AN ABSTRACT OF THE THESIS OF

Conner J. Olsen for the degree of Honors Baccalaureate of Science in
Environmental Engineering presented on May 29, 2014. Title: Testing a
Theoretical Model that Predicts Extinction of Populations Forced by
Random, Episodic Disturbances.

Abstract Approved:

Heather E. Lintz

We do not fully understand reasons behind extinction of populations and species.
Consequently, our ability to anticipate extinction (which can be considered a
permanent type of an ecological threshold) has remained elusive. In particular, it is
not clear how the attributes of episodic disturbance regimes can elicit extinction. In
this project, I test the application of a stochastic model that predicts population
extinction based on attributes of the disturbance regime and population growth rates
using phytoplankton in a test tube. I examined the response of phytoplankton
(Thalassiosira weissflogii and Synechocystis sp.) to stochastic disturbances
implemented by having MATLAB control a hydraulic pump that episodically removed
portions of the population through time, in between episodes of population recovery.
Model prediction of extinction was not observed in either species. In both cases, cells
attached to the culture vessel provided refuge from disturbances, enabling the
population to recover from a predicted extinction event. I conclude that model
prediction might be improved by including a sub-population that is not subject to
disturbance.

Key Words: ecological resilience, threshold, extinction, disturbance regime

Corresponding Email Address: conner.olsen12@gmail.com



©Copyright by Conner J. Olsen
May 29, 2014
All Rights Reserved



Testing a Theoretical Model that Predicts Extinction of Populations Forced by Random,
Episodic Disturbances

by

Conner J. Olsen

A PROJECT
submitted to
Oregon State University

University Honors College

In partial fulfillment of
the requirements for the
degree of

Honors Baccalaureate of Science in
Environmental Engineering (Honors Associate)

Presented May 29, 2014
Commencement June 2014



Honors Baccalaureate of Science in Environmental Engineering project of Conner ]J.
Olsen presented on May 29, 2014.

APPROVED:

Heather E. Lintz, Mentor, representing College of Earth, Ocean, and Atmospheric
Sciences

Allen J. Milligan, Committee Member, representing Department of Botany and Plant
Pathology

Scott D. Peckham, Committee Member, representing Department of Mathematics

Toni L. Doolen, Dean, University Honors College

[ understand that my project will become part of the permanent collection of Oregon
State University, University Honors College. My signature below authorizes release of
my project to any reader upon request.

Conner J. Olsen, Author



TABLE OF CONTENTS

Page

0oL 06 L (o1 T ) o TP 1
Environmental MOdeling ...t eeseeenes e e e e e e 1
Population EXtINCHIONS ..ooiveeieiee et e et e s e e e 3
Testing the MOl ... e e e e e en e e e sn e e 4
Disturbance EVENLS .....ccoiiviiiiiii e s s e e 7
Materials and Methods .....cciiiiiiiiiii i e e e 8
The Model (Peckham and Waymire, 2014 ) .......cooiiiiinieee e e 8
CULLUTING ot ettt et et e e e e e es e see e s e eae e es e enn e sae e en e eneeeans 12

Cell COUNES .ottt et s e s s e e e eer e s e s e e sre s 13
PUIMPING .. e e e e e s e e e e e e e s e e e n e e 13

000 T 1 0= PSPPSR 14
RESULES oottt e e e e e e 15
DR o1 D T () o 18
CULEUTING e ettt et e et e e s e e e e e e e see s n e sreeenne s sneennnens 18
CalIDration .....ccoiieeii i 18
EXPerimentation .....c.cooiiiiiii e e e e e e s e s e e e e 19

[0 4 TeT) 7= 0 4 Uy PP 22
Conclusions and IMPlications ........occeioieiieinies e e e e 23

BIiblIOGraphy ... et nnaens 2 O

APPEINAICES .ttt ettt et e et e e ees e sae £ ea e e e ea e s e e e enae e ere e ernen e 29



LIST OF FIGURES

Figure Page
1. Experimental PArameEters ... iieeeiierien e ese e seeess e ses e seesssaesseeeesses sreeensessneeenessnens 11
2. Calibration of the pumping assemDbIY ..........coiiiiiiiiir e e 15
3. Results of the trial eXperiment ..........ccuoi i e e e e e 16
4. Experimental results for most severe disturbance regime .........c.cccoeeiviiieiiicincieiens 17

Picture of extreme biomass aCCUMUIATION ..vuueuuuieieee i eee et eeeeereeesreeesseseeesee e seseesseenes 21



LIST OF APPENDICES

Appendix Page
A. Thalassiosira weisflogii LOgiStic GrOWLEh ..........coioiiiii i e 30
B. Synechocystis sp. LOgiStiC GrOWLh .......cooiiiiiii i e e e 31
C. MATLAB COGE ...ttt st et e ettt s s s e n s s s es s e e e e e s 32
D. Data TabIes ....cooiiiiiieii it e e 35
Synechocystis Experimental Parameters..........coeueeiineienseeneee e e s 35
Dilution Rate Calibration ........ccuniiii e 35
Tw Trial Experiment Prediction ... e 36
Population Measurements for Tw Trial ..o e 36
Synechocystis Experiment #7 Prediction ... ieienieisn e e 37

Population Measurements for Synechocystis Experiment #7 .........cccccoervnceernnen. 37



