +\mathrm{A}_{*}^{T} \mathrm{SP}_{11} \mathrm{~T}-\mathrm{A}_{*}^{\mathrm{T}} \mathrm{P}_{12}^{\mathrm{T}}=\mathrm{P}_{12}^{\mathrm{T}} \mathrm{U}_{11}
\end{aligned}
$$

which can be rearranged to give

$$
\begin{equation*}
\left(A_{*}-B R_{*}^{-1} B^{T} S\right)^{T}\left(S_{11}{ }^{T}-P_{12}{ }^{T}\right)+\left(S_{11}^{T}-P_{12}^{T}\right) U_{11}=0 \tag{B.1.12}
\end{equation*}
$$

From Lemma B. 2 , B. 3 , B. 4 , B. 5

$$
\mathrm{SP}_{11}{ }^{\mathrm{T}}-\mathrm{P}_{12}^{\mathrm{T}}=0
$$

or

$$
P_{11} S=P_{12} \cdot \text { Q.E.D. }
$$

b. The same procedure can be followed for the Kalman filter case:

Expanding equation (B.1.7) yields

$$
\begin{align*}
& \mathrm{A}_{* *} \mathrm{P}_{11}{ }^{\mathrm{T}}+\mathrm{\Gamma Q}_{2 *} \Gamma^{\mathrm{T}} \mathrm{P}_{12}{ }^{\mathrm{T}}=\mathrm{P}_{11} \mathrm{~T}_{\mathrm{U}}{ }_{11} \tag{B.1.13}\\
& \mathrm{C}_{2}{ }^{\mathrm{T}_{\mathrm{R}_{2 *}}{ }^{-1} \mathrm{C}_{2} \mathrm{P}_{11}{ }^{\mathrm{T}}-\mathrm{A}_{* *}{ }^{\mathrm{T}} \mathrm{P}_{12}{ }^{\mathrm{T}}=\mathrm{P}_{12}{ }^{\mathrm{T}} \mathrm{U}_{11}} \tag{B.1.14}
\end{align*}
$$

Solving the Riccati equation (3.2.4) for $\Gamma Q_{2} *^{\Gamma}$ yields

$$
\begin{equation*}
\Gamma Q_{2 *} \Gamma^{T}=\mathrm{PC}_{2} \mathrm{~T}_{\mathrm{R}_{2 *}}{ }^{-1} \mathrm{C}_{2} \mathrm{P}-\mathrm{A}_{* *} \mathrm{P}-\mathrm{PA}_{* *}{ }^{\mathrm{T}} \tag{B.1.15}
\end{equation*}
$$

Using (B.1.15) in (B.1.13) gives
$\mathrm{A}_{* *} \mathrm{P}_{11}{ }^{\mathrm{T}}+\mathrm{PC}_{2} \mathrm{~T}_{\mathrm{R}_{2}}{ }^{-1} \mathrm{C}_{2} \mathrm{PP}_{12}{ }^{\mathrm{T}}-\mathrm{A}_{* *} \mathrm{PP}_{12}{ }^{\mathrm{T}}$
$-\mathrm{PA}_{* *} \mathrm{~T}_{\mathrm{P}_{12}} \mathrm{~T}^{\mathrm{T}}=\mathrm{P}_{11} \mathrm{~T}_{\mathrm{U}}{ }_{11}$.

Using (B.1.14) in (B.1.16) yields

$$
\begin{aligned}
& \mathrm{A}_{* *} \mathrm{P}_{11}{ }^{\mathrm{T}}+\mathrm{PC}_{2} \mathrm{~T}_{2}{ }^{-1} \mathrm{C}_{2} \mathrm{PP}_{12} \mathrm{~T}^{\mathrm{T}} \mathrm{~A}_{* *} \mathrm{PP}_{12}{ }^{\mathrm{T}} \\
& -\mathrm{PC}_{2}{ }^{\mathrm{T}} \mathrm{R}_{2 *}{ }^{-1} \mathrm{C}_{2} \mathrm{P}_{11}{ }^{\mathrm{T}}+\mathrm{PP}_{12} \mathrm{~T}_{\mathrm{U}_{11}}=\mathrm{P}_{11} \mathrm{~T}_{\mathrm{U}_{11}}
\end{aligned}
$$

which can be rearranged to give

$$
\left(A_{* *}-\mathrm{PC}_{2} \mathrm{~T}_{2 *}{ }^{-1} \mathrm{C}_{2}\right)\left(\mathrm{P}_{11}^{\mathrm{T}}-\mathrm{PP}_{12}^{\mathrm{T}}\right)-\left(\mathrm{P}_{11}^{\mathrm{T}}-\mathrm{PP}_{12}^{\mathrm{T}}\right) \mathrm{U}_{11}=0
$$

$$
\text { From Lemma B. } 2, \text { B. } 3, \mathrm{~B} .4, \mathrm{~B} .5
$$

$$
P_{11}^{T}-P_{12}^{T}=0
$$

or

$$
\begin{array}{r}
\mathrm{P}_{12} \mathrm{P}=\mathrm{P}_{11} \cdot \\
\\
\text { Q.E.D. }
\end{array}
$$

Theorem B. 2

Under the conditions of Theorem B.1, the matrices P_{11} and P_{12} in equations (B.1.4) and (B.1.6) are non-singular.

Proof:

Since the same procedure can be followed for the Kalman filter case, only the regulator case will be proved here. Expanding equation (B.1.5) yields four equations, one of which is

$$
\begin{align*}
U_{11}= & P_{11} A_{*} P_{11} T-P_{11} B R_{*}{ }^{-1} B_{B}^{T} P_{12} T \\
& -P_{12} Q_{*} P_{11}^{T}-P_{12} A_{*}{ }^{T} P_{12} T \tag{B.1.17}
\end{align*}
$$

Using equation (B.1.10), (B.1.4) in (B.1.17) gives

$$
\begin{equation*}
\mathrm{U}_{11}=\mathrm{P}_{11}\left(\mathrm{I}+\mathrm{S}^{2}\right)\left(\mathrm{A}_{*}-\mathrm{BR}_{*}^{-1} \mathrm{~B}^{\mathrm{T}}\right) \mathrm{P}_{11}{ }^{\mathrm{T}} \tag{B.1.18}
\end{equation*}
$$

Since U_{11}, S, and $A_{*}-B R_{*}{ }^{-1} B^{T} S$ are non-singular, P_{11} must also be non-singular. In addition, $P_{12}=P_{11} S$ is non-singular.

Theorem B. 3

If C is symmetric negative definite and if A has all eigenvalues in the open left half plane, then the solution of the Lyapunov equation

$$
\begin{equation*}
A X+X A^{T}=C \tag{B.1.19}
\end{equation*}
$$

X, is symmetric positive definite.

Proof:

Using classical system theory, the solution of equation (B.1.19), as described by Kwakernaak and Sivan (29), is given by

$$
x=-\int_{0}^{\infty} e^{A t} c e^{A T} t d t
$$

when the system is asymptotically stable.

The matrix is symmetric positive definite since C is symmetric negative definite.

APPENDIX C

THE ERROR ANALYSIS OF THE SIMILARITY REDUCTION TO QUASI-TRIANGULAR FORM

APPENDIX C-1

Error Analysis of the Algorithm Proposed in Chapter III

In this appendix, the following topics will be discussed:

1. The error analysis of the quasi-traingularization using the $Q R$ algorithm
2. The error analysis of the Householder type similarity transformation
3. The operations count of the program which solves the algebraic Riccati equation (the program is presented in Appendix G).

The following useful error bounds for some basic floating-point computations, which are presented by Wilkinson ${ }^{(21)}$ [1965], are stated without proof. The interested reader may refer to the reference. The notation fl(•) is the result of floating point computation, |•| is absolut value, $\|\cdot\| \|_{2}$ is the 2 -norm of the matrix, t_{1} is defined by the relation $2^{-t}=(1.06) 2^{-t}$ with the t-digit mantissa machine.
(i) $\left.f l \prod_{i=1}^{n} x_{i}\right)=(1+E) \prod_{i=1}^{n} x_{i}$
where $|E|<(n-1) 2^{-t_{1}}$.
(ii) fl $\left(\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n}\left\{x_{i}\left(1+E_{i}\right)\right\}\right.$
where $\left|E_{1}\right|<(n-1) 2^{-t},\left|E_{i}\right|<(n+1-i) 2^{-t} 1=2, \ldots n$.
(iii) \quad fl $\left(\sum_{i-1}^{n} x_{i} y_{i}\right)=\sum_{i=1}^{n}\left\{x_{i} y_{i}\left(1+E_{i}\right)\right\}$
where $\left|E_{1}\right|<n 2^{-t},\left|E_{i}\right|<(n+2-i) 2^{-t} 1=2, \ldots ., n$.
(iv) $f l(A+B)=A+B+F$
where $\|F\|_{2} \leq 2^{-t}\|A+B\|_{2}$.
(v) fl $(A B)=A B+F$
where $\|F\|_{2} \leq n^{2} 2^{-t_{1}}\|A\|_{2}\|B\|_{2}$.

There are two important properties of the 2 -norm of a matrix which is formed by the outer product of two vectors.

Lemma C. 1

Let u and δu be two column vectors. The following two identities hold:
(a) $\quad\left\|u u^{T}\right\|_{2}=\|u\|_{2}^{2}$
(b) $\quad\left\|u \delta u^{T}\right\|_{2}=\|\delta u\|_{2}\|u\|_{2}$.

Proof:

From the definitions of the 2 -norm of a matrix and a vector, the following argument results:

$$
\begin{align*}
\left\|u u^{T}\right\|_{2} & =\left[\max \lambda\left(u u^{T} u u^{T}\right)\right]^{1 / 2} \\
& =\left[\left(u^{T} u\right) \max \lambda\left(u u^{T}\right)\right]^{1 / 2} \\
& =\|u\|_{2}\left[\max \lambda\left(u u^{T}\right)\right]^{1 / 2}, \tag{C-8}
\end{align*}
$$

where

$$
\lambda(A) \text { is an eigenvalue of } A \text {. }
$$

Since $u u^{T}$ is symmetric, the eigenvalues of $u u^{T}$ are equal to the square roots of the eigenvalues of $u u^{T} u u^{T}, i . e .$,

$$
\begin{equation*}
\lambda\left(u u^{T}\right)=\left[\lambda\left(u u^{T} u u^{T}\right)\right]^{1 / 2} . \tag{C-9}
\end{equation*}
$$

Substitute (C-9) into (C-8),

$$
\begin{aligned}
\left\|u u^{T}\right\|_{2} & =\|u\|_{2}\left[\max \lambda\left(u u n^{T} u u^{T}\right)^{1 / 2}\right] \\
& =\|u\|_{2}\left\{\left\|u u^{T}\right\|_{2}^{1 / 2}\right\}, \\
\text { i.e., } \quad\left\|u u^{T}\right\|_{2}^{1 / 2} & =\|u\|_{2}, \text { which is equation }(C-6) .
\end{aligned}
$$

The same procedure can be followed for equation ($\mathrm{C}-7$)

$$
\begin{aligned}
\left\|u \delta u^{T}\right\|_{2} & =\left[\max \lambda\left(u \delta u^{T} \delta u u^{T}\right)\right]^{1 / 2} \\
& =\left[\left(\delta u^{T} \delta u\right) \max \lambda\left(u u^{T}\right)\right]^{1 / 2} \\
& =\|\delta u\|_{2}\left\{\left[\max \lambda\left(u u^{T} u u^{T}\right)\right]^{1 / 2}\right\} 1 / 2 \\
& =\|\delta u\|_{2}\left\{\left\|u u^{T}\right\|_{2}\right\}^{1 / 2} .
\end{aligned}
$$

Substitute ($C-6$) into the above equality

$$
\begin{aligned}
\left\|u \delta u^{\mathrm{T}}\right\|_{2} & =\|\delta u\|_{2}\left\{\|u\|_{2}^{2}\right\}^{1 / 2} \\
& =\|\delta u\|_{2}\|u\|_{2}
\end{aligned}
$$

the equation $(C-7)$ results.

> Q.E.D.

Lemma C. 2

The floating point computation, fl [], of matrix multiplication is given by

$$
\text { fl }\left(A_{1} A_{2} \ldots A_{s}\right)=A_{1} A_{2} \ldots A_{s}+F
$$

where $\left||F|\left\|_{2} \leq 1.06(s-1) n^{2} 2^{-t} \underset{j=1}{S}\right\| A_{j} \|_{2}\right]$ if $s \cdot 2^{-t}<0.01$.

Proof:

Analogous to Wilkinson ${ }^{(21)}$ (1965), an error bound for the multiplication of two n by n matrices is given by

$$
f l(A B)=A B+F
$$

where

$$
\left|\mid F\left\|_{2} \leq(1.01) n^{2} 2^{-t}\right\| A\left\|_{2}\right\| B \|_{2}, \text { if } n 2^{-t} \leq .01\right.
$$

The error bound for multiplication of several matrices is then given by

$$
f l\left(A_{1} A_{2} \cdots A_{s}\right)=f l\left[f l\left(A_{1} \ldots A_{s-1}\right) A_{s}\right]
$$

$$
=f l\left(A_{1} \ldots A_{s-1}\right) A_{s}+F_{s}
$$

$$
=f l\left(A_{1} \cdots A_{s-2}\right) A_{2-1} A_{s}+F_{2-1} A_{s}+F_{s}
$$

-

$=A_{1} \ldots A_{s-1} A_{s}+F_{2} A_{3} A_{4} \cdots A_{s}$

$$
+F_{3} A_{4} A_{5} \ldots A_{s}+\ldots+F_{s-1} A_{s}+F_{s}
$$

where $\quad\left\|F_{i}\right\|_{2} \leq(1.06) n^{2} 2^{-t}\left[\prod_{j=1}^{n}\left\|A_{j}\right\|_{2}\right]$.

The above expression can be rearranged as

$$
f l\left(A_{1} \ldots A_{s}\right)=A_{1} \ldots A_{s}+F
$$

where

$$
\begin{aligned}
\|F\|_{2}= & \left\|F_{2} A_{3} A_{4} \ldots A_{s}+\ldots+F_{s-1} A_{s}+F_{s}\right\|_{2} \\
& \left.\leq(s-1)(1.06) n^{2} 2^{-t} \underset{j=1}{s}| | A_{j} \mid \|_{2}\right]
\end{aligned}
$$

The following error analysis of the $Q R$ quasitriangularization follows the work done by Wilkinson ${ }^{(21)}$ in 1965. The error bound for a sequence of orthogonal similarity transformations can be stated as a therorem.

Theorem C. 1

Let \bar{A}_{s} be the computed result of the similarity transformation; then

$$
\begin{equation*}
\bar{A}_{s}=G_{1}{ }^{T}\left(E+A_{o}\right) G_{1}, \tag{C-10}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{1}=Q_{1} Q_{2} \ldots Q_{s} \tag{C-11}
\end{equation*}
$$

and Q_{i} is the orthogonal matrix corresponding to the exact application of the pth step of the algorithm to \bar{A}_{p-1}. Also, let the computed \bar{Q}_{i} correspnding to Q_{i} be given by

$$
\begin{equation*}
\bar{Q}_{i}=e_{i}+e_{i} \tag{C-12}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\|e_{i}\right\| \|_{2} \leq a(i, n) 2^{-t} . \tag{C-13}
\end{equation*}
$$

If the error bound of the matrix F_{p} which satisfies the equation

$$
\begin{equation*}
\bar{A}_{p}=\bar{Q}_{p}^{T} \bar{A}_{p-1} \bar{Q}_{p}+F_{p} \tag{C-14}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
\left\|F_{p}\right\|_{2} \leq f(p, n) 2^{-t}\left\|\bar{A}_{p-1}\right\|_{2}, \tag{C-15}
\end{equation*}
$$

then, the error bound of E is given by

$$
\begin{equation*}
\|E\|_{2} \leq 2^{-t}\left\|A_{0}\right\|_{2}{\underset{p=1}{s} x_{p}, ~}_{s} \tag{C-16}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{p}=\left[2 a(p, n)+a^{2}(p, n) 2^{-t}+f(p, n)\right] y_{p-1} \tag{C-17}
\end{equation*}
$$

and

$$
\begin{align*}
& y_{p}=\prod_{i=1}^{p}\left\{\left(1+a(p, n) 2^{-t}\right)^{2}+f(i, n) 2^{-t}\right\} \\
& y_{o}=1 \tag{C-18}
\end{align*}
$$

The values a (p, n) and $f(p, n)$ depend on the algorithm used.

Proof:

Let Q_{p} be the exact orthogonal matrix corresponding to the exact application of the $p^{\text {th }}$ step of the algorithm to the computed transformed matrix at the $(p-1)$ st step \bar{A}_{p-1}. The computed matrix \bar{Q}_{p} correponding to the matrix Q_{p} satisfies the relation

$$
\begin{equation*}
\bar{Q}_{p}=Q_{p}+e_{p} \tag{C-19}
\end{equation*}
$$

At the pth step, the orthogonal similarity transformation can be written as

$$
\begin{equation*}
\bar{A}_{p}=\bar{Q}_{p}^{T} \bar{A}_{p-1} \bar{Q}_{p}+F_{p} \tag{C-20}
\end{equation*}
$$

where F_{p} is the difference between the accepted \bar{A}_{p} and the exact product $\bar{Q}_{p}{ }^{T} \bar{A}_{p-1} \bar{Q}_{p}$. Substituting (C-19) into ($\mathrm{C}-20$), the resulting equation is given by

$$
\begin{align*}
& \bar{A}_{p}=\left(Q_{p}+e_{p}\right) T_{\bar{A}}^{p-1} \\
&\left(Q_{p}+e_{p}\right)+F_{p} \tag{c-21}\\
&=Q_{p}^{T} \bar{A}_{p-1} Q_{p}+Y_{p}
\end{align*}
$$

where

$$
\begin{aligned}
Y_{p}= & Q_{p}^{T} \bar{A}_{p-1} e_{p}+e_{p}^{T} \bar{A}_{p-1} Q_{p} \\
& +e_{p}^{T} A_{p-1} e_{p}+F_{p}
\end{aligned}
$$

and $Q_{p}^{T} \bar{A}_{p-1} Q_{p}$ is an exact orthogonal similarity transformation of \bar{A}_{p-1}. Combining equation $(C-21)$ for $p=1,2$, ... s, we have

$$
\begin{align*}
\bar{A}= & Y_{s}+G_{s}^{T} Y_{s-1} G_{S}+G_{s-1}^{T} Y_{s-2} G_{S-1}+\ldots \\
& +G_{2}^{T} Y_{1} G_{2}+G_{1}^{T} A_{o} G_{1} \tag{C-23}
\end{align*}
$$

where

$$
\begin{equation*}
G_{p}=Q_{p} Q_{p+1} \cdots Q_{s} \tag{c-24}
\end{equation*}
$$

Equation ($\mathrm{C}-23$) can be rewritten as

$$
\begin{equation*}
\bar{A}_{S}=Y+G_{1}^{T} A_{o} G_{1} \tag{C-25}
\end{equation*}
$$

with

$$
Y=Y_{s}+G_{s} Y_{s-1} G_{s}^{T}+G_{s-1} Y_{s-2} G_{s-1}^{T}+\ldots G_{2} Y_{1} G_{2}^{T}(C-26)
$$

or alternatively

$$
\begin{equation*}
\bar{A}_{S}=G_{1}^{T}\left(E+A_{0}\right) G_{1} \tag{C-27}
\end{equation*}
$$

with

$$
\begin{equation*}
E=L_{s} Y_{s} L_{s}^{T}+L_{s-1} Y_{s-1} L_{s-1}^{T}+\ldots+L_{1} Y_{1} L_{1}^{T} \tag{C-28}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{p}=Q_{1} Q_{2} \cdots Q_{p} . \tag{C-29}
\end{equation*}
$$

Since L_{p} is exactly orthogonal for $p=1,2, \ldots s$, the 2-norm of $L_{p},\left\|L_{p}\right\| \|_{2}$, is equal to one. Taking the 2 -norm of equation ($\mathrm{C}-28$), we obtain

$$
\begin{align*}
\|E\|_{2} & \leq \sum_{p=1}^{s}\left\{\left\|L_{p}\right\|_{2}\left\|Y_{p}\right\|_{2}\left\|L_{p}^{T}\right\|_{2}\right\} \\
& =\sum_{p=1}^{s}\left\|Y_{p}\right\|_{2} . \tag{C-30}
\end{align*}
$$

Assuming that the error bound of e_{p} can be formulated as

$$
\begin{equation*}
\left\|e_{p}\right\|_{2} \leq a(p, n) 2^{-t} \tag{C-31}
\end{equation*}
$$

equation ($\mathrm{C}-22$) gives
$\left\|Y_{p}\right\| \leq\left\|\left|\bar{A}_{p-1}\right| \mid\right\|_{2}\left\{2 a(p, n) 2^{-t}+a^{2}(p, n) 2^{-2 t}\right\}+\left\|F_{p}\right\|_{2}$
where $\quad\left\|Q_{p}\right\|_{2}=1$, since Q_{p} is orthogonal.

Using (C-32), equation (C-21) gives

$$
\begin{aligned}
\left\|\bar{A}_{p}\right\|_{2} & \leq\left\|\bar{A}_{p-1}\right\|_{2}+\left\|Y_{p}\right\|_{2} \\
& \leq\left(1+a(p, n) 2^{-t}\right)^{2}\left\|\bar{A}_{p-1}\right\|_{2}+\left\|F_{p}\right\|_{2} \cdot(c-33)
\end{aligned}
$$

Also, if the error bound of F_{p} can be formulated as

$$
\begin{equation*}
\left\|F_{p}\right\|_{2} \leq f(p, n) 2^{-t}\left\|\bar{A}_{p-1}\right\|_{2}, \tag{c-34}
\end{equation*}
$$

where $f(p, n)$ is some function of p and n, then combing (C-32), (C-33), (C-34), gives

$$
\begin{aligned}
\left\|\bar{A}_{p}\right\|_{2} & \leq\left\{\left(1+a(p, n) 2^{-t}\right)^{2}+f(p, n) 2^{-t}\right\}\left\|A_{p-1}\right\|_{2} \\
& \leq \prod_{i=1}^{p}\left\{\left(1+a(i, n) 2^{-t}\right)^{2}+f(i, n) 2^{-t}\right\}\left\|A_{o}\right\|_{2}(c-35)
\end{aligned}
$$

and

$$
\left\|Y_{p}\right\|_{2} \leq\left\{2 a(p, n)+a^{2}(p, n) 2^{-t}+f(p, n)\right\} 2^{-t}\left\|A_{p-1}\right\|_{2} .
$$

$$
(c-36)
$$

Substituting ($\mathrm{C}-35$), ($\mathrm{C}-36$) into ($\mathrm{C}-30$), an a prior bound for the norm of the equivalent perturbation E in A_{o} (see equation ($\mathrm{C}-27$)) is given by

$$
\begin{equation*}
\|E\|_{2} \leq 2^{-t}\left\|A_{0}\right\|_{2} \sum_{p=1}^{s} x_{p} \tag{C-37}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{p}=\left[2 a(p, n)+a^{2}(p, n) 2^{-t}+f(p, n)\right] y_{p-1} \tag{C-38}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{p}=\prod_{i=1}^{p}\left\{\left(1+a(i, n) 2^{-t}\right)^{2}+f(i, n) 2^{-t}\right\} \tag{C-39}
\end{equation*}
$$

The problem is reduced to finding expressions for $a(p, n)$ and $f(p, n)$ for the particular algorithm used.
Q.E.D.

Theorem C. 2

A bound for the difference between the computed \bar{Q} and the exact Q is given by

$$
\begin{align*}
\|e\|_{2} & =\|\bar{Q}-Q\|_{2} \\
& \leq(4.8 \ell-11.2) 2^{-t} \tag{C-40}
\end{align*}
$$

where

$$
\begin{equation*}
Q=I-\frac{u u^{T}}{2 \mathrm{~K}^{2}}, \tag{C-41}
\end{equation*}
$$

$$
\begin{align*}
u^{T} & =\left(x_{1} \mp s, x_{2}, x_{3}, \ldots, x_{\ell}\right) \\
2 k^{2} & =s^{2} \mp x_{1} s \tag{C-42}\\
s^{2} & =x_{1}^{2}+x_{2}^{2}+\ldots+x_{\ell}^{2}
\end{align*}
$$

Proof:

The algorithm used to quasi-triangularize the Hamiltonian matrix is the Householder reduction. The orthogonal similarity transformation matrix is of the form

$$
\begin{equation*}
Q=I-\frac{u u^{T}}{2 K^{2}} \tag{C-43}
\end{equation*}
$$

where,

$$
\begin{aligned}
u^{T} & =\left(x_{1} \mp s, x_{2}, x_{3}, \ldots, x_{\ell}\right) \\
2 \mathrm{~K}^{2} & =s^{2} \mp x_{1} s \\
s^{2} & =x_{1}^{2}+\ldots+x_{\ell}^{2}
\end{aligned}
$$

The error of the computed \bar{Q} is given by

$$
\begin{align*}
e & =\bar{Q}-Q \\
& =\frac{u u^{T}}{2 K^{2}}-\frac{\overline{u u}^{T}}{2 \bar{K}^{2}} \tag{C-45}
\end{align*}
$$

where \bar{u}, \bar{K} are computed values of u and K respectively. By using the equation (C-3)

$$
\begin{align*}
b & =f l\left(x_{1}^{2}+\ldots+x_{\ell}^{2}\right) \\
& =\sum_{i=1}^{\ell}\left\{x_{i}^{2}\left(1+E_{i}\right)\right\} \tag{C-46}\\
\left|E_{1}\right|<\ell 2^{-t 1} & ,\left|E_{r}\right|<(\ell+2-r) 2^{-t_{1}} \text { for } r=2, \ldots \ell,
\end{align*}
$$

the following equation results

$$
\begin{align*}
b & =f l\left(x_{1}^{2}+\ldots+x_{\ell}^{2}\right) \\
& =\left(x_{1}^{2}+\ldots+x_{\ell}^{2}\right)(1+E) \tag{C-47}\\
& =s^{2}(1+E)
\end{align*}
$$

with

$$
\begin{equation*}
|E|<\ell 2^{-t_{1}} \tag{C-48}
\end{equation*}
$$

The computed \bar{S} is given by

$$
\begin{aligned}
\bar{S} & =f l\left(\sqrt{x_{1}{ }^{2}+\ldots+x_{\ell}{ }^{2}}\right)=f l\left(b^{1 / 2}\right) \\
& =b^{1 / 2}(1+\eta)
\end{aligned}
$$

where we shall assume that

$$
\left.|n|<(1.00001) 2^{-t} \text { (Wilkinson }{ }^{(21)} 1965\right) . \quad \text { (C-49) }
$$

Substitute (C-47) into the above equation, the resulting equation is given by

$$
\begin{equation*}
\bar{s}=s(1+E)^{1 / 2}(1+\eta) \tag{C-50}
\end{equation*}
$$

where

$$
\begin{align*}
& =S(1+\zeta) \\
(1+\zeta) & =(1+E)^{1 / 2}(1+\eta) \\
& =\left[1+.5 E+\sigma\left(E^{2}\right)\right](1+\eta) \\
& =\left[1+.5 E+\eta+\sigma\left(E^{2}\right)+\sigma(E \eta)+\ldots\right] \\
& \leq[1+.500001 E+\eta] . \tag{C-51}
\end{align*}
$$

In the above equation, the reasonable assumption

$$
\sigma\left(E^{2}\right)+\sigma(E \eta)+\ldots \leq .000001 \mathrm{E}
$$

is made. From equation ($\mathrm{C}-48$), ($\mathrm{C}-49$), $(\mathrm{C}-51)$, the following inequality can be formed

$$
\begin{aligned}
|\zeta| & \leq .500001|E|+|\eta| \\
& \leq(.500001) \ell 2^{-t_{1}}+(1.00001) 2^{-t} \\
& \leq[(.500001)(1.06) \ell+1.00001] 2^{-t} \\
& \leq[.530001 \ell+1.00001] 2^{-t} \quad .
\end{aligned}
$$

Equation ($C-50$) can be rewritten as

$$
\begin{equation*}
\bar{S}=S(1+\zeta) \tag{c-52}
\end{equation*}
$$

with

$$
\begin{equation*}
|\zeta| \leq[.53001 \ell+1.00001] 2^{-t} \tag{C-53}
\end{equation*}
$$

