AN ABSTRACT OF THE THESIS OF

This thesis studies the question of factorization in two quadratic integral domains, $I(\sqrt{-7})$ and $I(\sqrt{-23})$. In the first chapter the definition of quadratic numbers is given. It is proved that $Ra(\sqrt{m})$ is a quadratic number field. The second chapter concerns the integral domain, $I(\sqrt{-7})$, and it is shown that the Unique Factorization Theorem holds. The third chapter studies the integral domain, $I(\sqrt{-23})$, and it is shown that the Unique Factorization Theorem fails. The fourth chapter develops the concept of ideals in order to restore the Unique Factorization Theorem in $I(\sqrt{-23})$.

A STUDY OF FACTORIZATION IN I ($\sqrt{-7}$) AND I ($\sqrt{-23}$)

by

ROGER ARLIE KNOBEL

A THESIS

submitted to

OREGON STATE UNIVERSITY

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

June 1967

APPROVED:

Professor of Mathematics

In Charge of Major

Chairman'of Department of Mathematics

Date thesis is presented August 4, 1966

Typed by Carol Baker

TABLE OF CONTENTS

Chapte	r	Page
1.	INTRODUCTION	1
2.	THE QUADRATIC NUMBER FIELD $Ra(\sqrt{-7})$	4
	The Numbers of $Ra(\sqrt{-7})$	4
	Integers of $Ra(\sqrt{-7})$	5
	Basis of $I(\sqrt{-7})$	8
	Units of $I(\sqrt{-7})$	9
	Prime Numbers of $I(\sqrt{-7})$	10
	Unique Factorization in $I(\sqrt{-7})$	12
3.	THE QUADRATIC NUMBER FIELD $Ra(\sqrt{-23})$	19
	The Numbers of $Ra(\sqrt{-23})$	19
	Integers of $Ra(\sqrt{-23})$	20
	Basis of $I(\sqrt{-23})$	22
	The Units of $I(\sqrt{-23})$	23
	Prime Numbers of $I(\sqrt{-23})$	24
	Failure of Unique Factorization in $I(\sqrt{-23})$	25
4.	IDEALS IN $I(\sqrt{-23})$	29
	Introduction of Ideals	29
	Unit Ideal in $I(\sqrt{-23})$	31
	Prime Ideals in $I(\sqrt{-23})$	32
	Restoration of the Unique Factorization Theorem	n 37
	BIBLIOGRAPHY	39

A STUDY OF FACTORIZATION IN $I(\sqrt{-7})$ AND $I(\sqrt{-23})$

1. INTRODUCTION

A number which is a solution of a quadratic equation with rational coefficients is called a quadratic number. The set of numbers of the form, $a+b\sqrt{m}$, where a and b are rational numbers and m is a non-zero integer with distinct factors, is denoted by $Ra(\sqrt{m})$. Theorem 1.1 shows that the numbers of $Ra(\sqrt{m})$ are quadratic numbers.

<u>Theorem 1.1.</u> If $\alpha \in \operatorname{Ra}(\sqrt{m})$, then α satisfies a quadratic equation with rational coefficients.

Proof:

Let $a = a+b\sqrt{m}$ be a number of $Ra(\sqrt{m})$. Then a satisfies the following equivalent equations. $[x-(a+b\sqrt{m})] [x-(a-b\sqrt{m})] = 0$, $x^2-2ax+a^2-mb^2 = 0$. Since a and b are rational and m is a non-zero integer, then -2a and a^2-mb^2 are rational. So, by the definition of a quadratic number, a is a quadratic number.

Theorem 1.2. $Ra(\sqrt{m})$ is a field.

Proof:

That $\operatorname{Ra}(\sqrt{m})$ is an abelian group relative to addition is evident. Since $\operatorname{Ra}(\sqrt{m})$ is a subset of the complex number field, the commutative and associative laws of multiplication hold, and also the distributive law. 1 is the identity element for multiplication. This only leaves closure and inverses for multiplication to be shown.

To prove that $\operatorname{Ra}(\sqrt{m})$ is closed under multiplication consider $a_1+b_1\sqrt{m}$ and $a_2+b_2\sqrt{m}$ as two numbers of $\operatorname{Ra}(\sqrt{m})$. By the distributive law, commutative and associative laws of multiplication and addition, the following is obtained.

 $(a_1+b_1\sqrt{m})(a_2+b_2\sqrt{m}) = (a_1a_2+b_1b_2m) + (a_1b_2+a_2b_1)\sqrt{m}$, which is an element of $Ra(\sqrt{m})$.

To obtain the multiplicative inverse of $a = a+b\sqrt{m}$, $a \neq 0$, the following procedure is used.

$$\beta = \frac{1}{a+b\sqrt{m}} = \frac{1}{a+b\sqrt{m}} \frac{a-b\sqrt{m}}{a-b\sqrt{m}} = \frac{a}{a^2-b^2m} + \frac{-b}{a^2-b^2m}\sqrt{m}$$

To prove that β is the inverse of α , it is noted that $\alpha\beta = \beta\alpha = 1$. It is only necessary, therefore, to prove that $a^2 - b^2 m \neq 0$. Suppose $a^2 - b^2 m = 0$. Then either (i) a = 0 and b = 0 or (ii) $b \neq 0$. In case (i), if a = b = 0, then $\alpha = a + b\sqrt{m} = 0$. In case (ii), $b \neq 0$ and $a^2 - b^2 m = 0$, then $b^2 m = a$ and so $\sqrt{m} = \pm \frac{a}{b}$, which is a rational number. In either case a contradiction is reached and so $a^2 - b^2 m \neq 0$ and β is the multiplicative inverse of α . The results of theorems 1.1 and 1.2 show that $Ra(\sqrt{m})$ is a quadratic number field.

The quadratic numbers that are solutions of a quadratic equation with integral coefficients and unity as the coefficient of the squared term are called quadratic integers. The set of quadratic integers which is a subset of Ra(\sqrt{m}) is denoted by I(\sqrt{m}). It will be shown later in the text that I($\sqrt{-7}$) and I($\sqrt{-23}$) are quadratic integral domains.

The integral domain $I(\sqrt{-7})$ is studied in Chapter 2 and it will be shown that the Unique Factorization Theorem is satisfied in $I(\sqrt{-7})$.

In Chapter 3 it will be shown that the Unique Factorization Theorem does not hold true in the integral domain $I(\sqrt{-23})$.

The concept of ideals is introduced in Chapter 4. It is then shown that unique factorization can be restored in terms of the ideals of $I(\sqrt{-23})$.

Throughout the text the symbol I will denote the set of integers and Ra the set of rational numbers.

2. THE QUADRATIC NUMBER FIELD $Ra(\sqrt{-7})$

2.1 The Numbers of $Ra(\sqrt{-7})$

It was shown by theorems 1.1 and 1.2 that $\operatorname{Ra}(\sqrt{-7})$ is a quadratic number field. The following definitions and theorems give the background material for finding the primes and units of $I(\sqrt{-7})$ and proving theorems which are necessary to prove the Unique Factorization Theorem.

Definition 2.11. If $a = a+b\sqrt{-7}$, then the conjugate of a, denoted by \overline{a} , is $a - b\sqrt{-7}$.

<u>Definition 2.12.</u> The <u>norm</u> of a, denoted by N(a), is $a\overline{a}$. <u>Theorem 2.11.</u> $\overline{a\beta} = \overline{a\beta}$ and $\overline{a+\beta} = \overline{a+\beta}$.

Proof:

$$\overline{a\beta} = (a - b\sqrt{-7})(c - d\sqrt{-7}) = (ac - 7bd) - (ad + bc)\sqrt{-7} = \overline{a\beta}$$
$$\overline{a+\beta} = (a - b\sqrt{-7}) + (c - d\sqrt{-7}) = (a+c) - (b+d)\sqrt{-7} = \overline{a+\beta}$$

Theorem 2.12. $N(\alpha\beta) = N(\alpha)N(\beta)$.

Proof:

$$N(\alpha\beta) = \alpha\beta\overline{\alpha\beta} = \alpha\beta\overline{\alpha\beta} = \alpha\overline{\alpha\beta\beta} = N(\alpha)N(\beta)$$
.

<u>Theorem 2.13</u>. If $a \in Ra(\sqrt{-7})$, then $N(a) \ge 0$.

Proof:

If
$$a = a + b\sqrt{-7}$$
, then $N(a) = (a + b\sqrt{-7})(a - b\sqrt{-7}) = a^2 + 7b^2 \ge 0$.

<u>Theorem 2.14.</u> a = 0 if and only if N(a) = 0.

Proof:

If a = 0, then N(a) = 0. Let $a = a+b\sqrt{-7}$, then a = 0 implies $\overline{a} = 0$. So $N(a) = a\overline{a} = 0$.

