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MULTIPERIOD MULTIPLE-ITEM DYNAMIC LOT SIZING PROBLEM
WHEN DISCOUNTS ARE AVAILABLE

CHAPTER I
INTRODUCTION

Lot Sizing Problem and EOQ

In practical app]ication of production'and inventory control
methodology, a decision maker will often encounter questions about when
and in what quantity he should manufacture or purchase certain products
to satisfy the demands. The first question can be answered with
certainty provided that the required demands and their corresponding
lead times are known. The second question. may be solved through lot
sizing technique which figures the order size based on the future
demand's magnitude and timing.

With the assumption that demand patterns are uniform and stocks
are gradually depleted, Wilson's traditional Economic Order Quantity is
commonly used to find the order quantity. This approach works fajr]y
well in static cases.

Since Wilson's Economic Order Quantity is built upon the assump-
tion of uniform demand pattern and figures the order size based on the
average demand without considering the‘"timing“ of the demand, the
outcome tends to be unsatisfactory, not economical, may even be disas-

trous when the basic assumptions are unrealistic. For example, in a

manufacturing environment, the demand pattern of the components of



assembled products is typically not uniform, and depletion is not
gradual. The Economic Order Quantity turns out to be a poor ordering

quantity when it facés such discrete lumpy demand patterns.

Dynamic Lot Sizing Problem

Because of the failure of Economic Order Quantity to deal with
the frequently encountered discrete lumpy demands, the interest in
recent years has gradually shifted to discrete lot sizing techniques
which make no assumption of uniform demand patterns. Several such
techniques are listed in Table 1-1.

Lot by Lot

Period Order Quantity
Least Total Cost

Part Period Balancing
Least Unit Cost
Silver-Meal Method
Inoue-Chang Phase-1 Method

Inoue-Chang Phase-1 and Phase-2 Method
Wagner and Whitin's Algorithm

Table 1-1: Discrete Lot Sizing Techniques

In all cases, the planning horizon is divided into periods,
which are often counted in units of weeks. The demand rate in each
-period is assumed to be deterministic. When the demands vary over time,
the associated lot sizing pfob]em is called a dynamic ]ot'sizing
problem. - The objective of a dynamic lot sizing technique is to

_determine the proper lot size to fill the non-uniform demand require-



ments, and to decide how many of periods of requirements should be
combined into a single Tot. Backlog is generally not allowed, especially
in an assembly process. A delay to supply a part at the required time
will cause delay of the whole proceSs. Such costs are often very high.
Among all the dynamic lot sizing techniques, the Wagner-Whitin's
algorithm (Wagner and Whitin, 1958) is the only one that guarantees a
minimum total cost inventory management scheme which satisfies dynamic
demand patterns. The algorithm uses a dynamic programming method
to compute and compare all possible combinations of solutions. Though
the algorithm requires large compdtationa] efforts, its guaranteed
~optimality makes it a valuable benchmark against which the performance
of other techniques is measured (Kaimann, 1969; Berry, 1972; Silver and

Meal, 1973; Ruch, 1976; Chang and Inoue, 1977).

Discount Consideration

A]though many scholarly efforts have been expended in the genéra]
area of lot sizingvresearch, one related area has'received‘re]atiyely
little attention. This is the study of the optimum purchase quantity
and timing decision when discounts are available.

The supplier may offer different levels of discounts when larger
quantities are purchased. The price differentials maykbe substantial.
If a solution indicated by a lot sizing technique comes close to a
discount level break, it will be easy to adjust the lot sizing quantity
in order to take advantage of its discount saving. Some solutions may

not be that obvious, so the potential discount saving must be balanced
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dgainst the extra ho]ding‘cost of carrying more inventory over a longer
period and determining what is the correct quantity to purchase.

In fact, a study of purchasing quantity and timing when discounts
are available often provides significant cosf réduction. It has been
pointed out that it is not uncommon to find unit price reduction in
excess of 50% for‘agreements to purchase in increased quéhtities
(Whybark, 1977). Unfortunately, almost all discrete dynamic lot
~ sizing techniques assume no discounts. Callarman and Whybark did
research on the comparison of several dynamic lot sizing techniques
on the single-item demand patterns (Callarman and Whybark, 1977). They
allowed some techniques to order with split lot while forbidding the
Wagner-Whitin's algorithm to do the same, and found that some
heuristic techniques performed superior to the Wagnér-whitinfs dynamic

programming approach (Callarman and Whybark, 1977).

Multiple-Item Consideration

Most of the presently known dynamic Tot sizing techniques deal
with single-item problems. They can be used to deal with some
multiple-item problems if either one of the following conditions is
fulfilled:

1. There are multiple items, but the broduction or inventory
processes, resources, and capacities involved are such
that each item can be planned independently..

2. There are multiple items, but the decision is based only

on the aggregated level without specifying production or.



inventory levels for individual items.
Butvthose single—item']ot sizing techniques cannot solve all the
problems. There are a lot of situations where many items are involved.
They may either use common faci]ities, Tabor or material as in many
production problems, or have a joint set-up cost as in the lot sizing
problem. Those items must be considered jointly instead of being planned
independently. In addition, since the decision WiT] depend on the
solutions for the individual items, the problem cannot be solved
through aggregated planning techniques. These kinds of multiple-item
problems are usually characterized by considerable computational
difficulty (Johnson and Montgomery, 1974). A number of authors have
worked with multiple-item problems (Shu, 1971; Nocturne, 1973; Chern,
1974; Andres and Emmons, 1975; Silver, 1975; Zoller, 1977). They
either assume that the demand rates of items are constant or the demand
rates fol]dw some generalized mathematica]‘functions. Therefore, in
past studies, the decisions assumed continuous review rather than
periodical review. In our study, as in the dynamic lot sizing
problem, the generalized mathematical functions to describe the demands
are not considered to be known. This necessitates a periodic review
approach. Eisenhut preéented a heuristic d]gorithm to deal with
the multiple-item dynamic lot sizing problem with capacity constraints,
but he did not consider the case when discounts are available (Eisénhut,
]975). No literature is found to work with the joint order multiple-
item dynamic lot sizing problem when the discounts are available, and

that is the topic of this thesis.



Engineering Relevance

~ The problem presented here is a .deterministic multiperiod multiple-

item joint ofder cost problem, and discounts are assumed available.

The assumptions made are as follows:

1.

Bow N

10.
11.

. Demand for i

There are K items involved.
th item at jth period, Dji,is deterministic.
Demand is dynamic, or said to vary with time.

The ordering cost of all items is jointed.

th item

Holding costs are at a constant rate hi for the i
per unit per périod.

The backlog is not allowed.

Lead time is negligible.

Order is under periodic review.

There is no initial stock.

The planning horizon is finite.

There is no split lot allowed.

In real world problems, any item always has a lead time, and the

initial stock is unlikely to be zero. But only through moving the item"

demands ahead of lead time periods, can the lead time of newly generated

demand rates be treated as zero, and by subtracting demands from

the on hand initial stock, make the results as if there were no

initial stock. When a family of items are produced together through

a common set-up procedure, or several items have close lead times,

these items may be ordered simultaneously through a joint order in
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order to take advantage of the economy that can result from such actions.
A common set-up procedure for a family item can reduce the set-up time
and increase the productivity. Similarly, a joint order can reduce the

ordering time and save the ordering cost.

Qutlines of this Thesis

The planning horizon theorem was adopted to reduce computational
difficulty in the search for an optimum solution of a dynamic lot-
Sizing problem through the dynamic programming approach. The theorem’x
is described in Chapter Il and extended to the cases where the
discounts are available. The necessary condition to make the theorem
valid is also presented.

The third chapter deals with single-item dynamic lot-sizing
techniques. Traditionally used techniques are presented. The author's
newly developed téchnique is also introduced. Those techniques are
compared by using a set of well-known standard data, as well as 100
sets of computer generated random data. The modification of some
techniques to the discount situation is also discussed and developed.
Again, some testing data are generated, énd the techniques are tested
and compared. |

The joint order multiperiod multiple-item dynamic lot sizing
problems when discounts are available are discussed in the fourth
- chapter. Three heuristic programs are developed based on different 
criteria. The f]owchakt and details of the approaches are presented‘

in the same chapter. Also, an optimization algorithm is developed
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using the dynamic programming method. The extension of planning horizon
theorem in é multiple-item discount situation is discussed in order tb |
reduce the computational effort in searching the optimum solution.

The fifth‘cﬁapter discusses the same situation, but fhe assumption of
not allowing split order is eliminated. A network to represent a
generalized model is illustrated. Mathematical programming is used to
model the problem. The épproach to solve such a model is-also discussed
in the fifth chapter. In the sixth chapter, numerical examples are pre-
sented. Two—item’prob1em with one.discount level for each is se]ected as
‘the example to illustrate the deVe]oped programs. The testing data are
generated and the performance of different heuristic programs are
estimated by using the dynamic programming techniques in some

selected situations as benchmarks. The results are compared and
evaluated. The conclusions are presented in the last chapter. The

potential areas for further study and investigation are also

recommended.



CHAPTER 11
PLANNING HORIZON THEOREM

Wagner-Whitin's Planning Horizon Theorem

. 0f all presently known dynamic ordering rules, Wagner-Whitin's
dynamic programming approach (Wagner and Whitin, 1958) is the only method
that will guarantee an optimum solution. This method searches all possible
combinations of ordering quantities at different periods and finds the
best combination. The process requires a large amount of computation.

To simplify the §earching process, Wagner-Whitin's program uses the
Planning Horizon Theorem to eliminate cqmbinations that need not be |
considered during the searching process. The theorem applies to a
situation where a decision must.be made between ordering the quantity
'Pt at the tnth period versus ordering it at time tk. The theorem can
benstated officially as follows:

Planning Horizon Theorem: If in the forward algorithm
the minimum cost decision at tp occurs for Ptg>0, ty<tp,
then in periods t>t, it is sufficient to consider only

periods j so that tksjst. (Riggs & Inoue, p. 317, 1975)

*
It can be written in a recursive form as: Define Vj as the minimum

cost of ordering and holding the‘demands up to jthvperiod. The
recursive function will then be:
Vi = pi f=0
3T Lhig i e
j k3
ij ° H L D]-( 1-4 )+ ﬂ~61j H: Holding cost

0: Ordering cost
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Planning Horizon Theorem can then be redefined as: If in the forward

*
algorithm, the Vn ='Lkn + V:_] for ordering and holding the demands up

to tnth period, then in periods >t

x* x*
V. =min (L., +V, ), V_]

it ¥ Vo =0

Numerical Example of No Discount Situation

Let's use the following example to illustrate the P]anning‘Horizon

Theorem. Suppose the demands for the next six periods are the following:

Periods ] 2 3 4 5 6
Demands 100 160 40 200 120 30

The ordering cost is $100.00, and the holding cost is $2.00 per period
per unit. The Figure 2-1 below ;hows the-computafiona] process to
search for the optimum solution. The * marks the optimum ordering of
demands from the first period up to that pekiod. The X represents the
terms that need not be considered because of the Planning Horizon

Theorem. The optimum solution will then be:

Placing Order at Periods 1 2 4 5

Ordering Quantities 100 200 200 150
Total Cost will be $540.00.



Planning Placing Order At

Period Demands Period-1 Period-2 Period-3 Period-4 Period-5 Period-6
1 100 ( 100,)
$ 100
2 160 (260 ) ( 160,)
$420 - $ 200
3 40 X (200,)  ( 40)
$ 280 $ 300
4 200 X (400 ) (240 )  ( 200,)
- $1080 $ 700 $ 380
5 120 X X X (1320) ( 120,)
$ 620 $ 480
6 30 X X X X ( 150 ) ( 30)
' $ 540 $ 580
Order Shall Be Placed At: J J J J

Ordering Quantities: 100 200 - 200 150

Figure 2-1 An Example of Planning Horizon Theorem

Lt
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Quantity Discount Situation

When discounts are avai]ab]e, the situation will be changed. The
total cost is-then the sum of ordering costs, holding costs, and the
items' price subtracting the saving from the discounts. Since the items'
price can be taken as a fixed value, which will not affect the planning
decision, the objective of the planning decision will then be to search
the optimum solution with the minimum sum of the ordering costs, holding
costs, subtracting the discount saving. ‘Because the problem now involves
the discount saving, and this varies with the ordering quantities,
thosevcombinations that earlier needed not be considered from the
conc]uéion of Planning Horizon Theorem (at no discount situation), can

no more be neglected.

A Quantity Discounted Example

Let's use the previous numerical example with the addition of

discounts:
Assume: Ordering Quantity Discount
0- 99 $0/unit
100 - 299 $2/unit
300 - 499 $4/unit
500 - $6/unit

From the following Figure 2-2, the optimum solutions will be either to

order 100 units of items at period-1, and 550 items at period-2, or



Planning
Period

Demands

100
160

40
200
120

30

Period-1

( 100,)
$-100

( 260 )
$ 100

( 300,)
$-620

( 500,)

$-1220

( 620 )
$-980

( 650 )
$-860

Perijod-2

( 160,)

$ 0

( 200 )
$-320

( 400 )
$-720

( 520 )

$-1520

( 550,)
$-1460

Placing Order at

Period-3

(360 )
$-460

(390 )
$-400

Period-4

( 200 )
$-920

( 320))

$-1560"

( 350 )
$-1440

Period-Sy

(120 )
$-1360

( 150 )
$-1360

Figure 2-2 An Example of Planning Horizon Theorem With Discounts

Period-6

( 30,)

$-1460"

€L
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to order 300 units of items at period-1, 320 units of items at period-4
and 30 units of items at peribd—6. Both ways reach the same minimum
cost. |

This exahp]e demonstrates that the traditional P]anning Horizon‘
Theorem cannot be app]ied to the situations where the discounts are
available. For example, the optimum Planning for the first two periods
is to place an order of 100 units at the 1st period, and 160 units at
the 2nd period. If we were to follow the Planning Horizon Theorem, the
conclusion would have been that for the further planning we would not
need to cqnsider ordering any other amount of demands at the first
period. Our example, on the other hand, showed that when the p]énning
period extended to the third period, the optimum solution Specified
ordering 300 units at the first period. This is indicative of the

“significant saving from the discounts.

Planning Horizon Theorem Applied to Situations with Discounts

In general, as we see, the implication of traditiona] Planning
Horizon Theorem cannot be applied to the situations when discounts are
available. However, there are cases when the implication of traditional
Planning Horizon Theorem still can remain valid.

Assume,»for‘examp]e, a situation of planning for n periods with

demands D], D2, .. ., D There are J levels of discounts, G], GZ’ ..

n
. GJ, available for ordering quantities greater than or equal to

31, BZ’ . e e BJ. Both series are monotonically nondecreasing.

n
Suppose at the optimum situation it will order I D] at period
1=k
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tk for planning up to period tn. In order to extend the planning

horizon up to‘tm>tn, a decision must be made between ordering the
m : m
X

D] at period tk to reach én
1=k

quantity I D] at ti versus ordering
1=

optimum solution, i, kgm.