The computed K is given by

$$
\begin{aligned}
2 \overline{\mathrm{~K}}^{2} & =\mathrm{fl}\left(\left(\mathrm{x}_{1}^{2}+\ldots+\mathrm{x}_{\ell}^{2}\right)+\mathrm{x}_{1} \overline{\mathrm{~S}}\right) \\
& =\left[\mathrm{x}_{1}^{2}\left(1+\Theta_{1}\right)+\ldots+\mathrm{x}_{\ell}^{2}\left(1+\theta_{\ell}\right)+\mathrm{x}_{1} \overline{\mathrm{~S}}\left(1+\theta_{\ell+1}\right)\right]
\end{aligned}
$$

where

$$
\left|\theta_{1}\right|<(\ell+1) 2^{-t},\left|\theta_{r}\right|<(\ell+3-r) 2^{-t} 1 \text { for } r=2, \ldots, \ell+1
$$

so that

$$
\begin{align*}
2 \overline{\mathrm{~K}}^{2} & =\left(\mathrm{x}_{1}^{2}+\ldots+\mathrm{x}_{\ell}^{2}+\mathrm{x}_{1} \overline{\mathrm{~S}}\right)(1+\theta) \\
& =\left[\mathrm{S}^{2}+\mathrm{x}_{1} \mathrm{~S}(1+\zeta)\right](1+\theta) \\
& =\left[\mathrm{S}^{2}+\mathrm{x}_{1} \mathrm{~S}\right](1+\delta)(1+\theta) \tag{C-54}
\end{align*}
$$

where

$$
|\theta|<(\ell+1) 2^{-t_{1}}
$$

and

$$
\begin{aligned}
\delta & =\frac{x_{1} S}{S^{2}+x_{1} S} \quad \zeta \\
& \leq \frac{1}{2} \zeta \quad
\end{aligned}
$$

Let us define γ by

$$
\begin{aligned}
(1+\gamma) & =(1+\delta)(1+\theta) \\
& =1+\delta+\theta+\delta \theta
\end{aligned}
$$

then

$$
\begin{aligned}
|\gamma| & \leq|\delta|+|\theta|+|\delta \theta| \\
& \leq \frac{1}{2}(.530001 \ell+1.00001) 2^{-t}+1.06(\ell+1) 2^{-t} \\
& +\left\{\frac{1}{2}(.530001 \ell+1.00001) \cdot 1.06(\ell+1)\right\} 2^{-2 t} \\
& \leq(1.325001 \ell+1.560005) 2^{-t} .
\end{aligned}
$$

Again, the reasonable assumption

$$
\left\{\frac{1}{2}(.530001 \ell+1.00001)(1.06)(\ell+1)\right\} 2^{-t} \leq .0000005 \ell
$$

is made. The equation ($\mathrm{C}-54$) can then be rewritten as

$$
\begin{equation*}
2 \overline{\mathrm{~K}}^{2}=2 \mathrm{~K}^{2}(1+\gamma) \tag{C-55}
\end{equation*}
$$

with

$$
\begin{equation*}
|\gamma| \leq(1.325001 \ell+1.560005) 2^{-t} . \tag{C-56}
\end{equation*}
$$

From equation (C-44)

$$
\begin{aligned}
\bar{u}_{1} & =f 1\left(x_{1}+\bar{s}\right) \\
& =\left(x_{1}+\bar{s}\right)(1+\phi)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[x_{1}+S(1+\zeta)\right](1+\phi) \\
& =\left(x_{1}+S\right)(1+\psi) \\
& =u_{1}(1+\psi)
\end{aligned}
$$

where

$$
|\phi| \leq 2^{-t}
$$

and

$$
\begin{aligned}
|\psi| & \leq|\zeta|+|\phi|+|\zeta \phi| \\
& \leq(.530001 \ell+2.00002) 2^{-t}
\end{aligned}
$$

with the reasonable assumption that

$$
(.53001 \ell+1.000001) 2^{-t} \leq .00001
$$

The computed \bar{u} can then be written as

$$
\begin{equation*}
\bar{u}^{T}=u^{T}+\delta u^{T} \tag{C-57}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta u^{T}=\left(\delta u_{1}, 0, \ldots, 0\right) \tag{C-58}
\end{equation*}
$$

$$
\begin{aligned}
\delta u_{1} & =u_{1} \psi \\
||\delta u||_{2} & =\left|u_{1}\right||\psi| \\
& \leq(.530001 \ell+2.00002) 2^{-t}| | u| |_{2},
\end{aligned}
$$

and

$$
\begin{aligned}
\|\bar{u}\|_{2} & =\|u+\delta u\|_{2} \\
& \leq\left\{1+(.530001 \ell+2.00002) 2^{-t}\right\}\|u\|_{2} .(C-61)
\end{aligned}
$$

Equation (C-45) can be rewritten as

$$
\begin{aligned}
e & =\bar{Q}-Q \\
& =\frac{u u^{T}}{2 K^{2}}-\frac{\overline{u u}^{T}}{2 \overline{\mathrm{~K}}^{2}} \\
& =\frac{u u^{T}-\overline{u u}^{T}}{2 K^{2}}+\overline{u u}^{T}\left(\frac{1}{2 k^{2}}-\frac{1}{2 \bar{K}^{2}}\right) \\
& =\frac{-\left(u \delta u^{T}+\delta u u^{T}+\delta u \delta u^{T}\right)}{2 K^{2}}+\frac{\overline{u u}^{T}}{2 K^{2}}\left(1-\frac{2 K^{2}}{2 K^{2}(1+\gamma)}\right)
\end{aligned}
$$

so that,

$$
\begin{aligned}
\|\mathrm{e}\|_{2} & =\|\bar{Q}-Q\|_{2} \\
& \leq \frac{2| | \delta u^{T}| |_{2}+\left|\left|\delta u \delta u^{T}\right|\right|_{2}}{2 \mathrm{~K}^{2}}+\frac{\left|\left|\overline{\mathrm{uu}}^{\mathrm{T}}\right|\right|_{2}}{2 \mathrm{~K}^{2}}\left|\left(1-\frac{1}{1+\gamma}\right)\right|
\end{aligned}
$$

Using the results stated in Lemma C.1, the above inequality becomes

$$
\begin{aligned}
\|\mathrm{e}\|_{2} & \leq \frac{2\left\|\left.\mathrm{u}\right|_{2}| | \delta \mathrm{u}\right\|_{2}+\|\delta \mathrm{u}\|_{2}^{2}}{2 \mathrm{~K}^{2}}+\frac{\|\overline{\mathrm{u}}\|_{2}^{2}}{2 \mathrm{~K}^{2}}\left|\left(1-\frac{1}{1+\gamma}\right)\right| \\
& \leq \frac{2(.2650005 \ell+1.50001) 2^{-\mathrm{t}}\|\mathrm{u}\|_{2}^{2}+\|\delta \mathrm{u}\|_{2}^{2}}{2 \mathrm{~K}^{2}} \\
& +\frac{\left\{1+(.2650005 \ell+1.50001) 2^{-\mathrm{t}}\right\}^{2}| | \mathrm{u} \|\left.\right|_{2} ^{2}}{2 \mathrm{~K}^{2}}\left|\left(1-\frac{1}{1+\gamma}\right)\right| .
\end{aligned}
$$

But

$$
\begin{aligned}
\left|1-\frac{1}{1+\gamma}\right| & =\mid 1-\left(1-\gamma+\sigma\left(\gamma^{2}\right) \mid\right. \\
& \leq\left|\gamma+\sigma\left(\gamma^{2}\right)\right| \\
& \leq|\gamma|+\left|\sigma\left(\gamma^{2}\right)\right|,
\end{aligned}
$$

from equation ($\mathrm{C}-56$) with the assumptions that

$$
\sigma\left(\gamma^{2}\right) \leq .000001 \ell 2^{-t}
$$

and

$$
\|\delta u\|_{2}^{2} \leq .000001 \ell 2^{-t}\|u\|_{2}^{2},
$$

the error bound of $\|e\|_{2}$ is given by

$$
\begin{aligned}
\|e\|_{2} & \leq \frac{(.530002 \ell+3.00002) 2^{-t}| | u \|_{2}^{2}}{2 K^{2}} \\
& +\frac{\left\{1+(.2650005 \ell+1.50001) 2^{-t}\right\}^{2}\|u\|_{2}^{2}}{2 K^{2}}
\end{aligned}
$$

$$
(1.325002 \ell+1.560005) 2^{-t}
$$

Since

$$
\frac{\|\mathrm{u}\|_{2}^{2}}{2 \mathrm{~K}^{2}}=2
$$

the above inequality can be rewritten as

$$
\begin{aligned}
\|\mathrm{e}\|_{2} & \leq(2.120006 \ell+8.00008) 2^{-t} \\
& +2(1.325003 \ell+1.560006) 2^{-t}
\end{aligned}
$$

where the assumption
$\left\{2(.530001 \ell+2.00002) 2^{-t}+(.530001 \ell+2.00002)^{2}\right.$

- $\left.2^{-2 t}\right\}(1.325002 \ell+1.560006) 2^{-t}$
$\leq .000001 \ell 2^{-t}$
is made. The error bound of e is thus given by

$$
\begin{align*}
\|e\| \|_{2} & =\|\bar{Q}-Q\|_{2} \\
& \leq(4.77002 \ell+11.12009) 2^{-t} \tag{C-62}
\end{align*}
$$

The quantity $a(p, l)$ in equation $(C-37),(C-38),(C-39)$ is then given by

$$
\begin{equation*}
a(p, \ell)=4.77002 \ell+11.12009 \tag{C-63}
\end{equation*}
$$

Q.E.D.

The error analysis of the $Q R$ algorithm will be discussed next.

Theorem C. 3

The quasi-upper-triangularization of the Hamiltonian matrix stated in Chapter III is formulated in general as

$$
\begin{equation*}
\bar{A}_{S}=G_{1}^{T}\left(E+A_{0}\right) G_{1} \tag{C-64}
\end{equation*}
$$

where the a priori error is bounded by

$$
\begin{align*}
\|E\|_{2} & \leq 2^{-t}| | A_{0}| |\left\{8 k n^{3}+(38.2+4 k) n^{2}\right. \\
& \left.+44.5 n+50.9+\left(4 \mathrm{kn}^{2}+50.9\right) \mathrm{s}\right\} \tag{C-65}
\end{align*}
$$

with

$$
\mathrm{k}=2.12
$$

and s, the number of $Q R$ iterations, is given by
(i) if all the eigenvalues are real

$$
s=3 n^{2}-n
$$

(ii) if all the eigenvalues are complex

$$
\mathrm{s}=\frac{3}{2} \mathrm{n}^{2}
$$

Proof: From equation ($C-5$), we have

$$
\begin{aligned}
f l(\mathrm{ABC}) & =\mathrm{fl}(\mathrm{fl}(\mathrm{AB}) \mathrm{C}) \\
& =\mathrm{fl}(\mathrm{AB}) \mathrm{C}+\mathrm{F}_{2} \\
& =\mathrm{ABC}+\mathrm{F}_{1} \mathrm{C}+\mathrm{F}_{2}
\end{aligned}
$$

where m is the dimension of matrices A, B, C, and

$$
\begin{aligned}
\left\|F_{1}\right\|_{2} & \leq m^{2} 2^{-t}\|A\|_{2}\|B\|_{2} \\
\left\|F_{2}\right\|_{2} & \leq m^{2} 2^{-t}\|A B\|_{2}\|C\|_{2} \\
& \leq m^{2} 2^{-t}\|A\|_{2}\|B\|_{2}\|C\|_{2},
\end{aligned}
$$

so that,

$$
f l(A B C)=A B C+F
$$

with

$$
\|F\|_{2} \leq 2 m^{2} 2^{-t_{1}}\|A\|_{2}\|B\|_{2}\|C\|_{2} .
$$

If A_{p-1} is upper Hessenberg and Q_{p} is orthogonal, then

$$
\begin{equation*}
f l\left(Q_{p}^{T} A_{p-1} Q_{p}\right)=Q_{p}^{T} A_{p-1} Q_{p}+F_{p} \tag{C-66}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\|F_{p}\right\|_{2} \leq k m^{2} 2^{-t}\left\|A_{p-1}\right\|_{2} \tag{C-67}
\end{equation*}
$$

and

$$
\mathrm{k}=2.12
$$

Then quantity $f(p, m)$ in equation $(C-37),(C-38),(C-39)$, is, then, given by

$$
\begin{equation*}
f(p, m)=k m^{2} \tag{C-68}
\end{equation*}
$$

where

$$
\mathrm{k}=2.12
$$

The algorithm proposed in Chapter III for quasi-upper triangularizing the Hamiltonian matrix has two major steps. First, m-1 Householder type similarity transformations are performed to transform the original Hamiltonian matrix into an upper Hessenberg matrix. Second, the $Q R$ algorithm is performed on the upper Hessenberg matrix. The error bound of E in equation ($C-37$) can be described as

$$
\begin{equation*}
\|E\|_{2} \leq 2^{-t}\left\|A_{0}\right\|_{2}\left\{\delta_{o}+\sum_{p=1}^{s} \delta_{p}\right\} \tag{C-69}
\end{equation*}
$$

where s is the number of similarity transformations required for quasi-triangularization δ_{0} is due to the Hessenberg reduction and δ_{p} is due to the pth iteration of $Q R$ algorithm.

The quantity δ_{o} is given by

$$
\begin{align*}
\delta_{0} & =\sum_{i=1}^{m-1}\left\{\left[2 a(i, m)+a^{2}(i, m) 2^{-t}+k m^{2}\right] \cdot y_{i-1}\right\}(C-70) \\
y_{i-1} & =\sum_{j=1}^{i-1}\left\{\left[1+a(j, m) 2^{-t}\right]^{2}+k m^{2} 2^{-t}\right\} \quad(C-71)
\end{align*}
$$

where m is the dimension of the Hamiltonian matrix.

The quantity δ_{p} can be found as follows. At the pth step, $m-n^{-1}$ Householder type similarity transformations are required. Here n_{e} is the number of eigenvalues which have already been isolated. For simplicity, n_{2} is assumed to have the following form

$$
\begin{array}{ll}
n_{e}=p-1 & \text { if all the eigenvalues are real } \\
n_{e}=2(p-1) & \text { if all the eigenvalues are complex. }
\end{array}
$$

Further more, if the eigenvalues are known a priori, it is estimated that the number of iterations, ITE, required to isolate a real (or complex pair of) eigenvalue(s) is

```
ITE = 2 if a real eigenvalue is to be isolated
ITE = 3 if a pair of eigenvalues is to be isolated.
```

Under these assumptions, δ_{p} can be expressed as

$$
\begin{align*}
& \delta_{p}=\left\{2 a(p, 3)+a^{2}(p, 3) 2^{-t}+k m^{2}\right\} y_{p-1} \tag{C-72}\\
& y_{p-1}=\prod_{i=1}^{p-1}\left\{\left[1+a(i, 3) 2^{-t}\right]^{2}+k m^{2} 2^{-t}\right\} . \tag{C-73}
\end{align*}
$$

The number of similarity transformations required for triangularization is given by

$$
\begin{equation*}
\mathrm{s}=\sum_{\mathrm{p}=1}^{\mathrm{k} 1} \operatorname{ITE} *\left(\mathrm{~m}-\mathrm{n}_{\mathrm{e}}-1\right) \tag{C-74}
\end{equation*}
$$

where, for isolating n eigenvalues.

$$
\begin{aligned}
& \mathrm{k}_{1}=\mathrm{n} \quad \text { if all the eigenvalues are real } \\
& \mathrm{k}_{1}=\frac{\mathrm{n}}{2} \quad \text { if all the eigenvalues are complex. }
\end{aligned}
$$

The reason for $a(i, 3)$ is that the $Q R$ algorithm is applied to a the Hessenberg matrix. Combing equation (C-63), (C-70), (C-71), gives

$$
\begin{aligned}
\delta_{0}= & \sum_{i=1}^{m-1}\left\{\left[9.54004 m+22.24081+\mathrm{km}^{2}\right.\right. \\
& \left.+\left(22.75309 \mathrm{~m}^{2}+106.0861 \mathrm{~m}+123.6564\right) 2^{-t}\right] \\
& \left.\quad y_{i-1}\right\}
\end{aligned}
$$

It is reasonable to assume that

$$
\begin{aligned}
& \left(22.75309 m^{2}+106.0861 m+123.6564\right) 2^{-t} \\
& \leq .00001 \mathrm{~m}
\end{aligned}
$$

and

$$
\left[1+a(i, m) 2^{-t}\right]^{2}+k^{2} 2^{-t} \leq 1.000001 .
$$

The expression of δ_{o} can then be simplified to be

$$
\begin{aligned}
\delta_{0} & \leq \sum_{i=1}^{m-1}\left\{\left[9.54005 m+22.24018+\mathrm{km}^{2}\right] \prod_{j=1}^{i-1}(1.000001]\right\} \\
& =\left[9.54005 m+22.24018+\mathrm{km}^{2}\right] \sum_{i=1}^{\mathrm{n}-1}(1.000001)^{i-1}
\end{aligned}
$$

With the aid of the identify

$$
\begin{aligned}
& \sum_{i=1}^{m-1}(1.000001)^{i-1}=\sum_{j=0}^{m-2}(1.000001)^{j} \\
& =\frac{(1.000001)^{m-1}-1}{1.000001-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[(1.000001)^{m-1}-1\right] 10^{6} \\
& \leq\{1+(m-1+1)(.000001)-1] 10^{6} \\
& =m, \text { if } m \text { is less than } 10000 .
\end{aligned}
$$

we get,

$$
\begin{equation*}
\delta_{0} \leq k^{3}+9.54005 \mathrm{~m}^{2}+22.24018 \mathrm{~m} \tag{C-75}
\end{equation*}
$$

The same procedure can be followed that under the assumptions

$$
\left[1+a(i, 3) 2^{-t}\right]^{2}+\mathrm{km}^{2} 2^{-t} \leq 1.000001
$$

and

$$
a^{2}(p, 3) 2^{-t} \leq .00001
$$

the expression of δ_{p} can be simplified as

$$
\begin{align*}
\delta_{p} & \leq\left\{28.62015+22.24018+\mathrm{km}^{2}\right\}(1.000001)^{\mathrm{p}-1} \\
& =\left\{\left(50.86033+\mathrm{km}^{2}\right\}(1.000001)^{\mathrm{p}-1}\right. \tag{C-76}
\end{align*}
$$

Substituting ($C-75),(C-76)$ into $(C-69)$, we obtain
$\|E\|_{2} \leq 2^{-t}\left\|A_{O}\right\|_{2}\left\{\mathrm{~km}^{3}+9.54005 \mathrm{~m}^{2}\right.$

$$
\left.+22.24018 \mathrm{~m}+\left(50.86033+\mathrm{km}^{2}\right) \sum_{\mathrm{p}=1}^{\mathrm{s}}(1.000001)^{\mathrm{p}-1}\right\} .
$$

The dimension of the Hamiltonian matrix is equal to $2 n$, and the above expression can be simplified to

$$
\begin{aligned}
\|E\|_{2} & \leq 2^{-t}\left\|A_{o}\right\|_{2}\left\{\mathrm{~km}^{3}+9.54005 \mathrm{~m}^{2}+22.24018 \mathrm{~m}\right. \\
& \left.+\left(\mathrm{km}^{2}+50.86033\right)(\mathrm{s}+1)\right\} .
\end{aligned}
$$

The quantity s is given by
(i) if all the eigenvalues are real

$$
\begin{align*}
s & =\sum_{p=1}^{n} 2(2 n-p) \\
& =n(4 n)-2 \frac{n}{2}(n+1) \\
& =3 n^{2}-n \tag{C-77}
\end{align*}
$$

(ii) if all the eigenvalues are complex

$$
\begin{align*}
s & =\sum_{p=1}^{n / 2} 2(2 n-2 p+1) \\
& =\frac{n}{2} \cdot 2 \cdot(2 n+1)-4 \frac{n^{2}}{2}\left(\frac{n}{2}+1\right) \\
& =2 n^{2}+n-\frac{n^{2}}{2}-n \\
& =\frac{3}{2} n^{2} \tag{C-78}
\end{align*}
$$

The bound for $\|E\|_{2}$ is then given by

$$
\begin{aligned}
\|E\| \|_{2} & \leq 2^{-t}\left\|A_{0}\right\|_{2}\left\{8 k n^{3}+(38.1602+4 k) n^{2}\right. \\
& \left.+44.8036 n+50.86033+\left(4 k n^{2}+50.86033\right) s\right\}(C-79)
\end{aligned}
$$

where

$$
\mathrm{k}=2.12
$$

and

$$
s \text { is given by equation }(C-77) \text { or }(C-78) \text {. }
$$

$$
C-2
$$

The Operations Count of the Algorithm

The operations count for solving the algebraic Riccati equation has three major parts: (1) OP count for finding eigenvalues of the Hamiltonian matrix, (2) OP count for isolating n desired eigenvalues in the lower-right hand corner of the Hamiltonian matrix, (3) OP count for solving the linear system of equations. In this discussion, the OP count is found for each required subroutine.

1. Operations count for subroutine HESS

For the similarity transformations, the OP count is given by

$$
\begin{aligned}
\mathrm{OP}_{\mathrm{HT}}= & \sum_{\mathrm{k}=\mathrm{n} 1+1}^{\mathrm{n} 2-1}\{(\mathrm{nn}-\mathrm{k}+1)+1+(\mathrm{nn}-\mathrm{k}+1) \\
& +2(\mathrm{nn}-\mathrm{k}+1)(\mathrm{m}-\mathrm{k}+1)+2(\mathrm{nn}-\mathrm{k}+1) \mathrm{n} 2\} \\
= & \sum_{\mathrm{k}=\mathrm{n} 1+1}^{\mathrm{n} 2-1}\{2(\mathrm{nn}-\mathrm{k}+1)(\mathrm{m}-\mathrm{k}+\mathrm{n} 2+2)+1\}
\end{aligned}
$$

where

```
nn}=\operatorname{min}{(nz+k-1, n2 }
nz = number of non-zero elements below
        the diagonal
```

$$
\begin{aligned}
\mathrm{n} 1, \mathrm{n} 2= & \text { row indices of current isolated } \\
& \text { diagonal block } \\
\mathrm{m}= & \text { matrix size }=2 \mathrm{n} \text { in our case. }
\end{aligned}
$$

For accumulating the orthogonal similarity transformation matrix, the $O P$ count is given by

$$
\begin{equation*}
\mathrm{OP}_{\mathrm{HP}}=\sum_{\mathrm{k}=\mathrm{n} 1+2}^{\mathrm{n} 2-1}\{2(\mathrm{nn}-\mathrm{k}+1) \mathrm{m}\} \tag{C-80}
\end{equation*}
$$

There are two situations in subroutine HESS.

When the first Hessenberg reduction is performed, i.e., $n z=m-1, n 1=1, n 2=m$, the $O P$ count is given by

$$
\mathrm{OP}_{\mathrm{HTf}}=\sum_{\mathrm{k}=2}^{\mathrm{m}-1}\{2(\mathrm{nn}-k+1)(2 \mathrm{~m}-\mathrm{k}+2)+1\}
$$

and

$$
\begin{aligned}
m & =\min \{(m+k-2), m\} \\
& =m, \text { for all } k
\end{aligned}
$$

so that,

$$
\begin{align*}
\mathrm{OP}_{\mathrm{HTf}} & =\sum_{k=2}^{\mathrm{m}-1}\{2(\mathrm{~m}-k+1)(2 \mathrm{~m}-k+2)+1\} \\
& =\frac{5}{3} \mathrm{~m}^{3}-\mathrm{m}^{2}-\frac{5}{3} m-6 \tag{C-81}
\end{align*}
$$

The well known identities

$$
\sum_{k=1}^{m} k=\frac{m}{2}(m+1)
$$

and

$$
\sum_{k=1}^{m} k^{2}=\frac{m}{6}(m+1)(2 m+1)
$$

are used in equation ($\mathrm{C}-81$).

$$
\begin{align*}
O P_{\text {HPE }} & =\sum_{k=2}^{m-1}\{2 m(m+1-k)\} \\
& =m^{3}-m^{2}-2 m . \tag{C-82}
\end{align*}
$$

When the $Q R$ algorithm is performed on the upper Hessenberg matrix (i.e, $n z=3, \mathrm{n} 1=1, \mathrm{n} 2=\mathrm{m}-\mathrm{s}$, and s is the number of eigenvalues which have been isolated), the $O P$ count is given by

$$
O P_{\text {HTS }}=\sum_{k=2}^{m-s-1}\{2(n n-k+1)(2 m-k-s+2)+1\}
$$

with

$$
\begin{gathered}
n n=\min \{(2+k), m-s\} \\
=\left\{\begin{array}{l}
2+k, \text { if } k \varepsilon[2, m-s-2] \\
m-s, \text { if } k=m-s-1
\end{array}\right.
\end{gathered}
$$

Using the expression for $n n$, the $\mathrm{OP}_{\text {HTS }}$ is given by

$$
\begin{align*}
\mathrm{OP}_{\mathrm{HTS}} & =\left(9 \mathrm{~m}^{2}-10 \mathrm{~m}-26\right)-4(3 \mathrm{~m}+1) \mathrm{s}+3 \mathrm{~s}^{2} \tag{C-83}\\
\mathrm{OP}_{\mathrm{HPS}} & =\sum_{k=2}^{\mathrm{m}-\mathrm{s}-1}\{2 \mathrm{~m}(\mathrm{nn}-\mathrm{k}+1)\} \\
& =\left(6 \mathrm{~m}^{2}-14 \mathrm{~m}\right)-6 \mathrm{~ms} . \tag{C-84}
\end{align*}
$$

In summary, we have the following $O P$ counts for the subroutine HESS:
(a) For the first Hessenberg reduction

$$
\begin{equation*}
O P_{H T f}=\frac{5}{3} m^{3}-m^{2}-\frac{5}{3} m-6 \tag{C-85}
\end{equation*}
$$

$$
\begin{equation*}
O P_{H P f}=m^{3}-m^{2}-2 m \tag{C-86}
\end{equation*}
$$

(b) For the $Q R$ algorithm

$$
\begin{equation*}
O P_{H T S}=\left(9 m^{2}-10 m-26\right)-4(3 m+1) s+3 s^{2} \tag{C-87}
\end{equation*}
$$

$$
\begin{equation*}
O P_{\mathrm{HPS}}=\left(6 \mathrm{~m}^{2}-14 \mathrm{~m}\right)-6 \mathrm{~ms} \tag{C-88}
\end{equation*}
$$

2. Operations count for subroutine SHIFT2

For the similarity transformations, the OP count is given by
$\mathrm{OP}_{\mathrm{ST}}=11+6(\mathrm{~m}+1-\mathrm{n} 1)+6 \mathrm{n} 2$.

For accummulating the transformation matrix

$$
O P_{S P}=6 \mathrm{~m}
$$

For the case, $\mathrm{n} 1=1, \mathrm{n} 2=\mathrm{m}-\mathrm{s}$, the OP count is given by

$$
\begin{equation*}
O P_{S T}=12 \mathrm{~m}+11-6 \mathrm{~s} \tag{C-89}
\end{equation*}
$$

$$
O P_{S P}=6 \mathrm{~m}
$$

$$
(C-90)
$$

Again, s is the number of eigenvalues which have been isolated.
3. Operations count for subroutine TRIA
(a) For real eigenvalues

$$
\begin{align*}
& \mathrm{OP}_{\mathrm{TT}}=4 \mathrm{~m}+15 \tag{C-91}\\
& \mathrm{OP}_{\mathrm{TP}}=4 \mathrm{~m} . \tag{C-92}
\end{align*}
$$

(b) For complex eigenvalues

$$
\begin{align*}
& \mathrm{OP}_{\mathrm{TT}}=4 \tag{C-93}\\
& \mathrm{OP}_{\mathrm{TP}}=0 . \tag{C-94}
\end{align*}
$$

4. Operations count of Subroutine $Q R$

The $O P$ count in subroutine $Q R$ is the sum of the OP count for first Hessenberg reduction and the $O P$ count for $Q R$ iteration applied to an upper Hessenberg matrix. For similarity transformation, the $O P$ count is given by

$$
\begin{align*}
\mathrm{OP}_{\mathrm{QT}}= & 2+\mathrm{OP}_{\mathrm{HTf}}+\sum_{\mathrm{s}=0}^{\mathrm{n}_{\mathrm{e}}}\left\{\mathrm{IT} *\left[2+\mathrm{OP}_{\mathrm{HTS}}+\mathrm{OP}_{\mathrm{ST}}\right]\right\} \\
& +\sum_{\mathrm{s}=1}^{\mathrm{n}_{\mathrm{e}}} \mathrm{OP}_{\mathrm{TT}} \tag{C-95}
\end{align*}
$$

where $\quad n_{e}$ is the number of eigenvalues to be isolated and IT is the number of iterations required per eigenvalue.

Substituting equations ($\mathrm{C}-85$) to ($\mathrm{C}-94$) into equation (C-95), we have

$$
\begin{aligned}
& \sum_{\mathrm{s}=0}^{\mathrm{n}_{\mathrm{e}}}\left\{\mathrm{IT} *\left[2+O P_{\mathrm{HTS}}+\mathrm{OP}_{\mathrm{ST}}\right]\right\} \\
& \left.=I T * \sum_{\sum_{\mathrm{s}=0}^{\mathrm{n}_{\mathrm{e}}}\left[\left(2+9 \mathrm{~m}^{2}-10 \mathrm{~m}-26\right)-4(3 \mathrm{~m}+1) \mathrm{s}+3 \mathrm{~s}^{2}\right.} \quad+12 \mathrm{~m}+11-6 \mathrm{~s}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =I T *\left\{\left(n_{e}+1\right)\left(9 m^{2}+2 m-13\right)-(12 m+10) \frac{n_{e}\left(n_{e}+1\right)}{2}\right. \\
& \left.+3 \frac{n_{e}}{6}\left(n_{e}+1\right)\left(2 n_{e}+1\right)\right\} \\
& =I T *\left(n_{e}+1\right)\left[9 m^{2}+2 m-13+n_{e}^{2}-(6 m+4.5) n_{e}\right] \\
& \widetilde{O P}_{T}=\sum_{\sum_{e}=1}^{n_{e}} O_{T T}= \begin{cases}n_{e}(4 m+15) & \text { if eigenvalues are } \\
\frac{n_{e}}{2} \cdot 4 & \text { real }\end{cases} \\
& \text { if eigenvalues are }
\end{aligned}
$$

so that

$$
\begin{aligned}
\mathrm{OP}_{\mathrm{QT}}= & 2+\frac{5}{3} m^{3}-\mathrm{m}^{2}-\frac{5}{3} m-6+I T^{*}\left(n_{e}+1\right)\left[9 m^{2}\right. \\
& \left.+2 m-13+n_{e}^{2}-(6 m+4.5) n_{e}\right]+\widetilde{O P}_{T} \cdot(C-96)
\end{aligned}
$$

The number of iterations required per eigenvalue, IT, is estimated to be equal to 2.

