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This thesis extends Wagner-Whitin's Planning Horizon Theorem

to discount situations in multiperiod multiple-item dynamic lot sizing

problems. Three heuristic techniques are developed using the Least

Unit Cost Method, Silver-Meal Method, and Inoue-Chang Method. The

three techniques are described and compared in terms of their effective-

ness in dealing with the dynamic lot sizing problem. These techniques

are modified in order to apply to single-item discount situations.

The performance of these modified techniques are tested by using

Kaimann's data with discount data added and 100 additional sets of

randomly generated data. A heuristic program has been developed for

each of the three methods. Each program is designed to handle joint-

order multiperiod, multiple-item dynamic lot sizing problems. In

addition, both no discount and with discount situations are studied in

the development of each program. All the above programs were first

developed under the assumption that no split orders occurred. A



mathematical programming model was then developed for the situations

where the split orders were allowed. The difficulties involved in

searching solutions using the mixed integer programming model are

discussed.

A two-item problem with one discount level is selected to

illustrate the developed programs. The performance of the heuristic

programs are measured and estimated through the use of dynamic

programming techniques applied to some selected special situations

as benchmarks. The comparisons of performance of the heuristic programs

among themselves are also conducted based upon the costs of reaching

solutions and the optimality of the solutions reached by using those

programs. In our testing examples, the average costs of solutions

reached by the heuristic methods based upon the Least Unit Cost

Method, Silver-Meal Method, and Inoue-Change Method are $560.9,

-$1475.28, and -$1742.36 respectively. The average CPU times for

each heuristic program to reach a solution for a 12-period two-item

single discount problem are 0.052 sec., 0.064 sec., and 0.054 sec.

respectively. A conclusion is reached that the heuristic program

based upon the Inoue-Chang Method has significant advantages over

other programs.
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MULTIPERIOD MULTIPLE-ITEM DYNAMIC LOT SIZING PROBLEM
WHEN DISCOUNTS ARE AVAILABLE

CHAPTER I

INTRODUCTION

Lot Sizing Problem and EOQ

In practical application of production and inventory control

methodology, a decision maker will often encounter questions about when

and in what quantity he should manufacture or purchaSt certain products

to satisfy the demands. The first question can be answered with

certainty provided that the required demands and their corresponding

lead times are known. The second question. may be solved through lot

sizing technique which figures the order size based on the future

demand's magnitude and timing.

With the assumption that demand patterns are uniform and stocks

are gradually depleted, Wilson's traditional Economic Order Quantity is

commonly used to find the order quantity. This approach works fairly

well in static cases.

Since Wilson's Economic Order Quantity is built upon the assump-

tion of uniform demand pattern and figures the order size based on the

average demand without considering the "timing" of the demand, the

outcome tends to be unsatisfactory, not economical, may even be disas-

trous when the basic assumptions are unrealistic. For example, in a

manufacturing environment, the demand pattern of the components of



assembled products is typically not uniform, and depletion is not

gradual. The Economic Order Quantity turns out to be a poor ordering

quantity when it faces such discrete lumpy demand patterns.

Dynamic Lot Sizing Problem

Because of the failure of Economic Order Quantity to deal with

the frequently encountered discrete lumpy demands, the interest in

recent years has gradually shifted to discrete lot sizing techniques

which make no assumption of uniform demand patterns. Several such

techniques are listed in Table 1-1.

Lot by Lot

Period Order Quantity

Least Total Cost

Part Period Balancing

Least Unit Cost

Silver-Meal Method

Inoue-Chang Phase-1 Method

Inoue-Chang Phase-1 and Phase-2 Method

Wagner and Whitin's Algorithm

Table 1-1: Discrete Lot Sizing Techniques

In all cases, the planning horizon is divided into periods,

which are often counted in units of weeks. The demand rate in each

period is assumed to be deterministic. When the demands vary over time,

the associated lot sizing problem is called a dynamic lot sizing

problem: The objective of a dynamic lot sizing technique is to

determine the proper lot size to fill the non-uniform demand require-



ments, and to decide how many of periods of requirements should be

combined into a single lot. Backlog is generally not allowed, especially

in an assembly process. A delay to supply a part at the required time

will cause delay of the whole process. Such costs are often very high.

Among all the dynamic lot sizing techniques, the Wagner-Whitin's

algorithm (Wagner and Whitin, 1958) is the only one that guarantees a

minimum total cost inventory management scheme which satisfies dynamic

demand patterns. The algorithm uses a dynamic programming method

to compute and compare all possible combinations of solutions. Though

the algorithm requires large computational efforts, its guaranteed

optimality makes it a valuable benchmark against which the performance

of other techniques is measured (Kaimann, 1969; Berry, 1972; Silver and

Meal, 1973; Ruch, 1976; Chang and Inoue, 1977).

Discount Consideration

Although many scholarly efforts have been expended in the general

area of lot sizing research, one related area has received relatively

little attention. This is the study of the optimum purchase quantity

and timing decision when discounts are available.

The supplier may offer different levels of discounts when larger

quantities are purchased. The price differentials may be substantial.

If a solution indicated by a lot sizing technique comes close to a

discount level break, it will be easy to adjust the lot sizing quantity

in order to take advantage of its discount saving. Some solutions may

not be that obvious, so the potential discount saving must be balanced



against the extra holding cost of carrying more inventory over a longer

period and determining what is the correct quantity to purchase.

In fact, a study of purchasing quantity and timing when discounts

are available often provides significant cost reduction. It has been

pointed out that it is not uncommon to find unit price reduction in

excess of 50% for agreements to purchase in increased quantities

(Whybark, 1977). Unfortunately, almost all discrete dynamic lot

sizing techniques assume no discounts. Callarman and Whybark did

research on the comparison of several dynamic lot sizing techniques

on the single-item demand patterns (Callarman and Whybark, 1977). They

allowed some techniques to order with split lot while forbidding the

Wagner-Whitin's algorithm to do the same, and found that some

heuristic techniques performed superior to the Wagner-Whitin's dynamic

programming approach (Callarman and Whybark, 1977).

Multiple-Item Consideration

Most of the presently known dynamic lot sizing techniques deal

with single-item problems. They can be used to deal with some

multiple-item problems if either one of the following conditions is

fulfilled:

1. There are multiple items, but the production or inventory

processes, resources, and capacities involved are such

that each item can be planned independently.

2. There are multiple items, but the decision is based only

on the aggregated level without specifying production or,



inventory levels for individual items.

But those single-item lot sizing techniques cannot solve all the

Problems. There are a lot of situations where many items are involved.

They may either use common facilities, labor or material as in many

production problems, or have a joint set-up cost as in the lot sizing

problem. Those items must be considered jointly instead of being planned

independently. In addition, since the decision will depend on the

solutions for the individual items, the problem cannot be solved

through aggregated planning techniques. These kinds of multiple-item

problems are usually characterized by considerable computational

difficulty (Johnson and Montgomery, 1974). A number of authors have

worked with multiple-item problems (Shu, 1971; Nocturne, 1973; Chern,

1974; Andres and Emmons, 1975; Silver, 1975; Zoller, 1977). They

either assume that the demand rates of items are constant or the demand

rates follow some generalized mathematical functions. Therefore, in

past studies, the decisions assumed continuous review rather than

periodical review. In our study, as in the dynamic lot sizing

problem, the generalized mathematical functions to describe the demands

are not considered to be known. This necessitates a periodic review

approach. Eisenhut presented a heuristic algorithm to deal with

the multiple-item dynamic lot sizing problem with capacity constraints,

but he did not consider the case when discounts are available (Eisenhut,

1975). No literature is found to work with the joint order multiple

item dynamic lot sizing problem when the discounts are available, and

that is the topic of this thesis.



Engineering Relevance

The problem presented here is a deterministic multiperiod multiple-

item joint order cost problem, and discounts are assumed available.

The assumptions made are as follows:

1. There are K items involved.

th
2. Demand for

.

item at j t h period, D..ji ,is deterministic.

3. Demand is dynamic, or said to vary with time.

4. The ordering cost of all items is jointed.

5. Holding costs are at a constant rate hi for the i
th

item

per unit per period.

6. The backlog is not allowed.

7. Lead time is negligible.

8. Order is under periodic review.

9. There is no initial stock.

10. The planning horizon is finite.

11. There is no split lot allowed.

In real world problems, any item always has a lead time, and the

initial stock is unlikely to be zero. But only through moving the item

demands ahead of lead time periods, can the lead time of newly generated

demand rates be treated as zero, and by subtracting demands from

the on hand initial stock, make the results as if there were no

initial stock. When a family of items are produced together through

a common set-up procedure, or several items have close lead times,

these items may be ordered simultaneously through a joint order in
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order to take advantage of the economy that can result from such actions.

A common set-up procedure for a family item can reduce the set-up time

and increase the productivity. Similarly, a joint order can reduce the

ordering time and save the ordering cost.

Outlines of this Thesis

The planning horizon theorem was adopted to reduce computational

difficulty in the search for an optimum solution of a dynamic lot-

sizing problem through the dynamic programming approach. The theorem

is described in Chapter II and extended to the cases where the

discounts are available. The necessary condition to make the theorem

valid is also presented.

The third chapter deals with single-item dynamic lot-sizing

techniques. Traditionally used techniques are presented. The author's

newly developed technique is also introduced. Those techniques are

compared by using a set of well-known standard data, as well as 100

sets of computer generated random data. The modification of some

techniques to the discount situation is also discussed and developed.

Again, some testing data are generated, and the techniques are tested

and compared.

The joint order multiperiod multiple-item dynamic lot sizing

problems when discounts are available are discussed in the fourth

chapter. Three heuristic programs are developed based on different

criteria. The flowchart and details of the approaches are presented

in the same chapter. Also, an optimization algorithm is developed
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using the dynamic programming method. The extension of planning horizon

theorem in a multiple-item discount situation is discussed in order to

reduce the computational effort in searching the optimum solution.

The fifth chapter discusses the same situation, but the assumption of

not allowing split order is eliminated. A network to represent a

generalized model is illustrated. Mathematical programming is used to

model the problem. The approach to solve such a model is also discussed

in the fifth chapter. In the sixth chapter, numerical examples are pre-

sented. Two-item problem with one.discount level for each is selected as

the example to illustrate the developed programs. The testing data are

generated and the performance of different heuristic programs are

estimated by using the dynamiC programming techniques in some

selected situations as benchmarkt. The results are compared and

evaluated. The conclusions are presented in the last chapter. The

potential areas for further study and investigation are also

recommended.



CHAPTER II

PLANNING HORIZON THEOREM

Wagner-Whitin's Planning Horizon Theorem

Of all presently known dynamic ordering rules, Wagner-Whitin's

dynamic programming approach (Wagner and Whitin, 1958) is the only method

that will guarantee an optimum solution. This method searches all possible

combinations of ordering quantities at different periods and finds the

best combination. The process requires a large amount of computation.

To simplify the searching process, Wagner-Whitin's program uses the

Planning Horizon Theorem to eliminate combinations that need not be

considered during the searching process. The theorem applies to a

situation where a decision must be made between ordering the quantity

Pt at the tn
th

period versus ordering it at time tk. The theorem can
tn

be stated officially as follows:

Planning Horizon Theorem: If in the forward algorithm
the minimum cost decision at to occurs for Ptk>0, tk<tn,
then in periods t>tn it is sufficient to consider only
periods j so that tojct. (Riggs & Inoue, p. 317, 1975)

It can be written in a recursive form as: Define V as the minimum

th
cost of ordering and holding the demands up to j period. The

recursive function will then be:

V. = min ( L., + V. ), V
IJ 1-1 1

L. H E D1.(1 j
)

1=i 1

H.ij-- Holding costH:

0: Ordering cost
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3

0 if E D,
1=i 1

3
1 if E

1=i

Planning Horizon Theorem can then be redefined as: If in the forward

algorithm, the V
n

= L
kn

+ V
k-1

for ordering and holding the demands up

to t
th

period, then in periods t>t
n'

V, = min (Lit +
i-1

*

V-1

Numerical Example of No Discount Situation

Let's use the following example to illustrate the Planning Horizon

Theorem. Suppose the demands for the next six periods are the following:

Periods 1 2 3 4 5 6

Demands 100 160 40 200 120 30

The ordering cost is $100.00, and the holding cost is $2.00 per period

per unit. The Figure 2-1 below shows the computational process to

search for the optimum solution. The * marks the optimum ordering of

demands from the first period up to that period. The X represents the

terms that need not be considered because of the Planning Horizon

Theorem. The optimum solution will then be:

Placing Order at Periods 1 2 4 5

Ordering Quantities 100 200 200 150

Total Cost will be $540.00.



Planning

Period Demands Period-1 Period-2

Placing Order At

Period-3 Period-4 Period-5 Period-6

1 100 ( 100*)
$ 100

160 ( 260 ) ( 160*)
$ 420 $ 200

40 X ( 200*) ( 40 )

$ 280 $ 300

200 ( 400 ) ( 240 ) (

$1080 $ 700 $ 380*

5 120 X X X ( 320 ) ( 120,.)

$ 620 $ 480*

6 30 X X X X ( 150 ) ( 30 )
$ 540* $ 580

Order Shall Be Placed At:

Ordering Quantities: 100 200 200 150

Figure 2-1 An Example of Planning Horizon Theorem
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Quantity Discount Situation

When discounts are available, the situation will be changed. The

total cost is then the sum of ordering costs, holding costs, and the

items' price subtracting the saving from the discounts. Since the items'

price can be taken as a fixed value, which will not affect the planning

decision, the objective of the planning decision will then be to search

the optimum solution with the minimum sum of the ordering costs, holding

costs, subtracting the discount saving. Because the problem now involves

the discount saving, and this varies with the ordering quantities,

those combinations that earlier needed not be considered from the

conclusion of Planning Horizon Theorem (at no discount situation), can

no more be neglected.