Theorem 2-1: If in the forward algorithm the minimum cost decision

‘ n
of planning up to period tn is through ordering quantity Pt = I D],
A ‘ k 1=k
tkgtn, and Pt ;BJ,-then in order to extend the planning horizon to the

k
period tm>tn, it is sufficient to consider only period j, tkgjstm.

Proof: Let Cw represent the total cost (ordering cost plus ho]ding

cost subtracting discount reduction in order to fulfill the demands) of
n
planning up to the period tn through ordering quantity Pt = I D] at
: w o I=w
- the period t . C,<C; for ifk.

When the planning horizon extends to the period‘tm>tn, the cost
) n
through ordering P, = I D, at t, is:.
70t ] k
k 1=k
n
D]) D

k 1=k

3

m
- 6( I D)
1=k ']

nmMzs
nm~™Ms

C=¢ + % Dy H (1 -k)+[ 6

D] ]
1=n+]1

1

1 k

where G(Q) represents the discount rate for ordering quantity Q at one
time.

" For the period j<t,, the cost will be:

: m
Ci=Ci+ T DK (1-3)+[G6

) T E D))
D.)Z D, -G(Z D
S S . E RS E LR E

Mz

n
Since £ D >BJ, and

m
> I D,
1=k ! =j !

J 1

n M3

m
Dys 2 D, all are greater than

1 J 1=k

Dy, which implies

i ™M=

1=k
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n n m m
6(Z D)) =6(Z D) =G(Z D) =6(Z D) =6,
1=k 1=j 1=k 1=j
and
: ( ) m ) m m
Ci-C =(C.-C )+ & D H(k-3j)+G, I Dy-G. T 0D
Ik L e g Y s !

m .
=(C.-C, )+ I Dy H(k-3)
J k 1=n+] ]

Because Cjzck, and k>j, we can therefbre draw the conclusion that_Cé is
always greater than CL . Thus, to plan the periodbt>tn, it is sufficient
to consider on]y periods j where tksjst.

Theorem 2-2: Assume in the forward algorithm, the minimum cost

n
decision is through ordering D]>0 at the perioed tk, tkstn. The
: ' . 1=k :
discount Tevels are based on the ordering quantities B], 82, e e s BJ.
n
If ¢ D]<BJ, it is possible to find a set of discount rates G(Bi),~
1=k
i=1,2, ..., J, such that when the planning horizon extends to the
period tm>tn, Cj will be less than Ck’ where j<tk<tm.
Proof: From the Proof of Theorem 2-1 we have:
: ( [6( D) I
c.-C =C.,-C_+ ¢ D H(k-3)+[G(zD z D
J k J k 1=n+] 1 _ 155 1 12 g
m m n n m m
- G( g D,]) z D]]-[G(Z D]) z D]-G(ZD]) L D]
1=] 1=j 1=k 1=k 1=k 1=k
n -
Since . % D]<BJ, let's set the discount rates as the following:
1=k
n m

G(z Dy) =6(zx D;) = G(B

)
1=k 1=k f
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m n o
G( = .D]) =G( 01) +8 =G(B) ‘ f<ggd
1=j 1=j 9
_ and let
m oy
X-I = Cj + Cks X2 = ]§n+l D'I H ( k -] )

we will have

n n n ) n m
C.-C =xy+x,+[G(£D;) £ D, -G(x% D;) £ D,-632 D
‘ n m n m
-G(z D) £ Dy+6(z D) = D]
1=3 1=n+l 1=k 1=n+,
because G(Q) is a monotonically nondecreasing series,
1 Al m
Cj - Ck =Xyt Xy = 6]§. D]
: =]
The § can be chosen as
m
§ = ( X] + Xy t e )/ L D] : e>0
1=]
which concludes
1 ‘1
For a situation to plan for N periods of demands D], DZ’ e ey DN’

if in the forward algorithm the minimum cost decision of planning.up to

n
period tn is through ordering quantity Pt = I

D] at the period tk,
k 1

k
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tkstn, and if the discount levels are based on thevquantity B], B2, . e ey
BJ, the Theorem 2-1 represents the sufficient condition in order to get a
minimum cost decision through considering only period j when the planning
horizon extends to.tm>tn, tksjgtm, and the Theorem 2-2 represents a
necessary condition. |

It should notice that theoretically the Theorem 2?2 works on the
hypothetical cases, but in the real 1ife cases the factor S will be
Timited by the item's original price, otherwise we may have the
discount rate that gives a negative price, which generally will not
happen. |

Generally speaking, the Planning Horizon Theorem is not appfopriate
for a case when the discounts are available. However,'if certain
conditions are fulfilled the implication of the Planning Horizon
Theorem still can apply to the case, and that will save the computational‘
time and the storage area in searching the opfimum solution. The
numerical example using the Planning Horizon Theorem applied to the

discount situation will be discussed at next chapter.
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CHAPTER III

SINGLE -ITEM DYNAMIC LOT SIZING TECHNIQUES

Single-Item Dynamic Lot Sizing Problem

Wilson's Economic Order Quantity has commonly been used to find the

order quantity, and this approach works fairly well in static cases.

However, in the manufacturing environment, and many other real life

environments as well, the demand patterns are considered discrete and

~ changing with time. The EOQ formula is based upon the assumption that

the demand pattern is uniform; when faced with dynamic lot sizing

problems, the use of the EOQ often leads to unsatisfactory solutions.

There are many techniques developed to cope with such dynamic demand

patterns, including:

1.
2.

3
4.

10.
11.

Fixed Order Quantity, variab]eborder interval
Fixed Period Requirement, variable order quantity
Lot-for-Lot _

Economic Order Quantity (EOQ) Formula

Period Order Quantity

Ruch's Method

Least Unit Cost (LUC) Method

Silver-Meal Method

Eisenhut's Method

Least Total Cost (LTC) Method

Part-Period Balancing (PPB) Method
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12. Inoue-Chang Phase-1 Method

13. Inoue-Chang Phase-1 and Phase-2 Method
14, Wagner-Whitin Method.

Classification of the Techniques

Among techniques using these methods, those using methods 7 to 14
allow both the lot size and the interval change for each order to be
placed. And these eight techniques can be classified into four kinds of
approaches. From 7 to 13, these are heuristic techniques following
three kinds of approaches to the dynamic lot sizing problem. Lease Unitv
Cost finds the solutions based on the local minimal unit cost. Silver-
Meal Method and Eisenhut Method are based on the local minimal total
cost per period. Technique based on methods 10 to 13 are based on the
assumption that the optimal solution locates when the ordering cost is
close to the holding cost, and add some modifications and improvements.
The Wagner-Whitin method represents the fourth kind of apbroach; it uses
dynamic programming approach to search all the possible ways to meet
the demands and determining the optimal solution as the one with
minimum cost. Since the Wagner-Whitin method guarantees an optimum
‘solution, it is often used as a benchmark to measure the performance of
other techniques.

Among those heuristic techniques, those based upon Least Unit Cost,
Silver-Meal Method, and Inoue-Chang Method are selected to represent
three kinds of different approaches, and the techniques are developed in

‘extension to the situation when discounts are available and when
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mu]tip]e-items are involved.

Comparisons of Dynamic Lot Sizing Techniques
Using Kaimann's Data

Along with the development of different dynamic lot sizing
techniques, a number of papers-have been presented on the énalysis and
comparison of techniques. At the early stage, the emphasis was on the
~ comparison of the dynamic programming approach with the traditional EOQ

formula (Kaimann, 1969; Gorenstein, 1970; Gleason, 1971). As more and
more heuristic dynamic lot sizing techniques were developed, interest
was shifted to the comparison of heurisitc approaches using the dynamic
programming model as the benchmark (Si]ver and Meal, 1973; Orlicky, 1975;

Ruch,71976; Chang and Inoue, 1977). A set of standard data (Table 3-1),
developed by Kaimann, has been widely used as the demand patterns to test
the different technique§. The data are varied along two dimensions:

‘the coefficient of variation of the demand patterns, and the ratio of the
economic order quantity to the average period demand (Table 3-2). The
first parameter describes the degree of variation in the demand data in
terms of the ratio of the standard deviation of weekly demand to‘the
average weekly demand. The more the demand;pattern tends to be uniform,
the smaller the value of the parameter will be; the more the demand |
pattern tends to be "lumpy" (Berry, 1972), the larger the value of the
parameter will be. The second parameter measures the degree of mismatch
between integral multiples of product demand, and is used to measure
the "spikeness" in the demand (Berry, 1972). The results of the

comparison among the techniques are displayed both in terms of totaT



Week 1 . 2 3 4 5
1 92 80 50 10 0
2 92 100 80 10 0
3 92 125 180 15 0
4 92 100 80 20 0
5 922 - 50 0 70 0
6 92 50 0 180 1105
7 92 100 180 250 0
8 92 125 150 270 0
9 92 125 10 . 230 0

10 92 100 100 40 0
11 : 92 50 180 0 0
12 . 93 100 95 10 0

Coefficient of
Variation: 0 .293 ~.718 1.41 3.31

Table 3-1. Demand Patterns

_ -~ Ordering Holding Cost
E0Q/D - EO0Q ' Cost Per Unit Per Week
.73 67 $ 48 $2
1.00 92 92 2
1.14 . ' 105 120 2
1.50 138 v 206 2
2

1.82 166 300

Table 3-2. Inventory Model Parameters

SOURCE: Kaimann, R. A., "EOQ vs. Dynamic Programming - Which One
to Use for Inventory Control?", Production and Inventory
Management, 4th Qtr., 1969.

22
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inventory cost performance and the percentage increases over Wagner-
Whitin's so]utionv(Table 3-3, 3-4). The comparison shows thaﬁ among all
~ heuristic methods, the two-phase Inoue-Chang method results in having
as low cost'a§ any other approach including Wagner-Whitin. Even when
only the first phase}is used, the results are generally superior to all
other heuristic methods. For details, the reader is referred to Table

3-3, 3-4.

Comparisons Using Randomly Generated Data

One weak point of the above comparison is the number of Kaimann's
data. There are only five sets of data. In order to get a clearer
picture of the comparisons of different methods, 100 sets of demand
patterns are generated in coping with Kaimann's data. Each set of data
contains 12 demands with the sum to be 1105, which will lead to the
~ same EOQ because EO0Q depends only on the average'demand. “The 100 sets
of demands are randomly generated according to the'distribution of zero

“demands. The distribution functions used have the following .

characteristics:
Data Set Distribution % of Zero-Demand
20% | 0
- 20% 10
20% 20
20% | _ 30
20% 40

A list of data is given in Appendix A. The coefficients of variations



24

E0Q/D ; Coefficient of Variation
Ratio Procedure 0 .293 .718 1.41 3.31
EOQ 1681 1681 1585 1633 1153
LuC 1681 1681 1737 1597 1153
Sand M 1681 1681 1557 1597 1153
.73 W-W Alg. 1681 1681 1557 1589 1153
I and C ' ' ,
Phase 1 _ 1681 1681 1557 1589 1153
Phase I & II 1681 1681 1557 1589 . 1153
EOQ : 2209 2915 2601 2655 1197
LuC 2209 . 2209 2133 2061 . 1197
S and M 2209 2209 1953 1981 1197
1.0 W-W Alg. 2209 2209 1953 1941 1197
Iand C ,
Phase 1 2209 2209 1953 1961 1197
Phase I & II 2209 2209 1953 1941 1197
EOQ 3612 3085 3275 3106 1225
LUC 2545 2605 2425 2285 1225
S and M 2545 2545 2205 2165 1225
1.14 W-W Alg. 2545 2505 2205 2145 1225
I and C : :
Phase I ° 2545 2505 2205 2165 1225
Phase I & II 2545 2505 2205 2145 1225
EOQ 3859 4873 - 3747 3799 1311
LUC 3447 3353 3113 2941 1311
S and M 3447 3541 2871 2701 1311
1.5 W-W Alg. 3447 3353 2871 - 2681 1311
I and C ‘
Phase 1 3447 3353 2871 2681 1311
Phase I & II 3447 3353 2871 2681 1311
EOQ - 5119 5435 4927 4653 - 1405
LUC 4011 4155 3745 3705 1405
S and M 4011 4055 3455 3245 1405
1.82 W-W Alg.. 4011 4055 3435 - 3245 1405
I and C . .
Phase 1 4011 4055 3435 3245 1405
Phase I & II 4011 4055 3435 3245 1405

Table 3-3. Comparison Table of Inventory Cost Performance

'SOURCE : Berry,_w. L., "Lot Sizing Procedures for Requirements Planning
Systems: A Framework for Analysis", Production and Inventory
Management, 2nd Qtr., 1972.



E0Q/D
Ratio

.73

1.0

1.50

1.82

SOURCE:
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£E0Q

LUC

S and M
I and C
Phase 1

. Phase 1

EOQ

LUC

S and M
I and C
Phase 1
Phase 1

EOQ

LUC

S and M
I and C
Phase 1
Phase 1

EOQ

- LUC
S and M
I and C
Phase 1
Phase 1

EOQ.

LUC

S and M
I and C
Phase 1
Phase 1

Table 3-4.

0 .293
0 0
0 0
0 0
0 0
& 11 0 0
0 31.9
0 0
0 0
0 0
& 11 0 0
41,92 23.15
0 3.99
0 0
0 0
& 11 0 0
11.95  45.33
0 0
0  5.60
0 0
& 11 0 0
27.64  34.03
0 2.46
0 0
0 0
& 11 0

Percentage Increase Comparison Table
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2.05
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Berry, W. L., "Lot Sizing Procedures for Requirements Planning
Systems: A Framework for Analysis", Production and Inventory:

Management,

2nd Qtr., 1972.
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are ranged from .324 to 1.601 with an average .843

The comparisony(Tab]e 3-5, 3-6) shows that the Inoue-Chang method
is again significantly superior to the Silver-Meal, Least-Unit, and
E0Q methods.. Both Inoue-Chang and Silver-Meal methods show a tendency to
get nearer to the optimum solution as the katiO-of ordering cost to the
ho]dihg cost becomes smaller. But such tendency does not happen to the
Least Unit Cost method, where the number of the optimal results raises
from 7% when the ordering cost is $300.00 up to 64% when the ordering
cost‘is $48.00, and the improvement in the average‘cost over the optimal
results is not very steady and significant. ’The EOQ method, as expected,
leads to non-optimal solutions for all the testing data. That is
because the assumptions of the method based on the EOQ will not be
valid for the dynamic demands. The performance of total cost oVer fhe
optimal solution is increasing along with the decreasihg ratio of
ordering cost to holding cost. That behavior is just opposite to other
methbds._ The traditional EOQ method has the worst results compared
~with the other dynamic Tot sizing methods for the planning of dynamic
demands, and such result is also expected.