The OP count for the orthogonal transformation matrix accumulation is given by

$$
\begin{aligned}
O P_{Q P}= & m^{3}-m^{2}-2 m+\sum_{s=0}^{n_{e}}\left\{I T * \left[6 m^{2}-14 m-6 m s\right.\right. \\
& +6 m]\}+\sum_{s=1}^{n_{e}} O P_{T P},
\end{aligned}
$$

and,

$$
\widetilde{O P}_{P}=\sum_{s=1}^{n_{e}} O P_{T P}= \begin{cases}4 n_{e} & \text { if eigenvalues are all real } \\ 0 & \text { if eigenvalues are all complex }\end{cases}
$$

The $\mathrm{OP}_{\mathrm{QP}}$ is then given by

$$
\begin{aligned}
O P_{Q P}= & m^{3}-m^{2}-2 m+I T *\left(n_{e}+1\right)\left[6 m^{2}-8 m-3 m n_{e}\right] \\
& +O P_{P} .
\end{aligned}
$$

The total OP count for upper-quasi triangularizing the Hamiltonian matrix is given by

$$
\begin{equation*}
\mathrm{OP}_{\mathrm{UQ}}=\mathrm{OP}_{\mathrm{QT}}^{\mathrm{n}_{\mathrm{e}}=2 \mathrm{n}-2}+\mathrm{OP}_{\mathrm{QT}}^{\mathrm{n}_{\mathrm{e}}=\mathrm{n}}+\mathrm{OP}_{\mathrm{QP}}^{\mathrm{n}_{\mathrm{e}}=\mathrm{n}} \tag{C-97}
\end{equation*}
$$

Since $m=2 n$ and $I T=2$, the $O P_{u Q}$ is given by

$$
\begin{aligned}
\mathrm{OP}_{\mathrm{QT}}^{\mathrm{n}_{\mathrm{e}}=2 \mathrm{n}-2}= & 2+\frac{40}{3} \mathrm{n}^{3}-4 \mathrm{n}^{2}-\frac{10}{3} \mathrm{n}-6+2 *(2 \mathrm{n}-1) \\
& {\left[36 n^{2}+4 n-13+(2 n-2)^{2}\right.} \\
& -(12 n+4.5)(2 n-2)]+\widetilde{\mathrm{OP}_{T}} \\
= & \frac{232}{3} \mathrm{n}^{3}+8 n^{2}-\frac{76}{3} n-4+\widetilde{\mathrm{OP}_{T}} \mathrm{n}_{\mathrm{T}}=2 n-2 \quad(\mathrm{C}-98
\end{aligned}
$$

$$
\mathrm{OP}_{\mathrm{QT}}^{\mathrm{n}^{=n}}=2+\frac{40}{3} \mathrm{n}^{3}-4 \mathrm{n}^{2}-\frac{10}{3} n-6+2 *(n+1)
$$

$$
\left[36 n^{2}+4 n-13+n^{2}-(12 n+4.5) n\right]+\widetilde{O P}_{T}
$$

$$
\begin{equation*}
=\frac{190}{3} n^{3}+45 n^{2}-\frac{91}{3} n-30+\widetilde{O P}_{T}^{n^{e}} e^{=n} \tag{C-99}
\end{equation*}
$$

$$
\begin{align*}
\mathrm{OP}_{\mathrm{QP}}^{n_{e=n}}= & 8 n^{3}-4 n^{2}-4 n+2(n+1)\left[24 n^{2}-16 n\right. \\
& \left.-6 n^{2}\right]+\widetilde{O P}_{P} \\
= & 44 n^{3}-36 n+\widetilde{O P}_{P}^{n_{e}=n} . \tag{C-100}
\end{align*}
$$

Substituting (C-98), (C-99), (C-100) into (C-97), the $O P_{u Q}$ is given by
(a) for real eigenvalues

$$
\begin{align*}
O_{u Q}= & \frac{232}{3} n^{3}+8 n^{2}-\frac{76}{3} n-4+(2 n-2)(8 n+15) \\
& +\frac{190}{3} n^{3}+45 n^{2}-\frac{91}{3} n-30+n(8 n+15) \\
& +44 n^{3}-36 n+4 n \\
= & \frac{554}{3} n^{3}+77 n^{2}-\frac{176}{3} n-64 \tag{C-101}
\end{align*}
$$

(b) for complex eigenvalues

$$
\begin{align*}
O P_{\mathrm{uQ}}= & \frac{232}{3} n^{3}+8 n^{2}-\frac{76}{3} n-4+4 n-4 \\
& +\frac{190}{3} n^{3}+45 n^{2}-\frac{91}{3} n-30+2 n+44 n^{3}-36 n \\
= & \frac{554}{3} n^{3}+53 n^{2}-\frac{257}{3} n-38 . \tag{C-102}
\end{align*}
$$

5. OP count of subroutine HSOLVE

The OP count of subroutine HSOLVE is given by

$$
\begin{aligned}
O P_{L}= & 1+\sum_{k=1}^{n-1}\{(n-k+1)+2+4(n-k)+1\} \\
& \left.+n \sum_{k=1}^{n-1}[(2 n+3)-k]+1\right\} \\
= & \frac{3}{2} n^{3}+4 n^{2}+\frac{5}{2} n-3
\end{aligned}
$$

Total OP count required for solving the algebraic Riccati equation is given by

$$
\mathrm{OP}_{\text {Total }}=\mathrm{OP}_{\mathrm{UQ}}+\mathrm{OP}_{\mathrm{L}}
$$

(a) for real eigenvalues

$$
\mathrm{OP}_{\text {Total }}=\frac{1117}{6} n^{3}+81 n^{2}-\frac{337}{6} n-67
$$

(b) for complex eigenvalues

$$
O P_{\text {Total }}=\frac{1117}{6} n^{3}+57 n^{2}-\frac{499}{6} n-41
$$

In summary, we have the following theorem.

Theorem C. 4

If it is estimated that two $Q R$ iterations are needed for isolating one eigenvalue, then the operations count of the algorithm proposed in Chapter III for solving the algebraic Riccati equation is given by

$$
O P_{\max }=186.2 n^{3}+81 n^{2}-56.2 n-67
$$

and

$$
O P_{\min }=186.2 \mathrm{n}^{3}+57 \mathrm{n}^{2}-83.2 \mathrm{n}-41
$$

where
${ }^{O P}$ max means the larger $O P$ count assuming all real eigenvalues
$\mathrm{OP}_{\text {min }}$ means the smaller $O P$ count assuming all
complex eigenvalues
n is the order of the system.

APPENDIX D

MEASUREMENT ELIMINATION THEOREMS AND THE SYSTEM MODEL

APPENDIX D

MEASUREMENT ELIMINATION THEOREMS AND THE SYSTEM MODEL

In Appendix D, proofs of the theorems in Chapter III are given. A supporting Lemma is also described.

Proof of Equation (4.2.16)

$$
I=E\left[Y^{T} Q_{1} y+u^{T} R_{1} u=\operatorname{tr}\left[S \Gamma Q_{2} \Gamma^{T}+K^{T}\left(R_{1}+D_{1} T_{Q_{1}} D_{1}\right) K P\right]\right.
$$

As discussed in Chapter II, the solution of the regulator Riccati equation S, the covariance of the estimated scale X_{*} and the solution of the filter Riccati P satisfy following equations

$$
\begin{aligned}
& 0=-\mathrm{SA}_{*}-\mathrm{A}_{*} \mathrm{~T}_{\mathrm{S}}+\mathrm{SBR}_{*}^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{~S}-\mathrm{Q}_{*} \\
& 0=(\mathrm{A}+\mathrm{BK}) \mathrm{X}_{*}+\mathrm{X}_{*}(\mathrm{~A}+\mathrm{BK})^{T}+\mathrm{GR}_{2} \mathrm{G}^{\mathrm{T}} \\
& 0=\mathrm{A}_{* *} \mathrm{P}+\mathrm{PA}_{* *}{ }^{T}+\Gamma \mathrm{Q}_{2 *} \Gamma^{T}-\mathrm{PC}_{2} \mathrm{~T}_{2}{ }^{-1} \mathrm{C}_{2} \mathrm{P},
\end{aligned}
$$

where the definition of matrices is given in Chapter II. With these three equations, the following equation is established

$$
\begin{aligned}
& \Omega=0=\left(-\mathrm{SA}_{*}-\mathrm{A}_{*} \mathrm{~T}^{\mathrm{S}}+\mathrm{SBR}_{*}{ }^{-1} \mathrm{~B}^{\mathrm{T}} \mathrm{~S}-\mathrm{Q}_{*}\right) \mathrm{X}_{*} \\
& +\left(-S A_{*}-A_{*} T_{S}+S B R_{*}^{-1} B^{T} S-Q_{*}\right) P \\
& +S\left[(A+B K) X_{*}+X_{*}(A+B K)^{T}+G R_{2} G^{T}\right] \\
& +\mathrm{S}\left[\mathrm{~A}_{* *} \mathrm{P}+\mathrm{PA} * * T+\Gamma Q_{2}{ }^{T} \Gamma^{\mathrm{T}}-\mathrm{PC}_{2} \mathrm{~T}_{2}{ }^{-1} \mathrm{C}_{2} \mathrm{P}\right] \quad .
\end{aligned}
$$

After some matrix manipulation, the above equation becomes

$$
\begin{aligned}
\Omega=0= & -S B K P-A^{T} S X_{*}-C_{1}{ }^{T} Q_{1} C_{1} X_{*} \\
& -C_{1}{ }^{T} Q_{1} D_{1} K X_{*}-A^{T} S P-C_{1}{ }^{T} Q_{1} C_{1} P \\
& -C_{1}{ }^{T} Q_{1} D_{1} K P+S X_{*} A^{T}+S X_{*} K^{T} B^{T} \\
& +S P A A^{T}+S \Gamma Q_{2} \Gamma .
\end{aligned}
$$

The expectation of the integrand is then given by

$$
\begin{aligned}
I & =E\left[Y^{T} Q_{1} Y+u^{T} R_{1} u\right] \\
& =\operatorname{tr}\left[Q_{1} Y+R_{1} U\right] \\
& =\operatorname{tr}\left[Q_{1} Y+R_{1} U+\Omega\right]
\end{aligned}
$$

where $\quad Y=E\left[Y Y^{T}\right], U=E\left[u u^{T}\right]$.

Substituting equation of Y, U from Chapter II and Ω from above, the quantity I is given by

$$
\begin{aligned}
& I=\operatorname{tr}\left[Q_{1} C_{1} X_{*} C_{1}^{T}+Q_{1} C_{1} P C_{1}{ }^{T}+Q_{1} C_{1} X_{*} K^{T} D_{1}{ }^{T}\right. \\
& +Q_{1} D_{1} K X_{*} C_{1}^{T}+Q_{1} D_{1} K X_{*} K^{T} D_{1}^{T}+R_{1} K X_{*} K^{T} \\
& -\operatorname{SBKP}-A^{T} S_{X_{*}}-C_{1}{ }^{T} Q_{1} C_{1} X_{*}-C_{1}{ }^{T} Q_{1} D_{1} K X_{*} \\
& -A^{T} S P-C_{1}{ }^{T} Q_{1} C_{1} P-C_{1}{ }^{T} Q_{1} D_{1} K P+S X_{*} A^{T} \\
& \left.+S X_{*} K^{T} B^{T}+S P A{ }^{T}+S \Gamma Q_{2} \Gamma^{T}\right] \\
& =\operatorname{tr}\left[-S B K P-A^{T} S P-C_{1}{ }^{T} Q_{1} D_{1} K P+S P A{ }^{T}+S \Gamma Q_{2} \Gamma^{T}\right] \\
& =\operatorname{tr}\left[S \Gamma Q_{2} \Gamma^{T}-C_{1}{ }^{T} Q_{1} D_{1} K P-S B K P\right],
\end{aligned}
$$

where the equality $\operatorname{tr}[A B]=\operatorname{tr}[B A]$ was used to simplify the above result. Also, since $-C_{1}{ }^{T} Q_{1} D_{1}-S B=K^{T} R_{*}$, the above equation reduced to the form

$$
\begin{aligned}
I= & E\left[Y^{T} Q_{1} y+u^{T} R_{1} u\right] \\
& =\operatorname{tr}\left[S \Gamma Q_{2} \Gamma^{T}+K^{T}\left(R_{1}+D_{1}{ }^{T} Q_{1} D_{1}\right) K P\right] \\
& =
\end{aligned}
$$

Lemma D. 1

If the matrix U is symmetric positive semi-definite, then, the matrix product of K and U
is also symmetric positive semi-definite, i.e.,

$$
K U K^{T} \geq 0 \text { if } U \geq 0
$$

Proof:

For the symmetric property, take the transpose of $K_{U K}{ }^{T}$ and use the fact that U is symmetric. The result is given by

$$
\left(K U K^{T}\right)^{T}=K U^{T} K^{T}=K U K^{T}
$$

which is symmetric.

For the positive semi-definite property, consider the following. Since $U \geq 0$, there exists a matrix V such that $\mathrm{U}=\mathrm{VV}$. . Then

$$
K U K^{T}=K V V^{T} K^{T}=(K V)(K V)^{T}
$$

which is positive semi-definite.

With the above lemma, an important theorem of the measurement elimination procedure can then be established.

Theorem D. 1

Let $P_{i}, P_{i k}$ be the covariance of the state estimation error without $i^{\text {th }}$ and without $i^{\text {th }}$ and $k^{\text {th }}$ measurements respectively. These covariance matrices satisfy the following algebraic Riccati equations

$$
\begin{aligned}
& A_{* *} P_{i}+P_{i} A_{* *} T+\Gamma Q_{2 *} \Gamma^{T}-P_{i} R_{i} P_{i}=0 \\
& A_{* *} P_{i k}+P_{i k} A_{* *}^{T}+\Gamma Q_{2} \Gamma^{T}-P_{i k} R_{i k} P_{i k}=0 .
\end{aligned}
$$

The matrices in above equations are defined in equations (2.3.7) of Chapter II except that the R_{i} and $R_{i k}$ are the term $\mathrm{C}_{2}{ }^{\mathrm{T}} \mathrm{R}_{2} *^{-1} \mathrm{C}_{2}$ with $i^{\text {th }}$ and with $i^{\text {th }}$ and $k^{\text {th }}$ measurements eliminated. Also, assuming that the estimation error dynamic equation is asymptotically stable, i.e., the eigenvalues of $A_{* *}-P_{i k} R_{i k}$ and $A_{* *}-P_{i} R_{i}$ are all in the open left half plane.

Then

$$
\Delta \mathrm{P}=\mathrm{P}_{i k}-\mathrm{P}_{\mathrm{i}} \geq 0
$$

if

$$
\Delta R=R_{i}-R_{i k} \geq 0
$$

Also,

$$
\left(\operatorname{rms} \widetilde{x}_{j}\right)_{i k}-\left(\operatorname{rms} \widetilde{x}_{j}\right)_{i} \geq 0
$$

if

$$
\Delta R=R_{i}-R_{i k} \geq 0
$$

where the subscript j means the $j^{\text {th }}$ element of the error state vector \widetilde{x} and the subscripts $i k$ and i mean that the $i^{\text {th }}$ and $k^{\text {th }}$ and that the $i^{\text {th }}$ measurements are eliminated.

Proof:

Subtracting the equations for P_{i} and $P_{i k}$, the resulting equation is given by

$$
\mathrm{A}_{* *} \Delta \mathrm{P}+\Delta \mathrm{PA}_{* *} \mathrm{~T}^{\mathrm{T}}-\mathrm{P}_{i k} \mathrm{R}_{i k} \mathrm{P}_{i k}+\mathrm{P}_{i} \mathrm{R}_{\mathrm{i}} \mathrm{P}_{i}=0
$$

Using the equations of ΔR and ΔP, the above equation becomes

$$
\begin{aligned}
0= & A_{* *} \Delta P+\Delta P A_{* *} T-P_{i k} R_{i k}\left(\Delta P+R_{i}\right) \\
& +P_{i} R_{i} P_{i}-\Delta P R_{i k} P_{i k}+\Delta P_{i k} P_{i k} \\
= & \left(A_{* *}-P_{i k} R_{i k}\right) \Delta P+\Delta P\left(A_{* *}-P_{i k} R_{i k}\right)^{T} \\
& -P_{i k} R_{i k} P_{i}+P_{i} R_{i} P_{i}+\Delta P_{i k} P_{i k} \\
= & \left(A_{* *}-P_{i k} R_{i k}\right) \Delta P+\Delta P\left(A_{* *}-P_{i k} R_{i k}\right)^{T} \\
& -P_{i k} R_{i k} P_{i}+P_{i} \Delta R P_{i}+P_{i} R_{i k} P_{i}+\Delta P R_{i k} P_{i k}
\end{aligned}
$$

So that

$$
\begin{aligned}
0= & \left(A_{* *}-P_{i k} R_{i k}\right) \Delta P+\Delta P\left(A_{* *}-P_{i k} R_{i k}\right)^{T} \\
& +\Delta P R_{i k} \Delta P+P_{i} \Delta R P_{i} .
\end{aligned}
$$

Since $R_{i k} \geq 0$, from lemma $D_{1} 1, \Delta P R_{i k} \Delta P+P_{i} \Delta R{ }_{i} \geq 0$ if $\Delta R \geq 0$. Also, from theorem B. 3,

$$
\Delta \mathrm{P} \geq 0
$$

if

$$
\left(A_{* *}-P_{i k} R_{i k}\right)
$$

is asymptotically stable. The result

$$
\left(\operatorname{rms} \widetilde{x}_{j}\right)_{i k}-\left(\operatorname{rms} \widetilde{x}_{j}\right)_{i} \geq 0
$$

follows immediately.
—_ Q.E.D.

Theorem D. 2

Under the same condition as in theorem D.1, the following results are concluded.

If

$$
\Delta R=R_{i}-R_{i k} \geq 0
$$

then
a. $\quad \widetilde{\mathrm{U}}_{i k}-\widetilde{\mathrm{U}}_{i} \geq 0$
and
$\left(r m s \widetilde{u}_{j}\right)_{i k}-\left(r m s \widetilde{u}_{j}\right)_{i} \geq 0$
b. $\quad \widetilde{Y}_{i k}-\widetilde{Y}_{i} \geq 0$
and
$\left(r m s \widetilde{Y}_{j}\right)_{i k}-\left(r m s \widetilde{Y}_{j}\right)_{i} \geq 0$
c. $\quad I_{i k}-I_{i} \geq 0$,
where subscripts $j, i k$, and i have the meaning
as in the above theorem and $\widetilde{U}_{i}, \widetilde{Y}_{i}, \widetilde{u}_{j}$,
\widetilde{Y}_{j} etc. are defined in equations (4.2.10)
through (4.2.16) of Chapter IV.

Proof:

From the theorem D.1, if $\Delta R \geq 0$, then $\Delta P \geq 0$. The following results follows.

$$
\begin{aligned}
\Delta U_{i k}-\Delta U_{i} & =K\left(P_{i k}-P_{i}\right) K^{T} \\
& =K \Delta P K^{T} \geq 0
\end{aligned}
$$

$$
\Delta Y_{i k}-\Delta Y_{i}=\left(C_{1}+D_{1} K\right) \Delta P\left(C_{1}+D_{1} K\right)^{T} \geq 0
$$

The result

$$
\left(\operatorname{rms} \Delta u_{j}\right)_{i k}-\left(r m s \Delta u_{j}\right)_{i} \geq 0
$$

and

$$
\left(\text { rms } \Delta y_{j}\right)_{i k}-\left(\text { rms } \Delta y_{j}\right)_{i k} \geq 0
$$

follow immediately.

$$
I_{i k}-I_{i}=\operatorname{tr}\left[R^{*} \Delta P\right]
$$

where

$$
R^{*}=K^{T}\left(R_{1}+D_{1} T_{Q_{1}} D_{1}\right) K \geq 0
$$

Since $R^{*} \geq 0$, there exists a matrix L such that $R^{*}=L^{T}$, the quantity $I_{i k}-I_{i}$ is given by

$$
\begin{aligned}
I_{i k}-I_{i} & =\operatorname{tr}\left[R^{*} \Delta P\right] \\
& =\operatorname{tr}\left[L^{T} L \Delta P\right] \\
& =\operatorname{tr}\left[L^{T} \Delta P L\right]
\end{aligned}
$$

Since

$$
\Delta \mathrm{P} \geq 0, \mathrm{~L}^{\mathrm{T}} \Delta \mathrm{PL} \geq 0,
$$

so that,

$$
I_{i k}-I_{i}=\operatorname{tr}\left[L^{T} \Delta P L\right] \geq 0 .
$$

Q.E.D.

The System Model

The model of the aircraft used is given by (see equation (4.3.3))

$$
\begin{aligned}
\dot{x} & =A x+B u+\Gamma W \\
y & =C_{1} x+D_{1} u \\
z & =C_{2} x+D_{2} u+v
\end{aligned}
$$

where

$$
\begin{aligned}
x^{T} & =\left[p, r, v, \phi, v_{0}, v_{x}, u_{y}, w_{y}\right] \\
u^{T} & =[\delta a, \delta r] \\
y^{T} & =\left[a_{y}, r, f_{t}\right] \\
z^{T} & =\left[p, r, \phi, a_{t y}, a_{y}, f_{t}, v, v-v_{o}\right]
\end{aligned}
$$

The notation has the following meaning:

$$
\begin{aligned}
\mathrm{p}= & \text { roll rate, rad } / \mathrm{s} \\
\mathrm{r}= & \text { yaw rate, rad /s } \\
\mathrm{v}= & \text { lateral aircraft velocity, } \mathrm{ft} / \mathrm{s} \\
\phi= & \text { roll angle, rad } \\
\mathrm{v}_{\mathrm{o}}= & \text { lateral gust velocity, ft/s } \\
\mathrm{v}_{\mathrm{x}}= & \text { longitudinal gradient of the lateral } \\
& \text { velocity, sec }{ }^{-1} \\
\mathrm{u}_{\mathrm{y}}= & \text { lateral gradient of the longitudinal } \\
& \text { velocity, sec }-1
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{w}_{\mathrm{Y}}= & \text { lateral gradient of normal gust } \\
& \text { velocity, sec }{ }^{-1} \\
\delta \mathrm{a}= & \text { aileron deflection, rad } \\
\delta r= & \text { rudder deflection, rad } \\
\mathrm{a}_{\mathrm{Y}}= & \text { lateral acceleration per unit } \\
& \text { gravitational acceleration } \\
\dot{r}= & \text { yaw acceleration (rad/sec }{ }^{2} \text {) } \\
\mathrm{f}_{\mathrm{t}}= & \text { side force on vertical tail per unit } \\
& \text { weight of the aircraft } \\
\mathrm{a}_{\mathrm{ty}}= & \text { tail side acceleration per unit } \\
& \text { gravitation acceleration } \\
\mathrm{v}-\mathrm{v}_{\mathrm{o}}= & \text { the relative side velocity of the } \\
& \text { aircraft with respect to air }
\end{aligned}
$$

The matrices are given as follows.

APPENDIX E

USER'S MANUAL

I. THEORY OF THE LINEAR QUADRATIC REGULATOR AND STATIONARY KALMAN FILTER

I. 1 Introduction

In part I, the basic theory of the linear quadratic regulator and the stationary Kalman filter will be presented. These problems are ciassified into five catagories:

1. The control problem without process noise,
2. The control problem with process noise,
3. The state estimation problem,
4. The stochastic control problem, and
5. The stationary behavior of the system with zero control.

The solution of the five problems stated above will be discussed sequentially in the following.
In this report, a linear time-invariant system will be assumed. Mathematically, the system equations can be formulated as follows:

$$
\begin{align*}
& \dot{x}=A x+B u+\Gamma w \\
& y=C_{1} x+D_{1} u \tag{1.1}
\end{align*}
$$

where $\quad x \quad$ system state, $n \times 1$ vector
u control variable, $\& \times 1$ vector
w process noise, $p \times 1$ vector
y output, $\mathrm{m} \times 1$ vector
2 measurement, $q \times 1$ vector
v measurement noise, $q \times 1$ vector
A system dynamics matrix, $n \times n$ matrix
B control distribution matrix, $n \times \&$ matrix
Γ process naise distribution matrix, $n \times p$ matrix
C_{1} output scaling matrix for state, $m \times n$ matrix
D_{1} output scaling matrix for control, $m \times \&$ matrix
C_{2}
measurement scaling matrix for state, $q \times n$ matrix
D_{2}
measurement scaling matrix for control, $q \times \ell$
measurement coupling matrix for process noise, $q \times p$ matrix.
The power spectral densities of the zero mean, white, process and measurement noise are Q_{2} and R_{2} respectively.
I. 2 The Control Problem without Process Noise

The problem is formulated as follows:

$$
\begin{equation*}
\operatorname{Min}_{u}^{\operatorname{Min}} J=\frac{1}{2} \int_{0}^{\infty}\left(y^{\top} Q_{1} y+u^{\top} R_{1} u\right) d t \tag{1.2}
\end{equation*}
$$

subject to constraints of the system and the output equations

$$
\begin{align*}
& \dot{x}=A x+B u \\
& y=C_{1} x+D_{q} u \tag{1.3}
\end{align*}
$$

the matrices Q_{1} and $R_{\boldsymbol{p}}$ are assumed to be symmetric and positive definite.
It is shown in the thesis (1) that the solution of the problem defined by equations (1.2) and (1.3) is given by

$$
u=k_{1} x
$$

where $\quad K_{i}=C_{*}-R_{*}{ }^{-1} B_{S}{ }_{S}$
and the matrix S satisfies the algebraic Riccati equation

$$
0=-S A_{*}-A_{*}^{T_{S}} S+S B R_{*}^{-T_{B} T_{S}-Q_{*}, ~}
$$

The remaining matrices are defined by

$$
\begin{align*}
& R_{t}=D_{q}{ }^{\top} Q_{q} D_{q}+R_{q} \\
& C_{*}=-R_{*}{ }^{-1} D_{1}{ }^{T} O_{1} C_{1} \tag{1.5}\\
& A_{*}=A+B C_{*} \\
& Q_{*}=C_{1}^{\top} Q_{1} C_{1}-C_{*}^{\top} R_{*} C_{*} \quad .
\end{align*}
$$

The closed loop dynamic equation is

$$
\begin{equation*}
\dot{x}=\left(A+B K_{1}\right) x \tag{1.6}
\end{equation*}
$$

1.3 The Control Problem with Process Noise

The problem is formulated as follows:

$$
\begin{equation*}
\min _{u} J=E\left\{\frac{1}{2} \int_{0}^{\infty}\left(y^{\top} Q_{1} y+u^{\top} R_{1} u\right) d t\right\} \tag{1.7}
\end{equation*}
$$

subject to constraints of the system and the output equations

$$
\begin{align*}
& \dot{x}=A x+B u+\Gamma w \\
& y=C_{1} x+D_{1} u \tag{1.8}
\end{align*}
$$

Again, the matrices Q_{1} and R_{1} are assumed to be symmetric and positive definite.
Davis and others ($2,3,4$) have shown that the solution of the problem deftined by equations (1.7) and (1.8) is the same as the solution given in section 1.2 which is rewritten here:
$u=K_{q} x$
where
$K_{1}=C_{1}-R_{*}^{-1} B^{\top} S$
and the matrix 5 satisfies the algebraic Riccati equation
$0=-S A_{*}-A_{*}{ }^{\top} S+S B R_{*}^{-1} B^{\top} S-Q_{*}$

The remaining matrices are defined in equation (1.5). The closed loop dynamics equation is given by

$$
\begin{equation*}
\dot{x}=\left(A+B K_{q}\right) x+\Gamma w \tag{1.10}
\end{equation*}
$$

1
The statistical properties are described by the following:
a. The state covariance matrix is defined as
$x=E\left\{x(t) x^{\top}(t)\right\} \quad$.