A Quantity Discounted Example

Let's use the previous numerical example with the addition of

discounts:

Assume: Ordering Quantity Discount

0 - 99 $0/unit

100 - 299 $2/unit

300 - 499 $4/unit

500 - $6/unit

From the following Figure 2-2, the optimum solutions will be either to

order 100 units of items at period-1, and 550 items at period-2, or



Planning

Period Demands

100

Period-1

( 100 *)

$-100*

Period-2

Placing Order at

Period-3 Period-4 Period-5 Period-6

160 ( 260 ) ( 160*)
$ 100 $ 0

40 ( 300i ( 200 ) ( 40 )

$-620^ $-320 $ 100

4 200 ( 500*) ( 400 ) ( 2d0 ) ( 200 )

$-1220 $-720 $ 20 $-920

120 ( 620 ) ( 520 ) ( 360 ) ( 320 *) ( 120 )

$-980 $-1520 $-460 $-1560 $-1360

30 ( 650 ) ( 550*) ( 390 ) ( 350 ) ( 150 ) ( 30*)

$-860 $-1460 $-400 $-1440 $-1360 $-1460

Figure 2-2 An Example of Planning Horizon Theorem With Discounts
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to order 300 units of items at period-1, 320 units of items at period-4

and 30 units of items at period-6. Both ways reach the same minimum

cost.

This example demonstrates that the traditional Planning Horizon

Theorem cannot be applied to the situations where the discounts are

available. For example, the optimum Planning for the first two periods

is to place an order of 100 units at the 1st period, and 160 units at

the 2nd period. If we were to follow the Planning Horizon Theorem, the

conclusion would have been that for the further planning we would not

need to consider ordering any other amount of demands at the first

period. Our example, on the other hand, showed that when the planning

period extended to the third period, the optimum solution specified

ordering 300 units at the first period. This is indicative of the

significant saving from the discounts.

Planning Horizon Theorem Applied to Situations with Discounts

In general, as we see, the implication of traditional Planning

Horizon Theorem cannot be applied to the situations when discounts are

available. However, there are cases when the implication of traditional

Planning Horizon Theorem still can remain valid.

Assume, for example, a situation of planning for n periods with

demands D1, D2, . . Dn. There are J levels of discounts, Gl, G2,

Gj, available for ordering quantities greater than or equal to

Bi, B2, . . Bj. Both series are monotonically nondecreasing.

Suppose at the optimum situation it will order E DI at period
1=k '
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t
k

for planning up to period t
n

. In order to extend the planning

horizon up to tm>tn, a decision must be made between ordering the
m m

quantity E Di at t4 versus ordering E D at period tk to reach an
1=i ' ' 1=k

optimum solution, i, 1(m.

Theorem 2-1: If in the forward algorithm the minimum cost decision
n

of planning up to period t is through ordering quantity Pt = E Di,

k 1=k '

tktn, and Pt > E3,3, then in order to extend the planning horizon to the
k

period tm>tn, it is sufficient to consider only period j, tojtm.

Proof: Let C represent the total cost (ordering cost plus holding

cost subtracting discount reduction in order to fulfill the demands) of
n

planning up to the period to through ordering quantity P4.
'

= E D1 at
w 1=w '

the period tw , CkCi for

When the planning horizon extends to the period tm>tn, the cost
n

through ordering Pit E Di at is:

k 1=k ' "

m n n m m

k
= C E D D ) E ) E D

1=n+1 1=k 1=k 1=k 1=k

where G(Q) represents the discount rate for ordering quantity Q at one

time.

For the period j<t
k'

the cost will be:

m n n m m
= C . + E D H (1-j) + G(EDOED- G( E E D ]

1=n+1 1=j ' 1=j 1 1=j 1 1=j

n m
Since E and E

1=k ' 1=j

n

E D
1,

which implies
1=k

, E D all are greater than
1=j 1=k



n n m m
G( E D ) = G( E D1) E D1) =G ( E D) = Gj

1=k 1=j 1=k 1=j

and

CI
m

= ( C - C + E D

1=n+1

C ) +E DH(k-j)
j k 1

16

m m
E D1 -G, E D1

1=n+1 1=n+1

Because Cj 4C
k'

and k>j, we can therefore draw the conclusion that CI is

always greater than Ci( . Thus, to plan the period t>tn, it is sufficient

to consider only periods j where tkt.

Theorem 2-2: Assume in the forward algorithm, the minimum cost
n

decision is through ordering E D.,>0 at the period tk, tktn. The
1=k '

discount levels are based on the ordering quantities B1, B2, . .

If E D

1

<B it is possible to find a set of discount rates G(B.),
1=k

i = 1, 2, . . J, such that when the planning horizon extends to the

period tm>tn, C3 will be less than Cie where j<tk<tm.

Proof: From the Proof of Theorem 2-1 we have:

C'. -

m
= Cj - C + E

1=n+1

n n

-j ) + G( E D1) E

1=j 1=j

m m n n m m
G( E D1) E D1 ] [ G( E D1) E D1 - G( E D1) E D1]

1=j 1=j 1=k 1=k 1=k ' 1=k

n

Since E D1 < , let's set the discount rates as the following:
1=k

n m
G( E D,) = G( E D

1=k 1=k
Bf )



m n

G.( E G( E D ) + 6 = G (B ) f<g,J
1=j 1 =j

and let

m
= C. + , x2 E D (

1=n+.1
1

we will have

= x
1

+ x2 + G( E D1) E

'

- G( E D1) E - E

1=j 1=j 1=j ' 1=j 1=j

n

G( E
1=j

m

E D.

1=n+1

n

+ G( E
1=k

m
D1 ) E D1

1=n+1

because G(Q) is a monotonically nondecreasing series,

J

m
= + x - 6 E D

1=j

The 6 can be chosen as

m
x2 +E )/ E

1=j

which concludes

E0

17

For a situation to plan for N periods of demands D1, D2, . DN,

if in the forward algorithm the minimum cost decision of planning up to
n

period to is through ordering quantity Pt = E Di at the period tk,
k 1=k '
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t <t and if the discount levels are based on the quantity B
n' 1, 2'

B
J'

the Theorem 2-1 represents the sufficient condition in order to get a

minimum cost decision through considering only period j when the planning

horizon extends to tm>tn, tktm, and the Theorem 2-2 represents a

necessary condition.

It should notice that theoretically the Theorem 2-2 works on the

hypothetical cases, but in the real life cases the factor (S will be

limited by the item's original price, otherwise we may have the

discount rate that gives a negative price, which generally will not

happen.

Generally speaking, the Planning Horizon Theorem is not appropriate

for a case when the discounts are available. However, if certain

conditions are fulfilled the implication of the Planning Horizon

Theorem still can apply to the case, and that will save the computational

time and the storage area in searching the optimum solution. The

numerical example using the Planning Horizon Theorem applied to the

discount situation will be discussed at next chapter.
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CHAPTER III

SINGLE-ITEM DYNAMIC LOT SIZING TECHNIQUES

Single-Item Dynamic Lot Sizing Problem

Wilson's Economic Order Quantity has commonly been used to find the

order quantity, and this approach works fairly well in static cases.

However, in the manufacturing environment, and many other real life

environments as well, the demand patterns are considered discrete and

changing with time. The EOQ formula is based upon the assumption that

the demand pattern is uniform; when faced with dynamic lot sizing

problems, the use of the EOQ often leads to unsatisfactory solutions.

There are many techniques developed to cope with such dynamic demand

patterns, including:

1. Fixed Order Quantity, variable order interval

2. Fixed Period Requirement, variable order quantity

3. Lot-for-Lot

4. Economic Order Quantity (EOQ) Formula

5. Period Order Quantity

6. Ruch's Method

7. Least Unit Cost (LUC) Method

8. Silver-Meal Method

9. Eisenhut's Method

10. Least Total Cost (LTC) Method

11. Part-Period Balancing (PPB) Method
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12. Inoue-Chang Phase-1 Method

13. Inoue-Chang Phase-1 and Phase-2 Method

14. Wagner-Whitin Method.

Classification of the Techniques

Among techniques using these methods, those using methods 7 to 14

allow both the lot size and the interval change for each order to be

placed. And these eight techniques can be classified into four kinds of

approaches. From 7 to 13, these are heuristic techniques following

three kinds of approaches to the dynamic lot sizing problem. Lease Unit

Cost finds the solutions based on the local minimal unit cost. Silver-

Meal Method and Eisenhut Method are based on the local minimal total

cost per period. Technique based on methods 10 to 13 are based on the

assumption that the optimal solution locates when the ordering cost is

close to the holding cost, and add some modifications and improvements.

The Wagner-Whitin method represents the fourth kind of approach; it uses

dynamic programming approach to search all the possible ways to meet

the demands and determining the optimal solution as the one with

minimum cost. Since the Wagner-Whitin method guarantees an optimum

solution, it is often used as a benchmark to measure the performance of

other techniques.

Among those heuristic techniques, those based upon Least Unit Cost,

Silver-Meal Method, and Inoue-Chang Method are selected to represent

three kinds of different approaches, and the techniques are developed in

extension to the situation when discounts are available and when
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multiple-items are involved.

Comparisons of Dynamic Lot Sizing Techniques
Using Kaimann's Data

Along with the development of different dynamic lot sizing

techniques, a number of papers have been presented on the analysis and

comparison of techniques. At the early stage, the emphasis was on the

comparison of the dynamic programming approach with the traditional EOQ

formula (Kaimann, 1969; Gorenstein, 1970; Gleason, 1971). As more and

more heuristic dynamic lot sizing techniques were developed, interest

was shifted to the comparison of heurisitc approaches using the dynamic

programming model as the benchmark (Silver and Meal, 1973; Orlicky, 1975;

Ruch, 1976; Chang and Inoue, 1977). A set of standard data (Table 3-1),

developed by Kaimann, has been widely used as the demand patterns to test

the different techniques. The data are varied along two dimensions:

the coefficient of variation of the demand patterns, and the ratio of the

economic order quantity to the average period demand (Table 3-2). The

first parameter describes the degree of variation in the demand data in

terms of the ratio of the standard deviation of weekly demand to the

average weekly demand. The more the demand pattern tends to be uniform,

the smaller the value of the parameter will be; the more the demand

pattern tends to be "lumpy" (Berry, 1972), the larger the value of the

parameter will be. The second parameter measures the degree of mismatch

between integral multiples of product demand, and is used to measure

the "spikeness" in the demand (Berry, 1972). The results of the

comparison among the techniques are displayed both in terms of total



22

Week 1 2 3 4

1 92 80 50 10 0

2 92 100 . 80 10 0

3 92 125 180 15 0

4 92 100 80 20 0-

5 92 50 0 70 0

6 92 50 0 180 1105

7 92 100 180 250 0

8 92 125 150 270 0

9 92 125 10 230 0

10 92 100 100 40 0

11 92 50 180 0 0

12 93 100 95 10 0

Coefficient of

Variation: 0 .293 .718 1.41 3.31

Table 3-1. Demand Patterns

EOQ/D EOQ

Ordering
Cost

Holding Cost
Per Unit Per Week

.73 67 $ 48 $2

1.00 92 92 2

1.14'. 105 120 2

1.50 138 206 2

1.82 166 300 2

Table 3-2. Inventory Model Parameters

SOURCE: Kaimann, R. A., "EOQ vs. Dynamic Programming - Which One
to Use for Inventory ContrOl?", Production and Inventory
Management, 4th Qtr., 1969.
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inventory cost performance and the percentage increases over Wagner-

Whitin's solution (Table 3-3, 3-4). The comparison shows that among all

heuristic methods, the two-phase Inoue-Chang method results in having

as low cost as any other approach including Wagner-Whitin. Even when

only the first phase is used, the results are generally superior to all

other heuristic methods. For details, the reader is referred to Table

3-3, 3-4.