LIST OF EQUATIONS

Equation

1. Logistic Model .......c.ccuriiiiiiiiiiee e

2. Poisson distribution for frequency of events

3. Threshold Indicator Function .......ccceveueeieee



ACKNOWLEDGEMENTS

[ would like to thank all of the members of my committee for their continued
assistance over the past few years. An interdisciplinary study such as this can put a lot
of stress on the group, and you all showed a lot of patience in our time together. To Dr.
Heather Lintz, [ want to say thank you for being such an inspiration. Your optimistic
enthusiasm and ‘go-getter’ attitude have truly rekindled my desire to learn. [ would like
to extend my appreciation to Dr. Allen Milligan for his guidance throughout the process.
You never failed to provide me with the perspective I needed most. We both know how
much of a struggle this study could be at times, but you always stuck with me and kept
setting me back on the right track. [ would also like to thank Drs. Scott Peckham and Ed
Waymire for their scholarly contributions. Your mathematical expertise astounds me,
and the model you've created seems to be a groundbreaking approach to ecological
modeling. I would especially like to thank Dr. Peckham for being my pseudo-chaperone
at the 2013 AGU Fall Meeting in San Francisco. Your willingness to accommodate for my
needs was a comfort in an uncomfortable situation. Thanks also go to the University
Honors College for their approachability, as well as their monetary contributions. The
Honors Experience Scholarship provided some much-appreciated funding to this
unpaid internship, and if it were not for the Grandma Honors Travel Fund, I would not
have had the opportunity to present my research at a scientific conference in California.
Finally, thanks to my family and friends for being my life-support system. You're the
reason I've made it this far, and I know you will always be there for me as I continue to

pursue excellence.



TEesTING A THEORETICAL MODEL THAT PREDICTS
THresHOLDS IN PopuLaTions Forcep By Ranpom,

Erisopic DiSTURBANCES

INTRODUCTION

ENVIRONMENTAL MODELING

To predict system behavior in a complex world, we use simplifying models to
understand phenomena and anticipate future responses to forcing. Modeling can be
extremely useful for explaining and predicting some of the uncertainties we encounter.
However, models are often susceptible to simplifying assumptions and approximations.
Even if the simplest assumption turns out to be invalid, model results will fail at
prediction. For this reason, it is necessary to test the validity of model assumptions and
approximations.

A particular field of modeling that requires further testing is in the study of
ecological resilience (Gunderson et al., 2009; Carpenter et al.,, 2011). C. S. Holling first
introduced the idea of ecological resilience in 1973; it was defined as ‘the amount of
disturbance that an ecosystem can withstand without changing self-organized
processes and structures’ (Gunderson et al., 2000). This boundary where stressors start
to inherently change the processes and structures of an ecosystem is known as an

ecological threshold. More specifically, an ecological threshold is defined as the point at



which an ecological system exhibits an irreversible change (Groffman et al., 2006; CCSP,
2009). This shift from one stable state to another is typically associated with only a
small change in either time or the driving condition (Scheffer et al., 2001; Beisner et al.,
2003). Some examples of such ecological thresholds include eutrophication of
waterways, dangerous shifts in wildfire regimes, desertification, and hypoxia of lakes.
Much research has gone into trying to uncover the causes of these threshold
behaviors in an effort to make predictions about their occurrence. A classic example
would be the work of Carpenter et al. (1999). This work presents the use of a
deterministic, differential model to represent an ecological threshold caused by
nutrient addition to lakes. This situation is what is known as a critical load threshold,
because there is a specific concentration for which, when exceeded, the lake will almost
always undergo eutrophication (Groffman et al,, 2006). This approach and model is
widely upheld in ecology and is appropriate for lake eutrophication. However, other
model types and conceptual frameworks are warranted for different ecological systems
and types of system responses. Perrings and Walker (1997) studied multiple locally-
stable states in rangelands, experienced as a result of extreme events such as fire, flood,
and drought. The unique component of this research was that it not only considered the
effect of these extreme extrinsic factors, but it also took into account the influence of
persistent stressors. In their case, the persistent stressor was grazing of the rangelands

(Perrings and Walker, 1997).



POPULATION EXTINCTIONS

Population-level extinctions are another ecological phenomena that can exhibit
threshold behavior (Beisner et al., 2003). The significant implication of this type of
threshold is that it is permanent for the population, thus posing a major threat to the
species (Groffman et al., 2006). Understanding what drives population extinctions is
important to the sustainable future of species on Earth, including our species
(Carpenter et al., 1999; Gunderson, 2000). For years, the dynamics of population-
extinction thresholds have intrigued scientists, most notably due to the fact that they
are yet to be fully understood (Lande, 1988; Dennis et al., 1991; Knowlton, 1992). A
strong understanding of threshold behavior is imperative if we plan to maintain Earth’s
populations at a healthy state (Scheffer et al, 2001, Scheffer and Carpenter, 2003;
Beisner et al,, 2003).

One of the factors that can contribute to a population extinction threshold is the
effect of episodic disturbances (Gunderson, 2006; Zinck, 2011). For the purposes of this
paper, a “disturbance” is defined as any event that results in a decline in the expected
population size. This is essentially the resultant effect of what Sibly and Hone (2002)
call “environmental stressors;” which are defined as ‘factors that reduce population
growth rate when first applied.” A simple example of an environmental stressor would
be inclement weather, for which extreme, episodic weather events will result in a
disturbance to the population. Increasing frequency and intensity of extreme weather
conditions and natural disasters is a particular area of concern in climate change
scenarios (Scheffer et al.,, 2003; Keith et al, 2008). Disturbance regimes manifest as

stochastic processes in nature, and for them to be modeled and better understood, they



need to be studied through experimentation, computer simulation, and/or
quantification and pattern description in nature. In this paper, I will experimentally test
the application of a model to help understand the nature of stochastic disturbance
processes and whether they can contribute to a threshold in population extinction

(Peckham and Waymire, 2014).

