

AN ABSTRACT OF THE THESIS OF

Sruti Srinivasa Ragavan for the degree of Master of Science in Computer Science presented
on January 10, 2018.

Title: Version Control Systems: An Information Foraging Perspective.

Abstract approved:

 __

Margaret M. Burnett

Software history and version control systems (VCS) are an important source of information

for developers. This importance entails the need for a principled understanding of

developers’ information seeking in VCS, both for improving existing tools as well as

understanding requirements for new tools. However, it is only recently that researchers

have started investigating how developers use VCS.

In this thesis, we take a theory-based approach to understanding developers’ information

seeking in VCS. Using the foundations of Information Foraging Theory (IFT), we analyze

the data from a prior empirical study, to gain new perspectives into developers’ information

seeking in VCS. Our results indicate that participants engaged in foraging behavior;

therefore, tool builders can leverage IFT’s design insights and patterns to VCS design.

Further, our results reveal that participants’ change-awareness foraging differed subtly

from traditional foraging and calls for further investigation. Similarly, participants

attempted to create commits that suited the needs of future foragers. However, balancing

the tensions between different foraging activities or between different people (e.g.,

different commit size preferences) is a hard problem and presents an opportunity for further

research at the intersection of IFT and software engineering.

©Copyright by Sruti Srinivasa Ragavan
January 10, 2018

All Rights Reserved

Version Control Systems: An Information Foraging Perspective

by
Sruti Srinivasa Ragavan

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented January 10, 2018
Commencement June 2018

Master of Science thesis of Sruti Srinivasa Ragavan presented on January 10, 2018

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

Sruti Srinivasa Ragavan, Author

ACKNOWLEDGEMENTS

First of all, I’d like to thank my major advisor, Dr. Margaret Burnett, who not only taught

me to ask questions and provided great research and writing feedback, but also went out of

her way to support and encourage during some low phases. But for her perceptive eyes,

patient ears, kind words and immense understanding, this thesis wouldn’t have seen the

light of the day. I owe it all to you, Dr. B; someday, I’ll grow up to be like you.

I’d also like to thank my committee members, with whom in-class as well as out-of-class

interactions have been fun and insightful. Thank you Dr. Anita Sarma, Dr. Eric

Walkingshaw, Dr. Cindy Grimm and Dr. David Kling.

Before joining Margaret’s lab, I worked in Dr. Danny Dig’s lab, where I did some of the

initial work building up to this thesis. Thank you for your continued encouragement and

support, Danny.

I’d also like to thank my grad school buddies for challenging me at work, giving me the

good hard times, putting up with my quirks, providing advice and for making life fun in

general. Bhargav Pandya, Amin Alipour, David Piorkowski, Mihai Codoban and Michael

Hilton, I miss you all! Sharmin Sultana and Kamala Sadagopan Raghavan, thank you both

for being awesome roommates.

Finally, I’d like to thank my family and friends for encouraging me to go to grad school,

for staying up and skyping with me at wee hours and for just being there. I don’t know

what I’d do without you all.

TABLE OF CONTENTS

 Page

1 Introduction .. 1

2 Related Work ... 3

2.1 Information Foraging Theory ... 3

2.2 Version Control Systems ... 4

3 Background: Information Foraging Theory ... 6

4 Methodology .. 10

4.1 Interviews ... 10

4.2 Surveys ... 12

5 Results .. 15

5.1 Change awareness: light weight foraging .. 15

5.2 Foraging for specific commits: traditional foraging .. 18

5.3 Creating new patches now for foraging later ... 24

6 Discussion .. 29

6.1 Relationship to the three-lens model of software history 29

6.2 Open problem: Light-weight foraging for change awareness 29

6.3 Open problem: Social Information Foraging in IFT .. 30

7 Conclusion ... 32

Bibliography ... 34

LIST OF FIGURES

Figure Page

1. VCS Information Environment ... 7

2. Initial set of questions for the semi-structured interviews .. 11

3. Survey questions ... 13

4. Change awareness requirements ... 15

LIST OF TABLES

Table Page

1. Constructs of information foraging theory ... 6

2. Foraging for specific information ... 19

3. Barriers .. 20

4. Four fundamental ways to better support foraging ... 20

5 Improving actual costs and values in VCS .. 23

 1

1 INTRODUCTION

Software engineering (SE) is an information-intensive activity. Empirical studies have

revealed that developers ask and seek answers to several questions as part of their day-to-

day development activities [44, 24, 25]. In order to satisfy their information needs, that

range from questions about existing code to collaboration needs, developers turn to various

information sources such as bug repositories, documentation, web or even other team

members. One such source of information for developers is the software history that resides

in the project’s version control system (e.g., Git, SVN, Hg) [25].

Version control systems (VCS) are a rich source of information and SE researchers have

leveraged this source to gain insights into various aspects of software engineering, such as

predicting bugs [44], predicting merge conflicts [6] and recommending APIs [32], to name

a few. However, VCS are also an important source of information for developers [25]; yet,

surprisingly little research has focused on how developers use the information in VCS. Our

recent work was the first to characterize the whats, whys, hows and barriers to developers’

information seeking in VCS [11].

In this thesis, we bring a new perspective—that of the Information Foraging Theory

(IFT)—to developers’ information seeking in VCS. Based on the idea that the information-

seeking behavior is similar to the food-foraging behavior of animals, IFT has successfully

explained the hows and whys of people’s information seeking in various domains, including

document collections, web and software engineering [39, 38, 27, 33, 40, 26]. Encouraged

by these prior successes, we chose IFT as the theoretical framework to systematically

understand developers’ information seeking in VCS. Towards this end, we present an IFT-

based analysis of the data from our prior study [11].

We also chose IFT because of its practical applicability. IFT has informed the design

and evaluation of various information environments such as websites and web search

engines [9, 10], complex visualizations [8] and SE tools [34, 19]. From these design

insights, researchers have further distilled –via the underlying IFT’s constructs and

propositions– design principles and patterns, such as web-design guidelines [47], principles

for IDE navigations [20, 36] and design patterns for SE tools [15, 31]. By framing

 2
developers’ foraging in VCS using the IFT vocabulary, tool builders can leverage the

commonalities between the VCS domain and the existing IFT design principles and

patterns. For example, tool builders can systematically reuse existing IFT-based design

solutions in VCS environments, rather than reinventing the wheel.

The rest of this thesis is organized as follows. Chapter 2 presents a review of the related

work on IFT and information seeking in VCS. Chapter 3 provides a brief IFT primer and

maps the VCS domain to IFT’s constructs. Chapter 4 describes the methodology of the

prior study whose data we re-analyze. Chapter 5 discusses the key results: (i) how

developers forage for specific commits, (ii) how they keep up with the latest changes

happening on the project and (iii) how they create commits to ease future foraging

activities. This chapter also discusses how tool builders can draw upon existing IFT-based

design patterns to inform the design of VCS environments. Chapter 6 builds upon the

results in Chapter 5 and relates them to the three-lens model of history we proposed in our

prior work [11]. The chapter also highlights several gaps in existing research and discusses

future research opportunities at the intersection of SE and IFT. Finally, Chapter 7 concludes

the thesis with a brief summary of the key takeaways.

 3
2 RELATED WORK

For this thesis, we reviewed the literature in two areas: information foraging theory and

version control systems.

2.1 Information Foraging Theory

Information Foraging Theory (IFT) was first defined by Pirolli and colleagues to explain

people’s information seeking behavior in large document collections [37], who then used

the theory to explain experts’ information seeking [38] and information visualizations [8].

They then applied IFT extensively to web foraging, such as to explain people’s web

browsing behavior [9] and to inform and evaluate the design of websites [10], subsequently

laying the foundations for web design [47].

In software engineering, Ko et al. first suggested IFT as an underlying theory for

information-seeking in SE [24]. Ever since, researchers have applied IFT to explain

information-seeking in various SE tasks, including requirements engineering [33] and

debugging [28, 29]. Recent work by our group has also looked at programmers’ foraging

in the presence of program variants in an exploratory programming context [40, 41]. Most

of this work falls into two categories—namely, empirical studies of programmer’s behavior

or using IFT-based computational models to predict programmers’ navigations.