> If N(a) = 0, then a = 0. $N(a) = a^2 + 7b^2 = 0$ implies that a = b = 0 since a and b

are rational numbers.

2.2 Integers of $Ra(\sqrt{-7})$

The subset of $\operatorname{Ra}(\sqrt{-7})$ whose members are solutions of the quadratic equation, $x^2 - 2ax + a^2 + 7b^2 = 0$, where -2a and $a^2 + 7b^2$ are integers, is denoted by $I(\sqrt{-7})$. The members of $I(\sqrt{-7})$ are called quadratic integers.

Theorem 2.21. If a is an integer, then a is an element of $I(\sqrt{-7})$.

Proof:

$$a = a \in I$$
 is a solution of $x^2 \cdot 2ax + a^2 = x^2 \cdot 2ax + a^2 + 7 \cdot 0 = 0$.
Hence $a \in I(\sqrt{-7})$.

<u>Theorem 2.22.</u> If a is in $I(\sqrt{-7})$, then $a = \frac{a+b\sqrt{-7}}{2}$, where a and b are both even or odd integers.

Proof:

If a is in $I(\sqrt{-7})$, then a is a solution of $x^2 - 2ax + a^2 + 7b^2 = 0$, where 2a and $a^2 + 7b^2$ are integers. But $a + \overline{a} = 2a$ and $a\overline{a} = a^2 + 7b^2$, so $a + \overline{a}$ is an integer and $a\overline{a}$ is also an integer.

Let $a = \frac{a_1 + b_1 \sqrt{-7}}{c_1}$, where a_1 , b_1 , and c_1 are integers and $(a_1, b_1, c_1) = 1$. Then $a + \overline{a} = \frac{2a_1}{c_1}$ and $a\overline{a} = \frac{a_1^2 + 7b_1^2}{c_1^2}$. Suppose $c_1 \neq 2$ and $c_1 \neq 1$, then $\frac{2a_1}{c_1}$ is an integer which implies that $c_1 | 2a_1$. Hence $(a_1, c_1) = d$, where $d \neq 1$ because $c_1 \neq 2$ and $c_1 \neq 1$. Also $\frac{a_1^2 + 7b_1^2}{c_1^2}$ is an integer, which implies $c_1^2 | (a_1^2 + 7b_1^2)$. Since $(a_1, c_1) = d$ implies $(a_1^2, c_1^2) = d^2$, it follows that $d^2 | (a_1^2 + 7b_1^2)$. Since $d^2 | a_1^2$, then $d^2 | 7b_1^2$. But 7 has no square factors and d^2 has only square prime factors, so $d^2 | b_1^2$, which implies $d | b_1$. Hence it has been shown that $(a_1, b_1, c_1) = d$, where $d \neq 1$. This contradicts the fact that $(a_1, b_1, c_1) = 1$. Therefore $c_1 = 1$ and $c_1 = 2$. Suppose $c_1 = 2$, then $\frac{2a_1}{c_1} = \frac{2a_1}{2} = a_1$, which is an integer. If $\frac{a_1^2 + 7b_1^2}{c^2} = \frac{a_1^2 + 7b_1^2}{4}$ is an integer, then $a_1^2 + 7b_1^2 \equiv 0 \mod 4$. If a_1 is odd, then $a_1^2 \equiv 1 \mod 4$ and $7b^2 = -1 \mod 4$. But $-1 \equiv 7 \mod 4$ and so $7b^2 \equiv 7 \mod 4$. Therefore $b_1^2 \equiv 1 \mod 4$, $b_1 \equiv 1 \mod 2$; that is, b_1 is an odd integer. If a_1 and b_1 are both odd integers, then $\frac{a_1 + b_1 \sqrt{-7}}{2}$ is a quadratic integer of $I(\sqrt{-7})$. Suppose $c_1 = 1$, then $\frac{2a_1}{c_1} = 2a_1$ is an integer. Also $\frac{a_1^2 + 7b_1^2}{c_1^2} = a_1^2 + 7b_1^2 \text{ is an integer. Hence } a_1 + b_1\sqrt{-7} = \frac{2a_1 + 2b_1\sqrt{-7}}{2}$ is an integer and therefore $\frac{a+b\sqrt{-7}}{2}$ is a quadratic integer of $I(\sqrt{-7})$, if a and b are both even.

<u>Theorem 2.23</u>. $I(\sqrt{-7})$ is an integral domain.

Proof:

It is evident that $I(\sqrt{-7})$ is an abelian group under addition. The commutative and associative laws of multiplication follow from the fact that $I(\sqrt{-7})$ is a subset of the quadratic number field $Ra(\sqrt{-7})$. 1 is the multiplicative identity and is an element of $I(\sqrt{-7})$ since all integers are elements of $I(\sqrt{-7})$. Hence $I(\sqrt{-7})$ is an abelian monoid under multiplication. The remaining property of an integral domain to be proved is the cancellation law for multiplication. Suppose $\alpha\beta = \alpha\gamma$, $\alpha \neq 0$, then $\alpha\beta - \alpha\gamma = 0$, and $\alpha(\beta - \gamma) = 0$. Since α , β , γ are in the complex number field, $\alpha \neq 0$, and the last result shows that $\beta - \gamma = 0$. Hence $\beta = \gamma$.

2.3 Basis of $I(\sqrt{-7})$

Two integers, a and $\beta \in I(\sqrt{-7})$, form a basis of $I(\sqrt{-7})$ if every number of $I(\sqrt{-7})$ can be represented in the form, $aa + b\beta$, where $a, b \in I$.

<u>Theorem 2.31.</u> 1 and $\frac{1+\sqrt{-7}}{2}$ form a basis of $I(\sqrt{-7})$.

Proof:

Let
$$\frac{x+y\sqrt{-7}}{2} \in I(\sqrt{-7})$$
 and write

$$\frac{x+y\sqrt{-7}}{2} = a(1) + b(\frac{1+\sqrt{-7}}{2}) = \frac{2a+b}{2} + \frac{b}{2}\sqrt{-7}.$$

From the above equation and equality of complex numbers it follows that $x = \frac{2a+b}{2}$ and y = b. Solving for a and b gives $a = \frac{x-y}{2}$ which is in I since x and y are both even or odd integers and b = y is in I. Therefore $\frac{x+y\sqrt{-7}}{2} = \frac{x-y}{2}(1) + y(\frac{1+\sqrt{-7}}{2})$. We shall let $\omega = \frac{1+\sqrt{-7}}{2}$.

In the remaining sections of $I(\sqrt{-7})$, the numbers of $I(\sqrt{-7})$

will be expressed by $a+b\omega$, where $a, b \in I$. The following theorem is proved here in order to ease computations which are necessary later in the text.

Theorem 2.32. $\omega \overline{\omega} = 2$, $\omega + \overline{\omega} = 1$, $\omega^2 = -2 + \omega$.

Proof:

$$\omega \overline{\omega} = \frac{1+\sqrt{-7}}{2} \cdot \frac{1-\sqrt{-7}}{2} = \frac{8}{4} = 2$$

$$\omega + \overline{\omega} = \frac{1+\sqrt{-7}}{2} + \frac{1-\sqrt{-7}}{2} = \frac{2}{2} = 1$$

$$\omega^{2} = \left(\frac{1+\sqrt{-7}}{2}\right)^{2} = \frac{-6+2\sqrt{-7}}{4} = \frac{-3+\sqrt{-7}}{2} = \frac{-3-1}{2} + 1 \cdot \omega = -2 + \omega$$

<u>Theorem 2.33.</u> If $a+b\omega$ is in $I(\sqrt{-7})$, then $N(a+b\omega) = a^2+ab+2b^2$.

Proof:

$$N(a+b\omega) = (a+b\omega)(a+b\omega) = (a+b\omega)(a+b\omega)$$

$$= a^{2} + ab(\omega + \overline{\omega}) + b^{2}\omega\overline{\omega} = a^{2} + ab + 2b^{2}$$

2.4 Units of $I(\sqrt{-7})$

Definition 2.41: For all β and α in $I(\sqrt{-7})$, β divides α , written $\beta \mid \alpha$, if and only if there exist γ in $I(\sqrt{-7})$ such that $\alpha = \beta \gamma$. Example: $-2+5\omega | -38+7\omega$ because $-38+7\omega = (-2+5\omega)(-1+4\omega)$.

Definition 2.42: A quadratic integer, ϵ , in $I(\sqrt{-7})$ is a <u>unit</u> of $I(\sqrt{-7})$ if $\epsilon \mid \beta$, for all β in $I(\sqrt{-7})$.

<u>Theorem 2.41.</u> The units of $I(\sqrt{-7})$ are 1 and -1.

