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TEMPERATURE PROFILE OF SPHERES

PACKED IN REGULAR ARRAYS

I. Introduction

One of the engineering structures that poses a prob-
lem in heat conduction is the case of a sphere of one
material surrounded by a second, differing, material. This
situation may be illustrated by two examples from the field
of nuclear engineering. First, the sphere has a lower
thermal conductivity than the surrounding material. This
may be found in ceramic fuels which contain gas pores. The
gas pore may be considered as a sphere and has lower con-
ductivity than the surrounding ceramic. Secondly, the
sphere has the higher thermal conductivity. This may be
illustrated by sphere packed fuel where the sphere is sur-
rounded by a coating or by gas.

For the purpose of thermal analysis each of these
examples may be approximated as consisting of a unit cell
composed of a sphere centered within a regular polyhedron
where the sphere is composed of one material and the re-
mainder of the polyhedron is composed of the second mate-

rial.
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The first step in thermal analysis is the derivation
of the temperature at any point within the chosen unit cell.
This thesis will develop the analytical solution to the
temperature profile of a unit cell consisting of a sphere
and a regular polyhedron. Derivation of the solution will
be followed by the development of a computer code based on
the solution. Analysis of the code will concentrate on
verifying the validity of the analytical solution, and then
outlining conditions under which the code‘provides, or does
not provide, the desired accuracy for the unit cell under
consideration.

In surveying the published literature concerned with
spheres and thermal analysis, it was found that there is
only a limited amount of information that deals with
spheres and temperature calculations. Most of the avail-
able information analyzes insulated spheres and cylinders
and concentrates on finding the thermal conductance or re-
sistance without calculating the temperatures. As an ex-
ample, Schneider (1) and Yovanovich (2) have both separ-
ately investigated the thermal conductance of cylinaers
separating infinite planes of differing temperatures. The
cylinders are assumed to be insulated except for the con-

tact area of cylinder upon plane. Chan and Tien (3) have
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extended the analysis to a packed bed of spheres separating
two planes. These spheres are also considered to be insu-
lated except for contact areas.

Holy (4) has given solutions for the subject of non-
insulated spheres. He was interested in calculating the
temperature and stress fields for a sphere with variable
surface heat transfer and uniform internal heat generation.
Using an eigenfunction expansion Holy has developed a
truncated series of spherical harmonics for his solution
where the coefficients of the series were obtained by ap-
plication of the least squares principle to the relevant
boundary conditions. A solution of the following form was

generated. "

T(fj"‘ ‘M“ T, ((’) + Z z Anmf P (_/v\)cos(rmb

z z B 0 B () sin(me)

Ny M=y

The coefficients Ay, and By, are found by solving a
set of simultaneous equations. Holy's solution depends on
the assumption of a mean value of heat transfer from the
surface of the sphere, and as such, does not require any
knowledge of the surrounding material. Accuracy for this
method depends on how the given points at which the heatv
transfer distribution is sampled are located over the

surface of the sphere.



Page 4

The work presented in this thesis differs from the
work dealing with insulated spheres and cylinders in that
the sphere under consideration here is not insulated. The
work by Holy is related to the development presented here,
with the following differences. First, the solutions to
be developed are dependent upon the material surrounding
the sphere and no assumption is made concerning the distri-
bution of heat transfer between the sphere and the surround-
ing material. Secondly, the spherical harmonic coefficients
will be obtained by numerical integration of the specific
functions rather than using the least squares principle.
And finally, a temperature profile will be developed for
the entire unit cell, which includes the sphere and the

surrounding material.
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II. THE UNIT CELL, COORDINATE SYSTEMS,

AND BOUNDARY CONDITIONS

The problem under consideration is a simple cubic,
three dimensional array of spheres separating two infinite
bPlanes as shown in Figure la. The spheres are all of uni-
form diameter and consist of a homogeneous material with
constant properties. The remaining volume between the two
planes is occupied by a second material, also of constant
properties. The array shown in Figure la may be reduced to
a planar array as seen in Figure 1lb. All boundary condi-
tions will remain the same for the planar arrangement as
for the cubic array.

The approach is an attempt to analytically describe a
possible experimental arrangement. On both the upper and
lower planes it will be assumed that the temperature at all
points is known. For a large number of spheres in the
layer, it may be concluded that no heat transfer occurs
between adjacent spheres due to symmetry and that all heat
transfer occurs perpendicular to the top and bottom planes.

To define the unit cell for which the study is made,
the distribution of the spheres is considered. Figure 2

shows a square packed array of spheres as viewed from
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a) Simple cubic packing arrangement of spheres
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b) Repeating horizontal planes of spheres

Figure 1:

Three dimensional array of spheres
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Figure 2: Central sphere in a square array
with the cubical boundary and
the unit cell outlined
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Figure 3: Single sphere centered
within a cube
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either the top or bottom plane. As shown in Figure 2, the
analysis to be presented here will be based on an array of
spheres spaced on a regular square lattice, but the diameter
(d) of the spheres may be less than, or equal to, the spac-
ing of the lattice (s). For any particular case which is

to be analyzed, the diameter of all spheres will be equal
and constant for that case.

The sguare that has been placed around the central
sphere in Figure 2 defines the boundaries of a cube sur-
rounding the sphere, with the sphere centered in the cube.
Figure 3 shows a three-dimensional view of the sphere
within the cube. These cubes may be replicated to con-
struct the three-dimensional array of spheres between two
planes as shown in Figure 1.

The cube and sphere can be subdivided further. 1In
Figure 3 the temperature profiles are assumed known, and
differing, on both the top and bottom faces, therefore,
the full height of the cube must be considered. However,
in the other directions lines of symmetry do exist. Since
the heat will be flowing between the top and bottom faces
due to their temperature difference, and because all sphere
containing cubes are identical, no heat will be transfefred

across the side faces of a cube to adjacent cubes. These
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side faces are therefore seen to be adiabatic. Referring
again to Figure 2, it is seen that the top face can be sub-
divided into eight 45° right triangles by drawing lines
from the center of the sphere to the corners of the square
and from the center of the sphere to the midpoint of each
side. These lines establish lines of symmetry; that is,
the derivative of the temperature along each of these lines
is zero since the temperature profiles within the cube and
sphere will be either maxima or minima along these lines.
Finally then the smallest unit cell which can represent the
array of spheres is shown in Figure 4. It is a triangular
wedge of height 2R,. The sides forming the right angle are
each of length R, and the hypotenuse is of length Rg JE.
It is for this unit cell that the study is made.

Three plane views of the unit cell are shown in Figure
5. The top face of the triangular wedge with the outer
edge of the sphere appears in Figure 5a. In Figures 5b and
5¢, two of the sides of the unit cell are shown. In Figure
5b it is seen that 2R, is the length of the side of the cube
and that Ry is the radius of the sphere. When comparing R,
to Ry, it may be seen that R, can be considered as the cube
"radius" and will be referred to as such from here on.

This problem is treated in spherical geometry.



Page 11

Figure 4: The unit cell for the square array




a) Top view, Z2 = R

— % —

b) Side view, Y = 0, ¢ =0

c) side view, X =Y, ¢ = 1/4

Figure 5: Three views of the unit cell
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Figure 6 is a repeat of Figure 4, but has the spherical
and cartesian coordinate systems imposed upon it. Any
point P in the unit cell is described by the coordinates
(p,a,¢) where p is the distance from the origin to P, o is
the angle between the Z axis and the line to P, and ¢ is
the angle between the X axis and the projection of the line
to P on the XY plane.

Steady state heat conduction in this spherical system
is governed by Poisson's equation:

VZo(p,0,9) = 0 (I1-1)

where 6 (p,a,¢) is the temperature at any point within the

unit cell. The Laplacian operator is given by

2 _ 1 3120 e ~ 2

v = ea ()(e b?) + ezsir\o\ o [ sina 8@)
-5

prsin‘a 3g?

(I1-2)

4
A more useful form can be obtained by making the transfor-
mation

U =cosa (l—uz)l/2 = sina (IT-3)

S S (I1-4)

(32(\‘/)\2) a¢2.
Referring to Figure 6, the unit cell is bounded by

4

the limits of ¢ = 0 to ¢ = 7n/4, a = 0 to a =7 (u =1 to

p = -1), and from p = 0 to the outer planes, top, side,
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N

Figure 6:

Coordinate systems imposed
on the unit cell
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and bottom, which are given by the equations in Appendix C.
There are five surfaces to the unit cell. The top and
bottom faces are discussed below. The three side faces
(referring to Figure 6) are: (1) the Y = 0 plane (¢ = 0),
(2) the 45° plane given by X = Y (¢ = m/4) and (3) the
plane given by X = Re (see Appendix C). These three sur-
faces are adiabatic. This condition requires that the com-
ponent of the heat flux vector normal to the surface be

Zero;

A > _
ni.q (plald)) Sl =0 (II_S)

th surface, fi; is the unit vector

where S; denotes the i i

normal to surface i, and 4°° is the heat flux vector.
Equation (II-5) requires that the dot product of the

th surface and the heat flux

unit vector normal to the i
vector evaluated on the ith surface be zero. The heat flux

vector at any point is given by

97 (p, =, 0) = *K%’C—)((o,d,cb) (11-6)

>
where V, the gradient operator, is given by

! d

> A ..___B_ _+ A _l__&_. --\. A
vV = GP ae €« £ e¢ Psh\d Ok (I1-7)
where ép, éa and é¢ are the unit vectors in the p, o and ¢

directions. Equation (III-5) may now be written as:
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>
—ni‘Kve(prard)) S =0 (11—8)
1

On the top face, Z = Rc’ the temperature at any point
on the plane is known and given by the function eT(u,¢).
Likewise on the bottom face, Z = Y the temperature at

any point on the plane is known and given by the function
6g(H,¢). K is the thermal conductivity of the region

under consideration.
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III. DEVELOPMENT OF THE SOLUTIONS

A) General Solution of the Differential Equation

The governing equations are a linear system of ordinary
differential equations. The normal procedure for solving a
system of this type is used; that is, the general solution
is obtained by determining the complete solution of the
homogeneous equation and one particular solution to the
inhomogeneous equation. The linear combination of these
gives the general solution. The arbitrary coefficients in
the solutions to the homogeneous equation are then evalu-
ated through application of the boundary conditions.

The development of the solution for the temperature
profile is begun by setting

v?e = 0

where V? is given by equation (II-4), thus giving

_ b2 s 20 L _a_( s a@) oo de }
0= —7 (P )+ 0? W (=) )aﬂ + PZ (l—/uz) S o (ITI-1)

It becomes advantageous at this point to convert to
non-dimensional parameters and proceed with the analysis

upon that basis. Distance and temperature are the two

parameters affected and the non-dimensional terms are
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defined by:
Bl m d) ~ Sz M ¢)
r = _.f_)_.. T = ?/J °

where BT and 6z are the temperature functions on the top
and bottom faces of the unit cell. Equation (III-1l) is
now converted by substituting in the appropriate expres-

sions for p, 9, and 9

ap
p = rRC
0 dr 3

———

[ 0
bf h éf 3 EZ ar
Thus giving:
0= rzle; —El:(r‘rec ;V(T(GT~63)+93))

+ rz—:;—f f);((l-,uai [T(er-eg)t 6, ))
rRE (1-2) 54,1(_‘-(61”'68)*63)

Now combining terms and performing the partial derivatives

upon T(OT B)+6B produces:
T I AN T
RE  rt de ' dr Rt ap Y9
+ (&7-e3) ' QT

e F2z(i-pd) dd*
Dividing through by the constant factor gives the follow-

ing final form:
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) 3 T { 3* T
0= = —(rzﬁl)«‘—;*((l-ﬂ’)"a"% ; (111-2)
dp dpa rO-pt) g2

-
~
Q
-
o
ﬂ
-

The solution to equation (III-2) may be represented by
eigenfunctions of the form
T(r,u,¢) = E(r)F(u)G(9)
To identify the specific functions, it becomes necessary to
examine the operators.
If G(¢) is selected as cos(k¢), it is seen that two
derivatives return the cosine function. One of the bound-

ary conditions applicable to this problem is that

3T lr, 0, )

od =T
L{

This is due to the symmetry of the unit cell. Application

=0

of the boundary condition leads to the conclusion that

~ksin(k¢) 0

Knowing that sin(m) = 0, this sets up the condition that

k¢ = m. When ¢ = m/4, then k must equal 4. To make the

solution hold for all multiples of w, k = 4m, wherc m is

an integer greater than, or equal to, zero. Therefore it
is seen that all modes of the form

G(¢) = cos(4m¢)

satisfy the equation.
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It is also desired that when E(r) is operated upon by
the Laplacian, that the original function be returned. One
function which satisfies this requirement is

E(r) = r®
Another function which satisfies this requirement is

E(r) = r 71
This second form of E(r) will be of importance later. The
following form has now been established for the temperature
solution:

T(r,u,¢) = rF(u)cos (4m¢)

To determine a specific function for F(u), it becomes
necessary to evaluate the partial derivatives of T(r,u,¢)

with respect to r and ¢, and then insert those expressions

into the governing equation, equation (III-2).