Comparisons Using Randomly Generated Data

One weak point of the above comparison is the number of Kaimann's

data. There are only five sets of data. In order to get a clearer

picture of the comparisons of different methods, 100 sets of demand

patterns are generated in coping with Kaimann's data. Each set of data

contains 12 demands with the sum to be 1105, which will lead to the

same EOQ because EOQ depends only on the average demand. The 100 sets

of demands are randomly generated according to the distribution of zero

demands. The distribution functions used have the following

characteristics:

Data Set Distribution % of Zero-Demand

20% 0

20% 10

20% 20

20% 30

20% 40

A list of data is given in Appendix A. The coefficients of variations
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E0Q/0 Coefficient of Variation
Ratio Procedure 0 .293 .718 1.41 3.31

EOQ 1681 1681 1585 1633 1153

LUC 1681 1681 1737 1597 1153

S and M 1681 1681 1557 1597 1153
.73 W-W Alg. 1681 1681 1557 1589 1153

I and C
Phase I 1681 1681 1557 1589 1153

Phase I & II 1681 1681 1557 1589 1153

EOQ 2209 2915 2601 2655 1197

LUC 2209 2209 2133 2061 1197

S and M 2209 2209 1953 1981 1197

1.0 W-W Alg. 2209 2209 1953 1941 1197

I and C

Phase I 2209 2209 1953 1961 1197

Phase I & II 2209 2209 1953 1941 1197

EOQ 3612 3085 3275 3105 1225

LUC 2545 2605 2425 2285 1225

S and M 2545 2545 2205 2165 1225

1.14 W-W Alg. 2545 2505 2205 2145 1225

I and C
Phase I 2545 2505 2205 2165 1225

Phase I & II 2545 2505 2205 2145 1225

EOQ 3859 4873 3747 3799 1311

LUC 3447 3353 3113 2941 1311

S and M 3447 3541 2871 2701 1311

1.5 W-W Alg. 3447 3353 2871 2681 1311

I and C

Phase I 3447 3353 2871 2681 1311

Phase I & II 3447 3353 2871 2681 1311

EOQ 5119 5435 4927 4653 1405

LUC 4011 4155 3745 3705 1405

S and M 4011 4055 3455 3245 1405

1.82 W-W Alg. 4011 4055 3435 3245 1405

I and C

Phase I 4011 4055 3435 3245 1405

Phase I & II 4011 4055 3435 3245 1405

Table 3-3. Comparison Table of Inventory Cost Performance

SOURCE: Berry, W. L., "Lot Sizing Procedures for Requirements Planning
Systems: A Framework for Analysis", Production and Inventory
Management, 2nd Qtr., 1972.
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EOQ /D

Ratio Procedure 0 .293 '.718 1.41 3.31

EOQ 0 0 2.05 2.76 0

LUC 0 0 11.56 0.50 0

.73 S and M 0 0 0 0.50 0

I and C
Phase I 0 0 0 0 0

Phase I & II 0 0 0 0 0

EOQ 0 31.96 33.17 36.78 0

LUC 0 0 9.21 6.18 0

1.0 S and M 0 0 0 2.06 0

I and C

Phase I 0 0 0 1.03 0

Phase I& II 0 0 0 0 0

EOQ 41.92 23.15 48.52 44.75 0

LUC 0 3.99 9.97 6.53 0

1.14 S and M 0 0 0 0.93 0

I and C
Phase I 0 0 0 0.93 0

Phase I & II 0 0 0 0 0

EOQ 11.95 45.33 30.51 41.70 0

LUC 0 0 8.43 9.70 0

1.50 S and M 0 5.60 0 0.74 0

I and C
Phase I 0 0 0 0 0

Phase I & II 0 0 0 0 0

EOQ 27.64 34.03 44.13 49.42 0

LUC 0 2.46 9.02 14.17 0

1.82 S and M 0 0 0.58 0 0

I and C
Phase I 0 0 0 0 0

Phase I& II 0 0 0 0 0

Table 3-4. Percentage Increase Comparison Table

SOURCE: Berry, W. L., "Lot Sizing Procedures for Requirements Planning
Systems: A Framework for Analysis", Production and Inventory
Management, 2nd Qtr., 1972.
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are ranged from .324 to 1.601 with an average .843

The comparison (Table 3-5, 3-6) shows that the Inoue-Chang method

is again significantly superior to the Silver-Meal, Least-Unit, and

EOQ methods. Both Inoue-Chang and Silver-Meal methods show a tendency to

get nearer to the optimum solution as the ratio of ordering cost to the

holding cost becomes smaller. But such tendency does not happen to the

Least Unit Cost method, where the number of the optimal results raises

from 7% when the ordering cost is $300.00 up to 64% when the ordering

cost is $48.00, and the improvement in the average cost over the optimal

results is not very steady and significant. The EOQ method, as expected,

leads to non-optimal solutions for all the testing data. That is

because the assumptions of the method based on the EOQ will not be

valid for the dynamic demands. The performance of total cost over the

optimal solution is increasing along with the decreasing ratio of

ordering cost to holding cost. That behavior is just opposite to other

methods. The traditional EOQ method has the worst results compared

with the other dynamic lot sizing methods for the planning of dynamic

demands, and such result is also expected.

Modification of Single-Item Dynamic Lot Sizing
Techniques when Discounts are Available

When the discounts are offered, the costs that go into the price

of the item vary extensively throughout the quantity ranges. In order

to get a better solution, such potential advantages from the discounts

must be put into consideration in order to get the "right quantity."
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Ordering Cost/
Holding Cost PH-1 PH-2 SM LUC EOQ

$300/$2 81% 91% 57% 7% 0%

$206/$2 87% 97% 68% 8% 0%

$120/$2 96% 99% 89% 17% 0%

$ 92/$2 100% 100% 92% 21% 0%

$ 48/$2 100% 100% 100% 64% 0%

Table 375. The Frequency of Optimum Results

Average % of Cost Over the Optimum Results
Ordering Cost/
Holding Cost PH-1 PH-2 SM LUC EOQ

$300/$2 0.601 0.204 1.486 19.919 68.557

$206/$2 0.335 0.060 1.047 22.558 100.512

$120/$2 0.093 0.002 0.273 26.026 112.930

$ 92/$2 0 0 0.120 25.585 139.004

$ 48/$2 0 0 0 16.769 171.549

Table 3-6. The Comparison of Average Percentage
Costs Over The OptimuM Solutions
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Generally speaking, there are two kinds of discounts widely used

in industrial and business environments. Oneis called "All Unit

Discounts." Under such discounts, the reduced price is applied to all

units when the quantity of the order exceeds some discount level.

Another kind of discount is called "Incremental Discount." Under this

kind of discount offering, the price reduction only applies to the units

above the last discount level when the current order exceeds the next

discount level. "It is considered that the case of 'All Unit Discounts'

is considerably more difficult to solve, even though it is the form

most often found in the industry." (Whybark, 1977) The discount we

are going to deal with is the first kind, the All Unit Discount.

With the availability of discounts, the algorithms of dynamic lot

sizing techniques will have to consider the trade-off between the

potential of reducing the purchasing cost, and increasing the holding

cost for the increased inventory.

Let's keep the assumptions of the problem unchanged. A further

assumption being added to the problem, namely: The item has J levels

of discounts available, Bi, i =1, 2, . . J, with the cost reduction

rates, G .1=1, 2, . . ., J. In all the procedures, the algorithms will

first find each order quantity assuming no discounts available. Once

the answer is found, it will be used to compare with the answer from the

one with increased further period demands in order to qualify for the

discounts, or further discounts, and the better answer, justified by

the objective of the algorithm, will be retained as the tentative answer

to be used in the further comparison if there is any further level of
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discounts. Repeat such procedures until there are no more discount

levels. Then a new order will be placed, and the order quantity will be

determined by repeating the above procedures.

Least Unit Cost Method

This technique determines the order quantity based on the "unit

cost" (total cost per unit) computed for each of the successive order

quantities. The one with the local minimum unit cost will be chosen as

the lot size of that order. The next order will be computed through

identical proceduret. When there are discounts available, the total

cost will be modified by the sum of ordering cost and holding cost

subtracting the discount saving. There will be'two kinds of outcomes

when a local minimum point is found. The first one is at the local

Minimum point the program checks to find whether the sum of demands has

already reached the discount requirements. If it has, then the quantity

determined from this point will be chosen as the ordering quantity. The

second situation is the situation which occurs if the local minimum point

is found with the summation of demands still below the discount require-

ments. It is possible, when we include further demands into the

summation, that the unit -cost will be lower because of the discount

saving. So the first local minimum point is temporarily stored, and

later compared with another candidate, the one with the quantity with

discount savings. The candidate with a lower unit cost will be chosen

as the desired ordering quantity. The logical steps of such searching is

represented in the following flowchart (Figure 3-1).
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Figure 3-1 Flowchart of the Modified LUC Method
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Numerical Example

Let's use the following example to explain the approach. Assume a

manufacturing operation where the set-up cost is $92.00 per order and the

holding cost is $2.00 per unit-period. The inventory holding cost is

based on the ending inventory, and no split order is allowed. The

required order quantity to get a discount is 200 units, the discount

rate is ST/unit. The periodic demands within the planning horizon

are:

Period 1 2 3 4 5 6 7 8 9 10 11 12

Demand 50 80 180 80 0 0 180 150 10 100 180 95

The search and computations of this example using the Lease Unit Cost

Method are shown in Figure 3-2.

Silver-Meal Method

The method of. Silver-Meal represents another approach t

searching for the right ordering quantity at the right time. The

Silver-Meal method finds an ordering quantity that leads to a local

minimum cost per period. Therefore, starting with the first unfulfilled

demand, the following demands are added onto it, and at each time the

total cost, which is the ordering cost plus the holding cost subtracting

the discount saving, will be found along with the number of periods

involved. The total cost per period at each time is used to compare

with the previous values until the local minimum point is found. Again,

as in the case of "least unit cost," two kinds of outcomes may occur.

One with the sum of demands at the local minimum point already satisfy-
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Demands 50 80 180 80 0 0 180 150 10 100 180 95

Total Cost 92 252 1692 92 392 432

-310 -330 -340

=1382 =62 =92

Total Qty. 50 130 310 180 330 340

Unit Cost 1.84 1.94 4.46 0.51 0.19 0.27

Local Min. *

Next Total Qty no yes yes
> Disct. Qty

Total Cost 92 452 772 92 292 1012 1582

-260 -340 -290 -385

=192 =432 =722 =1197

Total Qty. 80 260 340 10 110 290 385

Unit Cost 1.15 0.74 1.27 9.20 2.65 2.49 3.11

Local Min. * *

Next Total Qty
> Disct. Qty yes yes

Total Cost 92 92 92 1172 92

-260
=912

Total Qty. 80 80 80 260 95

Unit Cost 1.15 1.15 1.15 3.50 0.97

Local Min.

Next Total Qty
> Disct. Qty yes

To

Order: 50 260 - 80 330 290 95

Total: Ordering Cost = 552 Holding Cost = 1580 Discount Saving = 880 Net Cost= 1252

Figure 3-2 An Example of LUC Method in the Discount Situation
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ing the discount requirement, in which case that sum will be chosen as

the ordering quantity. The other one represents the case that the

sum is below the discount requirement. Then the sum will be

stored, and compared with the situation when further demands are added

into the sum to get the discount advantages, and the better one, based

on the criteria of lower total cost per period, will be chosen as the

desired ordering quantity. The logical steps of this approach are given

in the flowchart of Figure 3-3.

Inoue-Chang Method

A third approach to solving the dynamic lot sizing problem under

the discount situation is extended from the Inoue-Chang Method.

Basically speaking, the Inoue-Chang Method decides whether or not to

place an order at each period based upon comparison of the ordering

cost and the holding cost. Starting with the first demand, the method

places an order. The next scheduled order is tentatively set at the

period where the holding cost becomes larger than the ordering cost.

The method then backtracks and checks all other alternatives within the

time interval, and determines tentatively how many periods should be

covered by that scheduled order. Since the availability of discounts

may induce certain significant saving, every time the order is

tentatively scheduled a check will be carried out to see if the order's

quantity has already brought in the discount advantages. If the

answer is "yes", the method will start placing the next order; otherwise,

the tentatively scheduled order will extend its coverage to further
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Figure 3-3 Flowchart of the Modified Silver-Meal Method
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Demands 50 80 180 80 0 0 180 150 10 100 180 95

Total Cost 92. 252 1692 92 392 432 1032

-310 -330 -340 -440

=1382 =62 =92 =592

Total Periods 1 2 3 1 2 3 4

Cost/Period 92 126 461 92 31 30.7 148

Local Min

Next Total Qty
> Disct. Qty no yes yes

Tota1 Cost 92 452 92 452 832

-260 -280 -375

=192 =172 =457

Total Periods 1 2 1 2 3

Cost/Period 92 96 92 86 152.3

Local Min * *

Next Total Qty
> Disct. Qty yes yes

Total Cost 92 252 252 252 1692 92

-260 -260 -260 -440

=-8 =-8 =-8 =1252

Total Periods 1 2 3 4 5 1

Cost/Period 92 -4 -2.7 -2 250.4 92

Local Min

Next Total Qty
> Disct. Qty yes

To
Order: 50 80 260 - 340 280 95

Total: Ordering Cost = 552 Holding Cost = 860 Discount Saving = 880 Net Cost = 532

Figure 3-4 An Example of Silver-Meal Method in the Discount Situation
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demands to reach the discount requirements. In this way, the method

will bring the saving from the discount and share the ordering cost

with more demands while incurring an increased holding cost. A compari-

son of increased holding cost to the saving will tell whether such

extension of coverage is desirable. The method will repeat these

procedures until the end of the planning horizon. A backward search

representing phase-2 of this method is used to check any improvement

that can be made by moving an order within the time interval to combine

to a previous order. This backward search is little different from the

one used for the no-discount situation in which we are aware of the

trade-off of holding costs by assigning a demand to the different orders.

When the discount is available, the situation is complicated. Moving

out a demand from one order to its prior order may cause a change in

the order quantity to satisfy the discount requirements. In order to

avoid these complications, it is proposed to check only the

possibility of saving from combining one order to its prior order.