TESTING THE MODEL

Experimentation of a population-extinction threshold model requires the use of
a live population existing within an environment that is of a relevant scale to its natural
ecosystem (Scheffer and Carpenter, 2003). The major constraints for experimenting
with a live population are that the species must be relatively well-understood in its
growth characteristics, and it should reproduce at a rate that is commensurate for
experimental time frames. Following these constraints, and for the purposes of
imposing environmental disturbances in an effort to force a population to extinction,
microbial populations are some of the only eligible test subjects. Bacteria and viruses
are often studied due to the fact that they rapidly reproduce, but the population
dynamics are complex, and genetic mutations are common. In this study, [ use a
phytoplankton culture to test whether a mathematical and stochastic model that
predicts the existence of a population-extinction threshold applies in a controlled, in
vitro environment.

The population dynamics of phytoplankton in nature are poorly understood. In
aquatic systems, phytoplankton is subject to innumerable disturbances of varying

degrees of intensities. Loss terms that can be quantified include dilution via mixing,



protist grazing, and the sinking of dead cells. Other disturbances such as mortality of
individual cells, are completely unknown and must be empirically quantified. In vitro,
many of these disturbances are insignificant and can be ignored for simple modeling
scenarios.

The first species considered for experimentation purposes was Thalassiosira
weisflogii (Tw) CCMP 1336, a marine diatom with a maximum growth rate of one
division per day (r = 1.2 d-1). This diatom exhibits logistic growth (Appendix A), and is
considered to be highly resilient. In fact, this particular species is capable of fully
populating any volume of desirable media from just a single cell. This means the
population behavior of Tw lacks what is known in ecology as an Allee effect, an observed
effect for which a population can only survive a disturbance event if the number of
survivors exceeds a minimum population density (Allee, 1936). This proved to be useful
for initial cell characterization and verification of experimental setup; however, the
effect of this resiliency on experimentation was yet to be comprehended. The
difficulties regarding lack of Allee effect will be reviewed in further detail in the
discussion section of this paper.

After gaining a better understanding of the experimental constraints imposed by
using a culture of Tw, alternative species of phytoplankton were considered. The
requirements for this secondary culture were: 1) it should be comparable to Tw in
growth characteristics, as to not require significant changes to the experimental setup;
and 2) it should have an observed, if not known, Allee effect that will enable the
experimental setup to induce an extinction event. The latter of these requirements has

significant implications on the outcome of the experiment. Following these new



requirements, the second subject used for testing the model was Synechocystis sp. PCC
6803, a freshwater cyanobacteria species with similar growth rate (r is approximately 2
d1) and cell size to Tw. Synechocystis sp. also exhibits logistic growth (Appendix B).
Although the Allee effect of these blue-green algae is not fully understood, it has been
known to lose its viability following severe disturbance events, such as dilution to a
small fraction of the original population. The significance of this is that the population
will more accurately model an animal population because extinction is possible
following extreme disturbance events, and should also be a possibility following the
imposition of a disturbance regime with sufficient frequency and intensity of events.
“That we can make use of plankton to reveal the impact of climate is becoming
increasingly evident as time-series lengthen and data-analysis techniques improve.
There is strong evidence for systematic changes in plankton abundance and community
structure over recent decades in many areas worldwide” (Hays et al., 2005). Residing in
nearly every body of surface water, and providing nearly half of the total photosynthetic
production for our planet, phytoplankton is an essential part of Earth’s ecosystem
(Edwards and Richardson, 2004; Hays et al., 2005). These factors have led to the
realization that phytoplankton are an important indicator of the effects of global climate
change. Hays et al. (2005) states, “these impacts of climate change might be
compounded by the tendency for aquatic systems to undergo major and abrupt
reorganization in plankton and fish communities.” Although my experimental design is
simplified in comparison to the natural ecosystem, the underlying themes of this study

could have significant implications.



DISTURBANCE EVENTS

Testing a model such as this requires the imposition of precisely-quantified
disturbance events. While the frequency of disturbance events is a variable that can be
easily quantified and controlled for, the intensity is more complicated. Environmental
disturbances are often far too complex to determine an intensity value prior to the
event. Intensity values for environmental disturbances are typically calculated in the
aftermath while observing the fraction of the population that survived the event. This
method of quantification is useful for making sense of real-life disturbance events, but it
does not lend itself well to the experimental testing of a population extinction threshold
model. In an effort to impose consistently quantifiable disturbances to the populations
of phytoplankton, these ‘environmental disturbances’ are simulated via fractional
dilution of the population. Cells-and-media mixture is removed from the system and
replaced with clean media, thus mimicking the scenario in which an event takes place
and Kills off a certain portion of the population, leaving only the survivors to repopulate
the environment. While this may not be an ideal representation of an environmental

disturbance, it is the simplest way to simulate such events with a known intensity value.



MaTtEeriaLs AND METHODS

THE MODEL (PECKHAM AND WAYMIRE, 2014)

Dr. Scott Peckham and Dr. Edward Waymire authored the model tested in the
laboratory (Peckham and Waymire, 2014). Their model uses statistical probabilities of
expected population values, along with the specific growth characteristics of a species,
to predict the presence of an ecological threshold in which extinction of the population
is certain. This is significant because there are few ecological models that allow a
critical threshold to be computed based on environmental disturbances and population
growth dynamics. Any population that obeys the assumptions of the model will follow
the model prediction. The model is described as follows:

Population size is defined by the logistic model, an ordinary differential equation
(ODE) that factors in specific growth rate, as well as a carrying capacity unique to the
species and environment (Verhulst, 1838). Equation 1 gives the general solution to this

ODE.