AT (v, p1, &)

= vwrh-\F(}A)cos(4w\é)
Ovr

{ 3 ( 2 aT(r,).A,tb)) ( 1) rr\~7. r
—_— g = nin ycos (dm
FZ or ’ or (/.A )

b—“(r/}"c(b)
3¢

= -4dm rn Fom) sin (4m dy)

a‘z(T(("/j“\l¢)) = _(4m)zrn {(#)COS(Q‘M&)
o¢*
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Combining these partial derivatives gives the following

equation.
0 = n(n+ﬁranqfdcos(4M¢)

I 9 1y ©_
+ T E)‘J:(l-/u )6)4\((“;()*) cos(h\mcb))]

+ rl_l(l‘_/u—z)[—wm)z r” F(p) cos (4m cb)]

Dividing through by r~2 and cos (4m¢) gives

- _g o2y oF ()
0= nin+)Fow) + b},\[h yo )———ﬁ-aﬂ }
SCLON Fim)
(o) 7

Further rearrangement gives an equation of the form

d OF () (4m)?
0= — [({-p*) —=— nn+t) - ——— [F(m) (III-3)
5)4 [( /u ) (5))\ J+[ ((_)JZ) ;l /u

Equation (III-3) is the governing equation for F(u), solv-
ing for F(u) will complete the solution for T(r,u,¢). From
Abramowitz and Stegun (5), equation 8.1.1, it is found by

inspection that

4w ™m
F(/,«) = Ph Cpr) Q: (x2) (I11-4)

where Pim(u) and Qﬁm(u) are the associated Legendre func-
tions of degree n and order 4m. Equation (III-4) is the
total solution for F(u) as Pﬁm(u) and Qﬁm(u) are the two
linearly independent solutions that satisfy the second

order differential equation (III-3). Because Qﬁm(u) is
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infinite at u = 0, Qﬁm(u) must be discarded and the final
solution for F(u) will be
F(p) = PAM(y)
The final general form of T(r,u,¢) is now
T(r,u,¢) = rnPﬁm(u)cos(4m¢) ‘ (ITI-5)
Now knowing the general form of the temperature solu-
tion, it becomes possible to solve for the specific tempera-
ture within the sphere and outside of the sphere.
Within the sphere:
VAT (r,u,9) = 0
and outside the sphere:
VAT, (r,u,¢) = 0
The following solutions may then be seen to satisfy
the governing equations and the condition of finite temper-

atures at all points within the unit cell.
o (n/4)

T (r,/,\, ) = C:L) + Z Z C,::: v P:M(/}) cos(dmd) (III-6)

Ny

The r—n_l term is infinite at r = 0 and is therefore dis-

carded in the temperature solution for the sphere.
oo (n/4)

(3) 1 o
() oo () n (3 -t} Hm
Nzt Mro (ITTI-7)
Where (n/4) denotes the largest integer in n/4 and Céé),

Cég), Cég), Cé%), Cé%), and Cé%) are all constants which
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must be evaluated.

B) Detailed Treatment and Application of the Boundary

Conditions.

The boundary conditions which are applicable to this

problem and will be used to solve for the constants in the

temperature solutions are:

1)

2)

3)

Continuity of temperature, for all uy and ¢, at

the interface between the sphere and the remainder

of the unit cell.

Continuity of heat flux, for all u and ¢, at the

interface between the sphere and the remainder of

the unit cell.

The ¢ = 0 and ¢ = /4 faces of the unit cell are

adiabatic. (This condition was used to select

the cos{4m¢) mode.)

The outer faces of the cube are subject to one

boundary condition, which consists of three parts:

a) The top face of the unit cell has a known
temperature function, ST(u,¢)

b) The outer side face of the unit cell is
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adiabatic. (This face will be referred to
as the side face of the unit cell.)
c) The bottom face of the unit cell has a known
temperature function, eB(u,¢)
Boundary conditions 1) and 2) will each provide two equa-
tions for the solution of the constants.
Continuity of temperature requires that

Tl(R su,0) = T (Ra,u,¢) must be satisfied at r = Rg/R; = Ra.

oo (n/4) U) . (s
c. +z R R cos(dme) = ¢4 Ceo
n=1 =0 Rq
oo (n/4) N
(2 n (3) -n-i Hm
+Z z nm q C’nm IQQ ) Ph (/-A)COS("\(MCb)
NI ms3o (III-8)

It is now possible to operate on equation (III-8) and
utilize the orthogonal properties of the cosine function.

This is done by operating on both sides of the equation
T/af

by /,cos(4k¢)d¢. This is done twice, first with k = 0,

o

and secondly for all other k.

With k = 0, the involved portion of the equation is
"/ "y
{ .
[Cos('-lrm,b)d(b = g Sintme) 1 = ()

4 o

and
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vo (n/4)

€3)
(l)] [ T.' LN TN _T_.r (2) Coo
+0 C R P )COS(qméj = [COO +
q [ .\f{‘o nm Ta tn M 44 Ra
s (n/4) N
~ () ) ~n- thon
+ O[; >, (Cnm Ra * Chm R, )P,\ ¢/.A)Cos(‘~\md>)]
which has a final form of
(3)
C
(1) - C(2) + —00
oo (e]e] Ra (III 9)
Now applying orthogonality for all k>0
/Yy
[ Cos(4dme)cos(dke) db
“o
requires a change of variable Setting w = 4¢, this then
gives L Kk =
ry )
i 8
q—fCos(mw Jeoslkw)dw =
w= O , k#m
Applying this to equation (III-8) then produces
™ >3 4k T-I = (2) n (3) -h—\) 4
S e o = E I el ) e
n=\ n3t

The next step utilizes the orthogonality of the associated

Legendre functions. This is done by operating on equation
(ITI-10) with

4k
Jofgmdp
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Noting that from Abramowitz and Stegun (5), equation

8.14.13
+qk)!
| 2 (.0 ,kff '/f:n
s 2241 (g-4k)! 4
Pn (/J\)} (),L)d)_,(:
- 0 ,kSZ-f' , A#h

This gives the result of
w2 (L+4dk)] O

§ 2o gy kR
w2 (fedk)! (cm 1 (3) -1-‘>
=% Zel (goaf b Ka G R

The above equation may be reduced to the following system
of linear equations

Wy g () 9 €3) . g-|

G R, = C +C

o T G R * G R (rr1-11)

The second boundary condition to be applied is that
of continuity of heat flux, normal to the surface of the

sphere, at r = Ry, that is

P) d
_KIS; 1:(QQUM)¢) = —KzS;.T;(Qq)}“)¢)

(3
{ni4) . ) oo (“14)

- C
— (] n-l 4 °°
K DD NG R By os (dmd) = Ky 4 4D D

—l
Nn=t Mz N\ m=zo

Q

() =n-\ (3) -n-2 &
(r\C“m R, -(nenNC R )th(/JdCOS(qmcb) (ITI-12)
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Using orthogonality as before, we first operate with

Ny
JF do which gives
0
ot C(3)
— 0o
0= K 5
Q
which uniquely defines C(3) as
3 =g (ITI-13)

and reduces equation (III-9) to

(1) (2)

Cos = Coo (III-14)
The next step is to operate on equation (III-12) with
’tr/q
JF cos(dke)dd | This gives

0
—Kznc 2 ‘ (}_A)— —-K Z(C::Q“ -(n+\)C,_‘\k)|Q;hz)P:k(}A)

4k
Now operating on the result with ‘[.a () d

the following result is obtained

w2 (R+dk ¢ 1c pt! T2 (genk)]
3? 2841 (g-4k) 'k e T F 244l (g- dk)!
) (n
K, (160 R - (406 R )

which may be reduced to the following system of linear

equations.

o _2-) (2} 2- (3) -2 _
K26, Ry = K, (1¢ R C(am) ) (ITI-15)
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There is now one equation, (III-14), for the two unknown

o (1) (2) .
coefficients Cgg and Cgoo' ., and two equations, (III-11)
and (III-15) for the unknown coefficients clk(l) and Clk(z),
and Clk(3). It now becomes necessary to obtain one more

2) and Clk(3) so that their solu-

equation for Clk(l)' Clk(
tion may be obtained. This will be accomplished by apply-
ing the boundary condition to the outer faces of the unit
cell.

Beginning with the top face of the unit cell, the
boundary condition of known temperature function may be
written as

(P urd) = 0 (u,0)
and this may be rewritten as
To(r,u,¢) =1

Therefore

co (N/4q)

2)
- (v 3) in-y 4
| = Coo +z Z (Cnm r -+C,\M r )th(ﬂ)COs(qu
S M

The boundary condition equation may be written in the fol-

lowing form so that it will be easier to use later.
fo (N4

)
= () () n _Nm
| = G, Z Z [Chm r B (/A)COS(4M¢)

4 Cls) r~h'| P:m (/U\‘) COT)(‘JM(UJ

hm
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From Appendix C, it is shown that the top face is defined

by the following relations
|

<
( Z+‘\'c\nld))‘/1 e

<

-—

©)
A
,e—
TN
L=

r= )

|
M
Now substituting in the expression for r, the final form

of the equation is obtained.
oa  (N(4)

= ) (2) ; 1 \"MHm
[ = Coo +Z Z [Cnm(p) P (/,g)cos(qmd,)
A=l M=o
1 -Nn-1i 4
+Cn:)(;) b, m(/u)Cos(klmcb)] (III-16)

Equation (ITII-16) may be rewritten in the following general

form
‘ ("

2 (Y Q) ‘
120+ ST G D G costame) + €2 6.2 () cosumcs)]

(II1-17)

£
~

where €)) (L Y’ dm
f%

The next face to be evaluated is the side face,

X = Rc, where

r= - (See Appendix C)

The boundary condition here is that the face is adiabatic,
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that is, no heat transfer occurs across the face. The unit

~

vector normal to the side face is n = & The boundary

%
condition for this face may then be written as

-

e .9 = éx.[-Kzé’ T, (r) ¢)] =0  (I11-18)

X

> >
where q is the heat flux, é€,°qQ is the component perpendicu-

lar to the side face and §T2(r,u,¢) is again defined as

3 Tl r,0) = é\r 0T (ryp, )
ov
sz(rlj‘Al¢) A ( B-Tz(rl)'A) ¢)

l
& r dd $ rsina S

Utilizing the transformations for spherical unit vectors in
terms of the cartesian unit vectors (see Appendix A), it is

seen that the dot products in equation (III-18) become

éx-ér = sinocoso
é€,°&, = cosacos¢
éX.é¢ = —sin¢
so that
A -> N aTz‘(r;}";¢)
e, +q = ~Kz[:s\r\o(cos¢>
or
Cosot Cosd T (r, 1A, ) sind 5Tz“";}*;¢)}
s A rsinat b

(ITT-19)

The next step is to evaluate the three partial derivatives.

Recalling that
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oo (nl4)

() n (5) ~n=-t 4
T, e me) = G4 > > |, ) R costame)
N3] mz0
and that y = coso, the three derivatives are seen to be:
oo (ni4)
() h -1 4
aT (l" /u‘\ o) Z z v 1 (n-H)T“ )pn M(/.L)COS (4!\‘\&)
=l m=0
oo (nid)
aTz (V‘,)v\)b) (v) (3) ~n=\ 4
5o :-Z Z(C""‘ rn+Cn:‘ r )Ph N(}*) dm s:'n(*lmcb)
n=) mQ
oo (nm)
oT, Urypx, &) z (2) " (3) n-l) O [ _Hm
Co ¥ -—(’P ( )>Cos(4m¢)
S e )Bd n WM
Realizing that
> P4m _ 3H D 4m(
d¢ P () dat Opr P)
and
) Vo
__dA_: icis_i :—S[r\c{: —-(\—}Al)
d o d ot

p)
The next step is to solve for SEPgm(p). This is done by

making use of equation 8.5.4 of Abramowitz and Stegun (5)
which states (in their notation)

d A ,
(z-0) 5 By (2) =2 P)M(%)-(vw-/«)?’»:(%)
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It is then seen for the problem under consideration that

4 Hm
—é-'P4M( _ qfapk ) = (n4‘4n\3¥%ﬂ (/A)
h /J‘> 2
d JYSER
The parts may now be put together to show that
dm Hm
a 2l M B Ty = (nedm) P (W)
P (/A) - - ('—/Al) }A h /A =t /)\
bd JAt-)

which may be rewritten as

4 4
N A P,\ M(/u) ~(n+dm) Ph_:“ )

) P‘lm )

—— (/A =
n 1

Ot (\-/uz)lz

It is now seen that
oo (n/yg)

BTLL"J}"‘»‘M E E H) -n—\)
Com ¥
nszy m=o

’( N phm(/.k)~(n+‘~lm) P,,_, L)

Ry )cOstd»)

It is now necessary to insert all three partial derivatives
into equation (III-18) to solve the boundary condition.