Let's consider two consecutive orders. Each one may already

reach the discount requirements or it may not. Therefore, the total

will be four situations. The two with the first order less than dis-

count requirements can be neglected, because such check was made during

the forward search, in which when one order was less than the

discount requirement, the search extended the order coverage to further

demands to test the possibility of getting saving from discounts. When

the first order is greater than the discount requirements, and the

second order is also greater than the discount requirements, further
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Flowchart of the Modified Inoue-Chang Method (Continued)
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Phase - 1:

Demands 50 80 180 80 0 0 180 150 10 100 180 95

Tentative Order

Holding Cost 0 160 880

> Ordering Cost yes

Order, Disct.
Qty. Qty. no no yes

Total Savingl 387.2

Incre. Holding
Cost >Saving yes

Tentative Order

Holding Cost 0 360 0 200 920

> Ordering Cost yes yes

Order,. Disct.
Qty. Qty. no yes no no yes

Total Saving 323.7 98.8

Incre. Holding
Cost > Saving yes yes

Tentative Order

Holding Cost 0 160 0 360

> Ordering Cost yes yes

Order , Disct.
Qty. Qty. no yes no yes

Total Saving 288.3 339.1

Incre. Holding
Cost > Saving no yes

Tentative Order

Holding Cost 0 300 0 190

;> Ordering Cost yes yes

Order , Disct.
Qty. Qty. no yes no yes

Total Saving 371.8 306.8

Incre. Holding
Cost > Savihg no no

To

Order: 50 80 260 - 330 10 100 275

Total; Ordering Cost = 644 Holding Cost = 650 Distount Saving = 865 Net Cost = 429

1: Total Saving = Disct. Saving + Ordering Cost Shared by the Additional Qty,

Figure 3-6 An Example of Inoue-Chang Method in the Discount Situation
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to Order:

50 80 180 80 0
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Order without Disct.
while Its Proior
Order Has Disct. no no no

180 150 10 100 180 95

330 10 100 275

no yes no no

Combine with the
Prior Order:

Incre. Holding Cost 40

Ordering Cost Saving -92

Discount Saving -10

Net Cost -62

To Order: 50 80 260 340

Total: Ordering Cost = 552 Holding Cost = 690 Discount Saving = 875 Net Cost = 367

100 275

An Example of Inoue-Chang Method in the Discount Situation (Continued)
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tests can also be neglected during the backtrack search. This is

because the combination of those two orders will simply raise the holding

cost which is already greater than the ordering cost as we know from

the forward search. The only situation that requires the backtrack

check is the situation in which the first order is greater than the

discount requirement while the second order is not. The combination of

these two orders will save one ordering cost, and some discount saving

from the later order while increasing the holding cost by covering the

later demands in an earlier order. Again, a comparison of the

increased holding cost and savings will tell the decision-maker

whether or not to combine his orders.

Dynamic Programming Approach

In the Chapter 2, the dynamic programming approach has been in

detail discussed. In a discount situation, the total cost is extended

to include the ordering cost plus the holding cost subtracting the

discount saving. The exhaustive search can be reduced through the

implementation of Planning Horizon Theorem. The modification of that

theorem to adapt a discount environment is also proposed in Chapter 2.

The same example to explain the other heuristic approaches is used for

the dynamic programming's approach in Figure 3-7. The shadow part

represents the part of calculations that can be saved from the modified

planning horizon theorem in discount situation derivated at Chapter 2.

Again, since this approach guarantees an optimal solution, it is used

as a benchmark to test the performance of other heuristic approaches.
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-1010 -960 -880 -700 -620 -620 -620 -440 -290 -280,

=10262 =8484 =6896 =5748 =4503 =3268 =2028 =1420 =960 =440

95 13362 11344 9486 7988 6453 5028 2743 2620 1820 1100 642 532
-1105 -1055 -975 -795 -715 -715 -715 -535 -385 -375 -275,

=12257 =10289 =8511 =7193 =5743 =4313 =2028 =2085 =1435 =725 =367

To
Order: 50 80 260 340 100 275

Figure 3-7 An Example of Wagner-Whitin Method in the Discount Situation
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0/H PH-1 PH-2 SM LUC WW

300/2 1541.52 1512.40 1620.62 1989.01 1364.57

206/2 1028.87 1003.12 1129.52 1486.39 914.05

120/2 522.83 511.76 587.98 933.00 454.51

92/2 325.41 320.39 387.12 702.96 286.69

48/2 21.11 19.72 63.36 240.90 -4.94

Table 3-7. Comparison of Average Costs When Discounts

Are Available, Discount Rate = $1/Unit

0/H PH-1 PH-2 SM LUC WW

300/2 624.80 575.00 835.54 1071.18 394.34

206/2 162.90 115.34 420.68 597.82 -24.56

120/2 -321.50 -353.88 -107.62 115.32 -446.14

92/2 -483.90 -507.68 -298.20 -73.10 -594.50

48/2 -736.50 -748.96 -560.82 -373.72 -844.32

Table 3-8. Comparison of Average Costs When Discounts

Are Available, Discount Rate = $2/Unit
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0/H PH-1 PH-2 SM LUC WW

300/2. -342.04 -427.37 -43.13 109.39 -641.97

206/2 -784.10 -864.54 -411.55 -327.19 -1039.19

120/2 -1231.49 -1292.16 -828.23 -789.22 -1426.53

92/2 -1385.18 -1435.63 -979.24 -930.54 -1562.28

48/2 -1649.03 -1680.95 -1230.66 -1193.42 -1790.46

Table 3-9. Comparison of Average Costs When Discounts

Are Available, Discount Rate = $3/Unit

0/H PH-1 PH-2 SM LUC WW

300/2 -1328.66 -1456.04 -868.38 -900.08 -1700.86

206/2 -1751.60 -1885.64 -1263.86 -1313.90 -2090.32

120/2 -2185.62 -2292.30 -1674.98 -1691.24 -2459.28

92/2 -2338.42 -2429.22 -1803.82 -1813.98 -2585.58

48/2 -2583.12 -2650.40 -2036.10 -2073.36 -2794.58

Table 3-10. Comparison of Average Cost When Discounts

Are Available, Discount Rate = $4/Unit
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Cost Over The Optimum Solution
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Figure 3-10 Comparison of Average Cost at Discount Situation,
Discount Rate = $3/Unit
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Some Comparisons

The same data that have been generated to test the performance

of different approaches in a no-discount situation are used to test the

situations with discounts available. The different discount rates are

chosen as a function of the holding cost. Since in order to cover

more demands in an order to get discounts, the first trade-off is the

increased holding cost. Therefore, the discount rate is set to 50%,

100%, 150%, and 200% of the value of the holding cost. Some testing

results are listed at Table 3-7 to Table 3-10, and Figure 3-8 to

Figure 3-11.
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CHAPTER IV

JOINT ORDER MULTIPERIOD MULTIPLE-ITEM
DYNAMIC LOT SIZING PROBLEM WHEN DISCOUNTS ARE AVAILABLE

Introduction

The multiperiod dynamic lot sizing problem is often difficult

because the demands are varying with time and no general mathematical

function is usually known to describe such demands. The complexity

increases when the discounts are available. Adding further to the

difficulty is when the multiple-item instead of single-item is under

consideration. This type of problem has not been researched before.

The objective of this work is to develop different heuristic programs

and optimal algorithms, based on the assumptions mentioned in

Chapter I, to search for the optimal and near-optimal solutions using

different approaches for the joint order multiperiod, multiple-item

dynamic lot sizing problems when the discounts are available. The

heuristic programs will basically be the extensions of Least Unit Cost

Method, Silver-Meal Method, and Inoue-Chang Method, as they represent

three different approaches to solve the problems. The optimal

algorithm will use the dynamic programming approach to search for the

optimal solution among all the possible feasible solutions. In order to

reduce the huge number of searches in the multiple-item discount

situations, the extension of planning horizon theorem in such complex

problem is discussed and used along the search.
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This program is developed from the single item "Least Unit Cost"

method. The criterion of this program is to select the ordering

quantity which will lead to a local minimum unit cost. Since the

problem it will deal with is a joint order multiple-item dynamic

lot sizing problem, the nature of the interaction among these items must

first be considered. When a period's demands are covered by the

scheduled receipt, it is possible to cover only a small number of

item's demand. Thus, the priority of items' demands to be covered by

the scheduled receipt should be studied. In order to avoid too much

complication, let's start with a multiple-item dynamic lot sizing

problem without the discounts, and assume the holding cost to be a

constant value for all items.

Theorem 4-1: Whether a period's demands should be covered by a

scheduled order depends only on the previous demands covered by the

order, the holding cost, the ordering cost, and the time length (number

of periods) away from the scheduled order's time, and is regardless of

the current demand quantities.

Proof: Let's assume there are m items involved, ith item's

demand at t
th

period is denoted by Do. Suppose the unit cost of

scheduled order covering up to (t-1)
th

period is R
o'

and the unit cost

changes to RA after a certain combination of demands at t
th

period,

denoted by DA, is added to the order. The decision to add DA to the
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order or not is based upon the comparison of Ro to RA.

Let C
t-1

represent the total cost of the order before the D
A

is

added, I
t-1

represent the total number of items in the order, H repre-

sent the holding cost per unit per period, and assume all the items to have

the same holding cost. Also, let L represent the number of periods

those t
th

period's demand away from the period to place the order. Then

and

R
o

= C
t-1

/I
t-1

R
A

= [C
t-1

+ DALH] / [I
t-1 + DA]

and the comparison of which is larger can be performed as follows:

R : R
o A

C
t-1

/ I
t-1 [ t-1

+ DALH] / [It
-1 DA]

:c
t-1 t-1

+C
t-1

D C
A t-1

I +D
t-1 A

LHI
t-1

C
t-1

: LHI
t-1

This concludes that the study of whether the value of RA is smaller than

or equal to, or greater than R
o
may depend upon the comparison of

C
t-1

and LHI
t-1

only.

Theorem 4-2: Whenever a demand D
ti

is found to lower the unit

cost of an order when it is included in that order, all the other

demands
Dtj'

jti, should also be covered by that order.

Proof: Let's use R
A

and R
A+B

to represent two unit cost ratios

including two combinations of certain t
th

eriod's demands. DA43 is

D
A

plus some other demands, 0
B'

in the same tth period, C
t-1

represents

the total cost of the order before including any demand from tth
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period, I
t-1

is the total number of units in the order before including

any t
th

demand, R
A

= [C
t-1

+ DALH]LH] [I
t-1

+ DA] and R
A+B

=

+ DALH + DBLH] + DA + DB], where DA#0, D #0.

The comparison of RA : RA+B will have

I C +I DLH +DC + DADALH + DBC + DBDALH : I
t-1 t-1 t-1 A A t-1 A A t-1 A t-1 t-1

+I
t-1

DA LH +
It-1

DB LH +DA C
t-1 + DADALH + DADBLH

which gives DBCt_./ : It_iDBLH

when DB # 0, Ct_i : It_iLH

which means, if RA<R0 then we have RA+B<RA<R0, and on the other side, if

R
A
>R

o
, then R

A+B A
>R >

o
. That concludes the proof.

One question may arise, how about if R.A <R
o

while RB is found to be

greater than R
o
; will such situation lead to the contradict conclusion:

RA<R0 implies RA +B<RA<Ro and RB>R0 will imply RA+B>RB>R0? The answer

is that such situation will not happen because whether RB is greater

than R
o'

or R
A

is smaller than R
o'

they depend only upon the comparison

of C
t-1

and LHI
t-1.

If LHI
t-1

<C
t-1,

both R
A

and R
B

will be less than

R
o'

and vice versa. The situation of different items with different

holding costs will be somewhat complicated. Let's consider a single

demand D
ti

with the holding cost H. which is being added to the

scheduled order. This leads to the ratio R.
1

/ Ro:

Ri / Ro =([Ct..1 + DtiLHi] / [It
-1

+ Dti] / [Ct..1 / It-1 ] =

[1 D
ti

(LH
i
/ C

t-1
)] / [1 + D

ti
(1/I

t-1
)]
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Therefore, the comparison of It_,LHi / Ct_l will tell which unit cost,

R.orRo' issmaller.ButthistimeH.is not a constant for all the

items. Some lower holding cost will lead LHjIt_i<Ct_i, which implies

Rj<R0, and other higher holding cost may lend LHkIt_1>Ct_i, which im-

plies R
k
R

0.
Also, when we 'consider to add

Dm
into the order, then

compare with to add Dm, + Dn into the order, the two unit costs, Rm

and R
m+n

, will have the following ratio:

R
m+n

/ R
m

fiC
t-

D
m
LH

m
+ D

n
LH

n
] / [It

-1+
D
m

+ D ]

/ [(Ct-1
Dm LHm) / (I.

-1
+ D

m
)] = [1 + D

n
(LH

n
/ Ct-1 )] /

t

[1 + Dn(1 / It
-1)]

Where CI
t-1

C
t-1

+ DmLHm'
t-1

= I
t-1

+ Dm. Therefore, studying

the ratio, R
m+n

/ R
m'

is equivalent to considering:

LHn(It_i + Dm) : (C+ DmLHm)

LH
n
I
t-1

+ LH
n
D
m

: C
t-1

+ D LH
m m

if H
n
>H

m
and if we have LH

n
I
t-1

>C
t-1

and LH
n
D
m m m'
>LH D then the ratio

will be greater than 1. That tells if all the holding costs are

listed in the ascending sequence, starting with the lowest holding

cost and search upward until an Hi is found that It_,LHJ>Ct_l, we can

neglect all the items since the jth one, because our adding them to

the order will raise the unit cost. Then how about those items with

the holding cost Hk such that It_1LH
k<Ct-1

? Suppose Kth item has the

holding cost just lower than Hi to fulfill the requirement It_iLHk<

C
t-1'

for all the other items with lower holding cost can lead to the

following result:
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If Hi<Hk then
t-1 i< t-1"

k<Ct_, and Hi<Hk

that will imply:

LH.I + LH.D <C + D LH
t-1 m t-1 m k

or R
k+i

<R

If we further add item D
w into the order, and H <H.<H

w k'

R
k+i+w

/ R
k+

= [1 + D
w
(LH

w
/ Ct-1" )] / [1 + D

w
(1/It-1 )]

where Ct-1" C
t 1

+ DkLHk + D.LH.