It is shown in the thesis (1), that X satisfies the following Lyapunov equation for the stationary case:

$$
\begin{equation*}
0=(A+B K) X+X(A+B K)^{\top}+\Gamma Q_{2} T^{\top} \text {. } \tag{1.12}
\end{equation*}
$$

The rms response of the state is given by the square root of the diagonal elements of x.
b. The control covariance matrix is defined as

$$
\begin{equation*}
U=E\left\{u(t) u^{T}(t)\right\} \tag{1.13}
\end{equation*}
$$

which is given by
$U=K_{q} X_{1}{ }^{\top} \quad$.
c. The output covariance matrix is defined as
$y=E\left\{y(t) y^{\top}(t)\right\}$
and is given by
$Y=\left(C_{1}+o_{1} K_{1}\right) \times\left(C_{1}+D_{1} K_{1}\right)^{\top} \quad$.

I. 4 The State Estimation Problem.

The problem is formulated as follows:

$$
\begin{equation*}
\max _{x} J_{1}=p[x(t) \mid z(\tau), \tau \leq t] \tag{1.17}
\end{equation*}
$$

where $p[x \mid 2]$ is the conditional probability of the system state, subject to constraints of the system and the measurement equations

$$
\begin{align*}
& \dot{x}=A x+B u+I w \tag{1.18}\\
& z=C_{2} x+O_{2} u+v+O w
\end{align*}
$$

It is shown by Sage and Melsa (5) that, if the conditioned probability function and the joint density function of x and z are Gaussian and if w and v are causally related to z, maximizing the conditional probability function, $p[x \mid z]$, is equivalent to minimizing another performance criteria (for the stationary case)

$$
\begin{equation*}
\min _{w, v} J=E\left\{\frac{1}{2} \int_{-}^{t}\left(w^{\top} Q_{2}^{-1} w+v^{\top} R_{2}^{-1} v\right) d t\right\} \tag{1.1}
\end{equation*}
$$

The solution of the probiem defined by equations (1.18) and (1.19) is given by the stationary Kalman filter (see thesis (1)).

The dynamic equation of the stationary kalman filter

$$
\dot{x}_{*}=A x_{*}+8 u-K_{2}\left(z-C_{2} x_{*}-D_{2} u\right)
$$

The filter gain

$$
\begin{equation*}
K_{2}=-P C_{2}^{T_{R_{2 *}^{*}}-1}-\Gamma Q_{2} \theta^{\top} R_{2^{*}}-1 \tag{1.20}
\end{equation*}
$$

and the matrix P satisfies the algebraic Riccati equation

$$
0=A_{* *} P+P A_{* *}^{\top}+\Gamma Q_{2 *} I^{\top}-P C_{2}^{\top} R_{2^{*}}{ }^{-1} C_{2} P
$$

x_{*} is the filtered state estimate and the remaining matrices are defined by

$$
\begin{align*}
& R_{2^{*}}=R_{2}+\theta Q_{2} \theta^{T} \\
& A_{* *}=A-\Gamma Q_{2} \theta^{T} R_{2^{*}}-1 C_{2} \tag{1.21}\\
& Q_{2^{*}}=Q_{2}-Q_{2} \theta^{T} R_{2^{*}}-T_{2} \theta Q_{2}
\end{align*}
$$

The state estimation error covariance matrix is defined by

$$
\begin{equation*}
\bar{x}=E\left\{\bar{x}(t) \bar{x}^{-\top}(t)\right\}, \tag{1.23}
\end{equation*}
$$

where the estimation error $x=x-x_{*}$.
It is shown in the thesis (1), that the state estimation error covariance matrix for the stationary case is given by the solution of the algebraic Riccati equation in equation (1.20), i.e.,

$$
\begin{equation*}
\bar{x}=p \quad . \tag{1.24}
\end{equation*}
$$

1.5 The Stochastic Control Problem

The stochastic control problem is a combination of problems stated in section I.3 and I.4. The problem is formulated as follows:

Find u as a function of $z(\tau), \tau \leq t$, to minimize

$$
\begin{equation*}
v=E\left\{\frac{1}{2}:_{0}^{\infty}\left(y^{\top} Q_{1} y+u^{\top} R_{1} u\right) d t\right\}, \tag{1.25}
\end{equation*}
$$

subject to constraints of the system, output and measurement equations

$$
\begin{align*}
& \dot{x}=A x+B u+\Gamma w \\
& y=C_{1} x+D_{1} u \\
& z=C_{2} x+D_{2} u+v+\theta w .
\end{align*}
$$

According to the separation theorem ($6,7,8$), the problem defined by equations (1.25) and (1.26) can be treated as two separate problems: 1) the optimal control problem (section 1.3), and 2) the state estimation problem (section [.4). The solution is given by a combination of the solutions of the optimal control problem and the state estimation problem:

The stationary Kalman filter implementation dynamic equation
$\dot{x}_{*}=A_{1} x_{*}-K_{2} z$
with
$A_{1}=A+B K_{1}+K_{2} C_{2}+K_{2} D_{2} K_{1}$
The controller

$$
u=x_{1} x_{*}
$$

with the control gain

$$
K_{1}=C_{*}-R_{*}^{-1} B_{S} T_{S}
$$

where S satisfies the algebraic Riccati equation
$0=-S A_{*}-A_{*}{ }^{\top} S+S 8 R_{*}^{-1} B^{\top} S-Q_{*}$
and the filter gain
$K_{2}=-P C_{2}^{\top} R_{2^{*}}-1-\Gamma Q_{2}^{{ }^{\top} \Theta^{\top} R_{2^{*}}{ }^{-1}}$
where P satisfies the algebraic Riccati equation
$0=A_{* *}{ }^{P}+P A_{* *}{ }^{\top}+\Gamma Q_{2 \star^{r^{\prime}}}-P C_{2}{ }^{\top} R_{2 *}{ }^{-1} C_{2}{ }^{P}$

The definition of the matrices in equation (1.27) are given in equations (1.5) and (1.21).
The statistical properties are described by the following:
a. It is shown in the thesis (1), that the covariance matrix of the estimated state
$x_{*}=E\left\{x_{*}(t) x_{*}{ }^{\top}(t)\right\}$
is given by the solution of the following Lyapunov equation
$0=\left(A+B K_{1}\right) X_{*}+X_{*}\left(A+B K_{1}\right)^{\top}+K_{2}\left(R_{2}+\theta Q_{2} \theta^{\top}\right) K_{2}^{\top}$
b. It is also shown in the thesis (!) that the covariance matrix of the actual state is given by

$$
\begin{align*}
x & =E\left\{x(t) x^{\top}(t)\right\} \tag{1.30}\\
& =x_{\star}+p .
\end{align*}
$$

c. The covariance matrix of the controi is given by

$$
\begin{align*}
U & =E\left\{u(t) u^{\top}(t)\right\} \tag{1.31}\\
& =K_{1} x_{*} K_{1}^{\top}
\end{align*}
$$

d. The covariance matrix of the output is given by

$$
\begin{align*}
Y & =E\left\{y(t) y^{\top}(t)\right\} \tag{1.32}\\
& =\left(C_{1}+D_{1} K_{1}\right) X_{*}\left(C_{1}+D_{1} K_{1}\right)^{T}+C_{1} P C_{1}^{\top}
\end{align*}
$$

1.6 Stationary Response of the System with Zero Control

The system equation and the output with zero control is given by

$$
\begin{align*}
& \dot{x}=A x+I w \tag{1.33}\\
& y=C_{1} x
\end{align*}
$$

The statistical properties are described by the following:
a. The covariance matrix of the system state

$$
\begin{equation*}
x=E\left\{x(t) x^{\top}(t)\right\} \tag{1.34}
\end{equation*}
$$

is given by the solution of the following Lyapunov equation for the stationary case

$$
\begin{equation*}
0=A X+X A^{\top}+\Gamma Q_{2} I^{\top} \tag{1.35}
\end{equation*}
$$

b. The covariance matrix of the output is given by

$$
\begin{align*}
Y & =E\left\{y(t) y^{\top}(t)\right\} \\
& =C_{q} X C_{1}^{\top} \tag{1.36}
\end{align*}
$$

II. LOGICAL CONSTRUCTION OF THE ALGORITHM AND DESCRIPTION OF THE SUBROUTINES

II. 1 Introduction

From the discussion in part I, we know that in order to solve the problems of the linear quadratic regulator and the stationary Kalman filter, the algebraic Riceati equations (1.4), (1.9), (1.20) and (1.27) have to be solved. Many authors have suggested methods to solve the algebraic Riccati equation. One of the methods that has been most successful is the eigenvector decomposition method first proposed by MacFarlane (9) and by Potter (10). In this method, the eigenvalues and the corresponding eigenvectors of the Euler-Lagrange systen are determined. The eigenvectors associated with eigenvalues whose real parts are all of the same sign are partitioned into two matrices. These matrices form a set of linear equations which yield the solution of the algebraic Riccati equation.

The success of this method hinges on the requirement that the partitioned eigenvector matrices be nonsingular. Unfortunately, in the case when one or more of the eigenvalues are repeated, the resulting matrices may be singular. The singularity can be removed by using the generalized eigenvectors. However, this method is not entirely satisfactory, because when the eigenvalues are nearly equal, the partitioned eigenvector matrices are not singular, but they remain ill-conditioned. This ill-conditioning can lead to errors in the computed solution. Also, small perturbations in the system matrix elements can lead to drastic changes in the partitioned eigenvector matrices, which, in turn, causes poor numerical stability.

In order to alleviate these difficulties, the method presented in this report is proposed. In this method, the Hamiltonian matrix is transfomed into a quasi-upper triangular matrix, such that the lower $n \times n$ comer of the matrix contains all the positive (negative) eigenvalues for the regulator (filter) problem. The highly stable $Q R$ algorithm is used to accomplish this orthogonal similarity transfomation. The orthogonal matrix is then partitioned into four $n \times n$ matrices. These matrices form a set of linear equations which yield the solution of the algebraic Riccati equation.

In section II.2, the logical construction of the proposed algorithm will be presented. The supporting theorems of the proposed algorithan will be given without proof. Such proof is found in references 11, 12, 13. In section 11.3, a description of the main program and subroutines will be presented.
11.2 Proposed Algorithm for Solving the Algebraic Riccati Equation.

The proposed algorithm for solving the algebraic Riccati equation is given by the following

steps:

1. Determine the Hamiltonian matrix H of the Euler-Lagrange system.
a. For the linear quadratic regulator, the resulting algebraic Riccati equation (1.4) is in the form

$$
\begin{equation*}
S A_{*}+A_{*} T_{S}+Q_{*}-S B R_{*}^{-1} B^{T} S=0 \tag{2.1}
\end{equation*}
$$

The corresponding Hamiltonian matrix is given by

$$
H=\left[\begin{array}{cc}
A_{*} & -B R_{*}^{-1} B^{T} \tag{2.2}\\
-Q_{*} & -A_{*}^{T}
\end{array}\right]
$$

b. For the stationary Kalman filter, the resulting algebraic Riccati equation (1.20) is in the form

$$
\begin{equation*}
A_{\pi+} P+P A_{* \pi}^{T}+\Gamma Q_{2^{\pi}} \Gamma^{T}-P C_{2}^{T} R_{2^{*}}^{-1} C_{2} P=0 \tag{2.3}
\end{equation*}
$$

The corresponding Hamiltontan matrix is given by

$$
H=\left[\begin{array}{ll}
A_{* *} & \Gamma Q_{2 *} r^{T} \tag{2.4}\\
C_{2}^{\top} R_{2 *}^{-1} C_{2} & -A_{* *}^{T}
\end{array}\right]
$$

2. Determine the eigenvalues of Hamiltonian matrix.

The $2 n$ eigenvalues of H can be found by the following procedure:
a. Use the Householder reduction (17) to transform H into upper Hessenberg form. This method transforms H into the upper Hessenberg matrix H^{\prime} by the reduction

$$
\begin{equation*}
H^{\prime}=Q H Q^{T} \tag{2.5}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
Q & =Q_{n-2}, Q_{n-3} \cdots Q_{1}, \text { with } Q_{i} \text { of the form } \\
Q_{i} & =1-\frac{u_{i} u_{i}^{T}}{B_{i}}
\end{aligned}
$$

b. Use the highly stable $\cap R$ algorithm (18) with imolicit double shifts of origin to transform the upper Hessenberg matrix H^{\prime} into the quasi-upper triangular matrix H^{n}. The QR algorithm with double shift of origin is described as follows:

At the j iteration of the algorithm,

$$
\begin{equation*}
H_{j+2}=Q_{j} H_{j} Q_{j}^{\top} \tag{2.7}
\end{equation*}
$$

given $R_{j}=Q_{j}\left(H_{j}-k_{j} I\right)\left(H_{j}-k_{j+1} I\right)$
where $\quad R_{j}$ is \bar{a} triangular matrix and Q_{j} is an orthogonal matrix. The matrices R_{j} and Q_{j} are again determined by Householder's algorithm. In the program, the algorithm is implemented in implicit form where the first Householder transformation is followed by a Hessenburg reduction (see 12.).
3. Isolate the eigenvalues with proper sign of real part in lower right-hand corner. Use the QR algorithm with implicit double shifts of origin at the eigenvalues previousiy computed from step 2 to transform the Hamiltonian matrix, H, into the form

with the orthogonal similarity transformation matrix

and U_{22} containing all the eigenvalues with positive (negative) real part for regulator (filter) problem. In cases when any undesired zero sub-diagonal elements appear and/or any undesired eigenvalues are isolated, an arbitrary Householder type similarity transformation is performed to remove the undesired zero sub-diagonal elements and/or the undesired eigenvaiues.
4. Solve the linear system of equations.
a. The solution of the regulator Riccati equation (2.1) is given by

$$
\begin{equation*}
S=Q_{11}^{-1} Q_{12} \tag{2.11}
\end{equation*}
$$

b. The solution of filter Riccati equation (2.3) is given by

$$
\begin{equation*}
P=Q_{12}{ }^{-1} Q_{11} \tag{2.12}
\end{equation*}
$$

The matrices Q_{11} and Q_{12} are nonsingular if the systems associated with equations (2.1) and (2.3) are controllable and observable.

Once the solution of the algebraic Riccati equation (2.11) and (2.12) are found, the calculation of the control gain, filter gain, closed loop dynamics matrix, etc. are simple matrix computations.

II. 3 Description of main program OPTIMAL and Subroutines

In this section, the main program OPTIMAL and the following fifteen subroutines are described:

1. READM
2. PRINT
3. PREVAL
4. CONTRL
5. FILTER
6. RICCAT
7. $Q R$
8. HESS
9. SHIFT2
10. PERMUT
11. TRIA
12. HSOLVE
13. EIGVC
14. SOLYAP
15. LYAPUN
16. Main program OPTIMAL

The main program carries out input, output, and also drives the subroutines to compute solutions.

1. Subroutine READM

This subroutine reads in necessary information to set up an n_{1} by n_{2} matrix, then prints it out.

2. Subroutine PRINT

This subroutine prints out a given n_{1} by n_{2} matrix.

3. Subroutine PREVAL

This subroutine prints out the given eigenvalues and the corresponding nomalized eigenvectors, if destred.

4. Subroutine CONTRL

This subroutine takes the given matrices to set up the regulator Hamiltonian matrix of equation (2.2). The proper subroutines are called in this program to solve the Riccati equation (2.1). Also, the control gain is computed.


```
    SHGROITINE SONTRL(A, 3, S,D,2,R,S,GYIN,H,P,VAL,N, H,L,ND,ND2,NDM,
    NNS,N,D)
    TE!&ENSION {(ND,ND),3(NJ,ND), C(NO1.ND),D(ND1.NDC),2(ND.NDI ,
    IR(ND,ND),S(ND,ND),SAIN(NDL,ND),H(ND2,ND2),P(ND2,ND2),V4L(ND2) .
    lN(ND2)
        -コMDCEX VAL
    3施 RHE RESULTTRR PRJ3LEM
```



```
        Y=C*X+つ*J
    NIHH TJADRATIE PERPORMANEE ERIIERIJN
```



```
    INPUI..:
    1...
        A,B,C.D.2.R, ARE HATRISES DEFINED HBONE NIIH DIAENSIONS
```



```
    2.
        N, M.L.DIMENSION OE MATRIX
        ND.NOA.NDL ARE SEELIRED DIMENSIONS ASSJII4IED .IIH N, M,L
    3... ND2=ND*? DE=LARED DTMENSIJN OE MATRTこES H,P,VAC,N
        ID=] .D 14TRIX [S E2. ZERJ . OHERNISE =l
    Juspus...
        SNNNN :MAIRIX , SOLUTION OF RIENAII EXJITIJN
        SAIN=&*N ARMRIX, CONROL GAIN ,J=34IN*X
        VAL= FIRST N ELEMENTS 1RE EISENNALUES( ONSSD LJOP)
            CHSI N ELEMENSS IRE YORKINS SPAEE
    SOAE NDIES....
        3.3,C,D. NILL 3E SMVED
        2,R, NILL 3E DESTROYED
        H.P,A ARE WSRKINS SPIEE
    SH3RJJ:INES REQJ.-HSDVV,RIENAT, 29,HESS.SHIEI2. RIA, PERMJS
```


5．Subroutine FILTER

This subroutine takes the given matrices to set up the filter Hamiltonian matrix of equa－ tion（2．4）．The proper subroutines are called in this program to solve the Riccati equation （2．3）．Also，the filter aain is comouted．

6. Subroutine RICCAT

This subroutine takes the given Hamiltonian matrix to call the proper subroutines for performing the Riccati equation solution. The Hamiltonian matrix is transformed into the form given by equation (2.9). The solution of the corresponding algebraic Ricsati equation is computed corresponding to equation (2.11) or equation (2.12).

7. Subroutine QR

This subroutine performs the quasi-upper triangularization of the given matrix by using the $Q R$ algorithm with implicit double shifts of origin. Knowledge of the eigenvalues can be given or not. Also, the number of eigenvalues to be isolated is specified by the calling program. The order of the computed eigenvalues corresponds to the ordering of the isolated diagonal blocks in the resuiting quasi-upper triangular matrix. When a priori eigenvalue information is given, this ordering is forced to be the same as the input eigenvalues.

8. Subroutine HESS

This subroutine performs the orthogonal similarity transformation to transform the given matrix into the upper Hessenberg fonm. Advantage is taken of zero elements if the lower right triangle is known to be null.

9. Subroutine SHIFT2

This subroutine performs the first step of the $Q R$ algorithm with implicit double shifts of origin. To complete one iteration of the $Q R$ algorithm, the resulting matrix is transformed back to upper Hessenberg form using subroutine HESS above.

10. Subroutine PERMUT

This subroutine performs an orthogonal similarity transformation on the given matrix by using a Householder type orthogonal matrix. The purpose of this subroutine is to remove any undesirable zero sub-diagonal elements. Notice that the resulting matrix is no longer in upper Hessenberg form.


```
C SJ3ROJTINE PERMJTA,O,N,NO,NX,N2,S1J,K1,IP)
            O[YENSION 4(NJ,NDI,?(ND,ND)
        AR3ITRARY JRTHYGONAL(HOJSEHOLJEQ TROE ) SIMILARITY
        RRANSFTRYAIION [J REMOVE AN INDESIRABLE ZERO JN SU3D[BOJNAL
        OR EXETANSE POITION OF TNO REAL ETJENVALNES NN 2*? J!HJJNAL 3LOこK
        INPUI....
            HWMARIX TO 3E TAANGETRMED
            N=D[MENSION JF H,?
            ND=OESLARED JTMENSION OP 3.P
            NX,N2#RO.V INOICIES 3F THE 3COEX TO JE IR4NGEORYED
            Kl=] NO SUM&UKTES ? OALCUKATED
            Kl=l SMMMK\TED P SACNIKATED
            IP=1 [F POSITIJN EXTHANSE PERPORMED OTHSRNISE=]
            SHD=PREEISIDN ERITERISN ERDM RR SU3RJJIINE
    MUPPSN..........
            H=TRANSEDRMED :4AIRIX
            P IS SRTHOONAL MAIRIX
```

11. Subroutine TRIA

This subroutine performs an orthogonal similarity transformation to triangularize an isolated 2×2 diagonal block if the eigenvalues of that block are real.

12. Subroutine HSOLVE

This subroutine solves the linear system equation $A * X=B$ by using the Householder reduction.

```
SNOM
```


13. Subroutine EIGVC

This subroutine computes the matrix of eigenvectors for a given matrix which was previously put in quasi-upper triangular form using subrcutine $Q R$. The knowledge of the orthogonal similarity transfomation matrix, which reduced the original matrix to quasi-upper triangular form, is then used to compute the eigenvectors of the oricinal matrix.


```
                SHPRNITINE EIGVL(A,VRL,N,ND[M,EL, 2,こ,SMD,IE)
                DIMENSION A(NDIM,NOI4, ,VAL(NDIM ,EL(NDIM,NDIM ,Al (2,2) ,A2(2,2) .
        143(?.2).N[NDL4, 2(NDL4,NDIM
            SJHPLEX,VAL
    GOAPJTE THE EIGSNVECTSRS TR A JJASI-JPPER IRIANSJNAR 44TRIX
    INPIT....
            A-2JASI-JPPER IRIANGJJ4R MAIRIX FROM RJUTINE 2R
            VAL=IFE ETSENVALUES OF a SOMDUFED IN ROUTINE R
            FOIMILIRITY HANSEORMAITON AATRIX EROU TR
            N-JIMENSION כE A , EL , 2
            NDIM=DEELARED DIMENSION OF A , EL , 2
```



```
    OSPPJT...
            ELFTHE EIGENVEOTIR MATRIX OF A
            ExINIERMEOTATE SMORASE VECTOR
            [E=) [NJEPENDENP EISENVECTSR
            IE=1 SEFEGTTVE EISENSYSIEY
    SHROJPINES REMD. - YAPNN, HGXVE
```


14. Subroutine SOLYAP

This subroutine solves the Lyapunov equation $A * X+X * A^{\top}=C$. Before entering this subroutine, the matrix A must be transformed into quasi-upper triangular form. With the knowledge of the orthogonal similarity transformation matrix, the resulting solution X will be the solution of the original Lyapunov equation.


```
                        SHROURINE SXYAP(A,C,N,ND,SMJ,IE,P, iN
                            DIMENSION I(ND,ND),E(ND,ND),A4(2, 2),N(?,2),A4T(2, 2),P(ND,ND) ,
    lN(ND)
    Sxve A'x+x*Ai=%
    INPSIN...
            ANNON 14IRIX [N JJASIHJPPER IRIANSJAAR EORM ERO4 2R SU3POJITINE
            ONN#N SY4METRIE 4ATRIX
            Pe SIMILIRITY TRANSEURMATION MARIX EROY 2R SUBROUTINE
            WmNTRKLNS 3PAEE
            ND#ETLARED DIMENSION 2F 4, C. P
            SMOMCONVERIENEE CRITERION EROM R=MANH.PREN.*NOM A
    JUPPST...
```



```
            IE }=>\mathrm{ NJ ERRJR
            IE=! ERRJR-SX!JTION NDT SJMDJFED
    FBRJJINES RET. - LYRON,HSXVV
```

15. Subroutine LYAPUN

This subroutine solves the Lyapunov equation $A * X+X * B=C$ when the dimensions of A, B are 1×1 or 2×2.


```
SJ3RJJTINE [YAD.JN(A,N1.B,N3,C,IE)
DIMENSIOM :A(4,4), A!?,2), B(?,2), =(2,2),N(3)
SJVE A*Y+Y*B=~ 4ND SE: こ=%
INPJT....
4 MND 3 ARE l*t NR 2*2
NA=)[पENSION 2F 4 (1 OR 2)
N3=OIMENSION OF 3 (1 3N 2)
#NNA*N3 MATRIX
O!JPTST...
EmSLITION X
IE=% .NJN-S[NJ:JLAR EASE
IE=1 NON-SNIZJE SOLJTISN
IE=? UNDEEINED SOCUFION
SU3ROUTINE REPD. - HSOLV
```

III. THE USER'S MANUAL FOR OPTIMAL AND ITS SUBROUTINES WITH SEVERAL EXAMPLES

III. 1 Introduction

In this part, a user's manual for the main program OPTIMAL and the subroutines is presented. The error and warning messages which are printed directly from the subroutines are also discussed. Several examples are given at the end of this part.

III. 2 User's manual for the control and estimation problem

In this section, the user's manual for the main program OPTIMAL will be presented. Also, the user's manual for the subroutines CONTRL, FILTER, RICCAT witl be given in case the user prefers using his own main program.
A. The user's manual for the main program OPTIMAL

INPUT requirement:

The program OPTIMAL is designed so that the required matrices can be input in arbitrary order preceeded by a matrix ID card. Two control cards must be input before the required matrices for any given problem. The required data cards are described sequentially as follows:

Card A: print control card (NN, IO, LP), FORMAT (A6, 2I3)
NN = PRINT
$10=0$, if no optional print wanted.
$=1$, if optional print wanted.
LP $=0$, if regular line printer will be used.
$=1$, if terminal line printer will be used.
Card B: Eigensystem control card (NN, LO, LV), FORMAT (A6, 213)
NN $=$ OPTION
$L O=0$, no optional open loop eigensystem.
$=1$, open loop eigensysten will be computed.
$L V=0$, eigenvectors will not be compured.
$=1$, eigenvectors will be computed.
The following set of cards is for reading in the required matrices.
Card C: matrix ID card (NN, N1, N2, NT), FORMAT (A6, 2I3, $2 \mathrm{X}, \mathrm{Al}$)
$N N=$ name of the matrix to be input. This name is the same as the name used in part I, such as $A, B, C 1, D 1, C 2, D 2, R 1, R 2, Q 1, Q 2$, except GAMA for Γ and THETA for θ.
' $N 1=$ number of rows of the matrix.
N2 = number of columns of the matrix.
NT = blank for a regular matrix.

- 2 for a zero matrix.
= D for a diagonal matrix.
= I for an identity matrix.
= 5 for a symetric matrix.
Matrix input cards (free format):

1. If NT = blank, the matrix is entered by rows. For example,
$A=\left[\begin{array}{lll}1 . & 2 . & 3 . \\ 4 . & 5 . & 6 . \\ 7 . & 8 . & 9 .\end{array}\right]$
requires three cards to be typed.
first card 1., 2., 3.
second card 4., 5., 6.
third card 7., 8., 9.
2. If $N T=2$ or I, no matrix input cards required.
3. If $N T=D$, the diagonal elenents only are entered. For example,
$R 1=\left[\begin{array}{lll}1 . & 0 . & 0 . \\ 0 . & 2 . & 0 . \\ 0 . & 0 . & 3 .\end{array}\right]$,
requires one card to be typed.
card 1., 2., 3.
4. If $N T=S$, the matrix is entered by row with the lower triangular part only. For example,
$Q 2=\left[\begin{array}{lll}1 . & 2 . & 4 . \\ 2 . & 3 . & 5 . \\ 4 . & 5 . & 6 .\end{array}\right]$
requires three cards to be typed.
first card 1.
second card 2., 3.
third card 4., 5., 6.
Following all the data cards for the required matrices for a given problem, a blank card is used to indicate another set of data cards for a second problem will follow.

Output Information

1. The stochastic control problem.

The output information contains items:
a. Solution of regulator Riccati equation
b. regulator control gain
c. closed loop dynamics matrix
d. closed loop eigenvalues for controller
e. closed loop eigenvectors for controller
f. open loop eigenvalues
g. open loop eigenvectors
h. rms control
i. control covariance matrix
j. rms output
k. output covariance matrix

1. Solution of the filter Riccati equation
m. filter gain
n. ntis estimation error
o. estimation error dynamics matrix
p. estimation eigenvalues
q. estimation eigenvectors
r. rms state
s. state covariance matrix
t. filter implementation dynamics matrix
u. eigenvalues of filter implementation
v. eigenvectors of filter implementation

If $10=0$, items $c, i, k, 0, s, t, u$, v will not be printed.
If $L O=0$, items f, g will not be computed or printed.
If $L V=0$, items e, g, q, v wili not de computed or printed.
2. The control problem without process noise.

The output information contains items: a, b, c, d, e, f, g.
If IO $=0$, item c will not be printed.
If $L O=0$, items f, g will not be printed.
IF LV $=0$, items e, g will not be printed.
3. The control problem with process noise.

The output information contains items: $a, b, c, d, e, f, g, h, i, j, k$ plus
w. rms regulator state
x. regulator state covariance matrix.

If $10=0$, items c, i, k, x will not be printed.
If $L O=0$, ftems f, g will not be computed or printed.
If $L V=0$, items e, g will not be computed or printed.
4. The state estimation problem.

The output information contains items: f, $g, l, m, n, 0, p, q$.
If $10=0$, item 0 will not be printed.
If $L O=0$, items f, g will not be computed or printed.
If $L V=0$, items g, q will not be computed or printed.
5. Steady state response of the system with zero control.

The output information contains items: f, g, j, k, w, x.
If $10=0$, items k, x will not be printed.
If LV $=0$, iten g will not be computed or printed.
Parameter $L 0$ does not play a role in this problem.
B. Subroutines CONTRL, FILTER, and RICCAT.

Under some circumstances, the user may prefer to use his own main program. In this case, subroutines CONTRL and FILTER can be used for control and estimation purposes. In cases when the given problem can not be formulated as one of the cases in part I, the subroutine RICCAT can be used to solve control and estimation problems if the Hamiltonian matrix of the Euler-Lagrange systan can be fomulated. With the given Hamiltonian matrix, RICCAT will give the solution of the corresponding Riccati equation as well as the closed loop eigenvalues. The calling procedure of subroutine CONTRL, FILTER and RICCAT is given in section II.3.

