
AN ABSTRACT OF THE THESIS OF

Mitchel Eugene Cunningham for the degree of Master of

Science in Nuclear Engineering presented on May 6, 1977

Title: TEMPERATURE PROFILES OF SPHERES PACKED IN REGULAR

ARRAYS

Abstract approved:
Redacted for Privacy

Kenneth L. Peddicord

An analytical solution is developed for the tempera-

ture profile of a unit cell consisting of a sphere of one

material centered in a cube of a second material. All

material properties are considered constant and boundary

conditions consist of specified temperatures on the top

and bottom faces of the cube with the side faces being

adiabatic. A computer program was developed using the

analytical solution and results are presented. Factors of

importance were found to be the ratio of the sphere diam-

eter to the cube side length, the ratio of the thermal con-

ductivities of the two materials, and the difference be-

tween the temperatures on the top and bottom faces of the

unit cell.



Temperature Profiles of Spheres

Packed in Regular Arrays

by

Mitchel Eugene Cunningham

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Commencement June 1977



APPROVED:

Redacted for Privacy
AssistAnt Professor of Nuclear Engineering

Redacted for Privacy
Head of Nuclear Engineering Department

Redacted for Privacy

Dean of Graduate School

Date thesis is presented May 6, 1977

Typed by Laura Collins for Mitchel Eugene Cunningham



ACKNOWLEDGMENT

I wish to express my sincere and heartfelt thanks to

my advisor and friend, Dr. Kenneth L. Peddicord, for his

knowledge, advice, and recommendations during the course of

My graduate work.

I dedicate this thesis to my entire family; to Jeanne

for encouraging me to take my Master's and helping me to

find myself, to my parents and brother for their love and

support, and last, but not least, to my mother-in-law for

her tremendous help in the final preparation of the thesis.



TABLE OF CONTENTS

Chapter Page

I Introduction 1

II The Unit Cell, Coordinate Systems, and
Boundary Conditions 5

III Development of the Solutions 17

A) General Solution of the Differential
Equation 17

B) Detailed Treatment and Application
of the Boundary Conditions 23

C) Reduction to a System of Linear
Algebraic Equations 39

IV Results from the Computer Code TEMPRO 44

A) Effect on the Number of Terms Carried
in the Infinite Summation 47

B) Effect of the Size of the Sphere in
Relation to the Size of the Cube 51

C) Effect of the Thermal Conductivities
of the Two Materials 57

D) Effect of the Temperature Boundary
Conditions 66

V Conclusion 73

VI Bibliography 79

VII Appendices
A) Coordinate System Transformation

and Unit Vectors 80

B) Derivation of the Limiting Conditions
on p 82

C) Equations of the Faces of the Unit
Cell 86

D) Spherical Harmonic Expansion
Coefficients 88

E) The Computer Code TEMPRO 93

F) Reduction of the Three Dimensional
Solution to Two Dimensions 109



Figure

LIST OF ILLUSTRATIONS

Three dimensional array of spheres

Central sphere in a square array with the
cubical boundary and the unit cell outlined

Single sphere centered within a cube

Page

1

2

3

6

7

8

4 The unit cell for the square array 11

5 Three views of the unit cell 12

6 Coordinate systems imposed on the unit cell 14

7 Returned accuracy versus number of terms
in summation 50

8 Returned accuracy versus radius ratio, K1 >K2 54

9 Returned accuracy versus radius ratio, K1 <K2 56

10 Returned accuracy versus cell
conductivity, K1 >K2 60

11 Returned accuracy versus conductivity
ratio, K1 >K2 61

12 Returned accuracy versus sphere conductivity,
Ki<K2 64

13 Returned accuracy versus conductivity ratio,
Ki<K2 65

14 Returned accuracy versus temperature
difference (ele ), K1 >K2 70

15 Returned accuracy versus temperature
difference (A0 ), K1 <K2 71

Al Coordinate system and spherical unit vectors 81

Bl Top half of unit cell 83



LIST OF TABLES

Table Page

1 Returned accuracy versus number of
terms in summation

2 Returned accuracy versus radius ratio,
K
1
>K

2

3 Returned accuracy versus radius ratio,
K
1
<K

2

49

53

55

4 Returned accuracy versus cell conductivity,
Ki>K2 58

5 Returned accuracy versus K and K1 /K2, K1 >K2 59

6 Returned accuracy versus sphere conductivity,
K
1
<K

2
62

7 Returned accuracy versus K and K2/K1, K1 <K2 63

8 Returned accuracy versus temperature
boundary conditions, K1 >K2

9 Returned accuracy versus temperature
boundary conditions, K1<K2

10 Returned accuracy and the interrelation
of the input parameters

68

69

74



TEMPERATURE PROFILE OF SPHERES

PACKED IN REGULAR ARRAYS

I. Introduction

One of the engineering structures that poses a prob-

lem in heat conduction is the case of a sphere of one

material surrounded by a second, differing, material. This

situation may be illustrated by two examples from the field

of nuclear engineering. First, the sphere has a lower

thermal conductivity than the surrounding material. This

may be found in ceramic fuels which contain gas pores. The

gas pore may be considered as a sphere and has lower con-

ductivity than the surrounding ceramic. Secondly, the

sphere has the higher thermal conductivity. This may be

illustrated by sphere packed fuel where the sphere is sur-

rounded by a coating or by gas.

For the purpose of thermal analysis each of these

examples may be approximated as consisting of a unit cell

composed of a sphere centered within a regular polyhedron

where the sphere is composed of one material and the re-

mainder of the polyhedron is composed of the second mate-

rial.
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The first step in thermal analysis is the derivation

of the temperature at any point within the chosen unit cell.

This thesis will develop the analytical solution to the

temperature profile of a unit cell consisting of a sphere

and a regular polyhedron. Derivation of the solution will

be followed by the development of a computer code based on

the solution. Analysis of the code will concentrate on

verifying the validity of the analytical solution, and then

outlining conditions under which the code provides, or does

not provide, the desired accuracy for the unit cell under

consideration.

In surveying the published literature concerned with

spheres and thermal analysis, it was found that there is

only a limited amount of information that deals with

spheres and temperature calculations. Most of the avail-

able information analyzes insulated spheres and cylinders

and concentrates on finding the thermal conductance or re-

sistance without calculating the temperatures. As an ex-

ample, Schneider (1) and Yovanovich (2) have both separ-

ately investigated the thermal conductance of cylinders

separating infinite planes of differing temperatures. The

cylinders are assumed to be insulated except for the con-

tact area of cylinder upon plane. Chan and Tien (3) have
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extended the analysis to a packed bed of spheres separating

two planes. These spheres are also considered to be insu-

lated except for contact areas.

Holy (4) has given solutions for the subject of non-

insulated spheres. He was interested in calculating the

temperature and stress fields for a sphere with variable

surface heat transfer and uniform internal heat generation.

Using an eigenfunction expansion Holy has developed a

truncated series of spherical harmonics for his solution

where the coefficients of the series were obtained by ap-

plication of the least squares principle to the relevant

boundary conditions. A solution of the following form was

generated. 00

CI)) T.
(r)

> r,, Pn`'.).A) c 4,)

ry 0 re,= 0

+
er' Pr" C -A)SlYlcrr1 )

The coefficients A and Bnm are found by solving a

set of simultaneous equations. Holy's solution depends on

the assumption of a mean value of heat transfer from the

surface of the sphere, and as such, does not require any

knowledge of the surrounding material. Accuracy for this

method depends on how the given points at which the heat

transfer distribution is sampled are located over the

surface of the sphere.
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The work presented in this thesis differs from the

work dealing with insulated spheres and cylinders in that

the sphere under consideration here is not insulated. The

work by Holy is related to the development presented here,

with the following differences. First, the solutions to

be developed are dependent upon the material surrounding

the sphere and no assumption is made concerning the distri-

bution of heat transfer between the sphere and the surround-

ing material. Secondly, the spherical harmonic coefficients

will be obtained by numerical integration of the specific

functions rather than using the least squares principle.

hnd finally, a temperature profile will be developed for

the entire unit cell, which includes the sphere and the

surrounding material.
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II. THE UNIT CELL, COORDINATE SYSTEMS,

AND BOUNDARY CONDITIONS

The problem under consideration is a simple cubic,

three dimensional array of spheres separating two infinite

planes as shown in Figure la. The spheres are all of uni-

form diameter and consist of a homogeneous material with

constant properties. The remaining volume between the two

planes is occupied by a second material, also of constant

properties. The array shown in Figure la may be reduced to

a planar array as seen in Figure lb. All boundary condi-

tions will remain the same for the planar arrangement as

for the cubic array.

The approach is an attempt to analytically describe a

possible experimental arrangement. On both the upper and

lower planes it will be assumed that the temperature at all

points is known. For a large number of spheres in the

layer, it may be concluded that no heat transfer occurs

between adjacent spheres due to symmetry and that all heat

transfer occurs perpendicular to the top and bottom planes.

To define the unit cell for which the study is made,

the distribution of the spheres is considered. Figure 2

shows a square packed array of spheres as viewed from
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a) Simple cubic packing arrangement of spheres

/ og(/ /0 o0 0 0
b) Repeating horizontal planes of spheres

Figure 1: Three dimensional array of spheres
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Figure 2: Central sphere in a square array
with the cubical boundary and
the unit cell outlined
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either the top or bottom plane. As shown in Figure 2, the

analysis to be presented here will be based on an array of

spheres spaced on a regular square lattice, but the diameter

(d) of the spheres may be less than, or equal to, the spac-

ing of the lattice (s). For any particular case which is

to be analyzed, the diameter of all spheres will be equal

and constant for that case.

The square that has been placed around the central

sphere in Figure 2 defines the boundaries of a cube sur-

rounding the sphere, with the sphere centered in the cube.

Figure 3 shows a three-dimensional view of the sphere

within the cube. These cubes may be replicated to con-

struct the three-dimensional array of spheres between two

planes as shown in Figure 1.

The cube and sphere can be subdivided further. In

Figure 3 the temperature profiles are assumed known, and

differing, on both the top and bottom faces, therefore,

the full height of the cube must be considered. However,

in the other directions lines of symmetry do exist. Since

the heat will be flowing between the top and bottom faces

due to their temperature difference, and because all sphere

containing cubes are identical, no heat will be transferred

across the side faces of a cube to adjacent cubes. These
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side faces are therefore seen to be adiabatic. Referring

again to Figure 2, it is seen that the top face can be sub-

divided into eight 45° right triangles by drawing lines

from the center of the sphere to the corners of the square

and from the center of the sphere to the midpoint of each

side. These lines establish lines of symmetry; that is,

the derivative of the temperature along each of these lines

is zero since the temperature profiles within the cube and

sphere will be either maxima or minima along these lines.

Finally then the smallest unit cell which can represent the

array of spheres is shown in Figure 4. It is a triangular

wedge of height 2Rc. The sides forming the right angle are

each of length Rc and the hypotenuse is of length Rc j7.

It is for this unit cell that the study is made.

Three plane views of the unit cell are shown in Figure

5. The top face of the triangular wedge with the outer

edge of the sphere appears in Figure 5a. In Figures 5b and

5c, two of the sides of the unit cell are shown. In Figure

5b it is seen that 2Rc is the length of the side of the cube

and that Rs is the radius of the sphere. When comparing Rc

to Rs, it may be seen that Rc can be considered as the cube

"radius" and will be referred to as such from here on.

This problem is treated in spherical geometry.
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Figure 4: The unit cell for the square array
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a) Top view, Z = Rc

Rc

RI

Rc

b) Side view, Y = 0, = 0

c) Side view, X = Y, = 7/4

Figure 5: Three views of the unit cell
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Figure 6 is a repeat of Figure 4, but has the spherical

and cartesian coordinate systems imposed upon it. Any

point P in the unit cell is described by the coordinates

(p,a,(P) where p is the distance from the origin to P, a is

the angle between the Z axis and the line to P, and cp is

the angle between the X axis and the projection of the line

to P on the XY plane.

Steady state heat conduction in this spherical system

is governed by Poisson's equation:

V26CAra,(1)) = 0 (II-1)

where e(p,a,0 is the temperature at any point within the

unit cell. The Laplacian operator is given by

(?2 4) 4- fasinol :c4 56-'64;
1

+
e sin ock 641

A more useful form can be obtained by making the transfor-

mation

p =cosy (1-112)1/2 = sina

so that
1

1 \ 6

vz :-.- __ ( 2
e2. c ) -i-- (( i -"Al ) p )

l'A
I (I1-4)

+ e2 (1 JA2 ) 6ep2

Referring to Figure 6, the unit cell is bounded by

the limits of (I) = 0 to (1) = Tr/4, a = 0 to a = 7 (p = 1 to

p = -1), and from p = 0 to the outer planes, top, side,
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Figure 6: Coordinate systems imposed
on the unit cell
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and bottom, which are given by the equations in Appendix C.