Modification of Single-Item Dynamic Lot Sizing
Techniques when Discounts are Available

When the discounts are offered, the costs that go into the price
of the item vary extensively throughout the quantity ranges. In order
to get a better solution, such poténtia]‘advantages from the discounts

must be put into consideration in order to get the "right quantity."



Ordering Cost/
Holding Cost

$300/$2
$206/$2
$120/$2
$ 92/%2
$ 48/$2

PH-~1

81%
87%
96%
100%
100%

PH-2

91%
97%

99%

100%
100%

SM
57%
68%
89%
92%
100%

LuC
7%
8%

17%

21%

64%

EOQ

Table 3-5. The Frequency of Optimum Results

Average % of Cost Over the Optimum Results

Ordering Cost/

Holding Cost

$300/$2
$206/$2
$120/$2
$ 92/%2
$ 48/%2

PH-T

0.601
0.335
0.093
0
0

PH-2

0.204
0.060

0.002

0
0

SM

1.486

1.047
0.273
0.120

LuC

-19.919

22.558
26.026
25.585
16.769

EOQ
68.557
100.512
112.930

139.004
171.549

Table 3-6. The Comparison of Average Percentage
Costs Over The Optimum Solutions

27
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Generally speaking, there are two kinds of discounts widely used

- in industrial and business environments. Oneis called "All Unit

Discounts." Under such discounts, the reduced price is applied to all
units when thé quantity of the order exceeds some discount level.
Another kind of discount is called "Incremental Discount." Under this.
kind of discount offering, the price reduction only app]ies'to the units
above the last discount level when the current order exceeds the next
discount level. "It is considered that the case of 'All1 Unit Discounts’

- is considerably more difficult to solve, even though it is the form
most often found in the industry." (Whybark, 1977) The discount we

are going to deal with is the first kind, the A1l Unit Discount.

With the availability of discounts, the algorithms of dynamfc lot
sizing techniques will have to consider the trade-off between the
potential of reducing the purchasing cost, and increasing the holding
cost for the increased inventory.

Let's keep the assumptions of the problem unchanged. A further
assumption being added to the probiem, namely: The item has J levels
of discounts available, Bi’ i=1, 2, . . ., J, with the cost reduction
rates, Gi,‘i=], 2, . . .,d. In all the procedures, the algorithms will
first find each order quantity assuming no discounts available. Once
‘the answer is found, it will be used to compare with the answer from the
one with increased further period demands in order to qualify for the
discounts, or further discounts, and the better answer, justified by
the objective of the a]gohithm; will be retained as the tentative answer.

~to be used in the further comparison if there is any further level of
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discounts. Repeat such procedures until there are no more discount
levels. Then a new order will be placed, and the order quantity will be

determined by repeating the above procedures.

~ Least Unit Cost Method

This technique determines the order quantity based on the "unit
cost" (total cost per unit) computed for each of the successive order
quantities. The one with the local minimum unit cost will be chosen as
the Tot size of that order. The next order will be computed through
identical procedures. When there are discounts available, the total
cost will be modified by the sum of ordering cost and holding cost
subtracting the discount saving. There will be two kinds of outcomés
when av]ocal minimum point is fbund. The first one is at the local
minimum point the‘program checks to‘find whether the sum of demands has
already reached the discount requirements. If it has, then the quantity
determined from this point will be chosen as the ordering quantity. The -
second situation is the situation which occurs if the local minimum point
is found wfth the summation of demands still below the discount require-
ments. It is possible, When we include further demands into the
summation, that the unit cost will be Tower because of the discount
saving. So the first local minimum point is temporarily stored, and
later compared with another candidate, the one with the’quantity with
discount savings. The candidate with a lower unit cost will be chosen
as the desired orderfng quantity. The logical steps of such searching 1is

represented in the fo]]owihg flowchart (Figure 3-1).



i Find the nonzero

demand, D([), at
period I

®

T

_ new unit
NUC = "“oost

PTace an order
) 10 = D(I) at I

no

UC = unit cost
of the order

o

Next period
J=1+1

1no

New order qty.
NOQ = 10 + D(I)

NUC = new unit

cost

J > planning Y&
horizony PH END )

30

New order qgty.
TNOQ- = 10 + D(K)

2 TNOQ 2dhgtﬁgj<z>
aty.

Figure 3-1 Flowchart of the Modified LUC Method
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Numerical Example

Let's use the following example to explain the approach. Assume a
manufacturing operation where the set-up cost is $92.00 per nrder,and the
~ holding cost is $2.00 per unit-period. The inventory holding cost is
based on the ending inveniory, and no split order is allowed. The
required order quantity to get a discount is 200 units, the discount
rate is $1/unit. The periodic demands within the planning horizon

are:

Period 1 2 3 4 56 7 8 9 10 11 12
Demand 50 80 180 80 0 0 180 150 10 100 180 95

The search and computations of this example using the Lease Unit Cost

Method are shown in Figure 3-2.

Silver-Meal Method

The method of Silver-Meal represents another approach to

searching for the right ordering quantity at the right time. The
Silver-Meal methodvfinds an ordering quantity that leads to a local
minimum cost per period. Therefore, starting with the first unfulfilled
demand,‘the following demands are added onto it, and at each time the
total cost, which is the ordering cost plus the holding cost subtracting
the discount saving, will be found along with the number of periods
involved. The total cost per period at each time is uséd to compare
with the previous values until the local minimum point isAfound. Again;
as in the case of "least unit cost," two kinds of outcomés may occur.

One with the sum of demands at the local minimum_point already satisfy-



Demands ) 50 80 180 80 0 0 180 150 10 100 180 95

Total Cost 92 252 1692 . 92 392 432
-310 -330  -340
=1382 =62 =92
Total Qty. : 50 130 310 180 330 340
Untt Cost 1.84 1.94 4.46 0.51  0.19 0.27
Local Min. * . : *
Next Total Qty no yes yes
> Disct. Qty
Total Cost 92 452 772 92 292 1012 1582
-260 -340 -290 385
=192 - =432 =722 =1197
Total Qty. 80 260 340 . 10 1o 290 385
Unit Cost 1.15  0.7¢ 1.27 9.20 2.65 2.49 3.
Local Min. * » ) *

Next Total Qty

> Disct. Qty yes ' yes
Total Cost 92 92 92 1172 92
-260
=912
Total Qty. 80 80 80 260 N 95
Unit Cost ) 1.1 1.15  1.15  3.50 0.97
Local Min, * *

Next Total Qty
> Disct. Qty . yes . -

.................................................................................. P L T T T

“To

Order: 50 260 - 80 - - 330 o 290 - 95

Total: Ordering Cost = 552 Holding Cost = 1580 Discount Saving = 880 ' Net Cost = 1252

Figure 3-2 An Example of LUC Method in the Discount Situation
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ing the discount requirement, in which case that sum will be chosen as
the ordering‘quantity. The»othér one represents the case that the

sum is below the discount requirement. Then the sum will be

stored, and tompared with the situation when further demands are added
into the sum to get the discount advantages, and the better one, based
on the criteria of.1ower total cost per period, will be chosen as the
desired ordering quantity. The logical steps of this approach are given

in the flowchart of Figure 3-3.

Inoue-Chang Method

A third approach to solving the dynamic lot sizing problem under
the discount situation is extended from the Inoue-Chang Method.
Basically speaking, the Inoue-Chang Mefhod decides whether or not to
place an order at each period based upon comparison bf the ordering
cost and the holding cost. Starting with the first demand, the method
places an order. The next scheduled order is tentatively set at the
period where the holding cost becomesllarger than the ordering cost.
The method then backtracks and checks all other alternatives within the
time interval, and determines tentatively how many periods should be
covered»by that scheduled order. Since the availability of discounté
may induce certain significant saving, every time the order is
tentative]ykschedu1ed a check will be carried out to see if the order's
quantity has already brought in the discount advantages. If the
answer is "yes", the method will start placing the next order; btherwise,

the tentatively scheduled order will extend its coverage to further
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Find the nonzero
demand, D(1), at
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\
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/\

\
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Hew order gty.
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Figure 3-3 Flowchart of the Modified Silver-Meal Method



Demands

Total Cost

Total Periods
_Cbst/Period
Local Min

Next Total Qty
> Disct. Qty

50
92.

80
252

180

1692
-310
=1382

461

180

92

150

392
-330

31

3

0

432
340
=92

0.7

100
1032

-440
=592

148

180

35

95

Total Cost

Total Periods
Cost/Period
Local Min

Next Total Qty
> Disct. Qty

452
-260
=192

96

92

Total Cost

Total Periods
Cost/Period

Local Min

Next Total Qty

> Disct. Qty

To
Order:

Total:

50

80

Ordering Cost = 552

92

260

-260 -260 -260
=-8 =-8 =-8
2 3 4

-4 -2.7 -2

*

yes

Holding Cost = 860

340

Discount Saving = 880

280 -

92

95

Net Cost = 532

Figure 3-4 An Examp1e of Silver-Meal Method in the Discount Situation
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demands to reach the discount requirements. In this way, the method
will bring thé saving from the discount and share the ordering cost
with more demands while incurring an increased holding cost. A compari-
son of increased holding cost to fhe saving will tell whether such
extension of coverage is desirable. The method will repeat these
procedures until the end of the planning horizon. A backward search
. representing phase-2 of this method is used'to check any improvement
that can be made by moving an order within the time intervé] tQ combine
to a previous order. This backward search is little different from the
one used for the no-discount situation in which we are aware of the
trade-off of holding costs by assigning a demand to the different orders.
. When the discount is available, the situation is complicated. Moving
out a demand from one order to its prior order may cause a change in
the order quantity to satisfy the discount requirements. In order to
avoid these comp]ications, it is proposed to check only the
possibility of saving from combining one order to its prior order.

Let's consider two consecutive orders. Each one may a]ready
reach the discount requirements or it may not. Therefore, the total
will be four situations. The two with the first order less than dis-
count requirements can be neglected, because such check was madé-during
the forward search, in which when onekorder was less than the
discount‘requirement, the search extended the order coverage to further
demands to test the possibility of getting saving from discounts. When
the first order is greater than the discount requirements, and the

second order is also greater than the discount requirements, further



( . START )

Find the nonzero
demand, D(I), at
period 1

Place an order
0 =0D(I), at I

4
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J=1+1

J.> planning

yes

Find the reduced
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horizony

Find the holding
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vyes

Insert an order
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Figure

3-5 Flowchart of the Modified Inoue-Chang Method
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The last period
of the planning
horizon, J

Ahy order
placed

N
85 > (rder > Disct,

Size ’}qty

Any order os ////\\\\ ‘
r——“—“<;\flaced —Ordér ~disct._no 6 )
at J size 7 gty.”
~

| yes

Tentatively
combine - two
orders

S = disct. saving
+ shared order
cost

\

H, increased
holding cost

yes

Combine i /;\\
two orders - ( /

Flowchart of the Modified Inoue-Chang Method (Continued)
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Phase - 1:

Demands 50 80 . . 180 80 0 0 180 150 10 l 100 180 95
Tentative Order ‘ * . ‘

Holding Cost . 0 160 880

> Ordering Cost yes

Order > Disct.
Qty. Qty. no no yes

Total Saving! 387.2

Incre. Holding
Cost > Saving yes

Tentative Order *
Holding Cost 0 360 . ) 0 200 920
> Ordering Cost yes yes

O\rde\r> Disct. .
Qty. Qty. no - yes no no  yes

Total Saving 323.7 : 98.8

Incre. Holding _
Cost > Saving yes ) yes

L L T L L L EEE L L L L L L L P L e cCecccccece=

Tentative Order * *
Holding Cost : 0 160 . 0 360
> Ordering Cost yes yes

Qrder >Disct. .
Qty. Qty. no yes no yes

Total Saving 288.3 339.1

Incre. Holding
Cost > Saving no yes

Tentative Order * ' *
Holding Cost 0 300 0 190
> Ordering Cost ' yes yes

Order > Disct.
Qty. Qty. . 'no yes no yes

Total Saving 371.8 . 306.8

Incre. Holding
Cost > Saving no no

. To .
Order: 50 80 260 - - - 330 - 10 100 275 -

Total: Ordering Cost = 644 Holding Cost = 650 Discount Saving = 865 Net Cost = 429

V: Total Saving = Disct. Saving + Ordering Cost Shared by the Additional Qty.

Figure 3-6 An Example of Inoue-Chang Method in the Discount Situation



Phaée - 2:
Demands 50 80 180 80 0 0 180 150 10 100 180 95

Decisions from
Phase - 1
to Order: 50 80 260 330 10 100 275

Order without Disct.
while Its Proior : o :
Order Has Disct. no no no , no yes no  Nno

Combine with the
Prior Order:

Incre. Holding Cost . 40

Ordering Cost Saving ' . -92
~ Discount Saving | | ' -10
Net Cost . ' ’ ‘ -62
To Order: 50 80 260 - - - 340 - - 100 275. -
Total: | Ordering Cost = 552 Holding Cost = 690 Discount Saving = 875 Net Cost = 367

An Example of Inoue-Chang Method in the Discount Situation (Continued)

0]
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tests can also be neglected during the backtrack search. This is
because the combinationof those two ordérs will simply raise the holding -
cost which is already greater than the ordering cost as we know from |
the forward search. The only situation that requires the backtrack
check is the situation in which the first ofderis greéter than the
discount requirement while the second orderis not. The combination of
these two orders will save one ordering cost, and some discount saving
from the later order while increasing the holding cost by covering the
later demands in an earlier order. Again, a comparison of the
increaSed‘holding cbst and savings will tell the decision-maker

whether or not to combine his orders.