111. 3 User's manual for other utility subroutines.

There are several subroutines that can be used for various purposes. The required calling procedures are as follows:

1. Solving the linear system equation $A * X=B$
a. for single B (i.e., solve $A * X=B$ only)
call hSOLVE (A, W, B, N, M, NDIM, O, IE)
b. solve $A * X_{1}=B_{1}$, then solve $A * X_{2}=B_{2}$ etc.
call hSOLVE ($A, W, B I, N, M T, N D I M, O, I E)$,
call hSOLVE (A, W, B2, N, M2, NDIM, 1, IE),
etc.
2. Computing the eigenvalues and eigenvectors of matrix A
a. compute the eigenvalues of A onily
call QR (A, P, N, ND, VAL, MV, SNO, $0,0,0)$
b. compute the eigenvalues and eigenvectors of A
call QR (A, P, N, ND, VAL, N, SNO, O, O, 1)
call EIGVC (A, VAL, N, ND, EL, P, C, SNO, IE).
c. detenmination of invariant subspace

Let A be an $n \times n$ matrix. In order to determine the invariant subspace associated with m desired eigenvalues, the following calling sequence is needed.

Set $P=A$
call QR (P, A, N, ND, VALI, N, SNO, O, O, O)
take $n-m$ undesired eigenvalues and set VAL2 to these eigenvalues, then
call QR (A, P, N, ND, VAL2, N-M, SNO, 0, 1, 1).
The first m rows of the matrix P form an orthogonal basis of the desired invariant subspace.
3. Solving the Lyapunov equation $A * X+X * A^{\top}=C$
call QR (A, P, N, ND, VAL, N, SNO, $0,0,1$)
call SOLYAP (A, $C, N, N D, S N O, I E, P, W)$.

III. 4 Error and Warning Messages

In the subroutine $Q R$, if a particular eigenvalue or eigenvalue pair takes more than 20 iterations of the $Q R$ algorithm to converge, then the iteration process will be terminated and an error message - QR NOT CONVERGING - will be printed out. Usually, the algorithan will converge with an error equal to the machine precision times norm of the matrix within 20 iterations. However, in the case of repeated eigenvalues, the algorithm is very likely to converge only with the square root of the machine precision times norm of the matrix. To avoid the
error termination in this case, the convergence criterion is changed to the square root of the machine precision times norm of the matrix on the twentieth iteration step.

In subroutine RICCAT, if the Hamiltonian matrix has repeated eigenvalues on (or near) the imaginary axis and/or the origin, the message - WARNING HAMILTONIAN HAS EIGENVALUES ON IMAGINARY AXIS -, or - WARNING HAMILTONIAN MATRIX NEARLY SINGULAR - will be printed. In this situation, the problem is ill-conditioned, but the execution is not terminated. When this happens, it is suggested to check the solution of the Riccati equation as well as the eigenvalues of the closed loop system. Since it is very unilikely that the Hamiltonian matrix would have more than two pairs of eigenvalues at the origin or have more than one pair of eigenvalues at the same point on the imaginary axis, no error message is printed out to indicate these possible program failure modes.

III.5. Examples

In this section, five example problems and the corresponding input and output for the program are given.

Input Cards:
1234567890123456789012345678901234567890

PRINT	1
OPTIOM	0

OPTIOM 1 ?
A 22 s
1.
2.,3.

321
1.
2.
$\begin{array}{llll}01 & 2 & 2 & 1 \\ 01 & 2 & 1 & 1\end{array}$
2.
$\begin{array}{llll}3 . & 2 & 2 & 1\end{array}$
2.,1.

RI 11
2.
$\begin{array}{lll}\text { PRIMT } & 1 & 0 \\ \text { OPTIOH } & 0 & 1 \\ \text { A } & 4 & 4\end{array}$
0.,1., 0., 0 .
$0 .,-.415,-.0111,0$.
9.8,-1.43,-.0199,0.
$0 ., 0 ., 1 ., 0$.
B
O !
0.
6.27
9.8
0.
${ }_{01}^{c} 1.141$
$\begin{array}{llll}01 & 1 & 2\end{array}$
gahn 41
0.
$-.0111$
$-.0198$
0.
(continued on next page)

Results generated by the program:

```
A
\begin{tabular}{rrr}
1.0000 & 2.0000 \\
2.0000 & 3.0000 \\
B & & HATRIX
\end{tabular}
    1.0000
    2.0000
0
    1.0000
    0.
D1
    2.0000
    3.0000
0 1
    2.0000
    0.
Ri MATRIX
    2.0000
PRINT IO*1, LP=0
    ***CONTROL PROBLEM
solution of regulator riccati equation
    9.5518 10.582
    10.582 22.133
gegulator contrgl gaim
    -1.8272 -3.0446
ClOSED LOOP EIGEMUALUES FOR CONTROLLER
    emgenvalue( 1)
    -.22402 +J O.
    eigenvalue(2)
    -3.6924 +J 0.
open loop eigemualues
    eigenvalue( 1)
    4.2361 +J 0.
    EIgenvalue( 2)
    -.23607 +J 0.
```

```
A MATRIX
\begin{tabular}{llll}
0. & 1.0000 & 0. & 0. \\
0. & -.41500 & \(-.11100 E-01\) & 0. \\
9.8000 & \(-i .4300\) & \(-.19800 E-01\) & 0. \\
0. & 0. & 1.0000 & 0.
\end{tabular}
8
HATRIX
O.
    6.2700
    9.8000
0.
CI HATRIX
0. 0. 0. 1.0000
01 MATRIX
0.
GAMA HATRIX
0.
-.11100E-01
-.19800E-01
0.
Q1 HATRIX
    .25000
RI MATRIX
    131.33
Q2 HATRIX
    490.00
\begin{tabular}{lll} 
PRINT & 10: & \(L P=0\) \\
OPIION & \(L 000\) & \(L V=1\)
\end{tabular}
    **###CONTROL PROBLEN WITH PROCESS NOISE***
Solutign of regullator riccati eguation
\begin{tabular}{llll}
41.393 & 10.252 & 4.8968 & 2.6306 \\
10.252 & 5.7935 & .64536 & .13263 \\
4.8968 & .64536 & .73072 & .49984 \\
2.6306 & .13263 & .49984 & .50035
\end{tabular}
REGULATOR CONTROL GAIN
\(-.85487 \quad-.32475 \quad-.85337 E-01-.43630 E-01\)
CLOSED LOOF DYMAKICS MATRIX OF CONTROLLER
\begin{tabular}{llll}
0. & 1.0000 & 0. & 0. \\
-5.3600 & -2.4512 & -.54610 & -.27356 \\
1.4223 & -4.6135 & -.85610 & -.42757 \\
0. & 0. & 1.0000 & 0.
\end{tabular}
```

CLOSE! loof e:genualues and vectors for controlier

```
    EIgenvalue( | ) EIGENUECTPR( 1)
    -.41983 +J 1.1353
\[
\begin{aligned}
& -.62002 E-01+J \quad .85322 E-01 \\
& -.70835 E-01+J-.10621 \\
& .76029 \\
& -.21786 \\
& -J \\
& \hline
\end{aligned}
\]
```

eigenualue(2)

eIEENUECTOR(2)
$-.41983+J-1.1353$

$$
\begin{array}{ll}
-.62002 E-01 & +J-.05322 E-01 \\
-.70835 E-01 & +J . \\
.70021 \\
.76029 & +J \\
-.21786 & +j \\
\hline
\end{array} .58913
$$

```
eigenvalue( 3 ) EIgenvector( 3)
```

$-1.2338+$ 」 .55452

$$
\begin{aligned}
& -.81159 E-01+J .18382 E-01 \\
& .89942 \mathrm{E}-01+J-.67685 E-01 \\
& .79621+\mathrm{J} 0 . \\
& -.53688+\mathrm{J}-.24129
\end{aligned}
$$

EIGENUALUE(4)

EIEENUECTOR(4)

```
-1.2338 +J -.55452
```

$-.81159 E-01$	$+J$	$-.18382 E-01$
$.89942 E-01$	$+J$	$.67685 E-01$
.79621	$+J$	0.
-.53688	$+J$.24129

rms regulator sthte
.69020E-01 . 12859 . 46711 . 62056
regulator gtate conariance matrix

$$
\begin{array}{cccc}
.47637 \mathrm{E}-02 & -.27756 \mathrm{E}-16 & -.38103 \mathrm{E}-02 & -.25286 \mathrm{E}-01 \\
.34694 \mathrm{E}-16 & .16535 \mathrm{E}-01 & -.20849 \mathrm{E}-01 & .38103 \mathrm{E}-02 \\
-.38103 \mathrm{E}-02 & -.20849 \mathrm{E}-01 & .21819 & .54262 \mathrm{E}-14 \\
-.25286 \mathrm{E}-01 & .38103 \mathrm{E}-02 & .58495 \mathrm{E}-14 & .38509
\end{array}
$$

rhs contral
.63698E-0
control covariance hatrix
.405?4E-02
rhs OUTPUT
.62056
output covariance matrix
.38509

DPEN LODF EIGENVALUES AND UECTORS

```
    ESOENVALUE( 1 ) EIGENVEETOR( 1 )
    4.236i +J 0.
                                    .52573
                                    .85005
    EIGENUALUE( 2 ) EIGENUECTOR( 2)
    -.23607 +J 0.
    .85065
                            -. 52573
```

a MATRIX

0.	.10000	0.	0.
0.	-.41500	$-.11100 E-01$	0.
9.8000	-1.4300	$-.19800 E-01$	0.
0.	0.	1.0000	0.

B
MATRIX
0.
6.2700
9.3000
0.

GANA MATRIX
0.
-. 11100E-01
-. 19800E-01
0.
$C 1$ MATRIX
0.
0.
0.
1.0000

DI HATRIX
0.

02 MATRIX
0.
1.00000.
0.10

02 HATRIX
0.
0.

THETG MATRIX
0.
0.

81 MATRIX
.25000
RI
MATRIX
131.35

02		hatrix
490.00		
R2		hatrix
.27200		0.
0.		. 15300E-04
PRINT	10=1	$1 \quad L P=0$
OPTION	60:1	1 LU=1

*****CONTROL PLUS ESTIMATION PROBLEH:\#***
solution of regulator riceati equation

1305.2	-47.809	75.603	17.194
-47.809	8.4142	-5.8381	-2.1559
75.603	-5.8381	6.0205	1.9640
17.194	-2.1559	1.9640	.99210
REGULATOR COMTROL GAIM			

-3.3590 . $33927 E-01-.17053 \quad-.43630 E-01$
CLCSED LOOF DYMAMICS MATRIX OF CONTROLLER

0.	-10000	0.	0.
-21.051	-.20928	-1.0803	-.27356
-23.118	-1.0975	-1.6910	-.42757
0.	0.	1.0000	0.
CLOSED LOOP EIGENUALUES AND UEETORS FOR CONTROLLER			

EIGENVALUE (2) EIGENUECTOR(2)
$-.74398+J-.39390$

$$
\begin{array}{ll}
.18996 \mathrm{E}-01 & +J . \\
-.1039468 \mathrm{E}-02 \\
-.25985 & +J-.14563 \\
.75251 & +J=.29641
\end{array}
$$

```
EIGENUALUE( 3 ) EIGENUECTOR( 3 )
```

$-.20266+\mathrm{J} .58072$

$$
\begin{array}{ll}
-.60327 E-03 & +J-.29726 E-01 \\
.17385 & +J \\
-.16963 & +J .4873 E-01 \\
.83703 & +J 0 .
\end{array}
$$

```
EIGENUALUE( 4) EIGERUECTOR( 4)
-.20266 + J -.58072
\[
\begin{array}{lll}
-.60327 E-03 & +J & .29726 E-01 \\
.17385 & +J-.56739 E-01 \\
-.16963 & +J & -.48608 \\
.83703 & +J & .
\end{array}
\]
```

SOLUTION OF FILTER RICGATI EQUGTION

$.47608 E-04$	$.74876 E-03$	$.11386 E-02$	$.6 E 270 E-03$
$.74876 E-03$	$.26823 E-01$	$.42586 E-01$	$.11900 E-01$
$.11386 E-02$	$.42586 E-01$	$.75314 E-01$	$.36511 E-01$
$.66270 E-03$	$.11909 E-01$	$.36511 E-01$.10970

FILTER GAIN
-.24364E-02-3.1116
-. 43794E-01-48.939
$-.13423 \quad-74.420$
$-.40365 \quad-43.314$
RHS ESTIMATION ERROR
.68998E-02 . 16379 . 27443 . 33135

ESTIMATIJN ERROR DYMAMICS HATRIX

-3.1116	-10000	0.	$-.24364 E-02$
-48.039	-.41500	$-.11100 E-01$	$-.43784 E-01$
-64.620	-1.4300	$-.19800 E-01$	-.13423
-43.314	0.	1.0000	-.40365

EETIMATIOH EIGERUALUES AND VECTORS
EIGENUALUE (1) EIGENUECTOR())
$-1.7055 \quad+\mathrm{J} 1.7644$

$.10481 E-01$	$+J-.18999 E-01$
.47797	$+J-.73433 E-01$
.78127	$+J 0$.
.19729	$+J$

EIGENUALUE(2)
EIGENUECTOR(2)
$-1.7955+J-1.7644$

$.10481 E-01$	$+J$	$.18999 E-01$
.47797	$+J$	$.73433 E-01$
.78127	$+J$	0.
.19729	$+J$.34113

EIGENUALUE! 3)
EIGENUECTOR(3)
$-.17958+1.20132$

$$
\begin{array}{lll}
-.89984 E-03 & +J & -.20609 E-04 \\
-.28326 E-02 & +J & -.24176 E-02 \\
.17724 & +J & .19356 \\
.96494 & +J 0 .
\end{array}
$$

EIGENUALUE (4) EIGENUEETOR(4)
$-.17958 \quad+1-.20152$

$$
\begin{array}{lll}
-.89984 E-03 & +J & .29609 E-04 \\
-.28326 E-02 & +J & .24176 E-02 \\
.17724 & +J-.19356 \\
.96494 & +J & 0 .
\end{array}
$$

RHS STATE
$.36583 \mathrm{E}-01$. 32692.525051 .1939
gTATE COUARIANCE MATRIX

$.13383 E-02$	$.72741 E-12$	$-.10573 E-01$	$-.14016 E-01$
$.60673 E-12$.10588	$.35638 E-01$.10575
$-.10573 E-01$	$.35038 E-01$.27567	$.21030 E-i 1$
$-.14016 E-01$.10573	$.34808 \mathrm{E}-11$	1.4255

RHS COMTROL
.68533E-01
CONTRQL COUARIANCE HATRIX
.46968E-02
RHS OUTPUT
1.1939

DUTPUT COUARIANCE MATRIX
1.4255

FILTER IMPLEMENTATION DYMAMICS MATRIX

-3.1116	.10000	0.	$-.24364 E-02$
-70.000	-.20228	-1.0803	-.31734
-97.538	-1.0975	-1.6910	-.56181
-43.314	0.	1.0000	-.40385

FILTER IHPLEMENTATION EIGENUALUES AND UECTORS
EIGENUALUE (1) EIGENUECTOR(1)
$-2.5838 \quad+\mathrm{J} \quad 2.5680$

$.16424 E-02+J=.18667 E-01$	
.48907	$+J-.64200 E-01$
.80686	$+J$
$.41632 E-01$	$+J=.32184$

EIGENUALUE(2) EIGENUEETOR(2)
$-2.5838+J-2.5680$

$$
\begin{array}{lll}
.16424 E-02 & +J & .18667 E-01 \\
.48907 & +J & .64200 E-01 \\
.80686 & +J & 0 . \\
.41632 E-01 & +J & .32184
\end{array}
$$

ElGERUALUE(3)

EIGENVECTBR(3)
$-.39114 E-01+J 0$.
.57668E-02
.15325
$-.10828$
$-.98222$

EIGENVALUE (4) EIGENUECTOR(4)
$-.20189+J 0$.

$$
\begin{aligned}
& -.45560 E-02 \\
& -.10835 \\
& .32326 E-02 \\
& .99410
\end{aligned}
$$

open loof eigenvalues any vectors

ESGENUALUE(1) EIGENUEETOR(1)
$.29960 E-01+J .14523$

$$
\begin{aligned}
& -.22300 E-02+J . .72784 E-03 \\
& -.17251 E-02+J-.30205 E-02 \\
& .29636 E-01+J+.14365 \\
& .98918 \quad+J 0 .
\end{aligned}
$$

EIGENUALUE(2)
EIGENUECTOR(2)
$.29960 E-91+J-.14523$

$$
\begin{aligned}
& -.22300 E-02+J=.72784 E-03 \\
& -.17251 E-02+J+.30205 E-02 \\
& .29636 E-01+J=.14365 \\
& .98918 \quad+J 0 .
\end{aligned}
$$

EIGENVALUE! 3

EIGENUECTOR(3)

-.49472 +J 0.

$-.12455 E-01$
$.61619 E-01$
.44255
-.89454

EIGENUALUE (4) EIGENVECTOR: 1

$-.34168 E-1 J+J 0$.
$-.14319 \mathrm{E}-14$
. $73534 \mathrm{E}-14$
$-42177 E-13$
1.0000

HATRIX	
-7.0000	2.0000
2.0000	-3.0000
GAMA	Matrix
1.0000	
2.0000	
$C 1$	hatrix
3.0000	2.0000
82	MATRIX
3.0000	
PRINT	10=0 $\quad L P=0$
OPTION	$L O=0 \quad L U=1$

QPEN LOOF EIGENUALUES ANI VECTORS
Eigenvalue () Eigenvectofi ;)

$-2.1716+j 0$.	
	.38268
	.92388

EIGENVALUE (2)

EIGENUECTDR(2)

$-7.8284+J 0$.
.92388
$-.38268$
rhe steady state
$.76312 \quad 1.6908$
RHS OUTPUT FOR ZERO CONTROL
5.6688

REFERENCES FOR MANUAL

1. Wei, S. Y., "Application of Linear Quadratic Control Design in Reduction of Aerodynamic Forces in Aircraft," Ph.D. dissertation, Mechanical Engineering Department, Oregon State University, 1980, Chapter 2.
2. Davis, M. H. A., Linear Estimation and Stochastic Control, a Halstead press book, John Wiley and Sons, NY, 1977, pp. 169.
3. Aströn, K. J., Introduction to Stochastic Control Theory, Academic Press, NY and London, 1970, pp. 264-268, p. 286-289.
4. Fleming, W. H. and Rishel, R. W., "Deterministic and Stochastic Optimal Control," Apolication of Mathematics, Vol. 1, Springer-Verlag, NY, Heidelberg, Berlin, 1975, Chapter 6.
5. Sage, A. P. and Melsa, J. L., System Identification, Academic Press, NY, 1967, Chapter 3.
6. Bryson, A. E., Jr., and Ho, Y. C., Applied Optimal Control, John Wiley and Sons, NY, 1975, pp. 414.
7. Wonham, W. M., "Random Differential Equations in Control Theory," in Probabilistic Methods in Applied Mathematics, edited by Bharucha-Reid, A.T., Volume 2, Academic Press, NY and London, 1970.
8. Sage, A. P. and C. C. White, III, Optimum Systems Control, 2nd Ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1968, chapter 9.
9. Macfarlane, A. G. J., "An Eigenvector Solution to the Optimal Regulator Problem," J. Electronics and Control, Vol. 14, June 1963, pp. 643-654.
10. Potter, J. E., "Matrix Quadratic Solution," SIAM J. Appl. Math., Vol. 14, May 1966, pp. 496501.
11. Holley, W. E., and Wei, S. Y., "Improved Method for Solving the Algebraic Riccati Equation," AIAA Journal of Gutdance and Control, Vol. 3, No. 2, 1980, pp. 190-192.
12. Wilkinson, J. H., and Reinsch, C., "Linear Algebra," in Handbook of Automatic Computation, Springer-Verlag, 1971.
13. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