There are five surfaces to the unit cell. The top and

bottom faces are discussed below. The three side faces

(referring to Figure 6) are: (1) the Y = 0 plane (cp = 0),

(2) the 45° plane given by X = Y (q) = 7/4) and (3) the

plane given by X = Rc (see Appendix C). These three sur-

faces are adiabatic. This condition requires that the com-

ponent of the heat flux vector normal to the surface be

zero;

fi"-i"(Pa,(1) S.
= 0i

where Si denotes the ith surface, ni is the unit vector

normal to surface i, and El-- is the heat flux vector.

Equation (II-5) requires that the dot product of the

unit vector normal to the ith surface and the heat flux

vector evaluated on the ith surface be zero. The heat flux

vector at any point is given by

e( f,d., 6)

where V, the gradient operator, is given by

A A

e eek r al

where
P'

&
a

and 8
(i)

are the unit vectors in the p, a and (1)

directions. Equation (III-5) may now be written as:



-ni -KVO(p,a,fl
S.

= 0
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(11-8)

On the top face, Z = Rd, the temperature at any point

on the plane is known and given by the function OT(p,4).

Likewise on the bottom face, Z = -RC, the temperature at

any point on the plane is known and given by the function

0/3(p,o. K is the thermal conductivity of the region

under consideration.
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III. DEVELOPMENT OF THE SOLUTIONS

General Solution of the Differential Equation

The governing equations are a linear system of ordinary

differential equations. The normal procedure for solving a

system of this type is used; that is, the general solution

is obtained by determining the complete solution of the

homogeneous equation and one particular solution to the

inhomogeneous equation. The linear combination of these

gives the general solution. The arbitrary coefficients in

the solutions to the homogeneous equation are then evalu-

ated through application of the boundary conditions.

The development of the solution for the temperature

profile is begun by setting

V20 = 0

where V2 is given by equation (II-4), thus giving

I 3 2 \ i( )2)I

0 -z: p )

E.4 i

, (III-1)
af bc e dt.4 ) (1-±A2)

It becomes advantageous at this point to convert to

non-dimensional parameters and proceed with the analysis

upon that basis. Distance and temperature are the two

parameters affected and the non-dimensional terms are
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where 0 T and 0
B
are the temperature functions on the top

and bottom faces of the unit cell. Equation (III-1) is

now converted by substituting in the appropriate expres-

sions for p, 0, and _IL
ap

p = rRc

0 = T(OT-013)-1-0B

v- a t 6=
bf' dr dr Rc 6r

Thus giving:
1

0 r - : 2 . (r rz
c 'dr

2' 1 (7( e, -ez) 4 e B))

I d / 1

?
I

+ . Rc.i
1-4

1(1-v-A'i ( T ( eT -es)i es))
t t 61 t

+ r1 ka ( 17,2) 641 l 7 (e1 -9B) 4 e 13

Now combining terms and performing the partial derivatives

upon T(OT-OB)+0B produces:

0 = (0T ea) I a ri aT l (GT --e) (1
( ) 6T )

12,1 rl r rl
( ____

6.p afA

+ (ar -C's)
rz(I-)LA') b(V-.

Dividing through by the constant factor gives the follow-

ing final form:
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I

( r 2 ) + I (t t_)A2) elT
rz er ra jA 6), 1-1 7-42) ,342

(III-2)

The solution to equation (III-2) may be represented by

eigenfunctions of the form

T(r,11,(1) = E(r)F(11)G(cP)

To identify the specific functions, it becomes necessary to

examine the operators.

If G(q) is selected as cos(kfl, it is seen that two

derivatives return the cosine function. One of the bound-

ary conditions applicable to this problem is that

aT (r,p,cb)
=0

This is due to the symmetry of the unit cell. Application

of the boundary condition leads to the conclusion that

-ksin(kfl = 0

Knowing that sin(Tr) = 0, this sets up the condition that

kg) = Tr. When (I) = Tr/4, then k must equal 4. To make the

solution hold for all multiples of Tr, k = 4m, where m is

an integer greater than, or equal to, zero. Therefore it

is seen that all modes of the form

G(q) = cos(4m0

satisfy the equation.
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It is also desired that when E(r) is operated upon by

the Laplacian, that the original function be returned. One

function which satisfies this requirement is

E(r) = rn

Another function which satisfies this requirement is

E(r) = r-n-1

This second form of E(r) will be of importance later. The

following form has now been established for the temperature

solution:

T(r,11,0 = rnF(p)cos(4m0

To determine a specific function for F(u), it becomes

necessary to evaluate the partial derivatives of T(r,p,fl

with respect to r and (1), and then insert those expressions

into the governing equation, equation (III-2).

)T (r))-A, (1)) _ nr^"' F 9,A) cos(i-40-4)
dr

I .) ( 2 ,?tilt*-1)-4.41)) = h(1."\-1-l) rr."2 c(A)cos 4,,YrNcb)
arr 3r

( cb)
r ) sin ( 4 rr,

8(15

62(T(r,p,4)) ('4m)2 f(i.A)C0S(-irr%
642
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Combining these partial derivatives gives the following

equation.

= n(n-fl)r
n-1 94 cos ( 4rn et))

r

3-[(1-i-Ati-
61A

F (),,) Cos(Lkm 4)))1
I

(2.(1..).42)[(4ni)lt-r' F( ") (41,y, 4,)

Dividing through by rn -2 and cos(4m0 gives

n t) FCJ.A) + [( )

6).A adu,

(A4m)4

(1-1-A2)

Further rearrangement gives an equation of the form

0 = [(1-,p1) "("41+HI-N+1) F (,) (111-3)
ay, (1-)-41)

Equation (III-3) is the governing equation for F(p), solv-

ing for F(p) will complete the solution for T(r,p,(1)). From

Abramowitz and Stegun (5), equation 8.1.1, it is found by

inspection that

LkrY, 4-1

F ()LA) Ph ) Qh ()U,)

where P
n
4m (p) and Qn

m
(p) are the associated Legendre func-

tions of degree n and order 4m. Equation (III-4) is the

total solution for F(p) as PIIIIm(p) and 41111(p) are the two

linearly independent solutions that satisfy the second

order differential equation (III-3). Because Qilm(p) is
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infinite at p = 0, Qn
4m (p) must be discarded and the final

solution for F(p) will be

F(.1-1) = Pi6111(P)

The final general form of T(r,p,q)) is now

T(r,p,(P) = rn4m(p)cos(4mq5)

Now knowing the general form of the temperature solu-

tion, it becomes possible to solve for the specific tempera-

ture within the sphere and outside of the sphere.

Within the sphere:

V2T1(r,p,c1)) = 0

and outside the sphere:

V2T2(r,p,(0 = 0

The following solutions may then be seen to satisfy

the governing equations and the condition of finite temper-

atures at all points within the unit cell.
(r /4)

Ti r )),A 4,) CO + Lt1

(--NrA r^ c.(D (41y4) (III -6)

The r -n -1 term is infinite at r = 0 and is therefore dis-

carded in the temperature solution for the sphere.
(r/,I)

(z) COO (4) r (1) elm

T2 k r,)-A ) Coo r + r co5 C rnis)

Az I fv,%0

Where (n/4) denotes the largest integer in n/4 and Cc(1),

cc2), ca), ca), C(2), and are all constants which
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must be evaluated.

B) Detailed Treatment and Application of the Boundary

Conditions.

The boundary conditions which are applicable to this

problem and will be used to solve for the constants in the

temperature solutions are:

1) Continuity of temperature, for all p and ci), at

the interface between the sphere and the remainder

of the unit cell.

2) Continuity of heat flux, for all p and (1), at the

interface between the sphere and the remainder of

the unit cell.

3) The (1) = 0 and cp, = Tr/4 faces of the unit cell are

adiabatic. (This condition was used to select

the cos(4mfl mode.)

4) The outer faces of the cube are subject to one

boundary condition, which consists of three parts:

a) The top face of the unit cell has a known

temperature function, OT(p,(p)

b) The outer side face of the unit cell is
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adiabatic. (This face will be referred to

as the side face of the unit cell.)

c) The bottom face of the unit cell has a known

temperature function, 0B(u,0

Boundary conditions 1) and 2) will each provide two equa-

tions for the solution of the constants.

Continuity of temperature requires that

Ti(Ra,p,cp) = T2(Ra,p,0 must be satisfied at r = Rs/Rc = Ra.

eo tr441)
co (i)

C chr., 2c, Pr, 9A) c os ry,,$) = "-) Coo
oo oo

TN.) rY1=0

co (nb4)

Ro.

(c (a)er,,c ) (L-1 016)n rn nevs h )1-4 C°5 " ,
I

i m-40 (III 8)

It is now possible to operate on equation (III-8) and

utilize the orthogonal properties of the cosine function.

This is done by operating on both sides of the equation
117,4

by fcos(4k0d(1). This is done twice, first with k = 0,
0

and secondly for all other k.

and

With k = 0, the involved portion of the equation is
7r/zi

co5(L4rno)ci4, = hII
sirN(4rncip)

w/4

c4)

1T

0
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This then gives

so (rtiLI)

° Qa (tA ) co s (LA r,,
ir [c o(4) C00")]Lc:1 + 0 [ v () r,

re,:o
o

G

(r,/,4)

-+ Chin ) P, (JA) OS ( 4 ry,(4
(1) p, us) \ 4n,

which has a final form of

(1) (2) Coo
ooC = C +00 Ra

(3)

Now applying orthogonality for all k>0,
-1.174,4

Cos(4rrIc0C 5(4k4)) ct(t.

requires a change of variable. Setting w = 0, this then

gives

c (C re, .1) cos ( ) ci

lAJ =0

k VY1

0 , k

Applying this to equation (III-8) then produces

0.0
(t) TC (2) h ( 3) n-% \ 4k
nk e, Pr, ().),) ?, l`nis ) Ph ( ,p) ( I I 1 -10 )

n=.1

The next step utilizes the orthogonality of the associated

Legendre functions. This is done by operating on equation

(III-10) with

41c

PA (po
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Noting that from Abramowitz and Stegun (5), equation

8.14.13

This gives the result of
11- 2, ( L4k)! R

8 2 Ft- I
(J! -yk)1

Cf2 qc,

1-c 2. (.Q4,1k)1 t° A ( 3) -1-

S 2241 ( - $4k)!
Ra Cik

The above equation may be reduced to the following system

of linear equations

(i) (z) 9 ( 3) A-1
C Ra Ra

RRk a Ck Ak Q
(III-11)

The second boundary condition to be applied is that

of continuity of heat flux, normal to the surface of the

sphere, at r = Ra, that is

(3)
r.

n/4)
Chrr, pc, rh ) 0 ( ly (I)) +

rt-,t mao

C-N3 (nay)

(1) 00 ,irv,
(nC (n+1)Ci\n, Rck (IA co(S4 trN (III-12)

h m a
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Using orthogonality as before, we first operate with
'rris4

( 3)
'rf L., Co,0 =

r2,:2

which uniquely defines Coo(3) as

C
(3)
oo = 0

and reduces equation (III-9) to

(1) (2)

Coooo

which gives

(III-14)

The next step is to operate on equation (III-12) with
tch.4

fCos(4k0) al) . This gives
0

(11 r-i 4k
C

Q
(LA) _/

/ h-t (3) -h-2 '4k
(Crk Ra (hfi)Crk 1?ct ) (/ A)

ri
,Ltk

Now operating on the result with j 5 9,0d)A

the following result is obtained

Tr 2. (2414k)1
K

ACC`) )2.4 it 2 (24,41,01

21+1 (2- kilr Pk a S Z1+1 (9.- 04k)!

L (iCik R4 _41)C.Qk 1R4

which may be reduced to the following system of linear

equations.

(Z) R-I (3) -S-2
kce (ilk R4 K2 OCek (Z4 ,R+1) Crek

Ra
(III-15)
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There is now one equation, (III-14), for the two unknown

coefficients C
(1)
oo and C00

(2)
, and two equations, (III-11)

and (III-15) for the unknown coefficients Cik (1) and Cik(2),

and Cik(3). It now becomes necessary to obtain one more

equation for Cik(1), Clk(2) and Cik(3) so that their solu-

tion may be obtained. This will be accomplished by apply-

ing the boundary condition to the outer faces of the unit

cell.