T

N(t) = W (1)

This equation shows that population size (N) at any time (t) is dependent upon
the initial population size (No), growth rate (r), and a limiting constant (b) that is
determined by the species and its environment. A larger value for b reflects higher

levels of competition between cells, while a value of zero represents the case of



indefinite exponential growth. This constant is mathematically defined as the growth
rate divided by the carrying capacity of the population.

When the population experiences a disturbance event, the right side of Equation
1 is multiplied by the survival rate, X;. The resulting (surviving) population size (N;)
replaces No as the new, initial population for subsequent growth. For this to work, ¢t
must also be redefined as zero following the disturbance event. This procedure is
repeated for each of the n disturbance events within the disturbance regime. The model
assumes a “disturbance regime” to be a series of population disturbance events that
occur with stochastic frequency and intensity. The episodic nature of the regime is
defined by two, unique probability distributions. The frequency of events is modeled as
a Poisson process, with a frequency parameter (A) representing the mean number of
events per unit time. The probability (P) of n events occurring within the time interval

[0, t] is given by Equation 2.

e_lt(lt)n

n!

P(n) = (2)

This probability function results in an exponential distribution with the modal
value occurring at t = 0, meaning that clusters of events are a common trait of the
Poisson process. Although this is quite effective for modeling the distribution of events
over time, the intensity of each event requires a bit more mathematical manipulation.
This is accomplished through the use of a beta distribution. A beta distribution is a
range of values with fixed endpoints, in which the shape of the distribution is defined by

the parameters ‘a’and ‘b’ (Fente, 1999). Typical distributions include the standard bell
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curve, triangular, or any variation of a “U” shape (Fente, 1999). Random values are
drawn from the beta distribution to create a series of events that simulate the
population being exposed to a sequence of disturbance events.

A different beta distribution is defined for each disturbance regime being tested.
Each of these distributions has fixed endpoints at zero and one. The values within this
interval represent a fraction of the existing population that will survive a given event.
The flexibility of this distribution lies within the definition of a and b. The model being
tested was also written as a Python script, which was used to determine the
appropriate distribution parameters for the species being tested.

The experimental parameters for frequency and intensity defined the severity of
the disturbance regime. The combination of these values resulted in the predicted

threshold, which was represented by an indicator function (Equation 3).

I=r—2A(n-1) (3)

This function is essentially a balance of birth versus death rates of a population,
with a threshold predicted to occur at I = 0. While r represents the mean birth rate of
the population, the mean death rate was defined as a combination of the frequency and
intensity of events or A(n — 1). As A increased, so did the frequency of events. The
intensity parameter, eta (1), was statistically defined as the negative of the expected
value for the natural log of the survival rate. A series of experiments were defined as a

result of these parameters and predictors, shown in Figure 1.
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Figure 1: Experimental parameters for intensity (n ) and frequency (A) of
disturbance events define the severity of each disturbance regime.
Experiments step across the indicator curve representing the
theoretical threshold. The solid point was the only one tested.

A series of seven experiments were designed with experimental constraints in
mind (Appendix C). The seven experiments were intended to step across the threshold
for a particular growth rate. A minimum of 20 disturbances per experiment was
imposed to allow the population to reach a stable trajectory. Other practical constraints
were imposed as well. A time constraint for each experiment of 30 days was imposed so
that seven experiments could be completed. However, there were many unforeseen
obstacles that only allowed for the completion of the most extreme disturbance regime
(Figure 1). Some of the obstacles included contamination of the culture, midstream
mathematical model overhaul, and anomalous variability in the performance of the

pumping assembly.
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CULTURING

Initial culturing was conducted using Tw CCMP 1336. Cells were grown in a 300-
mL glass culture vessel at optimal conditions for growth (24-hr light cycle at 18°C)
using f/2 culture medium (Guillard and Ryther, 1962). The environment was designed
so that the limiting nutrient for growth was the silica content in the media. The media
required for Tw was a seawater solution containing sodium silicate, sodium nitrate,
iron, sodium selenate, and monosodium phosphate, plus trace metals and nutrients. A
chelating agent ethylenediaminetetraacetic acid (EDTA) was also included to buffer
metal ion concentrations.

The recipe required for the growth of Synechocystis sp. PCC 6803 was made
using a similar method, but this cyanobacterium is a freshwater species, so the medium
was made from natural lake water (Kalamath Lake, OR). The freshwater was
supplemented with sodium nitrate, dipotassium phosphate, EDTA, along with trace
metals (Rippka et al, 1979). The growth rate was limited by reducing the nitrate
concentration in the freshwater media. The experimental setup was kept constant from
previous Tw testing, although Synechocystis sp. prefers a slightly higher temperature
(20-30°C). This resulted in a reduced growth rate of r = 1.5 d-! (about two times that of
Tw).

All media, culture vessels, and tubing were sterilized by autoclaving.
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CELL COUNTS

While conducting these experiments, it was important to know the cell density
within the test tube to a high level of accuracy. In order to accomplish this, a Coulter
particle counter was used. This device used electrical impedance to measure the
diameter of each particle that passed through a calibrated aperture, and then arranged
them in a graphical output. The total number of cells in the sample was determined by
summing all the particles with diameters lying between the known size-range for the
species.

Samples were removed from the test tube using a 1-mL automatic pipette with a
clean tip for each sample. Ten-milliliter samples were placed in a sampling cuvette (a
flat-surfaced, transparent cup), which were then placed directly into the counter to get
a value for cell density. As was often the case, the population density became too high,
causing more than one cell (coincident cells) to pass through the aperture
simultaneously, resulting in under-counted cells. For this situation, cells were diluted

ten fold.