APPENDIX F

THE OPTIMAL PROGRAM LISTING

```
        PROGRAM OPTIMAL (INPJT,OUTPUT, TAPE5=[NP:JT)
        DIMENSION A(30,30), 3(30,10), C1 (10,30), D1 (10,10), C2(10,30), D2
    L(10,10), META(10,10),GAIN(10,30), GK(30,10), GA,44(30,10), QL(30,
        230), RL (30,30), Q2(30,30), R2(30,30), S(30,30), H(30,50), P(50,50)
        3, VAL(50),N(50), EL (30,30), EN(30,30)
        COMPLEX VAL
        DATA ND/30/,NDD/60/,NDL/LO/,NDW/LO/,NDP/L0/,NDQ/LO/
        DATA NA/LIM/ NB/LH3/,NCl/2HE1/,ND1/2HD1/ ,NC2/2HC2/ ND2/2HD2/,NGV
    L4HGAMM/,NQL/2HQ1/,NR1/2HRL/ NQ2/2HQ2/,NR2/2HR2/,NIH/5HMHETM/,NZ/
    2LHZ/,NPR/5HPRINT/,NOP/5HOPTION/
    DATA SMALE/L.E-L4/
    DATA IUNT/5LINPUT/
    SOLVE OPTIMAL CONIROL AND ESTIMATION PROBLEMS.
    INPITT*****
    IO=0 NO OPTIONAL PRINT NANTED
    IO=L OPTIONAL PRINT NANTED
    LP#O REGULAR LINE PRINTER NILL BE USED
    LP=1 TERMINAL LINE PRINTER NILL 3E !SED
    LO=O NO OPTIONAL OPEN LOOP EIGENSYSTEM
    LO=L COMPUTE OPEN LNOP EIGENGYSTEM
    LV=C EIGENVESTORS NOT COMPUTED
    LV=l COMPUTE EIGENVECTORS
    INPUS NECCERSARY MATRICES
    IEOE = 0
    IDl =0
    ID2 = 0
    IS1 =0
    IO =0
    LP=0
    CO=0
    LV = 0
    IQ1 = 0
    IR1 =0
    IR2 = 0
    IQ2 = 0
    READ (5,910) NN,N1,N2,NT
    IF (EOF(IUNT)) 40,50,40
40 IEOF = 1
    SO TO 200
50 IF (NN.EQ.NA) GO TO }3
    IF (NN.EQ.NPR) SO TO }5
    IF (NN.EQ.NOP) SO TO }7
    IF (NN.EQ.NB GO TO }9
    IF (NN.EQ.NC1) SO TO 100
    IF (NN.EQ.ND1) SO TO 110
    IF (NN.EQ.NQL) GO TO 120
    IF (NN.EQ.NRL) GO TO 130
    IF (NN.EQ.NGA) SO TO 140
    IF (NN.EQ.NQ2) SO TO 150
    IF (NN.EQ.NC2) 30 IO 160
    IF (NN.EQ.ND2) GO TO }17
```

```
        IF (NN.EQ.NR2) 30 TO 130
        IF (NN. EQ. NTH) GO TO 190
        30 TO 200
    \(50 \quad \mathrm{IO}=\mathrm{N} 1\)
        \(\mathrm{CP}=\mathrm{N} 2\)
        30 Г 30
    \(70 \quad \mathrm{CO}=\mathrm{Nl}\)
        \(\mathrm{LV}=\mathrm{N} 2\)
        GO TO 30
30 CALL READ4 ( \(\mathrm{A}, \mathrm{N} 1, \mathrm{~N} 2, N D, N T, N A, L P\) )
        \(\mathrm{N}=\mathrm{N} 1\)
        30 TO 30
    90 CALL READM ( \(\mathrm{B}, \mathrm{N} 1, N 2, N D, N T, N 3, L P\) )
        \(\mathrm{N}=\mathrm{Nl}\)
        \(\mathrm{L}=\mathrm{N} 2\)
        GO TO 30
100 CALL READM (Cl,N1,N2,NDM,NT,NC1,LP)
        \(M=N 1\)
        \(\mathrm{N}=\mathrm{N} 2\)
        SO TO 30
110 CALL READM (D1,N1,N2,NDM,NT,ND1,LP)
        \(\mathrm{M}=\mathrm{Nl}\)
        \(\mathrm{C}=\mathrm{N} 2\)
        [DI \(=1\)
        IF (NT.EQ.NZI IDI = 0
        GO TO 30
120 CALL READM (21,N1,N2,ND,NT,NQ1,LP)
    IV1 \(=1\)
    \(\mathrm{M}=\mathrm{Nl}\)
    GO TO 30
130 CALL READM (R1,N1,N2,ND,NT,NR1,LP)
    IRI \(=1\)
    \(\mathrm{L}=\mathrm{Nl}\)
    30 TO 30
140 GALL READM (GAMA,N1,N2,ND,NT, NGA,LP)
    \(\mathrm{N}=\mathrm{Nl}\)
    \(\mathrm{NP}=\mathrm{N} 2\)
    30 TO 30
150 CALL READM (Q2,N1,N2,ND,NT,NQ2,LP)
    \(\mathrm{NP}=\mathrm{N} \mathrm{l}\)
    \(I Q 2=1\)
    30 TO 30
160 CALL READM (C2,N1,N2,NDQ,NT,NC2,LP)
    \(N Q=N 1\)
    \(\mathrm{N}=\mathrm{N} 2\)
    GO TO 30
170 CALL READM (D2,N1,N2,NDQ,NT,ND2,LP)
    ID2 \(=1\)
    IF (NT.EQ.NZ) ID2 \(=0\)
    \(\mathrm{NQ}=\mathrm{N} \mathrm{L}\)
    \(\mathrm{L}=\mathrm{N} 2\)
    GO TO 30
```

```
l30 こALL READ4 (R2,N1,N2,ND,NT,NR2,LP)
        LR2 = l
        v2 = N1
        3) TO 30
    190 CALL READA (THETA,N1,N2,NDQ,NT,NTH,LP)
        NQ = Nl
        NP = N2
        [S1 = l
        IF (NT.EQ.NZI ISl = 0
        GO TO 30
        IPR = IR1+I22+IR2+IR2
        IF (IPR.EQ.1.AND.IV1.EQ.0) IPR = 0
        PRINT 920, IO,LP
        ?RINT 330, LO,LV
        IPR IS THE PROBLEM INDICATOR
        O STEADY STATE COVARIANCE
        =l CONTROL 'NITHOUT PROCESS NOISE
        =2 CONTROL :NITH PRNCESS NOISE
        =3 ESTIMATION
        =4 CONIROL + ESTIMATION
        IF(IPR.EQ.0) PRINT*,42ה *****STEADY STATE OOVARIANCE PROBLEY*****
        IF(IPR.ER.1)PRINT*,23H ***CONTROL PRO3LEM ***
        [F(IPR.EQ.2)PRINT*,43H *****CONTROL PROBLEM WITH PROCESS NOISE***
        IF(IPR.EQ.3)PRINT*,294 *****ESTIMATION PROBLEM*****
        IF(IPR.EQ.4)PRINT*,42H *****CONTROL PLUS ESTIMATION PROBLEM*****
        IF (IPR.EQ.0) SO TO 250
        IF (IPR.EQ.3) 30 TO 470
        CALL CONIRL (A,B,Cl,D1,Q1,R1,S,GAIN,H,P,VAL,N,M,L,ND,NDD,NDM,NDL,W
    1,ID1)
    PRINT }94
    CALL PRINT (S,N,N,ND,LP)
    PRINT 950
    CALL PRINT (GAIN,L,N,NDL,LP)
    IF (LV.EQ.1) SO TO 210
    PRINT 950
    CALL PRENAL (VAL,EL,ND,N,O,S4O)
    IF (IPR.EQ.1) SO TO }30
    DO 230 I=L,N
        DO 230 J=1,N
            SUM = 0.
            DO 220 K=1,L
            SUM = SUM+B(I,K)*GAIN(R,J)
            Rl(I,J) = A(I,J)+SUM
            IF (IO.EQ.0) GO TO 240
            PRINT 970
    CALL PRINT (RI,N,N,ND,LP)
240 [F (IPR.EQ.4.OR.IPR.EQ.1) SO TO 290
250 DO 260 I=l,NP
        DO 250 J=l,N
            H(I,J) = 0.
            DO 260 K=l,NP
```

```
250H(I,J) = A(I,J) +22(I,K)*SAMA(J,K)
    00 230 I=l,N
        DO230 J=l,N
            SUM = 0.
            D 270 K=1,NP
            SUM = SUY4+GAMA(I,K) *H(R,J)
        22(I,J) = -SUM
        IF (IPR.EQ.O) SO TO 3LO
290 SMO = SMALL
    CALL R (R1,P.N,N,ND,VAL,N,SMO,0,0,1)
    IF (LV.EQ.0) 30 TO 300
    CALL EIGVC (RI,VAL,N,ND,EL,EN,W,SMO,IE)
    PRINT 930
    CALL PREVAL (VAL,EL,ND,N,I,SMO)
300 IF (IPR.EQ.1) 30 TO 300
    IF (IPR.EQ.4) GO TO 420
    CALL SOLYAP (R1,Q2,N,ND,SMO, IE, EN,NW
    DO 3l0 I=l,N
3l0 N(I) = SRRT(22(I,I))
    PRINT 990
    CALL PRINT (N,1,N,1,LP)
    IF (IO.EQ.0) 30 TO 320
    PRINT 1005
    CALL PRINT (22,N,N,ND,LP)
320 DO 330 I=1,N
    D 330 J=L,L
        H(I,J)=0.
        DO 330 K=1,N
330:A(I,J)=H(I,J)+Q2(I,K)*AIN (J,K)
    DO 340 [=1,L
        DO 340 J=L,L
            P(I,J) = 0.
            DO 340 K=1,N
340 P(I,J) = P(I,J) +GAIN (I,K) ** (K,J)
    DO }350\mathrm{ I=1,L
350 N(I) = SVRT(P(I,I))
    PRINT 1010
    CALL PRINT (W,1,L,1,LP)
    IF (IO.EQ.O) GO TO 360
    PRINT }102
    CALL PRINT (P,L,L,NDD,LP)
    DO 380 I=l,M
        D 380 J=1,N
        SUM = O.
        IF (IDI.ER.0) 30 IO 380
        DO 370 K=1,L
        SUM = SUM+DI (I,K)*GAIN (K,J)
370
        S(I,J) = SI(I,J)+SUM
        DO 390 I=1,M
        DO 390 J=l,N
            Rl(I,J) = 0.
            DO 390 K=L,N
```

```
390
    Rl(I,J) = Rl(I,J) +S (I,K) *2 2(K,J)
    DO 400 [=l,M
        00400 J=L,M
            H([,J) = ).
            DO 400 <=l,N
        H(I,J)=H(I,J) +RI(I,K)*S(J,K)
        DO 4lO I=l,M
4LO N(I) = SRRT(H(L,I))
    PRINT }103
    CALL PRINT (W,1,M,1,LP)
    IF (IO.EQ.0) GO TO 300
    ?RINT 1040
    CALL PRINT (H,M,M,NDD,LP)
    3O TO }30
420 [F (IS1.E2.0) SO T0 440
    OO 430 [=L,NP
        50430 J=L,NQ
            H(I,J) = 0.
            DO 430 K=l,NP
    A(I,J) = A(I,J) +22(T,K)*THETA(J,K)
    30 450 I=L,NQ
        DO 450 J=l,N2
            SUM = 0.
            IF (ISI.EQ.0) 30 IO 460
            00 450 K=L,NP
            SIM = SUM+THETA (T,K) *& (K,J)
        21(I,J) = R2(I,J) +SUR
        CALL FILTER (A,C2,GMMA, THETA, 22,R2,S,GK,H,P,VAL,N,NQ,NP,ND, NDD,NDQ
    1,NDP,W,IS1)
        PRINT 1050
        CALL PRINT (S,N,N,ND,LP)
        PRINT 1060
        CALL PRINT (GK,N,NQ,ND,LP)
        DO 430 I=L,N
430 N(I) = SRRT(S (I,I))
    PRINT 1070
    CALL PRINT (W,1,N,l,LP)
    IF (LV.EQ.1) 30 TO 490
    PRINT 1030
    CALL OREVAL (VAL,EL,ND,N,O,S4O)
    SO TO 530
4 9 0
    DO 5lO I=L,N
        DO 5lO J=l,N
            S'SM = 0.
            DO 500 K=L,NQ
            SUM = SUXY+GK(I,K)*C2(K,J)
    R2(I,J) = A(I,J) +SUM
    IF (IO.EQ.0) 30 TO 520
    PRINT 1090
    CALL PRINT (R2,N,N,ND,LP)
520 SMO = SMALL
    CALL {R (R2,Q2,N,ND,VAL,N,SMO,0,0,1)
```

```
    GALL EIGVC (R2,VAL,N,ND,EL,Q2,N,SMO,IE)
    PRINT }110
    CALL PREVAL (VAL,EL,ND,N,1,SYO)
530 IF (IPR.EQ.3) 30 TO 300
    DO 540 I= L,N2
    DO 540 J=l,N
        H(I,J) = 0.
        D 540 K=l,NQ
540 H(I,J) = H(I,J) +21(I,K)*K(J,K)
    DO 550 I=l,N
        DO 550 J=l,N
        SUM = 0.
        D 550 K=l,NQ
550 SUM = SUM+GK(I,K)*& (K,J)
550 21(I,J) = -SUM
    CALL SOLYAP (R1,Q1,N,ND,SMO,IE,PN,NW
    DO 570 I=l,N
        DO 570 J=l,N
570 PN(I,J) = Q1 (I,J) +S (I,J)
    DO 530 [=l,N
530 N(I) = SRRT(PN(I,I))
    PRINT 1llO
    CALL PRINT (N,1,N,1,LP)
    IF (IO.EQ.O) GO TO 590
    PRINT }112
    CALL PRINT (PN,N,N,ND,LP)
590 30 600 I=l,N
        DO 500 J=L,L
            H(I,J) = 0.
            DO 600 K=l,N
500 H(I,J) = H(I,J)+Q1(I,K)*SAIN (J,K)
    DO 6lO I=l,L
        DO 5l0 J=l,L
            P(I,J) = 0.
            D 6LO K=l,N
510 P(I,J) = P(I,J)+GAIN (I,K)**(K,J)
    DO 520 I=l,L
520 N(I) = SqRT(P(I,I))
    PRINT }113
    CALL PRINT (W,1,L,1,LP)
    IF (IO.EQ.0) SO TO 630
    PRINT 1140
    CALL PRINT (R,L,L,NDD,LP)
630 DO 640 I=L,N
        DO 540 J=l,M
            Q1(I,J)=0.
            D D 640 K=L,N
540 21(I,J) = 21(I,J) +PN(I,K)*Cl (J,K)
    IF (IDI.EQ.0) GO TO 580
    DO 650 I=l,N
        DO }650\textrm{J}=1,
            S(I,J) = 0.
```

```
        D 550 R=1,L
5 5 0
50
    H(I,J)=H(I,J)+Cl(I,K)*S(K,J)
    D0 
        DO 570 J=L,M
        S(I,J) = 0.
        DO 670 K=L,L
    S(I,J) =S(I,J)+P(I,K)*Dl (J,K)
    00 710 I=L,M
        D 7lO J=l,M
        SUM = 0.
        DO }690\textrm{K}=1,
        SUM = SUY+Cl (I,K) *Vl (K,J)
        xN=0.
        IF (IDI.EQ.0) 30 TO 7lO
        00 700 K=L,L
        XN = XN+Dl(I,K)*S (K,J)
        XV = XW+H(I,J)+4(J,I)
7l0 ?(I,J) = SUM+KN
    DO }720[=1,
720 'N(I) = SERT(P(I,I))
    PRINT 1150
    GALL PRINT (W,1,M,1,LP)
    IF (IO.EQ.O) 30 TO }30
    PRINT 1160
    CALL PRINT (P,M,M,NDD,LP)
    DO 740 I=L,NQ
        DO 740 J=1,N
        SUM = 0.
        IF (ID2.EQ.0) GO TO 740
        00 730 <=L,L
        SUM = SUM+D2(I,K)*JAIN (K,J)
    PN(I,J) = C2(I,J)+SUM
    DO 770 I=l,N
        D 770 J=l,N
        SUM = O.
        DO 750 K=1,L
        SUM = SUM+B(I,K)*GAIN (K,J)
        XN = 0.
        DO 750 K=L,NQ
        XN = XN+GK(L,K) *PN(K,J)
    RI(I,J) = A(I,J) +SUY+XN
    PRINT 1170
    CALL PRINT (Rl,N,N,ND,LP)
    SMO = SMALL
    CALL RR (R1, IN,N,ND,VAL,N,S1O,0,0,1)
    IF (LV.EQ.l) GO TO 730
    PRINT 1180
```

```
    30 [כ 790
73) GALL EIGVC (RL,VAL,N,ND,EL,PN,N,S1O,IE)
    PRINT 1190
730 こALL PREVAL (VAL,EL,ND,N,LV,SMO)
300 [F (LO.EQ.0) 3O \GammaO 90J
310 5:MO = SMALL
    DO 320 [=L,N
    D 320 J=l,N
320 3l(I,J)=A(I,J)
    EALL RR (R1,PN,N,ND,VAL,N,SMO,0,0,1)
    IF (LV.EQ.1) GO TO 330
    ?RINT 1200
    30 TO }84
330 CALL EIGVC (R1,VAL,N,ND,EL,EN,N,SYO,IE)
    PRINT 1210
340 CALL PREVAL (VAL,EL,ND,N,LV,SMO)
    IF (IPR.NE.0) 30 IO }90
    CALL SOLYAP (R1,Q2,N,ND,SMO,IE,DN,N
    DO 950 [=l,N
350 N(I) = SRRT(Q2(I,I))
    ZRINT 1220
    CALL PRINT (W,1,N,1,LP)
    IE (IO.EQ.0) SO TO 35J
    PRINT 1230
    CALL PRINT (Q2,N,N,ND,LP)
960 DO 870 I=L,M
    DO 370 J=l,N
        H(I,J) = 0.
        DO. 370 K=L,N
    H(I,J) = H(I,J)+Cl(I,K)*22(R,J)
    DO 390 [=l,M
        D 380 J=l,M
        22(I,J) = 0.
        DO 330 K=l,N
    22(I,J) = 22(I,J)+4(I,K)*Cl(J,K)
830 N(I) = S'SRT(Q2(I,I)
    PRINT }124
    CALL PRINT (W,1,M,1,LP)
    IF (IO.EQ.O) 30 TO 900
    ?RINT }125
    GALL PRINT (22,M,M,ND,LP)
300 PRINT 1250
    IF (IEOF.NE.0) STOP
    GO TO 20
C
910 ERMMAT (A5,2I 3,2X,Al)
920 FOR:1AT (/,12H PRINT IO=,I1,TH LP=,Il)
930 FORMAT (L2H OPTION LO=,IL,7H LV =,II,/*
940 FORMAT (/,39H SOLUTION DE REGULATOR RICCATI EQUATION)
750 ERRAAT (/,23H REGULATOR CONTROL GAIN)
950 EORMAT (/,39% SLOSED LOOP EIGENVALUES EOR SONIROLLER)
970 EORMAT (/,42H CLOSED LOOP DNNAMICS MATRIX OE CONTROLLER)
```

```
33) EORMAT (/,5LA CLOSED COOF EIGENVALUES AND VECTORS EOR CONIROLESR)
39` EORMAT (/,21I RMS REGJTATOR STATE)
LOOJ FORMAT (/,34:H REGUEATOR SIATE COVARIANCE MATRIX)
l0LO EORMAT (/.134 RMS CONTROL)
l020 GORMAT (/,254 CONTROL COVARIANCE 1ATRIX)
1030 FORMAT (/,12H RMS OUTPUT)
l040 EORMAT (/,25: OUTPUT COVARIANCE MATRIX)
LO5O EORMAT (/,35H SOLUSION OF EILTER RICCATI EQUATION)
l06O FORMAT (/,12H EILTER SAIN)
1070 EORMAT (/,22H RMS ESTIMAITON ERROR)
LOSO FORMAT (/,23H ESTIMATION EIGENVALUES)
1090 EORMAT (/,33H ESTIMATION ERROR DYNAMIES MATRIX)
LLOO EORMAT (/,35H ESTMMATION EIGENVALUES AND VECTORS)
LLLO EORMAT (/,104 RMS STATE)
LL20 EORMAT (/,24H STATE COVARIANCE MATRIX)
1130 EORMAT (/,12H RMS CONTROL)
L140 EORMAT (/,25H CONIROL COVARIANCE MATRIX)
l150 EORMAT (/,11H ZMS OISPPUT)
L160 EORMAT (/,25H OUTPUT COVARIANCE MATRIX)
L170 EORYAT (/,33H RILTER TMPLEMENNATION DYNAMISS YATRIX)
L130 EORMAT (/,34H FILTER LMPLEMENTATION EIGENVALUES)
Ll90 EORMAT (/,45H EILTER IMPLEMENTATION EIGENVALUES AND VECTORS)
l200 FORMAT (/,22H OPEN LOOP EIGENVALUES)
12LO EORMAT (/,34H OPEN LOOP EIGENVALUES AND VECTORS)
1220 EORMAT (/,184 RMS STEADY STATE)
l230 EORMAT (/,3lH STEADY STATE COVARIANCE MATRIX)
1240 EORMAT (/,29H RMS OUTPUT EOR ZERO CONIROL)
1250 EORMAT (/,35H OUTPUT COVARIANCE FOR ZERO CONIROL)
l250 EORMAT (///*
    END
```

```
            SUBROUTTNE READM (A,N1,N2,N3,NT,NA,LP)
            DIMENSION A(N3,N2)
            DATA NZ/LHZ/,ND/LHD/,NS/LHS/,NL/LHI/
```



```
C READ AND PRINT NI*N2 HATRIX 4
    INP\S!. ..
C INPUC.... Nl=RON DIMENSION OF A (NUMSER OE ROVS)
            N2=COLUMN DIMENSION OF A
            N3GDECLARED RON DIYENSION OF A
            NT=Z IF A IS ZERO YATRIX
            NT=I IF A IS IDENTITY MATRIX
            NT=S IF A IS SYMMETRIC MATRIX
            NT}=>\mathrm{ IF A IS DIAGONAL YATRIX
            NA=NAME OF MATRIX A
            LP=) FROY REGJLAR LINE PRINTER
            LP=L FROM TERMINAL PRINTER
        LP=L EROM IERMINAL PR\(c\)
```



```
            IF (NT.EQ.NZ SO TO 20
            IF (NT.ER.ND) SO TO 40
            IF (NT.EQ.NS) SO TO 50
            IF (NT.EQ.NI) SO TO 30
            READ (5,** ((A(I,J),J=L,N2),I=L,N1)
    lO PRINT 110, NA
        CALL PRINT (A,N1,N2,N3,LP)
        RETURN
    20 30 30 [=L,N1
        DO 30 J=l,N2
    30 A(T,J) = 0.
        GO TO 10
    40 30 50 I=L,N1
            DO 50 J=L,N2
    50 A(I,J) = 0.
        READ (5,*! (A(I,I),I=L,N1)
        30 ro 10
    60 READ (5,** ((A(I,J),J=L,I),I=L,NI)
        DO 7J I=l,Nl
            DO 70 J=I,NL
    70 A(I,J) = A(J,I)
    30 TO 10
    30 DO 100 [=L,N1
        DO 90 J=l,N1
        A(I,J) = 0.
        A(I,I) = L.
        GO TO 10
C
    110 FORMAT (/,1X,A10,7H MATRIX)
    END
```

```
        SUBROUTINE RRINI (A,NL,N2,ND,ID)
        DLMENSION 1(ND,N2)
```


C PRINL N1*N2 MATRIX A
C INPUT...
$A=M A T R I X ~ I O ~ 3 E ~ P R I N R E D ~$
NL $=$ RON DLMENSION OF A (NUMBER OF RONS)
N2=COLUMN DIMENGION OE A
ND=DECLARED RAN DIMENSION OE A
ID \Rightarrow REGULAR LINE PRINTER (20 COLUMN)
C ID=1 TERMINAL PRINIER (50 SOLUMN)
\bigcirc
C

PRINT*,"
$M D=10$
IF (ID.EQ.1) MD $=5$
$J 1=L$
$J 2=1 D$
IF (J2.GT.N2) $\mathrm{J} 2=\mathrm{N} 2$
GO TO 20
10 IE (J2.GU.N2) RETURN
RRINT*,"
$J I=J I+M D$
$J 2=J 2+M D$
IF (J2.GT.N2) J2 = N2
$20 \quad 30 \quad 30 \quad[=1, N 1$
30 2RINT 40, (A(I,J), J=J $1, J 2)$
30 TO 10
C
40 EORMAT (LX, 10G12.5)
END

SUBROUTINE PREVAL (VAL,EL,ND,N,ID,SMO)
DIMENSION VAL(ND), EL (ND,ND)
COMPLEX VAL

C PRINT EIGENVALJES AND ZIGENVECTORS, TEE EIGENVECTORS NILL
C BE NORMALLIZED
C INPUT....
VAL=EIGENVALUES (FROM RR)
EL=EIGENVECTOR MATRIX (FROY EIGV:*
ND $=$ DECLARED DIMENSION OF VAL, EL
$N=D I M E N S I O N$ OE VAL, EL
SMOEPRECISION OE EIGENVALUES COMPUTATION
ID \Rightarrow, PRINT EIGENVALUES ONLY
ID=L ,BOTH EIGENVALUES AND EIGENVECTORS PRINTED

D $110[=1, N$
IF (ID.EQ.1) 30 TO 10
?RINT 120, I
GO TO 20
10 PRINT 130, I, I
20 RE = REAL(VAL(I))
$A I M=\operatorname{AIMAG}(V A L(I))$
PRINT 140, RE, AIM
IF (ID.EQ.0) GO TO 110
IF (ABS (AIM .LE.SMO) 30 TO 70
$K=I-L$
$\mathrm{KPl}=\mathrm{I}$
SIGN $=1$.
IF (AIM.LT.O.) GO TO 50
$K=I$
$K P 1=I+L$
SIGN $=-\mathrm{L}$.
SUM $=0$.
XMAX $=0$.
D $30 \mathrm{~J}=1, \mathrm{~N}$
$X=E L(J, K) * E L(J, K)+E L(J, K P 1) \star E L(J, K P 1)$
IF (X.LE.XMAX) 30 TO 30
X MAX $=X$
JMAX $=\mathrm{J}$
30 SUM = SUM+X
SIM $=$ SORT (SUM*XM, $4 X)$
$\mathrm{XI}=\mathrm{EL}(\mathrm{JMAX}, \mathrm{K})$
$X 2=E L(J M A X, K P 1)$
DO $40 \mathrm{~J}=\mathrm{L}, \mathrm{N}$
$X X=(E L(J, K) * X 1+E L(J, K P 1) \star \times 2) / S ' I 4$
$E L(J, K P 1)=(-E L(J, K) * X 2+E L(J, K P I) * X I) / S U M$
$40 \quad \mathrm{EL}(\mathrm{J}, \mathrm{K})=\mathrm{XX}$
$50 \quad D 060 \mathrm{~J}=\mathrm{L}, \mathrm{N}$
$X N=E L(J, K P I) * S I G N$
60 PRINT 150, EL(J,K),XN
GO FO 110
$70 \quad S U M=0$.
$\infty \quad$ — $30 \mathrm{~J}=\mathrm{L}, \mathrm{N}$
$30 \quad \operatorname{SIJ4}=\operatorname{SUM}$ +EL(J,I)*EL(J,I) S:51 = S2RT(SU10
DO $30 \mathrm{~J}=\mathrm{l}, \mathrm{N}$
$E L(J, I)=E L(J, I) / S L S A$
D $100 \mathrm{~J}=\mathrm{l}, \mathrm{N}$
1 ?RINT 150, EL(J, I)
110 SONTINUE
RETURN
c
120 FORMAT (//,3X,12H EIGENVALUE (,I2,2H)).
130 EORMAT (//,3X,124 EIGENVALUE (,12,24),15X,134 EIGENVECTOR (,I2,2H) 1)

140 FCRMAT ($/ .3 \mathrm{X}, \mathrm{Gl2.5,3H}+\mathrm{J}, \mathrm{G12.5)}$
150 EORMAT ($30 \mathrm{X}, \mathrm{G} 12.5,34+\mathrm{J}, \mathrm{G} 12.5$)
150 FORMAT (30X,G12.5)
END

SUBROUTINE CONTRL (A, B, C,D, 2,R,S,GAIN,H,P,VAL,N,M,L,ND, ND2,ND4,NDL 1,'N,ID)
DIMENSION 1 (ND,ND), $3(N D, N D L), C(N D M, N D), D(N D Y, N D L), 2(N D, N D), R$ 1 (ND,ND), $S(N D, N D), ~ G A I N(N D C, N D), H(N D 2, N D 2), P(N D 2, N D 2), V A L(N D 2)$, 2 N(ND2)
COMPLEX VAL

$\mathrm{N} \mathrm{P}=\mathrm{N}$
IF (ID.EQ.0) SO TO 60
こ P11=2*
D 10 [$=1, \mathrm{M}$
D $10 \mathrm{~J}=\mathrm{l}, \mathrm{L}$ $P(I, J)=0$. D $10 \mathrm{~K}=\mathrm{L}, \mathrm{M}$
$10 P(I, J)=P(I, J)+Q(I, K) * D(R, J)$
C $R=R+D T * Q$
D0 30 L=L, L D $30 \mathrm{~J}=\mathrm{L}, \mathrm{L}$ SUM $=0$. DO $20 \mathrm{~K}=\mathrm{L}, \mathrm{M}$
SUA $=$ SUNHD (K, I) *P (K,J)
20
$30 \mathrm{R}(\mathrm{I}, \mathrm{J})=\mathrm{SUN}+\mathrm{R}(\mathrm{I}, \mathrm{J})$
C $\quad \operatorname{AAIN}=P 12 \Rightarrow D T * 2 *$
© $50 \mathrm{I}=\mathrm{l}$, L
D $50 \mathrm{~J}=\mathrm{L}, \mathrm{N}$
$S!M=0$.
DO $40 \mathrm{~K}=\mathrm{L}, \mathrm{M}$

```
    43
        SUM = SUA+P (R,I)*C(R,J)
        3.4IN(I,J) = S:J4
        ?(I,J+N) = SUA
        NP = N+N
C Pll=3T
    50 30 30 [=1,L
        DO 70 J=L,N
    70 ?(I,J) = 3(J,I)
        DO 30 J=L,L
    30 H(I,J) = R(I,J)
C Pll=[NV(R)*BT AND Pl2=[NV(R)*DT*2*C
c 
    DO 30 I=L,M
        DO 90 J=L,N
            H(I,J) = 0.
            D % K K=l,M
    90) A(I,J) = H(I,J)+2(I,K)*C(R,J)
C *2l=CT*2*D*INV(R)*DT*2*C-CT*2*C
        DO 130 I=l,N
        NPI = N+I
        DO 130 J=l,N
            NPJ = N+J
            SUM = 0.
            IF (ID.EQ.0) SO TO 110
            00 100 R=L,L
            SUM = SUM+I.AIN (K,I) *P (K,NPJ)
            DO 120 K=l,M
            SUM = SUR-C(K,I) *H (K,J)
    G(NPI,J)=SUM
C R=-INV(R)*BT AND GAIN=-INV(R)*DT*2*C
    DO 140 I=L,L
        DO 140 J=l,N
            IF (ID.EQ.O) 30 TO 140
            GAIN(I,J) = P(I,J+N)
    140R(I,J) = P(I,J)
C Hll=A-S*INV(R)*DT*Q*C AND :H22=-H11T AND H12=-3*INV(R)*BT
    DO 180 I=l,N
        NPI = N+I
        D 130 J=L,N
            NPJ = N+J
            SUM = 0.
            IF (ID.EQ.O) SO TO 160
            30 150 K=l,L
            SUM = SUM+B(I,K)*GAIN (K,J)
            H(I,J) =A(I,J)-SUM
            H(NPJ,NPI) = -H(I,J)
            SUM = 0.
            DO 170 K=L,L
            SUM = SUM-S(I,K) *R (K,J)
180 H(I,NPJ) = SUM
    CALL RICCAT (i,P,S,VAL,1,N,ND,ND2,W,Q)
```

C GAIN=TNV (R)*DT*2*C*+[NV (R)*3T*S
D $200 \mathrm{~T}=\mathrm{L}, \mathrm{L}$
D $200 \mathrm{~J}=\mathrm{L}, \mathrm{N}$
$\operatorname{SiM}=3$.
D $190 \quad \mathrm{Z}=\mathrm{L}, \mathrm{N}$
SUM $=$ SUM-R (I,K)*S (R,J)
LF (LD.NE.O) SUK = SUM-GAIN(I,J)
200 $\operatorname{SAIN}(I, J)=\operatorname{SII}$ RETURN
END

SJBROUTINE FILTER (A, C, GAMA, THETA,Q, R, S,GAIN, H, P, VAL, N, M, L, ND, ND2, INDA, NDC,'N, ID)
DIMENSION A(ND, ND), C(NOY,ND), GAMA(ND, NDC), THETA(NDM,NDC), 2(ND, lND) , $R(N D, N D), H(N D 2, N D 2), P(N D 2, N D 2), W(N D 2), S(N D, N D), V A L(N D 2)$, 2 GAIN(ND, ND: COMPLEX VAL


```
C SOLVE FOR STATIONARY KALAAN FILTER DE THE SYSIEM
        DX/DT=A*X+3*U+GAMA*W
        Z=C*X+J*J+V+THETA*W
        Q AND R ARE PONER SPECTRAL DENSITIES FF N AND V
        INPUT.
        A,C,GAMA,THETA,Q,R AS DEFINED ABOVE ARE N*N, M*N,N*L,M*L,L*L,M*M
        RESPECTIVELY.
        N,L,M,ND,NDL,NDI ARE DIMENSION AND DECLARED DI:MENSION RESPECTIVELY.
        ND2=#D*2 DECLARED DIMENSION OF H,P,VAL,W
        ID=0 IF MATRIX [HETA=0. ,=L OTHERNISE
    OUTPUT...
        S,VAL,GAIN ARE SOLITION OF RICCATI EQUATION, CLOSED LOOP
        EIGENVALUES, AND EILTER GAIN RESPECTIVELY.
    NOTICE.. 2,R VILL SE DESTROYED.
        H,P,'N ARE :NORKING SPACE
    SUBROUTINES REQD. - HSOLVE,RICCAT,QR,HESS,SHIFT2,TRIA, PERYUT
    C
```



```
        IF (ID.EQ.0) GO TO 20
        DO 10 [=L,M
            DO 10 J=l,L
            S(I,J) = 0.
            DO 10 K=l,L
    10S(I,J) = S(I,J) +THETA (I,K)*2 (R,J)
20 DO 40 [=1,M
        D 40 J=1,M
            SUM = 0.
            IF (ID.EQ.0) SO TO 40
            DO 30 K=L,L
            SUM = SU&+S (I,K) *THETA(J,K)
        G(I,J) =R(I,J)+SUM
        D 70 I=L,M
            D 50 J=1,N
50 P(I,J) = C(I,J)
        IF (ID.EQ.0) SO TO 70
        DO 60 J=l,L
        P(I,J+N)=S(I,J)
        CONTINUE
        NL}=N+
        IF (ID.EQ.O) NL = N
        CALL HSOLVE (H,N,P,M,NL,ND2,O,IE)
        IF (ID.EQ.0) SO TO 100
        DO 90 [=L,L
        DO }90\textrm{J}=\textrm{L},\textrm{L
            SUM = 0.
            DO 80 K=1,M
```

```
\(30 \quad\) SUM \(=\) SU4 \(\quad\) S \((K, I) * P(\) ( \(, ~ J, J+N)\)
\(30 \quad 2(I, J)=2(I, J)-S U 4\)
100
    \(0110[=1, N\)
        \(\infty 110 \mathrm{~J}=\mathrm{L}, \mathrm{N}\)
            \(S(\tau, J)=0\).
            D 110 K=L, 1
\(110 S(I, J)=S(I, J)+C(K, I) * O(K, J)\)
IF (ID.EQ.0) 30 TO 130
    DO \(120[=1, N\)
        D \(120 \mathrm{~J}=\mathrm{L}, \mathrm{M}\)
            \(R(I, J)=0\).
            D \(120 \mathrm{~K}=\mathrm{L}, \mathrm{L}\)
\(120 R(I, J)=R(I, J)+\operatorname{SAnA}(I, K) * P(J, K+N)\)
130 DO 140 I=L,N
            D \(140 \mathrm{~J}=\mathrm{L}, \mathrm{M}\)
\(140 \operatorname{GAIN}(\mathrm{I}, \mathrm{J})=-P(\mathrm{~J}, \mathrm{I})\)
    DO 170 I \(=1, N\)
        \(20170 \mathrm{~J}=\mathrm{L}, \mathrm{N}\)
            SUM \(=0\).
            IF (ID.ER.O) GO TO 1 КO
            DO \(150 \mathrm{~K}=\mathrm{L}, \mathrm{M}\)
            \(S!M=S U M+R(\square, K) * C(R, J)\)
            Y ( \([, J)=A(I, J)-S U M\)
            \(H(J+N, I+N)=-H(I, J)\)
\(170 \quad \pi(I+N, J)=S(I, J)\)
    DO 130 I=L, L
        D \(180 . J=1, N\)
            \(P(I, J)=0\).
            D 180 K=l, L
\(180 \quad P(I, J)=?(I, J)+2(I, K) * G A M A(J, K)\)
    DO 200 I=l,N
        DO 200 J=L.N
            SUM \(=0\).
            DO \(190 \mathrm{~K}=\mathrm{L}\), L
\(190 \quad\) SUM \(=\operatorname{SUM}+G A M A(I, K){ }^{*} P(K, J)\)
\(200 H(I, J+N)=S U M\)
    CALL RICCAT (H,P,S,VAL,-L,N,ND,ND2,W,Q)
    DO \(230 \mathrm{~J}=\mathrm{L}, \mathrm{M}\)
        D 210 I=l,N
            \(W(I)=0\).
            D 210 K=l,N
\(210 \quad N(I)=N(I)+S(I, K) * \operatorname{SAIN}(K, J)\)
        DO 220 I=l,N
        \(\operatorname{GAIN}(\mathrm{I}, \mathrm{J})=\mathrm{N}(\mathrm{I})\)
    CONTINUE
        IF (ID.EQ.0) SO TO 250
    DO 240 I=L,N
        D \(240 \mathrm{~J}=\mathrm{L}, \mathrm{M}\)
\(240 \operatorname{SAIN}(L, J)=\operatorname{SAIN}(I, J)-R(I, J)\)
250 RETURN
    END
```

```
            SUSROUTINE RICCAT (H,P,S,VAL,K1,N,ND,ND2,N,22)
            D[YENSION H(ND2,NJ2), P(ND2,ND2), S(ND,ND), VAL(ND2), 'N(ND2), 22
    1(ND,ND)
            COMPLEX JAL,VAT
            DATA SMALL/L.E-14/
```



```
C REGULATOR PROBLEM-S*A+AT*S-2+5*R*S=0.
C FILTER PRGLEM- A*S+S*AT+R-S*2*S=0.
C INPYT.
C H=2N*2N MATRIX, DEFINED AS FOLLONS...
    H1l=A
            Hl2=R
            H2L=2
            H22=-AT
            A,Q,R aS IN THE ABOVE RICCATI EQUATION EOR REGULATOR AND EILTER
            Kl=CONTROL PARAMETER,
                Kl=l FOR REGJLATOR(ISOLATE RIGGT HALF PLANE EIGENVALJES)
                Kl=-l FOR, EILTER(ISOLATE LEFT HALF PLANE EIGENVALUES)
            N=DIMENSION OE S
            ND=DECLARED DCMENSION OF S AND QR
            ND2=DECLARED DIMENSION 05 H AND P(USUALLY 2*ND)
            N IS :NORKING SPACE, 2N*L
            O2 IS N*N WORKTNG SPACE
        OUTPUT.
            S=SOLUTION OF RICCATI EQUATION,N*N MATRIX
            H-QUASI-JJPPER TRIANGULAR MATRIX, 2N*2N
            P=ORTHOGONAL SIMILARITY TRANSFORMATION MATRIX, 2N*2N
            VAL=N LEFT HALF PLANE EIGENVALUES AND N LOCATIONS OE WORKING SPACE
    SUBROUTINES REQD. - QR,HSOLVE,HESS,SHIFT2,TRIA, PERMUT
```



```
            SMO = SMALL
            N2 = N+N
            D 10 [=l,N2
            DO 10 J=1,N2
    10 P(I,J) = H(I,J)
c calcillate eigcnvalues
    CALL R (P,H,N2,ND2,VAL,N2,S4O,0,0,0)
C REORDER EIGENVALUES
            DO 20 [=l,N2
                RE = REAL(VAL(I))*S1
                IF (RE.LT.0.1 VAL(I) = =MPCX(0..0.1
                    30 CONTINUE
            DO 40 J=l,N
            IPP = N2+l-J
            VAT = VAL(IPP)
            AMX = ABS(REAL(VAT))
            IPPL = IPP-l
            LPP2 = 0
            DO 30 [=l,IPP1
                AMI = ABS(REAL(VAL(I))I
                IF (AMI.LE.AMX) SO TO 30
                IPP2 = [
```

```
        AMX = MMI
        CONTINUE
        IF (IPP2.EQ.0) SO TO 40
        VAL(IPP) = VAL(TPP2)
        VAL(IPP2) = VAT
    CONTINUE
        \infty 50 [=l,N
    50 VAL(I) = VAL(I+N)
    RE = REAL(VAL(L))
    AIM = AIMAG(VAL(L))
    Sl = SQRT(SMO)
    S2 = SRRT(S1)
    OISO = SPRT (RE*RE+A IM*AIM*
    IF (DISO.GI.S2) SO TO 70
    LF (ABS(AIM .GT.S4O) 30 T0 50
    RE = REAL (VAL(2))
    IF (ABS(RE).LE.S2) 30 T0 50
    IF (DISO.GT.SL) GO TO 30
    ?RINT 150
    30 TO 30
    IF (ASS(RE).ST.Sl) So TO 30
    ?RINT l60
    30 3^10 = SMALL
C CALCULATE ZUASI-TRIANGULAR DFCOMPOSITION
    CALL $R (H,P,N2,ND2,VAL,N,SMO,0,1,1)
    IF (Kl.EQ.-L) SO TO 100
    OO 30 J=L,N
    JJ = J+N
    DO 30 I=L,N
        QQ(I,J) = P(I,J)
    S(I,J) = P(L,JJ)
    30 TO 120
    100 DO 110 J=1,N
        JJ = J+N
        D 1l0 I=l,N
            S(I,J) = ?(I,J)
    110 PQ(I,J) = P(I,JJ)
C
    120 CALL HSOLVE (QQ,W,S,N,N,ND,O,IE)
        IF (Kl.EQ.-L) SO TO 140
        O 130 I=L,N
    130 VAL(I) = -VAL(I)
    l40 RETURN
C
    150 FORMAT (//.47H **WARNING. HAMILTONIAN MAIRIX NEARLY SINGULAR**.//*
    l50 FORMAT (//.5LH **WARNING.HAMILTONIAN HAS EIGENNALUE AT IMAGTNARY
        1 4XIS**.//%
    END
```

```
3U3ROUTINE 2R (I,D,N,ND,VAL, TJ,SNO,ITR,I1,Kl)
こЭMPTこX VIL,V
T[\ENSION {(NO,ND), P(ND,ND),VAC(NO),V(?)
OA[A S14LC/L.E-!4/
```