This then yields the following expression
oo (ny)

" ) h \ Y} -n- q
(\—/u) C05¢Z z ' - n+\)C,\:: r 2')Ph M(/.,\.)COS(“M&S)

NI M0

4 4

Jacosd ol c@on (3) . nﬂphm(}}-)“(h{'qm)Ph:\(M)

+ Z Z ,mr+ w X P Cos(s\mA)
(l—/u") 2

o (nf4)

3nw¢

. Z Z o (a) “n-t p*lm‘ ysin(dma) (ITI-20)
(\f"‘) N=t m=o hm hmr )h /M

Equation (III-19) has already been divided by “K, and the

: : _ 2y1/2 :
expressions sino = (1-u®) / and cosa = y have been in-
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serted. Now bringing the constants inside the summations

wvo (n/a) X
(&% n-i -n- 2
0= Z z(r\c ) —(r\-ﬂ)c::\)r Z)Ph (/A)(‘“))-l) cos(dmd)cosd
Nt M0
' 2P Y -~ ) ‘qu
oo (nid) )(np n (/\A (naim)u® () Amb)cosd
u)n‘ nq Cos(dmd)cos
+Z (C (1-ur)"2
n=y /u
b0 (nlq) 3y ?“4'\(/“\) \
+Z S ((.:.\7_:\ rn~\+ Ch\ r~h-!) _—ll Slh(“mq;)sinq)
1 ™ _ 1)2 A
N2\ ™= (| I‘A

Now combining all three summations
oo (f\/d)

-l 1 "l
0""2 Z Cn::.)r“ ("\ ?:ML/J)("}*) cos(dmeb)cosd
Nzl M=o

1ptim - den) i PO™ (L)
.+(np n R~ (ng M They P)C05@“n¢kos¢

(-t )'/
3 -n- ™ ? !
+ n_(/‘*) 5m(‘4m¢\ﬁlh¢ -i-C(3 " -(““)p: (j*)("f’l )lz
(l-)ﬁ) G
n o P™ Ca) —(nedm) B )
«Cos(4me)cosd 4 ( M) M I )cos(4m¢) cos &
(1- )"

4
[ ™ )

+ )
(V- pur) e

sin(4nw¢)5h\g

)
Substituting in r = cosd “_/erﬁ and further simplifying

Shan IS v g A B = () P )
0= - [ (- 1)’2 m h = N-1 })\
ZZO h-‘¢(‘-}41)nil (h( /A Pl'\ (}A) + (\—/k,ll)vz
G o™ "E"B’
e Cos(dmi)coss + "—.)A sinlhlm«ﬂsime + T~z ey
(-2 "2 cos ¢ (1-p?) 7
(\}Az qu(/u) -(n—o‘4m)/_;\ F;\‘j:h(}*)
[( (l-/ﬁ)"z = (ne)(i- ) (p))COS(AmQ)C°S¢
den Bal™ )

T
-



Page 34

By combining Pim(u) terms and separating out (l—uz)l/2 the
above equation may be simplified to the following inter-

mediate form.

oo (nid) (2) Cos(d4md) coz

0= Z Z 03" (1) % [("P:M‘/“)‘“‘“"“)ﬂ Pntr.h(/*’) (1-p?) 2

Y PI™ () 3)

™ Tn nm

+ —.//*—- sin(dm@sfncb} + [((/.,\ 2n+l) (h-n))
(1-p3) "2 cos" 2 (1)

TN

4m
4n Hm P ()
* Pn (/*)'(h*'qm)/" B VA)) ¥ v

sin(qm)mﬂ
(Vfﬁ)%

A final simplification by combining (l—uz)l/2 yields

oo {(Nniy) ”')

4m Cnedm Lo ‘
0= Z Z ¢(l-/.\’)n/" [‘F\Pn ()= (ne )/u P -y (/’))Coh(‘lMQa)Cosq,
Ny MMp Ch (3)
+ Um P:'“QA)S‘“(‘JMM simb] + o . [{(/AZ(ZM') “(M‘))
cos $ ll-/ul) 2

™ L‘M
~'Phq ()= (nedm) W B, (/,q) tes{dmy) cosd + 4m Phq"‘()u)

. 's(n(‘lm&)sinﬂ (III-21)

Equation (III-21) may now be written in the same form used

for the top face.
oo (NnM4)

Q‘!
o= Z-I < [ m(F /”C%(qm&,)coﬂ, +L (u)mn(klmdn)&n(b)

Nn=j mM=0

(3) (G (prcosldmi)cosg + G (/.x\sm(klmé)sm‘b}] (I1I1-22)
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where |
Hr 4m

NP LAl L L PR ESTIS VLAY
r (3) - ! (“{m qu(/u\))

nm (A = co%h-‘tb “_/ux)”lz n

() L 2 - 4m 4m )
G (M) = cos™ e (1- ) E ((/M (2nn)=(n+1)) P, Oa) = (n 4 ) ® 70 )
(3) i e Am P

= ~As! M

Ghm ())\) Cos_n-z¢ (l‘)*ll) 2 h )

Equation (II1I-22) is valid for the side face of the unit

cell under the following conditions.
|

CO$¢ ( |“/A")‘/2‘

r =

st
(2+-\-cml¢\2’ (24 4ontd) 2

o < ¢ ¢

2=

(See Appendix B)
The final face to be evaluated is the bottom face of

the unit cell where the boundary condition is that the

temperature distribution across the face is a known func-

tion. The equation of the bottom face is

and the boundary condition may be stated as
O(p,u,sd) = eB(urd’)
which may be rewritten as

T, (r,u,¢) = 0
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The boundary equation is now seen to be

oo (n/y4)

(v) (3) _n- 4m
(z)+z Z (Cnm r +Com . l) F L/"‘)Cos(qmd)

(IT1-23)
nat M=o

-1
After substituting in r = |

p and further rearrangement

equation (III-23) may be written in final form as

co  (n/4)

(z.) “-) ~ (3)
0= Z Z[ am ; P (/A)cos(qw\d») +C
= mzo

-1
/\33 Pn‘lm(#) Cos(dm &:)]

(ITI-24)

Equation (III-24) is seen to have the same general form

that has already been found for the top and side faces.

eo (NnIX)
- C(z) Z z l: N ()A)COS("XM¢) +C, (3) G ()A)COS(4M¢)]
n=t Mao
(ITII-25)
where —itan
«) -1\ - dmn
Gnm (/u‘) = ( ;) ph (/A)

Equation (III-25) is valid under the following conditions
-1
i
~ |
{2+ +an?a) e

The form of the three parts of the boundary condition

applied to the top, side, and bottom faces is such that one
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general equation may be written for the boundary condition.

This equation is

oo (nid).

(2) ™ () (v )
HY 0,00 = €0 1,00 +Z Z [Cm Hum (,8) + Gt 1, (/A.MJ

nzj m=o0

(IIT-26)
The boundary condition on the outer face of the unit
cell may be summarized in the following form.

Top Face:

A

rsoa

(2+tantp)2 -~ M =
¢

0
o < £ g
HE ) =1
H::(fh¢)= Eﬁ?(}ﬂCOS(4W\¢)

H:i?gp,®)= G::(fQCOsﬁhn¢)

HM)(}A,tb) - '

Side Face: {
r = COS¢((-/J1)\/2
-} |
< <
(z+tan?e)z =M 5 (244anie)

N
0O < ¢ ¢

H (V) (/U\)(‘)) = O

)
H,\(: (p, )= Fh:)(}A)Cosfqm(b}COs b + F“i)(/«;\)sin(dmé\ sind
Hh(: (}J\,fﬂ = G,\(:\) (/A)COS('JM&COSQ: + G(‘(:I (}))sin(nlmr},)sin(b

H“"(/A,M = 0



Page 38

Bottom Face:

il

‘4UN/J)¢): \
{4)

)
Hn‘:« (pr,®) = LA (/«\)Cos(h\rmt)

(3)
nm

H (/u«,(b) = G'::‘) (}A) Cos(dmd)

‘_\('-\) (/A,¢) QO

It now becomes necessary to work with equations

(III-11), (III-14), (I1I-15), (III-17), (IIr-22), and

(1) (2) C(l)

(III-25) to determine the constants Coo + Coo + Cnm +

2 3
Cém)and Cém)'
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C) Reduction to a System of Linear Algebraic Equations

Equation (III-26) is the general equation derived
from applying the boundary condition to the outer faces of
the unit cell. The next step is to solve for the coeffici-
ents in the temperature solutions by reducing equation
(IT1-26) to a system of linear algebraic equations. This
will be done by first defining C(2) and C(3) in terms of
Céi) (Céo) is already defined in terms of C(l)), and then
expanding the H(u,¢) functions in spherical harmonics.

Expansion of the four H(u,¢) functions in spherical

harmonics as given by Prévost (6) gives the following

equations: oo (aia)
H (0) = ‘Q*ZZ Pl P:a(ﬂ)cosw@d))
. dzlne;:/q\ {
Hoo )= A Z; ji;A » QM)L0504@¢\
oo () = i S A3 R ) cos (4g4)
wz1 @O ¢
H ) = A4 Z Z A T Fpcostag)

of Ty

(See Appendix D for derlvatlons and solutions to expansion
coefficients.)
From the boundary conditions that were applied at the

sphere-cell interface, r = Ry, the following two equations
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were derived.
n 1) -
Com R = G Re + 0" (III-27A)

nm (=Y

nmn aQ

Ko 2™ =k, (nGR R - (nen P R"Y)  (z11-27B)

1
(3) in terms of C( )

(2)
To state Cnm and Cnm m

, the first step is

to solve both equations (III-27A) and (III-27B) for both
(3)

c{2) ana cpol.

Com = Cam - G2 ;ZNﬁ (III-28A)
Com = Eich(: +(%‘)2;2“-\Ch:) (III-28B)
Cu = I Lo Q2 (III-28C)
Com = - E(Q‘)R:M'C:\fl s (AR e (III-28D)

Now setting equation (III-28A) equal to equation (III-28B)

and solving for Cé%)

Wy L.3) 2n+|
€3) Chm (\- k,_)th

C = (II1-29)

nm
2n+1

And setting equation (III-28C) equal to equation (III-28D)
(2)

nm

C(l’__ C(” ( Kl(n+q-+k‘h)
- k2(2h+\)

and solving for C

(ITI-30)

nm nm

The expressions for Cég), Céé), Cég), H(l)(U,¢), Héi)(Ur¢)r

(3)

am (He®) and H(4)(u,¢) are now inserted into equation

H

(III-26). This yields the following expression:
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o (strd) oo (nly) ¢
) . W
Coo [Aloo ¥ Z Z A\"‘(* P () cos(qte,mJ + Z ol ( alne) K, ")
of 34 e:o n:| m:=0 k (2|q+|)
oo (A/4) K. An+l
n nm Q) (‘ Tk )hmq
A" ZE: A2 PAF( Yeos (4 ] +C 2
.[ ” *dzl p=o ¢ « ?t) om 2n+
oo (ﬂl/“) oo (d/d) g
'[AE“:*Z z Aé‘% P P(Ncos(qu)] = A4 +Z 2, A4, e B P, () cOs(4€¢
e asopTe (III-31)

By using the orthogonal properties of the cosine func-
tion and the associated Legendre function, it is possible
to reduce equation (III-31) to a system of linear equations

dependent upon n and m. First operating upon equation
'K(/q

(ITII-31) with f,CGﬂqq¢)d¢ where
(¢}
Tt/ -
> 4 Tr/q ) rz -
cj Cos(4q¢)d¢ =
o ) , 1 #0
and where
Tr/‘{ /Tf'/g ) rz :é
f Cos(4@¢)cos(4q¢)d¢ =
o 0 , U #B

This gives the following result.

oo [ore) ("\/Q) o0
w? (l) K (h*l)*K h nm ’_)471
Coo Z A\drl d ?Z ( Zn-\»l) 1 AZ"")_ kd (/A)
o=t N3 m= o=
K, 2t g 0o
) (|~ K. )h RO\ nm _ 4 . Yy
+Co e A3 R G = ) AL B
an+l d—__“ ? d_; i

Now operating with fp:q (p) d)/«
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where 2 (¥4 4n)!
|
. ’ 2% +1 Y- g )! ) x'—'o(
[quw Reimldp = o
| 0 ) X#a(
This produces 50 (n/4)
CU) ZZ M( Kz(h+l)+K.h)C::v)\
Nzl m=o K2(2h+\)
2n+1
(1- —)r\'? Q)
+ A3 ¢ = AH
3"’1 ( 2n+\ nes r'l

which may be finally simplified to

| = () K,(n+1) + Kin
Al () + ¢ [Az“m( : : )
m z Z A rn K, (2ns1)

Ny m=o

L A3 (1= 2)n R

21\«\-\
The problem of finding the constants in the tempera-

] = Adgn (II1-32)

ture solutions for the unit cell has now been reduced to a
system of linear algebraic equations as defined by equation
(III-32). For numerical evaluation an upper limit on n
will be chosen. This represents how many terms will be
kept in the expansion for the solution to the temperature

constants.