It-1" = I
t-1

+ D
k

+ D.

Again, we can determine whether Rki.i+w is greater or smaller than

R
k+i

by looking at the ratio:

+ Dk + Di) / (Ct_i + DkLHk + DiL

Since Hw<Hi<Hk and It_1LHw<It_11.Hi<It_1LHk<Ct_l, we know that

Rkil+w<R01. That tells the following theorem.

Theorem 4-3: When all the items do not have a constant holding

cost, at each period, it is the item's holding cost that determines

whether the item's demand shall be added to the order to lower the

unit cost. Therefore, at t
th

period, we may add all the items with the

holding cost Hi, such that It_iLHi<Ct_i, to the order, and that will

lower the unit cost of the order.

Following such procedure we will be able to determine which item

should be included in the scheduled order. But since our assumption

is to have no backlog and there is no capacity constraints, there does,

not seem to be any reason to include a partial number of demands of a
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period into an order while leaving the rest to start a new order.

Therefore, in a no-discount situation, we only think about whether all

items' demands for a period should be included in the prior order,

or we should start a new order. The procedure can use the

highest holding cost, H99 to make the test. If It_11.Hg<Ct_i, we add

all the items into the prior order. If It_iLHg = Ct_l, we still add

all the items into the prior order because we know when the other items,

with the lower holding cost, added into the order will lower down the

unit cost. If It_iLHg>Ct_i, the lowest holding cost, Hh, can be used

to test whether a new order should be placed. If It_,LHh>Ct_i, that

means any addition of demands to the order will raise the unit cost.

The I
t-1

LHh = C
t-1

also carries the information when all items are

added to the order will raise the unit cost. If the result is

I
t-1

LH
g
>C

t-1
while I

t-1
LH

h
<C

t-1'
we can just add all the items' demands

into the order and test if the result is in favor to keep the demands in

the prior order or placing a new order.

Discount Situation

When discounts are available, the determination of an order's

coverage of demands will extend to the possible discount saving

through ordering some larger quantities. Since the problem we are

dealing with is a multiple-item problem, each item may have its own

discount rate for its required order quantity. Therefore, whenever

a local minimum unit cost is reached, a check will be carried to see if

every item has already received the discount advantage. If the
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finding is affirmative, the scheduled order will be considered as an

.appropriate one, and no other change will be made to that order. If

the finding shows that an item's quantity is still below its discount-

required quantity, there is a possibility- of getting discount advantages

through covering their subsequent demands in the order. Since the

ordering cost is paid once for each order, to increase quantities will

only result in the increase of holding cost, and the discount saving serves

as a trade-off benefit. The comparison of the values for both sides

will determine whether such increasing quantities are a desirable

action. The same procedures may be carried out for the multiple discount

level problems. If one item's demand in the order has already reached

the requirement for a discount, there may exist some higher discount

levels with a higher discount advantage. Whether we should extend the

order's coverage to further demands for the higher discount saving or

not depends upon the same comparison of increased holding cost versus

the discount saving just like from no discount situation to the first

discount situation.

Each time a series of demands for an item is added into the order

to get discount advantages may affect the other item's demand that is

being left behind. Let's use the following example to explain.

Support we have K items, and the planning horizon is N period. When

th.
an order is placed at I period, it covers demand up to t

th
period

without considering the discounts. The (t+l)th period's demands are

not included in the order because it is found they will raise up the

unit cost. But after considering the discount advantages, the order's



coverage zone crosses over certain item's (t I )'" demand, or even

further. (Figure 4-1)
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original coverage

after discounts
are put into consideration

Figure 4-1 Order Coverage in a Discount
Situation

The item 2, 3, and K are the examples that the order will extend its

coverage to get discounts. We may find that the demands of (t+l)th

period of item 1 and other items that are being left behind should be

included in the prior order rather than to place another new order.

Such results are difficult to predict; and once such demands are

included in the order, they may well affect the later demands in the

discount situation (unless every item reaches the highest discount

rate). In order to avoid such cyclic effect, the program here only

tests the discount advantage, and compares the ordering cost with the

holding cost if the rest of the items for that period are also included in

the order. This heuristic approach may not guarantee an optimal

solution, but presents a relative simple method to read a feasible
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Find the non-zero
demands at I

Place an order
at I

Cost of the
order, C

[Number of units 1

in the order, N

Yes

M = N D.; (J)

'

D = C + :EDi(J)LHi

- disCt. saving.

END

N = M

C = D

L = L + 1

Figure 4-2 Flowchart of the Program-1



Item i has order
qty., OQi, disct.

req.'DQi

NOQ = 04i

i =1

i = i +1

Any more
item

no

I = J

K = J + 1

noK = K+ 1

\I NOQ = NOQ + Di(K)

no >DQ.
,..""

\I yes

[Increased holding
cost, IN, saving, S

IH S

l'no

OQi = NOQ

yes

Di(L) = 0, L = J, K

Flowchart of the Program-1 (Continued)

( 5 )
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solution.

Heuristic Program 2

No Discount Situation

The criterion of this program is to select the ordering quantity

which will lead to a local minimum total cost per period. Starting

with the first non-zero demand, an order is placed in order to avoid

any backlog. Since the measure of this approach is the total cost per

period when an order extends its coverage to the subsequent period,

the new total cost per period will be calculated and compared to the

previous one. We may thus decide whether the demands of that period

should be covered by the order.

Theorem 4-4: When the least total cost per period becomes the

criterion to select the desired order quantity, the decision to

include a period's demands into the scheduled order depends upon the

comparison of the increased holding cost of that period to the prior

total cost per period.

Proof: Suppose that an order is scheduled at i
th

period and

already includes the demand requirements from the i
th

period up to the

(t-1) t h period, the number of periods involved in J-1. The total

cost per period is:

= t-1

J-1

Where C
t-1

denotes the total cost (ordering and holding cost). When

the order extends its coverage to the tt
h

period, he total cost will
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raise because of the increased holding cost and the new total cost

per period,

R
A

= [C
t-1 1

+ E (J-1) H. D
ti

] / J
.

1=1

Therefore, the comparison of two ratios wi11 be:

R
A

R
o

which gives

M
[C + E (J-1) H.D .](J-1): J C

t-1 ti t-1
i=1

[ E (J-1)H4D+0(J -1) : Ct_i

M

E (J-1)H.
ti

: C
t-1

/ (J-1) = R
o

i=1

The left hand side stands for the increased holding cost from the M items

demand at t
th

period, and that concludes the proof.

From the above theorem, it is found that comparing a period's

demands' holding cost to the previous total cost per period can

determine whether the new total cost per period is up or down. In case

there is any interest in the priority to choose one item's demand into the

order, that priority will depend upon that item's holding cost only,

since for each individual's demand added into the order, the resultant

total cost per period, RA, will have the similar outcome as

RA : Ro we will have (J-1)HiDti : Ro

where J-1 is a fixed value, and the comparison depends upon that item's

current period's holding cost. The effect of adding other item's

demands into the order is just to aggregate the total holding cost and

use it to compare with the existing criterion's measure, the total

cost per period at the last period. When there is no discount

involved, the order will cover each period's demands either completely,
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or it will not cover any of them at all (here assume a zero-demand is

also called a demand). The reason is that backlogging is not allowed in

the problem. Any unfilled demand requires a new order. Therefore part of

the demands being covered by the)prior order will only carry a .heavier !

holding cost than if they are covered by the new order.

In a special case when there is only one item involved, the

procedure will follow the same steps to.determine whether it is

desirable to include the demand of the period in the scheduled order,

but the comparison each time will be that single item's holding

cost to R
o'

(J -1)HDt : Ro = / (J-1)

J-1
or (J-1)

2
HDt : = 0 + H .E (i-1)DLs41

1=1

which is the same expression derived by Silver and Meal for a single-item

problem, and Ls represents the end period of last order (Silver and Meal, 1973).

Discount Situation

When discounts are available, the cost function will involve the

saving of discounts. When an order is placed at first period, and it

contains item's demands up to tth periods, the cost function will

be:

K t K t
f(t) = 0 + E E h- (j-1)D. - E ( E D.. )G. ( E D )

i=1 j=1 1 J1 i=1 j=1 31 J1 j=1 1

Where G. represents the discount function, and its value depends on the

order quantity only.

Again, for each subsequent period, the total cost per period will be

compared with the value at its prior period in order to determine
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whether the period's demand should be included in the order.

RA = f(t) / t : f(t-1) /(t-1)= Ro

which gives:

(t-1) f(t) : tf(t-1)
K t K t

(t-1) [0 E E - E ( E D..) G.( E D..)]
i=1 j=1 1

J1 J1 1 J1

K t-1 K t-1 t-1

[ 0 E E - E ( E D..) G.( E D.-)]
11=1 j=1 1

J1
j=1 =1

J1 1
J. =1

J1

then we have,
K K t t

(t-1) [ E h.(t-1)D - E ( E D..) G. (E D.-)]
i=1 1 ti j1 1 j1

K t-1 K t-1 t-1

0+E Eh.(j -1)D.. - t[E(ED.,)G,(ED-4)]
i=1 j=1 1

31 i=1 j=1 31 ' j=1 31

2 K
K t t

(t-1) E hD4.4 (t-1) E ( E D..) G.( E D..)
i=1 ' " i=1 j=1 31 1 j=1 3'
K t-1 K t-1 t-1

0 Ehi(j-1)D.. -tE(ED.i)Gi(E0.0
i=1 j=1 31 1=1 j=1 j=1

This search will test if the left hand item is greater than the right

hand item, indicating that there is a local minimum total cost per period.

The above expression is somewhat complicated. Let's consider a few

special cases here.

t t-1
If

G.( E D..) = G.( E D..) = G.
1 J1 1 J1 1

t t-1

that happens when both quantities E D.. and E D.. fall in the same

j=1 31
ji

discount bracket. Then both will have the same discount rate, but

the above comparison will become:

2 K
(t-1) E h.D - (t-1) E D .G

i=1 1 ti i=1 t1



K t-1

0 E E h. (j-1)D.. -
i=1 j=1 1 31

which can be simplified into:

K K

E (t-l)h.D - E DtiG'.
i=1 1 ti

i=1

K t-1

0+E E h.

i=1 j=1 1

K t-1

E E

i=1 j=1
GD..!

ji 1

K t-1

j-1)D. E E
ji

1=1 j=1
ji

t-1
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This conclusion is similar to the one in Theorem 4-4. Only

now the discount is put into consideration; therefore, the holding

cost of the current period is modified into the holding cost subtracting

the discount saving of the current period. Ro thus obtained will take

discount as a decision factor.

In the discount situation, it may have several discount levels

available, and each next discount level may offer a significant saving.

Therefore, each time when a local minimum total cost per period is

found, it is worthwhile to extend the search to see if an additional

quantity in the order will bring a better deal. To extend the ordering
t-1 t+k

th th
iquantity E D. of items to E D. may bring the i item into a

j=1 i=1 ji
new discount rate, but at the same time those additional quantities will

cost extra holding costs. Once again, a comparison is needed to make the

decision whether such extension to get the discount advantage is

desirable. The comparison will be:

ttk

j=
E

1
h. (j-1 )D..

JI

t+k t+k t-1 t-1

E D.. G.(1 0..
ji 1 j1

E D G.( E D.).

J
.

=I
ji ji
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The check will repeat if there are more than one discount rate

available.

In a brief summary, the program places the first order at the

period where the first non-zero demand is found. The order will

satisfy the demands of that period and the demands of the sub-

sequent periods until a local minimum cost per period is found.

In order to obtain some potential discount savings, the order

may be extended to cover the demands of further periods depending

on the trade-off between the increased holding costs and the

discount advantages. The program will then place the next order

at the period where the subsequent unfulfilled demand is found.

Such procedures will be repeated until the end of the planning

horizon is reached.

Heuristic Program 3

No Discount Situation

The traditional Wilson's Economic Ordering Quantity (EN)

assumes that the optimal solution reaches when the ordering cost

equals to the holding cost. This criterion works quite unstais-

factorily in a dynamic lot sizing problem. Yet there are a number

of dynamic lot sizing methods derived from this criterion.

This heuristic program, basically speaking is one of those

methods. For each period, it decides whether or not to place

an order based upon the comparison of the ordering cost and the

holding cost. But since there are multiple items involved, con-

siderations during each step must apply to everyone of them.
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Since no backlog is allowed when there is no discount, we will

consider either ordering all demands of a period in an order, or leave

all of them to the next order. So the first step is to search the per-

iod with some non-zero demands and to place the order. This step is

just like the other two algorithms that have already been derived.

Then to decide whether the subsequent period should be covered by that

order is determined by the comparison of the period's holding cost to

the ordering cost:

E h.(t-OD
ti> '

0
i=1 1

L denotes the period the order is placed. If the holding cost is greater

than the ordering cost, it shows a definite advantage in placing a

new order rather to include that period's demand in the prior order in

a no-discount case. But even within the periods that each has its

holding cost less than the ordering cost, to insert an order within

those periods may cause the subsequent total saving to be greater than

the ordering cost:

j2 K
E E hi (ji

j =j1

- 0

where j1 represents the period that a new order is placed, and j1 to j2

represent the periods being affected by the inserting new order.
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Both considerations are reasonings that are true regardless

of whether the distribution of demands is continuous or discrete

They simply compare placing an order against not placing an order,

and see which one costs less. From the comparison of different

approaches in Chapter 3, we know the success of this approach over

the others. To distinguish the solution obtained this way from the

improved solution in backtracking, the above steps are referred to as

the Phasp-I method.