Dynamic Programming Approach

In the Chapter 2, the dynamic programming approach has been in
detail discussed. In a discount situation, the total cost is extended
to include the ordering cost plus the holding cost subtracting‘the
discount saving. The exhaustive search can be reduced thhough the
implementation of Planning Horizon Theorem. The modification of that
theorem to adapt a discount environment is also proposed in Chapter 2.
The same example to explain the other heurfstic approaches is used for.
the dynamic programming's approach in Figure 3-7. The shadow part
représents fhe part bf calculations that can be saved from\the modified
planning horizon theorem in discount sitUatjon derivated at Chapter 2.
‘Again, since this approach guarantees an optimal solution, it is used

as a benchmark to test the performance of other heuristic approaches.
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50 92
' *
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*
180 972 544 276
-310 -260
=662 =284
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-390 -340 -260,
=762 =524 =176
0 762 524 176" 368 268
*
0 762 524 176, 368 268 268
*
180 3612 2664 1876 1448 988 628 268 H= 2
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=3042 =2144 =1436 =1188 =
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150 5712 4464 3376 2648 1883 1228 568 360
-720 -670 -590 -410 -330 -330 -330,
=3042 =3794  =2786 =2238 =1553 =898 =238
10 5872 4604 3496 2748 1963 1288 608 380 330
-730 -680 -600 -420 -34) -340 -340,
=5142 =3924 =2896 =2328 =1623 =948 =268
100 7672 6204 4896 3948 2963 2088 1208 780 530 360"
-830 -780 -700 °  -520 -441 -440 -440 -260
=6842 =5424 =4196 =3428 22523 =1648 =768 =620
180 1272 9444 7776 6468 5123 3888 2648 1860 1250 720 452
-1010 -960 -880 -700 -620 -620 -620 -440 -290 -280,
210262 =8484 =6896 =5748 =4503 =3268 =2028 21420 =960 =440
95 13362 11344 9486 7988 6453 5028 2743 2620 1820 1100 642 532
-1105 -1085 -975 -795 -715 B AT 1 -535 -385 -375 -275,
=12257  =10289 =8511 =7193 =6743 =4313 =2028 =2085 =1435 =725 =367
To
Order: 50 80 260 - - - 340 - - 100 275 -

Figure 3-7 An Examp]e of Wagner-Whitin Method in the Discount Situation

4



p/H

300/2
206/2
120/2
- 92/2
48/2

Table 3-7.

g/

300/2
206/2
120/2
92/2
48/2

Table 3-8.

PH-1
1541.52
1028.87

522.83

32541
21.11

PH-2

1512.40
1003.12
511.76
320.39
19.72

SM

1620.62
1129.52
587.98
387.12
63.36

LUC

1989.01
1486.39
933.00
702.96
240.90

WW

1364.57
914.05
454.51
286.69
-4.94

Comparison of Average Costs When Discounts
Are Available, Discount Rate = $1/Unit

PH-1 -

624.80

162.90
-321.50
-483.90

-736.50

PH-2

575.00
115.34
-353.88
-507.68

-748.96

SM

835.54
420.68
-107.62
-298.20
-560.82

LUC

1071.18
597.82
115.32

- -73.10

-373.72

 WW

394.34
-24.56
-446.14
-594.50
-844.32

Comparison of Average Costs When Discounts
Are Available, Discount Rate = $2/Unit
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@/H

300/2.

206/2

120/2
92/2
48/2

Table

@/H

300/2
206/2
120/2
92/2
48/2

PH-1 PH-2 SM LUC WW

-342.04 -427.37 © -43.13 109.39 -641.97

-784.10 -864.54 -411.55 -327.19 -1039.19
-1231.49 -1292.16 -828.23 -789.22 -1426.53

-1385.18 -1435.63 -979.24 -930.54 -1562.28
-1649.03 -1680.95 -1230.66 -1193.42 -1790.46

3-9. Comparison of Average Costs When Discounts
Are Available, Discount Rate = $3/Unit

PH-1 PH-2 SM LUC WW

-1328.66 -1456.04 -868.38’ -900.08 -1700.86
-1751.60 -1885.64 -1263.86 -1313.90 -2090.32
-2185.62 -2292.30 -1674.98 -1691.24 -2459.28
-2338.42 -2429.22 -1803.82 -1813.98 -2585.58
-2583.12 -2650.40 —2036.10 -2073.36 -2794.58

Table 3-10. Comparison of Average Cost When Discounts

Are Available, Discount Rate = $4/Unit
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Figure 3-8 Comparison of Average Cost at Discount Situation,
Discount Rate = $1/Unit



Cost Over The Optimum Solution
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@/H
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Figure 3-9 Comparison of Average Cost af Discount‘Sftuation,

Discount Rate =

$2/Unit
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Cost Over The Optimum Solution

700
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Figure 3-10 Comparison of Average Cost at Discount Situation,
Discount Rate = $3/Unit
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600 4
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400
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100
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Figure 3-11 Comparison ov Average Cost at Discount Situation,
Discount Rate = $4/Unit
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Some Comparisons

The same data that have been generated to test the performance
of different approaches in a no-discount situation are used to test the
situations with discounts available. The different discount rates are
chosen as a function of the holding cost. Since in order to cover
more demands in an order to get discounts, the first trade- of f is the
1ncreased holding cost. Therefore, the discount rate is set to 50%,
100%, 150%, and 200% of the value of the holding cost. Some testing

results are listed at Table 3-7 to Table 3-10, and Figure 3-8 to
Figure 3- ]]



CHAPTER IV

JOINT ORDER MULTIPERIOD MULTIPLE-ITEM
DYNAMIC LOT SIZING PROBLEM WHEN DISCOUNTS ARE AVAILABLE

Introduction

The multiperiod dynamic Tot sizing problem is often difficult
because the demands are varying with time and no general mathematical
function is usually known to describe such deménds. The complexity
‘increasesrwhen the discounts are available. Adding further to the
difficulty is when the multiple-item instead of single-item is under
consideration. This type of pfob]em has not been researched before.
The objective of this work is to develop different heuristic programs
and optimal algorithms, based on the assumptfons mentioned in |
Chapter I, to search for the optimal and near-optimal solutions using
different approaches for the joint order multiperiod, multiple-item
dynamic lot sizing problems when the discounts are available. The
heuristic programs will basically be the extensions of Least Unit Cost
Method, Silver-Meal Method, and Inoue-Chang Method, as they represent
three different approaches to solve the problems. The optimal

a]gorithm‘wi]] use the dynamic programming approach to search for the

50

optimal solution among all the possible feasible solutions. In order to

reduce the huge number of searches in the multiple-item discount
situations, the extension of p]anning horizon theorem in such complex

problem is discussed and used along the search.
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Heuristic Program 1

No Discount Situation

This program is developed from the single item "Least Unit Cost"
method. The criterion of this program is to select the ordering
quantity which will lead to a local minimum unit cost. Since the
problem it will deal with is a joint order multiple-item dynamic
Tot sizing problem, the nature of the interaction among these items must
first be considered. When a period's demands are covered by the
scheduled receipt, it is possible to cover only a small number of
item's demand. Thus, the priority of items' demands to be covered by
the scheduled receipt should be studied. In order to avoid too much |
complication, let's start with a multiple~item dynamic lot sizing
problem without the discounts, and assume the holding cost to be a
~ constant Value for all items.

Theorem 4-1: Whether a period's demands should be covered by a
scheduled order depends only on the previous demands covered by the
order, the holding cost, the ordering cost, and the time length (number
of periods) away from the scheduled order's time, and is regardless of
-the current demand quantities.

Proof: Let's assume there are m items involved, ith jtem's

th

demand at t~ period is denoted by Dti' Suppose the unit cost of a

h

scheduled order covering up to (t-])t period is Ro’ and the unit cost

th

changes to RA after a certain combination of demands at t*" period,

“to the

denoted by Dyp» 1s added to the order. The decision to add Dy
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okder‘or not is based upon‘the comparison of RO to RA'
Let Ct—] represent the total cost of the order before the DA is
added, It-] représent the total number of items in the ofder, H repre-
sent the holding cost per unit per period, and assume all the items to have
the same holding cost. Also, let L represent the number of periods

those tth period's demand away from the period to place the order. Then

Ry = Cooy/ T

and Ry =[Gy *+ DyLH] / [T,y + Dy

and the comparison of which is larger can be performed as follows:

RO : RA

Cooq / Tey ¢ [Cpy + DyLHY /7 [T, 4 + Dy

C D

=111 ¥ CpoqDa * CyqTyq * DpLHL, 4

C ¢ LHI

t-1 ° Fheo

This concludes that‘the study of whether the value of RA is smaller than -
or equal to, or greater than RO may depend upon the comparison of
Cioys and LHI, , only.

Theorem 4-2: Whenever a demand D,. is found to lower the unit

ti
cost of an order when it is included in that order, all the other

demands Dtj’ j#i, should also be covered by that order.

Proof: Let's use'RA and RA+B to represent two unit cost ratios

th

including two combinations of certain t™" period's demands. ‘DA+B is

DA plus some other demands, DB’ in the same tth period, C represents

th

t-1
the total cost of the order before including any demand from t
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period, I 1 is the total number of units in the order before including
th _ ‘ ’ -
any t* demand, RA = [th] + DALH] / [It—l + DA] and RA+B =

[Ciq* DpLH + DgLH] /[T, ; + D, + Dy, where D,#0, D #0.

A

The comparison of RA : RA+B will have

It—lct—] + It-lDALH + DAthl + DADALH + DBCt—1 + DBDALH : It—lct—1

Ly gDptH * Ly DgLH + DpCy o + DpDpLH + DyDpLH

: I, .D,LH

which gives DBCt-l t 1 _1Dg

when Dy # 0,  C,_, : I, ,LH

which means, if R <R0 then we have R, ,,<R,<R , and on the other side, if

A A+B A 0

Ry>R, » then RA+B>RA>R0'  That concludes the proof.

One question may arise, how about if R <R0 while R, is fdund tpvbe

A B
greater than RO; will such situation lead to the contradict conclusion:

RA<R0 1mp11e$ RA+B<RA<R0 and RB>R0 will imply RA+B>RB>RO- The answer

is that such situation will not happen because whether RB is greater

than RO,okRA is smaller than'RO, they depend only upon the comparison

of C. , and LHI If LHI, .<C both R, and Ry will be less than

t-1 t-1: t-1¢-1,

Ro’ and vice versa. The situation of different items with different
holding costs will be somewhat complicated. Let's consider a single
. demand Dti with the holding cost Hi’ which is being added to the

scheduled order. This leads to the ratio Ri / RO:
Ry /Ry = {[Ct—l R R R Dti]}'/ [Coq /1y 15

[+ Dy (LH; 7 €T/ 11+ D, (1/1, ;)]
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Therefore, the comparison of It-lLHi / Ct-] will tell which unit cost,
Ri or RO, is smaller. But this time Hi is not a cdnstant for all the
items. Some lower holding cost will lead LHth_1<Ct_], which implies
Rj<Ro’ and other higher holding cost may lend LHkI
plies R

t;l>ct-]’ which im-

k>Ro' Also, when we ‘consider to add Dm into the order, then
compare with to add Dmh + Dn into the order, the two unit costs, Rm

and’Rm+n’ will have the following ratio:
Ron / R, = {[Ct-l +* D LHm + D LHn] / [It-1+ D, + D, ]}

S L(Cy D LH) /(L + D )T = [0+ D (LK 7 CE )]/
[ +0,(1 /1 )] |

1 = 1 = .
Where th] Ct-] + DmLHm, It-] It-] f Dm' Therefore, studying
the ratio, Rm+n / Rm’ is equivalent to considering:

LHn(It-1 * Dm)': (Ct-] * DmLHm)

, LHnIt-] + LHan : Ct-] + DmLHm
if Hn>Hm and if we have LHnIt-1>Ct-] and LHan>LHmDm, then the ratio

will be greater than 1. That tells if all the holding costs are

]isted in the ascending sequence, starting with the lowest holding

cost and search upward until an Hj is found that I
th

t-]LHj>Ct-1’ we can

neglect all the items since the j~ one, because our adding them to

the order will raise the unit cost. Then how about those items with

o Kth

the holding cost Hk such that I, ,LH, <C item has the

-1t
holding cost just lower than Hj to fulfill the requirement I

Suppos
g1k
Ct-]’ for all the other items with lower holding cost can lead to the

fo]]owing,resu]t:v
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If H, <Hk then I, ]LH <1 ]LHk<Ct-] and Hi<Hk
that will imply:

LHiIt-l + LHiDm<Ct-1 + _DmLHk
or Rk+i<Rk

If we further add item Dw into the order, and Hw<Hi<Hk’

k+1+w / Rk+1‘ ) L] ¥ Dw(LHw / C%-1)] /s Dw(]/lt-l)]
- where - Cy_ 1 = Cy_q * D LH + D,LH,
Loy = Ty ¥ D ¥ D

Again, we can determine whether Rk is greater or smaller than

+i+w

R by looking at the ratio:

k+i

LH + Dy +D;) / (Ci_y *+ D LH +DiLH.).

w(It-l k

LH, <C we know that

LH <] R LA

Since Hw<Hi<Hk and I LH <]

t-1 t-1

Rk+i+w<Rk+i' That tells the following theorem.

Theorem 4-3: When all the items do not have a constant holding
cost, at each period, it is the item's holding cost that determines
whether the item's demand shall be added to the order to lower the

th

unit cost. Therefore, at t period we may édd all the items with the

holding cost Hi’ such that I LH <C to the order, and that will

t-1 t-1°

lower the unit cost of the order.

Following such procedure we will be able to determine which item
should be included in the scheduled order. But since our assumption
is to have no backlog and there is no capacity constraints, there does:

not seem to be any reason to include a partial number of demands of a
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period into an order whi]e Teaving the rest to start a new order.
Therefore, in a no-discount éituation, we only think about whether all
items' demands for a period should be included in the prior order,
or we should start a new order. The procedure cah use the

highest holding cost, Hg, to make the test. If I, .LH <C 1° e add

t-1""g "t~

all the items into the prior order. If I, LAy = C, > we still add

all the items into the prior order because we know when the other items,
with the lower holding cost, added into the order will Tower down the

unit cost. If It—lLHg>Ct-]’
to test whether a new order should be placed. If I

the lowest holding cost, Hh,‘can be used

t_.]LHh>Ct_], that

means any addition of demands to the order will raise theunit cost.

The I, _yLH, = C,_ also carries the information when all items are -
added to the order will raise the unit cost. If the result is

I, ;LH >C while I

t-1""'g "t-1
into the order and test if the result is in favor to keep the demands in .

t-]LHh<Ct-]’ we can just add all the items' demands

the prior order or placing a new order.

Discount Situation

When discounts are available, the determination of an order's
coverage of demands will extend to the possible discount saving
through ordering some larger quantities. Since the problem we are
dealing with is a multiple-item problem, each item may have ité own
discount rate for its required order quantity. Therefore, whenever
a local minimum unit cost is reached, a check will be carried to see‘if

every item has already received the discount advantage. If the
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finding is affirmative, the scheduled order wil]bbe considered as an
appropriate one, and no other change will be made to that order. If
the finding shows that an item's quantity is still below its discount-
required quantity, there is a possibility of getting discount advantages
through covering their subsequent demands in the order. Since the
ordering cost is paid once for each order, to increase quantities will
only result in the increase of'holding cost, and the discount saving serves
as a trade-off benefit. The comparison of the values for both sides
will determine whether sQCh increasing quantities are a desirable
action. The same procedures may be carried out for the multiple discount
level problems. If one item's demand in the order has already reached
the requirement for a discount, there may exist some higher discount
levels with a higher discount advantage. - Whether we should extend thé
order's coverage to further demands for the higher discount saving or
not depends upon thé same comparison of increased holding cost versus
the discoﬁnt saving just like from no discount situation to the firét
discount situation.