Equation (III-32) will be used to determine the con-

stants C(l), C{%),*-~ to Cé%). Once these constants have

been determined, it is possible to obtain Cég), Cé%) and

Cé%) from equations (III-14), (III-29), and (III-30).
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Once all constants in the solutions for the temperature
(equations (III-6) and (III-7)) have been determined, the
temperature at any point within the unit cell may be

evaluated.
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IV. RESULTS

To be able to use the analytical method of determining
temperatures that was presented in the preceding section, it
is necessary to develop a code for use upon a digital com-
puter. Such a code, TEMPRO, was developed, and calculates
temperatures for the unit cell used in this analysis. The
code involves all necessary operations to produce equation
(III-32) and then solves that equation for the constants
Céé) and Cé%). Once the code has determined those constants
it can calculate all other necessary constants and can solve
for the temperatures in the unit cell as defined by equations
(II1-6) and (III-7). As an aid to check the operation of
TEMPRO, the heat flux on the side face of the unit cell, as
defined by equation (III-21), is also calculated. Appendix
E provides a further description and a listing of TEMPRO.

The method used to analyze the operation of TEMPRO will
be to check on the return of the input boundary conditions.
This method will be used since on the faces it is possible
to check directly how well the solutions return the given
boundary conditions.

There are three conditions which will therefore be
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checked. Those conditions are the continuity of tempera-
ture at the sphere-cube interface, the temperature on the
top and bottom planes, and the heat flux on the side face.
The continuity of temperature at the sphere-cube interface
was always found to be returned exactly for any unit cell
conditions which were investigated. This result was ex-
pected because this boundary condition is easiest to satisfy
as there is no intermixing of the spherical and cubical geo-
metrics involved in its satisfaction. A boundary condition
of constant temperatures on the top and bottom faces was
applied during this investigation for two reasons. First,
an experimental arrangement to check the theoretical model-
ing may be most easily designed with constant temperatures,
and, secondly, it is simpler to check the return of a
boundary condition if it is a constant rather than a vary-
ing function. The results from TEMPRO show that the re-
turned temperature profiles on the top and bottom faces are
symmetrical, so analysis of the temperature boundary condi-
tions will be limited to the top face of the unit cell. The
third boundary condition of interest is the adiabatic side
face. 1In general it was found that the average heat flux on

the side face was equal to zero, plus or minus 1073 W/cm? .
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The point values of the side face heat flux were found to
be symmetrical around the center plane (Z = 0) of the unit
cell.

To provide a means of determining how well the bound-
ary conditions are returned, three basic parameters will be
used. The first parameter will be the éverage temperature
on the top face. This average temperature (T_) will be

T

calculated by:

where TTi is the returned temperature at each grid point on
the top face and N is the number of grid points. This
average returned temperature will be compared to the input
temperature boundary condition (GT) and will be a measure

of how closely the input condition was returned. The second
and third parameters to be used are the standard deviations
of the returned top face temperature and the returned side
face heat flux. These will be calculated through the use

of the general equation:

N

where ¢ 1s the standard deviation, Ai is the individual
value, A is the mean value, and N is the number of points.

Respectively for the top face temperature and the side face
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heat flux, the symbols used will be dp and Ty Tp; and ¢,
and E& and 5} for o, Ai and A. The use of the standard
deviation provides a measure of how much deviation occurs
between specific values of the temperature or the heat flux.
This will be useful as it is possible for two separate unit
cells to return the same average values, but one will have
point values with a greater dispersion about the mean value.
It may then be concluded that the results are better in the
case with the lower dispersion.

Computer data was obtained from varying the four
basic inputs to the code. Those inputs are 1) the number
of terms to be used in the summation, 2) the size of the
sphere in relation to the size of the cube, 3) the thermal
conductivities of both materials in the unit cell, and 4)
the temperatures on both the top and bottom planes of the

unit cell. The parameters o, and 0¢ are then used to

T 7

determine the conditions and effects due to changing inputs.

A) Effect of the Number of Terms Carried in the

Summation

It was expected, prior to operation of the computer
code, that the returned values of the boundary conditions

would asymptotically approach the input conditions as the
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number of terms (n) was increased, i.e., E& - GT, OT - 0
and Oy > 0. As may be seen in Table 1 and Figure 7, this
did not occur in actual operation of TEMPRO. Table 1 lists
no results for even values of n because it was found that
even values of n would return the same answers, to six sig-
nificant digits, as the next lowest odd value of n (i.e.,

n =4 and n = 3). By observation it was seen that addi-
tional terms due to the even value of n were several orders
of magnitude smaller than the terms already present from
the next lowest odd value of n, and therefore made little
contribution to the answers.

It was decided to run TEMPRO with five terms fo; all
further investigation as based on the data obtained from
varying n. Observation shows that with n equal five there
is the lowest deviation from the input conditions. The
last column in Table 1 provides a numerical evaluation of
the deviation from input conditions for each case. Opera-
tion of TEMPRO was limited to a maximum of nine terms for
one primary reason, computer time versus number of terms
increased exponentially and operation would become prohibi-

tively expensive for greater than nine terms.

Some specific base conditions were selected to be main-

tained while varying other inputs during further computer
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TABLE 1

RETURNED ACCURACY VERSUS NUMBER OF TERMS IN SUMMATION

N AR, (OC) G+(°C) U&(“Vcnf) ‘ii“er\+GT+G¢
1 508.0903 1.5121 0.2829 3.7407
3 510.9231 2.2101 0.3653 3.4985
5 510.6788 1.9519 0.4522 3.0829
7 508.2520 2.4784 0.3962 4.6226
9 509.8095 3.2762 0.7177 4.1844
K7 = 0.16 W/cm°C, Ky, = 0.002 W/cm°C, Rg/Ro = 1,
= = o]
GT 510°C, GB 500°C
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Ky = 0.16 W/cm°C, K, = 0.002 W/cm°C, Rs/Rc =
6y = 510%C, 6y = 500°C

511.0
I7
o)
510.0 3.0
)
2.25
509.0 ©- 1.5
3 0.75
508.0 % L L . 0.0
1

number of terms, n

Figure 7: Returned accuracy versus number
of terms in summation

1

Standard Deviation

(°C)
(W/cm?)

O
T
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operation. First, five terms were used in all runs.
Second, thermal conductivities of 0.16 and 0.002 W/cm°C
were chosen as base values. These are the thermal conduc-
tivities of uranium carbide and helium gas respectively at
approxXximately 500°C. Lastly, a top temperature of 510°C
and a bottom temperature of 500°C were chosen as base con-
ditions. A temperature change of 10°C was chosen so as to
reduce any temperature dependent thermal conductivity ef-

fects.

B) Effect of the Size of the Sphere in Relation

to the Size of the Cube

Because of the non-dimensionalizing of distance in the
analytical development of the temperature solutions, the
true values that are input for the size of the sphere and
the cube make no difference in the results. The factor that
is of importance here is the ratio of the sphere radius to
the cube radius (RS/RC). It was quickly found that a ratio
equal to one produces the maximum deviation from input con-
ditions when considering the effect of the radius ratio.

If the radius of the sphere is zero, then the unit cell

becomes a homogeneous cube. Under these conditions exact
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values of the boundary conditions were returned and all in-
terior temperatures agree.perfectly with one-dimensional
slab theory, that is, a linear variation in temperature
between the top and bottom planes and constant temperature
on all planes parallel to the top and bottom faces.

One factor that must be considered concurrently with
the radius ratio is whether the sphere or the remaining
cell has the larger conductivity. Table 2 and Figure 8
show results for varying the radius ratio when the sphere
conductivity is greater than the cell conductivity. By
interpolation from Figure 8 it is seen that op and O¢ have
dropped to one half, or less, their value when RS/RC =1,
when the radius ratio has decreased to 0.94. When the
sphere conductivity is less than the cell conductivity, it
is seen that the deviations are less at all values of the
radius ratio than for the opposite case, but that the
amount of deviation reduces at a lower rate. Table 3 and
Figure 9 show the results of varying the radius ratio when
K1 < Ky. By interpolation from Figure 9 it was found that
at RS/RC = 0.85 op and 04 are one half, or less, their
values at RS/RC = 1. It is conjectured that better results
are obtained when the cell conductivity is larger because

a more homogeneous situation is present when the material
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RETURNED ACCURACY VERSUS RADIUS RATIO, Kji>K;

Rs /R T (%¢) T (°c) T (W/cmz)
1.0 510.6788 1.9519 0.4522
0.9 510.5610 0.7748 0.1702
0.8 510.4004 0.5142 0.0945
0.7 510.2575 0.3282 0.0558
0.6 510.1538 0.1960 0.0323
0.5 510.0851 0.1082 0.0177
0.4 510.0421 0.0541 0.0087
0.3 510.0174 0.0224 0.0036
0.2 510.0051 0.0000 0.0010
0.1 510.0006 0.0000 0.0001
0.0 510.0000 0.0000 0.0000
Kl = 0.16 W/cm°C, Ky = 0.002 W/cmeC, eT = 510°C,

0, = 500°C, n = 5
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TABLE 3

RETURNED ACCURACY VERSUS RADIUS RATIO, Ky<Ky

Rs /Rc T, (°c) oy (°c) Gy (W/sz)
1.0 509.5579 0.5943 0.0759
0.9 509.7504 0.3234 0.0448
0.8 509.8401 0.2042 0.0308
0.7 509.8951 0.1334 0.0211
0.6 509.9334 0.0858 0.0136
a.5 509.9608 0.0493 0.0081
0.4 509.9796 0.0267 0.0042
0.3 509.9913 0.0085 0.0018
0.2 509.9974 0.0000 0.0005
0.1 509.9996 0.0000 0.0001
0.0 510.0000 0.0000 0.0000
Kl = 0.002 W/cm°C, Ky, = 0.16 W/cm®°C, GT = 510°C,

6, = 500°C, n =5
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outside of the sphere has the larger conductivity.