PUMPING

Dilution of the test tube required the use of a sterile syringe to remove a specific
volume of culture. The same volume of clean media was then added to the test tube to
keep volume constant throughout the process. In order to impose disturbance events to
the highest level of accuracy, the dilutions were performed using an electronic,

peristaltic pumping system. This consisted of a Cole-Parmer Masterflex adjustable-
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speed pump fitted with small-diameter silicone tubing. Tubing was arranged to feed
clean media from a 2-L bottle into the culture tube. Injection of media took place at the
base of the test tube, while simultaneous extraction removed cells-and-media mixture
from the top of the water column. This ensured a constant volume, while the thorough
mixing from upwelling and air sparging created a dilution rate that resembled an
exponential decay rate. The dilution rate for the pumping assembly was calibrated by
collecting output over time. This flow rate was then converted to an exponential

dilution rate using average cell counts from replicate trials of various pumping times.

CODING

Although the electronic pump automated the disturbances, the pump still had to
be manually turned on and off at the proper times. This was not only inconvenient, but
it became nearly impossible when imposing episodic disturbances at high frequency. In
order to address this issue, a MATLAB code (Appendix C) was written to control the
pumping through the use of a WebRelay remote relay control. This device made use of
an Internet connection to send signals to an outlet fitted with a simple switch. The
pump was plugged into this outlet, thus turning the pump on/off at the intervals

defined by a MATLAB code.
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REesuLts

Disturbance events were defined in MATLAB as the length of time the pump was
switched on. Accuracy of dilution fraction was therefore dependent on the consistency
of the pumping assembly. Multiple tests of the dilution rate confirmed that the pumping

rates were stable (Figure 2).
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Figure 2: Calibration curve for the peristaltic pumping assembly using various
pumping times. Dilution rate was constant with time.

The experimental setup proved to grow the cells at their maximum growth rates.
The population density of the Tw consistently doubled daily, with the exception of the
day(s) leading up to carrying capacity. The carrying capacity for Tw and Synechocystis

sp. were observed to occur at approximately 10> and 10° cells/mL, respectively.
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Tw survived every disturbance event and disturbance regime imposed upon it.
The biomass over time mirrored the predicted growth curve for the first five days of the
trial regime (1-6x underestimate), but then the test tube repopulated. Figure 3 shows a
time-series plot of population throughout a severe disturbance regime in which the

cells remained viable at the end of the experiment despite predicted extinction.
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Figure 3: Plot of population versus time for a trial experiment using Tw. This
severe disturbance regime was unable to kill the population.

Synechocystis sp. was chosen as the alternate species for experimentation
because it is known to exhibit an Allee effect. The growth rate was about double that of
the diatom, and the carrying capacity was only one order of magnitude greater. This
resulted in pumping times that were longer, but still on the same order as the initial

experimenting.
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Experimental results for Synechocystis were similar to that of Tw. The population
density followed the modeled population within 11% error for the first two days of
pumping, but the culture remained viable beyond the expected extinction time. One
significant deviation from the Tw trials is that Synechocystis accumulated masses of cells
on the test tube and around the ends of the silicone tubing. This occurred within the
first week of the disturbance regime, and persisted throughout. A plot of the most
severe disturbance regime imposed in the Synechocystis sp. experiments is shown in

Figure 4.
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Figure 4: Plot of population versus time for the most severe disturbance regime
using Synechocystis sp.. The population remained viable throughout
the regime and following the end of the experiment.
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Discussion

CULTURING

Absent any disturbances, the cells grew as expected. The environment provided
adequate nutrients and lighting to sustain exponential growth until reaching carrying
capacity. This result was anticipated, but it was necessary for cell characterization
purposes. Subsequent growth phases were diluted before reaching this maximum
population density, which kept the cells in a quasi-continuous state of exponential
growth. These steps allowed the culture to match the model assumption of logistic
growth. Once this was accomplished, the pumping assembly could be applied to the

culture tube for calibration and experimentation.

CALIBRATION

The experimental setup worked as it was designed to do. This allowed for
disturbances to be imposed at the appropriate frequency and intensity. The Tw cells
were useful in this stage of the project because the lack of Allee effect enabled for the
imposition of disturbances at any intensity, without compromising the viability of the
survivors. The population was able to recover, with minimal lag-phase, to be used in
further calibration. By imposing disturbances at all intensities, the pumping assembly

was validated over the entire range of pumping times.
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Simultaneous injection and removal in the continuously-mixed test tube resulted
in an exponential dilution rate. The pumping time required for a dilution fraction of 0.5
was roughly equivalent to the time it took to cycle the volume of the culture, while a
survival rate of 0.25 took twice as long. The reason this value was not exactly
represented by the time it took to cycle the working volume of the culture was because
the cells were in exponential growth while dilutions took place. For this reason, and the
fact that the pumping rate fluctuated slightly, the average exponential dilution rate was
determined experimentally. The average dilution rate was consistent over long

pumping times, which was in accordance with dilution event times (Figure 2).

EXPERIMENTATION

These experiments were unable to confirm the presence of an extinction
threshold due to complexities associated with the population dynamics, and also with
the pumping assembly. Tw was able to survive even the most severe disturbance
regime imposed upon it. This was due to the fact that the Tw species lacks an Allee
effect and can continue to reproduce from a single cell. The pumping assembly was
unable to remove every single cell from the test tube, which allowed for the
repopulation of the culture. Even if the pumping had been able to extract the last cell
from the seawater media, there may have been cells stuck to the wall of the test tube
and/or the silicone tubing. The problem of “sticky” cells led to the investigation of

alternative species for experimentation.
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One significant difference between Synechocystis and Tw was their behavior in a
stressful environment. The cells became stressed when nearing carrying capacity
because of the lack of nutrients in the media, and also during the imposed disturbance
regime. When the Synechocystis culture became stressed, the cells would often
conglomerate to form cell-masses. These masses of cells consisted of dead and
senescent cells, as well as many viable cells. Cell-masses were observed after a few days
of continued growth at the carrying capacity. Additionally, after a few days of imposing
a disturbance regime, cell-masses began to form around the base of the silicone tubes
and sometimes on the surface of the test tube. Figure 5 shows an extreme example of

how the cells conglomerated in the test tube.
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Figure 5: Picture of the Synechocystis culture after extended
growth in a stressed environment. The dark masses
of cells can be seen around the protruding test tubes
and floating at the top of the tube.