In some cases, the solutions from the Phase-I approach can be

improved. During the Phase-1 search, each order is placed, and we perform

search in its range; the search,' therefore, is unaffected by the planning

that occurs before the ordering period. Suppose that the prior order

covers a long range, the last few periods may carry some heavy holding

costs, while the current order covers small quantity of demands and short

range in coverage. We may thus find that moving the current order ahead

of a period, or some periods, may reduce the total holding cost.

Let's suppose that L1, L2 and L3 are the three consecutive

ordering periods found from the Phase-I search. By moving the ordering

period from L
2 2

to L'
'

the reduced holding cost will be:

L,-1 K

6E E (L; - L1) hiDji
j=q 1=1

while the increased holding cost will be:

L -1 K
3E

E (L -L ) h.D..
j=L i=1 1 31
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The comparison of two items will tell whether such a move is desirable.

This backtrack search is named the Phase-I1 search. Again the

procedures in this phase are indifferent to the demand's characteristics.

Phase-II will only improve the Phase-I solution, and guarantees no worse

final solution than the Phase-I's result.

Discount Situation

In a discount situation, the possible discount saving from

ordering certain amount of quantity shall be put into consideration. For

a multiple-item dynamic lot sizing problem, the discount situation is

complicated when the ordering cost is a joint one. The difficulties

arise from the following factors:

1. Different items will have different discount rates for the

different required quantities.

2. The dynamic lot requirements for each item may have a

significant difference within an ordering period.

3. In order to get discount saving, one order may cover

different item's requirements up to different periods.

4. The program-3 moves the tentative next order to and fro from

the periods in order to search for a better solution

involving the multiple-item and will cause inconvenience during

such search.

The procedures of the program-3 will be as follows. Start at period

with some non-zero demands, and place the first order to avoid

backlog. Begin with the next period, the model will first be treated as
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an aggregated model, and be tested if the aggregated holding cost

is greater than the ordering cost, i.e.

K

E h.(j-L)O..> 0
i=1

L is the period the order being placed, and j is the tested period.

When such period is found, the period will be set as the one to place the

tentative next order. The next step is to see if an order is inserted

between the current order and the tentative next order would

lead to any saving. If so, the saving will come from the decreased

holding cost of all items involved minus the new ordering cost:

Ln-1 K

E E h.(L' - L)Dji - 0

j=L i=1 1

where L' is the period to insert the new order, Ln is the period to

place the next order. Once the period to place the next order is

tentatively decided, that which implies the range the current order

will cover is found, the next consideration is whether the availability

of discounts will lead to any saving.

Each item may have different discount quantity requirements, and

may even have different numbers of discount levels available. The check

is made to see if the quantity in the current order has already

exceeded the highest discount level. If not, this implies the possibil-

ity to get some more saving from ordering extra quantities. The trade-off

will come from the discount saving against the increased holding cost.
L -1

For item m, suppose the quantity in the current order is E D4 , where
j=L
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L
n

is the period to place the tentatively setting next order. In order

to get the next discount level, the quantity will have to increase to:

L1

j=L

L -1 L,

= 2 D. +

pj=1 j=Lm

the increased holding cost is
L

1

E .

j=L
n

D

Jill

L -L)h
n m

+ D2

and the discount saving depends on the increased quantity. Suppose the

current discount level is G(D1) = Gl, and after increasing the quantity

D2, the discount level changes to G(D1 + D2) = G2, the discount saving

from D is:

D
1

(G
2

- G1)

while the discount on D
2

becomes:

D2G2 - D
2
G(D

2
).

Therefore, comparing

1.1

D (G2 - G1) + D2G2 - D2G(D2) : .E Djm(Ln - L ) h
m

J=Ln

and the result will tell where such increment is desirable. Here an

assumption is made that D2 will have the discount rate G(D2) if D
2

is not

included in the order. Of course, no guarantee can be made that this

assumption will always hold true. Unless the ordering quantity of the

next order is known, the discount rate applied to the demands in the D2

will not be known.

The same procedures will be used to check for the next higher

discount rate if it is available, and such procedure will also apply
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to all items involved in the order.

After all the items in the current order are checked, the

procedure will search for the unfilled non-zero demand to place the

next order, and in this way to plan for the.whole horizon.

Since the planning of each order watches only the demanding

situations after the ordering period, and regardless of what happens in the

periods ahead, it will cause favorable changes if the order is moved ahead

or combines with the previous order, and this does happen at a single

item situation. But since multiple items are involved, here such

backtrack check will lead to a coMplex situation. Because different

item has different discount requirements, therefore when one order is

moved ahead of a period(s), the consequence will not only change the hold-

ing costs of both orders that are involved, but also will possibly change

the disCount situations of different items in the two periods. To

make this heuristic program simple, the only check made is to combine an

order to the previous one, and see if the saving of an ordering cost,

and increased discount saving from the later order is greater than the

increased holding cost from the later order. This backtrack check for

improvement will be repeated until all tentatively set orders (except the

first one) are checked. This completes the procedure of Program-3 to

search for the solution.
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Development of Optimum Algorithm for the
Joint Order Multiperiod Multiple-Item Dynamic Lot Sizing Problems

when Discounts are Available

No Discount Situation

Dynamic Programming had been used to search for the optimum

solution of a single-item dynamic lot sizing problem where the

accumulated periods are treated as stages. The recursive equation rep-

resenting the ordering and the holding cost is developed as:

* *

J
v

__ iz (L
mj

.... v
m-1

)

i

Lmj. = H E D
L

ow(L -m) + 0 -

L=m

= 0 where

J

i:Smj
=

0 if E

L=m

1 if E D

L=m

The planning horizon theorem states that, in a forward algorithm:

V = L
kn

+ Vk
-1

for planning up to the n
th

period, then when the planning horizon is

extended to t>n

v* = min + V
* *

t m m-1
), V

-1

For a multiple-item problem, a similar expression can be

developed. The optimal solution to plan up to the tth period will be:

* 1 2 k *
V t ) m m

min
m et [(Vm m -1 Vm - ) +1-2--k- 1-

L
1

L
2

. . L
k

]m
1
t m t

mk
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1 2

where (V
m

V . . .V
m

th
1 2

m period for item
1

L
1

L
2

m

where

m . ..m =

k *

m
) represents the optimal solution to plan up to
k

1, m
2

th
period for item 2, and so on.

k t

. Lkmt = E E Hip (L-m ) 0 (5
.m tmkt

L=m.' mlm2

k t

0 if E E = 0Du
i=1 L=m.

k t

1 if E E D
Li
. > 0

1=1 L=m.

The above expression is the most general one. In practice, such general

expression represents a very time-consuming search. While most of the

combinations actually do not need to be considered, the following

theorem will simplify such search procedures.

Theorem 4-5: In the forward planning of a joint-order multiple-

item no discount problem, the multiple-item problem can be treated

as an aggregate problem, that means if there is no discount available.

2 k,*
. V

k
)
*

(V min rtvl
t ti m m .m <t LM M -1 M

1 2' k

Ll L2 Lk ]-
m1 t m2 t mt

At optimal situation, the only combination needs to be considered is

at

then

m
2

= = m

Proof: Suppose not all mi are equal. Let

min (m )

g=1,2,...k g

1
L L

k

ml t m2t mkt

k t

E E H.D
.1 Li

mi

-m + 0 6m m ...mt



That means the order will be placed at the.earliest period with some

unfilled non-zero demands in order to avoid the backlog.

Assuming the immediate prior order to be placed is at hth pe iod,

the holding cost from the priod mn to t is

k k t
E f(m.) + E E D (L-m )H.

i=1 1 i=1 L=m.
Li n 1

where
m.-1

f(mi )

LE=m

u

n

0

and since m >h,

m.-1

LEm
HiD

Li

n

(L - h) m
n
<m.

m =m.
n

m.-1
- h)> H.D (L-m )

E Li n
L=m

n
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We note, therefore, that every order will take care all the requirements

from the period to place an order up to the period immediately prior to

the next order. Therefore, in the search of the optimum solution, only

1 2 k * 1
Vm . ...Lk(Vm

n n

.V
m
n
-1

) +L
mnt m t

n

= 1,...,n

will be considered.

This indicates whenever an order is placed, the order will

cover all items' demands, with no exception, up to the period prior to the

next order. Thus the multiple-item problem can essentially be treated as

k

T. = E D
i=1 ji

When calculating the holding cost, one must remember that each



item may have different holding cost rate. If an order is placed at

th
g period,

k

= H.D.
ji

threpresents the holding cost generated from j period's demands.

Discount Situation

Once the discount is available, the problem becomes complicated.

One order may cover different items' demands up to different periods.

For each period, besides the decision in placing an order or not,

the item's demand quantity included in the order also needs to be

considered. The problem can no longer be treated as an aggregated

problem. However, the dynamic programming method that works for other

simpler situations can also be used for this complicated problem.

In the forward planning process, the recurssive form of

optimum planning of t periods are as follows:

and

where

2 ..k.

'

* min 1 2V
t

. . . v
t

)
m m

2
m
k-

[(V
<t m

1
-1

V
m
2
-1

1 2
L
k

Lmlt Lm
2
t m

k
t

k t
1

t
L
m

2
L
m
k

L
m

.

t
E E H.1 D

1

.(L - n)
1 2 k i=1 L.= .mi

k t t

E G( E D
)

E
i=1 1..m.

1
L=m.

1

...mkt

n =
=1,2
min

,...k
m. in order to avoid backlog.

i
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s
m m . .m t i=1

k

k t

1 E E > 0

k t

0 E D,; = 0
1

L.

i= Li
I

It is easy to note that in following these kinds of approaches,

a tremendous amount of combinations will be searched in order to

find an optimum solution.

For example, in order to deal with a two-item single discount

joint-order problem, an exhaustive search for a five-period planning

horizon problem is needed to search for 44 = 256 different outcomes in

order to get the best solution. In general, for an n-period two-item single

discount problem, each period may have four kinds of outcomes: (1)

order for both items, (2) no order is placed, (3) order only for the

first item, and (4) order only the second item. So the total number of

possible outcomes is 4
N-1

. When the first period with non-zero demand

is designed to place an order, it only has one outcome.

The Planning Horizon Theorem, developed by Wagner-Whitin, has

simplified the searching procedures to get an optimal solution. The

extension of Planning Horizon Theorem for the discount situation,

developed in Chapter II, brings the information to reduce the search

in a discount situation if certain conditions can be fulfilled.

Similarly, here the extension of Planning Horizon Theorem to a multiple-

item discount problem is developed for the same purpose.
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Theorem 4-6: In a forward algorithm, if the minimum cost decision
t

of planning up to period t is through ordering quantity E Di (L)

i
th min 'n

L.q.
of item at period t =

n

i=1,2,3...k qi'
and E D i=1,2,...,

L=qi Li 11J

thK, is the highest discount level for the i item, then in

order to extend the planning horizon to t
m
th

period, t
m
>t

n
, it is

sufficient to consider only periods j, t <j<tm (in other words, the

combinations involving En Dip j<tc, need not be considered).
L=j

Proof: Let C represent the total cost of planning up to the
t

period t through ordering En D,4 , i=1,2,...k at the priod t =

L.1. L.
min

i=1,2,...k
qi . When the planning horizon extends to the tm

th
period,

t
m n'
>t the cost through ordering Em D,; , i=1,2,...k is:

L=qi

k t

C = C + E E
m

D h. (L - t )

i=1 L=t
n
+1 Li 1 q

K t

- E [G(B.
l

) Em D ]

i=1 iJ L=tn+1 Lit

and the total cost through ordering En D , i=1,2,...k at period
Li

j ji and j<tcl is C. When die planning
t

horizon extends t

the troth period, ct
n'

the cost through ordering Em D , i=1,2,...,k
L =j i Li

is:

k t

CI
J

= C
J

+ E Em D

1=1 L=t +1

k t

- E [ G (B. ) Em D
Li

i=1 J L=t +1

liii j)

therefore, C >CQ, (L - j)>(L-t )

which concludes C? Ca. Thus to plan up to and period t>tn, it is

sufficient to consider only periods j,
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Notice the sufficient condition is En D.
l.ij

for i=1,2,...k.
L=q

The reason that every item has to be considered is because this is

a joint-order multiple-item problem. If there is any item that cannot
t

fulfill this condition, i.e. En D,i<Bii for some i, then when the
L=q4 J

planning horizon extends to the Oeriod j>tk, the increased discount
t t

rate from G( En D ) to G( Em D ) may be greater than the increased
L=ji Li t L=ji Li t

discount rate ftom G( E- D14 ) tO G( EM ). If the difference of the
L =q. L=q.

two increased discount rates causes higher saving than the difference

of the two additional holding costs, it is possible to find that placing the

order at j is a better deal.
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CHAPTER V

SITUATION WHEN SPLIT ORDERS ARE ALLOWED

Solutions with Split Orders

Almost all the dynamic lot sizing techniques that developed

assume the whole lot situation. That is, the solution is formed by

the whole lots (demands) only, and no split order is allowed. When

the discounts are available, in order to get the cost reduction from

the discounts, sometimes it is worthwhile to order some extra quantity

to reach the minimum quantity requirements to get the discount. But

the extra demand put into the order may be larger than it is desired.