Proof:

If ϵ is a unit of $I(\sqrt{-7})$, then $\epsilon \mid 1$. Therefore there exists β in $I(\sqrt{-7})$ such that $1 = \beta \epsilon$. Hence $N(1) = N(\beta \epsilon) = N(\beta)N(\epsilon) = 1$. Since $N(\beta) \ge 0$ and $N(\epsilon) \ge 0$ are integers, it follows that $N(\epsilon) = 1$. Now $N(\epsilon) = N(\frac{a+b\sqrt{-7}}{2}) = \frac{a^2+7b^2}{4} = 1$. Hence $a^2+7b^2 = 4$ and this shows that $7b^2 \le 4$, $b^2 \le \frac{4}{7}$, or that b = 0. Then $a^2 = 4$ so that $a = \pm 2$. Therefore $\epsilon = \frac{\pm 2+0\sqrt{-7}}{2} = \pm 1$.

Definition 2.43: Associates in $I(\sqrt{-7})$ are quadratic integers which differ by a unit factor.

2.5 Prime Numbers of $I(\sqrt{-7})$

<u>Definition 2.51</u>: A prime number of $I(\sqrt{-7})$ is an integer of $I(\sqrt{-7})$ that is not a unit and has no divisors other than its associates and the units.

Example: 3 is prime in $I(\sqrt{-7})$.

If $a\beta = 3$, then $N(a)N(\beta) = N(3) = 9$. This gives two cases

to consider since the norm of an integer of $I(\sqrt{-7})$ is a non-negative integer.

Case (i)
$$N(\alpha) = 1$$
 and $N(\beta) = 9$.

In this case, N(a) = 1 implies that a is a unit.

Case (ii)
$$N(\alpha) = 3$$
 and $N(\beta) = 3$.

If $a = a+b\omega$, then $N(a) = a^2+ab+2b^2 = 3$. Then $(a+\frac{b}{2})^2 + \frac{7b^2}{4} = 3$ which implies that $\frac{7b^2}{4} \le 3$. Then $b^2 \le 1$ and so b = 0 or $b = \pm 1$. If b = 0, then there exists no a in I such that $a^2 = 3$. If $b = \pm 1$, then there exists no a in I such that $(a \pm \frac{1}{2})^2 = \frac{5}{4}$. Hence there is no a in $I(\sqrt{-7})$ such that its norm is 3. So the only possible factorization of 3 is as in the first case.

3 is a prime since the only factors of 3 are its associates or the units.

Example: ω is a prime in $I(\sqrt{-7})$.

Suppose $\alpha\beta = \omega$. Then $N(\alpha)N(\beta) = N(\omega) = 2$. Since $N(\alpha) \ge 0$ and $N(\beta) \ge 0$ are integers, then $N(\alpha) = 1$ and $N(\beta) = 2$. But $N(\alpha) = 1$ means α is a unit. Hence ω is prime because its only factors are its associates or the units.

2.6 Unique Factorization in $I(\sqrt{-7})$

In this section, four theorems will be proved. These results will lead to the proof of theorem 2.65, the Unique Factorization Theorem in $I(\sqrt{-7})$, which states that every integer of $I(\sqrt{-7})$ can be represented in one and only one way as a product of prime numbers.

Example: $-6-3\omega = 3\omega^3$.

$$3\omega^{3} = 3\omega(\omega^{2}) = 3\omega(-2+\omega) = -6\omega+3(-2+\omega) = -6\omega-6+3\omega = -6-3\omega.$$

It was shown in section 2.5 that 3 and ω are prime in $I(\sqrt{-7})$.

<u>Theorem 2.61.</u> If a and β are numbers of $I(\sqrt{-7})$ and $\beta \neq 0$, then there exists in $I(\sqrt{-7})$ a number μ such that $N(\alpha - \mu\beta) < N(\beta)$.

Proof:

Let $\frac{\alpha}{\beta} = c + d\omega = (r + r_1) + (s + s_1)\omega$, where r and s are integers nearest to c and d respectively. Hence $|r_1| \le \frac{1}{2}$ and $|s_1| \le \frac{1}{2}$. If $|r_1| = \frac{1}{2}$ and $|s_1| = \frac{1}{2}$, then r_1 and s_1 are chosen so that they are opposite in sign.

The following argument will show that $\mu = r+s\omega$ will fulfill the required conditions of the theorem.

Since
$$\frac{\alpha}{\beta} = (r+s\omega) + (r_1+s_1\omega)$$
 or $\frac{\alpha}{\beta} - \mu = r_1+s_1\omega$, then
 $N(\frac{\alpha}{\beta} - \mu) = N(r_1+s_1\omega)$. But $N(r_1+s_1\omega) = r_1^2 + r_1s_1 + 2s_1^2 \le \frac{1}{4} - \frac{1}{4} + 2 \cdot \frac{1}{4} = \frac{1}{2}$

Hence $N(\frac{\alpha}{\beta}-\mu) < 1$ so $N(\alpha-\mu\beta) < N(\beta)$.

<u>Theorem 2.62.</u> Let a_0, β_0 be numbers of $I(\sqrt{-7})$ with $(a_0, \beta_0) = 1$. Define $a_n = \beta_{n-1}$ and $\beta_n = a_{n-1} - \mu_{n-1} \beta_{n-1}$, where μ_{n-1} is determined as in theorem 2.61, then $(a_n, \beta_n) = 1$.

Proof: (by induction)

Let S be the set of positive integers n for which the theorem is true.

Then $1 \in S$. For $a_1 = \beta_0$ and $\beta_1 = a_0 - \mu_0 \beta_0$. Suppose $(a_1, \beta_1) = c$. Then $c | a_1$ implies that $c | \beta_0$. Moreover, $c | \beta_1$ implies that $c | (a_0 - \mu_0 \beta_0)$. But then $c | a_0$ since $c | \mu \beta_0$. Hence $c | a_0$ and $c | \beta_0$, and therefore c = 1.

Assume $k \in S$. Consider, $a_{k+1} = \beta_k$ and $\beta_{k+1} = a_k - \mu_k \beta_k$, where $(a_k, \beta_k) = 1$. Suppose $(a_{k+1}, \beta_{k+1}) = c$. Then $c \mid a_{k+1}$ implies $c \mid \beta_k$, and $c \mid \beta_{k+1}$ implies $c \mid (a_k - \mu_k \beta_k)$. So $c \mid a_k$, since $c \mid \mu_k \beta_k$. Therefore $c \mid a_k$ and $c \mid \beta_k$ and hence c = 1. So $(a_{k+1}, \beta_{k+1}) = 1$ which means that if $k \in S$, then $k+1 \in S$. By the Axiom of Mathematical Induction, S is the set of all positive integers.

Theorem 2.63. If a and β are numbers in $I(\sqrt{-7})$ with $(\alpha,\beta) = 1$, then there exist ξ and η in $I(\sqrt{-7})$ such that $\alpha\xi + \beta\eta = 1$.

Proof:

There are two cases to prove. Case (i) is if a or β is a unit and case (ii) if a and β are not units.

Case (i) a or β is a unit.

Suppose a = 1, then $\xi + \beta \eta = 1$ implies that $\beta \eta = 1 - \xi$. The conditions of the theorem are satisfied if $\eta = 1$ and $\xi = \overline{\beta}$.

Case (ii) α and β are not units.

In this argument suppose that $N(\beta) \le N(\alpha)$. By theorem 2.61 there exist μ such that $N(\alpha - \mu\beta) < N(\beta)$. Let $\alpha_1 = \beta$ and $\beta_1 = \alpha - \mu\beta$. By theorem 2.62, it is seen that $(\alpha_1, \beta_1) = 1$.

If there exists ξ_1 and η_1 such that $\alpha_1 \xi_1 + \beta_1 \eta_1 = 1$, $\beta(\xi_1) + (\alpha - \mu\beta) \eta_1 = 1$, and so $\alpha \eta_1 + \beta(\xi_1 - \mu\eta_1) = 1$, then $\xi = \eta_1$ and $\eta = \xi_1 - \mu\eta_1$. If α_1 or β_1 is a unit, then ξ_1 and η_1 can be determined as in case (i).

If a_1 or β_1 is not a unit, then the process is repeated as in the first part of case (ii). Each time the process is continued, $N(\beta_n) > N(\alpha_n - \mu_n \beta_n)$ by theorem 2.61 and the following sequence of decreasing integers is formed: $N(\alpha) \ge N(\beta) > N(\alpha - \mu\beta) > N(\alpha_1 - \mu_1 \beta_1) > \cdots$ $> N(\beta_n) > N(\alpha_n - \mu_n \beta_n)$, where $N(\alpha_n - \mu_n \beta_n) = 0$. A norm of zero must eventually occur, since each norm is a non-negative integer strictly smaller than the preceding one, and the existence of an infinite sequence of non-negative integers which would never end would contradict the well-ordering axiom.

 $N(a_n - \mu_n \beta_n) = 0$ implies that $a_n = \mu_n \beta_n$. Then $\beta_n | a_n$. But $(a_n, \beta_n) = 1$ by theorem 2.62. Hence $\beta_n = \epsilon$, where ϵ is a unit.