Each time a series of demands for.an item is added into the order
to get discount advahtages may affect the other item's demand that is
being left behind. Let's use the following example to explain.

Support we have K items, and the}planning horizon is N period. When
an order is placed at ith period, it covers demand up to tth period

without considering the discounts. The (t+1)th period's demands are-
not inc]uded in the order‘because it is found they will raise up the

unit cost. But after considering the discount advantages, the order's
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. coverage zone crosses over certain item's (t+1)th demand, or even

further. (Figure 4-1)

]
11 712 "13 11 7Ti+] Tt 1 T1t+ 1N
]
|
DZ] ........ Doj v v v v o - D2t i Dot 41 L;;. - Doy
v - '
. l
Dy v v v e D3t : Datey - .l. ...
. . i
-
1
DK1 ................ ?Ez_i Dyt +1 l_. -« Dt
--------------- original coverage

after discounts
are put into consideration

- Figure 4-1  Order Coverage in a Discount
Situation

The item 2, 3, and K are the examples that the order will extend its
coverage to get discounts. We may find that the demands of (t+1)th
period of item 1 and other items that are being left behind should be
included ih the prior order rather than to place énother new order.

Such resu]ts are difficult to predict; and‘once such demands are

included in the order, they may well affect the later demands in the
discount situation (unless every item reaches the highest discount
rate). In order to avoid such cyclic effect, the program here only
tests the discount advantage, and compares the ordering cost With the
holding cost if the rest of the items for that period are also included in

the order. This heuristic approach may not guarantee an optimal

solution, but presents a relative simple method to read a feasible
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solution.

Heuristic Program 2

No Discount Situation

The criterion df this program is to select the ofdering quantity
which will lead to a local minimum total cost per period. Starting
‘with the first non-zero demand, an order is placed in order to avoid
any backlog. Since the measure of this approach is the total cost per
period when an order extends its coverage to the subsequent period,
the new total cost per period will be calculated and compared to the
previous one. We may thus decide whether the demands of that period
should be covered by the order.

Theorem 4-4: When the least total cost per period becomes the
criterion to select the desired order quantity, the decision to
vinc]ude a period's demands into the scheduled order depends upon the
~comparison of the increased holding cost of that period to the prior
total cost per period. |

Proof: Suppose that an order is scheduled at ith period and

th period up to the

already includes the demand requirements from the i
(t—])th period, the number of periods involved in J-1. The total

cost per period is:

R, = “t-]
J-1
Where Ct;l denotes the total cost (ordering and holding cost). When

th

the order extends its coverage to the t~ period, the total cost will
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raise because of the increased holding cost and the new total cost

per period, :
Ry = [0y I -T) Dy /0
Therefore, the comparison of two ratios will be:

Ry : RO which gives

A

M=

[c, ,+
t&] io
[ E (3-1)H;D53(3-1) = ¢y

1

(3-1) H.D,.1(0-1): 9 €,

1

M=

(J-1)HDy 5 2 €,y / (3-1) = Ry

i=1

The left hand side stands for the increased holding cost from the M items

th period, and that concludes the proof.

demand at f
From the above theorem, it is found that comparing a period's
demands' ho]ding cost to fhe pfevious total cost per period can
- determine whether the new total cost per period is up or down. In case
there is any interest in the‘priority to choose one item's demand into the
order, that priority will depend upon that ifem's holding cost on]y,'
since for each individual's demand added into the'order, the resultant
total cost per period, RA’ will have the similar outcome as

Ry * RO we will have (J—])HiD R

ti © o
where J-1 is a fixed value, and the comparison depends upon that item's
current period's holding cost. The effect of adding other item's
demands into the order is just to aggregate the total holding cost and
use it to compare with the existing-critekion's~measure, the total

cost per period at the last period. When there is no discount

involved, the order will cover eachbperiod's demands either completely,
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or it will hot cover any of them at all (here assume a zero-demand is
also called a demand). The reason is that backlogging is not allowed in
the problem. Any unfilled demand requires a new order. Therefore part of
the demands being covered by the:prior order will only carry a heavier-
holding cost than if they are covered by the new order.

In a special case when there is only one iteh involved, the
procedure will follow the same steps to determine whether it is
desirab]e to include the demand of the period in the schedu]ed order,

but the comparison each time will be that single item's holding

cost to RO:
(J-T)HD, : R =€,y / (3-1)
| 2 -1
or (3-1) HDt : Ct-]’= g +H iE] (]'])DLs+i

which is the same expression derived by Silver and Meal for a single-item

problem, and Ls represents the end period of last order (Silver andMeal, 1973).

Discount Situation

When discounts are available, the cost function will involve the
saving of discounts. When an order is placed at first period, ‘and it
contains item's demands up to tth periods, the cost function will

be:

K t
) r h, (j-1)D.. -
i=1 §=1 ! 3
where Gi represents the discount function, and its vaTue depends on the

¢ |
f(t) =p+ ( L D.: )G, ( £D..)

) J-] J1 1 i=] J1

o™X

.i

order quantity only.
Again, for each subsequent period, the total cost per period will be

| comparéd with the value at its prior period in order to determine
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whether the period's demand should be inc]uded in the order.
RA = f(t) / t : f(t-1) /(t-1)= R0

which gives:

(t-1) f(t) : tf(t-1) .
(e [ K t Kt ) t
t-1) [0+ £ % h,(3-1)D,. - ¢ (z0D..) G.(5xD..)]
i=1 j=1 U= = 3 T
: K t-1 K t-1 ) t-1 )
t[P+ £ 5 h,(§-1)Ds; - £ (£ D.:)6G.(%D..)]
i=1 j:] . J1 i=1 j=] NN j=] J1
then we have,
e § K ' K t t.
t-1 Z h(t-1)D.. - = (£ D,.) G.(zxD,.)]
j=1 t1 i=1 j=1 Ji i =1 Ji
K t-1 : : K t-1 (t-] .
:P+ L % h(3-1)D.. -tz (zD..)G,(x D
j=1 j=1 1 J j=1 =137 T3 3
(112 3 (61) 5 (50.06:( 3 0y)
t-1) £ h.D,. - (t-1) £ (£ D..)6.( 5D
j=1 ] £i i=1 j=1 ji’'i j=1 Ji
K t-1 (1) K t-1 ) (t-] )
:Pp+ £ h(i-1)D..-tsx (3 D..)G.(5%D..
C§=1 §=1 IV i g 3V T T

This search will test if the left hand item is greater than the right
hand item, indicating that there is a local minimum total cost per period.

The above expression is somewhat complicated. Let's consider a few

special cases here.

{2 D..)=6G,(x% D..) = G,
i =1 Ji i j=1 Ji i
| t t-1
that happens when both quantities g Dji and I Dji fall in the same
j=1 j=1

discount bracket. Then bothwill have the same discount rate, but

the above comparison will become:

K

K
5 hD,. - (t-1) 5 D,.G!

)? .
1 170 j=1 11

i

(t-1
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K t-1 K t-1
: @9+ ¥ % h:(j-1)D,. - £ I D..G
i=1 j=1 ' IT 4= =1 01

which can be simplified into:

K X
- - G
1_51 (t ])hiDu 1‘)=:1 D,“G.1
K t-1 K t-1
9+ 1 h(3-1)D.; - ¢ £ D,.G!
i=1 j=1 ! R T I R,
t-1

This conclusion is similar to the one in Theorem 4-4. Only
now the discount is put into consideration; therefore, the holding
cost of the current period is modified into the holding cost subtracting

the discount saving of the current period. R, thus obtained will take

0
discount as a decision factor.

In the discount situation, it may have several discount levels
available, and each next discount level may offer a significant saving.
" Therefore, each time when a local minimum total cost per period is
found, it is worthwhile to extend the search to see if an additional
quantity in the order will bring a better deal. To extend the ordering
quantity g D.. of i~ items to ¥ Dji may bring the i

e i L
=] J=1
new discount rate, but at the same time those additional quantities will

item into a

cost extra holding costs. Once again, a comparison is needed to make the
‘decision whether such extension to get the discount advantage is
desirable. The comparison will be:

t+k t+k t+k t

+ -
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The Check will rebeat if there are more than one discount rate
available. |

In a brief summary, the program places the first order at the
period where the first non-zero demand is found. The order will
satisfy the demands of that period and the demands of the sub-
sequent periods until a local minimum cost per period is found.
In order to obtain some potential discount savihgs; the ofder
may be extended to cover the demands of further periods depehding
on the trade-off between the increased holding costs and the
discount advantages. The program will then place the next orderi
at the period where the subsequent unfulfilled demand is found.
Such procedures will be repeated until the end of the planning.

horizon is reached.

Heuristic Program 3

No Discount Situation

The traditional Wilson's Economic Ordering Quantity (EOQ)
assumes that the optimal solution reaches when the ordering cost
equals to the holding cost. ~This criterion works quite unstais-
factorily in a dynamic lot sizing problem. Yet there are a number
of dynamic lot sizing methods derived from this criterion.

This heuristic program, basically speaking is one qf those
methods. ~ For each period, it decides whether or not to place

an order based upon the comparison of the ordering cost and the
"holding cost. But since there are multiple items involved, con-

siderations during each step must apply to everyone of them.
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Since no backlog is a]]owed when thefe is no discount, we will
consider eithervordering all demands of a period in an order, or leave
all of them to the next order. So the first step is to search the per-
iod with some non-zero demands and to place the order. This step is
just Tike the other two a]gorithms that have already been derived.

Then to decide whether the subsequent periodvshou1d be covered by that
order is determined by the comparison of the period{s holding cost to
the ordering cost: |
K

1_51 hi(t-L)Dti; )
L denotes the period the order is placed. If the holding cost is greater
than the ordering cost, it shows a definite advantage in placing a
new order rather to include that period's demand in the prior order in
a no-discount case. But even within the periods that each has its
holding cost less than the ordering cost, to insert an order within
those periods may cause the subsequent total saving to be greater than
the ordering cost: | |
i, K

o Ry Gy - LDy p

3=Jy i=]
where ji represgnts the period that a new Qrder is placed, and j] to j2

represent the periods being affected by the inserting new order..
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Both considerations are reasonings that are true regardless
of whether the distribution of demands is continuous or discrete
They simply éompare placing an order against not placing an order,
and see which one costs less. From the comparison of different
approaches in Chapter 3; we know the success of this approach over
the others. To distingﬁish the solution obtained this way from the
improved solution in backtracking, the above steps are referred to as

the Phase-1 method.

In some cases, the solutions from the Phase-1I approaéh can be
1mproved.b During the Phase-I search, each order is placed, and we perform
search in its range; the search, therefore, is unaffected by the planning
that occurs before the orderingAperiod. Suppose that the prior order
covers a long range, the Tast few periods may carry some heavy holding
costs, while the current order covers small quantity of demands and short
range in coverage. We may thus find that moving the current order ahead
of a period, or some periods, may reduce the total holding cost.

Let's suppose that L], L2 and L3 afe the threg consecutive
ordering pekiods found from the Phase-1I search; By moving the ordering

period from L2 to Lé, the reduced holding cost will be:

Lz;l K
E (L2 - L]) h.D..

X
st 1 J1
J L2 i=1

while the increased holding cost will be: .

L3-1 K
D) (LZ'LZ) hiD

= 3= J-‘
=L, =1
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The comparison of two items will tell whether such a move is desirable.
This backtrack search is named the Phase-II search. - Again the
procedures “in this phase are indifferent to the demand's characteristics.
Phase-II will only improve the Phase-I solution, and guarahtees no worse

final solution than the Phase-I's result.

Discount Situation

| In a discount situation, the possible discount saving from
ordering certain amountvof quantity shall be put into consideration. For
a mu1t1p1e¥item dynamic lot sizing problem, the discount situation is
complicated when the ordering cost is a joiht one. The difficulties
arise from the following factors:
1. Different items will have different discount rates for the
different required quantities. |
2. The dynamic lot requirements for each item may have a
significant difference within an ordering period.
3. In order to get discount saving, one order may cover
different item's requirements up to different periods.
4. The program-3 moves the tentative next order to and fro from
the periods in order to search for a better solution
involving the multiple-item and will cause inconvenience during
such search.
The procedures of the program-3 W111 be as follows. Start at period
with some non-zero demands, and place the first order to avoid

backlog. ' Begin with the next period, the model will first be treated as
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an aggregated model, and be tested if the aggregated holding cost

is greater than the ordering cost, i.e.

K
h;(3-L)D;;2 @

i=1

L is the period the order being placed, and j is the tested period.
When such period is found, the period wi11‘be set as the one to place the
~ tentative next order. The next step is to eee if an order is inserted
between the current order and the tentative next order would
lead to any saving. If so, the saving will come from the decreased
holding cost of all items iﬁvo]ved minus the new ordering cost:

Lp-1 K : .
jEL 121 hi(L - L)Dji' ]

where L' is the period to insert the new order, Ln is the period to
place the next order. Once the period to place the next order is
tentatively decided, that which imb]ies the range the current order
wf]] cover is found, the next consideration is whether the availability
~of discounts will lead to any saving.

-Each item may have different discount quantity requirements, and
may even have different numbers of discount levels available. The check
is made to see if the quantity in the current order has already
exceeded the highest discount level. If not,>this implies the possibil-
ity to get some more saving from ordering extra quantities. The trade-off
will come from the discount saving against the increased Eo]?ing cost. |

For item m, suppose the quantity in the current order is _§ Djm’ where
J=L
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Ln is the period to place the tentatively setting next order. In order
to get the next discount 1evé1, the quantity will have to increase to:

L L -1 L

1 n 1

1 D; = 3 D. + Y -

j=L M j5p Jm j=L2jm Dy + D,

the increased holding cost is

Ly
'EL Djm(Ln-L)hm
J n ;

and the discount saving depends on the increased quantity. Suppose the

current discount level is G(D]) = G], and after increasing the quantity

DZ’ the discount 1éve1 changes to G(D] + Dz) = GZ’ the discount saving
from D] is:
D](G2 - G])

whi]e the discount on 02 becomes :

| DZGZ - DZG(DZ)'

Therefore, comparing

. .
D](G2 - Gy) + D,G, - DZG(DZ) : D. (L

and the result will tell where such increment is desirable. Here an
assumption’is made that'D2 will have the discount rate G(Dz) if 02 is not
included in the order. Of course, no guarantee can be made that this
assumption will always hold true. ‘Un]ess the ordering quantity of the
next order is known, the discount rate applied to the demands in th'e.D2
will not be known.