C) Effect of the Thermal Conductivities of

the Two Materials

Investigation of the effect on the return of the
boundary conditions due to changing the thermal conductiv-
ities of the two regions was performed by varying the con-
ductivity of one region while holding the other region con-
stant. Each region was held at 0.16 W/cm°C while the other
region was varied from 0.001-0.16 W/cm°C. As was initially
expected, it was found that the ratio of the conductivities,
when considering the effect of the conductivities, was the
controlling factor in the accuracy of the return of the
boundary conditions. As the ratio approaches a value of
one, the average temperature on the top face approaches the
input boundary condition and both standard deviations ap-
proach zero. At a conductivity ratio of one, all boundary
conditions are returned exactly (for any radius ratio) and
the results agree with one-dimensional slab theory. This
result is supportive of the conclusion that the analytical
solution for the temperatures is valid and that the devia-
tion in answers for the non-homogeneous unit cell is likely

due to trying to merge a sphere and a cube into a single
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TABLE 4

RETURNED ACCURACY VERSUS CELL CONDUCTIVITY, KlZKZ

Ky (Wiem'e) ¥/, T () Tr (o¢)  To (Wiem?)
0.0010 160.00 510.7083 2.1079 >.0.4859
0.0025 64.00 510.6652 1.8814 0.4369
0.0050 32.00 510.6066 1.5864 0.3724
0.0075 21.33 510.5597 1.3634 0.3228
0.0100 16.00 510.5237 1.1880 0.2837
0.0250 6.40 510.3739 0.6474 0.1553
0.0500 3.20 510.2453 0.3453 0.0771
0.0750 2.13 510.1636 0.2146 0.0435
0.1000 1.60 510.1027 0.1323 0.0245
0.1600 1.00 510.0000 0.0000 0.0000
Kl = 0.16 W/cm°C, RS/RC =1, GT = 510°C, OB = 500°C,
n =>5
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TABLE 5

RETURNED ACCURACY VERSUS AK AND Kl/KZI Ki2Ky

K, (Wem'e) Ky (Wem'e) ak(Wlen@) Kife, T (%) Tr (<) Ty (Wemd)

0.2 0.05  0.15 4.00 510.2882 0.4300 0.0994

0.3 0.15  0.15 2.00 510.1501 0.1958  0.0389

0.4 0.25  0.15 1.60 510.1027 0.1323  0.0245
4.0 0.20  3.80 20.0  510.5514 1.3252  0.3143

0.2 0.0l  0.19 20.0  510.5514 1.3252  0.3143
20,0 1.00 19.00 20.0  510.5514  1.3252  0.3143
Rg/Ry = 1, 6g = 510°C, 65 = 500°C, n = 5
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RETURNED ACCURACY VERSUS SPHERE CONDUCTIVITY, K1§K2

k, (W/eme) Ka/k, Ty (°¢) Iy (=) T (Whend )
0.0010 160.00 509.5520 0.6028 0.0769
0.0025 64.00 509.5608 0.5902 0.0754
0.0050 32.00 509.5751 0.5702 0.0730
0.0075 21.33 509.5890 0.5507 0.0706
0.0100 16.00 509.6023 0.5320 0.0684
0.0250 6.40 509.6739 0.4326 0.0565
0.0500 3.20 509.7682 0.3037 0.0411
0.0750 2.13 509.8408 0.2062 0.0291
0.1000 1.60 509.8987 0.1301 0.0192
0.1600 1.00 510.0000 0.0000 0.0000
K, = 0.16 W/cm°C, Rg/Re = 1, 6p = 510°C, 500°C,
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TABLE 7

RETURNED ACCURACY VERSUS &K AND K,/K;, Ki<K,

K, (Wlem's) Ko (Wlem') Ak (Whm'e) Kalk Tr (%) Ty (<) T4 (Wicm?)
0.05 0.2 0.15 4.0 509.7336 0.3505 0.0468
0.25 0.4 0.15 1.6 509.8987 0.1301 0.0192
0.01 l2.0 9.90 20 509.5508 0.6043 0.0771
1.00 20.0 19.00 20 509.5917 0.5470 0.0702
RS/Rc =1, GT = 510°C, eB = 500°C, n =5
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unit cell.

Computer data was obtained for the two cases Kj>K, and
Kj<K,. Tables 4-5 and Figures 10-11 compile the results
when the sphere is at a constant conductivity while the re-
maining cell varies in conductivity (case 1). Tables 6-7
and Figures 12-13 pertain to case 2 where the sphere con-
ductivity varies while the remaining cell is maintained at
constant conductivity. For case 1, K;>Kp, it was found
that for constant conductivity ratio, the computer results
were constant and independent of the absolute values of the
two conductivities. It was then expected that a similar re-
sult would hold for case 2 (KliKz).' However, as shown by
Table 7, this did not occur, but that accuracy was improved
as the value of K; was increased. Comparison of Figures 11
and 13 shows that case 2 has lower deviation from the input
conditions. This supports the conjecture that better re-
sults are obtained and a more homogeneous unit cell is pro-
duced when the volume surrounding the sphere has the higher

thermal conductivity of the two regions.

D) Effect of the Temperature Boundary Conditions
The last input condition which can have an effect is

the specified temperature on the top and bottom faces of
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the unit cell. As the temperature was non—dimensionalized
in the analytical development, it was expected that the ab-
solute temperature would have no effect on the return of
the input conditions by the computer code. It was quickly
concluded that the difference in the input conditions, A0 =

0

0 was the governing factor when considering the ef-

T VB !
fect of the temperature boundary conditions. As proof of
this it was seen for constant &6 that the temperature and
heat flux standard deviations were constant, as was the dif-
ference between the calculated average temperature on the
top face and the input boundary condition.

Tables 8-9 and Figures 14-15 show the results of the
computer data that was obtained. Through the use of a least
squares fit to the data, it was found that the plots of

T.-6 and 0., versus a6 for Ky>Ky have slopes of 6.7878

T °T T
‘xlO_2 and l.9519x10—l respectively. They both pass through
the origin as would be expected.

For the case where K2>Kl, linear plots are also ob-
tained for the plots of T&—QT and Op versus 068. Those plots
pass through the origin as expected and have slopes of

4.421x1072 and 5.943X10—2 respectively. As has been found

in the investigations of the other parameters, when the cell
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TABLE 8

TEMPERATURE BOUNDARY CONDITIONS, K;>K,
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Or (*¢) ©g(%) ae(*) TFrli%) \Ty—o.) () () G”Q(w[cml)
510 500 10 510.6788 0.6788 1.9519 0.4522
525 500 25 526.6970 1.6970 4.8799 0.4522
550 500 50 553.3939 3.3939 9.7597 0.4522
575 500 75 580.0909 5.0909 14.640 0.4522
600 500 100 606.7879 6.7879 19.519 0.4522
650 500 150 660.1818 10.1818 29,279 0.4522
700 500 200 713.5757 13.5757 39.039 0.4522

10 0 10 10.6788 0.6788 1.9519 0.4522
100 0 100 106.7879 6.7879 19.519 0.4522
K; = 0.16 W/em®°C, Ky = 0.002 W/cm°C, Rs/Rc =1, n =275
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TEMPERATURE BOUNDARY CONDITIONS, Ky <K,
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O1 (%) o4(cc) ael) T () ATr-elli) i) Tl Wiemt)
505 500 5 504.7790 0.2210 0.2972  0.0759
510 500 10 509.5579  0.4421 0.5943  0.0759
525 500 25 523.8948  1.1052 1.4859 0.0759
550 500 50 547.7895  2.2105 2.9717 0.0759
575 500 75 571.6643  3.3357 4.4380 0.0759
600 500 100 595.5790  4.4210 5.9433  0.0759
650 500 150 643.3686 6.6314 8.9150 0.0759
700 500 200 691.1581 8.8419  11.886 0.0759

K] = 0.002 W/cm°C, Ky = 0.16 W/cm°C, Rg/R, = 1, n = 5
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= 0.16 W/cm°C, K, = Q.002 W/em°C, RS/Rc = 1.0, n =5
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conductivity is greater than the sphere conductivity,

better accuracy is once again obtained. One unexpected ob-
servation was that the heat flux and its standard deviation
remained constant for all values of a6, if all other input
parameters were constant. One note of interest, it was
found, as would be expected, that the accuracy with which
the boundary conditions were returned was not dependent upon
whether the top face or the bottom face was at the higher

temperature.
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V. CONCLUSION

Completion of the analysis of the operating character-
istics of the computer code shows that the basic goal has
been achieved. Following the initial completion of the
analytical solutions, computer coding of the solutions was
begun. Development of the code was of assistance in deter-
mining errors in the analytical solutions. Secondly, as
reasonable results were obtained, operation of the code
provides confidence in the analytical expressions. And
thirdly, limits have been determined on the accuracy of the
code.

Because of the interrelation of the input parameters
it becomes extremely difficult to place definite limits on
what may, or may not, be used as input conditions. If it
is desired, for example, to use &6 = 50°C, large deviations
occur if Rs/Rc = 1.0 and Kl/K2 = 160.0. However, if Rs/Rc
were to be decreased and Kl/K2 to approach one, then accept-
able answers may be easily obtained. To further illustrate
this a unit cell was considered with input conditions of

Rg/Ro = 0.5, K,/Ky = 10.0 and 46 = 5.0. Table 10 tabulates
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TABLE 10

RETURNED ACCURACY AND THE INTERRELATION

OF THE INPUT PARAMETERS

Ko /Ky a® (%) |Tr-o.l(%) Tr(e) T ( Wem?)
160 10 0.4421 0.5943 0.0759
160 10 0.0392 0.0493 0.0081

10 10 0.3650 0.4800 0.0600
160 5 0.2210 0.2972 0.0759

10 5 0.0112 0.0239 0.0071
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the deviations that occur for a base unit cell of Rg/Rg =
10, K2/Kl = 160.0 and a0 = 10.0, and the deviations that
occur when each parameter is changed individually, and then
finally the results from the above example where all three
parameters are changed simultaneously.

From the data obtained in this investigation, it is
concluded that the following limits should be followed. To
use any value of Rg/Rc from 0 to 1 and any value of Kl/K2
or Kp/K1 from 1 to 160, the temperature difference should
be maintained at less than ten degrees. If it is desired
to use a larger temperature difference, then better answers
will be obtained if the radius ratio can be reduced to less
than 0.9, and/or if the conductivity ratio can be reduced
to less than 25.0. It should always be kept in mind that
the more homogeneous the unit cell, the better the accuracy
which will be obtained.

Several general trends were observed in the overall
temperature profiles of the unit cell. First, the tempera-
ture on the center plane, Z = 0, was a constant over the
entire plane for all cases and was found to be (eT—eB)/z
within minor deviations. Secondly, the heat flux on the side

face was symmetrical about the Z = 0 plane for all cases.



Page 76

Thirdly, all temperatures within the unit cell were sym-
metrical about the Z = Q plane for all cases. Fourth, as
was expected, a sharp temperature change occurs in the
lower conductivity material near the sphere-cell interface.
The final observed trend was an unexpected result. It was
expected that the region which would produce the greatest
difficulty in obtaining accurate results would be the outer
corner of the unit cell. This would be due to the diffi-
culty of defining the cube in spherical geometry. After
operation of the code, it was found that answers in this
region did not deviate to any greater extent than any other
region. However, for large differences in conductivity,
and when the sphere has the larger conductivity, the cal-
culated temperature for the point of intersection between
the 2 axis and the top face of the unit cell was signifi-
cantly depressed relative to the input boundary condition
and the average temperature on the top face of the unit
cell.

There are some areas where further investigation is
recommended and would be of interest. The first, and prob-
ably the most important, would be to allow for temperature

dependent thermal conductivity. The analytical solution
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could be modified to accept a variable conductivity rather
than the present constant conductivity, but the computer
code would be more difficult. An iterative process would
most likely be the means to incorporate the variable con-
ductivity into the computer code.

A second area of additional investigation which would
be of value would be to study the effect of differcnt sphere
packing arrangements. These additional lattices could in-
clude a hexagonal two-dimensional packing and three dimen-
sional lattices of the face~centered-cubic and body-centered
cubic types. The only change in the analytical solution
which these would require would be a change in the equa-
tions of the faces of the unit cell and subsequent changes
in the derivations of the boundary conditions and limits of
integration.

In summary, an analytical solution has been developed
to solve for the temperature profile of a unit cell con-
sisting of a sphere of one material centered in a cube of
a second material. This was followed by the coding of a
computer program using the analytical solution to calculate
temperatures. From operation of the code it was concluded

that the analytical solution was valid, and limits were
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suggested to the input conditions to the code so as to

maintain accurate results fram the cade.



3)

4)

5)

6)

7)

Page 79

BIBLIOGRAPHY

Schneider, G. E., "Thermal Resistance of a Cylinder
With Two Diametrically Opposite, Symmetric,
Isothermal Caps." Journal of Heat Transfer,
August, 1975, pp. 465-7.

Yovanovich, M. Michael. Thermal Conductance of a
Row of Cylinders Contacting Two Planes.
Paper 71-346, AIAA 6th Thermophysics Conference,
Tullahoma, Tenn., April 26-28, 1971.

Chan, C. K. and Tien, C. L. Conductance of Packed
Spheres in Vacuum. Transactions of the ASME,
August, 1975, p. 302-8.

Holy, Z. J. "Three Dimensional Temperature and
Thermoelastic Stress Fields in a Heat Producing
Sphere Due to Arbitrary Surface Heat Transfer."
Nuclear Engineering and Design. 6 (1967), pp.
395-420.

Abramowitz, M. and Stegun, I. A., ed. Handbook of
Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. National Bureau of
Standards Applied Mathematics Series 55 (1965)

Prévost, Georges. Tables de Fonctions Sphériques.
Paris: Gauthier-Villars et C1€, Editeurs,
p. 48.

Carnahan, B.; Luther, H. A.; Wilkes, J. O. Applied
Numerical Methods. New York: J. Wiley & Sons,
1969. Problems 5.5 and 5.6, p. 330.




APPENDICES



Page 80

Appendix A

Coordinate System Transformations and Unit Vectors

When deriving the equations for the unit cell faces,
it is necessary to have the cartesian coordinate system
(x, vy, 2z) defined in terms of the spherical coordinate
system (P, o, ¢). From Figure Al it is seen that 0 is the
line from the origin to the point of interest. o is the
angle between the z-axis and p. ¢ is the angle between the
X axis and the projection of p on the x-y plane. The fol-

lowing relationships may be derived.