The cell-masses served as a refuge for the species during disturbance events.
This is likely a characteristic of the species that resulted from evolutionary adaptation
to disturbance events in nature. This is a form of population resilience that was not
predicted by the model. An attempt to physically remove cell masses failed and did not

improve modeled population responses.
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UNCERTAINTY

The ultimate trajectory of the population was said to be independent of the
initial population size. Experiments were initiated at a moderate population density
after cells were confirmed to be in a phase of exponential growth. The initial population
for model prediction was defined as the measured population at the beginning of the
disturbance regime. This meant that the accuracy of the predicted growth curve relied
heavily upon the initial population measurement. The error associated with a cell count
is inversely proportional to the number of cells counted. The result of the Tw trial
experiment is a good example of how error can propagate as the experiment proceeds
(Figure 3). The model prediction used an initial population of 1000 cells/mL, but
subsequent measurements appear to be consistent with a larger initial cell density. The
second measurement was about 74% greater than the prediction, while the second and
third measurements exceeded 300% error.

The model makes predictions using mean values for disturbance frequency and
intensity. A future study should impose at least three different disturbance regimes,
thus providing a better representation of the mean outcome for the given indicator
value (eq. 3). In this study, the failure of a single disturbance regime does not invalidate
the model, nor does it absolutely disprove its application to natural systems. However,
the fact that the most severe disturbance regime to be imposed in this study failed to

cause extinction highlights the importance of refugia.
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CONCLUSIONS AND IMPLICATIONS

The results of these experiments proved that assumptions and approximations
are absolutely important to the ability of a model to be applied to a natural system.
Because the model did not account for any form of refuge or population resilience,
disturbance regimes that were predicted to force a population past its threshold for
extinction were insufficient for this system. In the case of an ecological threshold, in
which different stable states exist, the effects of species resilience are quite significant
in determining the amount of disturbance required to force the population to an
alternative state. Scheffer et al. (2001) concluded that “...all models of ecosystems with
alternative stable states indicate that gradual change in environmental conditions, such
as human-induced eutrophication and global warming, may have little apparent effect
on the state of these systems, but still alter the ‘stability domain’ or resilience of the
current state and hence the likelihood that a shift to an alternative state will occur...” So
although the perceived effects of gradually-changing conditions are negligible, the
cumulative effect could have extreme implications for the final state of the population.
When the alternative state is extinction of the population, an understanding of the
effects of these gradual changes in environmental conditions is highly sought-after for
modeling and prediction purposes.

C.S. Holling first defined the term ‘ecological resilience’ over forty years ago, and
it remains an abstract concept to this day. Ecological resilience and other factors of
population dynamics continue to be complicated issues that cause uncertainty in
models (Scheffer and Carpenter, 2003; Beisner et al., 2003). My results suggest that

complexities related to ecological resilience and population dynamics (like sticky cells
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and the forming of cell-masses) can impact populations’ response to disturbance in
unpredictable ways. This is just one of the many reasons why model assumptions must
be valid, as well as comprehensive, if they are to be applied to real systems. In order to
implement a comprehensive list of valid assumptions, experimentation, such as the
methods used in this study, are necessary for pointing out the shortcomings of models.
It might have been possible to address the issue of sticking cells by treating the
culture vessel by silinizing. However, these coatings only work to minimize sticking and
cannot totally eliminate the problem. In the case of the Tw culture, a single cell stuck to
the wall would cause the experiment to deviate from model assumptions. Sticking of
cells is a process that naturally occurs in real systems. Perhaps accuracy is more
important than tractability when developing a model for application to natural systems.
While the results of this study were inconclusive in determining the existence of
a population extinction threshold, there are still conclusions that can be drawn. The fact
that the cyanobacteria culture was stressed to the point of forming masses of
conglomerated cells supports that a persistent disturbance regime can have a marked
effect on the health of a population. Here, the cell-masses that seemed to be a sign of
imminent extinction actually provided an unforeseen refuge that allowed more of the
population to survive than expected. This deviation between theoretical and
experimental survival rates resulted in an unpredicted failure to adhere to the model
assumptions. In order to address this issue, the model could implement a sub-
population that is decidedly exempt from the effects of disturbances, representing the
portion of the population that exists in refuge. Although this phenomenon might be

difficult to model, it could improve the model’s ability to predict extinction in natural
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systems. Because of this, I suggest more research should be done to study ecological

resilience in the presence of episodic disturbance regimes.
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APPENDIX A. Thalassiosira weisflogii Logistic Growth
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Figure 1: Growth (x10% cell mL-1) of the estuarine diatom Thalassiosira

weissflogii at different salinities. Horizontal bars indicate
standard error (n = 3). From Garcia et al. (2012).
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APPENDIX B. Synechocystis sp. Logistic Growth

20
3
<45
2
wn
[ —

Q
Q40
[1+]
o
-
o

0.5

IS o
(1wys|199) 501 X J2quInN 139

N

50 100 150 200
Time (h)