Beginning with the top face of the unit cell, the

boundary condition of known temperature function may be

written as

e(P,u,fl = eT(11,0

and this may be rewritten as

T2(r41,0 = 1

Therefore

m (nb4)

C +
CZ) ' (2)

kirn

00 r 4 r / ("A) cos (4 Intl))
nzt ms,:o

The boundary condition equation may be written in the fol-

lowing form so that it will be easier to use later.

(L)
I =

> [
fv2.1 frszo

(2.) m 4m
Chtm r P y)cos (41,16)

C 1-
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From Appendix C, it is shown that the top face is defined

by the following relations

I
I

< AA I1 ,

rs ( a -4- A- art d11

Now substituting in the expression for r, the final form

of the equation is obtained.
(n t,4)

= Coo
CZ)

(p-t- envoc05(i4M4
11=1 =

(s) / I c"-,-)4rh

rh ("A) Co.SC(ItY\ Cb).1

(III-16)

Equation (III-16) may be rewritten in the following general

form

where

( " N)

> it cv(It,)ChM11 (p) CoS(4rncb) 4 Cn,,,,3) Gr:16,,1 (i.A) COS (41'116)]L
nz ( !Y% = 0

(III-17)

h 4.1rn

fhh, (i-A) (7,,,) Ph (r,)

t

Gn- ()-0 Ph (IA)

The next face to be evaluated is the side face,

X = Rc, where

=
cosct, 17),,.)1/2

(See Appendix C)

The boundary condition here is that the face is adiabatic,
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that is, no heat transfer occurs across the face. The unit

vector normal to the side face is fi = TheThe boundary

condition for this face may then be written as

[e ov

--i

e K V T2 (r /jut) (01 = 0 (III-18)

where q is the heat flux, exq is the component perpendicu-

lar to the side face and .h2(r,11,(1)) is again defined as

A ":.",Ti ()V 71(r)P,$) = er
ar

l
bTa ( CO A ri)-A) (I) )

+ e,
64 r sin cis

Utilizing the transformations for spherical unit vectors in

terms of the cartesian unit vectors (see Appendix A), it is

seen that the dot products in equation (III-18) become

exer = sinucosq)

exea = cosacoscb

esxes = -sinq)

so that
A ( rip )

e,, (t. -Kz [Sir\c(co(t)
sr

coso( coat Tz(r)A,4) sir) Ta (r,"(01
r a4)

(III-19)

The next step is to evaluate the three partial derivatives.

Recalling that



Ta(r)p,o) = Ca.:") 4
11=1

DO (t) (3)

hm r + C,m r
,+ph
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(y.)Colkimct))

and that p = cosa, the three derivatives are seen to be:

"T2 (r)1A,c1))

tYCz (r)) .A)4))

Tz(r0A,6)

aok

Do (b/4)

0

(n14)

CCt.hm
)

r
r,..1

-(1+1)r F, ()LA.) cos (4rr

R)
P,, ()),) 4tYN .51,1(4r1"16)) 4h1r,r,., r Lrrt(m)

(r
(1) r() -h-1) 4mr khr, r T A)) cos (4neicil)Ism )ok h /

=

Realizing that

m £4pa 0'4
rh (A) P (e)

ont a e,c e)-A h

and

)...\I =
co5c,( = ir),{ = ( (-u1)

d

112

The next step is to solve for -IP 4 111(11). This is done byDp n

making use of equation 8.5.4 of Abramowitz and Stegun (5)

which states (in their notation)

e-1)(T; (Z) = VZP)).4(e)-(1)-F).A)P1)14_1(e)
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It is then seen for the problem under consideration that
rn ql,,

8 Lim Ph ( ) - ( n 4 "-1 In) Pr^)-k LA
r ( ) ,..-

)-A-
ct

The parts may now be put together to show that

44 re% 4m
a 4m ti2 ni.A Ph (i.A) - (rN + kirn) Pr..., ("A)

ad ph ()A) -/"2.)
pl

which may be rewritten as

L4 tf, ry-k Pr-sN
4 o,

(fik) ^ (.t-N 4-4m) (),A)

pr, (')3,A

It is now seen that

ad

(m/14)

kC r
(1) h-

Km r )( ( r

n=1

/
4m

hi k Ph (ia) )1+ rn) Pr, - (i-A)

C 0 .1 k'n )
( -/LA2 )'12

It is now necessary to insert all three partial derivatives

into equation (III-18) to solve the boundary condition.

This then yields the following expression
(m(.4)

p (t jut)
z co4 (( r - (n+i)cr,,, rlnCnm

(1) )
Ph 91-) co 5(4'110

n 7-1 M =o

(rt,i) nV Ph m(y.) (n t o m ) Pi, M (IA)
c.c.

( (4)r"
Ch
(3) -h-1

2

Cpm 4 N^. r ( 1^
Cos (4m4)

)...kti) 2
n-7-2 en= o

("14)
sit, cis v (2.) (3) 34,

/ \ -hr1 r .."-

r
hres r rt, ()J.) ir1(4

r(1-1-(1.) 4

Equation (III-19) has already been divided by -K2 and the

cb) (III-20)

expressions sing = (1-p2) 1/2 and cosa = p have been in-
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serted. Now bringing the constants inside the summations
tnim) ia

,L) n-t (3) -n-2) 4P'^> C r -(n4 i)Ch, r () (I- ul) COS(ArelOC(.54)

STo (Nly)
, Lim

(L) (3) -n-2)(
P, (iv.) n-0.10-+J)A (fft,

Cos (4tIntb)Cosci)+> (chrn r *Ch,
( 7,41T/2.

= T.0

(INN)
1.( )> (C hrn

n. 1 Iv.

r%-t (-5)
r ChMrn

rr, (11,1`

(

si1(4rn4,)5in

Now combining all three summations
Do (n/41)

0 (-0 ( 7 1) a> C r 'Pp
rn

(fA) 1A Co5(4rn C-04?,

11.7.1 M =O

0,41,
rvjAt n tn)).,

co5(4entOcodo
)1'2

hfr,
+ P (i") (3) 4m

5ir)(i-irnc0-birq +Chn, r -(1+1)Ph (jx)
1/4

Co5 (4rn $) Cos n)".`z 1)"4m (lA) ))-x ()A) Cos4 rn Co5 ctp

t 'fa
4M

Sinktry,4)+ ?1, ( ,

(I_ pz.) '11

Substituting in
r cosd? _A.2 )/2 and further simplifying

cni (nty) C (1)m.). PIP2 Phim (iA I 1-1 4 tv))A Pp (t)
d:rnk

[( i-/LA11/2 13,,4"(jtA)
COSN-14 (1-pa) 2 ( -/LAI) 12

CkS (1-1(Y\ 41)C 05 4 + iirni)t:Ir'tt) s (411-4)sinctil
(1-p1)111

-n-z n-z
Cc)-

) hl
1 11AZ Ph4r's(t ) n4'ilvd).A (?)

- h+()(1-),A2) 7 Ptcnn (p))
Cos( gArn4) cost,)z I`/2

I-1

Str(41rI)str41/
m P,14 r"(p) .

3)hM
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By combining Pn4m (P) terms and separating out (1-112)1/2 the

above equation may be simplified to the following inter-

mediate form.

C, (4) Co5(,4rnci))Coc).

LJ // (1-iu!) ti2

411,

rn Pr,41is' ()LA)

"a)ila Sin (4r4-4)5.1-41

4rn
pn -

)
h -04 r")),A Ph_ 9.e.)

C nn

( 3)

r 2v-
COS 4 (1-.)-A1) z

DiA2(2r1+1)-(h-1.1))

1-itY) (jA)
-5tv)Hract0)51?-141

((-v-t4)1/4

A final simplification by combining (1-112)1/2 yields
ts)(n/m) Cr,

0-
n-( nn Pr14 A " Y rt

A r

(I-A C 0 M 4) C ° 54=>
cosct (1)Al)q

r =.1 re=o

4 Nh, i):"sy-A)sirl(4""),1))

C
m,

(3)
h

-n-2.
COS C, (1-/"Z) 2

qm , 4m )
4. Pr, ()A1 (11+4ry.)u, Cos(41-y)4) cos 4, + Ltrn

sit\ (44m (0

LN/A2(2'11-1) -(r`*1))

Ph ty.)

(III-21)

Equation (III -21) may now be written in the same form used

for the top face.
("14)

F

LCINre'
re% 0

(11
F, (1`)C,-.)(4rA4))COZ(1) (3)

hm 0;in Non 4)sin(¢)

(3)) (2.)4 Chi," (it...k.)COS(4rn COCOS 4 Gne% ()U.) .5(n0-ir"Osinct] (111-22)hm



where
/ rrsE.-- (1),

n
nt r, p, 4 r")/,,,, 11,_, (/a)/t?-) co " -1 ( I -).A1)

r(3)
t-trr.

P: (tt ))

cos"' ( 7ATI2
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G r,, (ltt2( 2,o) -(r, +1)) py,4- 4 Iwo), y))
COS (1--frti)-V

(a) A.ImPh"'(),A))
9,A) cos-n-2 (

Equation (111-22) is valid for the side face of the unit

cell under the following conditions.

r cos 4 (

<
1-4

(2 1.#0,1Nz+ 1/2. ( 2+

o 4, (See Appendix B)

The final face to be evaluated is the bottom face of

the unit cell where the boundary condition is that the

temperature distribution across the face is a known func-

tion. The equation of the bottom face is

-1

and the boundary condition may be stated as

0(P 111,1)) = OB (11,4))

which may be rewritten as

T2(r,p,(p) = 0



The boundary equation is now seen to be

(n/.4)

(Cn(m) r Cni-rn i) r-r"I) CoS (44 rn 4)

r-. I frs=.0

(2)
= C -1-00
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(111-23)

-1
After substituting in r = p and further rearrangement,

equation (111-23) may be written in final form as

co (n/

C
)

(2.) ri4rr% ()/ t \ r1-1

Op 1

Cnrn ) (1.A) C (14 + C - ) P ix) cos (Arn 4)]^ / jA

h1:1( M=o

(111-24)

Equation (111-24) is seen to have the same general form

that has already been found for the top and side faces.

0= c)
00

[ 04)c., 9..A)cos(4rno) 21) (4)
-4 Cym (),A) Cos rn CO]

t h.zo

(111-25)

where 4m
77L

nP (iA)
ht(4) I

(it.A -i-L-A) ito

Equation (111-25) is valid under the following conditions

r =

< ( 2 + +col (1))4

0 < < 11.44

The form of the three parts of the boundary condition

applied to the top, side, and bottom faces is such that one
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general equation may be written for the boundary condition.

This equation is

00

H (j4)( c<, 9-4,(1)) H -+ (i , )]

(0 0) (t)

n I to:,

(111-26)

The boundary condition on the outer face of the unit

cell may be summarized in the following form.

Top Face:

Side Face:

1

(

0 cl) <

) ()A , tzt))

(Li

th) =

r=
1

(p) c0 s (4 )

GSM (),Alcos(41n-,4,)

034 ( (--p2) v2

( 2 + foon2 ct) 1)2
( 2 4 + 2 1 z

(
H 0

(1u,(1)) = F,,,,)( mcos(itr,,,Ocos F.ntr,,,) ()I,A)5 n rn \ Stn

NhM ( , G C ( 4 rncb) Co'S Gt,") (p) ( tY, 4) 1

tA,1

()A') = 0



Bottom Face:

--t

r =

-
( (2 + +0,2

0 4,

(-111)(ii,(t) =

tz) ts4)

ep) ) 0 s rn )

(1) )

(JA) cos(4m4)

H(4)
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It now becomes necessary to work with equations

(III -11) , (III -14) , (III -15) , (III -17) , (111-22) , and

(111-25) to determine the constants C
00
(1)

C0o
(2)

Cnm
(1)

I

(2) (3)Cnm and Cnm
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C) Reduction to a System of Linear Algebraic Equations

Equation (111-26) is the general equation derived

from applying the boundary condition to the outer faces of

the unit cell. The next step is to solve for the coeffici-

ents in the temperature solutions by reducing equation

(III -26) to a system of linear algebraic equations. This

will be done by first defining C(2) and C(3) in terms ofnm nm

C
o)

(C() is already defined in terms of C (1)

'
) and thenCam)

oo

expanding the H(11,(P) functions in spherical harmonics.

Expansion of the four H(p,(1)) functions in spherical

harmonics as given by Prevost (6) gives the following

equations:

01
H (fA, 4)1 = A1.61.

c.o (c,/:-)

P r /- co5 (ky 4))

( a.)

()A )^ A2r`" +
00

h3 = A3 4 3"' (p) cos ('-lr)))atv

o 0-70
.0 (Pt

oe. rAq pd4(1 ( to cos ( L.1(3 4:1)

(

of .---1

( T-1 /A.t

2 p rciA)(.0-3(4 Fct))
aig

(See Appendix D for derivations and solutions to expansion

coefficients.)