X = psinacosd
Yy = pPsinasing
Z = QpCOSQ

The second necessary set of relationships is to define
the spherical coordinate unit vectors in terms of the car-

tesian coordinate unit vectors. From Figure Al these rela-

tionships may be derived as

ép — sinacos¢éx + sinasin¢éy + cosocéz

~N ~ . ~N . ”~
e, ~ cosoccosd)eX + cosa51n¢ez - sinaé€,

- —51nd>eX + cosd)ey

€
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Appendix B

Derivation of the Limiting Conditions on u

In defining the faces of the unit cell, it is neces-
sary to define the limiting conditions for u on each of
the three faces, top, bottom and side. Figure Bl shows
the upper half of the unit cell where point A is the mid-
point of the sphere. Line RT is one of the limits to the
top face of the unit cell. Line RT'S unseen counterpart in
the lower half of the unit cell (RB) defines one limit to
the bottom face. Lines RT and fp also define two of the
limits to the side face. The remaining defining limits to
this face are ¢ = 0 and ¢ — w/4.

By observing the relationships pictured in Figure Bl,
it becomes possible to derive expressions for u such that
p (the line from point A to Lp or 2p) will intersect RT or
RB.

Beginning with the three dimensional Pythagorean
Theorem which states

a? + b? + ¢? = a2

it can be seen from Figure Bl that the following holds.

22+ 2%+ 2o p? (B-1)
1 2 3
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Top half of unit cell

Figure Bl:
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Also from Figure Bl may be seen the following relationships.

1 3 c
£ = R = pcosb
3 C
2 = & tan¢ = R tang
2 1 c
Now substituting in Rc = £ = % 1into equation (B-1)
1 3

2 2 2 _ .2
Rc + 22 + Rc = p

2Rc2 + 222 = p?

Next inserting the following expression for o

p = Re
cosf

and also the expression for % , the following is obtained
2

2
2R ? + Rc*tan®¢ = Re
cosb?

Now dividing through by Rcz, inserting u = cosf, and solv-
ing for u

2 + tan?¢ = 1
—
U
1

- (B-2)
(2+tan2<1>)1/2

The corresponding equation which defines u so that p inter-

sects line QB is
-1
o= (B-3)
(2+tan2¢)1/2,

The limits on p for all three faces may be written as



Top Face: 1

(2+tan?¢)1/2

-1
Side Face:

(2+tan2¢) 1/2

Bottom Face: -1 < 1y

| A

Page

A
—
| A
=

1
(2+tan2q>)1/72

I A

Hoos

-1

(2+tan2g) /2

85
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Appendix C

Equations of the Faces of the Unit Cell

To apply the boundary equations to the unit cell, it
is necessary to define the faces of the unit cell in terms
of p (the line from the center point of the sphere to any
point on the face), and the limiting conditions on the face,
u and ¢.

The two faces extending from the z axis are defined by
¢ =0 and ¢ - /4. The top and bottom faces and the oppos-
ing side face require more elaborate derivation. For these
three faces the limiting conditions on ¢ and p have élready
been determined (Appendix B). What remains is to derive
expressions for p to each of the three faces. This may be
done by using the equations in Appendix A which define the
cartesian coordinates in terms of the spherical coordinates.

The top face of the unit cell is defined by z = Rc'

The equation for this plane in spherical coordinates is

Ro = pcosf
Solving for p and substituting in p = cosé6
P = Rg/M

Now non-dimensionalizing by the equation r — p/Rg
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0 < ¢ < m/4

(2+tan?¢) /2

The side face is defined by x = R,. Solving for o

R, = psinfcoso
P - Re
sinfcosd¢
Now substituting in sinf = (1-u2)1/? and non-dimensional-
izing
ro_ 1

cos¢(1-p?)1/?
The side face is bounded by
0 < ¢ < mn/4

-1 1
(2+tan?¢) /% < u < (2+tan?¢)/°?

The bottom plane is defined by 2z = R Using the same pro-

c*
cedure as for the top face and solving for r

r - -1
U

The bottom face is bounded by
0 < ¢ < m/4

(2+tan?¢) /2
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Appendix D

Spherical Harmonic Expansion Coefficients
George Prévost (6) expands a function in terms of

spherical harmonics in the following manner

U N

/Jok) z[ no no(/u)ﬂ-.Z(A ccos(ja) + B sm(Jd)) pnj(/“)j]
n=0 =0
where : /A = Cos o
O <6 <1
0 £ e S 2
and:

>
3
!

Zn+\j‘ jqﬁguci) ngwdf*

B.o = O

27 |
2n+| (n*j)! )
Ar\' = fdo( F( ,Q)COS( ds)Pn(. )d
T2 (nejll J M ST

M

2a+| (n-]

. d[ ) S O\ “
By = %% (r\+J)lf “J Fopadsinge Ry g du

Pnj are the associated Legendre functions of the

first kind.

Because of the symmetry of the unit cell, the an
terms are removed from further consideration For the
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unit cell under consideration, the functions H(u,¢) may be

expanded as: co (/i)

H(m, ¢) = Zz A, P (/u)cos(«l@cb)

Prévost uses the condltlon 0 < a < 2m to solve for the
expansion coefficients. The unit cell under consideration
is based upon the condition 0 < ¢ < m/4, therefore, making
this change in integration and making appropriate changes

in terminology, the expansion coefficients may be rewritten

/Y ]
as: 224 1)
Ad°=T[ d(be(/u,cb) Pd(/i)d/a& ,(0“0»"‘)
o} -}

/4 {

4(2°(+|) (- d H y SERN

Ad? = pu (OH-qi)lfd?[‘H(fA,CP)E‘F(/J)COS(QFd))A}A ) §=0'°‘d4
"0 -1

To account for the change in the form of H(u,¢) with

each of the three faces of the unit cell under considera-
tion, the integral over u may be broken into three inte-
grals with the following form:
! A B !
[op = [ap e [ap [ dn
-1 -\ A 8
As shown in the main derivation, there are four H(u,¢)
functions over the three faces of the unit cell. By in-
serting the appropriate functions, the expansion coeffici-

ents may now be written specifically.
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/Yy - 8¢
2({2a+1)
AL = Tf dé fp G d + fP(/u)d/J
o =1
4 ( -8ac
_ H{2a+1) (a-4p)! 4
A]'o(? B w (ot+‘l§)lf ¢)\-l B\@(/A)COS(Llﬁd))d/u
! N
+ qu@(/M)COS(QédD)A
Yac
21 | F“ﬁ; - 8¢
nm 22 o +! _
= B2 e | [ () R g costanel Bad
o) i

(ﬂ pndm(/u) ‘(h+4m)/u 'Pn‘_*\‘m (/u)> cos(dme)cosd

. f“{

N-y Lh/Z
“ac cos ¢ (1-p)
P Um ‘ d
+ 4\““ A:)\E_D (Y\(b)/?rjd> P (L\'d},{
cos & (! 2)
{
\‘l’] o
+[(/‘,;) Ph m(/,u)COS(4m¢) P, (/u) f{u
"R
‘ F“/‘f (/ e
nm 4(?(’/*!) - 4@) d ,/ - hl 11
= ¢ ‘ " i, JCosidp,
s T o BT e
dm 4
(At dm)u P
P COS(Q?Q‘ d},« szhpn ‘/U‘) (n+ M)/: ot (/A))
- RC CDS“-‘d) (“}Jl) &
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4m P sintma) sin g

- cos(dmd)cosd +
COSr\—‘q; (l"/«\")n/?’ j

|
4 n
. E{ @(/,A)COS(AI‘@Md),( +f( "j:) Ph4m(/.A)Cos(‘~\m¢>)
Bc
R wcos(4aa)dp

) /4 -BC

nm 2(2a+1 IR

A3do = _']T_f dé f(/ﬁ) P, (/u)CoS(led))Pd(/d)c\ﬂ
0 =

+

<RC

BC ((/ul(znﬂ)‘(h'”)) P:m(),l) -(h+‘4m)/u P:_:“(/J))
cos " 44 ( \-)Jzy%ll
dm PA™ ) sin(dme) sin

ccos(dmdlcosd + e s P (uw)d
co§n-2d> (l—'/uz)—? ol /)‘) /L'A

|
et
+f(;\:') anm(/ﬂ)COS(4M<b)E((}A) d}_A
BC

ez - B8c

nm 4(2o(+\) (ot~4d )l AR .
A3 B ; [ d(b [ ( /T-“) PhLl (/U\) Cos(*\n'\()))
0

o e (o(+4<33‘_(

/

°¢ ({ 2(2 ) =Gt ) P )
. p;@(/,\)CoS(Ll@cb) A/ul +f { H n (}*
- BC

~(n+dm)u P.\L_\,M(/u)) COS(qMMCO?:p-\

Caér\-z(b ( l~/uL) =z
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den .
. dr Py (},\‘) sin(dme) sin

S| oM
— ¥, () cos(4ge)d
o™ (1A } « () cos(4g )

1
4 BRI
+Jp(ju) P Uu)cos(4wxc)EJWEN)COSULFQ}Q%J
Bc

'h‘/q |
2(2a 1)
ae, = 2220 [ as[ b

[-3+) ¢
o B¢

Ty |

4(2a41) (a-dg)! 4

i = 2022 (900 | o] ¥ costupeln
o
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APPENDIX E

The Computer Code TEMPRO

The computer code TEMPRO was written based on the
analytical derivation presented in this thesis. The code
consists of the main program TEMPRO, two subroutines:

ACALC and LINSOL, and four functions: GINTEG, P, FORIAL,
and FCN. Input data consists of the thermal conductivities
of the two materials (K1, K3), the sizes of the sphere and
the cube (Rg, Rc), the temperature boundary conditions (8q,
GB), the number of terms to be kept in the summation (n),
and the number of points in the grid system for specifying
where the temperatures are to be calculated (XPTS, YPTS,
ZPTS) . The output consists of a listing of all input data,
the constants used in the final temperature solutions, the
position of each grid point in cartesian and spherical co-
ordinates, the temperature at each grid point and if that
point is in the sphere or the surrounding cell, and the heat
flux through the side face at all grid points on the side
face of the unit cell.

The main program TEMPRO serves as the central co-

ordinator and handles all input and output that is neces-



Page 94

sary. TEMPRO begins by reading all input data, setting up
output headers, and calculating the limits and points of
integration. Once all necessary data is developed, TEMPRO
calls subroutine ACALC which calculates the spherical har-
monic expansion coefficients. TEMPRO then places the co-
efficients into a system of linear equations as defined by
equation (III-32). Subroutine LINSOL solves the matrix and
returns the coefficients Céé) and Cé%). The next step in
TEMPRO is to solve for Cég), Cé%) and Cé%) from Céé) and
Céi). All constants are now known and it is possible to
solve for the temperature at any point within the unit cell.
TEMPRO automatically steps through a grid system defined by
XPTS, YPTS, and ZPTS and calculates the temperature at all
grid points. The cartesian coordinate system is used for
input and output because of its ease of use and easier
visualization. All work within the body of TEMPRO is per-
formed in the spherical coordinate system. Similarly, the
size of the cube and the sphere, and the temperature bound-
ary conditions, are read in and out in absolute units (cm
and °C), and then internally converted with TEMPRO to non-
dimensional quantities,

Subroutine ACALC and function GINTEG work to-
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gether to calculate the spherical harmonic expansion co-
efficients that are defined in Appendix D. ACALC begins

by setting up the proper expressions to calculate the ex-
pansion coefficients. This is done by calculating the
necessary factor to multiply each integral by, and then de-
fines the integral limits, function, and face of the unit
cell which is to be integrated. GINTEG uses this informa-
tion to calculate the desired integral. For the integra-
tion GINTEG uses a l0-point, two-dimensional Gauss-Legendre
Quadrature system which was specifically derived for the
unit cell under consideration in this thesis.

The associated Legendre functions and the ex-
pressions used to calculate the expansion coefficients are
found in the functions P and FCN respectively. P contains
the analytical expressions for all associated Legendre
functions that are necessary for the temperature solutions.
Input parameters consist of n, 4m and u, and the numerical
evaluation is returned. FCN is a listing of the expres-
sions found in the analytical expressions for the expansion
coefficients. It is entered with FNUM requesting a specific
expression within the function, and then that expression is

evaluated for the parameters u, ¢, Y, n, n and 4m. This
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value is then returned to GINTEG.