Based on these studies and models, researchers have also built several practical tools to

aid programmers’ foraging. Piorkowski et al. built a recommendation system that

recommends the next location a programmer should navigate to [34] while Henley et al.

built the Patchworks code editor to ease programmers’ foraging [19].

In addition to specific tools, researchers have also attempted to crystallize the theory’s

propositions into generic IFT-based design patterns for the design of SE tools. Fleming et

al. examined several research and commercially-available tools and proposed a set of initial

design patterns [15]. Nabi et al. then extended this initial set into a crowd-based actively-

growing catalog [31]. However, none of these studies consider developers’ foraging in

VCS environments.

 4
2.2 Version Control Systems

Version control systems (VCS) have been in use in the software industry over the last

three decades; yet, not much related work exists on developers’ information-seeking in

version control systems. Our prior work [11], on which this thesis is built, was one of the

first studies that characterized developers’ usage of VCS and software history—the why,

the how, and the problems they encountered.

However, as the rest of this section outlines, researchers have studied specific VCS-

related activities and proposed solutions to specific problems that developers encountered.

We frame this body of related work based on the three foraging activities, namely, change

awareness, locating specific information and creating commits, described later in Chapter

5.

2.2.1 Change awareness

A large body of literature exists on collaboration in software development, which also

includes change awareness. Several empirical studies have characterized various

awareness needs of developers, including impact management, conflict management and

awareness needs. For example, Gutwin et al. studied developers’ change awareness on

open-source projects and classified them into general awareness and specialized awareness

[16], while Guzzi et al. investigated the collaboration practices of developers in large teams

[18]. Similarly, DeSouza et al. empirically characterized developers’ impact management

as forward and backward impact management [10].

Based on these empirical findings, researchers have built several tools to meet

developers’ collaboration needs. For example, Gutwin et al. built ProjectWatcher to aid

developers’ general awareness [17], while Guzzi et al. recently built Bellevue to facilitate

change awareness within the IDE [18]. Cassandra, Palantir and FastDash are some

examples of tools that help developers minimize conflicts [42, 21, 4].

This thesis complements the existing body of work on change awareness and takes a

theoretical approach to understanding how developers forage for change awareness in

VCS. By using IFT’s cost-value proposition (discussed in detail in Chapter 3), we provide

 5
deeper insights into developers’ change-awareness foraging behavior, which in turn can

inform the design of VCS to ease awareness as well as awareness tools.

2.2.2 Locating specific commits

Contrary to change awareness, not much related work exists about how developers seek

answers to specific task-related questions in VCS. However, empirical studies of

developers (e.g., [46] [25]) have suggested generic ways to improve information-seeking

for developers (e.g., aggregate all information related to a bug), including gathering

information from VCS. Similarly, Tao et al. studied how developers understood changes

in commits [48] and revealed the limitations of existing tools and practices. This thesis

goes beyond just understanding commits and focuses on information-seeking in VCS in

depth, taking a theoretical approach.

2.2.3 Committing changes

In the realm of committing changes, a lot of related work has focused on studying

specific characteristics of commits. Alali et al. investigated the characteristics of a typical

commit in open-source projects [1], while Kawrykow and Robillard found that up to 26%

of all source-code modifications were minor (e.g., renaming local variable) [22]. Other

studies, such as the one by Marzaban et al. [30], have attempted to predict the nature of

changes in a commit using commit sizes. Brindescu et al. compared the size of commits

across Git and SVN users and also observed the phenomenon that developers had different

commit size preferences [5].

Similarly, in the case of commit messages, researchers have focused on automatically

generating commit messages [12], while others have analyzed commit messages to predict

the nature of the changes [23] or the impact of incoming change requests [49].

This thesis differs from prior work and takes a theoretical approach to creating commits

and commit messages. We explore developers’ considerations about future foraging

activities and the tradeoffs involved in satisfying different needs for different foraging

activities or different foragers.

 6
3 BACKGROUND: INFORMATION FORAGING THEORY

Information Foraging Theory (IFT) is a theory of how people seek information. Derived

from the optimal foraging theory rooted in biological sciences, IFT posits that people seek

information in ways similar to how predators forage for their prey in the wild. Pirolli and

Card first used IFT to explain how experts foraged for information in document collections

[37]. Since then, IFT theory has been applied to several domains—to explain people’s

information-seeking behaviors or to inform the design of environments.

Construct Definition Example (in VCS)

Predator Person foraging for information Developer

Prey Information that the predator is seeking Location of a bug

Information
environment Environment where the foraging happens Version control system

Patches Locations in information environment Commit, list of commits

Links Connection between patches Hyperlinks from one commit to
previous and next commits.

Cues Hints about information at the other end of a
link

Words in commit messages,
file names.

Scent Predator’s estimate of the information value at
the other side of a link

Similar words = higher scent
(Note: scent is in the predator’s
head)

Table 1 Constructs of the Information Foraging Theory.

IFT uses a small set of constructs derived from the optimal foraging theory to explain

people’s information seeking. Table 1 summarizes these constructs, along with an example

operationalization in the VCS domain. The predator refers to the person seeking

information (e.g., software developer), while the prey refers to the information the predator

is seeking (e.g., location of a bug). The predator forages for its prey within an information

environment (here, version control systems), which is analogous to the foraging grounds

in the wild. Figure 1 shows the information environment of gitk, the built-in GUI repository

browser for Git. Other popular version control systems (e.g., SVN, Hg), as well as third-

party VCS tools (e.g., TowerGit, GitHub) also provide similar information environments.

 7

Fi

gu
re

 1
 V

C
S

In
fo

rm
at

io
n

En
vi

ro
nm

en
t.

Th
e

en
vi

ro
nm

en
t i

s o
rg

an
iz

ed
 a

s p
at

ch
es

 (n
um

be
re

d
la

be
ls)

, ,
 c

on
ne

ct
ed

 b
y

lin
ks

 (r
ed

 a
rr

ow
s)

 .

 8
The information environment consists of information patches, connected via links. For

example, in Figure 1, each commit is a patch: label 2 shows a single commit patch, which

is linked to its previous and next commits via the “Parent” and “Child” links (the red arrows

in the figure represent links). The list of all commits (labeled 1) is also a patch, where each

row is a link: clicking on the link opens the corresponding commit and the modified files

in Patches 2 and 3 below, as the red arrows from Patch 1 to Patches 2 and 3 show. Similarly,

the list of modified files (labeled 3) also contains links, where clicking on a file name in

Patch 3 scrolls to the changes for that file in Patch 2.

Notice that the links above contained labels such as commit messages in Patch 1 or file

names in Patch 3: these are called cues and provide hints about where a link might lead to

and what information might be found at the other end of the link. For example, the word

“configure” in the commit message indicates that there might be some changes made to the

configurations file. A predator interprets these cues in the environment and uses the scent

to decide which links to take (or not), in order to hunt down its prey: this is similar to how

animals sniff at cues (e.g., hoof prints) and use the scent to guide them to their prey. Note

that, unlike cues, scent is not in the information environment: instead it is in the predator’s

head.

More formally, IFT’s fundamental assumption is that the predator will try to forage

for the prey in an optimal manner. Therefore, in an environment where a predator has

several choices, with different costs and information gains associated with each action, IFT

posits that the predator makes foraging choices in such a way that maximizes the rate of

information gain. In other words, the predator’s foraging choices attempt to maximize the

information value, V, gained per unit expended cost, C, as characterized by the equation:

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟(𝑠	
 𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚
𝑉
𝐶 	
 	
 (1)	

However, most of the time, the predator cannot predict beforehand the actual value or

cost associated with an action. Instead, the predator’s choices based on their expectations

of the values and costs: this value-to-cost estimate is called the information scent.

Therefore, the equation (1) can be revised as

 9

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟(𝑠	
 𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚
𝐸(𝑉)
𝐸(𝐶) = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚	
 𝑠𝑐𝑒𝑛𝑡 	
 	
 (2)

E(V) and E(C) denote the expected value and expected cost respectively. In the above

equations, the cost refers to the cost of performing an action, which includes cost of

processing cues, the cost of following links or costs associated with processing

information. The cost might be measured in terms of number of mouse clicks, time taken

or the cognitive effort involved.