From the boundary conditions that were applied at the

sphere-cell interface, r = Ra, the following two equations



were derived.

Rn C (4) nnm w hm R C
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(III-27A)

Rg" = K2 (1-1C44)Q:I-(h+OCE4n1
To state Cd C(3) in terms of C(1) the first step is(2) and nm '

to solve both equations (III -27A) and (III-27B) for both

C
) and C (3)

nm nm

(1) r (1) () "Zr".1
C mm ::: s-hm ChM "s0, (III-28A)

(). K r CO ( n t 1 ) -2'1 (3)
CC - -- ChM -- 2q (III-28B)hM k2 hm rl ck hm

(.3) 0) 2r, 41 (1.) 2h41C,r, : C. R4 - C
FI

Q
q (III-28C)

ChM
Kit n \,2h4I Q) (2.1 \ 2r,+( (i)

(III-28D)
'''''"" = k7z t rvf 1 i r\c Chr" 4' In+1 I Na `---p\r.

Now setting equation (III-28A) equal to equation (III-28B)

and solving for CR)

(3)
CrIrf,

fl_ L4:3\

Lflm k' i%

2 n + I
(111-29)

And setting equation (III-28C) equal to equation (III -28D)

and solving for Cnm
(2)

(2) 0)
C ChM rre.

(1-14-1) 4 kIh

k2 ( 2.n+t
(III-30)

(2) (2) (3) (1) H(2)The expressions for Coo , Cnm , Cnm , H k nm '"

(3)
Hnm (11 (1)1 and H

(4)
(p,q)) are now inserted into equation

(111-26). This yields the following expression:



00

[AC'
00 (0U,)

tv.
A2

et.p

(3''"I

(d/4)

[P2+3 + rL),-Arsd)1n A3 p ( )c050no, a

ft 7,0

oo ( 1.4 )

Pc4.4(1 (),4) COS (4 4)..] > >
rh--..c

P.1413 (?)cos p t4 Cntim)

of=,

-=
00
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Ul ( ) 4 kyl
hm

kz(2h-1-1)

(t

zn41

(w4)

, el
tA4

p
P.7(

1-1
)cos(44N)

p =0
(III-31)

By using the orthogonal properties of the cosine func-

tion and the associated Legendre function, it is possible

to reduce equation (III-31) to a system of linear equations

dependent upon n and m. First operating upon equation
117,4

fC05(ki ro3) d where(III-31) with
0

-,7t74

Cos(s40))84)

0

and where

flr/4
Co5(4(30 cos( '41'14))

0

0

This gives the following result.

Coe, AI
'41.

P (

2n-.l
( I -

Ci,(1)
ts--2

Now operating with

Iv o

0) ( kz(n4-() k,h)
k2(2m41)

0=1

) (3

P41(?)

4 P41w)
ot



where

peel ,p,) Pri41(/).) ct)-4

-1

This produces

Atrrt Co(o1)

+ R3nm

A2

1 2 (21"4 (11)1

2)-p go!

rr

f,21 41
1.% (1)(1-

rmr,"r 4 I

k2 (t.,+1) 1<, )
c

t<2 ZPI 4 1)

which may be finally simplified to
/44 )

Wem

AN ell

u)
IA2 r

nen (11 1) 4 kt PI

ChM

R0.2.1,41

Kz (Zt,4)

---- A

)
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(111-32)

The problem of finding the constants in the tempera-

ture solutions for the unit cell has now been reduced to a

system of linear algebraic equations as defined by equation

(111-32). For numerical evaluation an upper limit on n

will be chosen. This represents how many terms will be

kept in the expansion for the solution to the temperature

constants.

Equation (111-32) will be used to determine the con-

stants Coo), (1)

' nto C(1). Once these constants haveoo

been determined, it is possible to obtain co, cg) and

(3)Cnm from equations (III-14), (111-29), and (III-30)



Page 43

Once all constants in the solutions for the temperature

(equations (III-6) and (III-7)) have been determined, the

temperature at any point within the unit cell may be

evaluated.
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IV. RESULTS

To be able to use the analytical method of determining

temperatures that was presented in the preceding section, it

is necessary to develop a code for use upon a digital com-

puter. Such a code, TEMPRO, was developed, and calculates

temperatures for the unit cell used in this analysis. The

code involves all necessary operations to produce equation

(111-32) and then solves that equation for the constants

Coo) (1)
-oo and Cnm . Once the code has determined those constants

it can calculate all other necessary constants and can solve

for the temperatures in the unit cell as defined by equations

(III-6) and (III-7). As an aid to check the operation of

TEMPRO, the heat flux on the side face of the unit cell, as

defined by equation (III-21), is also calculated. Appendix

E provides a further description and a listing of TEMPRO.

The method used to analyze the operation of TEMPRO will

be to check on the return of the input boundary conditions.

This method will be used since on the faces it is possible

to check directly how well the solutions return the given

boundary conditions.

There are three conditions which will therefore be
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checked. Those conditions are the continuity of tempera-

ture at the sphere-cube interface, the temperature on the

top and bottom planes, and the heat flux on the side face.

The continuity of temperature at the sphere-cube interface

was always found to be returned exactly for any unit cell

conditions which were investigated. This result was ex-

pected because this boundary condition is easiest to satisfy

as there is no intermixing of the spherical and cubical geo-

metrics involved in its satisfaction. A boundary condition

of constant temperatures on the top and bottom faces was

applied during this investigation for two reasons. First,

an experimental arrangement to check the theoretical model-

ing may be most easily designed with constant temperatures,

and, secondly, it is simpler to check the return of a

boundary condition if it is a constant rather than a vary-

ing function. The results from TEMPRO show that the re-

turned temperature profiles on the top and bottom faces are

symmetrical, so analysis of the temperature boundary condi-

tions will be limited to the top face of the unit cell. The

third boundary condition of interest is the adiabatic side

face. In general it was found that the average heat flux on

the side face was equal to zero, plus or minus 10-5 W/cm2.
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The point values of the side face heat flux were found to

be symmetrical around the center plane (Z = 0) of the unit

cell.

To provide a means of determining how well the bound-

ary conditions are returned, three basic parameters will be

used. The first parameter will be the average temperature

on the top face. This average temperature (T
T

) will be

-TT;
= 1

calculated by:

N
where

Ti
is the returned temperature at each grid point on

the top face and N is the number of grid points. This

average returned temperature will be compared to the input

temperature boundary condition (0T) and will be a measure

of how closely the input condition was returned. The second

and third parameters to be used are the standard deviations

of the returned top face temperature and the returned side

face heat flux. These will be calculated through the use

of the general equation:

where a is the standard deviation, Ai is the individual

value, A is the mean value, and N is the number of points.

Respectively for the top face temperature and the side face
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heat flux, the symbols used will be aT and ap TTi and (1)i,

TT A. The use of the standard

deviation provides a measure of how much deviation occurs

between specific values of the temperature or the heat flux.

This will be useful as it is possible for two separate unit

cells to return the same average values, but one will have

point values with a greater dispersion about the mean value.

It may then be concluded that the results are better in the

case with the lower dispersion.

Computer data was obtained from varying the four

basic inputs to the code. Those inputs are 1) the number

of terms to be used in the summation, 2) the size of the

sphere in relation to the size of the cube, 3) the thermal

conductivities of both materials in the unit cell, and 4)

the temperatures on both the top and bottom planes of the

unit cell. The parameters TT, aT and a, are then used to

determine the conditions and effects due to changing inputs.

A) Effect of the Number of Terms Carried in the

Summation

It was expected, prior to operation of the computer

code, that the returned values of the boundary conditions

would asymptotically approach the input conditions as the
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number of terms (n) was increased, i.e., T
T

0
T

, a
T

-* 0

and acl) 4- 0. As may be seen in Table 1 and Figure 7, this

did not occur in actual operation of TEMPRO. Table 1 lists

no results for even values of n because it was found that

even values of n would return the same answers, to six sig-

nificant digits, as the next lowest odd value of n (i.e.,

n = 4 and n = 3). By observation it was seen that addi-

tional terms due to the even value of n were several orders

of magnitude smaller than the terms already present from

the next lowest odd value of n, and therefore made little

contribution to the answers.

It was decided to run TEMPRO with five terms for all

further investigation as based on the data obtained from

varying n. Observation shows that with n equal five there

is the lowest deviation from the input conditions. The

last column in Table 1 provides a numerical evaluation of

the deviation from input conditions for each case. Opera-

tion of TEMPRO was limited to a maximum of nine terms for

one primary reason, computer time versus number of terms

increased exponentially and operation would become prohibi-

tively expensive for greater than nine terms.

Some specific base conditions were selected to be main-

tained while varying other inputs during further computer
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TABLE 1

RETURNED ACCURACY VERSUS NUMBER OF TERMS IN SUMMATION

-Tr °c) (FT (°c) c c t) w/c m2 ) I TT eT 14. crT -"3-4)

1 508.0903 1.5121 0.2829 3.7407

3 510.9231 2.2101 0.3653 3.4985

5 510.6788 1.9519 0.4522 3.0829

7 508.2520 2.4784 0.3962 4.6226

9 509.8095 3.2762 0.7177 4.1844

K1 = 0.16 W/cm°C, K2 = 0.002 W/cm°C, Rs/Rc = 1,

0
T

= 510°C, 0B = 500°C
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Kl 0.16 W/cm°C, K9 ,== 0.002 W/cm°C, Rs/Rc 1

OT 510*C, OB 500°C

6
508.0

1 3 5 7

number of terms, n

9

3.0

2.25

1.5

0.75

0.0

Figure 7: Returned accuracy versus number
of terms in summation

E-1

b
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operation. First, five terms were used in all runs.

Second, thermal conductivities of 0.16 and 0.002 W/cm°C

were chosen as base values. These are the thermal conduc-

tivities of uranium carbide and helium gas respectively at

approximately 500°C. Lastly, a top temperature of 510°C

and a bottom temperature of 500°C were chosen as base con-

ditions. A temperature change of 10°C was chosen so as to

reduce any temperature dependent thermal conductivity ef-

fects.

Effect of the Size of the Sphere in Relation

to the Size of the Cube

Because of the non-dimensionalizing of distance in the

analytical development of the temperature solutions, the

true values that are input for the size of the sphere and

the cube make no difference in the results. The factor that

is of importance here is the ratio of the sphere radius to

the cube radius (Rs/Rc). It was quickly found that a ratio

equal to one produces the maximum deviation from input con-

ditions when considering the effect of the radius ratio.

If the radius of the sphere is zero, then the unit cell

becomes a homogeneous cube. Under these conditions exact
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values of the boundary conditions were returned and all in-

terior temperatures agree perfectly with one-dimensional

slab theory, that is, a linear variation in temperature

between the top and bottom planes and constant temperature

on all planes parallel to the top and bottom faces.

One factor that must be considered concurrently with

the radius ratio is whether the sphere or the remaining

cell has the larger conductivity. Table 2 and Figure 8

show results for varying the radius ratio when the sphere

conductivity is greater than the cell conductivity. By

interpolation from Figure 8 it is seen that aT and ucl) have

dropped to one half, or less, their value when Rs/Rc = 1,

when the radius ratio has decreased to 0.94. When the

sphere conductivity is less than the cell conductivity, it

is seen that the deviations are less at all values of the

radius ratio than for the opposite case, but that the

amount of deviation reduces at a lower rate. Table 3 and

Figure 9 show the results of varying the radius ratio when

K1 < K2. By interpolation from Figure 9 it was found that

at Rs/Rc = 0.85 uT and act) are one half, or less, their

values at R
s
/Rc = 1. It is conjectured that better results

are obtained when the cell conductivity is larger because

a more homogeneous situation is present when the material
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TABLE 2

RETURNED ACCURACY VERSUS RADIUS RATIO, K1 >K2

Rs /Re =FT teC) (°C) Cr4) ( riN2)

1.0 510.6788 1.9519 0.4522

0.9 510.5610 0.7748 0.1702

0.8 510.4004 0.5142 0.0945

0.7 510.2575 0.3282 0.0558

0.6 510.1538 0.1960 0.0323

0.5 510.0851 0.1082 0.0177

0.4 510.0421 0.0541 0.0087

0.3 510.0174 0.0224 0.0036

0.2 510.0051 0.0000 0.0010

0.1 510.0006 0.0000 0.0001

0.0 510.0000 0.0000 0.0000

K1 = 0.16 W/cm°C, K2 = 0.002 W/cm°C, 0T = 510°C,

0
B

= 500°C, n = 5
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TABLE 3

RETURNED ACCURACY VERSUS RADIUS RATIO, K1 <K2

Rs /12 ( ° c ) °T (°C)
6'0 W/ctylz

1.0 509.5579 0.5943 0.0759

0.9 509.7504 0.3234 0.0448

0.8 509.8401 0.2042 0.0308

0.7 509.8951 0.1334 0.0211

0.6 509.9334 0.0858 0.0136

0.5 509.9608 0.0493 0.0081

0.4 509.9796 0.0267 0.0042

0.3 509.9913 0.0085 0.0018

0.2 509.9974 0.0000 0.0005

0.1 509.9996 0.0000 0.0001

0.0 510.0000 0.0000 0.0000

K1 = 0.002 W/cm°C, K2 = 0.16 W/cm°C, 0T = 510°C,

B
= 500°C, n = 5
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outside of the sphere has the larger conductivity.