Hence there exists ξ_n and η_n such that $a_n \xi_n + \beta_n \eta_n = 1$, but $\beta_n = \epsilon$, so $a_n \xi_n + \epsilon \eta_n = 1$. Let $\xi_n = 1$ and $\eta_n = \frac{1-a_n}{\epsilon}$. As seen from above, each ξ_i and η_i can be determined by ξ_{i+1} and η_{i+1} since $\xi_i = \eta_{i+1}$ and $\eta_i = \xi_{i+1} - \mu_i \eta_{i+1}$.

Theorem 2.64. If a and β are numbers of $I(\sqrt{-7})$, π is a prime in $I(\sqrt{-7})$, and $\pi | \alpha\beta$, then $\pi | \alpha$ or $\pi | \beta$.

Proof:

 $\pi | \alpha\beta$ implies that there exists a γ in $I(\sqrt{-7})$ such that $\alpha\beta = \gamma\pi$. Suppose π does not divide α . Then $(\pi, \alpha) = 1$ and there exists ξ and η in $I(\sqrt{-7})$ such that $\alpha\xi + \pi\eta = 1$ by theorem 2.63. Hence $\beta\alpha\xi + \beta\pi\eta = \beta$ or since $\beta\alpha = \gamma\pi$, then $\gamma\pi\xi + \beta\pi\eta = \beta$. This implies that $\pi(\gamma\xi + \beta\eta) = \beta$ which shows that $\pi | \beta$ since $\gamma\xi + \beta\eta$ is a number in $I(\sqrt{-7})$.

<u>Corollary 2.641</u>. If $\pi | a_1 a_2 \cdots a_n$, then $\pi | a_i$ for at least one i in $\{1, 2, 3, \cdots, n\}$. Proof:

Suppose π does not divide a_i for $i = 1, 2, 3, \dots, n-1$. Then by theorem 2.64, $\pi \mid a_n$.

Theorem 2.65. Every number of $I(\sqrt{-7})$ can be represented in one and only one way as the product of prime numbers.

Proof:

Let a be a number of $I(\sqrt{-7})$. If a is not prime, then there exists β and γ in $I(\sqrt{-7})$ and neither are units such that $a = \beta \gamma$. $N(a) = N(\beta \gamma) = N(\beta)N(\gamma)$. Since $N(\beta)$ and $N(\gamma)$ are positive integers, then $N(\beta) < N(a)$.

If β is not a prime number, then $\beta = \beta_1 \gamma_1$, where β_1 and γ_1 are elements of $I(\sqrt{-7})$ and neither are units. So $N(\beta) = N(\beta_1 \gamma_1) = N(\beta_1)N(\gamma_1)$ and since $N(\beta_1)$ and $N(\gamma_1)$ are positive integers, then $N(\beta_1) < N(\beta)$. Now $\alpha = \beta_1 \gamma_1 \gamma_1$.

Continuing this process, $a = \beta_n \gamma_n \gamma_{n-1} \cdots \gamma_1 \gamma$. If β_n is not prime, then $\beta_n = \beta_{n+1} \gamma_{n+1}$, where β_{n+1} and γ_{n+1} are in $I(\sqrt{-7})$ and neither are units. $N(\beta_n) = N(\beta_{n+1})N(\gamma_{n+1})$ implies that $N(\beta_{n+1}) < N(\beta_n)$ since $N(\beta_{n+1})$ and $N(\gamma_{n+1})$ are positive integers.

After a finite number of factorizations, the following sequence of strictly decreasing positive integers is formed: $N(\beta) > N(\beta_1) > N(\beta_2) > \cdots > N(\beta_n) > N(\beta_{n+1})$. A prime number must be reached. If a prime number was not reached, then the above decreasing sequence of positive integers would continue indefinitely which contradicts the well-ordering axiom.

Thus a can be expressed as a product of some prime number π and some number a_1 in $I(\sqrt{-7})$. That is, $a = \pi a_1$.

If a_1 is not a prime number, then using the same argument as above, a_1 can be factored into $a_1 = \pi_2 a_2$, where π_2 is a prime.

Hence $a = \pi_1 \pi_2 a_2$. This process is continued until a prime number π_n is reached in the sequence, $a_1, a_2, a_3, \dots, a_n$.

Thus $a = \pi_1 \pi_2 \cdots \pi_n$, which shows each integer of $I(\sqrt{-7})$ can be factored into prime numbers.

This representation of a as a product of primes is unique. Suppose there is another prime factorization of a; that is, $a = \rho_1 \rho_2 \cdots \rho_m$, where ρ_i is a prime number for $i = 1, 2, \cdots, m$. Then $\pi_1 \pi_2 \cdots \pi_n = \rho_1 \rho_2 \cdots \rho_m$.

Corollary 2.641 says that if $\pi_1 | \rho_1 \rho_2 \cdots \rho_m$, then $\pi_1 | \rho_i$ for some i in $\{1, 2, \cdots, m\}$. For convenience, suppose the primes are arranged such that i = 1, then $\rho_1 = \epsilon \pi_1$, since ρ_1 is a prime. Hence $\pi_1 \pi_2 \cdots \pi_n = \epsilon \pi_1 \rho_2 \rho_3 \cdots \rho_m$ or $\pi_2 \pi_3 \cdots \pi_n = \epsilon \rho_2 \rho_3 \cdots \rho_m$.

Similarly, $\pi_j | \rho_2 \rho_3 \cdots \rho_m$, for j in $\{2, 3, \cdots, n\}$, then $\pi_j | \rho_k$ for some k in $\{2, 3, \cdots, m\}$. Suppose j = k, then $\rho_k = \epsilon \pi_k$. Then $\pi_k \pi_{k+1} \cdots \pi_n = \epsilon \pi_k \rho_{k+1} \cdots \rho_m$ or $\pi_{k+1} \cdots \pi_n = \epsilon \rho_{k+1} \cdots \rho_m.$

Suppose n > m, then $\pi_m | \rho_m$ implies that $\rho_m = \epsilon \pi_m$. So $\pi_m \pi_{m+1} \cdots \pi_n = \rho_m$ implies $\pi_m \pi_{m+1} \cdots \pi_n = \epsilon \pi_m$ or $\pi_{m+1} \cdots \pi_n = \epsilon$. This last equation is absurd since primes are not units. So n is not greater than m.

By assuming m > n a contradiction is reached which is similar to the above argument so m is not greater than n. Hence m = n.

Thus $a = \pi_1 \pi_2 \cdots \pi_n = \rho_1 \rho_2 \cdots \rho_n$, where $\rho_i = \epsilon \pi_i$ for $i = 1, 2, 3, \cdots, n$. So a has a unique representation of primes.

3. THE QUADRATIC NUMBER FIELD $Ra(\sqrt{-23})$

3.1 The Numbers of $Ra(\sqrt{-23})$

The numbers of $\operatorname{Ra}(\sqrt{-23})$ satisfy the quadratic equation $x^2 - 2ax + a^2 + 23b^2 = 0$, where -2a and $a^2 + 23b^2$ are rational numbers. The set $\operatorname{Ra}(\sqrt{-23})$ is a quadratic number field as proved by theorems 1.1 and 1.2.

The proofs of the theorems in this section are similar to the proofs in section 2.1 by replacing -7 with -23. So the proofs have been omitted.

Definition 3.1. The conjugate of $a = a+b\sqrt{-23}$ is $a-b\sqrt{-23}$, denoted by \overline{a} .

Definition 3.2. The norm of a is aa, denoted by N(a).

Theorem 3.11. $\overline{\alpha\beta} = \overline{\alpha\beta}$ and $\overline{\alpha+\beta} = \overline{\alpha+\beta}$.

Theorem 3.12. $N(\alpha\beta) = N(\alpha)N(\beta)$.

<u>Theorem 3.13.</u> If $a \in Ra(\sqrt{-23})$, then $N(a) \ge 0$.

Proof:

Suppose $a = a+b\sqrt{-23}$. Then N(a) = $(a+b\sqrt{-23})(a-b\sqrt{-23}) = a^2+23b^2 \ge 0$.

3.2 Integers of $Ra(\sqrt{-23})$

The subset of $\operatorname{Ra}(\sqrt{-23})$ whose members are solutions of the quadratic equation, $x^2 - 2ax + a^2 + 23b^2 = 0$, where -2a and $a^2 + 23b^2$ are integers is denoted by $I(\sqrt{-23})$. The members of $I(\sqrt{-23})$ are called quadratic integers.

<u>Theorem 3.21</u>. If a is in I, then a is in $I(\sqrt{-23})$.

Proof:

 $a = a \in I$ is a solution of $x^2 - 2ax + a^2 = x^2 - 2ax + a^2 + 23 \cdot 0 = 0$. So $a \in I(\sqrt{-23})$.