This cost-value proposition of IFT, characterized by equations (1) and (2), are central

to leveraging IFT for designing information environments. On one hand, these propositions

allow researchers to predict and explain what a user will do in an information environment,

thereby uncovering any existing design flaws. On the other hand, these constructs and

propositions are generic; therefore, researchers have extracted generic insights for

designing optimal environments that can be applied to several domains. For example,

Piorkowski et al. recently highlighted that environments can ease predators’ foraging by

helping them align their cost and value estimates with the environment’s actual costs and

values. Similarly, Fleming et al. [15] and Nabi et al. [31] leveraged the commonalities in

SE tools and cataloged them into IFT-design patterns. Since the problems and the solutions

are both phrased in generic IFT’s terms, instead of specific environments, such design

patterns and solutions are easily transferable to other SE environments such as version

control systems (as we shall see later).

 10
4 METHODOLOGY

In this thesis, we re-analyze the data –using a new perspective– from our prior study on

developers’ usage of software history [11]; therefore, in this chapter, we discuss the

methodological details of that original study (also described in [11]).

The study involved two stages: first, we conducted interviews with professional

developers to elicit why and how developers used software history and any barriers they

faced while doing so. We then conducted a survey to quantify the findings from the

interviews. The survey also provided a way of triangulating the findings from the

interviews.

4.1 Interviews

We interviewed 14 software developers from 11 companies, with an average experience

of 13 years. They used diverse VCS (Git, SVN, TFS, Bazaar) and clients (command line,

Github, Stash, etc.). Each interview lasted between 40 and 90 minutes and we paid the

participant $50 at the end of the interview. We used semi-structured interviews: we started

with a fixed set of questions to structure the interview; based on participants’ responses,

we asked follow-up questions to gather additional details. Such a technique provided a

framework to keep all the interviews focused on the same topics while also allowing

interesting tangents to be followed [45]. Figure 2 shows the initial fixed set of questions

that we used as the framework for our interviews.

First, we transcribed the interviews. Then, we split each interview up into small

segments to be individually coded: this is called segmentation. As Campbell et al. note, the

segmentation required “subjective interpretation, contextualization, and especially a

thorough understanding of the theoretically motivated questions guiding the study” [7]. In

our case, the interviews were conducted by a second researcher (different from the author):

therefore, the second researcher performed the segmentation. Specifically, we segmented

the transcript every time a participant changed the topic of the subject or a new question

was asked.

 11
1. Can you describe the current software project that you are working on?

2. What is your role in the company / project?

3. What VCS tools are you using? What GUI clients do you use for the VCS tool?

4. Can you describe a recent, but completed software change that you made?

a. When was the change made?

b. How was the change recorded or archived?

c. How many other developers were involved in carrying out this change?

d. How did you coordinate with them in making this change?

e. How did you communicate to others that the change was made?

f. What was the most difficult aspect of making the change?

g. What sort of tools or processes would have made it easier to help with this task?

5. Can you describe an old software change that you made? (details similar to question #4)

6. Can you describe an instance when you had to access a recent change to the software?

a. What was the purpose of accessing the change?

b. How did you do it? (strategies, tools, people, extra info)

c. What was the most difficult aspect of accessing the change?

d. What sort of tools or processes would have made it easier to help you with this

task? (If you had a magic wand to make the code repositories more effective for

you, how would you make them?)

7. Can you describe an instance when you had to access an older (not what you would consider

recent) change to the software? (details similar to question #6)

8. What is the most important reason for which you access prior changes to the software?

9. What are the biggest challenges you face when you when accessing history?

10. How do you gain awareness of the latest or important changes made to the software? For

example, do you ask others or simply browse the repository?

Figure 2 Initial set of questions for the semi-structured interviews. We followed interesting tangents
based on participants’ responses.

The author and the second researcher then coded the transcripts, proceeding one

interview at a time. The coding session for each transcript proceeded as follows. First, the

two coders independently coded each segment, allowing multiple codes per segment. Since

no prior code set on VCS usage was available, the coders adopted open coding and coded

participants’ motivations, strategies and barriers in using VCS.

After the independent coding, the coders compared their independent code sets. Often,

the two coders gave different names for the same code; therefore, they renamed the codes

 12
to be consistent with each other. For example, one coder had a code named “why is this

this way”, while the other coder called the code “change rationale”; when they compared

the code sets, the coders renamed the code to “why is this this way” in the code set as well

as in coded transcripts. Such renaming resulted in inter-rater agreement (IRR) of 65%

(Jaccard index) averaged across all sessions. These IRR levels are consistent with the

measures that Campbell et al. report [7].

Then, the coders resolved their coding disagreements using the negotiated agreement

technique [7]: they resolved their disagreements by mutually agreeing upon and adding

new codes, deleting and merging existing codes or disambiguating the description of codes.

Whenever a code was thus modified (including codes combined, merged or deleted), the

coders also revisited previously coded interviews and re-coded the segments containing

instances of the modified codes. Following this method, the coders got a final IRR of

97.4%, averaged across all participants.

By following such a process, at the end of each session the coders had a common agreed-

upon code set based on the interviews coded so far. They used this agreed-upon code set

from the previously-coded interviews as the starting code set for coding the next

participant’s transcript. It took 10 interviews to stabilize the code set using this process,

consistent with prior studies on semi-structured interviews [7]. However, the coders

continued to code the remaining interviews in a similar manner. Once the coding was

complete for all interviews, we grouped the codes into larger emerging themes.

4.2 Surveys

Interviews provided rich qualitative data about VCS usage, but only from a small sample

size. Therefore, to validate our data with a broader demographic as well as to quantify our

interview findings, we designed a survey. Figure 3 shows the survey questions, which we

derived from the interview findings. Since the sample size of the interview participants was

limited, we included “other” fields for all multiple-choice questions, in case the survey

respondents had additional insights beyond the ones we derived from the interviews. The

complete survey can be found on this study’s companion website [50].

 13
We recruited 217 survey respondents by advertising our survey on social media

channels (Reddit and Twitter) frequently accessed by software developers. 80% of the

respondents had more than 5 years of professional experience, and 84% were currently

practitioners from the industry.

1. How important is software history for your development activities?

2. How frequently do you access software history during your development activities?

3. When accessing software history, how frequently do you access the following types of

code changes?

4. What are the most important reasons you access recent history for? Choose the top reasons

(up to 3).

5. What are the most important reasons you access old history for? Choose the top reasons

(up to 3).

6. Other than the reasons mentioned above, do you have additional reasons you access

software history for?

7. How do you gain awareness about what recent code changes were made on your project?

Choose all that apply.

8. For each of the following recent code changes, how important is it for you to become

aware of them as soon as possible?

9. How frequently do you use the following (strategies) to understand the intent of a commit?

10. Which of the following (barriers) do you have difficulties with when accessing history?

Choose the most significant ones.

11. Which of the following (features) would be most helpful for you when working with

software history? Choose the most significant ones.

12. What information would you like an ideal commit message to contain?

13. Overall, how satisfied are you with the current tool support for working with software

history?

14. What is the extent of your programming experience?

15. What type of project do you spend the majority of your development time on?

16. Which of the following best defines your role for the past year?

Figure 3 Survey questions. The survey contained multiple choice questions that were directly derived
from the interviews.

In this thesis, we present a fresh interpretation of the data from the prior study using an

IFT-based perspective. To do so, we mapped the code-set from the prior study to IFT’s

constructs and propositions. Specifically, we mapped developers’ motivations in VCS to

 14
foraging goals and framed their strategies and barriers based on IFT’s constructs and

propositions.

 15
5 RESULTS: AN IFT PERSPECTIVE

Participants engaged in three major foraging activities in VCS, namely foraging for

change awareness, foraging for specific commits and creating commits to ease future

foraging. We frame our results on developers’ information foraging for each of these

activities.