Only a portion of that demand may be enough to qualify the order for

the discount. A split lot in such situations may be appropriate to

give a better answer.

Network Model

Such problem can be described through the network

flowchart. The flowchart contains several symbols. A square stands

for the inventory decision, either to fulfill the current period's

demand, or to store for future usage. A circle indicates the

ordering quantity, or demands. Since each item may have several

discount levels, a special symbol is used to indicate the "exclusive or

decision in choosing the order's quantity for one of the discount

levels, including not to order at all. The character of "exclusive
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Figure 5-1 Network of a Multiperiod Multiple-Item Dynamic Lot
Sizing Problem When Discounts Are Available
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or" allows the value 0 or 1, so this special symbol is used also to

indicate that such solution value must be an integer. A part of the

network of a multiperiod multiple-item dynamic lot sizing problem with

discounts available is shown at Figure 5-1.

Mathematical Programming Model

The optimal model can be formed by the mixed integer programming

model. The objective of the model is to minimize the sum of the

ordering cost, holding cost and the purchasing costs, and the purchasing

unit costs are determined by the order quantities. A general model for

the multiperiod multiple-item multiple discount -level dynamic lot

sizing problem is developed as the following:

D
ki

Demands for the k
th

i em at the ith period.

0 Ordering cost.

Holding cost per unit per period for the kth item.

P
kj

:

Hk

B :

kj
for

ki

Purchasing cost for the k
th

j
th

item at the price.

The minimum purchasing quantity to get the discountj
th

the kth item.

: The ending inventory for the k
th

item at the ith

When it equals 1, it represents to place order for the
"J kth item at the ith period at the jth price, otherwise

it will equal to zero.

6kiw
: When it equals 1, it represents no order is placed for

the kth item at the ith period.

Xkii : Order quantity for the kth item at the ith period and jth
price.

The model can be formed:
K N K N Jk

MINEEHk Iki +EEEP
k kii

+ E ( - II

k=1 1=1 k=1 i=1 j=0 i=1 k=1
ki ) 0



subject to:

Xki0 Bkl 1 ) 'Ski°

Xkij - Bkjokij

Xkij - ( Bkjil -

X - ( D

1

. 0
kiJk

i=1
kiJ

k

) 6kij

Jk

kij
+ I

ki-1
- Dki I

kij=0

l(

6
kij

+
kiw

=

j0
1

=

k = 1, 2, ..., K

i = 1, 2, N

j= 1, 2, ..., Jk

kij = 0 or 1
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N K
The factor E (1 - II skive) 0 in the objective function makes the

i=1 k=1

model a geometrical mixed integer programming model. Due to the special

character of our planning situation, we know that

1 if 6 = 6 . = . = 6
Kiw

= 1
liw 21w

k 1 skive 0 otherwise

To take advantage of this character, we can simplify the model by defining

the following additional variables:

K

DT
i

= 11
skive

k=1

and increase the following constraints:

DT. < II .

k=1
skive

i = 1, 2, N

i 1, N
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The following linear mixed integer model will effectively work out the

same information as it comes from the previous geometrical mixed

integer model:
K N K N Jk

MINEE11km+EEEPuldj+E(1- DT1 .) 0
k=1 i=1 k=1 i=1 j=0 i=1

subject to:

Xki0 (Bkl ) 6ki0
0

Xkij
j kij

X - (B -
kij jk+1 6kij

X
kiJ

k
- (

i
E Dki) SkiJk °

Jk X+I -D= I
kikij i-1 skij0

K

DTi E Skiw) / K
k=1

JK
E Ski

kij kiw 1
j=o

6kij' kiw'
DT. = or 1

k = 1, 2, K

i = 1, 2, ..., N

j= 1, 2, ..., Jr(

Discussion of the Problems to Search the Solution

Although the model can be set up theoretically, the practicality

is still in question. Two approaches have been attempted to search

for an optimum solution from the model. The first one is Gomory's

All Integer algorithm. The approach is both time and cost consuming.
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A two-item single discount level problem was used as an example. It

took over a hundred iterations and $50.00 computer time on Cyber 73,

while the solution is still far away from an acceptable answer. The

second approach is Branch-and-Bound Mixed Integer Algorithm. Unfortu-

nately, this approach requires a huge extended core memory to store

the intermediate results. A table is developed for the two-item

problems (Table 5-1). Even a five-period two-item single discount

level problem will require more than 400,000 octal core memory space,

while the maximum core memory space available at OSU's Cyber 73 is

144,000 octal space. Therefore, practically speaking, the mixed

integer programming model, although it guarantees an optimal solution,

has a limited application value for a large size problem such as a

general multiperiod multiple-item multiple-discount dynamic lot sizing

problem. Table 5-1 lists some information about the mathematical

programming model of a two-item dynamic lot sizing problem. Information

includes the number of variables, the number of integers, and the num-

ber of constraints in the mode, and the required core memory size to

solve such mathematical programming problems using the Branch-and-

Bound approach. Information about three situations: (1) both items

with no discount, (2) each of two items with one discount available,

and (3) each of two items with two discounts available, are listed in

the Table 5-1. The required core memory sizes using the Branch-and-

Bound approach to solve a two-item dynamic lot sizing problem with

the different period lengths and with the different number of discounts

are plotted at Figure 5-2 for comparison.



Discount
Situation

Information about
the Math. Model

Number of Periods in the Planning Horizon

5 6 7 8 9 10 11

No. of Variables 45 54 63 72 81 90 99

No. of Integers 25 30 35 40 45 50 55
No

Discount
No. of Constraints 35 42 49 56 63 70 77

Required Core
Memory Size (oct.) 130726 225726 351740 530526 745632 1225016 1552024

No. of Variables 65 78 91 104 117 130 143

Each With No. of Integers 35 42 49 56 63 70 77

One
Discount

No. of Constraints 55 66 77 88 99 110 121

Required Core
Memory Size (oct.) 415306 711722 1316540 2047346 2737732 4003662 5236744

No. of Variables 85 102 119 136 153 170 187

Each With No. of Integers. 45 54 63 72 81 90 99
Two

Discount
No. of Constraints 75 90 105 120 135 150 165

Required Core
Memory Size (oct.) 1132766 2005116 312374 0 4542166 6512732 11050726 14027064

Table 5-1. Information Table of a Two-Item Dynamic Lot Sizing Mathematical
Programming Model
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CHAPTER VI

SOME NUMERICAL EXAMPLES OF TWO-ITEM PROBLEMS

Two-Item Problems

The simplest multiple-item problem is a two-item problem. For a

dynamic, n-period, two-item, no-discount lot sizing model with non-zero

demands at the first period (which means an order must be placed at the

first period to avoid the backlog), the total number of feasible solution

is 2
n-1

. This comes from the fact that at each period, after the first,

the decision-maker has the choice of either placing an order or not

placing any. Under such situations, a two-item problem will appear

as a basic aggregate problem. It can generally be extended to involve

any number of items under the assumption that there is no discount

available to any item. A characteristic of such problem is (Wagner,

Whitin, 1958):

where

I
t-1

X
t

= 0

[

Xt = 1 means placing an order at the t
th

period

0 means not placing an order at the tth period

I
t represents the inventory at the end of the t

th
period

I.1

Therefore, whenever an order is placed in the t
th

period, the ending

inventory of t-1
th

period must be zero. In other words, the prior order

thwill not carry any inventory for the t demand if an order is to be
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placed during the tth period.

Once there is any discount available to the items, the above

characteristic will no longer exist. Except for the first period, the

possible outcomes of each period may be (1) to place an order for both

items, (2) to place an order for the demand of one of them while another

item's demand was ordered in the prior order to get some discount

advantages, or (3) to place no order. Therefore, for an n-period

two-item dynamic lot sizing model, a problem under discount situation

will have up to 4
N-1

solutions. If it is a five-period problem, there

will be 256 solutions, and if it is a 12-period problem, like most of

the testing problems in this thesis, there will be 4,194,304

solutions. For a general K-item discount problem, there will be

K N-1
E ( . )

i=0 1

number of solutions. To search for an optimal solution among millions of

solutions requires a special technique. While the dynamic programming

approach in searching the optimal solution of a dynamic lot sizing

problem is basically an exhaustive search, a large number of solutions

must be investigated even when the planning horizon theorem is used to

reduce the scope of the search. While the dynamic programming approach

can promise an optimum solution, and serves as a good benchmark, its

practicality is challenged by the tremendous computational cost of such

tests. The CPU time required to reach an optimum solution in a

multiperiod two-item discount problem has been measured and estimated

(Figure 6-1). It is found that the required CPU time grows exponentially
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Figure 6-1 Required CPU Time to Search for an Optimum
Solution for a Multiperiod Two-Item Single
Discount Problem
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as the number of periods increases. The estimated CPU time to reach

an optimum solution in a 12-period problem is more than 16,000 sec..

In order to avoid such costly tests, the following limitations were

imposed upon our experiments:

1. Dynamic programming approach was used to solve only the

following benchmark problems:

(i) when the ordering cost is equal to zero

(ii) when there is no discount available.

2. Comparison tests that are too expensive to be solved by

the dynamic programming approach were used only to compare

heuristic programs among themselves.

When the ordering cost was very small, a two-item model was approximated

by two single-item models, and when there was no discount available,

the two-item model was approximated by an aggregate model. These

approximations helped reduce the computational costs significantly,

and made the dynamic programming approach feasible.

Test Data

The 100 sets of data used to test the performance of single-item

dynamic lot sizing techniques were expanded to form the testing data

for the performance tests of two-item dynamic lot sizing techniques.

Two groups of data were assembled. The first group simply picked every

two consecutive sets from the 100 sets of data, where the data were

sorted in an ascending order according to the coefficients of variation,

as a single set of two-item demands. A total of 50 sets of two-item
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(1) Ten Sets of 12-Period Demands from *LDATAl:

105 134 134 75 105 105 60 105 90 90 30 72 .324
102 170 85 68 102 102 51 51 119 119 85 51 .382
96 112 32 112 48 48 32 96 144 144 112 129 .453
49 163 98 114 130 114 16 130 98 49 81 63 .457
91 61 61 15 91 151 106 12 1 151 106 121 30 .472
69 14 138 124 138 55 97 41 83 69 138 139 .473
119 60. 75 60 134 45 134 134 15 60 149 120 .481
161 60 141 60 161 40 80 100 60 80 40 122 .482
123 105 105 158 35 140 123 18 53 53 123 69 .488
84 100 117 67 100 67 33 167 167 84 100 19 .489

(2) Ten Sets of 12-Period Demands from *LDATA4:

105 134 134 75 105 105 60 105 90 90 30 72 .324
178 0 107 36 0 125 0 143 178 36 143 159 .786
102 170 85 68 102 102 51 51 119 119 85 51 .382
121 40 40 100 121 201 201 181 40 40 0 20 .789
96 112 32 112 48 48 32 96 144 144 112 129 .453

181 20 60 20 0 60 201 100 20 121 121 201 .799
49 163 98 114 130 114 16 130 98 49 81 63 .457
181 0 201 80 181 60 0 0 80 40 161 121 821
91 61 61 15 91 151 106 121 151 106 121 30 .472
42 0 104 167 21 42 208 0 42 146 167 166. .821

Table 6-1. Some Testing Data Sets
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demands were formed in the first group. The group was named *LDATAl.

The second group combined every set of data with its next 50th set from

the original 100 sets of data to form a new set of two-item demands.

Fifty other sets of two-item demands were formed in the second group of

data. This group was named *LDATA4. The first five sets of data and

their coefficients of variation from each group are listed in Table 6-1.

Selected Situations

No Ordering Cost

The first selected situation to be tested is when there is no ordering

cost. The constraint that makes the joint-order multiple-item problems

different from the single-item is the joint-ordering cost. When this

cost disappears, a multiple-item problem will simply become a number of

single-item problems. Each item will search for its own lot sizing

decision regardless of the decisions from other items. Under such

conditions, a joint-order two-item problem can be treated as two

separate single-item problems. The optimum solution of that two-item

problem can be found by repeatedly using the dynamic programming

approach to a single-item model. The resulting optimum solution will

be used as the benchmark to test the performance of the multiple-item

heuristic programs.

Four different discount rates are used in the performance tests.

The holding costs and the required units for discount are set at $2.00/

unit/period, and 200 units for both items. Data from *LDATA1 and

*LDATA4 are used as the testing data. The average results from every
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Ordering Cost: $0

Holding Cost: both $2/unit/period

Qty. Req. for Discount: both 200 units

A: Testing with 50 Sets of Data: *LDATA1

Discount
Rate PRG-1 PRG-2 PRG-3 WW

$1 -636.30 -522.46 -587.54 -738.06

$2 -1382.20 -1766.68 -1935.64 -2295.24

$3 -2808.08 -3273.30 -3825.62 -4142.78

$4 -4469.44 -5093.68 -5712.72 -6073.36

B: Testing with Another 50 Sets of Data: *LDATA4

Discount
Rate PRG-1 PRG-2 PRG-3 WW

$1 -609.16 -505.34 -587.54 -738.06

$2 -1419.32 -1787.32 -1935.64 -2295.24

$3 -2581.38 -3387.52 -3825.62 -4142.78

$4 -3881.88 -5224.68 -5712.72 -6073.36

Table 6-2. Comparison of Average Costs from the Performance
Tests When There Is No Ordering Cost
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group of 50 sets of solutions are recorded in Table 6-2.