$2 R$ REDUCIIJN ז'כ ZJASI-JPPER RIANGJLAR EJRM
INPU「......
if $=1$ IRIX O 3E REDUCED
ITR $\Rightarrow[M E N S I O N ~ J F ~ P R E V I J U S L Y ~ M R I A N G J L R I Z E D ~ こ O R N E R ~ O F ~ H ~$
II = J, N A PRIORI EIGENJALJE KNONLEDGE
$I l=1$, SHIFT ON KNJNN GIGENVALUES
Kl =), N SUMVJKA FED P CALO'JCAIED
Kl $=1$, CJMMJTATED P CALCULITED
AV $=$ NUMBER DE EIGENVALUES M 3E [SOLAED
VAL =A PRIORI EISJNVALJES ([T KNONN)
SNJ=REXJRED PRECISION IS A ERACIION DE MAE MATRIX VORA
$\mathrm{N}=\mathrm{OL}$ IENSTON $2 F$ MNPIX H
ND=NJMBER JF RONS IN LAIN PRORRA1 D[IENSION JE H
OUTPU5.
H=2JASI-JPPER RIANGJAR YAMEY
PORTHOGNAL MAMRX ([E Kl= l)
VAL=EALAULITED 巨IGENVALUES

LN RESUKING XJASI-FRINGUCAR A1MTX
SUBROUPINES RE2D. - HESS, SHIE R2, KRIA, PERUSE
IPGRVP = 1
[PGRV = $)$
[F ([R.NE.O) GO [O 3]
[E (Kl. EQ.0) 3O [O 30
こ INITIALEIZE P AS IDENTITY
DO 20 [$=1, N$
D $10 \mathrm{~J}=\mathrm{l}, \mathrm{N}$
$?([, J)=3$.
$20 \quad ?(I, I)=1$.
$39 \quad$ JN = 3 .
© CALCULATE [HE MAXI:MUM NORY JMN
$\infty 50[=1, N$
$t A=$ う.
D $40 \mathrm{~J}=1, \mathrm{~N}$
40 $\quad \quad \angle A=1 A+4 B S(H([, J))$
[F (AA.GC.OAN) OHN = LA
5) SONTINUE

$3 N D=S N D * J M N$
5) $N 1=1$
$N 2=\mathrm{N}-\mathrm{LM}$
$1=1 V$
SALL HESS (H, P, N,ND,N-1,N1,N2,S10,KI)

- SMAR HAJJR LOOP
$70 \quad[J=0$

```
    [F (4.LE.)) RETURN
    N211 = N?-1
    N21? = N2-?
= START 2R IRIERAT[JN
    D) 14] [r=1, ?)
        [E ([].E2.0) 3) [丁 10]
        [F ([r.G\Gamma.10) 3つ `) 100
        IF ([J.NE.0) 3כ 「O llO
        RE = REAL(VAL(W)
        4I4 = IINAJ(V)L(M)
        Cl = (R5+Rこ)
        C2 = RE*2E+AI4*AIM
        IJ = l
        3) \Gammaว 11%
        #l = 4(N211,N211)+H(N2,N2)
        C2 = 4(N2,N2)*1(N2M1,N2M1)-H(N211,N2)*H(N2,N2M1)
        [F (IT.NE.lO) 3) TO llO
C PEREORM EXOEPNTONAL SIIET
        Cl = 133(H(N2,N241)1+133(4(N24),N212)1
        こ2 = こl*こ1
        Cl = 1.5*21
    110
C
    TEJT EOR EONVERGENVE
        Sl = SVO
        IE ([\Gamma.E2.20) 3l = 32R\Gamma(3NJ)
        DJ 133 [=1,N?MN1
            LH=N2-[+1
            [F (A3ラ(!(5'4,LI-!)).Gこ.Sl) 3つ rJ 130
            [E ([PERV?.Sr.?) 3) [O l2)
            IF ([.GT.?.NNO.Il.E2.1) 3O \GammaO 3JO
` ZERJ SJ3D[AG)N\L ELEMENT
            Vl= L\1
            G) TO 3)
        OOUIINJE
    14) こכNTINJE
        PRINR 33)
        Srj?
C 22 H1S CONVERGED - SNLCUL\IE EISENVILJES
    こALL [RI\ (4,P,N,N),N2,V,SN3,Kl)
    NV = ?
    3) 「丁 17)
15) V(1) = =1PLX(11(V2,N2),0.1
    NV = l
17J [F ([1.NE.0) 3) [J 17)
    D' 13) }2=1,N
```

```
    V\L(4=V =VV-Z+!)
    M= \-!
    (3) N2 = N2-!
    3) [J 70
` TIV] NEAREST G[VEN E-TALJE
    19) D) 2引) 
    KK = NV-Z+!
    ! [ = l
    JMIN = こ13S(V1L(!)-7(KK) 
    [F (4.LT.2) 30 [0 210
    ว) 20丁 [=?,4
        CC = こ.35(V\L([)-V(KK))
        [F (C..an.DAIN) 3) [) 20)
        O1IN = ここ
        II = [
    EONTTVJE
    [5 ([PERV.GE.I.AND.N2.E2.2) 3) [) 22]
    [E ([PERVP.LE.2) 3) [כ 23)
    ?3INT 34), 4
    (3) [0 24)
    [F (O4IN.Gr.(3N)**.25)1 3) BO 27.)
```



```
    24) [E (M.E2.[I) 3) [0 250
    VAL(TL) = V\L(%
    250) VAL(% = V(KZ)
            [E (M.LE.l) RETJRN
            1=1-1
    35) N2 = N2-1
        [P3RV = )
        [?`RVP = )
        3) i) 7)
こ REjEDr etgenvalue
    27) [₹ (v2.LE.l) 3) [0 3.2)
        [5 (43S(H(N2,N2-L)1.G[.S1) 30 \0 23)
        [F(N2.E2.2) 3] 门 23]
        [5:235(G(V)-!,N2-?)).LE.S1) 3) % 23)
        3) [丁 230
```



```
            CALL PERHJT (H,P,N,N),V1,N2,SHO,Xl,M
            [?3RV = [?ERV+L
            3.) 「つ l
    23) [F (V`.E2.2) 30 [丁 310
    3)] GALC PERMJE (4,P,N,Nコ,1,N2,540,Kl,0)
    C\LL !E33 (4,?,V,ND.N2-1,l,N2,S1J,KU)
    3l0 [?\XiRV? = [?\Xi\V?+1
        v1=1
        3) [0)}7
    32) J\L(*)=V(!)
        ?RLN: 347, 4
        マニザSRN
Z
```


 1玉)
END

SUBROJTLNE HESS（A，P，N，ND，NZ，N1，N2，SMALL，K1）
DI IENSION A（ND，ND），P（ND，NJ）

$\mathrm{N} 21 \mathrm{l}=\mathrm{N} 2-\mathrm{l}$
$\mathrm{NlPl}=\mathrm{Nl}+\mathrm{l}$
D． 120$\}=\mathrm{N} 121, \mathrm{~N} 241$
र11＝そ－1
$\mathrm{NN}=\mathrm{KML}+\mathrm{N} 2$
IF（NN．GT．N2）NN＝N2
$3=0$ ．
DO $10[=$ ，$N \mathbb{N}$
$10 \quad S=3+1(I, K 11) * A(I, K 11)$ $S=32 R T(S)$
［F（S．LT．SAALL）GJ TO 100
IF（A（R，K11）．．GT．O．：$S=-5$
$A(K, K 11)=A(K, K 11)-S$ C＝S2RT（－S＊A（R，K11）） DO $20[=\mathrm{K}, \mathrm{NN}$
$20 \quad 1([, K 11)=A(I, K 41) / C$ D 40 J J＝K，N
$c=0$ ．
D $30[=K, N \mathbb{N}$
C $=$ C＋ג（I，J）＊A（I，KMI）
$0040[=K, N N$
$A\left([, J)=A\left([, J)-C^{*} A([, K M I)\right.\right.$ ว） $51[=\mathrm{l}, \mathrm{N} 2$
$c=0$ ．
∞ 5：J $=$ K，NN

DO $\operatorname{so} \mathrm{J}=\mathrm{K}, \mathrm{NN}$ $A([, J)=A(I, J)-C * A(J, K 11)$ ［E（K1．E2．0）3つ 「O O丁
כ）3J J＝1，N
$c=3$ ． $\infty 70[=\mathrm{K}, \mathrm{Nv}$ こ $=$ こ + P（I，J）＊A（I，K1l）
D $30[=\mathrm{K}, \mathrm{NN}$ $?([, J)=?([, J)-0 * A([, K 11)$
30 $A(K, K \| 1)=3$
$3 ? 1=3+1$
DO $110 \tau=$ PD 1 ,NN
$110 \quad A(I, K 11)=3$.
120 EONTTVUE
RETSTK
END

SUBROUTINE SHITR2（A，P，N，N，N1，N2，Cl，C2，SMALL，Kl）
D［YENSION 1 （N），ND），$P(N D, N D)$
 6 PERFORMS DOUBLE SHIFT NITH ORIGINS 31, S2 AHIOH SATISEY Cl＝31＋32 C AND C2＝Sl＊S2，FOLLONED $3 Y$ TEE EIRST SIMILARITY FRANSEORMATION C IN RR FACTORIZATION．MATRIX A IS UPPER HESSENBERS ON INPJT． C PARAMETERS－A－LNPUT－N＊N JPOER HESSEN3ERS MATRIX

OURPTT－TRAVGEORMED MATRIX WITH 3 ELEMENTS 3ELON DIAJ
P－N＊N ACOUMJATED ORTHOGONL TRANSEORMATION MATRIX
（n－MATRIX SIZE
nd－NUMER JF RONS IN MAIN PROGRAM DTMENSIJN FOR A AND 2 N1，N2－RON INDICIES OE ISOLATED DIAGONAL BLJCK Cl，C2－CONSTANTS ROR DOUJLE JRIGLN SHIFT SMALL－A SMALL NJMBER＝1ACH．PRER．＊NORM（A） Kl＝0 Nכ ACCUMULATED ？AATRIK Kl＝1 ACCUMULATE ORTHOGONAL TRANGミORMATIONS
$\mathrm{NlP}=\mathrm{Nl}+\mathrm{l}$
$\mathrm{NlP2}=\mathrm{Nl}+2$
$\mathrm{Xl}=\mathrm{A}(\mathrm{Nl}, \mathrm{Nl})-21$
$N 1=A(N 1, N 1) * \times 1+C 2+A(N 1, N 1 P 1) * A(N 1 P 1, N 1)$
$\mathrm{W} 2=(\mathrm{Xl}+\mathrm{A}(\mathrm{NlPl}, \mathrm{NlPl}) 1 * A(\mathrm{NlPl}, \mathrm{Nl})$
$\mathfrak{N 3}=\mathrm{A}(\mathrm{N} 1 \mathrm{P} 2, \mathrm{Nl} 21) * \mathrm{~A}(\mathrm{Nl} 21, \mathrm{Nl})$

IF（S．ET．SMALL）RETURN
IF（NL．GT．O．＇S $=-5$
＇N1＝N1－S
$C=\operatorname{SRRT}(-S * * 1)$
$\mathrm{Wl}=\mathrm{Nl} / \mathrm{C}$
$\mathrm{N} 2=\mathrm{N} 2 / \mathrm{C}$
N3＝：N3／C
DO $10 \mathrm{~J}=\mathrm{NI}, \mathrm{N}$
$S=A(N 1, J) * N 1+A(N 1 P 1, J) * \cdot N 2+A(N 1 P 2, J) * N 3$
$A(N 1, J)=A(N 1, J)-S * N 1$
$A(N 1 P 1, J)=A(N 1 P 1, J)-S * / \sqrt{2}$
$10 \quad A(N 1 P 2, J)=A(N 1 P 2, J)-\mathbf{S}^{*} \sqrt{ } 3$
ว） $20[=1, N 2$ $S=A(I, N 1) * \sqrt{1}+A(I, N 1 P 1) * W 2+A(I, N 1 P 2) * \sqrt{3}$ $A([, N 1)=A(T, N 1)-S *$ Wl $A(L, N 1 P 1)=A(L, N 1 ? 1)-S * \cdot / 2$
$20 \mathrm{~A}(\mathrm{I}, \mathrm{N} 1 \mathrm{P} 2)=\mathrm{A}(\mathrm{I}, \mathrm{N} 1 \mathrm{P} 2)-3 * W 3$
IF（Kl．E2．0）RETURN
$030 \mathrm{~J}=\mathrm{L}, \mathrm{N}$
$S=P(N 1, J) * N 1+P(N 1 P 1, J) *: N 2+P(N 1 ? 2, J) * * N 3$ $?(\mathrm{Nl}, \mathrm{J})=?(\mathrm{Nl}, \mathrm{J})-5 * \cdot \mathrm{Nl}$ $P(N 1 P 1, J)=?(N 1 P 1, J)-S *$ N2
$?(N 1 P 2, J)=?(N 122, J)-S *: N 3$
RETJRN
END

SUBROUTINE DERMUT (H, P, N,ND,NX,N2, S.MO, K1, IP)
DIMENSION A (ND,ND), P(ND,ND)

```
C ARSITRARY ORTHOGONAL( HOUSEYOLDER TYPE ) SIMILARITY
C TRANGEORMATION TO REMOVE AN INDESIRABLE ZERO ON SUBJLAGONAL
G OR EXOHANGE POSITION OE TVO REAL EIGENNLUSES ON 2*2 JIAGJNAL 3LOCK
C INP'JT....
    H=MATRIX TO 3E TRANSEORMED
    N=DIMENSION OF H,P
    ND=DECLARED OIMENSION OF H,?
    NX,N2=RON INJISIES OF THIE 3LOCK TO 3E TRANSEORMEJ
    Kl=0 NO CUMMUCATED ? CALLULATED
    Kl=l CUMYULATED P CALCULATED
    IP=l IF POSITION EXCHANGE PEREORMED OTHGRNISE=O
    SYO=?RECISION CRITERION FRO\ QR SU3ROUTINE
    OJTPUT
    H=TRANGEORMED 4ATRIK
    P IS ORTHOGONAL MATRIX
```



```
    IF (IP.NE.0) 30 TO 100
    x = 2./(N2-NX+L)
    3) 30[=NX,N
        NM = N2
        IF (I+l.LT.N2) NM = I +l
        SIMM=0.
        D 10 %=vx,N-N
        SU4 = SiN4-4(K,I)
        DO 20 J=NX,N2
        H(J,I) = H(J,I)+Y*JUM
        CONTINJE
        D 50 [=L,N2
            SUM = 0.
            DO 40 : =NX,N2
40 SIMM = SIM1-4(T,K)
            DO 50) J=vX,N2
            H(I,J) = :H(I,J)+X*SUM
        SONTINUE
        IT (K1.E2.0) RETURN
        D 3] I=L,N
            3IN = 0.
            D 70 K=vx,N2
70) SUM = SUM-P(R,I)
            DOO J=NK,N2
            ?(J,I) = ?(J,I) +X*J'J1
        cONTINUE
        RETURN
100 v241 = v2-1
        N242 = N2-2
        N2?1 = N2+1
        A = I(N2M1,N241)
        3=H(N2M1,N2)
        C = H(N2,N2)
```

```
    [F (A3S(B .SE.SMO) Эכ TO 110
    Xll = 0.
    Xl2 = l.
    X22 = ).
    O) TO 120
110 x = A-5
    XX = SQRT(Y*Y +3* B)
    X22 = 3/YY
    X11 = - Y22
    X12 = X/x X
120 A (N241,N241) = こ
    H(N2,N2) = A
    H(N2Y1,N2) = X11*(X12*A+\22*3* + < 12*< 22*C
    IF (N2Pl.GT.N) 30 TO 140
    30 130 [=N201,N
        XA = Xll*H(N211,I)+X12*A(N2,I)
        H(N2,I) = Kl2*G(N241,I)+र22*G(N2,I)
L30 H(N2M1,I) = X1
140 [F (N242.[E.0) 3) TO 150
    ว) 150 [=L,N242
        XA = \l1**([ [,N241)+X12*'G([,N2)
        H(L,N2) = X12*G([,N2M1)+X22*G(L,N2)
150 H(I,N241) = Y1
150 IF (Kl.E2.0) RETURN
    O170 [=l,: 
        KA = X11*P(N2M1,I) +X12*O (N2,I)
        ?(N2,I) = Kl2*? (N241,I) +\22*? (N2,I)
17J ?(N211,I) = XA
        RETTJN
        E.ND
```


こつ1？5® V1L


```
    REAL , AN ORTHOGJNAL SIMILARITY RRANSFORAATIJN [S PEREJRMED [O
    TRIANGUCARIZE DIGONAL 3LJCK.
    3=?*A+OT AND 洰 A=3
    INQJ:....
```



```
            N=TIENSIJN JF MATRTX &
            NO[Y=DECLEMRED DLMENSIJN JE ARRMY I
            N?=[NJEX )F 2*? 3LOCK = RON fND =OLJMN NJMBER DF LOVER
                RIGI[ -JRNER
            S4ELL=NORM*MAOHINE PRECISEON
```



```
            Kl=!, OJMAKA[ED ? こALCUL\TEJ
    0JR?Ji....
            A= 2JASI-jPPER TRIAVGJLIR MAERIX 3
```



```
    V\L=OJMPJEED EIGENV\LJES IN V\L(!) \NJ V\L(?)
    N2.4l = v?-!
    [5 (A3S(A(V),V241)1.LE.34\LL) 3) @ 引)
    [? (13S(A(N2M1,N2)).Gr.S4ALC) 3) PO 1)
    ?11 = ).
    P2? = ).
    P12 = 1.
    P21 = 1.
    3) io 20
(.) 2l = {(N211,N241)-1(N2,N2)
    < = 21*Ol+1.* (N241,N2)*N(% 2,N2.41)
    [F ({.[!.O.1 3) [) 7)
    こX = (Cl+32RT(<)**.5
    ここ = 32RT(CX*こX+#(N2.N2M1)*4(V2,N241)!
    Pll = -x/CS
    P21 = 1(N2.N2.11)/C
    P1? = 435(?2!)
    O22 = 211
    [5 {?2!.95.0., ?22=-?22
    ว) 3) [=1,N?
        ANTM1 = \([,N2M1)*?11 +\([,N2)*?2!
        A:N2 = ( ([,N2.41)*?1?+1([,N2)*? ?2
        I([,N241) = {N24]
3) 1(r,N2) = +N2
    O) 4) [=v241,v
        AN241 = {(N241,[)*?11H(V2,I)*??!
        H? = 1(W241,I)*?12+1(N2,[)*?2?
        \(V241,I) = \N241
4) }1(\2,I)=1N
    [? (%l.52.?) 3) `) i)
```

```
    O) 5:] [=1,N
        PN241=?(N241,I)*?11+?(N2,I)*??1
        ?N2 = ?(:N241, [)*O12+?(N2, [) +2 2)
        ?(N241,I)= 2N241
5) ?(N2,I) = 2V2
5.) J\L(?) = -1PCX(I(v2,N2).0.'
VAL(1) = こ1PGX(A(N211,N211),0.1
}) [`3]
Z
70 RE = (A(N2M1,N2M1)+\(N2,N2)1/?.
    AIM = 3QR\Gamma (-X)/?.
    VAL(L) = SMPCX(RE,AIH
    VAL(2) = こMPCX(RE,-AIM,
3 3
RET:RN
    END
```

```
            SUBROUTINE HSOLVE (A,N,3,N,M,NDIM,ID,IE)
```



```
            DATA SMALL/L.E-L4/
```



```
C
C
C A=THE AATRLX JE N*N DRDER OF A+X=3
C B=4ATRIX OT A* }=3,N*,
C N=NORKING SPACE
C N=DIM.OEA
        NDIM= DECLARED RIN DIMENSION OE A,3, AND N
        ID= INDICATOR, ID =0 - MRIANGJLARIZE A AND SOLVE,
                ID=1 - 3YPASS mRLANGJLARIZATION (PREVLOUS CALL RE?D."
    OUTP!T.....
            A=2*A=FRIANSJLARIZED MAIRIX
        B=THE SOLIJITON X
        IE= ERROR INDICATOR, IE =O NO ERROR
                                    IE=L NON:NIQJE SOLIJIION (NO ERRDR)
                                    IE=2 JNDEFINED SOLUTION
    SOLVE THE LINEAR EXUATION A* }=3\mathrm{ 3Y HO:JSEHOLDER YETHOD
    INPJT...
C
C
C
C OI
C

```

 IE = 0
 IE (ID.E2.1) SO TO 30
 ONN=0.
 DO 20 [=L,N
 AA = O.
 \infty 10 J=1,N
 AA = AA A A S (A(I,J))
 IE (AA.LT.OMN) SO TO 2O
 ON = AA
 CONTINJE
 SMO = SMALL*JMN
 IF (N.EQ.1) 30 TO 30
 O TRIANGJARIZE A
NM1 = N-L
DO 70 K=L,N41
R = 0.
DO 30 I=K,N
R = R+A(I,K)*A(I,K)
R = S2RT(R)
IF (A(K,K).LT.0.1 R = -R
iv(K) = A(K,K) +R
C = S\RT(R*W(K))
A(K,K) = -R
IF (ASS(O.LT.SUO) SO TO 70
3?1 = 3+l
N(K)=N(K)/C
O 40 [=KP1,N
A(L,K)=A(L,K)/C
\infty0 6) J=K21,N
RR = N(K)*A(R,J)
OO 50: = =KPl,N
5 0
R2 = RR+A(C,R)*A(L,J)

```

```

 00 60 I= ={2 1,N
 A(I,J) = A(I,J)-RR*A(I,K)
 \mathrm{ ONTINJE}
 TRANSFORM 3 AND BACRSOLVE
 30 180 [J=L,M
 IF (N.E2.1) 3O TO 120
 OO 110 3=1,N41
 RR = 'N(R)*B(R,IJ)
 KP1 = K+L
 DO 90 J={P1,N
 RR = RR+A(J,K)*B(J,IJ)
 3(K,IJ) = 3(K,IJ)-R\mp@subsup{R}{}{k}N(N)
 DO 100 [= < P1,N
 3(I,IJ) = 3(I,IJ) -RR*A(I,K)
 ll0 SONTINIE
120 IF (A3S(A(N,N)).GT.SMO) 30 TO 130
IE = 2
IF (ABS(B(N,IJ)) .GT.SMO) RETURN
IE = l
3(N,IJ) = l.
G) ro 140
3(N,IJ) = S(N,IJ)/A(N,N)
IF (N.EQ.1) 30 TO 180
DO 170 [=L,NML
J = N-[
L = N-[+l
XX = 3(J,IJ)
DO 150 K=[,N
XX = XX-A(J,K)*B(R,IJ)
[F (ASS(A(J,J)).GT.S4O) 3O TO 150
IE = 2
IF (ABS (KX).GT.SYO) RETURN
IE = l
3(I,IJ) = l.
GO TO 170
3(J,IJ) = XX/A(J,J)
SONTINSE
cONTINUE
RETURN
END

```

SUBROUTINE EIGVC（A，VAL，N，NDIM，EL， \(2, C, S M O, I E)\)
DIMENSION A（NOIY，NDI4，VAL（NDIM，EL（NDI4，NDI44，AI（2，2），A2（2，2） 1．A3 \((2,2)\) ，C（NDI4，2（VOIM，NDIM
COMPEX VAL
```