5.1 Change awareness: lightweight foraging

One of developers’ information needs on a project is to keep up with the latest changes

happening on the project [25]. Over 70% of our survey participants foraged in version

control systems to gain such change awareness.

Figure 4 Change awareness requirements. Participants did not want to learn about all changes
happening on the project; instead, their prey was selective and personalized.

However, as Figure 4 shows, participants did not want to keep up with all the changes

happening on their project

P12: “I do not read every single commit that goes through my codebase… If
something does not look as [if] it is needed I shall ignore it”.

In other words, participants did not consume all the prey that was available. Instead,

participants’ prey was highly selective (e.g., breaking changes) and personalized (e.g.,

changes affecting my current task, or changes to code that is of interest to me).

0 20 40 60 80 100

All)changes)on)the)
project

Affecting)specific)
code)entity

Breaking)changes

Affecting)my)current)
task

%)of)survey)participants

Change)awareness)requirements

Very)Important Important Moderately)Important

Of)little)importance Not)important

 16
Such change-awareness foraging was subtly different from the traditional notions of

foraging. Traditional IFT has primarily focused on foraging in environments where the

information mostly remains unchanged or is changed only by the predator (e.g.,

programming in changes while fixing a bug) [29]. However, change-awareness foraging

presents a situation where changes to the information environment are constantly

introduced by several people (including the predator). This key difference manifested as

differences in foraging behaviors between traditional and change-awareness foraging

situations.

The first difference was in the motivation for the foraging. Traditionally, IFT assumed

that “information foraging is usually a task that is embedded in the context of some other

task”, i.e., the motivation as task completion. However, change-awareness foraging was

not directly motivated by task completion but was a response to the changing nature of the

information environment. By keeping up with the latest changes, participants attempted to

minimize future costs, such as preventing bugs or easing future foraging by maintaining an

up-to-date mental model of the project. For example, P4 wanted to keep up with the latest

changes to avoid potential merge conflicts:

P4: “If I think that there is nothing to fear, then I just do a CVS update and merge
the previous checks to bring other people’s changes into my view of the world. If I
think that I need to be more cautious then I’ll do a TkDiff, looking at the files that
are most crucial, see what changes have been made since I last looked… It is
basically a matter of how likely do I think it is going to be that it will conflict with
something I am doing. If it is an independent file that is unlikely to conflict with any
of my changes, then I’ll probably just update and hope for the best.”

The second difference between foraging for change awareness and traditional foraging

was in what constituted valued prey. In traditional foraging, predators forage for specific

information needed for their task completion. However, in change awareness situations,

participants did not forage for the latest commits: they could be obtained easily (e.g., via a

pull command). Instead, participants foraged to gain a “partially thorough” (P1) or less-

detailed understanding of the changes in the easily-available commits. In fact, even the

mere presence (or the lack) of new commits could be valuable prey in change awareness.

 17
The third difference between change-awareness foraging and traditional foraging was

in how participants balanced costs and benefits. Participants did not expend a lot of effort

in knowing about every change in detail. Instead, they adopted a “light-weight” approach

to foraging: they expended lower costs, to gain less-detailed information. For example,

consider the following descriptions of participants’ change awareness foraging:

P6: “[I] look at the history really quick, see what has happened”

P9: “Since we have it setup to where each commit that you care about sends you
an email, it is nice to just scan the subject lines of the emails… you can kind of see
the direction that the code base is going.

In both the above examples, participants adopted low-cost mechanisms such as

scanning subject lines (instead of reading) and looking “really quick” (instead of detailed

reading). In return, they only gained less-detailed information, instead of a thorough

knowledge of the changes.

The fourth difference is in when a predator consumes the prey. While a predator forages

for a prey and consumes it immediately in traditional foraging situations, the predator

might defer prey consumption to later in change-awareness foraging. Predators engaged in

a triaging step to decide the necessity to learn about a change immediately, or whether the

change awareness could be deferred to later (or never). P12 described his triaging as

follows:

P12: “I go through email typically twice a day at the beginning and end. I have a
couple of folders of email that if I get any email I’ll look at it fairly quickly, within
like 30 minutes or so… those are changes that are introduced to an important repo
and I want to know fairly quickly if something happened”.

Such behavior is, indeed, consistent with the findings in Figure 4. We argue that

participants considered change awareness “very important” if the change could lead to

additional costs (e.g., breaking changes, changes affecting their current task), “important”

–but not “very important”– if change awareness was not meant to avoid additional costs,

but to ease future foraging (e.g., changes made to a specific code entity of interest) and

“not important” when change awareness led to neither benefits nor additional costs. These

 18
above differences in foraging behaviors indicates that change awareness foraging, as a

phenomenon, is distinct from traditional information foraging.

 However, several aspects of traditional foraging also apply to change awareness

foraging. Therefore, bringing an IFT lens to change awareness, as we have done in this

section, allows tool builders to leverage IFT’s design insights and implementation

techniques for change awareness tools. For example, change awareness foraging involves

developers learning about interesting changes: this directly corresponds to the category

“locate interesting information” or prey-finding patterns in Nabi et al.’s IFT design patterns

catalog. Armed with a knowledge of IFT and its design principles and patterns, tool

builders can leverage the catalog to evaluate and compare various common design options

for their tools (e.g., notifier vs. dashboard for change awareness), thereby speeding up their

tool design and implementation.

5.2 Foraging for specific commits

Unlike participants’ change awareness foraging that deviated from traditional foraging

in several ways, participants’ foraging for specific information followed traditional

foraging behavior. For example, as participant P3 foraged in his project’s version control

system to locate a bug, he:

P3: “…looked at commits for the last couple of days, looked at a particular
solution, read the messages, read the diffs, talked to people.”	
 	

These activities reported by P3 map in straightforward ways to the following traditional

foraging activities:

• between-patch foraging, when the predator decides which among several

patches to forage in (e.g., skimming commit messages to decide which commit

to go into),

• within-patch foraging, when the predator forages within a patch (e.g., reading

the diff to understand the changes within a commit) and

• enrichment, where a predator modifies the environment (e.g., by filtering) to

ease the foraging.

 19
Table 2 lists several foraging situations where participants looked for specific

information and engaged in traditional foraging behaviors.

Foraging goal Definition What patches participants
looked in

Understand their own current
task progress
(others’ changes = change
awareness)

Look for their own commits for
a task, in order to recollect what
they did and what remained to be
done.

One’s own recent commits or
commits for a specific task.

Selectively compose changes
Look for specific commits (e.g.,
bug, feature) to cherry-pick into
other branches.

Commits pertaining to the
specific bug(s) or feature(s) that
need to be cherry-picked.

Understand change impact
analysis

Learn about which areas might
be impacted by a change, what
tests need to be run, etc.

Other commits that modified the
code / files / tests that are part of
the change.

Debug
Find when a bug was introduced,
how the code at that time was,
etc.

 The bug-introducing commit.

Understand a change /
code rationale

Learn why a snippet of code
existed or was implemented a
certain way.

Commit where the code was
added or modified.

Table 2 Foraging for specific information. When participants foraged for specific information, they
adopted traditional forms of foraging.

In all these situations where traditional foraging applied, the straightforward mapping

from VCS domain to IFT allows us to leverage existing research on IFT-informed design

to VCS. In particular, such an approach holds the promise that IFT’s design insights and

patterns might lend themselves to mitigating the various barriers (Table 3) that participants

reported facing in VCS. Table 3 lists the barriers along with the percentage of participants

that reported them.

Towards this end, we follow Piorkowski et al.’s lead [36] and draw upon IFT’s cost-

value proposition: a predator’s choices in an environment are an attempt to maximize value

per cost. Therefore, a predator’s foraging can be improved by improving the costs (C) and

values (V) in the environment. However, since the predator’s actions are based on their

expectations of values E(V) and expected costs E(C), their foraging can also be improved

by helping them estimate the values and costs accurately. Piorkowski et al [36] argued that

improving programmers’ foraging eventually boils down to one of these four ways (listed

 20
in Table 4). In the rest of this section, we demonstrate how these four approaches can be

applied to improving VCS environments by addressing the barriers listed in Table 3.