Figure 2: Growth curve for Synechocystis sp. PCC 6803 wild-type (WT, diamond)

and 4sigB strains (circle) over the first 200 h of growth. Cells enter
early exponential growth at approximately 72h (a) and continue
logarithmic growth until approximately 120 h (b) where the cells
appear to enter a linear growth phase for at least another 3 days. Note
the y-axis is arithmetic and not logarithmetic. Experimental error
bars are shown for n = 3. From Foster et al. (2006).
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APPENDIX C. MATLAB Code

experiments = 7; %Could make this 5 or just leave out 2 & 6, for example.
d = 86400; $growth rate from days to seconds

num_hits = 20; %$initial constraint/guess

M min = 10; $Minimum experiment time

M max = 30; $duration of each experiment (days)

gr = 0.693; $Tw daily growth rate

r = 1.5; $Synechocystis growth rate

$No = 5e3; $initial Tw population

No = 5e4; $initial Synechocystis population

%K = leb; $approximate carrying capacity Tw

K = le7; $approximate carrying capacity Synechocystis
N = No; $initialize experiment at population, No

¥choose I max less than r

$I_max = .6; 3Tw
I max = 1.2; %Synechocystis can use a larger I max/min
I min = -I_max;

lambda min = num hits/M max; %disturbance frequency regime lower bound
lambda max = num hits/M min; %experiment upper bound

m min = (r-I max)/lambda min; %disturbance intensity regime lower bound
$lambda max = (r-I min)/(m min-1); %disturbance freq. regime upper bound
gm max = 0.647; %Tw disturbance intensity regime upper bound

=3

ax = 1.293; %Synechocystis
(lambda_max-lambda min)/(m_max-m_min);

= lambda min-(S*m min);

. vec = m_min:((m_max-m min)/6):m_max;

lam vec = m_vec.*S+b;

m = m_vec;

=1 U‘mIB
< I

$Get the random numbers for running the experiment
¢$for each pair of (ETA!, lam) coordinates

oo

$A = repmat(3, 7, 1); $Alternate method for defining values
B = repmat(6, 7, 1);
for k = 1:7;

$B(k,1) = invpsi(m_vec(k) + psi(A(k))) - A(k);

xl = 0.5 + (B(k)/(exp(m _vec(k))-1));

for n = 1:100;
xnl = (xl-(m(k)-psi(x1+B(k))+psi(x1l)))/((-psi(1l,x1+B(k)))+psi(xl));
X(n,1) = xnl;
x1 = xnl;

end

XX(1:100,k) = X;
end

A = mode(XX);

BB = B';
Qa = A - 1;
0b = (A + BB) - 2;

$Variance, Mode, Skewness of intensity values
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Mode = Qa./Qb ;

Vary = [];
Mod = NaN(7,3);

moder = [];

[MeanB, Var] = betastat(A,BB);

eta = psi(A+BB) - psi(A); $psi = digamma

$loop through a's & b's to get matrix of INTENSITY (M hits M) of hits

M _hits M = [];
figure(1)
for k = 1:1:7;
subplot(2,4,k)
M hits = betarnd(A(k),B(k),5000,1); %Produces 5000 numbers from beta
$M hits = betarnd(5.4,4.8,5000,1); %Produces 5000 numbers for Tw
$M hits = betarnd(5,6,5000,1); %Produces 5000 numbers for Synecho
hist(M _hits);
St = std(M_hits);
Stm(k,1) = St;
xlabel([ 'A="' num2str(round(A(k)*100)/100)
'B=' num2str(round(B(k)*100)/100)
'Mode="' num2str (round(Mode(k)*100)/100)])
M hits M = cat(2,M_hits_M,M hits);
vary = var(M_hits);
vm(k,1) = vary;
skew = skewness(M_hits);
moder = mode(M _hits);

Mod(k,1) = vary; $Variance
Mod(k,2) = moder; $Mode of intensity values
Mod(k,3) = skew; $Skewness

end

subplot(2,4,8)
scatter (MeanB, Var);

hold on

scatter(MeanB, Vm, '*', 'k'")
R = {'varstat', 'varbrute'};
legend(R);

xlabel( 'Beta Mean')
ylabel('Beta Variance')

csvwrite('Intensity Hits.csv',M hits M);

$loop through lam's to get matrix of FREQUENCY (LAM hits M) of hits
LAM hits M = [];
figure(2)

for i = 1:7;

L = lam vec(i);

subplot(2,4,1)

LAM hits = exprnd(1/L,5000,1);

hist(LAM hits)

xlabel(['l/Lam="' num2str(1l/L)])

LAM hits M = cat(2,LAM hits M,LAM hits);
end

flip LAM = fliplr(LAM hits M);



csvwrite('Frequency Hits.csv',flip LAM);
MaxIntensity = max(M_hits M);

$End experiment (stop pumping) at 30 days
dur_vals = [];

Frequency = NaN(5000,7);

Intensity = NaN(5000,7);

dur_max = zeros(7,1);

for s = 1:7;

for g l:length(LAM hits M);
dur_vals = LAM hits_M(l:q, s);
Duration(qg,s) = sum(dur_vals); &Sum from 1 to g

if Duration(g,s) <= 30;
Frequency(q,s) = LAM hits M(q,s); %Uses betarand
Intensity(dq,s) = M hits M(q,s);
dur_max(s,l) = qg;
end
end
end

Nt = [1;

rr = r/d;