C A=QUASI-JPPER TRIANGIJLAR MAMIX FRJA RDIJTNE 2R

```
C VAL=THE EIGENVALUES OE A COMPUTED IN ROUTINE \(2 T\)
C \(\quad\) =SIMILARITY IRANSFORYATION MATRIX EROY 2R
C \(\quad N=\) DIMENSION OF A , EL , 2
C NDIM=DECLARED DIMENSION DF A. EL. , ?

C OUTPUT...
    EL=THE EIGENVECTOR MATRIX OF A
    C=[NTERMEDIATE STORAEE VECTOR
    IE \(\Rightarrow\) INDEPENDENR EIGENVECTOR
    IE=L DERECTIVE EIGENSYSTM
    SUBROUT INES REQD. - LYAPUN, HSOLVE

こ
C inttialize el
C
    \(I Z=0\)
    \(3010[=1, N\)
        © \(10 \mathrm{~J}=\mathrm{l}, \mathrm{N}\)
    \(10 \quad \mathrm{Z}(\mathrm{I}, \mathrm{J})=\) J.
        \(K=N\)
20 JELTA \(=\) REAL (VAL(K))
        \(W=\) AIMAG(VAL(K))
        IF (ASS (土 . .GT.SイO) 30 [O 30
        \(\mathrm{V} 2=1\)
        \(\mathrm{A} 2(\mathrm{l}, \mathrm{l})=\) DELTA
        \(E L(K, K)=1\).
        IE (K.ER.1) SO TO 150
        30 TO 40
\(30 \quad \mathrm{~N} 2=2\)
    \(12(1,1)=\) DELTA
    \(\mathrm{A} 2(2,2)=\) DELTA
    \(\mathrm{A} 2(\mathrm{~L}, 2)=\mathrm{N}\)
    \(A 2(2,1)=-1\)
    KML = K-L
    \(E L(K, K)=0\) 。
    \(E L(K, K I L)=1\).
    \(A E=A(K M 1, K M 1)-D E L T A\)
    \(\Delta_{1}=10^{+*} 2+N^{*} * 2\)
    \(S L(K \wedge 1, K)=-(A(X 11, K) * / 4 / A A\)
    \(E L(K M 1, K M 1)=-(A(K M 1, K) * A O / A A\)
    IF (K.E2.2) 3〕 TO 150
    \(E L K=E L(S M 1, K)\)
        ELKA1 = EL(KM1,KM1)
10 II \(=3-\mathrm{N} 2\)
```

 KK = II
 LL = N2
 5 0
 N1 = l
 IF (KK.EQ.1) 30 TO 50
 IF (ASS(A(KK,KK-L)).GT.S10) N1 = 2
 5) NN = KK-N1
 DO 7O [=L,N1
 DO 70 J=L,N1
 70 Al(I,J) = -A(NN+I,NN+J)
 DO 90 I=L,Nl
 DO}30\textrm{J}=\textrm{L},\textrm{N}
 SUM = 0.
 DO 30 L=L,LL
 SUM = SUM+A(NN+I,KK+5)*EL(RK+L,II+J)
 30
 7Э A3(I,J) = SU4
 CALL LYAPUN (AL,N1,A2,N2,A3,IT)
 IF (IT.EQ.2) 30 TO 110
 00 100 I=L,N1
 TO 100 J=L,N2
 L00 EL(NN+I,II+J) = A3(I,J)
 30 TO 140
 110 [E = l
 NNP1 = NN+L
 NNP2 = NN+2
 IIPI = II+l
 IIP2 = II +2
 EL(NNPL,IIP1) = 1.
 DO 120 I=NNN2,K
 120 ZL.(I,IIP1) = 0.
 IF (N2.EQ.1) 30 TO 140
 EL(NNP1,IIPL) = ELKMI
 EL(NNP1,IIP2) = ELK
 EL(NNP2,IIP1) = l.
 DO 130 I=NNP2,K
 130 EL(I,IIP2) = 0.
 140 KK = NN
 LL = LL+N1
 IF (KK.GT.0) 30 TO 50
 z = II
 IF (K.GT.0) 30 TO 20
 C
150 30 190 J=L,N
D 170 I=L,N
C(I) = 0.
D 150 K[=L,N
C(I) = C(I) +2(KI,I)*EL(KI,J)
OONTINJE
D 130 C=L,N
EL(L,J) = C(L)
CONTINSE

```

RETURN
E.VD
```

 SUBROUTINE SOLYAP (A,C,N,ND,SMO,IE,P,A
 D[MENSION A(NJ,NO), C(ND,ND), AA(2,2), CC(2,2), AAT(2,2), P(ND,ND)
 1, N(ND)
    ```

```

C SOLVE A*X+X*AT=C
C INPUR...
C
A=N*N MAIRIX [N ZJASI-JPPER TRIANGJLAR EORM FROM ZR S!BROJJINE
C=N*N SYMMETRIC MATRIX
P= SIMILARITY TRANSFORMATION GATRIX EROM QR SUBROUIINE
N=NORKLNG SPACE
ND=DECLARED DIMENSION OF A, C , P
SMD=CONUERGENCE SRITERION FROM 2R=4MCH.PREN.*NORM A
ourput....
C=X, THE SOLITTION OF LYAPSNOV EQUATION A*<+X*AT=O
IE=O NO ERROR
IE=L ERROR-SOLUTION NOT COMPISTED
SIBROUTINES REDD.- LYAPUN,HSOLVE

```

```

 D 20 [=L,N
 DO 10 J=L,N
 N(J) = 0.
 \infty 10 K=L,N
 N(J)='N(J)+C(I,K)*O(J,K)
 DO 20 J=L,N
 I([,J)=N(J)
 O040 J=L,N
 DO 30 I=L,N
 N(I) = 0.
 DO 30 K=L,N
 30)}N(T)=N(I)+P(I,K)*C(K,J
 O)}40I=L,
 40 こ(I,J) = N(I)
 IE = 0
 M=N
 50 NA =2
IE(M.GT.1) SO TO 5l
NA=1
30 TO 52
51 [E(A3S(A(M,M-L)).LE.S10) NA=L
52 MM=M-NA
DO 50 [=1,NA
O SO J=L,NA
NNI = MM+[
NNJ = \M M J
A(I,J) = (NNI,NNJ)
CC(I,J) = C(NNI,NNJ)
AAT(T,J) = I(NNJ,NNI)
CALL LYAPIN (AA,NA,AAT,NA,CC,IT)
IE (IT.NE.O) [E = l
NN = 4%
NB = NA
70 20 80 [=L,NA

```
```

 DO 3. J=l,N3
 3) C(NN+[,MM+J)=CC([,J)
[F (NN.LE.O) 3) ГO 130
OO 100 I=l,NN
DO 100 J=L,NB
NNJ = \M+J
SUM = 0.
DO 90 K=l,NA
NNK = NN+K
SUM = SUM+A(I,NNK)*C(NNK,NNJ)
100 C(I,NNJ) =C(I,NNJ)-SUM
NA = ?
IF(NN.GR.1) 30 TO 104
NA=L
3) TO 102
l01 [F(ASS(A(NN,NN-L)).[E.SMO) NA=1
l02 NNA = NV-NA
DO 110 [=l,NA
DO 110 J=1,NA
110 AA(I,J) = A(NNA+I,NNA+J)
D) 120 I= , NA
DO 120 J=L,NB
120 こC([,J) = C(NNA+[,MY+J)
CALL LYAPMN (AA,NA,AAT,N3,CC,IT)
IE (IT.NE.O) [E = 1
NN = NNA
30 5070
130 [F (M.LE.0) GOTO 150
M = MM
D0 150 [=L,M
DO 150 J=1,M
S:M = 0.
DO 140 K=1,N3
MPK = Y+K
140 S'MM = SUM+A ([,MPK)*C(J,MPK) H(I,MPK)*A(J,MPK)
l50 O([,J) = S(I,J)-S'JM
30 ro 50
150 D 170 I=2,N
II = [-l
D.) }170\textrm{J}=\textrm{l},\textrm{II
4) こ([,J) = C(J,I)
20 190 [=l,N
D 180 J=l,N
N(J)=0.
D 13: K=L,N
5) N(J)=N(J)+N([,K)*O (\Omega,J)
30 190 J=L,N
190 こ(I,J) =,N(J)
כ 2l0 T=L,N
\infty 200 I=L,N
'N(L) = う.
\infty 200 R=1,N
```
```

200 N(I)=N(I)+P(K,I)*C(K,J)
DO 210 [=1,N
210 C(I,J)=N(I)
RETURN
END

```

SUBROUTINE LYAPUN (A,NA, 3,N3,C,IE)
DIMENSION AA(1, 4), A(?,2), \(9(2,2), C(2,2), ~ N(3)\)

C SOLVE \(A * x+x * B=C\) AND SET \(C=1\)
C INPJ「....
C A AND 3 ARE 1*L JR 2*?
\(C \quad N A=D I A E N G I O N O E\) A (l) OR 2)
C \(\quad \mathrm{BB}=\) OIMENSION \(O E \mathrm{~B}(\mathrm{~L}\) OR 2)

C OUTPUT.
C \(C=\) SOLUTION \(X\)
C IE=O NON-S INGULAR CASE
C IE=1 NDN-JNIQUE SOLJIION
IE \(=2\) UNDEEINED SOLIJIION
- S'J3ROUFINE REQD. - HSOLVE
                            \(A A(I, J+N .3)=0\).
\(10 \quad\) AA \((I+N A, J+N A)=A(I, J)\)
    \(I I=1\)
    DO \(30[=1, N B\)
        \(J J=1\)
        DO \(20 \mathrm{~J}=\mathrm{L}, \mathrm{NB}\)
            \(A A(I I, J J)=A A(I I, J J)+3(J, I)\)
            \(I E(N A . G T .1)\) AA \((I I+L, J . J+L)=A A([I+L, J J+L)+3(J, I)\)
\(20 \quad J J=J J+N . A\)
30 II = II+NA
    \(N=N A * N 3\)
    IF (N3.EQ.2.AND.NA.EQ.1) \(C(2,1)=C(L, 2)\)
    CALE HSOLVE (AA, \(\mathrm{N}_{1} \mathrm{C}, \mathrm{N}, 1,4,0, I()\)
    IE (N3.E2.2.AND.NA.ER.1) \(C(L, 2)=S(2,1)\)
    REITRN
    END

\section*{APPENDIX G}

\section*{THE SENSOR ELIMINATION PROGRAM LISTING}
```

 PROGRAM SENSJR(IAPE5, LNPUT,OJTPIJT)
 DIYENSION A(30,30),3(30,10),CL(10,30),01(10,10),N2(10,30),
 LD2(10,10), MEEM(10,10),G1TN(10,30),GK(30,10;,314#(30,10),
 121(30,30),R1 (30,30), 22(30,30),R2(30,30),S(30,30),H(30,50),
 LP(50,50),VAL(50) ,N(50), EL (30,30) ,PN(30,30)
DIMENSION RLL(30,30),222(30,30),R2?(30,30),IELEN(10),
+C22(10,30),D?2(10,10),SIIA?(10,10),INDEX(LJ),XMAX(LO)
JIMENSION SO (30,30),UO(10,10),Y'O(10,10),NG(30),'NJ(10),NY(10)
COMPLEX JAL
DATA ND/30/.NDD/30/.NDC/10/.NDW/10/,NDP/L0/,ND2/L0/
DATA N\&/"A"/,NB/"B"/,NCl/"Cl"/,NDL/"Dl"/,NE2/"C2"/,ND2/"O2"/.
LNGA/"GAMA"/,N21/"2l"/, NRL/"Rl"/,N22/"22"/,NR?/"R2"/.
lNZ/"Z:/,NNU/"MELA"/
DATA SMALL/L.E-L4/
DATA IUNT/SLINPUI/
SOLVE SENGOR GOABINATION LESTING
[NPU5*****
IO=O EIND INPORYATIDN NTH ALC SENSJRS
IO=1 SENSORS ELEIINATION
IP=) NO OPIIONIL PRINI
IP=l OPIINAL RRINS
IP=? PRINT EVERYTYING
LP=O REGULAR PRINTER
LP=1 TERMINAL PRINTER
ICR=1,2,3,OR 4 SRITERION S:OOSING (RELITIVE ERZOR JF RMS X,U,Y,MR)
CRITER= THE ACCEP[A3LE GRITERIA OE THE RELATIVE ERRORS
INPUT NECCERSARY MAIRICES
300 READ (5,*) IO,IP,[P,IER
IF(EOP(5).NE.0) STOP
[Dl=?
[D2=?
[Sl=0
l READ(5,100)NN,N1,N2,NT
100 EORMAT (AS, 2[3, 2K, Al)
44 [E(NN.EQ.NA) BO TO }1
[F(NN.EQ.NBI 3O [O 12
IE(NN.EQ.NCL) 引丁 IO 13
[F(NN.EQ:NDl) 30 TO 14
IF(NN.EQ.N2L) 3כ FO 15
[E(NN.EQ.NRL) 3כ TO 15
[E(NN.EQ.NG1) 30 50 17
IE(NN.EQ.NQ2) SO TO 19
[F(NN.EQ.NC2) 30 IO 19
[E(NN.EQ.ND2) 30 IO 20
[F(NN.EQ.NR2) SO MO 21
[F(NN.EQ.NTH) B.] M 22
3) TO 23
L1 SALE REDDI(A,N1,N2,ND,NE,NA,EP)
N=Nl
3) [O l
1? SALL REDDM(B,NL,N2,ND,NL,N3,LP)

```
\(\mathrm{N}=\mathrm{N} 1\)
\(\mathrm{C}=\mathrm{N} 2\)
30 TO 1
13 2ALL READA（Cl，NL，N2，NDA，NT，NC1，LP）
\(\mathrm{M}=\mathrm{N}\) I
\(\mathrm{N}=\mathrm{N} 2\)
30 TO 1
14 TALL READ1（D1，NL，N2，NDA，NT，NDI，LP）
\(M=\mathrm{N}\) I
\(\mathrm{C}=\mathrm{N} 2\)
［D］\(=1\)
［F（NT．EQ．NZ） \(\mathrm{IDI}=0\)
30 TO 1
15 CALL READA（21，N1，N2，ND，NT，NQ1，L？）
\(\mathrm{M}=\mathrm{V}\) I
30 TO 1
15 CALL READM（R1，N1，N2，ND，NT，NR1，L？） \(\mathrm{C}=\mathrm{Nl}\)
30 TO 1
17 GALL READ4（SAMA，NL，N2，ND，NT，NGA，LP） \(\mathrm{N}=\mathrm{N}\) l
\(\mathrm{NP}=\mathrm{N} 2\)
30 TO 1
13 GALL READA（22，N1，N2，ND，NT，N22，LP） N P＝N1
TF（IO．E2．0）3つ 「O 2
OO \(73 \mathrm{I}=\mathrm{L}\) ，N2
DO \(73 \mathrm{~J}=\mathrm{l}, \mathrm{N}\) ？
73 222（［，J）＝22（5，J）
30 「う 1
13 CALL REMDI（C2，N1，N2，NOQ，NT，NC2，LP）
\(\mathrm{N} 2=\mathrm{N} 1\)
\(\mathrm{N}=\mathrm{N} 2\)
LF（IO．EQ．0）30 TO l
\(3074 \mathrm{I}=\mathrm{L}, \mathrm{NQ}\)
DO \(74 \mathrm{~J}=\mathrm{L}, \mathrm{N}\)
74 こ22（［，J）\(=\mathbf{C 2}([, J)\)
3．） TO 1
20 GALL REMDM（D2，N1，N2，ND2，NT，ND2，LP）
\(\mathrm{N} 2=\mathrm{N} 1\)
\(\mathrm{C}=\mathrm{N}\) 2
［Dl＝1
［ E （NT．EQ．NZ］［DI \(=\) ）
TF（TO．EQ．0）30［O 1
ก） \(75 \mathrm{I}=\mathrm{L}\) ，N2
5） \(75 \mathrm{~J}=\mathrm{L}, \mathrm{L}\)
75 322（I，J）＝22（I，J）
30 10 1
21 \(\operatorname{CALL}\) READI（R2，N1，N2，ND，NT，NR2，CP）
\(\mathrm{N} O=\mathrm{Nl}\)
โ？（IT．EQ．O）30 301
ว） \(75[=1, N 2\)
```

 DO 75 J=l,NQ
 75 R2.2([,J)=R2(I,J)
30 rO 1
22 GALL RENDA(THETA,NL,N2,ND2,NT,NTH,LP)
N2=N1
NP=N2
[31=1
IE(NT.EQ.NZ) TSl=)
[F(IJ.E2.0) 30 TO l
DO }77\mathrm{ [=l,NQ
DO }77\textrm{J}=\textrm{L},\textrm{Nz
77 SITA2(L,J)=THETA([,J)
30 TO 1
23 DRINE 47L
47L EORMAT(//," *** SENSOR COMBINATION TESIING***".//1
[F(IDL.EQ.0) GO TO 500
0) 3l [=l,L
D 3L J=L,i4
H([,J)=0.
D 3l K=1,:4
3l H(I,J)={([,J)+Dl(K,I)*2l(K,J)
500 DO 3. [=1,L
DO 32 J=L,L
SUA=).
IF(ID1.E2.0) 30 TO 32
D0 33 K=L,M
33 SUM=SUM+H([,K)*Dl(K,J)
32 EL (I,J)=RL([,J) +SUM
CALL GONTRL(A,B,CL,DL,2L,R1,S,GAIN,:H,P,VAL,N, Y,L,ND,NJD,NDA,
LNDL,W,IDL)
DO }37[=L,
DO 37 J=L,N?
i([,J)=0.
D0 37 K=L,N
37H([,J)=4(L,J)+S([,K)*GAMA(K,J)
DO 38 [=L,N
DO 39 J=l,NP
P([,J)=?.
D 33:
33?([,J)=? ([,J)+प(I,K) *?2(K,J)
TRAこE=7.
\infty 33 [=l,N
SUM=?.
DO 40 K=1,NP
4) SUM=SIMA+P(I,K)*,\MA(T,K)
37 [RACE=TRACE+3:JM
\infty 33 [=1,4
O 33 J=L,N
SUM=0.
IF(IDL.EQ.0) 30 [O 33
30 34
94 SUM=S:J4+Jl([,K)*]A[N(R,J)

```
```

33 R11([,J)=:1([,J)+SU4
D 50 [=L,N
D % % J=L,L
PN}(\tau,J)=0
D 5) K=1,L
50) PN(T,J)=PN(T,J)+GAIN(K,L) *EL (K,J)
DO 5l I=1,N
DO 5l J=L,N
EL([,T)=?.
D SL K=L,L
6L EL(T,J)=E[(T,J) +EN(T,K)*GAIN (R,J)
ISEN=0
NTP2=NO+2
NZQ2=N2+2
NQP=N2
IF(TO.E2.0) 30 MO 433
DO 434 [=l,NQ
IELEM(T)=I
4 3 4 [\operatorname { N D E X (5) = [}
433 [N =0
OO 103 [K=1,NOP2
IF(ISEN.ER.0) GO [O 25
IE(ISEN.EQ.l) 30 IO 423
425 [E(TX.LT.NQP2) 30 ro 423
TE(IN.GR.O) 30 TO 423
N2=N?2
[XN=0
3) T0 435
4 2 9 ~ [F (I N . E Q . 1) ~ 3 0 ~ I O ~ 4 3 0)
ZMIN=XMAX(l)
INEL=1
TXN=TNDEX(L)
IXE=TELEM(L)
DO 105 [=2, IN
[F(XMAX(I) .GE.AMIN) Sכ IO 105
IXN=TNDEX(I)
INEL=[
AMIN=XMAX(I)
[XE=[ELEM(I)
105 CONTINJE
30 ro 435
430 [:N=[NDEX(L)
TXE=TELEM(1)
3) [0445
423 [M=[X
IF(N2P2.EQ.NTP?) [4=[X-1.
IKN=[NDEX(IM
IXE=[ELE:\ [%%
435 D0 3) [=1,NP
7) 30 J=L,NP
30 22([,J)=2?2([,J)
IT=l

```
```

 D) 3L [Y=L,N22
 [F([Y.EQ.IXN) 3O [O 3l
 DO 32 J=L,N
 32 -2([T,J)=C22([Y,J)
R2([\Gamma,IT)=R22([Y,IY)
DO 35 J=L,N?
85 THETA([T,J)=SITA2([Y,J)
[T=[T+L
91 SONTINJE
IF(IN.E2.O.AND.IX.E2.N2?2) 30 TO 705
N2=NO2-1
[F(IX.[T.N2P2) 30 TO 44]
N22=N2
EE(IN.E2.l) 3O FO 435
OO 44L [=l,N2
D) 442 J=l,N
44? S22(I,J)=こ2(I,J)
DO 444 J=L,N2
44 S[T\2([,J)= [GET\([,J)
4AL R?2(I,I)=R2(I,I)
435 ?RINI 445,IXE
445 ERRMAT(///," ***SENGOR NO.",[3,'NAS E[EMINMTED***" ",//!
IF([N.E2.1) SO.TO 705
30 10 431
440 ?RINR 400,IXE
400 FOR14\Gamma(//," ***T.1KE OUT SENSOR NO.",I3," ***",
30 IO 43L
705 ?RINT 707
7O7 EORMAT(////," NO MORE SENSOR SAN 3E ELEMINATED",
705 ?RINT 703
709 EORUAT(" FINAL FORY OE MATRIEES SONEERNING SENSJRS 1RE" ///1
43L PRINT *," C2 MATRIX"
CALL ORINT (C2,NQ,N,NDQ,LP)
PRINT *," R2 M4MRIX"
CALE PRINT(R2,N2,NQ,ND,LP)
?RINT *," THETY MATRIX"
CALL PRINI(THETA,N2,NP,NDQ,EP)
[F(IX.EQ.NPP?) SO 5O 701
25 GALL EILTER(A,C2.G14A,THETA,22,R2,S,GK,H,P,VAL,N,N2,NP,ND,NDD,
INO2,NDP,N,ISI)
[E([P.EQ.O.AND. ISEN.NE.O) 3כ EO 5l0
2RINT 30

```

```

 GALL DRINT(S,N,N,ND,LP)
 5l0 [E([O.EQ.0) 3) M 4.O3
[E([SEN.NE.O) 3] MO 40L
O0402 [=L,N
\infty 40? J=!,N
40? 30([,J)=S([,J)
3) \GammaO 403
ADL [F([P.LE.1) 30 10 103
D) 4.\: [=L,N

```
```

 D)404 J=l,N
 401 PW(T,J)=(S([,J)-SO([,J))/SO([,J)
PRINE *," REL\TIVE ERRJR JF FILIER RIEOAT[SJLUTION*
CALE PRINT(P:N,N,N,ND,CP)
403 50 45 [=L,N
45 N(I)=32RT(S(I,I))
IF(IR.EQ.O.AND.ISEN.NE.O) 30 rO 5ll
PRINT 45
45 EORMAT(/." R4S RESPONSE OE ESTIMAIE ERRORS"!
CALL PRINT(W,1,N,1,LP)
51] [F([J.E..)) 3.J [O 407
IF(LSEN.NE.0) 3O TO 405
O0 405 I=L,N
40% NS(I)=N(L)
30 [0 407
405 DO 403 [=1,N
403 N(T)=(W([)-NS(I))/NS(I)
?RINT *," RELATIVE ERROR OF RMS RESTONJE OF ESFTMAIED ERROR"
CALL PRINT (N,1,N,L,L?)
1MX=?.
IF(ICR.NE.1) 30 「O 407
\infty 102 [=l,N
X=A3S ('N(T))
IF(X.GT. AMX) A A X = X
102 CONTINSE
407 DO 3 [=l,L
DOJ=L,N
ON([,J)=?.
\infty 3 K=l,N
3PN([,J)=PN([,J) +S\IN ([,K)*S (K,J)
DO }9[=L,
DO J J=L,L
21(I,J)=0.
\infty O K=L,N
72l([,J)=2l(L,J)+PN([,K)*,\IN(J,K)
IF([P.EQ.O. NND.ISEN.NE.O) SO RO 5L?
PRINT *," ERROR SONTROL SJSARIANCE MATRIX"
GALL PRTNT(21,L,L,ND,LP)
512 [T([O.EQ.7) 30 50 111
TF(ISEN.NE.0) 3) TO 403
O) }410[=L,
D 4l0 J=L,L
410 JO([,J)=2l([,J)
3) [O 41.1
407 [F(IP.LE.1) 30 TO 4ll
O) 412 [=l.L
D 4l? J=L,L
4!2 ?N([,J)=(2l(T,J)-1Jつ([,J))/Jכ([,J)
PRINT *," RELITIVE ERROR OT ERROR JONNKJL"
CALL PRINT(PV,L,L,ND,LP)
4ll TO 35 [=L,L
35:N(I)=52RT(21(T,I))

```
```

 IF(IP.EQ.O.AND.ISEN.NE.0) SO TO 5l3
 PRINR *," RMS RESPONGE OF ERAOR SONTROL"
 CALL PRINT(N,L,L,1,LP)
 5l3 [F(IO.EQ.)) 30 TO 4l5
IF(ISEN.NE.0) Gכ TO 4l3
DO 414 [=L,L
4L4 NJ([)=N(T)
30 TO 415
4l3 50 4l6 [=L,L
4lSW(I)= (W(I)-NU([))/WU(L)
PRINT *," RELITIVE ERROR OE RMS RESPONSE OE ERROR SONIROL"
CALL PRINT(W,L,L,l,LP)
IF(ICR.NE.2) 30 TO 4l5
00,110 [=l,L
X=ABS (W([))
TF(X.GT.AMX) AMX=X
1lO CONTINJE
415 30 95 [=l,4
DO 95 J=L,N
2l(I,J)=?.
DO 35 R=L,N
352l(I,J)=2l(T,J)+Rll([,K)*3(K,J)
DO Э5 [=L,M
DO5 J=L,M
22(I,J)=丁.
DO 5% K=l,N
9% 22(I,J)=22(I,J) +2L(I,K)*21l(J,K)
IF(IP.EQ.O.AND.ISEN.NE.O) GO IO 5L4
PRINT *," ERROR OIJPUS COVARIANEE MATRIX"
CALL PRINS(22,M, 4,ND,LP)
3l4 [F(LO.EQ.0) 30 [O 4l9
IF(ISEN.NE.0) SO IO 4l7
DO 419 [=l,M
D0413 J=L,.4
413 YO(I,J)=22(I,J)
30 ro 413
147 [F([P.LE.1) 30 TO 413
DO 420 I=L,M
DO 420 J=L,M
420 PN(T,J)=(22([,J)-YO([,J)) MO([,J)
PRINT *"" RELAIIVE ERROR OF ERRDR OUTPMT"
CALL PRINT (PN,M, M,ND,LP)
413 50 37 I=L,M
77N(I)=S2RT(22(I,I))
IF(IP.EQ.O.AND.ISEN.NE.0) 30 TO 5l5
PRINT *"" RUS RESPONSE OF ERRDR OUTPUT"
CALL PRINT(N,1,M,1,LP)
5l5 [F([O.EQ.0) 3כ [.) 423
IF(ISEN.NE.D) 3D TO 4?l
D0422 I=L,4
42? 'NY(5)=N(L)
3) [0 423

```

421 DO \(424[=1, M\)
\(424 \cdot N(I)=(W(I)-N Y(I)) / W Y(I)\)
PRINT *," RELATIVE ERROR OE RMS RESPDNGE OF ERROR OUTPUR"
CALL PRINT (N,L,M,L,LR)
LF([CR.NE.3) SO 5O 423
DO \(104 \mathrm{I}=\mathrm{L}, \mathrm{M}\)
\(X=A B S(W(I))\)
IE(X.GT.AMX) \(14 X=X\)
10.4 CONTINGE

423 MACEX \(\Rightarrow\).
D 5 2 \([=1, N\)
SUM \(=\).
D \(63 \mathrm{~K}=\mathrm{L}, \mathrm{N}\)
53 SUM \(=\operatorname{SUM}\) EEL \((I, K) * S(K, I)\)
52 TRACEX=TRACEX+SUM
TRACEX=TRACEX +TRACE
IF(IP.E2.O.AND. ISEN.NE.0) 30 ГO 516
?RINR 54, MACEX
54 FORAAT(//," ***TRICE=",G13.5." ***" \(/ / /\)
515 [E(TD.EQ.0) 30 TO 301
TF(ISEN.NE.0) G.O TO 425
TRACEO=TRACEX
30 TO 700
425 TRACEX=(RRASEX-FRACEO)/TRACEO
PRINT 427, TRACEX

[F(ICR.E2.4) AMX=TRACEX
ISEN=?
[F(AAX.GT.CRITER) 30 TO 103
\([\mathrm{N}=\mathrm{T} \mathrm{N}+\mathrm{l}\)
INDEX(IN) \(=[\mathrm{KN}\)
LELEM (IN) = [XE
\(\mathrm{XMAX}([N)=\mathrm{MMX}\)
30 TO 103
700 PRTNT*," TTPE IN THE CRTPERIA"
READ*, CRITER
PRINT GOT, CRITER
万OO EORMAT(/," ELEMINATIJN SRITERIA=", Gl2.4)
ISEN=1
103 EONTINUE
702 [E(IN.LE.l) 30 CO 30L
\(\mathrm{NQP} 2=[\mathrm{N}\)
IT \(=\) INEI
ILP \(=[\Gamma+1\)
DO 432 [ \(=[L P\), IN
\(\operatorname{TNDEX}([\mathrm{I})=\mathrm{TNDEX}(\mathrm{L})-\mathrm{l}\)
IELEA(LJ) \(=\operatorname{LELEM}(\mathrm{L})\)
\([T=[T+1\)
432 covirinje
( ) if 433
301 ตว โว 300
END```