Table 3 Barriers. Participants reported several barriers during their foraging in version control
systems.

Aligning Expected with

Actual

Align E(V) with V

Align E(C) with C

Improving Actuals

Increase V

Decrease C, by decreasing:

Cb, between-patch foraging costs,

Cw, within-patch foraging costs

Table 4 Four fundamental ways to better support foraging [Piorkowski et al. 2016].

5.2.1 Aligning expected costs & values with actuals

First, consider the first two entries of Table 4, aligning estimates with actuals, so that

predators do not make navigation choices based on estimates that are way off from the

Barrier Description
% of

participants
(out of 217)

Non-informative
commit messages

Commit messages did not provide enough information
about the changes in the commit 66

Tangled changes Commits contain changes with multiple intents, making it
hard to discern the intent behind the changes 54

Information
overload

Too many commits in a project, leading to difficulty in
searching for information as well as keeping up with the
changes

47

Traceability to
versions

Ability to trace the entire history of a code snippet, without
dealing with fragmentations due to moving code or
changing repositories

32

Interpreting diffs Understanding diffs was hard for large commits and due to
noisy changes such as white spaces and line-endings 32

Tool limitations Limited support for grouping and filtering commits,
visualizing the history or for change awareness 20

Traceability to
requirement

Trace a change back to its requirements,
or locate all changes made for a requirement 20

Traceability to
architecture

Trace which components or modules are affected by a
change 17

 21
actuals. Several participants in our study reported exactly this phenomenon as a barrier,

namely an inability to accurately predict costs and/or values.

For example, Table 3 shows that more than 30% of our participants reported difficulties

in tracing the entire history of a code snippet. P4 explained one such foraging instance

where he looked for when a line “came into being”. He looked at the history of the line and

navigated to the oldest version there, expecting that was when the line came into being:

P4: “It says ‘this line was created in version 721’”.

However, he was disappointed: the line was actually moved from elsewhere; therefore,

he had to look at the history of where the line was originally located:

P4: “what CVS says is not actually true… let us do a diff between 721 and 720 and
we realize: ‘yes, this came into being here because it was moved from somewhere
else… in version 720 this line corresponds to that line. And the original line came
into being at version 507’”.

One interpretation of the above example from an IFT’s perspective is that of the actual

cost being higher than the expected cost: P4’s disappointment was due to the fact that he

expected the oldest version was version 721, but found that history was broken into two

segments, namely latest to 721; 720-507. Therefore, at 721, he had to navigate to the older

segment of history—an activity involving additional costs than he originally expected.

Participants also made inaccurate estimates of the information value in patches. For

example, P9 reported an “annoying” instance:

P9: “… we have our code style so the tool reformats the code for you…. You can
have a 100 changed lines and only one is an actual code change [the rest are white-
space changes due to formatting].”

Here, P9’s annoyance was because the actual value in the patch (seeing a section with a

lot of changes) was much lower than the value he expected (only one changed line).

One possible reason for predator’s inaccurate cost and value estimates is the design of

the information environment itself. As P4 noted:

P4: “what CVS tells you is not actually true”.

 22
Therefore, one possible direction in which information environments could help

predators align their expectations with actuals could be by simply indicating worst-case

costs and values. For example, in the above instances, simply indicating the worst-case

costs (e.g., number of times a line was moved) and values (e.g., number of lines with white-

space-only changes) in the environment might help predators better align their expectations

of cost and value with the actual cost of getting to a patch and actual value to be found once

they get there.

5.2.2 Improving actual costs & values in foraging

The second category of improvements proposed by Piorkowski et al. (Table 4) lies in

improving the actuals. This involves reducing actual foraging costs and increasing the

actual value of information in patches. Table 5 summarizes how improving the actuals can

address some of the barriers that participants reported.

1. Information overload: Over 45% of our participants reported facing information

overload (Table 3) because they had to sift through too many commits in the VCS. It stands

to reason that, in looking for specific information, the majority of these commits were not

valuable or relevant to participants. P11 described this situation as:

P11: “…there could be some noise from commits I don’t care about. Sometimes it
is hard to filter out changes that, like I talked about, [were] for the merging and…
if they did a big refactor so they renamed a bunch of fields, they are not the person
I need to talk to, to understand the context of the particular application that I am
trying to look at”.

Here, the “noise” from the irrelevant commits (e.g., merge commits, refactoring

commits) diluted the information value (i.e., reduced the ratio of relevant commits) in the

list of all commits.

Problem Problem from IFT perspective Potential Solution

(Improving Actuals)

Information overload Low information value due to too
many commits

Increase V
(e.g., filtering pattern)

Traceability to
requirement,
Traceability to

Information is fragmented and
leads to high costs of foraging
across different patches or

Decrease CB
(e.g., gather together pattern)

 23
architecture,
Traceability to versions

environments (i.e., high between-
patch foraging costs, CB)

Interpreting diffs High cost of processing a commit
(i.e., high within-patch foraging
costs, CW)

Decrease Cw
(e.g., cue decoration pattern to
better understand diffs) Tangled commits

Table 5 Improving actual costs and values in VCS. Decreasing foraging costs and increasing the
information value in the environment can lessen many of participants’ barriers in VCS.

2. Information fragmentation: Consider the barrier traceability to requirements in Table

3: relating a change to its requirements might involve the predator foraging in multiple

environments including VCS, bug repository and requirements documents, while locating

all changes pertaining to a task might require foraging in multiple commits. Similarly,

relating a change to the project’s architecture (traceability to architecture) might involve

foraging in design documents, while looking for a line’s entire history or traceability to

versions might involve the programmer looking at the line’s commit history in parts (e.g.,

P4’s example in 5.2.1 involved fragmented history due to code being moved). In all these

three traceability-related barriers, the underlying problem is that related information is

fragmented: Piorkowski et al. describe this as the “prey in pieces” problem. As a

consequence, the predator incurs additional between-patch costs due to locating and

navigating across multiple patches.

3. Interpreting diffs & tangled changes: As Table 3 shows, participants also encountered

difficulties while foraging within a commit (within-patch foraging), namely in the commit

diffs. First, the only information features for denoting changes in diffs include red and

green lines indicating addition or removal of lines: no version control system even

distinguishes modified lines. Second, no enrichment mechanisms –such as the ability to

filter out white space changes (P9), or grouping all related changes together (e.g., all

changes due to a single method rename)—exist within diffs. Third, participants reported

issues due to tangled changes: commits contained unrelated changes with disparate intents

(e.g., refactoring and a bug fix), leaving them with the cognitively expensive option of

mentally discerning changes and their intents. All these difficulties can be interpreted as

high costs of foraging within a commit, or high within-patch foraging costs.

 24
Mapping participants’ barriers to foraging situations (as shown above), again, allows us

to directly apply the corresponding design patterns from Nabi et al.’s catalog [31]. Some

examples of applying design patterns to address the barriers in Table 5.

• The filtering pattern aims to improve information value in the environment, by

eliminating low-value (irrelevant) patches: this can address the issues with

information overload.

• The gather together pattern can reduce between-patch costs, CB, by

automatically gathering together relevant information from multiple information

sources. When applied to VCS, gathering together all commits related to a

requirement or gathering together (and chronologically ordering) the

disconnected pieces of history for a code snippet can address the barriers relating

to traceability to requirements and the traceability to versions.

• The impact location pattern also seeks to minimize between-patch costs, CB, by

automatically locating the impact of changing a code location: this is one way

to address the traceability to architecture barriers.

• The “reduce cost of processing information” patterns can be applied to improve

within-patch costs CW. For example, combining the feature tracing pattern and

the decorator pattern to decorate the changes with the corresponding features

(or intents) can help developers better deal with tangled commits.

5.3 Creating new patches now for foraging in the future

Participants did not simply act as information consumers by foraging in an information

environment: they also acted as information producers by changing the environment, in the

form of adding new information patches. Examples included splitting uncommitted

changes into logical commits (patches), writing commit messages, and notifying other team

members (e.g., via emails) of their changes.