The same procedures will be’used to check for the next higher

djscount rate if it is available, and such procedure will also apply
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to all items involved in the order.
After all the items in the current order are checked, the
procedure will search for the unfilled non-zero demand to p1ace>the
next order, and in this way to plan for the whole horizon.
Since the planning of each order watches only the demanding

‘situations after the ofdering period, and regardless of what happens in the
periods ahead, it wi]]{cause favoréb]e changes if the order is moved ahead
or combines with the previous order, and this does happen at a single
item situation. But since multiple items are involved, here such-
backtrack check will lead to a complex situatioh. Because different
item has different discount requiremenfs; therefore when one order is
moved ahead of a period(s), the consequence will not only change the hold-
ing costs of both orders that are involved, but also will possibly change
the discount situations of different items in the two periods. To
make this heuristic program simple, the only check made is to combine an
order to the previous one, and see if the saving of an ordering Cost,_
and increased discount saving from the later order is greater than the
increased holding cost from the later order. This backtrack check for
vimprovement will be repeated until all tentatively set orders (except thé
first one) are checked. This completes the procedure of Program-3 to

search for the solution.
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Development of Optimum Algorithm for the C

Joint Order Multiperiod Multiple-Item Dynamic Lot Sizing Problems
when Discounts are Available

No Discount Situation

Dynamic Progkamming had been used to search for the optimum
solution of a single-item dynamic lot sizing problem where the
~accumulated periods are treated as stages. The recursive equation rep--

resenting the ordering and the holding cost is developed as:

* *

* _ min _
Vj s (Lmj * V1) Voy =0 where
J
L.=H gD (L-m)+ 034 .
mJ L=m L. mJ
f , D 0
0if g =
ij = L=m L
1 if 3 ‘DL >0
L=m
The planning horizon theorem states that, in a forward algorithm:
* *
Vn‘= Lkn ¥ Vk-]

for planning up to the nth period, then when the p1anning horizon is

extended to t>n -

% _  MWin * * o
Vt B kgmgt'(Lmt FVne1)s Vg = 0

For a multiple-item problem, a similar expression can be

developed. The optimal solution to plan up to the tth period will be:
1,2 gk min 12 ko
(Ve ve . . oV ) = , [(v LV R A
t't m]mz...mkgt mi=1 "m,-1 m -1
L] 2 _ Lk ]

L- . ..
mTt mzt_ mkt
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whefe (V;]Viz. . .V:&* represents the optimal solution to plan up to
m]th period for item 1, m2th period for item 2, and so on.

AT S (L-m.) + P

m,t m,t mt e L=mi1 L1 i mymy. ..m t
where 0 i k t . .
if ¢ 3 ., =
cs‘m]mz...mk = i:] L:mi 'L]
1if i§1 LEmi DLi >0

The above expression is the most general one. In practice,‘such general
eXpression represents a very time—consuming search. Whi]e most of thé
combinations actually do not need to be considered, the following.
theorem will simplify such search procedures.

Theorem 4-5: In the forward planning of a joint-order multiple-
item no discount problem, the mU]tip]e-item problem can be treated

as an aggregate problem, that means if there is no discount available.

1.2 ky* min ] 2 k *
(v, v . V) o= C(v v N A ) +
t 't t m]mz...mk<t‘ m]-l m2-1 mk ]
1 2 k
L L R ]
m]t m2t mkt

At optimal situation, the only combination needs to be considered is

at ' mp=m,=...=m
Proof: Suppose not all m. are equal. Let

m = min (m)
nog=1,2,...k 9

‘ K = ( )+ P68
. s e L = z Z H‘D . L - m +
mt Tmot m, t i=1 L=m11 Li n myMy...m t
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- That means the order will be placed at the.eafliest period with some
unfilled non-zero demands in order to avoid the backlog.

Aésuming the immediate prior order to be placed is at hth period,

the ho]ding cost from the priod m to t is

k ) k t
L f(m,)+ L I D, .(L-m )H.:
=1 U el e, UM
where
m1-1
fm,) = P HiD (L - h) My <M
: =m
n
| 0 m = m1
and since mn>h,
mi-l mi-l
H.D, .(L - h)> H.D, . (L-m )
Lgmn i“Li Lgmn iLi n

We note, therefore, that every order -will take care all the requirements
from the period to place an order up to the period immediately prior to

the next order. Therefore, in the search of the optimum solution, only

1 2 k * 1 k
v ) o+ Lm £

(Vv ve L m =1,...,Nn
m 1 m 1 mn-l n - n

will be considered.

This indicates whenever an order is placed, the order will
cover all items' demands, with no exception, up to the period prior to the

next order. Thus the multiple-item problem can essentially be treated as

1D Ji

—
n
n~Mx

~ When calculating the holding cost, one must remember that each



item may have different holding cost rate. If an order is placed at

gth period,

k
H = 2 H:D.. (i-g)
]:

1 1t
represents the holding cost generated from jth period's demands.

Discount Situation

Once the discount is available, the problem becomes complicated.
One order may cover different items' demands up to different periods.
" For each period, besides the decision in placing an order or not, |
‘the item's demand quantity included in the order also needs to be
considered. The problem can no longer be treated as an aggregated
problem. However, the dynamit programming method that works for other
‘simpler situations can also be used for this complicated problem.

In the forward planning process, the recurssive form of |

optimum planning of t periods are as follows:

1,2 ky* min ] 2 k *
(Vove oL vp) s [(v O A
t 't t’ m],m2 ...mkgt m]-] m2 ] m ]
] 2 k
L', L ... L ]
m]t mzt mkt
and v
k t
1 2 k
L L . L = % g  H.D (L -n)
mt m?: mﬁ F]LWH iLi
k t ) t
[ - ¢ G(sx D, v D, .
My oMb 42y g, L L=m, L
where

n = 1=1T;T---k m, in order to avoid backlog.

80
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okt
1 £ % D;>0
6 - (o1 I Li © -
mmy...mt = i=1 L—mi
kKt
0 £ % D=0
i=1 Lem, ]

It is.easy to note that in following these kinds of approaches,

a tremendous amount of combinations will be searched in order to

find an optimum solution.

| For example, in order to deal with a two-item single discount
joint-order problem, an exhaustive éearch for a five-period planning
horizdn problem is needed to search for 44 = 256 different outcomes in
order to get the best solution. In general, for an n-period two-itemsingle
discount problem, each period may have four kinds of outcomes: (1)
order for both items, (2) no ordér is piaced,v(B) order only for the
first item, and (4) order only the second item. So the total number of '

possible outcomes is 4V"!,

When the first period with non-zero demand
is designed to place an order, it only has onevoutcome.'

- The Planning Horizon Theorem, deVé]oped by Wagner-Whitin, has
simplified the searching procedures to get an optimal solution. The
extension of Planning Horizon Theorem for the discount situation,
developed in Chapter II, brings the information to reduce the search
in a discount situation if certain conditions can be fulfilled.

Similarly, here the extension of P]anning Horizon Theorem to a multiple-

item discount problem is developed for the same purpose.
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Theorem 4-6: 1In a forward algorithm, if the minimum cost decision

t
- of planning up to period tn is through ordering quantity 5" D (L)
of ith item at period t_ = min d ; D, . >B. - i 1i=1,2
PETOT B T in2,3.. kq’a"Lq Li BByipp TS

th
th

- K, is the highest discount level for the i-" item, then in

order to extend the planning horizon to t period, t >t ; it is
sufficient to consider only periods j, tq<J<t (in other words, the

comb1nat1ons involving " DL s J<tq need not be considered).

L...
Proof: Let CQ represent the total cost of planning up to the
t
period t through ordering 5" DLi , 1=1,2,...k at the priod tq =
L=q.
._m1n q; . When the p]anning horizon extends to the t th period,
i=1,2,...k i " ; m
tm>t » the cost through ordering oD ., i=1,2,...k is:
n ~ Li
L=q,
‘ i
' k tm
C,=C,+ & z D,. h, (L -1t)
L N B q
K t
- Z [G(B,. ) z D, ;]
i=1 g0 =g 4 U
t
and the total cost through ordering bRl DLi , 1=1,2,...k at period
. L=j
J= . min J: and j<t_is C.. When the planning horizon extends to
i=1,2,...k Yi q J’ “t
the tmth period, t >t , the cost through ordering :p ., 1—1,2,...,k
m n L=ji L1 ,
is:
k tm
C' =C, + z z D .hA(L - J)
J J i=1 L=t 4] Li
k tm
-2 [G6(B;i) I D, .]
1 g L

therefore, C >CQ, (L - 3> (L-t )
which conc]udes,CJ>Cé- Thus to plan up to and period >t , it is

sufficient to consider only periods j, tqgjgt.
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, t ‘
Notice the sufficient condition is =" D ;2B4;  for i=1,2,...k.
‘ L=q., J
The reason that every item has to be cons}dered is because th1s is

a joint-order multiple-item problem. If there is any item that cannot
t ,

fulfill this condition, i.e. %" DL1<Bii for some i, then when the -
L=q J

,p]ann1ng horizon extends to the Ber1od J>tk, the increased discount

rate from G( " D ; ) to G( Z ) may be greater than the increased
L=j; !t L= i t
discount rate from G( " D ; ) Eo G( zM DLi)'
L=q; L=q;
two increased discount ra%es causes h1ghe} saving than the difference

If the difference of the

of the two additional holding costs, it is possible to find that placing the

order at j is a better deal.
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CHAPTER V
SITUATION WHEN SPLIT ORDERS ARE ALLOWED

Solutions with Split Orders

Almost all the dynamic lot sizing techniques that developed
assume the whole lot situation; That is, the solution is formed‘by
the whole lots (demands) only, and no split order is a]lowed.‘ When
the discounts are available, in order to get the cost redUction‘from
the discounts,.sohetimes it is worthwhile to order some extra quantity
to reach the minimum quantity requirements to get the dfscount. But
the extra demand put into the order may be Targer than it is desired.
Only a portion'of that demand may be enough to qualify the order for
the discount. A split Tot in such situations may be appropriate to

give a better answer.

Network Model

Such probiem can be deséribed through'the network
fiowchart. The flowchart contains several symbols. A square stands
for the inventory decision, either to.fﬁlfill the>current period's
demand,'or to store fof future usage. A circle indicates the
ordering quantity, or‘demands. Since each item may héve several
discount levels, a special symbol: is used to indicate the "exc}usive ok"
decision in choosing the order's quéntity for one of the discount

levels, inciuding not to order at all. The character of "exclusive
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or" allows the value 0 or 1, so this spécial symbol is Qsed also to
indicate that such solution value must be an integer. A part of the
network of a multiperiod multiple-item dynamic Tot sizing problem with

discounts available is shown at Figure 5-1.

Mathematical Programming Model

The optimal model can‘be formed by the mixed integer programming
model. The objective of the model is to minimize the sum of the
~ordering cost, holding cost and the purchas1ng COStS, and the purchasing
unit costs are determined by the order quantities. A general mode] for
the multiperiod multiple-item multiple discount-Tevel dynamic lot

sizing problem is developed as the following:
th

D, ; Demands for the k' item at the i period.
[ : ’Ordering cost.
Hy " : Holding cost per unit per period for the kM item.
ij :* Purchasing cost for the kth item at the jth price.
Bk. : The minimum purchasing quantity to ‘get the j~ th discount
J ~ for the kth jtem.
Iki : The ending inventory for the kth item at the ith period.
aki' Whﬁn it equals 1, it represents to g]ace order for the
J item at the ith period at the jth price, otherwise
it will equal to zero.
Gkiw : When it equals 1, it represents no order is placed for
the kth item at the ith period. -
. . .th
inj Order quantity for the k! item at the ith period and‘Jt

price.

The model can be formed:
MIN £ 2 H L.+ 3% £ 1 P
k=1 i=1 k=1 i=1 j=0

K

N
x..+ Z(]“ H Gkiw)ﬂ

ki "k o e
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“subject to:
*kio 7 (B = 1) 850 €0
ig ™ By 20
Xeig = (Bygap = 1) 8445 50
N
Xpip = (2 D)6, <0
k1Jk i=1 ki k1Jk
I |
iEo Mg Tl T B T g k=1,2 ..., K
J i=1,2 ..., N
s ]

j=1,2, ...,

bskij =0or]
N K .
The factor 5 (1 - 1 Gkiw) @ in the objective function makes the
i=1 - k=] v
model a geometrical mixed integer programming model. Due to the special

character of our planning situation, we know that

g 5 . = 1if 61iw N 621’w T T SKiw =]
k=1 kiw 0 otherwise

To take advantage of this character, we can simplify the model by defining

the following additional variables:

==

DT, = §
i

1 kiw

k

and increase the following constraints:
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The following Tinear mixed integer model will effectively work out thé
same information as it comes from the previous geometrical mixed

integer model:

K N K N Jk

N
MIN 2 Z H I.+ % I I Po.X..+ % (1-0DT.)¢P
| k=1 d=1 K KTy ey gm0 KUK G L
subject to:
Xeio = By = 1) 850950
kij = BkiSkij > ©
ki = Brgrr = 1) Sy 0
(N )
X £D,.) 8,., <0
k1Jk g ki k1Jk
W
2K K+ T, o =D =,
j=0 kij = “ki-1 ki ki
K
DTi < (kil §k1w) /K
Iy
s 8. = k=1,2, ..., K
j=o kij kiw
i=1, 2, s N
8ij* Skiwe DTy =0o0r 1 J=1,2, ... Jp

Discussion of the Problems to Search the Solution

Although the model can be set up théoretica]]y, the practicality
: i; still in question. Two approaches have been attempted to search
for an optimum solution from the model. The first one is Gomory's

A1l Integer a]gorithm,' The approach is both time and cost consuming.
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A two-item single discount level problem was used as an examp]e. It
took over a hundred iterations and $50.00 computer time on Gyber 73,
while the solution is still far away from an acceptable answer. The
second approach is Branch-and-Bound Mixed Integer Algorithm. Unfortu-
nately, this approach requires a huge extended core memory to store
the intermediate results. A tab]e is developed for the two-item
prob]ems (Table 5-1). Even a five-period two-item single discount
level problem will require mbre than 400,000 octal core memory space,
while the maximum core memory space available at 0SU's Cyber 73 is
144,000 octal space. Therefore, practically speaking, the mixed
integer programming model, although it guarantees an optimal solution,
has a limited application value for a ]arge size problem such as a
general multiperiod multiple-item multiple-discount dynamic lot sizing
problem. - Table 5-1 1lists some information about the mathematical
programming model of a two-item dynamic lot sizing prbblem. Information
inc]udes the number of variables, the number of infegers, and the nume
ber of constraints in the mode, and the required core memory size to
~ solve such mathematical programming problems using the Branch-and-
Bound approach. Information about three situations: (1) both items
with no discount, (2) each of two items with one discount available,
and (3) each of two items with two discounts available, are listed in
the Table 5-1. The required core memory sizes using the-Brdnch—and-
Bound. approach to solve a two-item dynamic lot sizing problem with
the different period lengths and with the different number of diséounts |

are plotted at'Figure 5-2 for comparison.
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Situation

No
Discount

Each With
One
Discount

Each With
Two
Discount

Information about
the Math. Model

No. of Variables
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No. of Constraints

Required Core
Memory Size (oct.)