<u>Theorem 3.22.</u> If $a \in I(\sqrt{-23})$, then $a = \frac{a+b\sqrt{-23}}{2}$, where a and b are both even or odd integers.

Proof:

If a be a number in $I(\sqrt{-23})$, then a is a solution of $x^2 - 2ax + a^2 + 23b^2 = 0$. Hence $a + \overline{a} = 2a$ is an integer and $a\overline{a} = a^2 + 23b^2$ is an integer.

Let $a = \frac{a_1 + b_1 \sqrt{-23}}{c_1}$, where a_1 , b_1 , and c_1 are integers and $(a_1, b_1, c_1) = 1$. Then $a + \overline{a} = \frac{2a_1}{c_1}$ and $a\overline{a} = \frac{a_1^2 + 23b_1^2}{c_1^2}$. Suppose $c_1 \neq 2$ and $c_1 \neq 1$. $\frac{2a_1}{c_1}$ is an integer which implies that $c_1 \mid 2a_1$. Therefore $(a_1, c_1) = d$, where $d \neq 1$

because $c_1 \neq 2$ and $c_1 \neq 1$. Also $\frac{a_1^2 + 23b_1^2}{c_1^2}$ is an integer, which implies $c_1^2 | (a_1^2 + 23b_1^2) . (a_1, c_1) = d$ implies $(a_1^2, c_1^2) = d^2$, so it follows that $d^2 | (a_1^2 + 23b_1^2)$. Since $d^2 | a_1^2$, then $d^2 | 23b_1^2$. But 23 has no square factors and d^2 has only square prime factors, so $d^2 | b_1^2$, which implies $d | b_1$. Therefore $(a_1, b_1, c_1) = d$, where $d \neq 1$. But this contradicts the fact that $(a_1, b_1, c_1) = 1$. Therefore $c_1 = 1$ or $c_1 = 2$. Suppose $c_1 = 2$, then $\frac{2a_1}{c_1} = \frac{2a_1}{2} = a_1$ is an integer. If $\frac{a_1^2 + 23b_1^2}{4}$ is an integer, then $a_1^2 + 23b_1^2 \equiv 0 \mod 4$. If a_1 is odd, $a_1^2 \equiv 1 \mod 4$, then $23b_1^2 \equiv -1 \mod 4$, but $-1 \equiv 23 \mod 4$ so $23b_1^2 = 23 \mod 4$ or $b_1^2 \equiv 1 \mod 4$. Hence $b_1^2 \equiv 1$ mod 4 implies that $b_l = 1 \mod 2$; that is, b_l is an odd integer. So $\frac{a_1+b_1\sqrt{-23}}{2}$ is a quadratic integer of $I(\sqrt{-23})$, if a_1 and b₁ are both odd integers. Suppose $c_1 = 1$, then $\frac{2a_1}{c_1} = 2a_1$ is an integer and $\frac{a_{1}^{2} + 23b_{1}^{2}}{a_{1}^{2}} = a_{1}^{2} + 23b_{1}^{2}$ is an integer. So

21

 $a_{1}+b_{1}\sqrt{-23} = \frac{2a_{1}+2b_{1}\sqrt{-23}}{2} = \frac{a+b\sqrt{-23}}{2}$ is a quadratic integer of $I(\sqrt{-23})$, if a and b are both even integers.

<u>Theorem 3.23.</u> $I(\sqrt{-23})$ is an integral domain.

Proof:

The proof is similar to theorem 2.23.

3.3 Basis of $I(\sqrt{-23})$ <u>Theorem 3.31.</u> 1 and $\frac{1+\sqrt{-23}}{2}$ form a basis for $I(\sqrt{-23})$.

Proof:

Let
$$\frac{x+y\sqrt{-23}}{2} \in I(\sqrt{-23})$$
 and write

 $\frac{x+y\sqrt{-23}}{2} = a(1) + b(\frac{1+\sqrt{-23}}{2}) = \frac{2a+b}{2} + \frac{b}{2}\sqrt{-23}.$ Then $x = \frac{2a+b}{2}$ and y = b or, solving for a and b; $a = \frac{x-y}{2}$ and b = y. Since x and y are both even or odd integers, then $\frac{x-y}{2} = a$ is in I and b is in I. So $\frac{x+y\sqrt{-23}}{2} = \frac{x-y}{2}(1) + y(\frac{1+\sqrt{-23}}{2}).$ We shall write $\frac{1+\sqrt{-23}}{2} = \theta$.

<u>Theorem 3.32.</u> $\theta \overline{\theta} = 6$, $\theta + \overline{\theta} = 1$, and $\theta^2 = -6 + \theta$.

Proof:

$$\theta \overline{\theta} = \frac{1 + \sqrt{-23}}{2} \cdot \frac{1 - \sqrt{-23}}{2} = \frac{1 + 23}{4} = 6$$

$$\theta + \overline{\theta} = \frac{1 + \sqrt{-23}}{2} + \frac{1 - \sqrt{-23}}{2} = \frac{2}{2} = 1$$

$$\theta^2 = \left(\frac{1 + \sqrt{-23}}{2}\right)^2 = \frac{-11 + \sqrt{-23}}{2} = \frac{-11 - 1}{2} + 1 \cdot \theta = -6 + \frac{1}{2}$$

Theorem 3.33. If $a+b\theta \in I(\sqrt{-23})$, then $N(a+b\theta) = a^2+ab+6b^2$.

θ.

Proof:

$$N(a+b\theta) = (a+b\theta)(\overline{a+b\theta}) = (a+b\theta)(a+b\overline{\theta})$$
$$= a^{2}+ab(\theta + \overline{\theta}) + b^{2}\theta \overline{\theta}$$
$$= a^{2}+ab+6b^{2} .$$

3.4 The Units of $I(\sqrt{-23})$

The definitions of $\beta \mid a$ and units in $I(\sqrt{-23})$ are the same as in $I(\sqrt{-7})$.

Theorem 3.41. The units of $I(\sqrt{-23})$ are 1 and -1.

Proof:

If ϵ is a unit of $I(\sqrt{-23})$, then $\epsilon \mid 1$. Hence there exists a β in $I(\sqrt{-23})$ such that $1 = \beta \epsilon$, $N(1) = N(\beta \epsilon) = N(\beta)N(\epsilon) = 1$. Since $N(\beta)$ and $N(\epsilon)$ are non-negative integers as seen by theorems 3.13 and 3.33, it follows that $N(\epsilon) = 1$.

Now $N(\epsilon) = N(\frac{a+b\sqrt{-23}}{2}) = \frac{a^2+23b^2}{4} = 1$. But $a^2+23b^2 = 4$ implies that $23b^2 \le 4$. Hence $b^2 \le \frac{4}{23}$, and so b = 0. Then $a^2 = 4$; that is, $a = \pm 2$, and so $\epsilon = \frac{\pm 2 \pm 0\sqrt{-23}}{2} = \pm 1$.

Definition 3.41. Associates are integers in $I(\sqrt{-23})$ that differ by a unit factor.

3.5 Prime Numbers of $I(\sqrt{-23})$

Definition 3.51. A prime number of $I(\sqrt{-23})$ is an integer that is not a unit and has no divisors other than its associates and the units.

Example: 2 is a prime in $I(\sqrt{-23})$

Let $a\beta = 2$, then $N(a\beta) = N(a)N(\beta) = N(2)$ and N(2) = 4, so $N(a)N(\beta) = 4$. This result gives two cases to consider since the norm of an integer in $I(\sqrt{-23})$ is a non-negative integer.

Case (i) $N(\alpha) = 1$ and $N(\beta) = 4$.

In this case N(a) = 1 implies that a is a unit.

Case (ii) $N(\alpha) = 2$ and $N(\beta) = 2$.

In this case, let $a = a+b\theta$, then $2 = a^2+ab+6b^2$ which yields $2 = (a+\frac{b}{2})^2 + \frac{23}{4}b^2$. Hence $\frac{23}{4}b^2 \le 2$, $b^2 \le \frac{8}{23}$, and so b = 0. This gives $a^2 = 2$ which implies a is not an integer. So there does not exist the number a such that N(a) = 2.

So the only divisors of 2 are the units or its associates which means 2 is prime.

Example: 3 is a prime in $I(\sqrt{-23})$

Using an argument similar to that above, let $a\beta = 3$. Then $N(a) N(\beta) = 9$, which results in two cases.

Case (i) $N(\alpha) = 1$ and $N(\beta) = 9$.

In this case N(a) = 1 implies a is a unit.

Case (ii) N(a) = 3 and $N(\beta) = 3$. In this case, $(a + \frac{b}{2})^2 + \frac{23}{4}b^2 = 3$ which gives $b^2 \le \frac{12}{24}$, b = 0, $a^2 = 3$, and so a is not an integer. So there exist no numbers in $I(\sqrt{-23})$ with a norm of 3.