 Participants recognized that the new patches they were producing would become the

information environment for future foragers (consumers). Therefore, as producers,

participants often attempted to enable their new patches to support the needs of future

 25
foragers, even if their attempts increased their own costs of creating those patches. Their

ways of going about attempting to support future foragers were fundamentally sound: they

did so by focusing on decreasing future foraging costs and/or increasing the value of those

patches. For example, some participants took care to avoid tangled changes and created

small commits containing only a single change, thereby minimizing future foragers’ cost

of understanding the commit. Some wrote detailed commit messages to offer more cues to

future foragers. And some notified other team members of the changes they were making

to minimize the team’s cost of future change-awareness foraging (recall from 5.1 that

participants used emails for change awareness).

In spite of well-intentioned efforts like these, participants as consumers reported

difficulties with foraging through the patches they encountered (recall Table 3). In fact, the

top two problems in Table 3, namely non-informative commit messages and tangled

commits, directly stem from how commit authors created cues (i.e., words in their commit

messages) and patches (i.e., commits) to aid future foraging.

One likely factor behind the persistence of these problems lies in the tension between

different kinds of future foraging needs and between different people. One such example

was in the appropriate granularity of commits. Several interview and survey participants,

such as P6, preferred small commits:

P6: “I try to keep all of my commits topical in nature. I try not to have different
unrelated changes in the same commit.”

However, he described an instance where he was asked to merge the smaller commits

into larger, but fewer commits:

P6: “I think I had 7 or 8 commits [as part of the change]. I was asked to merge
them down in smaller [number of] commits. It ended up being 2 or 3 commits.”

This was because smaller commits resulted in information fragmentation (discussed

earlier in 5.2.2): changes related to the same feature might be split across several commits.

Consequently, a developer foraging for this feature has to do so in multiple commits (that

are not necessarily contiguous or grouped) and understand the dependencies between them,

thereby incurring additional costs.

 26
P6: “[I was asked to merge the commits] because they (commits) are related, they
are all adding the same feature. I don’t know, I guess some people just had different
preferences than I do. I prefer smaller topic commits because that captures the
history of development a little bit better. Not always, but it also makes it easier to
prune out changes that were not necessarily beneficial. But then, you get into this
dependency graph of changes that is not apparent just by looking through the serial
history of commits. Topical commits are not always the best I guess”.

P10 also echoed this view and preferred larger commits because a developer can see all

corresponding changes without fragmentation, such as during code reviews. He even

mentioned the need for a balance between too small vs. too large changes.

P10: “I think that it helps reviewing because you can open the change set and you
can see all the corresponding things that have changed as part of that change set.
It is easier for the reviewers to coordinate that set of changes and pull them
together... So we prefer to have checkins be sort of per feature, per requirement,
per work item. So there is sort of an art for what’s too much. If I am working on a
defect, unless the defects are directly related, you should be committing per defect.
That is what I typically do. If I am working on a defect and is isolated I’ll commit
for this defect but if it’s different layers, I’ll commit all the layers with one commit
because it is much easier for us to track that change as one change set for that
feature request or bug or whatever.”

Participants also reported such tensions regarding the length of commit messages. Some

participants preferred detailed commit messages—over 60% of survey participants

complained of missing details in commit messages (Table 3). However, others did not

always want detailed commit messages, including some participants who preferred shorter

ones.

P11: “Commit messages are often read in the command line application so they
need to be very short.”
Survey participant: “<An ideal commit message> should have variable
expectations of length: Large or important changes should have lengthy
discussions as necessary; changes warranting no mention ("bug fixes"/"minor
changes") should carry no commit message whatsoever and may even be treated
as loose amendments to prior commit(s).”

Another kind of tension arose due to conflicting needs for supporting the future foraging

needs of other programmers (future consumers) versus supporting the present of getting

 27
their task done (present producers). For example, P2 always put his/her own task first by

doing extra commits to ease backtracking during his exploratory programming task:

P2: “The number 1 motive is returning to code that works. I feel that if I do not
have version control I am naked and in any point my software could come
crumbling down I would be completely screwed. And it would take hours and hours
and hours to get back to something that works. With version control I am never
more than 10 minutes away from something that actually works. For me that is the
primary motivation / goal for version control”.

However, such temporary commits might add to noise in other future foraging

activities—either due to too many commits, or due to code that does not work.

P2: “Sometimes defining what was the last version to work is not always an easy
question. Just because I committed something that at the time I thought worked
might not be necessarily be something that actually works.”

Similarly, P11 also experienced such tensions between meeting the collaboration needs

in his current task versus meeting the team’s future foraging needs by ensuring a clean

commit history where each commit consisted of working code.

P11: “I am usually pretty uneasy about what I want to put in a commit because
there is (sic) some people that feel that everything that is committed should compile
and have running tests all the time. But that kinda limits how often you commit
things because then you won’t end up committing a day’s worth of work in some
cases. For a couple of days, I had several broken tests that I didn’t have time to go
and fix and at some point I had something that wasn’t compiling that I needed to
share with another developer”.

These problems are difficult, and the IFT lens suggests some possibilities toward

removing or at least reducing some of them. For example, Nabi et al’s patterns such as

“rename” and “extract” aim to ease future foraging by allowing foragers to improve

existing patches and cues. Still, the tension situations remain unsolved and IFT –as we have

presented it– does not provide any insight into such situations. This is because traditional

IFT has only considered a solitary forager, whereas software teams go beyond that.

However, a variant of IFT called social IFT goes beyond the solitary forager and deals

with foraging in the context of cooperating groups, where the foragers are the individual

 28
members of the group [39]. Social IFT acknowledges the various tensions presented earlier

and suggests that there might be a “sweet-spot” to balance the individual-vs-group’s

tensions. Software teams are classic examples of such cooperating groups; therefore, we

believe that studying VCS through a Social IFT lens can provide us deeper insights into

such tensions.

 29
6 DISCUSSION

6.1 Relationship to three-lens model of software history

Participants’ foraging in VCS centered around three kinds of activities, namely foraging

for change awareness, foraging for change awareness and creating commits that meet

future foraging needs. These three activities correspond to the three “lenses” that form the

three-lens model of software history proposed in our prior work [11]: the awareness lens

focuses on change awareness, the archaeology lens focuses on seeking specific information

and immediate lens is for working with current, uncommitted changes to create commits

and commit messages. With the idea that developers use different lenses to search for

different kinds of information in VCS and that tools need to support activities pertaining

to all three lenses, the three-lens model provides a conceptual framework for reasoning

about developers’ needs in software history and provides the requirements for VCS tools.

Our results provide further insights into developers’ foraging behavior in each of the

three lenses: pertaining to the awareness lens, participants engaged in light-weight

foraging; corresponding to the archaeology lens, participants mostly engaged in traditional

foraging behavior and with the immediate lens, participants were mainly concerned with

future foraging needs while creating commits. These results uncover the theoretical

foundations that underlie the foraging behavior in each of the lenses and enhance the three-

lens framework by bringing the principles for the design of tools pertaining to the three

lenses.

6.2 Open problem: light-weight foraging for change awareness

While making progress towards IFT-informed VCS and software history tools, our

results also indicate the limitations of traditional IFT’s view of “foraging” as seeking

specific, goal-centered information that is necessary for task completion. Prior studies, as

well as this thesis, indicate that people also engage in other kinds of foraging activities—

particularly, foraging for change awareness. For example, people forage to keep up with

the latest news, researchers forage to stay up to-date with the latest developments in their

field [43, 14] and developers forage to keep up with the latest changes happening on the

 30
project [13, 11]. Yet, it is surprising how little IFT has focused on people’s foraging

behavior in change-awareness situations.

Our results suggest that change-awareness foraging is similar to traditional foraging in

many ways. For example, participants only wanted to know of some “important” –and not

all– changes happening on the project: this problem of what information to consume is

called the “diet problem” in IFT and is addressed by the diet models of foraging [38]. In

fact, even the specialized and personalized diet of participants is reminiscent of the findings

of Evans et al. and Piorkowski et al. in the web and programming domain [35, 14].