C) Effect of the Thermal Conductivities of

the Two Materials

Investigation of the effect on the return of the

boundary conditions due to changing the thermal conductiv-

ities of the two regions was performed by varying the con-

ductivity of one region while holding the other region con-

stant. Each region was held at 0.16 W/cm°C while the other

region was varied from 0.001-0.16 W/cm°C. As was initially

expected, it was found that the ratio of the conductivities,

when considering the effect of the conductivities, was the

controlling factor in the accuracy of the return of the

boundary conditions. As the ratio approaches a value of

one, the average temperature on the top face approaches the

input boundary condition and both standard deviations ap-

proach zero. At a conductivity ratio of one, all boundary

conditions are returned exactly (for any radius ratio) and

the results agree with one-dimensional slab theory. This

result is supportive of the conclusion that the analytical

solution for the temperatures is valid and that the devia-

tion in answers for the non-homogeneous unit cell is likely

due to trying to merge a sphere and a cube into a single
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TABLE 4

RETURNED ACCURACY VERSUS CELL CONDUCTIVITY, K1 >K2

K2 (WictrNC) /k2 FT (6C)
Cr'T cC Crct) (W 1 uy12)

0.0010 160.00 510.7083 2.1079 0.4859

0.0025 64.00 510.6652 1.8814 0.4369

0.0050 32.00 510.6066 1.5864 0.3724

0.0075 21.33 510.5597 1.3634 0.3228

0.0100 16.00 510.5237 1.1880 0.2837

0.0250 6.40 510.3739 0.6474 0.1553

0.0500 3.20 510.2453 0.3453 0.0771

0.0750 2.13 510.1636 0.2146 0.0435

0.1000 1.60 510.1027 0.1323 0.0245

0.1600 1.00 510.0000 0.0000 0.0000

K1 = 0.16

n = 5

W/cm°C, R5 /RC = 1, 0T = 510°C, 0B = 500°C,
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RETURNED ACCURACY VERSUS ax AND K1 /K2, K1 >K2

(Wcw, ) K2 WiCrn.C) A k (W(crot) kiikz TT ( )
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Q-4) it AN'')

0.2 0.05 0.15 4.00 510.2882 0.4300 0.0994

0.3 0.15 0.15 2.00 510.1501 0.1958 0.0389

0.4 0.25 0.15 1.60 510.1027 0.1323 0.0245

4.0 0.20 3.80 20.0 510.5514 1.3252 0.3143

0.2 0.01 0.19 20.0 510.5514 1.3252 0.3143

20.0 1.00 19.00 20.0 510.5514 1.3252 0.3143

Rs/Rc = 1, 0T = 510°C, OB = 500°C, n = 5



Page 60

K1 = Q.16 W/cm°C, Rs/Rc = 1.0,

0 T 510°C, 0B = 500°C, n 7-, 5

9
IP 510.8

nj

0
c24 510.6
w

0

0
510.4

vc4

O

TT
510.2 co- \

0 \E1-

0.(Tib

.0.
0

o ... 0 ....
I510.0

0.0 0.04 0.08 0.012

2.0

0
-p

1.5
m

N
> E

---- 0
Q 0 `.

0

p
(U P e

1.0
4-1

0.5

0.0
0.16

Cell Conductivity, K2 (W/cm°C)

Figure 10: Returned accuracy versus
cell conductivity, K1 >K2



510.8
0

P
IP

510.6
4J
ro

sa,

0
P

510.4

ro

ty)

510.2

510.0

Page 61

K1 = 0.16 W/cm°C, Rs/Rc = 1.0,

0 T
= 510 °C, 0B = 500°C, n = 5

0.0 40 80 120 160

Conductivity Ratio, K1 /K2

Figure 11: Returned accuracy versus
conductivity ratio, K1 >K2



Page 62

TABLE 6

RETURNED ACCURACY VERSUS SPHERE CONDUCTIVITY, K1 <K2

(t^i/cm'c kx /k, ( p,c) ( 'o/Gm t )

0.0010 160.00 509.5520 0.6028 0.0769

0.0025 64.00 509.5608 0.5902 0.0754

0.0050 32.00 509.5751 0.5702 0.0730

0.0075 21.33 509.5890 0.5507 0.0706

0.0100 16.00 509.6023 0.5320 0.0684

0.0250 6.40 509.6739 0.4326 0.0565

0.0500 3.20 509.7682 0.3037 0.0411

0.0750 2.13 509.8408 0.2062 0.0291

0.1000 1.60 509.8987 0.1301 0.0192

0.1600 1.00 510.0000 0.0000 0.0000

K2 = 0.16 W/cm°C, Rs/Rc = 1, 0T = 510°C, 0B = 500°C,

n
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TABLE 7

RETURNED ACCURACY VERSUS AK AND K2/K1, K1 <K2

k (wk*0 V2. ( wicy,A) 4k (v(,,,,ac) /ki TT ( °c (TT ('c.') ( w(Gml)

0.05 0.2 0.15 4.0 509.7336 0.3505 0.0468

0.25 0.4 0.15 1.6 509.8987 0.1301 0.0192

0.01 2.0 9.90 20 509.5508 0.6043 0.0771

1.00 20.0 19.00 20 509.5917 0.5470 0.0702

Rs/Rc = 1, 0T = 510°C, 0B = 500°C, n = 5
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unit cell.

Computer data was obtained for the two cases K1 >K2 and

K1 <K2. Tables 4-5 and Figures 10-11 compile the results

when the sphere is at a constant conductivity while the re-

maining cell varies in conductivity (case 1). Tables 6-7

and Figures 12-13 pertain to case 2 where the sphere con-

ductivity varies while the remaining cell is maintained at

constant conductivity. For case 1, K1 >K2, it was found

that for constant conductivity ratio, the computer results

were constant and independent of the absolute values of the

two conductivities. It was then expected that a similar re-

sult would hold for case 2 (K1 <K2).. However, as shown by

Table 7, this did not occur, but that accuracy was improved

as the value of K1 was increased. Comparison of Figures 11

and 13 shows that case 2 has lower deviation from the input

conditions. This supports the conjecture that better re-

sults are obtained and a more homogeneous unit cell is pro-

duced when the volume surrounding the sphere has the higher

thermal conductivity of the two regions.

D) Effect of the Temperature Boundary Conditions

The last input condition which can have an effect is

the specified temperature on the top and bottom faces of
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the unit cell. As the temperature was non-dimensionalized

in the analytical development, it was expected that the ab-

solute temperature would have no effect on the return of

the input conditions by the computer code. It was quickly

concluded that the difference in the input conditions, AO =

OT -0
B

, was the governing factor when considering the ef-

fect of the temperature boundary conditions. As proof of

this it was seen for constant AO that the temperature and

heat flux standard deviations were constant, as was the dif-

ference between the calculated average temperature on the

top face and the input boundary condition.

Tables 8-9 and Figures 14-15 show the results of the

computer data that was obtained. Through the use of a least

squares fit to the data, it was found that the plots of

TT -0T and aT versus 60 for Ki>K2 have slopes of 6.7878

x10-2 and 1.9519x10 -1 respectively. They both pass through

the origin as would be expected.

For the case where K2>K1, linear plots are also ob-

tained for the plots of "IT-OT and aT versus AO. Those plots

pass through the origin as expected and have slopes of

4.421x10-2 and 5.943x10 -2 respectively. As has been found

in the investigations of the other parameters, when the cell
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TABLE 8

RETURNED ACCURACY VERSUS

TEMPERATURE BOUNDARY CONDITIONS, K1 >K2

T (C) ez (°C.) Ae("C.) ) cr-r ) (vj

510 500 10 510.6788 0.6788 1.9519 0.4522

525 500 25 526.6970 1.6970 4.8799 0.4522

550 500 50 553.3939 3.3939 9.7597 0.4522

575 500 75 580.0909 5.0909 14.640 0.4522

600 500 100 606.7879 6.7879 19.519 0.4522

650 500 150 660.1818 10.1818 29.279 0.4522

700 500 200 713.5757 13.5757 39.039 0.4522

10 0 10 10.6788 0.6788 1.9519 0.4522

100 0 100 106.7879 6.7879 19.519 0.4522

K1 = 0.16 W/cm°C, K2 = 0.002 W/cm°C, Rs/Rc - 1, n = 5
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TABLE 9

RETURNED ACCURACY VERSUS

TEMPERATURE BOUNDARY CONDITIONS, K1 <K2

( °c) es(0c) Le(°c) 7T (a() °c) (FT ) cr4, wicr,;)

505 500 5 504.7790 0.2210 0.2972 0.0759

510 500 10 509.5579 0.4421 0.5943 0.0759

525 500 25 523.8948 1.1052 1.4859 0.0759

550 500 50 547.7895 2.2105 2.9717 0.0759

575 500 75 571.6643 3.3357 4.4380 0.0759

600 500 100 595.5790 4.4210 5.9433 0.0759

650 500 150 643.3686 6.6314 8.9150 0.0759

700 500 200 691.1581 8.8419 11.886 0.0759

K1 = 0.002 W/cm°C, K2 = 0.16 W/cm°C, RS /RC = 1, n = 5



Page 70

Ki = 0.16 W/cm°C, K2 = 0.002 W/cm°C, Rs/Rc = 1.0, n = 5

Temperature Difference, (°C)

Figure 14: Returned accuracy versus temperature
difference (ACJ) K >K) ,

1 2



P
a
g
e

7
1

K 1 = 0
.
0
0
2

W /
c
m
2
,

K
2

0
.
1
6

W
/
c
m
°
C
,

R
s
/
R
c

= .
1
.
0
(

n = 5

U
0

1
0
.
0

8
.
0

6
.
0

4
.
0

2
.
0

0
.
0

T
e
m
p
e
r
a
t
u
r
e

D
i
f
f
e
r
e
n
c
e
,

( °
C
)

F
i
g
u
r
e

1
5
:

R
e
t
u
r
n
e
d

a
c
c
u
r
a
c
y

v
e
r
s
u
s

t
e
m
p
e
r
a
t
u
r
e

d
i
f
f
e
r
e
n
c
e

(
A
O
)
,

K
1

<
K
2



Page 72

conductivity is greater than the sphere conductivity,

better accuracy is once again obtained. One unexpected ob-

servation was that the heat flux and its standard deviation

remained constant for all values of AO, if all other input

parameters were constant. One note of interest, it was

found, as would be expected, that the accuracy with which

the boundary conditions were returned was not dependent upon

whether the top face or the bottom face was at the higher

temperature.
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V. CONCLUSION

Completion of the analysis of the operating character-

istics of the computer code shows that the basic goal has

been achieved. Following the initial completion of the

analytical solutions, computer coding of the solutions was

begun. Development of the code was of assistance in deter-

mining errors in the analytical solutions. Secondly, as

reasonable results were obtained, operation of the code

provides confidence in the analytical expressions. And

thirdly, limits have been determined on the accuracy of the

code.

Because of the interrelation of the input parameters

it becomes extremely difficult to place definite limits on

what may, or may not, be used as input conditions. If it

is desired, for example, to use L = 50°C, large deviations

occur if Rs/Rc = 1.0 and K1 /K2 = 160.0. However, if Rs/Rc

were to be decreased and K
1
/K

2
to approach one, then accept-

able answers may be easily obtained. To further illustrate

this a unit cell was considered with input conditions of

Rs/Rc = 0.5, K2/K1 = 10.0 and AO = 5.0. Table 10 tabulates
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TABLE 10

RETURNED ACCURACY AND THE INTERRELATION

OF THE INPUT PARAMETERS

Ra /12c kz /1<% oE9 ('(-) I -e, I l'c) T, -( °e)

1.0 160 10 0.4421 0.5943 0.0759

0.5 160 10 0.0392 0.0493 0.0081

1.0 10 10 0.3650 0.4800 0.0600

1.0 160 5 0.2210 0.2972 0.0759

0.5 10 5 0.0112 0.0239 0.0071
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the deviations that occur for a base unit cell of Rs/Rc =

10, K2/K1 = 160.0 and a0 = 10.0, and the deviations that

occur when each parameter is changed individually, and then

finally the results from the above example where all three

parameters are changed simultaneously.