Subroutine LINSOL uses the Gauss-Jordan method of
linear equation solving to solve the system of linear
equations defined by equation (III-32). To improve the
accuracy of the values of Céé) and Cé%) returned by LINSOL,
the subroutine uses an iterative improvement procedure as

outlined by Carnahan (7).
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FEOGRAM TEMPRO(CINPUT,OQUTPUT ,TAPEZ2()

COMMON/L/ A(18,19)A101043),A201043417)4,A3(104,3,17)
AWAL(10,3)4C01043,3),FOUR

COMMON/2/G(34,17510) 4y WEIGHTU10) 4 ALIMA(30),BLIM(3D)Y,
AaFHI (10

CIMENSTION ROOT(10)

FEAL K1,K?24Mi

INTEGER GAMMA, AETA

CATA(RDODT=,14833743389,=-,1439743383, ,4333953941,
A~,4333353341,.H734094L692,-46794095682,.8650633666,
A=-,36506330056,4.97330H5285,=-,9733065285)

CATA(WNZIGHT=,2955242247 442955242247, .26926€7193,
AW2592857193,.2190863625+421390863625,,1494513491%,
A,14945136491,,0606067134430,40€66713443)

CATA(PI=3,141592¢€54)

SET UP HZADSRS ANJ LIMITS OF INTEGRATION

GO TO 11090
1000 FFRINT*,2IF NO NEW DATA, TYPE 12
READ¥, INDATA
IF(INDATA.EQ.1)GO TO 1200
11003 FRINT®,2INPUT SPHIRE K, CEZLL K%
READ®, K1,K?2
FRINT®*,2INPUT SPHERE R, CELL RZ
FEAD¥,RSPHERE 4 RCU3E
RATIO=RSFHEIRE/RCU3E
FOINT*,2INPUT TOF TEMP, BOTTOM TEMP?Z
READ*, TTEMP,ATZMP
FOUR=4,
1200 FFINT(20,%)2 ¢
FRINT(20,*) 2SPHERE RADIUS= Z.RSPHERE.# CM#
FFINT(23,*)2CYdE RADOIUS= #,=RCUBE,# CM2
FFINT(20,*) #SPHERE CONDUCTIVITY= #,K14# WATTS/CM C?
FRINT(20,%) £CELL CONCUCTIVITY= #,K2,7 WATTS/CM C#
FRINTU(?20,%) 2T0° TEMP PRCFILE= £,TTEMP.#% DFGREES C#
FRINT(20,*)#R0OTTOM TEMO PROFILE= #,BTEMP,% DEGREES C#
FRINT*,2THIS PROGRAM WILL ACCEPT UP TO 9 TERMSH#
FRINT*, 2INPUT NUMBER OF TZRMSH#
READ¥ o NTZRM
FFINT{20,%)2F0OR THIS RUN, THE NUMBZR OF TERMS= Z#,NTERM
o 300 I=1,10
FRI(I)=(RIIT(IV+1.)*F1/8.
ALIM(IN==1,
200 BLIMIIN==1./SQRT (2. +TAN(PHI(I))**2)
0 302 1=11,23
ALIM(IN=3LIMUI-1D)
302 BLIM(IN=-ALIMII)
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CC 363 I=21,340
ALIM(IN=3LIM(I-1D)
303 ELIM(ID=1.

I3C=1, 307TT0OM FACE
I8C=2, SIDE FACE
18C=3, TOP FACE

[ra BV A B =

O 1339 I3C=1,3
IF(IBC.EN1IL=0
IF(IBC.EQ.2)L=10
IF(IBC.5N.3)L=20
CO 1400 J=1,110
00 1400 I=1,10
CUIBCy 1o I1=(ROOTHIN*(BLIMUJ+ L) =ALIM(J+L) +BLIMI+L) +
ANLIMJ+LIYZ 2,
1400 CCONTINUC
1300 CONTINUE
IF(NTERM.LE +3) MS=ENTERM#L
JFlLLELNTERM « AND. NTZFMJLE 7)) MS=2*NTEPM=2
IF(B8.LS.NTERM AND., NTZFRM.LELL11IMS=3*NTERM=-9

MS1=MS +1
§ CALCULATE A1,A2,43,44
: CALL ACALC(NTERH)
N=NTZRM+L
; SZIT UP A+ “ATRIX FOR SOLUTION
3

I=1
0 861 GAMYA=1,N1
IF(GAMMA,,LEZ . 4) J=1
IFI5,LF GAMMA JAND. GAMMALLC.3) J=2
IF(9.LZGAMMA LAND. GA4MALzZe12)U=3
710 803 AZTA=1,J
AM=1
A(I,1)=A1 (GAMMA,AETA)
A(IZMS1)=AL(GAMMAL,AELTA)
I12=2
D0 811 NN=1,NTERM
IF (NNs.LE,3)K=1
IF (b LELNN +ANJs NN.LEL7IK=2
IF(8.LELNN JAND, NNeLE.11)K=232
no 313 MM=1,K
A(T,I2)=A2 (GAMMALAZTANM) ¥ (K2¥F (NN+1.) +K1¥NN)
- FIK2¥ (2 *NN+1 )Y+ AZ(GAMMALAETAL NI ¥ (1, -KL1/K2) *
A RATIO** (2¥NN+1) *NN/(2.*NN+1,)
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NM=NM+1
I2=12+1
CONTINUE
CONTINUE
I=1I+1
CONTINUZ
CONTINUE

SOLVE tA* MATRIX
CALL LINSOL(MS,yM51)

SET UP CONSTANTS *Ct

I1=2
CC 20 NN=2,N1
MNi=NN=-1

IF(NNJLEJG)K=1
IF(SaL=eNN JANTO, NNeLESR)K=2Z
IF{9.LENN L4NT, NN.LE.12)K=3
Do 22 MM=1,K
CANNyMMy1)=A(1,451)
TANNg MY, 23 =C(NNyMM, 1) ¥ (K2FNNEKL1I¥NNL) / (K2¥F (2. *NN1+1,.))
CINNyMMe3)=CINNpMM,y 1) ¥(1,-KL1/K2)¥RATIO** (2" NN1+1) *NN1L
/(24 ¥NN1+1.,)
I=I+1
CONT INUZ
CONTINUE
C(141,1)=C(14142)=A01,51)
FRINT(23,67)
FORMAT (1Xe20 VALUESF/1 7%y 2CNMLZ,9X,2CNM22,9Xy #CNM3 L)
£C 860 I=1,N1
IF(T.LE.4)K=1
IF(5.LE%. eAND. TIolLEL8IK=2
IF(Q.LEel +ANDe IelLtoel2V¥K=7
0 801 J=1,K
FREINT(204852)I19J3C(I4Jy13,C(I14J42),C0I,44,3)
FORMAT (1X,2N=2,1242X,#24=2,12,3(2Xs211.5))
CONTINUCZ
CONTINUE

AUTOMATIC 3TZP THROQUGH OF UMTIT CELL AND
CALCULATICN OF TEMPERATURES AT ALL
POINTS ANJ HEAT FLUXES ON SURFACES
0% UNIT CELL

FRINT(2C,100)
FCRMAT (1X730X,2POSITIONZ 435X, ¢TEMPERATUREZ, 10X, ?HEATY?
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Ayt FLUYXRE)
FRINT(23.,131)

ATFEEZy 838X s 2SPHERE 7Ry #CELL2,8X, 2#SIDE#)
FRINT*,2INPUT XPTIS, YPTS, ZPTSt#
READ*y XPTS, YPTS,ZPTS
XH=1./ (XPTS=1.)

YH=1./7 (YPTS=~1,.)
IH=2./ (ZPTS5=-1.)
x=Y=0
xT=YT=10
2:1.
21=RCUA3E
GO TO 200

201 x=X+XH
XT=X*ROUBZ
IF(£.GT414)G0 TO 202
Ge TO 230

202 Y=Y+YH
YT=Y*¥ROURBRE
IF(Y.GT.1.0G0 70 203
x=1
CC TO 200

203 2=7-7H
FPINT{(20,%) % #
2T=7%*RCUAE
IF(Z.LT.-1.)0G0 TO 600
x=Y=4y
XT=YT=0

200 XR=SQRT(X®X+Y*Y+2+7)
XPT=XR*RCU3E
IF(Z.20.,30)G0 TO 205
THZTA=ACOS(Z/XR)
xMU=COS(THZTA)
JIF(XMULEQe=1) XxMU=-,93999
IF(Y.EQ.0)50 TO 206
XFEE=ATANLY/X)
IFIXFEZLGT.e7354)1G0 TO 201
IF(XKR.GT,RATIOIGO TO 3
Cc TO 219

205 »M'1=,3001
IF(XetEQel +ANT. YJNELDOIGO TO 201
IF(Y N 0)AFzE=0 ,
IF(YJNZLO)XFEE=ATANL(Y/X)
IF(XFELZ.GT..7854)G0 TO 201
IF(XRsGT.RATIOIGO TO 3
¢C TO 2160
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200 XFcE=0
IF(AR.GT.RATIUIGEC TO 3

CALCULATION OF TEMPERATURE WITHIN SPHERE

210 TEMPL=0
CC 40 NN=2,N1
IFINNsLE.¥) K=1
TF(S.LELNN JAND. NN.Lc.8IK=2?
IF(goLEoN\J e ANDe NNJLE12)K=3
720 42 MM=1,K
Y4={MM=-1,) ¥FOUK
TEMPI=TEMPL+C INNy MMy 1) *XR¥F(NN=1) ¥*FP (NM, MM, XMU) ¥
A COSIML¥XFEZD)
42 CONT INUE
40 CONTINUE
TEMPL=(TEMPL+C 1,1 1)) *(TTEVMP=-SBTEMP) +BTEMP
IF(XR.=ZQ,3)G0 TO 53068
IF(XR.SQ.RATIOIGO TO 3
6900 FFRINT(205103)XT4YT 3 ZT 9 XKT XMUyXFEE,TEMPY
103 FORMAT (LXy 6 (FBeby3X),,F10.4)
GO 70 201

CALCULATICN OF TEMPERATURE OUTSIDE OF SPHeRt

3 TE4PZ=0
CC &3 NN=2,N1
IFINNSLES 4) K=1
IF{S5eLE«NN +ANTe NNoLELB)K=?
00 45 MM=1,K
Muz(MM=-1,)¥F0OUX
TEMP2=TZAP2+{C(NNsMM,2) *XR** (NN=1) +C (NNyMM,3) ¥XR*#*
I (=NNY)FPANNy MM, XMUY ¥*50S (M4 ¥XFEE)
L> CONTINUZ
43 CONTINUE=
TEMP2=(TZ1P24C(1,1,2) ) ¥(TTEMP-BTIZMP) +BTEMP
IF(X«GEs41.1G0 TO 500
IF(XR.TN.RATIOIG? TO 502
FRINTL20,104)XT 4 ¥T 32Ty XRT,XMUXFEE,TEMP?
104 FORMAT(LIX,6(FBL,y3X),11X,F10.4)
GC TO 201
532 FFINTU?04,100) XT YTy ZT 9y XFT 4y XMUyXFrcTEMPL,TEMP2
105 FCORMAT(LIX,0(F3444,3X)42(F10e4y3X))
¢cC TO 201