Similarly, Sellen et al. found that, while foraging for news, people heavily relied on

headlines and summaries instead of reading entire news articles [43]: this is consistent with

IFT’s value-cost and scent-following propositions. These similarities suggest that IFT—its

constructs, propositions and models—can provide a theoretical framework for studying

change-awareness foraging. However, our results (Section 5.1) also indicate several points

at which change-awareness foraging is subtly different from traditional foraging. First,

participants’ goal in change-awareness foraging was to minimize future foraging costs

rather than task completion. Second, change-awareness foraging was lightweight:

participants expended low cost and gained less-detailed information rather than gaining all

detailed information; in fact, even the presence or absence of changes might be the prey.

Third, during change-awareness foraging, predators deferred prey consumption to later,

rather than just-in-time (as and when the changes occurred). These deviations of change-

awareness foraging from traditional foraging raises doubts regarding the applicability of

traditional IFT in change-awareness situations and calls for in-depth investigation into the

question: how does IFT apply to change-awareness situations?

6.3 Open problem: Social information foraging in SE

Another situation where traditional IFT falls short is its explanatory power for foraging

situations that arise from collaboration. Traditional IFT views foraging as a solitary

activity, where the predator works on a task in isolation. While such a “solitary” view

closely represents some foraging situations in SE (e.g., individual developer foraging in an

IDE), it does not adequately represent other foraging situations that involve collaboration.

 31
For example, traditional IFT has no way of representing the individual vs. team tensions

described in Section 5.3. Consequently, IFT does not provide much insights into foraging

in collaborative situations.

To address this gap, Pirolli proposed a variant of IFT –namely Social IFT– to explain

the foraging behavior of individuals who are part of a cooperating group [39]. Software

teams are an example of such cooperating groups; therefore, Social IFT can be applied to

collaborative SE. Indeed, SE researchers are starting to leverage Social IFT for

collaborative situations. For example, recently Bhowmik et al. applied Social IFT to

understand how interactions between stakeholders contributed to new requirements in

open-source projects [2]. They also used Social IFT to study how team size affects

developers’ productivity in open-source projects and gained practical insights into optimal

team sizes, based on the theoretical findings [3]. These initial successes hold the promise

that Social IFT can represent and provide insights into problems concerning collaboration.

This thesis brings to fore new collaborative situations, that offer avenues for research at

the intersection of Social IFT and collaborative SE. For example, developers create

commits keeping the team’s future foraging in mind; however, this leads to different kinds

of conflicts between the individual vs. the team. Similarly, we do not know how

interactions between developers affects change awareness. We believe research in Social

IFT can provide answers to these questions in two ways: first, research needs to focus on

operationalizing Social IFT to various situations in SE, given that Social IFT has not yet

been widely operationalized. Second, Social IFT itself is nascent: therefore, research needs

to start extending the theory’s models for various collaboration situations as they arise in

different domains.

 32
7 CONCLUSION

Version control systems (VCS) are an important source of information for developers.

However, developers face several barriers while seeking information in version control

systems. In this thesis, we presented a new perspective of how developers seek information

in software supported by VCS: namely the perspective of Information Foraging Theory

(IFT).

Among our key results were:

• Participants engaged in traditional foraging behavior while foraging for a

specific commit; therefore, VCS tools can leverage existing IFT insights (which

are based on traditional foraging) to better support such foraging activities.

• Participants deviated from traditional foraging behavior and adopted lightweight

(low-cost, low-value) foraging mechanisms to keep up with the latest changes

happening on the project; these information needs were also highly personalized.

This suggests that change-awareness tools need to allow personalization as well

as and low-cost, low-value information-seeking mechanisms, such as

personalized instant notifications as well as delayed digests.

• While committing their changes (i.e., creating patches), participants attempted

to ease future foraging activities; however, they faced tensions between

individual vs. team, immediate vs. later and between different foraging activities

while doing so. VCS tools, therefore, need to support that conflicting

requirements with their commits and commit messages.

Our results on participants’ foraging also relate in straightforward ways to the

conceptual three-lens model of software history that we proposed earlier: participants’

change-awareness foraging (Section 5.1) maps to awareness lens, foraging for specific

information (Section 5.2) maps to archaeology lens and creating commits (Section 5.3)

maps to immediate lens. Our results, therefore, enhance the conceptual three-lens model

with concrete insights for designing tools for each of these lenses.

 33
Our results also revealed two major gaps in knowledge at the intersection of IFT and

SE. First, participants’ light-weight change-awareness foraging was subtly different from

traditional foraging; this called for further inquiry into how developers forage to keep up

with the latest changes on their project. Second, our results revealed that developers faced

different future-foraging related tensions while creating patches (here, commits). These

results open up new avenues for research in the cost-value aspects of creating commits,

from both traditional as well as social IFT perspectives.

 34
BIBLIOGRAPHY

[1] Alali, Abdulkareem, Huzefa Kagdi, and Jonathan I. Maletic. "What's a typical commit?
a characterization of open source software repositories." In Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference on, pp. 182-191. IEEE,
2008.

[2] Bhowmik, Tanmay, Nan Niu, Prachi Singhania, and Wentao Wang. "On the role of
structural holes in requirements identification: an exploratory study on open-source
software development." ACM Transactions on Management Information Systems
(TMIS) 6, no. 3 (2015): 10.

[3] Bhowmik, Tanmay, Nan Niu, Wentao Wang, Jing-Ru C. Cheng, Ling Li, and Xiongfei
Cao. "Optimal group size for software change tasks: a social information foraging
perspective." IEEE transactions on cybernetics 46, no. 8 (2016): 1784-1795.

[4] Biehl, Jacob T., Mary Czerwinski, Greg Smith, and George G. Robertson. "FASTDash:
a visual dashboard for fostering awareness in software teams." In Proceedings of the
SIGCHI conference on Human factors in computing systems, pp. 1313-1322. ACM,
2007.

[5] Brindescu, Caius, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. "How do
centralized and distributed version control systems impact software changes?."
In Proceedings of the 36th International Conference on Software Engineering, pp. 322-
333. ACM, 2014.

[6] Brun, Yuriy, Reid Holmes, Michael D. Ernst, and David Notkin. "Proactive detection
of collaboration conflicts." In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, pp. 168-178.
ACM, 2011.

[7] Campbell, John L., Charles Quincy, Jordan Osserman, and Ove K. Pedersen. "Coding
in-depth semistructured interviews: Problems of unitization and intercoder reliability
and agreement." Sociological Methods & Research 42, no. 3 (2013): 294-320.

[8] Card, Stuart K., and Jock Mackinlay. "The structure of the information visualization
design space." In Information Visualization, 1997. Proceedings., IEEE Symposium on,
pp. 92-99. IEEE, 1997.

[9] Chi, Ed H., Peter Pirolli, Kim Chen, and James Pitkow. "Using information scent to
model user information needs and actions and the Web." In Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 490-497. ACM, 2001.

[10] Chi, Ed H., Adam Rosien, Gesara Supattanasiri, Amanda Williams, Christiaan Royer,
Celia Chow, Erica Robles, Brinda Dalal, Julie Chen, and Steve Cousins. "The
bloodhound project: automating discovery of web usability issues using the InfoScentπ
simulator." In Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 505-512. ACM, 2003.

[11] Codoban, Mihai, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. "Software
history under the lens: a study on why and how developers examine it." In Software
Maintenance and Evolution (ICSME), 2015 IEEE International Conference on, pp. 1-
10. IEEE, 2015.

[12] Cortés-Coy, Luis Fernando, Mario Linares-Vásquez, Jairo Aponte, and Denys
Poshyvanyk. "On automatically generating commit messages via summarization of

 35
source code changes." In Source Code Analysis and Manipulation (SCAM), 2014 IEEE
14th International Working Conference on, pp. 275-284. IEEE, 2014.

[13] de Souza, Cleidson RB, and David F. Redmiles. "An empirical study of software
developers' management of dependencies and changes." In Proceedings of the 30th
international conference on Software engineering, pp. 241-250. ACM, 2008.

[14] Evans, Brynn, and Stuart Card. "Augmented information assimilation: Social and
algorithmic web aids for the information long tail." In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 989-998. ACM, 2008.