From the data obtained in this investigation, it is

concluded that the following limits should be followed. To

use any value of Rs/Rc from 0 to 1 and any value of K1 /K2

or K2/K1 from 1 to 160, the temperature difference should

be maintained at less than ten degrees. If it is desired

to use a larger temperature difference, then better answers

will be obtained if the radius ratio can be reduced to less

than 0.9, and/or if the conductivity ratio can be reduced

to less than 25.0. It should always be kept in mind that

the more homogeneous the unit cell, the better the accuracy

which will be obtained.

Several general trends were observed in the overall

temperature profiles of the unit cell. First, the tempera-

ture on the center plane, Z = 0, was a constant over the

entire plane for all cases and was found to be (0T-0/3)/2

within minor deviations. Secondly, the heat flux on the side

face was symmetrical about the Z = 0 plane for all cases.
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Thirdly, all temperatures within the unit cell were sym-

metrical about the Z = 0 plane for all cases. Fourth, as

was expected, a sharp temperature change occurs in the

lower conductivity material near the sphere-cell interface.

The final observed trend was an unexpected result. It was

expected that the region which would produce the greatest

difficulty in obtaining accurate results would be the outer

corner of the unit cell. This would be due to the diffi-

culty of defining the cube in spherical geometry. After

operation of the code, it was found that answers in this

region did not deviate to any greater extent than any other

region. However, for large differences in conductivity,

and when the sphere has the larger conductivity, the cal-

culated temperature for the point of intersection between

the Z axis and the top face of the unit cell was signifi-

cantly depressed relative to the input boundary condition

and the average temperature on the top face of the unit

cell.

There are some areas where further investigation is

recommended and would be of interest. The first, and prob-

ably the most important, would be to allow for temperature

dependent thermal conductivity. The analytical solution
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could be modified to accept a variable conductivity rather

than the present constant conductivity, but the computer

code would be more difficult. An iterative process would

most likely be the means to incorporate the variable con-

ductivity into the computer code.

A second area of additional investigation which would

be of value would be to study the effect of different sphere

packing arrangements. These additional lattices could in-

clude a hexagonal two-dimensional packing and three dimen-

sional lattices of the face-centered-cubic and body-centered

cubic types. The only change in the analytical solution

which these would require would be a change in the equa-

tions of the faces of the unit cell and subsequent changes

in the derivations of the boundary conditions and limits of

integration.

In summary, an analytical solution has been developed

to solve for the temperature profile of a unit cell con-

sisting of a sphere of one material centered in a cube of

4 second material. This was followed by the coding of a

computer program using the analytical solution to calculate

temperatures. From operation of the code it was concluded

that the analytical solution was valid, and limits were
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suggested to the input conditions to the code so as to

maintain accurate results from the code.
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Appendix A

Coordinate System Transformations and Unit Vectors

When deriving the equations for the unit cell faces,

it is necessary to have the cartesian coordinate system

(x, y, z) defined in terms of the spherical coordinate

system (P, a, (1)). From Figure Al it is seen that P is the

line from the origin to the point of interest. a is the

angle between the z-axis and p. cl) is the angle between the

x axis and the projection of p on the x-y plane. The fol-

lowing relationships may be derived.

x = psinacoscl)

y = psinasingb

z = pcosa

The second necessary set of relationships is to define

the spherical coordinate unit vectors in terms of the car-

tesian coordinate unit vectors. From Figure Al these rela-

tionships may be derived as

6 = sinacosc0x + sinasing)ey + cosae
z

ea = cosacosq)ex + cosasing)e
z

- sina6
z

-sinq)6x + cos0
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Figure Al: Coordinate system and
spherical unit vectors

Y
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Appendix B

Derivation of the Limiting Conditions on p

In defining the faces of the unit cell, it is neces-

sary to define the limiting conditions for p on each of

the three faces, top, bottom and side. Figure Bl shows

the upper half of the unit cell where point A is the mid-

point of the sphere. Line k
T

is one of the limits to the

top face of the unit cell. Line kT's unseen counterpart in

the lower half of the unit cell (kB) defines one limit to

the bottom face. Lines k
T

and 2.B also define two of the

limits to the side face. The remaining defining limits to

this face are cf) = 0 and (1) ff/4.

By observing the relationships pictured in Figure Bl,

it becomes possible to derive expressions for p such that

p (the line from point A to kT or kB) will intersect 9,1, or

B

Beginning with the three dimensional Pythagorean

Theorem which states

a2 b2 c2 d2

it can be seen from Figure Bl that the following holds.

R 2+ sz, 2+ 2., 2 p2
1 2 3

(B-1)
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Also from Figure Bl may be seen the following relationships.

- k = R
1 3

R = pcose
3

2 - R tang) - R tancl)
2 1

Now substituting in R
c

= 2, into equation (B-1)
1 3

R
c

2 2 2 R
c

2 = p 2

2

2R
c

2 2, 2 = p2
2

Next inserting the following expression for p

p Rc

cos8

and also the expression for 2, , the following is obtained
2

2R
c

2 Rc2ta1.12(1) = RC2

COSO2

Now dividing through by Rc2, inserting p = cos°, and solv-

ing for p

2 + tan2cp = 1

1-1

1

(2+tan201/2
(B-2)

The corresponding equation which defines p so that p inter-

sects line B
is

-
(2+tan201/2

(B-3)

The limits on p for all three faces may be written as



Top Face:

Side Face:

1
1

(2+tan2(1))1/2

-1 1

Page 85

(2+tan201/2 (2+tan201/2

Bottom Face: -1 <

(2+tan2W/2
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Appendix C

Equations of the Faces of the Unit Cell

To apply the boundary equations to the unit cell, it

is necessary to define the faces of the unit cell in terms

of p (the line from the center point of the sphere to any

point on the face), and the limiting conditions on the face,

p and 4.

The two faces extending from the z axis are defined by

= 0 and (1) Tr/4. The top and bottom faces and the oppos-

ing side face require more elaborate derivation. For these

three faces the limiting conditions on clo and p have already

been determined (Appendix B). What remains is to derive

expressions for p to each of the three faces. This may be

done by using the equations in Appendix A which define the

cartesian coordinates in terms of the spherical coordinates.

The top face of the unit cell is defined by z = Rc.

The equation for this plane in spherical coordinates is

Rc = pcosO

Solving for p and substituting in p = cos°

p = Rc/p

Now non-dimensionalizing by the equation r = p/Rc



And this plane is bounded by

0 < (I) < Tr/4

1 1

(2+tan201/2

The side face is defined by x Rc. Solving for p

Rc = psinecos(1)

p Rc
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sinecoscp

Now substituting in sine = (1-p2)1/2 and non-dimensional-

izing

r - 1

coscl)(1-
112)1/2

The side face is bounded by

0 < <

-1
(2+tan201/2 <

1

< (2 +tan20 1/2

The bottom plane is defined by z = Rc. Using the same pro-

cedure as for the top face and solving for r

r = -1

The bottom face is bounded by

0 < (I) < Tr/4

< p < -1

(21-tan201/2
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Appendix D

Spherical Harmonic Expansion Coefficients

George Prevost (6) expands a function in terms of

spherical harmonics in the following manner.
00

c(j-J )°k) [An,o 1?1,0 ("A ) )7AA

nJ
COS(ick)± . siri(3.4)) P (

n=0

where

and:

HIT

Bn,o
-7 0

JA = COSCO G

0

0 < 2T'
211

d0,

A 2'1+1 (n -,3)!
" r\J 2 II. ( 1-N

n (

7

tb ( r

Pr),0 ()-A) di"

21Y

dcx (fi,o)cos( j.k)Prli(/A)cl.f.t
-1

211

Jo( ("A a.) `,.:j t (ic-0 (}uk)

Pnj are the associated Legendre functions of the

first kind.

Because of the symmetry of the unit cell, the Bnj

terms are removed from further consideration. For the

A
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unit cell under consideration, the functions H(p,gb) may be

expanded as: .0 (-EA+)

H ("A 4)) - Aao + E A P4`(
0c=1 p.0

Prevost uses the condition 0 < a < 27 to solve for the

expansion coefficients. The unit cell under consideration

is based upon the condition 0 < (I) < 7/4, therefore, making

this change in integration and making appropriate changes

in terminology, the expansion coefficients may be rewritten

as:
A .(0 -rr

2 (2«. I)

A
,1(2..(1.0 (.1-q(3)!

.0 'r (0( +iy)1.

"If/41

1-1 ( ("A) cly

71-4.

d4
1,11

(i)) P:(39,.A ) cos (43 , 07444,

To account for the change in the form of H(p,(p) with

each of the three faces of the unit cell under considera-

tion, the integral over p may be broken into three inte-

grals with the following form:
13

fd,,,fd,,,+f,,,,+fdt,
-, -1 A B

As shown in the main derivation, there are four B(p,(1))

functions over the three faces of the unit cell. By in-

serting the appropriate functions, the expansion coeffici-

ents may now be written specifically.
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+f pc4 (i,,A) cos ( (a) di,
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ph4 vn (i,,) cos ( m4) Pot ()LA) diA
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APPENDIX E

The Computer Code TEMPRO

The computer code TEMPRO was written based on the

analytical derivation presented in this thesis. The code

consists of the main program TEMPRO, two subroutines:

ACALC and LINSOL, and four functions: GINTEG, P, FORIAL,

and FCN. Input data consists of the thermal conductivities

of the two materials (Ki, K2), the sizes of the sphere and

the cube (Rs, Rc), the temperature boundary conditions (0T,

eB), the number of terms to be kept in the summation (n),

and the number of points in the grid system for specifying

where the temperatures are to be calculated (XPTS, YPTS,

ZPTS). The output consists of a listing of all input data,

the constants used in the final temperature solutions, the

position of each grid point in cartesian and spherical co-

ordinates, the temperature at each grid point and if that

point is in the sphere or the surrounding cell, and the heat

flux through the side face at all grid points on the side

face of the unit cell.

The main program TEMPRO serves as the central co-

ordinator and handles all input and output that is neces-
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sary. TEMPRO begins by reading all input data, setting up

output headers, and calculating the limits and points of

integration. Once all necessary data is developed, TEMPRO

calls subroutine ACALC which calculates the spherical har-

monic expansion coefficients. TEMPRO then places the co-

efficients into a system of linear equations as defined by

equation (111-32). Subroutine LINSOL solves the matrix and

returns the coefficients C ) and Cg )

. The next step inCoo)

TEMPRO is to solve for C (2) sg )(5) from Cc() andoo nm
(2) and c

(1)Cnm All constants are now known and it is possible to

solve for the temperature at any point within the unit cell.

TEMPRO automatically steps through a grid system defined by

XPTS, YPTS, and ZPTS and calculates the temperature at all

grid points. The cartesian coordinate system is used for

input and output because of its ease of use and easier

visualization. All work within the body of TEMPRO is per-

formed in the spherical coordinate system. Similarly, the

size of the cube and the sphere, and the temperature bound-

ary conditions, are read in and out in absolute units (cm

and °C), and then internally converted with TEMPRO to non-

dimensional quantities.

Subroutine ACALC and function GINTEG work to-
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gether to calculate the spherical harmonic expansion co-

efficients that are defined in Appendix D. ACALC begins

by setting up the proper expressions to calculate the ex-

pansion coefficients. This is done by calculating the

necessary factor to multiply each integral by, and then de-

fines the integral limits, function, and face of the unit

cell which is to be integrated. GINTEG uses this informa-

tion to calculate the desired integral. For the integra-

tion GINTEG uses a 10-point, two-dimensional Gauss-Legendre

Quadrature system which was specifically derived for the

unit cell under consideration in this thesis.

The associated Legendre functions and the ex-

pressions used to calculate the expansion coefficients are

found in the functions P and FCN respectively. P contains

the analytical expressions for all associated Legendre

functions that are necessary for the temperature solutions.

Input parameters consist of n, 4m and u, and the numerical

evaluation is returned. FCN is a listing of the expres-

sions found in the analytical expressions for the expansion

coefficients. It is entered with FNUM requesting a specific

expression within the function, and then that expression is

evaluated for the parameters u, 4, y, n, n and 4m. This
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value is then returned to GINTEG.