“No. of Variables

No. of Integers
No. of Constraints

Required Core
Memory Size (oct.)}

No. of Variables

No. of Integers .
No. of Constraints

- Required Core

Memory Size (oct.)

Table 5-1.

5
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415306

85
45
75

1132766

Programming Model

Number of Periods in the Planning Horizon
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Figure 5-2 Required Core Memory Size to Search for an Optimum
Solution Using the Branch-and-Bound Approach
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CHAPTER VI

SOME NUMERICAL EXAMPLES OF TWO-ITEM PROBLEMS

Two-Item Problems

" The simplest mu]tip]e;item problem is a two-item problem. For a
dynamic, n-period, two-item, no-discount lot sizing model with non-zero
~demands at the first period (which means an order must be placed at the
first period to avoid the backlog), the total number of feasible solution
is 2"’1. This comes from the fact that at each period, after the first,
the decisfon-maker has the choice of either placing an order or not
.p]acing any. Under such situations, a two-item prob]em will appear
as a basic aggregate problem. It can generally be extended to involve
any number of items under the assumption that there is no discount
available to any item. A characteristic of such problem is (Wagner,

Whitin, 1958):

It-]Xt =0
where
Xt = |1 means-placing an order at the tth period
{0 means not placing an order at the tth period
It represents the inventory at the end of the tth period

Therefore, whenever an order is placed in the tth period, the ending

1nvéntory of t-]th period must be zero. In other words, the prior order

th

will not carry any inventory for the t° demand if an order is to be
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p]aced‘during the tth

period.

Once there is any discount available to the items, the above
characteristic will no Tonger exist. Except for the first period, the
possible outcomes of each period may be (1) to place an order for both
items, (2) to place an order for the demand of one of them while another
item's demand was ordered in the prior order to get some discount
advantages, or (3) to p]ace‘no order. Therefore, for an n-period
two-item dynamic lot sizing model, a problem under discount situation
will have up to 4N']'so]utions; If it is a five-period problem, there
~will be 256 sd]utions, and if it is a 12-period problem, like most of
the testing problems in this thesis, there will be 4,194,304
solutions. For a génera] K-item discount problem, there will be
I L

1=0
number of solutions. To search for an optimal solution among millions of
solutions requires a special technique. While the dynahic programming
approach in searching the optimal solution of.a dynamic lot sizing |
problem is basically an exhaustive search, a large.number of solutions
must be investigated even when the planning horizon theorem is used to
reduce the scope of the search. While the dynamic programming approach
can promise an optimum solution, and Serves as a good benchmark, its
 practica]ity is cha]]enged by the tremendous computational cost‘of such
tests. The CPU time required to reach an optimum solution in a

multiperiod two-item discount problem has been measured and estimated

(Figure 6-1). It is found that the required CPU time grows exponentially
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as the number of periods increases. The estimated CPU time to reach
an optimum solution in a 12-period problem is more than 16,000 sec..
In order to avoid such costly tests, the following limitations were
imposed upon our experiments:
1. Dynamic programming approach was used to solve only the
following benchmark problems:
(i) when the ordering cost is equal to zero
(ii) when thére is no discount available.
2. Comparison tests that are too expensive to be solved by
the dynamic programming approach were used only to compare
heuristic programs among themselves.
When the ordering cost was very small, a two-item model was approximated
by two sing]e-item'models, and when there was no discount available,
the two-item model was approximated by an aggregate model. These
approximations helped reduce the computational costs significantly,

and made the dynamic programming approach feasible.
Test Data

The 100 sets of data used to test the performance of single-item
dynamic lot sizing techniques were expanded to form the testing data
| for the performance tests of two-item dynamic lot sizing techniques.
Two groups of data were assembled. The first group simply picked evéry
two consecutive sets from the 100 sets of data, where the data were
sorted in an ascending order according to the coefficients of variation,

as a single set of two-item demands. A total of 50 sets of two-item
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178
102
121

181
49
181
9N
42

Ten Sets of 12-Period Demands from

134 134 75 105 105
170 85 68 102 102
12 48 48
163 98 114 130 114

112 32 112
61 61 15

91

151

14 138 124 138 55
60. 75 60 134 45

60 141 60 1
105 105 158

61

40

60 105 90 90
51 51 119 119
32 96 144 144
16 130 98 49
106 121 151 106
97 41 83 69
134 134 15 60
80 100 60 80

35 140 123 18 53 53
100 117 67 100 67

33 167 167 84

Ten Sets of 12-Period Demands from

134 134 75 105 105
0125
170 85 68 102 102
40 40 100 121 201
48 48
0 60
163 98 114 130 114

0107 36
112 32 112
20 60 20

0 201 801

61 61 15
0 104 167

Tab]e'6-1,

81
91
21

60
151
42

60 105 90 90
0 143 178 36
51 51 119.119
201 181 40 40
32 96 144 144
201 100 20 121
16 130 98 49
0 0 80 40
106 121 151 106
208 0 42 146

*LDATA1:

30 72
85 51
112 129
81 63
121 30
138 139
149 120
40 122
123 69
100 19

*LDATA4:

30 72
143 159
85 51

0 20
112 129
121 201
81 63
161 121
121 30

167 166 -

Some Testing Data Sets

.324
.382
.453
.457
472
473
.481
.482
.488
.489

.324
.786
.382
.789
.453
.799
457
.821
472
.821

96
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demands were formed in the first group. The group was named *LDATAl.
The secohd group combined every set of data with its next 50th set from
the original 100 sets of data to form a new set of two-item demands.
"Fifty other sets of two-item demands were formed in the second group of
data. This group was named *LDATA4. Thé first five sets of data and

their coefficients of variation from each group are listed in Table 6-1.

Selected Situations

No Ordering Cost

The first selected situatioh to be tested is when there is no ordering
cost. The constraint fhat makes the joint-order multiple-item problems
different from the single-item is the joint-ordering cost. When this
cost disappears, a multiple-item problem Wi]] simply become a number of
single-item problems. Each item will search for its own lot sizing
decision regardless of the decisions from other items. Under such

-conditions, a joint-order two-item problem can be treated as two
separate single-item problems. The optimum solution of that two-item
prob]em can be found by repeatedly using the dynamic programming
approach to a single-item model. The resulting optimum solution will
be used as the benchmark to test the performance of the mu]tipie-item
heuristic programs.

Four different discount rates are used in the performance tests.
The holding costs and the required units for discount are set at $2.00/
unit/period, and 200 units for both items. Data from *LDATAl1 and

*LDATA4 are used as the testing data. The average results from every



Ordering Cost:

Holding Cost:

- Qty. Req. for Discount:

A: Testing with 50 Sets of Data:

B:

Discount
Rate

$1
$2
$3
$4

Testing with Another 50 Sets

Discount
Rate

$1
$2
$3
$4

“Table 6-2.

$0

both $2/unit/period

PRG-1

-636.30
-1382.20
~2808.08
-4469.44

PRG-1

-609.16
-1419.32
-2581.38
-3881.88

both 200 units

*LDATA1

PRG-2

-522.46
-1766.68
-3273.30
-5093.68

of Data:

PRG-2
-505.34

-1787.32 .

-3387.52
-5224.68

- PRG-3

-587.54
-1935.64
-3825.62
-5712.72

*| DATA4
PRG-3
-587.54

-3825.62
-5712.72

-1935.64

WW

-738.
-2295.
-4142.
-6073.

WW

-738.
-2295.
-4142.
-6073.

Comparison of Average Costs from the Performance
Tests When There Is No Ordering Cost

06
24
78
36

06
24
/8

36 .
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grbUp of 50 sets of solutions are recorded in Table 6-2.
No Discount

The second selected situation to be tested is when there is no discount
available. In such a situation, as explained at the beginning of this
chapter, the demands of all thevitems in the same period must be
satisfied simultaneously. If the decision is toyp]ace an order during
that period, the order will cover the demands of all the items‘in that
period. If the decision is not to place an order in that period, the
demands of all the items in that period will be covered by the prior

order. A no-discount problem has the characteristic:

L ¥ = 0

where
th

Xt = 1 when the decision is to place an order at t
period

0 when the decision is not to place an order at
tth period

; It represents the ending inventory at tth period

So if It-] is not equal to zero, which means that there is some ending

h period, X

h

inventory during the t-]t must be set to zero. This means

t

that we allow no order in the tt period. If the demands of some

items in the tth period are covered by a prior order, and the demands

of other items of the tt"

]th

period are left uncovered, then the ending
inventory at the t- period will not be zero. This forces Xt=0, and
leads to a backlog because some demands in the tth period will be

uncovéred by any order. Therefore, the demands of all items in the



Holding Cost:
Discount Rate:

Qty. Req. for Discount:

both $2/unit/period
$0

A: Testing with 50 Sets of Data:

Ordering
Cost

$ 300
$ 206
$ 120
$ 92
$ 48

PRG-1

3648.36
2589.80
1564.52
1250.00

584.24

both 200 units |

*LDATA1

PRG-2

3019.48
2161.00

1294.96

1000.94
527.88

B: Testing with Another 50 Sets of Data:

Ordering
Cost

$ 300
$ 206
$ 120
$ 92
$ 48

PRG-1

3724.88

2828.36
1697.32
1273.12
656.04

PRG-2

3082.60
2213.56

1342.92
104432

553.08

PRG-3

3015.08
2158.12
1294.96
1000.76

527.88

*LDATA4

PRG-3

3075.12
2212.36
1342.92
1043.76

553.08

100

WW

2983.52
2147.48
1292.52
1000.28

527.88

WW

3050.08
2202.84
1342.08
1043.72

553.08

Table 6-3.- Comparison of Average Costs from the Performance

“ Tests When There Is No Discount Available



Holding Cost: both $2/unit/period

Discount Rate:

$0

Qty. Req. for Discount: both 200 units

A: Testing using *LDATA1:

Ordering
Cost

$ 300
$ 206
$ 120
$ 92
$ 48

PRG-1

664.84
442.32
272.00
249.72

56.36

B: Testing'using *LDATA4:

Ordering
Cost

$ 300
$ 206
$ 120
$ 92
$ 48

PRG-1

674.80
625.52
355.24
229.40
102.96

PRG-2

35.96
13.52
2.44
0.66
0.00

PRG-2

32.52
10.72
0.84
0.60
0.00

101

PRG-3

31.56
10.64
2.44
0.48
0.00

'PRG-3

25.04
9.52
0.84
0.04
0.00

Table 6-4. The Comparison of Average Costs Over the Optimum
Solutions When There Is No Discount Available



Holding Cost:

Discount Rate:

both $2/unit/period
$0

'Qty. Req. for Discount: both 200 units

A: Testing usi

Ordering
Cost

$ 300
$ 206
$ 120
$ 92
$ 48

ng *LDATA1:

PRG-1

22.3%
20.6%
- 21.0%
25.0%
10.7%

B: Testing using *LDATA4:

Ordering
Cost

$ 300
$ 206
$ 120

- $ 92
$ 48

Table 6-5.

PRG-1

22.1%
28. 4%
26.5%
22.0%
18.6%

The Comparison of Average Percentage Costs Over
the Optimum Solutions When There Is No Discount

Available

PRG-3

1.1%
0.5%
0.2%
0.05%
0%

PRG-3

0.8%
0.4%
0.06%
0.047%
0%

102
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same period must be satisfied at the same time. This means, therefore,
that a multiple-item problem can be treated as an aggfegate problem, and
single-item aggregate model approach will be able to sd]ve those problems.
The dynamic programming approach for a single-item model is used
to search optimum solutions from those aggregate prob]ems. The
solutions will be used as benchmarks to evaluate the resu]fs from the
heuristic programs.- The data from *LDATA1 and *LDATA4 are used as test-
ing data. The holding costs and the required quantity for discounts of
both items are set to $2.00/unit/period and 200 units. Five different
ordering costs are used to perform different tests. Each single test
will carry 50 sets of data. The average results of these 50 sets of

solutions are listed in Table 6-3.

Comparison Tests Among the Heuristic Programs

For other than the two selected situations we have just discussed,
thimum solutions for most situations will require a costly search.
As previously estimated, it will take more than 16,000 seconds to
search for an optimum solution of a 12-period two-%tem single discodnt
problem. We can hardly affofd such cdst]y tests. Instead we can carry.
some performance tests among the heuristic programs themselves. Again,
the data from *LDATAT and *LDATA4 were used as testing data. The
situations with different ordering costs, and different discount rates
were tested. The average cdst of results generated by these three
heuristic programs at different situations are listed in Table 6-6 and

Table 6-7 for comparisons.