Hence 3 is a prime in $I(\sqrt{-23})$.

Example: θ and $\overline{\theta}$ are prime

Let $a\beta = \theta$. Then $N(a) N(\beta) = N(\theta) = 6$. This means that N(a) = 1 and $N(\beta) = 6$ or N(a) = 2 and $N(\beta) = 3$. If N(a) = 1, then a is a unit. But there exists no a in $I(\sqrt{-23})$ such that N(a) = 2, as shown above. Hence θ is a prime. Similarly it can be shown that $\overline{\theta}$ is prime.

3.6 Failure of Unique Factorization in $I(\sqrt{-23})$

To have the Unique Factorization Theorem hold true in $I(\sqrt{-23})$ every integer of $I(\sqrt{-23})$ must have a unique representation of prime factors. This is not the case for the integral domain $I(\sqrt{-23})$ as illustrated by the following example.

Example: $6 = 2 \cdot 3 = \theta \overline{\theta}$ 2, 3, θ , $\overline{\theta}$ were shown to be prime in $I(\sqrt{-23})$ in section 3.5. This is the only possible prime factorization of 6, as proved in the following. Suppose $\alpha\beta = 6$, then $N(\alpha)N(\beta) = N(6) = 36$. Four cases result from this last statement.

(i) $N(\alpha)N(\beta) = 2 \cdot 18$. But there exists no $\alpha \in I(\sqrt{-23})$ such that $N(\alpha) = 2$, as shown in section 3.5.

(ii) $N(\alpha)N(\beta) = 3 \cdot 12$. Again there exists no $\alpha \in I(\sqrt{-23})$ such that $N(\alpha) = 3$, as shown in section 3.5.

(iii) $N(\alpha)N(\beta) = 4 \cdot 9$. If $\alpha = a+b\theta$ and $N(\alpha) = 4$, then $4 = a^2 + ab + 6b^2 = (a + \frac{b}{2})^2 + \frac{23b^2}{4}$. The last statement shows that $\frac{23b^2}{4} \leq 4$, which implies that $b^2 \leq \frac{16}{23}$ and so b = 0. Hence $a^2 = 4$ or $a = \pm 2$. So $\alpha = 2$ and $\beta = 3$. (2 and -2 are associates so only $\alpha = 2$ is considered.)

(iv) $N(\alpha)N(\beta) = 6 \cdot 6$. Again if $\alpha = a+b\theta$ and $N(\alpha) = 6$, then $6 = a^2 + ab + 6b^2 = (a + \frac{b}{2})^2 + \frac{23b^2}{4}$. So $b^2 \le \frac{24}{23}$ or $b = \pm 1, 0$. If b = 1, then a = -1 or a = 0. The possibilities for α is $-1+\theta$ or θ . If b = -1, then a = 1 or a = 0. So $a = 1-\theta = \overline{\theta}$ or $\alpha = -\theta$. $\alpha = -1+\theta \Rightarrow \beta = -\theta$ or $\alpha = 1-\theta \Rightarrow \beta = \theta$. But these are associates, so it is only necessary to consider $\alpha = 1-\theta = \overline{\theta}$ and $\beta = \theta$.

It has been shown that 6, an integer in $I(\sqrt{-23})$, has two

different prime factorizations. So the Unique Factorization Theorem fails in $I(\sqrt{-23})$.

The remaining part of this chapter will show how some of the theorems used to prove the Unique Factorization Theorem in $I(\sqrt{-7})$ fail in $I(\sqrt{-23})$.

Suppose theorem 2.61 is restated in terms of the integers of $I(\sqrt{-23})$; that is, if a and β are numbers of $I(\sqrt{-23})$ and $\beta \neq 0$, then there exists in $I(\sqrt{-23})$ a number μ such that $N(\alpha - \mu\beta) < N(\beta)$.

Let $\frac{a}{\beta} = c + d\theta = (r + r_1) + (s + s_1)\theta$, where r and s are integers nearest to c and d, respectively. Then $|r_1| \leq \frac{1}{2}$ and $|s_1| \leq \frac{1}{2}$. If $|r_1| = \frac{1}{2}$ and $|s_1| = \frac{1}{2}$, then choose r_1 and s_1 so that they are opposite in sign. If $\mu = r + s\theta$, then $\frac{a}{\beta} - \mu = r_1 + s_1\theta$. So $N(\frac{a}{\beta} - \mu) = N(r_1 + s_1\theta) = r_1^2 + r_1s_1 + 6s_1^2$, and so $r_1^2 + r_1s_1 + 6s_1^2 \leq \frac{1}{4} - \frac{1}{4} + 6 \cdot \frac{1}{4} \leq \frac{3}{2}$. Hence $N(\frac{a}{\beta} - \mu) < 1$ cannot be concluded. But $N(a - \mu\beta) < N(\beta)$ is necessary in order to prove the analog of theorem 2.63 in $I(\sqrt{-23})$.

Example: Let $\alpha = 3$, $\beta = \theta$, and $\mu = x + y\theta$, then $\frac{\alpha}{\beta} = \frac{1}{2} - \frac{1}{2}\theta$. $N(\frac{\alpha}{\beta} - \mu) = N[(\frac{1}{2} - \frac{1}{2}\theta) - (x + y\theta)] = N[(\frac{1}{2} - x) + (-\frac{1}{2} - y)\theta] = (\frac{1}{2} - x)^{2} + (\frac{1}{2} - x)(-\frac{1}{2} - y) + (-\frac{1}{2} - y)^{2}\theta$.

Rewriting the last expression as the sum of two positive numbers, $\left[\left(\frac{1}{2}-x\right)+\left(-\frac{1}{2}-y\right)\right]^{2}+\frac{23}{4}\left(-\frac{1}{2}-y\right)^{2}$. Since $\frac{23}{4}\left(-\frac{1}{2}-y\right)^{2} > 1$ for all y in I, the last expression is greater than one. If theorem 2.63 is restated for the integral domain $I(\sqrt{-23})$, then it fails to be true as shown by the following example.

Example: If $\alpha = 3$ and $\beta = \theta$, where $(3, \theta) = 1$, there exist no $\xi = a+b\theta$ and $\eta = c+d\theta$ in $I(\sqrt{-23})$ such that $3\xi + \theta\eta = 1$. Writing $3\xi + \theta\eta = 1$ as $3(a+b\theta) + \theta(c+d\theta) = 1$ and then $(3a-6d) + (3b+c+d)\theta = 1$ implies that 3a-6d = 1. The last equation shows 3|(3a-6d)| which implies 3|1. Hence a and d are not integers. So ξ and η do not exist in $I(\sqrt{-23})$.

If the product of two integers is divisible by a prime number, at least one of the integers is divisible by that prime does not hold in $I(\sqrt{-23})$. Consider the following example.

Example: It is known that $6 = \theta \overline{\theta}$. Also 2 | 6 but 2 does not divide θ or $\overline{\theta}$ since θ and $\overline{\theta}$ are prime. Also 2 was shown to be prime in $I(\sqrt{-23})$.

4. IDEALS IN $I(\sqrt{-23})$

4.1 Introduction of Ideals

In order to restore the Unique Factorization Theorem in $I(\sqrt{-23})$, it is necessary to introduce the concept of ideals in $I(\sqrt{-23})$. The definitions and theorems in this section will give the necessary background to work with ideals. Capital letters will represent ideals.

Definition 4.11. A =
$$(a_1, a_2, \dots, a_n)$$
 is an ideal in $I(\sqrt{-23})$,
where $a_i \in I(\sqrt{-23})$ and $i \in \{1, 2, \dots, n\}$, if $\beta \in A$, then
 $\beta = a_1 \xi_1 + a_2 \xi_2 + \dots + a_n \xi_n$, where $\xi_i \in I(\sqrt{-23})$ for $i \in \{1, 2, \dots, n\}$

The following theorem shows that every ideal in $I(\sqrt{-23})$ can be generated by at most two numbers of $I(\sqrt{-23})$. This will ease the computations in the following theorems.

<u>Theorem 4.11.</u> If A is an ideal, then ω_1 and ω_2 exist in $I(\sqrt{-23})$ such that for all a in A, $a = k_1 \omega_1 + k_2 \omega_2$, where $k_1, k_2 \in I$.

Proof:

If $a_i \neq 0$ is in A, then $N(a_i)$ is in A since we may write $N(a_i) = \xi_1 a_1 + \xi_2 a_2 + \cdots + \xi_i a_i + \cdots + \xi_n a_n$, with $\xi_i = \overline{a_i}$ and $\xi_j = 0$ if $j \neq i$. So A contains positive integers. Let ω_l be the smallest positive integer in A.

Of all numbers $\ell_1 + \ell_2 \theta$ in A, where $\ell_2 \neq 0$ and ℓ_2, ℓ_1 are integers, choose as ω_2 one for which $\ell_2 > 0$ and minimal. Then write $\omega_2 = \ell_1 + \ell_2 \theta$.