Subroutine LINSOL uses the Gauss-Jordan method of

linear equation solving to solve the system of linear

equations defined by equation (111-32). To improve the

accuracy of the values of Cc1:)) and C(1) returned by LINSOL,

the subroutine uses an iterative improvement procedure as

outlined by Carnahan (7).
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FROGRA4 TEMPRO(INPUT,OUTPUT,TAPE20)
C0110N/1/ A(18,19),A1(10,3),A2(10,3,17),A3(10,3,17)
A,A4(10,31,0(10,3,3),FOUR
COMMON/2/G(3,13,10),WEIGHT(10),ALIM(30),8LIM(30),

APHI(10)
CIMENSION ROOT(10)
REAL Kl,K?,Mil,
INTEGER GAMMA,AETA
CATA(R3OT=.141743389,-.14317433,39,.4333953941,

A-.4333.)53941,.679409,,632,-.6794095682,.8650633666,
A-,9650633666,.973906529E,-.9739065285)
CATA(WEIGHT=.2155242247,.21552422471.2692667193,
A.2692657193,.2193863625,.2190163625,.1494513491,
A.1494513491,.06657134430,.0666713443)
CATA(PI=3.1415q2E54)

SET UP HEADERS ANJ LIMITS OF INTEGRATION

GO TO 1100
1000 PFINT*,tIF NO NEW DATA, TYPE it

RFAD*,INDATA
IF(INDATA.E(1.1)G0 TO 1200

1103 PPINT*,tINPUT SPHERE K, CELL Kt
PEAD*,K1,K2
FPINT4,tINPUT SPHERE R, CELL Rt
READ*,RSRHERE,RCU3E
RATIO=RSPHERE/RCUBE
PFINT*,tINPUT TOP TEMP, BOTTOM TEMPt
PEAD*,TTEMP,9TEMP
FOUR=4.

1200 FFINT(?0,4.)t t
PRINT(20,41tSPHERE RADIUS= t,RSPHERE,t CMt
PFINT(20,*)tCUTE RADIUS= t,RCUBE,t CMt
PPINT(20,*)tSPHEE CONDUCTIVITY= t,K1,t WATTS/CM Ct
PPINT(20,*)tOELL CONCUCTIVITY= t,K2,t WATTS/CM Ct
FRINT(?0,4-)tT00 TEMP PROFILE= t,TTEMP,t DFGREES Ct
PRINT(20,*)tPOTTOM TEM° nROFILE= t,BTEMP,t DEGREES Ct
PSINT4,tTHIS PROGRAM WILL ACCEPT UP TO 9 TERMSt
FRINT*,tINPUT NUMBER OF TERMSt
PEAD*,NTER1
FPINT(20,*)tFOR THIS RUN, THE NUMBER OF TFRMS= t,NTERM
CO 300 1=1,1.0
FHI(I)=(RJ1T(I)+1.)*PI/F.
AtIM(I)=-1.

300 2LIM(I)=-1./SORT(2.+TAN(PHI(I))."2)
CO 302 1=11,20
ALIM(I)=3LIM(I-10)

302 eLim(I)=ALIm(l)
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CO 303 1=21.30
ALIM(I)=1LIM(I-10)

303 ELIM(I)=1.

I3C=1s 3OTTOM FACE
I6C=2, SIDE FACE
IBC=3, TOP FACE

;.

CO 1301 13C=1,1
IF(I5C.EQ.1)L=0
IF(IBC.EQ.2)L=10
IF(I3C.EQ.3)L=20
CO 1400 1=1,10
CO 1400 1 =1,10
0(I0C,III)=(ROOT(I)4(8LIM(J+L)ALIM(J*L))+BLIM(J+L)+

AALIM(J+L))/2.
1400 CONTINUE
1300 CONTINUE

IF(NTERM.LE.3)MS=NTERM4-1
IF(4.LE.NTERA .ANO. NTEPM.LE.7)MS=2*NTEPM-2
IF(8.L7.NTERM .AND. NTEPM.LE.11)MS=3*NTERM-9
frS1=MS+1

fi CALCULATE A1,A2,A3,A4

CALL ACALC(NTEP1)
tN1=NTER1+1

SET UP tick.* MATRIX FOR SOLUTION

1 =1

CO 801 GAI1A=1 041
IF(GAMM4.LE . 4) i-z-1

IF (5.LF.GAPIA .AND. GAMMA.L C.8) J=2
IF (9.1.---..GA1MA SAND. VA.LE.12) J=3
10 803 AETA=1,J

NM=1
A (Is 1) =A1 (GAMMA, AETA)
(I, M31) = A4 (GAMMA ,AETA)

12=2
DO 811 NN=1,NTERM
IF (NINO E.3) K=1
IF (4.LE.NN .ANJ. NN.LE. 7)K=2
IF (1 .LE.tIN .ANJ. NN.LE.. 111K=3

10 313 MM =1,K
A (1,12) =A2 (GAMMA , ACTA ,N4)*(K2*(NN+1.)+Kl*NN)
/(K2*(2.*NN+.1. ) )+ A3 (GAMMA ,AETA,N11*(1 .Kl/K2)

A RATIO**(?*NN+1)*NN/(2.*NNf1s)
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NI=N1+1
I2=I2f1

313 CONTINUE
311 CONTINUE

I=I+1
301 CONTINUE
801 CONTINUE

SOLVE *At MATRIX

CALL LINSOL(1S,MS1)

SET UP CONSTANTS *Ct

T=2
CO 20 NN=2,N1
NN1=NN-1
IF(NN.LE.4)K=1
IF(5.LE.IN .ANO. NN.LE.P)K=2
IF(9.LE.NN .AND. NN.LE.12)K=3
00 22 MM=1,K
O(NNOM,1)=A(TOS1)
C(NN,11,?)=C(NNOM,1)*(K2*NN+Kl4NN1)/(K2*(2.tNN1+101
C(NN,M1,3)=C(NN,MM11)*(1.-K1/K2)4RATIO**(2*NN1+1)*NN1
/(2.*NN1+1,)
I=I+1

22 CONTINUE
20 CONTINUE

C(1,1,1)=C(1,1,2)=A(1,AS1)
FPINT(20,61)

69 FOPIAT(1X,t0 VALUES1'/17X1tCNM1t19X,tON12t,9X,CNM3t)
CO 560 I=1,N1
IF(I.LE.4)<=1
IF(5.LE.I .ANO. I.LE.8)K=2
IF(9.LE.I .ANO. I.LE.12)K=8
CO 161 J=1,K
PRINT(20,32)I,J,C(I,J,1),C(I,J,2),O(I,J,3)

16? FORMAT(1X,tN=t,I212X,1=t,I2,3(2X,E11.5))
161 CONTINUE
160 CONTINUE

AUTOMATIC STEP THROUGH OF UNIT CELL AND
CALCULATION OF TEMPERATURES AT ALL

fi POINTS ANL) HEAT FLUXES ON SURFACES
1 Or UNIT CELL

PRINT(20,100)
100 FCRMAT(1X/30X,tPOSITIONt,35X,tTEMPERATUREt,10X,-1HEAT
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FLUXt)
FPINT(?0,101)

101 FOMAT(4X,tXt,10X,tYt,10X,tZt,10X,#P4,10XIMU,i0X,
AtFEEt,9X,tSPHEREt,7X,tCELLt0X,#SIOEt)
FRINT*,tINPUT XPTS, YPTS, ZPTSt
;iE/A0*,XPTS,YPTS,ZPTS
XH =1./ (XPTS -1.)
YH=1./(YPTS-1.)
ZH=2./(7PT3 -1.)
X=Y=0
xT=YT=0
Z=1.
ZT=RCUTE
CO TO 200

201 x=X+XH
)17=X*ROU3:
IF(X.GT.1.)G0 TO 202
CO TO 209

?02 'f=Y+YH
YT=Y*ROUTE
IF(Y.GT.1.)G0 TO 203
X=3
CC TO 200

?03 Z=Z-ZH
PPINT(20,*) t

iT=7*-r2CU3E
IF(7.LT.-1.)G0 TO 600
)(=Y=0
XT=YT=0

200 XP=SORT(X*X+Y*Y+7*Z)
XPT=XR*ROY3E
IF(Z.E0.0)G0 TO 205
TH,ETA=ACOS(7/XR)
)(MU=COS(THETA)
IF(XMO.EQ.1)XMO=.9999
IF(XMU.E0.-1)XMU=-.9991
IF(Y.E0.0)7.0 TO 206
XF.7P=ATAN(Y/X)
IF(XFEE.GT..7354)G0 TO 201
IF(XR.GT.,tATIO)G0 TO 3
CO TO 210

205 >M1=.3001
IF(X.EQ.0 .AN9. Y.NE.0)G0 TO 201
IF(Y.L.Q.0)XFEE=0
IF(Y.NE.0)XFEE=ATAN(Y/X)
IF(XFEE.GT..7R54)G0 TO 201
IF(XP.GT.RATIO)G0 TO 3
CO TO 210
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206 )(FEE=0
IF(AR.GT.RATIOIGC TO 3

CALCULATION OF TEMPERATURE WITHIN SPHERE

210 TEMP1=0
CC 40 NN=2,N1
IF(NN.LE.4) K=1
IF(5.LE.NN .AND. NN.LE.8)K=2
IF(9.LE.NN .ANO. NN.LE.12)K=3
10 42 11=1,K
14=(4M-1.)*FOUR
TEMP1=TEMPl+C(NN,MM,1)*XR**(NN-1)*P(NM,MM,XMU)*

A COS(14*YFEE)
42 CONTINUE
40 CONTINUE

TE1P1=(TEMPl+C(1,1,1))4(TTEP-9TEMP)+BTEMP
IF(XP.E0.0)G0 TO 6900
IF(XR.70.RATIOIGO TO 3

6900 PPINT(20,103)XT,YT,ZT,XRT,XMU,XFEE,TEM01
103 FORmAT(1)(16(F8.4,3X),F10.4)

GO TO 201

CALCULATION OF TEMPERATURE OUTSIDE OF SPHERE

3 TEMP2=0
CC 43 NN=2,N1
IF(NN.LE.4)K=1
IF(5.LE.NN AN1. NN.LE.8)K=2
IF(9.LE.NN .ANO. NN.LE.121K=3
00 45 MM=1,K
M4=(1A-1.)*FOU
TEMP2=TE1P2+(C(NN,MM,2)*XR**(NN-1)+C(NNOM,3)*XR"
(-NN))*P(NN,mM,XMU)*COS(44*XFEE)

45 CONTINUE
43 CONTINUE

TEMP2=(TE1 P2+C(1,1,2))*(TTEMP-BTEMP)+3TEMP
IF(X.GE.1.1G0 TO 500
IF(XR.70.RATIO)G0 TO 502
PRINT(20,104)XT,YT,7T,XPT,XmU,XFEE,TEMP2

104 FO?A4T(1<,6(F8.4,3X),11X,F10.4)
GC TO 201

532 FFINT(20,105)XT,YT,ZT,xPT,XMU,XFEE,TEMP1,TEMP2
105 FORMAT(1X,6(F3.4,3X),2(F10.4,3X))

GO TO 201

3 CALCULATION OF HEAT FLUX ON SIDE FACE
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500 PLUX=0
CO 91 NN=2,N1
NN1=NN-1
IF(NN.LE.41K=1
IF(5,LE.NN .AND. NN.LE.8)K=2
IF(9.LE.NN .AND. NN.LE.12)K =3
DO 93 MM=1,K
44=(41-1,)*F0U9
FLUX=FLUX+C(NNOM12)/COSW'EE)**ANN1-1)

O /(1.-XMU*X1U)**(NN1/2.)*(COS(M4*XPEE)*COS(XFEE)*
O (NN14.P(NN,AM,XMU)-(NN1
O +114)49CIU*P( NN1,44,AMU))+M4*P(NN,IA,XMU)*SIN(M4*XFEE)
O *SIN(XFEE))+C(NN,MM,3)/COS(XFEE)**(-NN1-2)
O /(1.-XMU*XMU)**((-NN1-1.1/2.)*(COS(M4*XFEE)*COS(XFEE)c
O (01U*XMU*(2.*NN1+1.)-NNI*P(NN,MM,XMU)-(NN14-M4)4
O XMUI-P(NN1,11,X4U))+M4*P(NN,MM,XMU)*SIN(M4*XFEE)*
A SIN(XPEE))

93 CONTINUE
91 CONTINUE

PRINT(70,107)XTIYI,ZT,XPT,XMU,XFEE,TEMP2,PLUX
107 FO?,MAT(1X,O(F3.4,3X),11X,2(F10.4,3X))

CC TO 201
600 PRIMT*,#IP WANT TO CONTINUE, TYPE 11

cEA04,CONT
IF(CONT.79.1)G0 TO 1000
STOP
END

SU3POUTINE ACALC(NTE1)
COMMON/1/ A(13,19),A1(10,3),A2(10,3,171,A3(10,3,17)