Discount

Ordering Cost/
Rate Holding Cost PRG-1 © PRG-2 PRG-3
$300/$2 2648. 96 2004.80 1987.32
$206/$2 1919.76 1299.86 1265.76
$1 $120/$2 1041.84 585.18 532.96
$ 92/¢2 627.42 356.18 271.46
$ 48/%2 ' -23.24 _57.58  -148.78
$300/$2 1150.48 495.20 252.80
$206/$2 638.44  -137.84  -377.64
$2 $120/$2 -280.84 -766.96 -978.76
$ 92/¢2 ~540.08 -989.96  -1183.36
$ 48/%$2 -827.04  -1349.52  -1538.48
$300/$2 -476.22  -1192.02  -1556.36
$206/$2 -836.72  -1767.42  -2240.68
$3 $120/$2 -1262.90  -2390.26  -2841.90 -
$ 92/¢$2 -1771.96  -2584.56  -3077.58
$ 48/%2 -2338.38  -2925.90  -3430.46
$300/$2 _2063.64  -3042.92  -3454.92
$206/$2 _2437.36  -3665.52  -4106.40
$4 $120/$2 -2329.80  -4246.80  -4737.52
$ 92/$2 -2737.04  -4444.88  -4952.56
$ 48/$2 -3493.88  -4766.72  -5307.32
Table 6-6. Comparison Tests Among the Heuristic Programs

Using *LDATAl as Testing Data
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Discount Ordering Coét/

Rate Holding Cost PRG-1 PRG-2 PRG-3
$300/$2 2644.38 2039.36 2006.20
$206/$2 2116.00  1335.18  1300.12

$1 $120/$2 1174.36 611.72 556. 06
$ 92/$2 800.52 375.30  289.66
$ 48/%2 48.84 -32.96 -145.42
$300/$2 1061.88 402.52 359.56
$206/%2 583.16 -233.24 -377.84
$2 $120/%2 -14.12 -851.52  -1025.56
$ 92/%2 -286.24  -1057.84  -1242.24
$ 48/%2 -834.52  -1427.12  -1567.12
$300/$2 -572.22  -1271.62  -1480.30
$206/$2 -725.02  -1894.72  -2160.14
$3 $120/$2 -926.66  -2471.54  -2819.46
$ 92/%2 -1512.00 -2683.44  -3056.14
$ 48/%2 -1759.34  -3002.22  -3419.96
$300/$2 -1921.76  -3023.16  -3363.24
$206/$2 -2201.76  -3654.24  -4030.92
$4 $120/%2 -2264.68  -4235.76  -4681.28
$ 92/$2 -2593.76  -4477.72  -4917.32
$ 48/%2 -2838.12  -4847.60  -5276.44
- Table 6-7. Comparison Tests Among the Heuristic Programs

Using *LDATA4 as Testing Data
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(a) Program-1 vs Program-3:

Discount/Unit =  $300/$2
$1 © 649.91
$2 800.00
$3 994.11
$4 1416.38

Marginal Avg. 965.10

Program-2 vs Progrém-3:

$1 25.32
$2 | 142.68
R . 286.5]
- $4 . 376.08

Marginal Avg.  :  207.64

Ordering Cost/ Holding Cost

$206/%2
734.94

988.54

1419.54
1749.10

1223.03

$206/%$2
34.58
192.20

369.34

408.78
251ﬁ23

$120/$2
563.59
854.68
11735.90
2410.66

1391.21

$120/%2

53.94 -

192.92
399.78

~ 466.62
- 278.31 -

$ 92/%2
- 433.41
799.64
1424.88
 2269.54

- 1231.86

- . - .. Ordering Cost/ Ho]dihg Cost
Discount/Unit . $300/%2

$ 92/$2
© 85.18

188.90 .

432.86
473.64

295.15

$ 48/%2
159.90
722.02

1376.35

2125.88

1096.04

$ 48/%2
101.83
164.48
461.15
484.72

'303.05

Marginal Avg.
508.35
832.98

1390.16
1994.31

1181.45

Marginal Avg.
60.17
176.24
389.93
441.96

267.08

Tab]e‘6-8. Comparison Table of the Average Costs of Solutions Reached by Program-1
Lo and Program-2 Over the Average Costs of Solutions Reached by Program-3
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- Holding Cost: both $2/unit/period

Qty. Req. for Discount: both 200 units
~Discount Rate: $1

Ordering Cost PRG-1

$300 0.050
-$206 0.050
$120 0.052

$ 92 0.054

$ 48 0.054

Over Al11 Average 0.052

‘Table 6-9. Average Required CPU Time for Heuristic Programs
to Reach an Solution for a 12-Period Two-Item

Single Discount Problem

PRG-2

0.062
0.064
0.066
0.064
0.064

0.064

PRG-3

0.054
0.054
0.054
0.052
0.056

 0.054
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Ordering Cost:
Holding Cost:
Qty. Req. for Discount:
Discount Rate:
Number of Data:

No. of Periods

5
6
7
8

9
10
11
12

$120/order

$1/unit
50 sets

Table 6-10. Required CPU Time

for a Multiperiod

both $2/unit/period
both 200 units

CPU Time
First Run  Second Run
1.5 sec. 1.5 sec.
1.6 sec. 1.6 sec.
2.0 sec. 1.8 sec.
1.9 sec. 2.1 sec.
2.0 sec. 2.1 sec.
2.3 sec. 2.2 sec.
2.4 sec. 2.3 sec.
2.8 sec. 2.6 sec.

Avg.

O O O O O O O O

Time/Set

.030
.032
.038
.040
.041
.045
.047
. 054

secC.
sec.
sec.
secC.
sec.
secC.
secC.
secC.

for Program-3 to Reach an Solution

Two-Item Single Discount Problem
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Average CPU Seconds/Set

/N 4 . '

0.050
0.045
0.040
0.035
0
| Number of Periods
: | . . , ' , in the P]ann1ng¥
0.030 ¢ . + b — — —Torizon  t 7
5 : 6 7 8 9

10 11

F1gure 6-2 Required CPU Time for Program-3 to Reach a Solution for a Mu1t1per1od
Two-Item Single Discount Problem
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In ordér to evaluate the test results more appropriately, the CPU
time required by each program to reach test results was recorded in |
CDC 3300 CPU sécond. The average time from the 50 sets of data in

*LDATA1 is listed in Table 6-9.

Evaluation of Test Results

Table 6-2 summarizes the results of performance tests when there
is no orderind cost. The parameter chosen to vary in the tests is the.
discount rate. The overall result shows that Program-3, the one based
- on the Inoue-Chang Method, yielded results closest to the optimul
solutions. The Program-2, based on the Silver-Meal Method, showed
the second best overall results among the heuristic programs. The -
Program-1 was the worst. These results are similar to thebones
v obtained from the single-item problems. One interesting observation
is that the average cost of Program-3 using the data group "LDATAI
is exactly the same as the results from using the data gfoup "LDATA4.
The reason for this is that Program-3 starts by comparing each
period's holding cost to the ordéring cost., Later, the Program-3
checks each item to see if it has reached the discount requikementt
When there is no ordering cost, the holding cost is never less
than the ordering cost. The tentative order will alwyas be placed
at the next period. Then each item wi]]jbe checked individually.
Since "LDATA 1 and *LDATA4 are the same data arranged in different orders,
bProgram-3 is expected to bring the same average costs from the two

groups of data. Such characteristics do not exist in Program-1 and
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Program-2 where fhe decisions are based on the minimum of unit cost and
the periodic costs, and those costs include the discount savings which
depend on the order quantity. Although apparently close, the results
from each‘of these two programs using *LDATA1 and *LDATA4 are |
significantly different. |

Table 6-3 is the summary results when there is no discount
available. The tests search solutions of a multiple-item problem
using the aggregate single-item model. The latter is only a_minor
modification of a single-item model. The results are similar to the
results obtained by single-item problems (Table 3-6). Only the |
multiple-item results from Program-2 andkProgram-B are closer than the
single-item results from the Inoue-Chang and the Silver-Meal Methods.
The reason is that during the deve]obment of Program-3, many considera-
tions are eliminated in order to reduce the time-consuming search. The
effect was to lower the searching time, while increasing the penalty
costs of results. However, the results from Program-3 are
still superior to the results from the other two programs fn every
category. Table 6-4 and 6-5 show the summary_of the comparison of
results from the heuristic programs using the resuits obtained by the
dynamic programming approaches as the benchmark.

Except in some special cases, the search for an optfmum solution
in a multiple-item discount prdb]em is time-consuming and costly.
Table 6-6 and Table 6-7 summarize the comparison tests for those
‘situations among various heuristic programs. Program-3 has the‘best
overall performance in éomparison with the other two programs; Program-

2, the one basically developed from the Silver-Meal Method has the
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second best results. Those conclusions are similar to the ones
obtained.in the single-item cases. During the development of the
Program-3, however, the computations were simplified by eliminating some
procedUres'(like backtrack searches) to reduce the searching time.

The Table 6-9 is the summary of the average CPU time each'program'needs
to search for a solution. Program-1 and Program-3 take about the

same amount of CPU time, while Program-2 takes the longest time |

among the threé heuristic programs. We may thus conclude that Program-
3, the one developed from the Inoue-Chang Method, has the best overall

~ performance of all procedures investigated.
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CHAPTER VII

CONCLUSION

Summary of the Study

The study of dynamic lot sizing problems under the discount
situation is an area that has received relatively little attention from
the previous studies and neglected by reseéréhers in the production
and inventory control fields. In modeling the problem at the single-
item level, this thesis extended Wagner-Whitin's Planning Horizon
Theorem to discount situations. The author further proved that this
theorem represents the optimum algorithm search for a so]ution using
the dynamic programming approach.

Along with other traditional heuristic approaches, a new approach,
named Inoue-Chang Method, was proposed. The performance tests, using
Kaimann's data and 100 additional sets of randomly generated data,
showed that the results from the Inoue-Chang Method are generally
superior to all other heuristic methods. The Inoue-Chang Method
- brought optimum results in 100% of the cases when performing tests using
Kaimann's data, and an average of 97.4% of the cases when performing
tests using the 100 additional sets of randomly generated data.. The
solutions were; on the average, 0.053% higher than the optimal solution
using the second set of data. When performing tests using the same
100 sets of data, the Silver-Meal Method, and the Least Unit Cost

Method brought optimum solutions in an average of 81.2% and 23.4% of
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the cases respectively, and cost .584% and 22.17% over the optimum
solutions on the average.

The Least Unit Cost Method, Silver-Meal Method, and Inoue-Chang
Method werevseparately modified in order to deal with the discount
situations. Performance tests were carried using these methods in
different discount situations. The results are summarized in Table 3-7
fo Table 3-10 and Figure 3-8 to Figure 3-11. Again; it was found that,
~on the average, the Inoue-Chang Method brought the resu1ts closest to
the optimum solutions, and was generally superior to both the Silver-
Meai and Least Unit Cost Methods.

Based on fhe Least Unit Cost Method, Silver-Meal Method, and
Inoue-Chang Method, three heuristic programs, Program-1, Program-2,
and Program-3 were developed to search for solutions in the multiple-item
discount situations. Both the multiple-item no discount situation énd
the multiple-item with discount situation were studied. The P]énning
Horizon Theorem was also extended to the multiple-item discount
situations. A mixed integer programming model was developed for the
situations when split orders were allowed. Two approaches, the
Gomory's A1l Integer Algorithm, and the Branch-and-Bound Method
attempted to search for an optimum solution from the model, and both
failed. The difficulties involved were discussed and pointed out.
Detailed information on the mixed integer programming model used in the
two-item dynamic Tot sizing problem is listed in Table 5-1. The
required core memory sizes to search for an optimum solution from the

model are 1isted in Table 5-1 and Figure 5-2.
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Two-item problems with sihg]e discount levels were se]ected to illus-
trate the developed programs. The computer CPU time to search for an
optimum solution involving different number of pekiods were measured and
estimated. For a 12-period two-item sing]evdiscount problem, it was
estimated that it would require more than 16,000 CPU seconds to search
for an optimum solution. To avoid such costly and time-consuming tests,
two special cases were selected. These cases allowed us to use a single-
item model to approximate a two-item model problem in searching for the
optimum solutions. In other general situations, the performance tests
were carried among the heuristic programs themselves. The heuristic
Program-3, the one deve]oped from the Inoue-Chang Method, again showed
superior average results over the other two heuristic programs.
Summarized results were listed in Table 6-6 to Table 6-7. In order to
Justify the comparisons, the required CPU time to solve a 12-period
two-item single discount problem was measured for each heuristic
program. The average CPU times were 0.052 second, 0.064 second, and

0.054 second for the three heuristic programs respectively.

Recommendations for Further Studies

The researches and studies on dynamic lot sizing problems started
~ very late compared to the studies in other areas in the production and
inventory control fields. There are a number of potential areas for

further studies. Several of them are suggested.
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Methodology to Search for an Optimum or a Near-Optimum Solution

Up to now, the dynamic programming approach is the only accepted
method to search for an optimum so]ution;for a dynamic lot‘sizing
problem. But this method, as shown in this thesis, becomes time-
consuming and costly in searching for an optimum solution when the number
of periods in the p]anhing horizon increases. The integér programming
method can work on a very limited size model when the assumption allows
split ordérs. Generally speaking, the integer programming method
rarely works for any brob]em where the problem size is large enoﬁgh to
be practical. We need a simpler methodology to search for an optimum

solution, or even a near-optimum solution.

Methodologies for Comparison

In evaluating heuristic approaches in this area, most authors make
use of methodologies developed by Kaimann and Berry (Kaimann, 1969;
' Berry, 1972). These tests use five sets of standard data as the testing
data (Table 3-1, Table 3-2), with the dynamic programming approach
used to createvbenchmarks. This thesis proposed an additional 100 sets:
of randomly generated data for testing the performance. More standard
data are needed in addition to the five sets of Kaimann's data. At the
same time, more benchmark results should be made available. When the
situation becomes complicated Tike the multiple-item discount
Ssituations, the results from the dynamic programming approach are

generally difficult to obtain, Some methods are needed to generate
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~ benchmarks to fit the framework of analysis.

AppTlication Areas

Almost all previous works in the area of dynamic lot sizing problems
~were centered around the single-item no discount problem. Very few
researchers studied other application areas. This thesis extends the
application areas to the multiple-item discount probiems. The

constraint applied to the multiple-item problem is the joint order.

There are other kinds of constraints, such as limited capacitieé for
multiple items, that represent some other potential application areas

for further studies.

Stochastic Situation

One consistant assumption of tﬁis thesis is the deterministic
demand. This, in many cases, is not true. To ignore the uncertainties
| of information may lead to inappropriate decisions. The uncertainties
may come from different sourbes. The true demand quantities may
differ from the forecasted values. The time of the demands may be
earlier or later than the forecasted time. Under such situations, many
questions may be raised. "What will be the best“way to make the Tot
sizing decisions?", "What kind of penalty factors should be considered?",
etc. When the multiple-item and discounts are involved, these

questions represent a complex and challenging area to be investigated.
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Conclusion

»The dynamié lot size problem is frequently encountered by
industrial engineers in production and inventbry control systemé.
This thesis studied‘thié problem under the multiple-item and discount
situations, and developed some ordering procedures to deal with such
situations. For a user to adopt an appropriate technique for his
dynamic lot sizing prublem, the most important thing is to understand
his system's operation and to recognize the logic involved in the
system. In order to make a choice of ordering procedures, ranging
from simple lot-by-lot techniques to more sophisticated optimizing
procedures, the decision will largely depend upon the inventory cost
- performance and the computational efficiency.

To deal with a complex problem, sdch as a multiple-item dynamic
Tot sizing problem involving the discount factors, this author is in
favor of heuristic approaches. They provide éimp]er and Tower cost
methods to solve the problems, while the optimum methods usually
cost more than what most users wish to spend. Inbmost real-life
problems, the situations are stochastic; The deterministic models,
such as the ones we have studied in this thesis, are often used to
obtain guidelines for decision-making under uncertainties. The precise
optimality of solutions in such situations is not required. The
difficulty of choosing an appropriate technique to solve a particular
industrial problem is often alleviated if similar situations have:

already been analyzed by a fellow industria] engineer. Hopefully,
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this thesis will help the user to make his choice when he encounters

a situation similar to the ones that this thesis has studied.
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APPENDIX B

AGGREGATE MODELS
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