[15] Fleming, Scott D., Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. "An information foraging theory
perspective on tools for debugging, refactoring, and reuse tasks." ACM Transactions
on Software Engineering and Methodology (TOSEM) 22, no. 2 (2013): 14.

[16] Gutwin, Carl, Reagan Penner, and Kevin Schneider. "Group awareness in distributed
software development." In Proceedings of the 2004 ACM conference on Computer
supported cooperative work, pp. 72-81. ACM, 2004.

[17] Gutwin, Carl, Kevin Schneider, David Paquette, and Reagan Penner. "Supporting
group awareness in distributed software development." In International Workshop on
Design, Specification, and Verification of Interactive Systems, pp. 383-397. Springer,
Berlin, Heidelberg, 2004.

[18] Guzzi, Anja, Alberto Bacchelli, Yann Riche, and Arie van Deursen. "Supporting
developers' coordination in the ide." In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing, pp. 518-532. ACM,
2015.

[19] Henley, Austin Z., Alka Singh, Scott D. Fleming, and Maria V. Luong. "Helping
programmers navigate code faster with Patchworks: A simulation study." In Visual
Languages and Human-Centric Computing (VL/HCC), 2014 IEEE Symposium on, pp.
77-80. IEEE, 2014.

[20] Henley, Austin Z., Scott D. Fleming, and Maria V. Luong. "Toward Principles for the
Design of Navigation Affordances in Code Editors: An Empirical Investigation."
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
pp. 5690-5702. ACM, 2017.

[21] Kasi, Bakhtiar Khan, and Anita Sarma. "Cassandra: Proactive conflict minimization
through optimized task scheduling." In Proceedings of the 2013 International
Conference on Software Engineering, pp. 732-741. IEEE Press, 2013.

[22] Kawrykow, David, and Martin P. Robillard. "Non-essential changes in version
histories." In Proceedings of the 33rd International Conference on Software
Engineering, pp. 351-360. ACM, 2011.

[23] Kim, Sunghun, E. James Whitehead Jr, and Yi Zhang. "Classifying software changes:
Clean or buggy?." IEEE Transactions on Software Engineering 34, no. 2 (2008): 181-
196.

[24] Ko, Andrew J., Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. "An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks." IEEE Transactions on software engineering 32,
no. 12 (2006).

 36
[22] Ko, Andrew J., Robert DeLine, and Gina Venolia. "Information needs in collocated

software development teams." In Software Engineering, 2007. ICSE 2007. 29th
International Conference on, pp. 344-353. IEEE, 2007.

[26] Kuttal, Sandeep Kaur, Anita Sarma, and Gregg Rothermel. "Predator behavior in the
wild web world of bugs: An information foraging theory perspective." In Visual
Languages and Human-Centric Computing (VL/HCC), 2013 IEEE Symposium on, pp.
59-66. IEEE, 2013.

[27] Lawrance, Joseph, Rachel Bellamy, and Margaret Burnett. "Scents in programs: Does
information foraging theory apply to program maintenance?." In Visual Languages and
Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium on, pp. 15-22.
IEEE, 2007.

[28] Lawrance, Joseph, Rachel Bellamy, Margaret Bumett, and Kyle Rector. "Can
information foraging pick the fix? A field study." In Visual Languages and Human-
Centric Computing, 2008. VL/HCC 2008. IEEE Symposium on, pp. 57-64. IEEE, 2008.

[29] Lawrance, Joseph, Margaret Burnett, Rachel Bellamy, Christopher Bogart, and Calvin
Swart. "Reactive information foraging for evolving goals." In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 25-34. ACM, 2010.

[30] Marzban, Maryam, Zahra Khoshmanesh, and Ashkan Sami. "Cohesion between size
of commit and type of commit." In Computer Science and Convergence, pp. 231-239.
Springer, Dordrecht, 2012.

[31] Nabi, Tahmid, Kyle MD Sweeney, Sam Lichlyter, David Piorkowski, Chris Scaffidi,
Margaret Burnett, and Scott D. Fleming. "Putting information foraging theory to work:
Community-based design patterns for programming tools." In Visual Languages and
Human-Centric Computing (VL/HCC), 2016 IEEE Symposium on, pp. 129-133. IEEE,
2016.

[32] Nguyen, Anh Tuan, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N. Nguyen, and Danny Dig. "API code recommendation using
statistical learning from fine-grained changes." In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 511-
522. ACM, 2016.

[33] Niu, Nan, Anas Mahmoud, Zhangji Chen, and Gary Bradshaw. "Departures from
optimality: understanding human analyst's information foraging in assisted
requirements tracing." In Proceedings of the 2013 International Conference on
Software Engineering, pp. 572-581. IEEE Press, 2013.

[34] Piorkowski, David, Scott Fleming, Christopher Scaffidi, Christopher Bogart, Margaret
Burnett, Bonnie John, Rachel Bellamy, and Calvin Swart. "Reactive information
foraging: An empirical investigation of theory-based recommender systems for
programmers." In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1471-1480. ACM, 2012.

[35] Piorkowski, David J., Scott D. Fleming, Irwin Kwan, Margaret M. Burnett,
Christopher Scaffidi, Rachel KE Bellamy, and Joshua Jordahl. "The whats and hows
of programmers' foraging diets." In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 3063-3072. ACM, 2013.

[36] Piorkowski, David, Austin Z. Henley, Tahmid Nabi, Scott D. Fleming, Christopher
Scaffidi, and Margaret Burnett. "Foraging and navigations, fundamentally: developers'

 37
predictions of value and cost." In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 97-108. ACM,
2016.

[37] Pirolli, Peter, and Stuart Card. "Information foraging in information access
environments." In Proceedings of the SIGCHI conference on Human factors in
computing systems, pp. 51-58. ACM Press/Addison-Wesley Publishing Co., 1995.

[38] Pirolli, Peter, and Stuart Card. "Information foraging." Psychological review 106, no.
4 (1999): 643.

[39] Pirolli, Peter. Information foraging theory: Adaptive interaction with information.
Oxford University Press, 2007.

[40] Ragavan, Sruti Srinivasa, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David
Piorkowski, and Margaret Burnett. "Foraging among an overabundance of similar
variants." In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, pp. 3509-3521. ACM, 2016.

[41] Ragavan, Sruti Srinivasa, Bhargav Pandya, David Piorkowski, Charles Hill, Sandeep
Kaur Kuttal, Anita Sarma, and Margaret Burnett. "PFIS-V: Modeling Foraging
Behavior in the Presence of Variants." In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pp. 6232-6244. ACM, 2017.

[42] Sarma, Anita, David F. Redmiles, and Andre Van Der Hoek. "Palantir: Early detection
of development conflicts arising from parallel code changes." IEEE Transactions on
Software Engineering 38, no. 4 (2012): 889-908.

[43] Sellen, Abigail J., Rachel Murphy, and Kate L. Shaw. "How knowledge workers use
the web." In Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 230-234. ACM, 2002.

[44] Shivaji, Shivkumar, E. James Whitehead, Ram Akella, and Sunghun Kim. "Reducing
features to improve code change-based bug prediction." IEEE Transactions on
Software Engineering 39, no. 4 (2013): 552-569.

[45] F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical software
engineering, 2008.

[46] Sillito, Jonathan, Gail C. Murphy, and Kris De Volder. "Questions programmers ask
during software evolution tasks." In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, pp. 23-34. ACM,
2006.

[47] Spool, Jared M., Christine Perfetti, and David Brittan. "Designing for the Scent of
Information: The Essentials Every Designer Needs to Know About How Users
Navigate Through Large Web Sites." User Interface Engineering (2004).

[48] Tao, Yida, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. "How do
software engineers understand code changes? : an exploratory study in industry."
In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, p. 51. ACM, 2012.

[49] Zanjani, Motahareh Bahrami, George Swartzendruber, and Huzefa Kagdi. "Impact
analysis of change requests on source code based on interaction and commit histories."
In Proceedings of the 11th Working Conference on Mining Software Repositories, pp.
162-171. ACM, 2014.

[50] https://web.engr.oregonstate.edu/~srinivas/software-history.html

 38