A,A4(10,3),C(10,3,3),FOUR
INTEr,E? ;AlMA,AETA,G1
CATA(PI=1.141592654)
N1=NTERmfl
CO 1 GA11A=1,N1
IF(GAMMA.LE.4)J=1
IF(5,LE.GA1MA .AND. GA1M4.LE.8)J=2
IF(9.1..E.C,A1MA *AND. GAMMA.LE.12)J=3
JO 3 AETA=1,J

NM=1
G1=GA11A-1
L1=01-FOUR*(At:TA-1)
L2=G1+FOUR*(AETA-1)
FACTOR=(240141) 4-4./PI*FORIAL(L11 /FORIAL(L2)
IF(AETA.E0.1)FACTOP=FACTOP/2.
A1(GATIA,AETA)=FACTOGINTEG(1,1,GAMMA,AETA,0,0)

O fOINTEG(3,1,GAfrIA,AETA,0,011



Page 103

A4(GAMMA,AETA)=FACTOR*GINTEG(3,1,GAMMA,AETA,0,0)
00 4 NN=1,NTERM
IF(NN.LE.3)K=1
IF(4.LE.NN .ANO. NA.LE.7)K=2
IF(I.LE.NN .ANO. NN.LE.11)K=3
00 6 N1=1,K
A2(GAMA,AETA,Nm)=FACTOR4AGINTEG(1,?,GAM4A,

A AETA,NN,vY)+GINTEG(2,3,GAMMAIAETA,NN,Mm)+,
A GINTEG(.3,4,GANMA,AETA,NNOM))

A3(GAm1A,ATA,NM)=FACTOR*(GINTEG(1,5,GAMMA,
A AETA,NN,MM)+GINTEG(2,61GAMMA,AETA,NNOM)+
A GINTEG(3,7,GAMMA,AETA,NN,MM))

NM=N4+1
6 CONTINUE

CONTINUE
3 CONTINUE
1 CONTINUE
RETUN
ENO

FUNCTION GINTEGNC,FNUA,GAMMA,AETA,NNOM)
COM'ION/2/G(3,10,10),WEIGHT(10),ALIM(30),BLIM(30),

APHI(10)
CIAENSION Z(10)
INTEGER 3C,FNUNI,GA'IMA,AETA
CATA(PI=3.141592E54)
SU11=0
IF(9C.EQ.1)L=0
IF(BC.EQ.2)L=10
IF(3C.'70.3)L=20
CO 9 J=1,10

DO 10 I=1,10
10 SUM=SUAI-WEIGHT(I)*FCN(G(3C,J,I),PHI(J),FNUM,GA1MA,

A AFTA,NN,AMI
2(J)=(BLIM(L+J1 -ALIM(L+J))/2.*SUm

) CONTINUE
CO 11 1=1,10

11 SU11=SUl1 +WEIGHT(I)*Z(I)
CINTLG=PI/11.*Sum1
RETURN
END

FUNCTION P(N,A,4U)
REAL MU, 1'U2
NU2=MU*MU
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GO TO( 10,20,3J,40,50,60,7000,90,100,11C)N
10 F=1

RETURN
20 F=1 U

FETURN
3J F= (34`MU2-1.1 /2

RETURN
41 GO T00+1,42)1
41 F =( (54'1U2-3) 4-19 ) /2

RETURN
42 F=0

RETURN
5U GO TO ( 51,52)
51 F=( (35*MU2-30)41U24-3) /3

RETURN
52 c=1054- (1-4U2) *4'2

RETURN
60 GO TO (61,52)1
61 R= (634.1112-70 ) 4-4U2+15)*".1U) /c

RETURN
62 F=945* MU*(1MU2 )**2

RETURN
70 GO TO( 71,72)M
71 F=ti (231*IU2-315)*mU2+10514 tdU2-51/16

RETURN
72 F=945/?*(1MU2)"2* (11*MU2-2)

RETURN
90 CO TO( ;110203) M

F=( 429*N1U2-693)#MU2+315) -,"1U2-3514MUI /16
RETURN

82 F= 3465/2* (1 MU? 1**24 (134-4U2-3 *MU)
RETURN

83 F=0
FE TURN

90 GO TO( 91,92,93)M
91 F= 6435*MU2-12012 )*1U24C,930 1*MU2-126014.MU2+35) /128

FETURN
92 F=10395 /8*(1-1U2)"2*( (65*MU2-26)*MU24-1)

RETURN
93 F=2027025*(1MU2 )4.4.4

RETURN
100 GO TO( 101,102,103)^1
101 F=( (121554-1U2-25740) ",U2+18018)*N1U2-4620 )4-MU2

f++315)*'1U1/128
RETURN

102 F=135175/3*(1 '1U2) "2*( (17*MU2-10)*MU2+1)*MU)
RETURN

103 F=34459425*MU*(1MU2 )*4'4
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FETURN
110 GC TO(111,112,113)M
111 F=I(U (461394-MU2-109395)4MU2+90090)*MU2-30030)4MU2

r0+3465)*MU2-63)/256
RETURN

112 F=45045/16*(1-MU2)**24.(((323*MU2-255)*MU2+45)4.1U2-1)
FETURN

113 F=3445(1425/2*(19*1U2-1)*(1-MU2)**4
FETURN
END

FUNCTION FCN(MU,FEE,FNUM,GAMMA,AETA,N,M)
COIMON /1/ A(18,191,A1(10,3),A2(10,3,17),A3(10,3,17)

AtA4(10,3),C(10,3,3),FOUP
PEAL MU,M4
INTEr,EP FNUM,GAMMA,AETA,AETA4
N1=N4-1
ilET44=(AETA-1)*FOUR
f'4=(M -1.) *FOUR
IF(1.E0.0)14=0
GO TO (1,2,3,4,5,6,7)FNUM

1 FCN=P(;A1lA,AETA,MU)*COS(AETA4*FEEI
FETURN
FCN=(-1./4U)**N*P(N1,M,MU)*COS(M4*FEE)*

rF(GATAA,AETA,40)*O0S(AETA4*FEE)
cETURN
FCA=.(1./:0S(FEE)**(N-1)/(1.-mU*IU)**(N/2.1

o4(IN*P(N1,4,MU)-(N+N41*PU*P(N,A,MU))*O0S(M4*FEE)
ro*C0S(FEElf14*P(N104,MU)*SIN(M4*FEE)*SIN(FEE)))
4F(GAMMA,AETA,MU)*COS(AETA4*FEE)
RETURN

4 FCN=(1./AU)4"-N*P(N10,MU)*COS(14*FEE)*0(GAMMA,AFTA,
rU)*COS(AETA44-FEE)
RETURN

5 FCN=(-1./1U)**(-N-1)*P(N1,4,1U)*COStM4*FEE)*P(GAMMA,
fAETA,MU) *OOSCAETA4*FEE)
GE TURN

6 FON=(1./CO3(FEE)**(-N-2)/(1.-MU4MU)**((-N-1.)/2.)
AliA(CIU*IU*(2.*N+1.)-N1)*P(N10,MU)-(N+M4)*MU*
Ap(N,1,1U))*COS(M4*FEE)*COS(FEE)+M4*P(NliM,MU)*
ASIN(M4*REE)*SIN(FEE)))*F(GA4MA,AETA,MU)
A4c0S(A7TA4*FEE)
RETURN

7 FCN=(1./AJ)**(-N-1)*F(N1,1,MU)*C0S(M4*FEE)*
roF(GAMMA,AETA,MU)4C0S(AETA4*FEE)

ENO
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SU9ROUTINE LINSOL(N,NP)
COMMON/1/ A(18,19),A1(10,3),A2(10,3,17),A1(10,3,17)

A,A4(10,3),C(10,3,3),FOUP
CIAENSION D(20,21),E(20,40),X(20),

rP(20),0EL1(20),OELX(20),AX(20)
6TEMP=0.
CO 9 I=1,N
00 8 J=1,N
TEMP=AqS(ACI,JI)
IFITEMP.GE.ATEAPlATEMP=TEMP

i CONTINUE
00 10 J=1,NP

10 OtI,J)=A(I,J)/ATEMP
CONTINUE
CO 3 K=1,N
KP=K+1
PTEMP=0.
L=K
00 4 I=K,N
TEMP=A9S(0(I,K))
IF(TEMP-ATEMP)4,4,5

5 L=I
ATEMP=TEAP
CONTINUE

IF(L-K)6,23,6
00 7 J=K,NP
TEMP =O (L, J)

I(L,J)=0(K,J)
7 0(K,J)=TEmP
23 CONTINUE

00 3 J=KP,NP
0(K,J)=J(K,J)/0(K,K)

00 3 I=1,N
IF(I.EQ.K)G0 TO 3
D(T,J)=0(I,J)-0(K,J)*0(I,K)

3 CONTINUE
N2=2*N
CO 70 T=1,N
CC 7U J=1,N

70 E(I,J)=AtI,J)
CO 32 I=1,N
CO 32 J=NP,N2
IP(I+N.EO.J)G0 TO 31
E(I,J)=0.
CO TO 32

31 E(I,J)=1.
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32 CONTINUE.
d 1E MP= 0 .
CO 1 1=1 ,N

00 2 J=1,N
TEmP=A93(E (I, J))
IF (TEM13.3E.ATi.-1-4P) A TEMP=TENP

2 CONT INUE
00 11.1=1 ,N2

11 E(I, 1)=E (I,J)/ATEMP
1 CONTINUE_

CO 13 K=1,N
l<P=K÷1.
4TE.MP= 0
L=K

00 14 I=K,N
TEY,P=A3ME(I,K1)
IF (T EMP-ATE1P) 14,14115

15 L=I
AILMP=TE4P

14 CONTINUE
IF (L -K)16,13,16

16 00 17 J=K ,N2
TEMP=E (L, J)
E (L, J)=E-:(K, J)

17 E (K, J)=TEMP
CONTINUE
10 13 J=KP,N2
E (K, J)=E(K, J) /E(K,K)

00 13 I=1 0\1
IF (I.E1).K)G0 TO 13
E (I, J)=E (I, J) (K,J)*E( I, K)

13 CONT TNU.":
CO 21 I=1,N
X(I)=0 (I,NP)

21. F. (I )=A (I,NP)
F.U1=0
CO 25 T=1 ,A

00 26 j=1,N
26 SLP4=S11.14-A (I, J)*X ( J)

nX(I)= SUM
25 SU 1=0

CC 22 I =1,'I
22 CELB(I 1=0 (I) -4X (I)

.1)"1=.;
CC 23 I =1,N

DO 29 J=NP,N2
29 SUNI=SUM#E (I, J)*OELB (J-N)

CELX (I ).=SU1
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23 SUA=0
CO 24 I=1,N
A(IINP)=DELX(I)+X(I)

24 CONTINUE
RETURN
END

FUNCTION FORIAL(J)
FORIAL=1
CO 1 I=1,J

1 FU<TAL=FOUAL*I
RETURN
EN1
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APPENDIX F

Reduction of the Three Dimensional Solution

to Two Dimensions

Under some circumstances it may be desirable to

reduce the three dimensional temperature solution, that has

been presented here, to a two dimensional solution. This

solution may be obtained by removing all dependence upon (P.

The resulting unit cell will appear as in Figure 5b and

will be representative of a sphere centered within a cylin-

der and thus having no (1) dependence.

All boundary conditions will remain the same and

the two dimensional solution will be obtained by evaluating

all equations at cl) = 0. For 4 = 0 it then follows that m =

0 and this has two effects. First, it removes the summa-

tion over m, and secondly, it causes a change from associ-

ated Legendre polynomials to special Legendre polynomials.

That is because by definition (5), Pr°1(11) = Pn(p).

The primary equations reduce to the following

equations for a two dimensional analysis.



Temperature Solutions:

Tz(r)i-A,d)) C") 4

n=
oo

n

E (cti)rn_
C(3) --,

P )Ph IA

Top Face Boundary Condition:

r

FE:

IA

1 = C
a) [c 2.1

)4-A h
/1

( )+C(3)(1) P
()A)]
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n = 1

Side Face Boundary Condition:

r=
1-"A2)(12

p

[((tAz(ZrN4-1)-(n-1-1) pr,()LA)r,),APh_i c/LA91
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Page 110



Bottom Face Boundary Condition:

-r=

1
2

oo

= CU.) 1-> I_C t11(
h Pki(),A) 4 C(1,3) ( Ph(

System of Linear Equations:

A 2r
kz(nti)+Kth

1<z. (2e, +I)

2n+I
Kii< )112

Rq
3
1 2n41
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