If $a = a_1 + a_2\theta$ is in A, then express $a_2 = \ell_2 k_2 + r_2$, where $0 \le r_2 \le \ell_2$. Hence $a = a_1 + (\ell_2 k_2 + r_2)\theta = a_1 + k_2(\ell_2\theta) + r_2\theta$ or $a = a_1 + k_2(\omega_2 - \ell_1) + r_2\theta$. Subtracting $k_2\omega_2$ from both sides of the last equation, $a - k_2\omega_2 = (a_1 - k_2\ell_1) + r_2\theta$. Since $a - k_2\omega_2$ is in A, then $r_2 = 0$. If $r_2 \ne 0$, then $0 \le r_2 \le \ell_2$ which means ℓ_2 was not minimal as selected above. So $a - k_2\omega_2 = a_1 - k_2\ell_1$.

Let $a_1 - k_2 \ell_1 = b$, then we can write $b = \omega_1 k_1 + r_1$ where $0 \le r_1 < \omega_1$. If $r_1 \ne 0$, then $0 < r_1 < \omega_1$, which means ω_1 was not minimal as selected above. So $r_1 = 0$, then $b = \omega_1 k_1$. Therefore $a - k_2 \omega_2 = \omega_1 k_1$ or $a = k_1 \omega_1 + k_2 \omega_2$.

<u>Definition 4.12</u>: Let A and B be ideals. Then <u>A = B</u> if and only if every element a of A is also an element of B and every element β of B is an element of A.

Definition 4.13. Let
$$A = (\alpha_1, \alpha_2)$$
 and $B = (\beta_1, \beta_2)$. Then
AB = $(\alpha_1\beta_1, \alpha_2\beta_1, \alpha_1\beta_2, \alpha_2\beta_2)$.

<u>Definition 4.14:</u> Ideal B <u>divides</u> ideal A, written as B|A, if

there exists C such that A = BC.

Theorem 4.12. If B | A, then every element a of A is in B. Proof:

If B|A, then there exists C such that A = BC. Let $A = (a_1, a_2)$, $B = (\beta_1, \beta_2)$, and $C = (\gamma_1, \gamma_2)$. Then $A = BC = (\beta_1\gamma_1, \beta_2\gamma_1, \beta_1\gamma_2, \beta_2\gamma_2)$. If a is in A, then $a = \xi_1\beta_1\gamma_1 + \xi_2\beta_2\gamma_1 + \xi_3\beta_1\gamma_2 + \xi_4\beta_2\gamma_2$, for ξ_1, ξ_2, ξ_3 , and ξ_4 in $I(\sqrt{-23})$. Rewriting the last expression as, $a = (\xi_1\gamma_1 + \xi_3\gamma_2)\beta_1 + (\xi_2\gamma_1 + \xi_4\gamma_2)\beta_2$ shows that a is an element of B. <u>Corollary 4.121</u>. If B|A and A|B, then A = B.

Proof:

If B|A, then every element a of A is in B. If A|B, then every element β of B is in A. So by the definition of equality of ideals, A = B.

4.2 Unit Ideal in $I(\sqrt{-23})$

Definition 4.21. A unit ideal is an ideal which divides all ideals.

Theorem 4.21. (1) is the unit ideal.

Existence: Let $A = (a_1, a_2)$. $A(1) = (a_1, a_2)(1) = (a_1 \cdot 1, a_2 \cdot 1) = (a_1, a_2) = A$. Hence (1) | A. So (1) is a unit ideal. Uniqueness: Suppose B is a unit ideal, then $B|A, \forall A$. If A = (1), then B|(1). Since (1)|B and corollary 4.121, (1) = B.

4.3 Prime Ideals in $I(\sqrt{-23})$

Definition 4.31. An ideal A, which is not the unit ideal, is prime if and only if A is divisible only by itself and the unit ideal.

Example: $(2, \theta)$ is a prime ideal.

Suppose $(2, \theta)$ is not a prime ideal, then there exists A and B, where neither is the unit ideal, such that AB = $(2, \theta)$.

Let $A = (a_1, a_2)$ and $B = (\beta_1, \beta_2)$. Then $AB = (2, \theta)$ implies that $A = (a_1, a_2, 2, \theta)$ and $B = (\beta_1, \beta_2, 2, \theta)$ by theorem 4.12.

Let $a_i = \frac{a+b\sqrt{-23}}{2}$ be any of the integers in A. Then $a_i = b(\frac{1+\sqrt{-23}}{2}) + \frac{a-b}{2}$ or $a_i = b\theta + \frac{a-b}{2}$. For a_i to be an integer of $I(\sqrt{-23})$, then $\frac{a-b}{2}$ is an integer. This implies that $\frac{a-b}{2} = 2c$ or $\frac{a-b}{2} = 2c+1$, where c is in I.

Suppose $a_i = b\theta + 2c$, then a_1 and a_2 can be expressed as a linear combination of θ and 2. Hence $A = (2, \theta)$.

Now suppose that $a_i = b\theta + 2c + 1$. Then $a_i - b\theta - 2c = 1$ which implies 1 is a linear combination of a_i , θ , and 2. So $A = (a_1, a_2, 2, \theta, 1)$. But every element of A can be expressed in terms of l, so A = (1).

Using an argument similar to that as above, it can be shown that $B = (2, \theta)$ or B = (1).

Therefore the possible factorizations of $(2, \theta)$ are as follows.

Case (i) $(2, \theta) = (1)(1) = (1)$. Case (ii) $(2, \theta) = (2, \theta)(2, \theta)$. Case (iii) $(2, \theta) = (1)(2, \theta)$.

In case (i), it will be shown that $(2, \theta) \neq (1)$. Suppose it is true that $(2, \theta) = (1)$. That means $1 = 2(a+b\theta) + \theta(c+d\theta)$, $1 = (2a-6d) + (2b+c+d)\theta$, which implies that 1 = 2a-6d. But 2a-6d = 1 implies 2|1 which is absurd. So there does not exist $a+b\theta$ and $c+d\theta$ such that 1 is a linear combination of 2 and θ . Hence $(2, \theta) \neq (1)$.

Also case (ii) is not true; that is, $(2, \theta) \neq (2, \theta)(2, \theta)$. Suppose $(2, \theta) = (2, \theta)(2, \theta)$. Multiplying, $(2, \theta)(2, \theta) = (4, 2\theta, 2\theta, \theta^2) = (4, 2\theta, -6+\theta)$. But $2\theta = 4(-3+\theta)+(-6+\theta)(-2)$, so $(4, 2\theta, -6+\theta) = (4, -6+\theta)$. If $(2, \theta) = (4, -6+\theta)$, then every element of $(2, \theta)$ is an element of $(4, -6+\theta)$, and every element of $(4, -6+\theta)$ is an element of $(2, \theta)$. Suppose θ is in $(4, -6+\theta)$, then $\theta = 4(a+b\theta)+(-6+\theta)(c+d\theta)$, or simplifying, $\theta = (4a-6c-6d) + (4b-5d+c)\theta$. This implies 0 = 2a-3c-3d and 1 = 4b-5d+c. Adding these two equations, 1 = 2a+4b-2c-8d, which implies 2|1. Hence $a+b\theta$ and $c+d\theta$ do not exist to represent θ as a linear combination of 4 and $-6+\theta$. Therefore θ is not an element of $(4, -6+\theta)$. So $(2, \theta) \neq (4, -6+\theta)$, which implies $(2, \theta) \neq (2, \theta)(2, \theta)$.

Case (iii) contradicts the assumption that neither A or B is the unit ideal.

So the assumption that $(2, \theta)$ was not prime yields three cases which proved to be false. Hence the assumption is false, so $(2, \theta)$ is prime in $I(\sqrt{-23})$.

Example: $(2, 1-\theta)$ is a prime ideal.

The proof of this example is similar to the proof of $(2,\theta)$ is a prime ideal.

Example: $(3, \theta)$ is a prime ideal.

Suppose $(3, \theta)$ is not prime, then there exists A and B, where neither is the unit ideal, such that AB = $(3, \theta)$.

Let $A = (\alpha_1, \alpha_2)$ and $B = (\beta_1, \beta_2)$. Then $AB = (3, \theta)$ implies that $A = (\alpha_1, \alpha_2, 3, \theta)$ and $B = (\beta_1, \beta_2, 3, \theta)$ by theorem 4.12.

Let $a_i = \frac{a+b\sqrt{-23}}{2}$ be any of the elements of A. Rewriting a_i in the form, $a_i = b(\frac{1+\sqrt{-23}}{2}) + \frac{a-b}{2}$ or $a_i = b\theta + \frac{a-b}{2}$. Since a_i is an integer of $I(\sqrt{-23})$, then $\frac{a-b}{2}$ is an integer and of the form 3c, 3c+1, or 3c+2, where c is an integer.