NNtt = NaN(3000000,7);
fin length = NaN(100,1);

for i = 1:7;
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i;
finlength = dur max(i,1);
Ntt = [1];
for k = 1:finlength;
Nttt = [];
for j = l:ceil(Frequency(k,i)*d);
$Nb= rr/(bs+((rr/N)-bs)*exp(-rr*((j-1)-rr))); %$Growth b/w hits
$¢Nb = N*exp(rr*j); %$Assuming exponential growth
Nb = (K*N*exp(rr*j))/(K+N*(exp(rr*j)-1)); %$Assuming logistic
Nt = cat(l, Nt, Nb);
N = Nb;
end
Ntt = cat(1l,Ntt,Nt);
N = Nt(length(Nt),1l) * Intensity(k,i);
end
figure(3);

subplot(7,1,1i);

plot( (l:length(Ntt)), Ntt )

$NNtt(1l:length(NNtt),i) = Ntt;

clear Ntt

xlabel('Time (seconds)')

ylabel( 'Population, N(t)')
end
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APPENDIX D. Data Tables

Synechocystis Experimental Parameters

Experiment Indicator | Alpha | Beta | Lambda Eta Mode | Variance | Skewness
Number
1 1.2 4.074 6.0 0.667 0.983 | 0.022 0.032 0.216
2 0.8 3.963 6.0 0.889 1.002 | 0.021 0.033 0.184
3 0.4 3.849 6.0 1.11 1.023 | 0.022 0.036 0.247
4 0 3.734 6.0 1.33 1.046 | 0.022 0.035 0.259
5 -0.4 3.617 6.0 1.56 1.069 | 0.022 0.022 0.338
6 -0.8 3.499 6.0 1.78 1.095 | 0.023 0.020 0.354
7 -1.2 3.378 6.0 2.00 1.122 | 0.022 0.025 0.314
Dilution Rate Calibration
No N t(s) Dilution Rate (s1)

83460 63020 600 -0.00047

8880000 | 6062000 1000 -0.00038

54860 32800 1000 -0.00051

7620000 | 4952000 1000 -0.00043

8716000 | 3410000 2000 -0.00047

5926000 | 2362000 2000 -0.00046

9554000 | 4454000 2000 -0.00038

8396000 | 2980000 2000 -0.00052

332600 94500 3000 -0.00042

1042400 269300 3000 -0.00045

Average: -0.00044




Tw Trial Experiment Prediction

t_events Fraction Model Pop. Pumping Growth Cumulative

(days) Remaining (cells/mL) Seconds Seconds Time (s)

0 1000 0 86400 86400
0.4391 0.397589184 539 635 37938 37938
0.574 0.30583662 181 816 11655 49594
0.8016 0.325589685 69 772 19665 69258
1.455 0.626626256 68 322 56454 125712
29617 0.657399276 127 289 130179 255891
3.1668 0.525967442 77 442 17721 273612
3.1764 0.748252186 58 200 829 274441
3.1848 0.668510909 39 277 726 275167
3.4866 0.624058188 30 325 26076 301242
3.8281 0.447247325 17 554 29506 330748
3.9203 0.662190967 12 284 7966 338714
4.0099 0.626530446 8 322 7741 346455
4.7142 0.767254785 10 182 60852 407307
5.1373 0.596693408 8 355 36556 443863
5.8445 0.382857191 5 661 61102 504965
6.3115 0.578813737 4 376 40349 545314
6.5216 0.64837803 3 298 18153 563466
9.0363 0.23339919 4 1002 217270 780736
9.45 0.750741345 4 197 35744 816480
9.9132 0.544068744 3 419 40020 856500
10.0607 0.601888776 2 349 12744 869244
11.0876 0.736256591 3 211 88724 957969
11.3496 0.555975468 2 404 22637 980605
12.1689 0 0 300 70788 1051393

Population Measurements for Tw Trial
Time (d) 0.00 | 3.24 | 432 | 492 11.27 18.79 | 21.74
Average Cell Count (mL™) | 1000 | 436 | 192 | 158 | 601 1100

36



Synechocystis Experiment #7 Prediction
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t_events Fraction Model Pop. Pumping Growth Cumulative
(days) Remaining | (cells/mL) Seconds Seconds Time (s)
0.00 0.29 740800 3058 14980 1.80E+04
0.21 0.26 277079 3370 78133 9.95E+04
1.15 0.32 251262 2886 6682 1.09E+05
1.26 0.60 88154 1264 27379 1.38E+05
1.59 0.67 82410 991 22113 1.61E+05
1.86 0.24 78971 3534 9541 1.74E+05
2.01 0.21 22382 3914 17151 1.95E+05
2.26 0.22 6153 3777 9898 2.09E+05
2.42 0.43 1591 2092 8455 2.19E+05
2.54 0.25 789 3445 136803 3.59E+05
4.16 0.33 1775 2767 45387 4.08E+05
4.72 0.20 1213 4056 10809 4.22E+05
4.89 0.20 285 3964 62866 4.89E+05
5.66 0.32 159 2863 32833 5.25E+05
6.08 0.31 86 2891 3379 5.31E+05
6.15 0.31 28 2914 7831 5.42E+05
6.27 0.36 10 2532 3484 5.48E+05
6.34 0.56 4 1432 4867 5.54E+05
6.42 0.11 2 5595 87549 6.47E+05
7.49 0.22 1 3780 58396 7.10E+05
8.21 0.28 1 3205 59215 7.72E+05
8.94 0.38 0 2413 28106 8.03E+05
9.29 0.45 0 2000 27193 8.32E+05
9.63 0.31 0 2890 86033 9.21E+05
10.66 0.33 0 2769 13228 9.37E+05

Population Measurements for Synechocystis Experiment #7

Time (d) 0.0 1.1 1.2 1.9 2.1 3.0 3.9
Average Cell Count (mL-1) | 740800 | 243040 | 77240 | 115040 | 33400 | 29840 | 146320
49 6.0 7.0 7.9 8.9

43640 | 288000 | 156000 | 130600 | 360240
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