CALCULATICN OF HzZAT FLUX ON SIDt FACE
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500 FLUX=D
0 91 NN=2,N1
MN1=NN-=-1
IF(NNeLESGYK=1
IF(5.LENN JANDs NNJLELBR)K=2
IF(9.LE«NN JAND. NNoeLEL12)K=3
20 93 MM=1,K
M= (MM=1,)*FQUR
FLUX=FLUX+C (NMaMM,2) /COS{XFEE)®¥ (NN1-1)
/(Le =XMUFXMU) *¥(NN1/72.) ¥ (COSTMG®XFEE)*COS(XFZE)*
(NNL #P (NN, I, XMU) = (NN1
+MG) FXAUFPINNL g MMy AMU) ) #MLG¥FP (NN MMy XMU) *SINIML*XFEE)
FSINIXFEE)) +C(NNyMM,3)/COS(XFEE)Y**(-NN1-2)
/ULe =XMURXMUY ¥ (L=NN1-1.1/2.,) *(COS(ML*XFEE)®COS(XFEE) ¥
(LAMURXMU¥ L2 *NNL+14) =NN) ¥PINNyMM, XMU) = (NNL #MLY *
AMUFPINNL ¢MMy XMU) ) # MG ¥E(NNy MMy XMU) *STNIMLF*FXFEE) *
SINIXFEZ))
93 CONT TNUZ
91 CONTINUEZ
PRINT(?04107)XT o¥T 3 ZT 4y XET 4 X MU XFEE, TEMP2, FLUX
107 FORMATIIX,y0(FBel,3X) 4 11X,2(F10.4,y3X))
CC 7O 201
600 FRINT®*,£IF WANT TO CONTINUE, TYPE 1%
SEAD*®, CONT
IF(CONT.FN.13¥G0 TO 1000
STOF
END

b 2 T T e e T 2 2

SUBRDUTINE ACALCINTERM)
COMMON/17 A{18419) 4A1(10+3)+A2(104+3+17),A3010,43417)
AyAL(1043),C(10,3,3),F0UK
INTEGER SAMMALAETA,LG1
CATAIPTI=3.,141532¢E54)
NL=NTERM+1
CC 1 GAMYA=1,N1
IF{GAMMAJLE.4) J=1
IF(5,LE«GA4IMA JANDe GAMMA L E.8) J=2
IF(9.LE.GAMMA JAND. GAMMALE.12)J=3
JO0 3 ASTA=1,J
ANM=1
G1=GAMMA-~1
L1=G1-FOUR® (ATA-1)
L2=G1+FOUR*(AETA-1)
FACTNOR=(2*G1L+1) %L /PTI*¥FORTIAL(LL)/FORIAL(LZ)
IF(AETA.CQL1)FACTOR=FACTOR/2,
ALIGAMMALACTAY=FACTOR®(GINTEG(1,1+GAMMALAEZTA,0,0)
» *GINTEG(3,1,GANMMA,ACTA,0,0))
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AL{GAMMAL,AETA)=FACTOR*GINTEG(34,1,GAMMA,AETA,L0,0)
N0 & NN=1,NTZRM
IF (NN.LE.3)K=1
IF (Lo LENN +AONNDe NNLEL7)IK=2
IF(834LEZ NN +ANDe NNJLEL11)IK=3
D0 h MM=1,K
A2 (GAMMALAZTAZNMI=FACTOR*(GINTEG(1,2,4GAMMA,
A ACTAGZHNy VMY +GINTZG(2,4,34GAMMALAETAZNNyMM) +
A GINTEG(3+4+GAMMALAETA JNNyMM))
AZ{GAMMA, A-TA,NM)=FACTOR* (GINTEG(1,5,GAMMA,
A AETAYNNyMM)+GINTEG(2,069yGAMMAL,AETA JNNyMM) +
A GINTEG(347+GAMMALAETA JNNyMM))
NM=NM+1
6 CONTINUE
4 COMTINUE
3 CONTTINUE
1 CONTINUE
FETUKN
END

FUNCTION GINTZGIBCFNUMGAMMAZAETAyNNoMM)
COMMON/2/G(34104510) s WEIGHT(10) 4 ALIM(30) ,BLIM(3D),
AFHI(10)
CIMENSION Z(€110)
INTEGER BC,FNUM,GAMMA,LAETA
CATA(PTI=3.,1415926c54)
SUM1=D
IF(3C.=ZQ.11L=0
IF(BC.EQ.20L=110
0 9 J=1,140
SuM=0
37 110 I=1,11
10 SUM=SUMEWE IGHT (DY *FCONALG(30yJy I} 9 PHICJY ,FNUM,GAMMA,
A AFTA'N\J"1H’
ZUD=(3LIMILF Y -ALTIMIL+J))I/72.¥5SUM
3 CONTINUE
fo 11 1=1,10
11 SUML=SUML+WEIGHT(IN*Z(T)
CINT=G=PI/R,*5UM1
*RETU=N
END

FUNCTION P(N,,MU)
REAL MU, 1U2
MU2 =MU *MU
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GO TO(10,20430,40,50,60+70,30,90,100,11C)N
10 F=1
FETURN
20 F=MU
RETURN
3J F=(3¥MU2-1)/2
KETURN
47 GO TO(41,42)M
41 F=((5%MU2-3)*MUI/2
RETURN
42 F=0
RETURN
50 GO TO(51,52)M
51 F=((35%*4U2-30) ¥MU2+3) /3
FETURN
52 F=105%(1-My2)%*2
FETURN
el GO TO{(51,52)1
€1 F=(((63%MU2-70) *MU2+15)*MU) /1
~ETURN
€2 F=3L5¥MU*{(1-MU2)¥#*2
RETURN
70 CO TO(71,72WM
71 F=({((231¥MY2-315)¥*MU2+105)*MU2~-5)/16
RETURN
72 F=A45/2% (1-MUZY*¥2% {11%MU2-2)
~E TU=N
83 CO T0(B1,32,33}M
81 F=((((L29%MU2-/A33)*MU2+315) ¥MU2-35) *MU) /16
RETURN
42 F=3465/2% (L=-MU2)*¥¥2¥ ((L3*4U2=3) *MWU)
SETURN
83 F=90
FETURN
a0 CGC T0(391,32,931M
g1 F=((((ha35¥MU2-12012)%MU2+6930)*¥MU2-1260)¥MU2+35) /7123
FETURN
92 F=10395/8%(1=-MU2)¥*¥ 2% ({€£5%*MU2-26) *MUZ+1)
RETURN
Q3 F=2027025%(1-MUY2)*¥¥4
RETURN
103 CO T0(101,102,103M1
101 F=(((((12155%My2=-25740) *MU2+18018)*MU2=-46620)%MU2
P+315)*MYy) /128
FETU=SN
102 F=135136/3%(1=-MU2) **¥2* {((17¥MU2-10) *MU2+1) ¥MU)
FETUPRN
103 F=34459425¥MU* (1-MU2) **¢4
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FETURN
113 GC T0(111,112,113I
114 F=0((0(46139¥MU2~-109395)¥MU2+390030) *MU2-30030)*MU2
P +3465) ¥MU2-63) /256
SETURN
112 F=45045/106%F (1=-MUZ2)*¥2% (((323¥MU2-255) ¥MU2+L5) ¥MU2~1)
FETURN
113 F=344504542572*(19%¥MU2-1)*{1-MU2) **4
FETURN
£ND

FUNCTION FON{(MULFEE sFNUM,GAMMA,AETA 4N4M)
CO4MON/1/7 A(18,19) ,01€10,3),A2(10,3,17)4,A3(10,3417)
AGZAL(1043),C0(01043,3),F0OUR
FEAL MUMG
INTERER FNUMVGAMMA,AETALAETAL
N1=N#+1
AETAL=(AZTA-1)*FQUR
Mu=(M=-1,)*FOUR
IF(M.EN0IM4=0
GO TO (1429394495464 7)FNUM
1 FON=P({RAMMAL,AZTALMUI*CIOS(AZTALYFEE)
FETURN
2 FON= (=1, /MU)I*ENFA(NL yM, MUV *COS(ML¥FEL)®
e F(GAMMAL,AZTALMUY*COS(AETAL*FER)
FETURN
T OFCN={L/00S(FEE)*¥(N=-1)/(1.-MUFMU) *¥(N/2,)
e ¥FOIN¥P (N1 yMyMU) = (N+ML) FMUFO N,y MUY ) *COS(MG*FEE)
P ¥COSIFEE) $ML*FPINL M MUY *SINIML*FEL) *SINI(FEE)))
P *P(GAMMALAETAZMUI*COS (AETALY¥FEL)
fRETURN
L FCN=(L1 /7MUY *#FN¥*P (N1 My MU) ¥COSIMY*FL £) *2 {GAMMA, AETA,
s MUY ¥COS(AETAL¥FETD)
FETURN
5 FCN=(=1,/74U)** (=N=1) *P(N14M4MUY *COS(ML*FEE) *P (GAMMA,
P BETAZMUY*COS(AEYAL¥FLE)
FETURN
6 FCN=(1,/COS{FEE)** (=N=2)/(1.-MUFMUI*¥*((-N-1,)/2,)
AFLLAUF AU (2, %N+#1,) =N1)¥P (N1 My MU) = (N+ML) *MY*
AR (N yMe MU ) *FCOSIMU*FEE )Y COS(FIE) ¢ML¥P(NL MM *
ASTINIML*FEEL) *SIN(FEE))) *P(GAMMAL,AETA ,MU)
AYCOS(ATTAL¥FELR)
FETURN
7 FCON={1.74)) %% (=N=-1)V¥P (N1 My MUY *COS(MLFFEE) *
PFIGAMMALZAETAZMU) ¥*COSCAZTAW¥FEE)
rETUSN
ctND
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SUBROUTINE LINSOLIN.NP)
CCMMON/Z1/7 A(18,413) ,A1(108,3),A2010,3,17),A3(10,3,17)
Ay AL(10,3),0(10,43,3),F0OUF
CIMENSION D(204.21),E020,40),X(20),
P R(20),0EL3(23),0cLX(20) 4AX(20)
BTEMP=0,
CC 9 I=1,N
D0 8 J=1,N
TEMP=AAS(A(I,J))
IF(TEMP,GE.ATEMP) ATEMP=TEMP
CONT INUEZ
D0 10 J=1,NP
DIy =ACI,J)/7ATENP
CONTINUC
£0 3 K=1,N
KP=K+1
ATEMP=0.
L=x
J0 L I=K,N
TEMP=A3SID(IK))
IF(TEMP=ATEMC) 4,44,5
L=1
ATEMP=TE1P
CONT INUZ
IF(L‘K)5023;6
30 7 J=K,NP
TEMP=0(L,J)
L,y JI=D(K, )
DK,y J)=TEMP
CONTINUEL
0 3 J=KP GNP
JUKy NN=3(K,y J)/D(K,K)
00 3 I=1,N
IF(I.EQ.K)GO TO 3
D(T.J)=D(I.J)—D(K.J)*O(I.K)
CONT INUC
N2=2%N
CO 70 T=1,N
CC 74 J=1,N
£(LyJd) =0(1,J)
CO 32 I=1,N
Lo 22 J=NP,yN2
IF(I+N.ZQ.J)GO TO 31
E(I'J):Oo
GO TO 32
E(I, J) =1,



14

16

17
13

13

21

2b

22

27

CONTINUL
ATEMP=0.
CO 1 I=1,.N
DC 2 J=1,N
TEMP=ASS(E(I, J))
IF(TEMP SELATEMPYATEMP=TENMP
CONTINUE
DO 11 J=1,4N2
Iy N=E{I+JI/ATEMP
CONTINUE
CO 13 K=1,N
KP=K+1
LTEMP=1
L=X
DO 14 I=KN
TeMP=A3S(E(I4K))
TFITEMP=-ATEMP) 14,414,415
L=1
AT MP=TEMP
CONT INUE
IF(L-K)16418,16
DO 17 J=K,4N2
TEMP=E (L, J)
THlly J)=E(KyJ)
Ky J)=ToMP
CONT INUC
20 13 J=KP4N2
E(Ky J)=2(K,y J) 7E(K,4K)
00 13 I=1,N
IF(IL.EN.KIGDO TO 13
ELIZII=ElTyII=E(KyJIFEL(TI,K)
CONT TNU= :
CO 21 I=1,N
X(IVY=D (I ,NP)
ECII=A (T ,NP)
SuM=0
CO 25 T=1,N
20 25 J=1,N
SUM=SUA+A (L, D) ¥X ()
AX(TI)=SUM
SuM=gQ
CC 22 I=1,N
CELB(IV=B{I)=-AX(])
SUM=y
CC 23 TI=1,N
J0 23 J=NP,N2
SUM=SUM+Z (I, J)*NELB(J=N)
CELX(I)=5UM
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23

24

SUM=10

CO 24 I=1,N

BT ZNPI=DELX (I +X(I)
CONTINUL

Rt TURN

END

FUNCTLON FORIAL(D)
FORTIAL=1

0 1 I=1,J
FCRTAL=FORIAL*I
FETURN

ENT
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APPENDIX F

Reduction of the Three Dimensional Solution

to Two Dimensions

Under some circumstances it may be desirable to
reduce the three dimensional temperature solution, that has
been presented here, to a two dimensional solution. This
solution may be obtained by removing all dependence upon ¢.
The resulting unit cell will appear as in Figure 5b and
will be representative of a sphere centered within a cylin-
der and thus having no ¢ dependence.

All boundary conditions will remain the same and
the two dimensional solution will be obtained by evaluating
all equations at ¢ = 0. For ¢ = 0 it then follows that m =
0 and this has two effects. First, it removes the summa-
tion over m, and secondly, it causes a change from associ-
ated Legendre polynomials to special Legendre polynomials.

0

That is because by definition (5), Pl

p) = P o(m).
The primary egquations reduce to the following

equations for a two dimensional analysis.



Temperature Solutions:

Tl 90 = C:)*'Z c e P (p)
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Top Face Boundary Condition:
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Bottom Face Boundary Condition:

-1

r: —
/.4
< . =L

BRI SY

o0 n \ l-n-|
-~ (3 -
o:co‘“.fZ[Cn‘“(;‘*\ P () + €y (;) Ph(/m)}

n=)
System of Linear Equations:

) K;(n+1) +K,n
0) (_\)[ h( 2 1
C 2
AlXCO +Z n A 7 KZ(?_h-H) )

n =y

K 2n «+|

n (- T, )N R,
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