Suppose $a_1 = b\theta + 3c$, then a_1 and a_2 can be expressed as a linear combination of θ and 3. Hence $A = (a_1, a_2, 3, \theta) = (3, \theta)$.

If $a_i = b\theta + 3c + 1$, then $a_i - b\theta - 3c = 1$, which implies 1 is a linear combination of a_i , θ , and 3. So $A = (a_1, a_2, 3, \theta) = (a_1, a_2, 3, \theta, 1)$. But each element of A can be expressed in terms of 1, so A = (1).

The last form of a_i is $a_i = b\theta + 3c + 2$. Then $a_i - b\theta - 3c = 2$, which implies that 2 is an element of A. So $A = (a_1, a_2, 3, \theta) = (a_1, a_2, 3, \theta, 2)$. But 1 is a linear combination of the elements of $(a_1, a_2, 3, \theta, 2)$, so $A = (a_1, a_2, 3, \theta, 2, 1)$. Since each element of A can be expressed in terms of 1, then A = (1).

It also follows that $B = (3, \theta)$ or B = (1).

Therefore the possible factorizations of $(3, \theta)$ areas follows:

Case (i) $(3, \theta) = (1)(1) = (1)$.

Case (ii) $(3, \theta) = (3, \theta)(3, \theta)$.

Case (iii) $(3, \theta) = (1)(3, \theta)$.

Consider case (i), $(3, \theta) = (1)$. Suppose $(3, \theta) = (1)$, then $1 = 3(a+b\theta) + \theta(c+d\theta)$ or rewriting as $1 = (3a-6d) + (3b+c+d)\theta$ yields 1 = 3a-6d. Hence $3 \mid 1$ which implies there exist no $a+b\theta$ and c+d θ which expresses 1 as a linear combination of 3 and θ . Hence $(3,\theta) \neq (1)$.

In case (ii), $(3, \theta) = (3, \theta)(3, \theta)$ will be shown to be false. Consider the product $(3, \theta)(3, \theta) = (9, 3\theta, 3\theta, \theta^2) = (9, 3\theta, -6+\theta)$. But $3\theta = 9(4+\theta) + (-6+\theta)(-6)$, so $(9, 3\theta, -6+\theta) = (9, -6+\theta)$. Hence $(3, \theta)(3, \theta) = (9, -6+\theta)$. If $(3, \theta) = (3, \theta)(3, \theta) = (9, -6+\theta)$, then θ is an element of $(9, -6+\theta)$. That is, $\theta = 9(a+b\theta) + (-6+\theta)(c+d\theta)$ or rewriting as $\theta = (9a-6c-6d) + (9b-5d+c)\theta$. The last equation implies that 0 = 3a-2c-2d and 1 = 9b-5d+c. Multiply both sides of 0 = 3a-2c-2d by 2 to obtain 0 = 6a-4c-4d and add to 1 = 9b-5d+c to yield 1 = 6a+9b-3c-9d. The last equation implies 3|1. Hence there does not exist $a+b\theta$ and $c+d\theta$ which expresses θ as a linear combination of 9 and $-6+\theta$. Therefore θ is not an element of $(9, -6+\theta)$ which implies that $(3, \theta)(3, \theta) \neq (3, \theta)$.

Case (iii), $(3, \theta) = (1)(3, \theta)$, contradicts the assumption that neither A or B is a unit.

Therefore the assumption that $(3, \theta)$ is not a prime resulted into three cases of factorizations in which each case proved to be false. Hence $(3, \theta)$ is a prime in $I(\sqrt{-23})$.

Example: $(3, 1-\theta)$ is a prime ideal. The proof is similar to the proof that $(3, \theta)$ is a prime ideal. 4.4 Restoration of the Unique Factorization Theorem

In section 3.6 it was shown that $6 = 2 \cdot 3 = \theta \overline{\theta}$, where 2, 3, θ and $\overline{\theta}$ are prime numbers in $I(\sqrt{-23})$. In this section, 6 is considered as the ideal (6) and is factored into prime ideals. Since 6 was factored into primes by two ways, then the following product of ideals are considered, (2)(3) and $(\theta)(\overline{\theta})$.

Consider the ideal (6) factored as the following: (6) = (2)(3).

The following argument will show that $(2) = (2, \theta)(2, 1-\theta)$ and (3) = $(3, \theta)(3, 1-\theta)$, where $(2, \theta)(2, 1-\theta), (3, \theta)$, and $(3, 1-\theta)$ are prime ideals in $I(\sqrt{-23})$.

First, consider $(2) = (2, \theta)(2, 1-\theta)$.

 $(2, \theta)(2, 1-\theta) = (4, 2-2\theta, 2\theta, 6) = (4, 2-2\theta, 2\theta, 6, 2).$ The last ideal follows from the fact that $2 = (-1)4 + 0(2-2\theta) + 0 \cdot 2\theta + 1 \cdot 6$. It is evident that all the elements of $(4, 2-2\theta, 2\theta, 6, 2)$ can be written in terms of 2, so $(4, 2-2\theta, 2\theta, 6, 2) = (2)$.

Second, consider $(3) = (3, \theta)(3, 1-\theta)$. $(3, \theta)(3, 1-\theta) = (9, 3-3\theta, 3\theta, 6) = (9, 3-3\theta, 3\theta, 6, 3)$, since $3 = 1 \cdot (9) + 0(3-3\theta) + 0(3\theta) + (-1)(6)$. All the elements of $(9, 3-3\theta, 3\theta, 6, 3)$ can be written in terms of 3, so this ideal is (3). Hence $(3, \theta)(3, 1-\theta) = (3)$.

The above shows that a prime factorization of (6) is (6) = $(2, \theta)(2, 1-\theta)(3, \theta)(3, 1-\theta)$. The factorization, (6) = (θ)(1- θ), is also possible since $\theta(1-\theta) = \theta \overline{\theta} = 6.$

Consider the product, $(2,\theta)(3,\theta) = (6,2\theta,3\theta,-6+\theta)$. Since $\theta = 6 \cdot 0 + (-1)2\theta + 1(3\theta) + 0(-6+\theta)$, then θ is an element of the ideal, $(6,2\theta,3\theta,-6+\theta)$. That is, $(6,2\theta,3\theta,-6+\theta) = (6,2\theta,3\theta,-6+\theta,\theta)$. But each element of $(6,2\theta,3\theta,-6+\theta,\theta)$ can be written in terms of θ . Therefore $(2,\theta)(3,\theta) = (6,2\theta,3\theta,-6+\theta,\theta) = (\theta)$.

Next consider the product, $(2, 1-\theta)(3, 1-\theta) = (6, 2-2\theta, 3-3\theta, -5-\theta)$. Since $1-\theta = 0 \cdot 6+(-1)(2-2\theta) + (1)(3-3\theta) + (0)(5+\theta)$, then $(6, 2-2\theta, 3-3\theta, -5-\theta) = (6, 2-2\theta, 3-3\theta, -5-\theta, 1-\theta)$. Each element of $(6, 2-2\theta, 3-3\theta, -5-\theta, 1-\theta)$ can be expressed in terms of $1-\theta$, so $(2, 1-\theta)(3, 1-\theta) = (6, 2-2\theta, 3-3\theta, -5-\theta, 1-\theta) = (1-\theta)$.

Hence it has been shown that $(\theta) = (2, \theta)(3, \theta)$ and $(1-\theta) = (2, 1-\theta)(3, 1-\theta)$. So the factorization of $(6) = (\theta)(1-\theta)$ is also $(2, \theta)(3, \theta)(2, 1-\theta)(3, 1-\theta)$, where this last representation consists of prime ideals. But this factorization is exactly the same as (6) factored first as (2)(3) and then as a product of prime ideals.

If the integer 6 in $I(\sqrt{-23})$ is considered as the ideal (6), then unique prime factorization of 6 can be restored.

To restore unique factorization in $I(\sqrt{-23})$, the integer a in $I(\sqrt{-23})$ is considered as the ideal (a). Then the properties of ideals can be used to factor (a) uniquely as a product of prime ideals.

BIBLIOGRAPHY

- Birkhoff, Garrett and Saunders MacLane. A survey of modern algebra. New York, Macmillan, 1963. 472 p.
- Cohn, Harvey. A second course in number theory. New York, Wiley, 1962. 276 p.
- LeVeque, William. Elementary theory of numbers. Reading, Mass., Addison-Wesley, 1962. 132 p.
- MacDuffee, C.C. Introduction to abstract algebra. New York, Wiley, 1940. 303 p.
- Moore, John. Elements of abstract algebra. New York, Macmillan, 1962. 203 p.
- Reid, Legh. The elements of the theory of algebraic numbers. New York, Macmillan, 1910. 454 p.
- Weyl, H. Algebraic theory of numbers. Princeton, N.J., Princeton University Press, 1940. 223 p.