No Discount

The second selected situation to be tested is when there is no discount

available. In such a situation, as explained at the beginning of this

chapter, the demands of all the items in the same period must be

satisfied simultaneously. If the decision is to place an order during

that period, the order will cover the demands of all the items in that

period. If the decision is not to place an order in that period, the

demands of all the items in that period will be covered by the prior

order. A no-discount problem has the characteristic:

where

1 when the decision is to place an order at t
th

period

0 when the decision is not to place an order at
tth period

represents the ending inventory at t
th

period

So if I
t-1

is not equal to zero, which means that there is some ending

inventory during the t-1
th

period, Xt must be set to zero. This means

that we allow no order in the tth period. If the demands of some

items in the t
th

period are covered by a prior order, and the demands

of other items of the t
th

period are left uncovered, then the ending

inventory at the t-lth period will not be zero. This forces Xt=0, and

leads to a backlog because some demands in the t
th

eriod will be

uncovered by any order. Therefore, the demands of all items in the
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Holding Cost: both $2/unit/period

Discount Rate: $0

Qty. Req. for Discount: both 200 units

A: Testing with 50 Sets of Data: *LDATA1

Ordering
Cost PRG-1 PRG-2 PRG-3 WW

$ 300 3648.36 3019.48 3015.08 2983.52

$ 206 2589.80 2161.00 2158.12 2147.48

$ 120 1564.52 1294.96 1294.96 1292.52

$ 92 1250.00 1000.94 1000.76 1000.28

$ 48 584.24 527.88 527.88 527.88

B: Testing with Another 50 Sets of Data:

Ordering
Cost PRG-1 PRG-2

*LDATA4

PRG-3 WW

$ 300 3724.88 3082.60 3075.12 3050.08

$ 206 2828.36 2213.56 .2212.36 2202.84

$ 120 1697.32 1342.92 1342.92 1342.08

$ 92 1273.12 1044.32 1043.76 1043.72

$ 48 656.04 553.08 553.08 553.08

Table 6-3. Comparison of Average Costs from the Performance
Tests When There Is No Discount Available
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Holding Cost: both $2/unit/period

Discount Rate: $0

Qty. Req. for Discount: both 200 units

A: Testing using *LDATAl:

Ordering
Cost PRG-1 PRG-2 PRG-3

$ 300 664.84 35.96 31.56

$ 206 442.32 13.52 10.64

$ 120 272.00 2.44 2.44

$ 92 249.72 0.66 0.48

$ 48 56.36 0.00 0.00

B: Testing using *LDATA4:

Ordering
Cost

$ 300

$ 206

$ 120

$ 92

$ 48

PRG-1

674.80

625.52

355.24

229.40

102.96

PRG-2 PRG -3

32.52

10.72

0.84

0.60

0.00

25.04

9.52

0.84

0.04

0.00

Table 6-4. The Comparison of Average Costs Over the Optimum
Solutions When There Is No Discount Available
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Holding Cost: both $2/unit/period

DisCount Rate: $0

Qty. Req. for Discount: both 200 units

A: Testing using *LDATAl:

Ordering
Cost PRG-1 PRG-2 PRG-3

$ 300 22.3% 1.2% 1.1%

$ 206 20.6% 0.6% 0.5%

$ 120 21.0% 0.2% 0.2%

$ 92 25.0% 0.07% 0.05%

$ 48 10.7% 0% 0%

B: Testing using *LDATA4:

Ordering
Cost PRG-1 PRG-2 PRG-3

$ 300 22.1% 1.1% 0.8%

$ 206 28.4% 0.5% 0.4%

$ 120 26.5% 0.06% 0.06%

$ 92 22.0% 0.05% 0.04%

$ 48 18.6% 0% 0%

Table 6-5. The Comparison of Average Percentage Costs Over
the Optimum Solutions When There Is No Discount
Available
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same period must be satisfied at the same time. This means, therefore,

that a multiple-item problem can be treated as an aggregate problem, and

single-item aggregate model approach will be able to solve those problems.

The dynamic programming approach for a single-item model is used

to search optimum solutions from those aggregate problems. The

solutions will be used as benchmarks to evaluate the results from the

heuristic programs. The data from *LDATA1 and *LDATA4 are used as test-

ing data. The holding costs and the required quantity for discounts of

both items are set to $2.00/unit/period and 200 units. Five different

ordering costs are used to perform different tests. Each single test

will carry 50 sets of data. The average results of these 50 sets of

solutions are listed in Table 6-3.

Comparison Tests Among the Heuristic Programs

For other than the two selected situations we have just discussed,

optimum solutions for most situations will require a costly search.

As previously estimated, it will take more than 16,000 seconds to

search for an optimum solution of a 12-period two-item single discount

problem. We can hardly afford such costly tests. Instead we can carry

some performance tests among the heuristic programs themselves. Again,

the data from *LDATA1 and *LDATA4 were used as testing data. The

situations with different ordering costs, and different discount rates

were tested. The average cost of results generated by these three

heuristic programs at different situations are listed in Table 6-6 and

Table 6-7 for comparisons.
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Discount Ordering Cost/
Rate Holding Cost PRG-1 PRG-2 PRG-3

$300/$2 2648.96 2004.80 1987,32

$206/$2 1919.76 1299.86 1265.76

$120/$2 1041.84 585.18 532.96

$ 92/$2 627.42 356.18 271.46

$ 48/$2 -23.24 -57.58 -148.78

$300/$2 1150.48 495.20 252.80

$206/$2 638.44 -137.84 -377.64

$120/$2 -280.84 -766.96 -978.76

$ 92/$2 -540.08 -989.96 -1183.36

$ 48/$2 -827.04 -1349.52 -1538.48

$300/$2 -476.22 -1192.02 -1556.36

$206/$2 -836.72 -1767.42 -2240.68

$120/$2 -1262.90 -2390.26 -2841.90

$ 92/$2 -1771.96 -2584.56 -3077.58

$ 48/$2 -2338.38 -2925.90 -3430.46

$300/$2 -2063.64 -3042.92 -3454.92

$206/$2 -2437.36 -3665.52 -4106.40

$120/$2 -2329.80 -4246.80 -4737.52

$ 92/$2 -2737.04 -4444.88 -4952.56

$ 48/$2 -3493.88 -4766.72 -5307.32

Table 6-6. Comparison Tests Among the Heuristic Programs
Using *LDATA1 as Testing Data
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Discount Ordering Cost/
Rate Holding Cost PRG-1 PRG-2 PRG-3

$300/$2 2644.38 2039.36 2006.20

$206/$2 2116.00 1335.18 1300.12

$120/$2 1174.36 611.72 556.06

$ 92/$2 800.52 375.30 289.66

$ 48/$2 48.84 -32.96 -145.42

$300/$2 1061.88 402.52 359.56

$206/$2 583.16 -233.24 -377.84

$120/$2 -14.12 -851.52 -1025.56

$ 92/$2 -286.24 -1057.84 -1242.24

$ 48/$2 -834.52 -1427.12 -1567.12

$300/$2 -572.22 -1271.62 -1480.30

$206/$2 -725.02 -1894.72 -2160.14

$120/$2 -926.66 -2471.54 -2819.46

$ 92/$2 -1512.00 -2683.44 -3056.14

$ 48/$2 -1759.34 -3002.22 -3419.96

$300/$2 -1921.76 -3023.16 -3363.24

$206/$2 -2201.76 -3654.24 -4030.92

$120/$2 -2264.68 -4235.76 -4681.28

$ 92/$2 -2593.76 -4477.72 -4917.32

$ 48/$2 -2838.12 -4847.60 -5276.44

Table 6-7. Comparison Tests Among the Heuristic Programs
Using *LDATA4 as Testing Data



(a) Program -1 vs Program-3:

Ordering Cost/ Holding Cost

Discount/Unit $300/$2 $206/$2 $120/$2 $ 92/$2 $ 48/$2 Marginal Avg.

$1 649.91 734.94 563.59 433.41 159.90 508.35

$2 800.00 988.54 854.68 799.64 722.02 832.98

$3 994.11 1419.54 1735.90 1424.88 1376.35 1390.16

$4 1416.38 1749.10 2410.66 2269.54 2125.88 1994.31

Marginal Avg. 965.10 1223.03 1391.21 1231.86 1096.04 1181.45

(b) Program -2 vs Program -3:

Ordering Cost/ Holding Cost

Discount/Unit $300/$2 $206/$2 $120/$2 $ 92/$2 $ 48/$2 Marginal Avg.

$1 25.32 34.58 53.94 85.18 101.83 60.17

$2 142.68 192.20 192.92 188.90 164.48 176.24

$3 286.51 369.34 399.78 432.86 461.15 389.93

$4 376.04 408.78 466.62 473.64 484.72 441.96

Marginal Avg. 207.64 251.23 278.31 295.15 303.05 267.08

Table 6-8. Comparison Table of the Average Costs of Solutions Reached by Program-1
and Program-2 Over the Average Costs of Solutions Reached by Program-3



Holding Cost: both $2/unit/period

Qty. Req. for Discount: both 200 units

Discount Rate: $1

Ordering Cost PRG-1 PRG-2 PRG-3

$300 0.050 0.062 0.054

$206 0.050 0.064 0.054

$120 0.052 0.066 0.054

$ 92 0.054 0.064 0.052

$ 48 0.054 0.064 0.056

Over All Average 0.052 0.064 0.054

Table 6- Average Required CPU Time for Heuristic Programs
to Reach an Solution for a 12-Period Two-Item
Single Discount Problem

107
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Ordering Cost: $120/order

Holding Cost: both $2/unit/period

Qty. Req. for Discount: both 200 units

Discount Rate: $1/unit

Number of Data: 50 sets

CPU Time
No. of Periods First Run Second Run Avg. Time/Set

5 1.5 sec. 1.5 sec. 0.030 sec.

6 1.6 sec. 1.6 sec. 0.032 sec.

7 2.0 sec. 1.8 sec. 0.038 sec.

8 1.9 sec. 2.1 sec. 0.040 sec.

9 2.0 sec. 2.1 sec. 0.041 sec.

10 2.3 sec. 2.2 sec. 0.045 sec.

11 2.4 sec. 2.3 sec. 0.047 sec.

12 2.8 sec. 2.6 sec. 0.054 sec.

Table 6-10. Required CPU Time for Program-3 to Reach an Solution
for a Multiperiod Two-Item Single Discount Problem
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Figure 6-2 Required CPU Time for Program-3 to Reach a Solution for a Multiperiod
Two-Item Single Discount Problem
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In order to evaluate the test results more appropriately, the CPU

time required by each program to reach test results was recorded in

CDC 3300 CPU second. The average time from the 50 sets of data in

*LDATA1 is listed in Table 6-9,

Evaluation of Test Results

Table 6-2 summarizes the results of performance tests when there

is no orderind cost. The parameter chosen to vary in the tests is the

discount rate. The overall result shows that Program-3, the one based

on the Inoue-Chang Method, yielded results closest to the optimul

solutions. The Program-2, based on the Silver-Meal Method, showed

the second best overall results among the heuristic programs. The

Program-1 was the worst. These results are similar to the ones

obtained from the single-item problems. One interesting observation

is that the average cost of Program-3 using the data group "LDATA1

is exactly the same as the results from using the data group "LDATA4.

The reason for this is that Program-3 starts by comparing each

period's holding cost to the ordering costa Later, the Program-3

checks each item to see if it has reached the discount requirement.

When there is no ordering cost, the holding cost is never less

than the ordering cost. The tentative order will alwyas be placed

at the next period. Then each item will be checked individually.

Since "LDATA 1 and *LDATA4 are the same data arranged in different orders,

Program-3 is expected to bring the same average costs from the two

groups of data. Such characteristics do not exist in Program-1 and
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Program-2 where the decisions are based on the minimum of unit cost and

the periodic costs, and those costs include the discount savings which

depend on the order quantity. Although apparently close, the results

from each of these two programs using *LDATA1 and *LDATA4 are

significantly different.

Table 6-3 is the summary results when there is no discount

available. The tests search solutions of a multiple-item problem

using the aggregate single-item model. The latter is only a minor

modification of a single-item model. The results are similar to the

results obtained by single-item problems (Table 3-6). Only the

multiple-item results from Program-2 and Program-3 are closer than the

single-item results from the Inoue-Chang and the Silver-Meal Methods.

The reason is that during the development of Program-3, many considera-

tions are eliminated in order to reduce the time -consuming search. The

effect was to lower the searching time, while increasing the penalty

costs of results. However, the results from Program-3 are

still superior to the results from the other two programs in every

category. Table 6-4 and 6-5 show the summary of the comparison of

results from the heuristic programs using the results obtained by the

dynamic programming approaches as the benchmark.

Except in some special cases, the search for an optimum solution

in a multiple-item discount problem is time-consuming and costly.

Table 6-6 and Table 6-7 summarize the comparison tests for those

situations among various heuristic programs. Program-3 has the best

overall performance in comparison with the other two programs; Program-

2, the one basically developed from the Silver-Meal Method has the
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second best results. Those conclusions are similar to the ones

obtained in the single-item cases. During the development of the

Program-3, however, the computations were simplified by eliminating some

procedures (like backtrack searches) to reduce the searching time.

The Table 6-9 is the summary of the average CPU time each program needs

to search for a solution. Program-1 and Program-3 take about the

same amount of CPU time, while Program-2 takes the longest time

among the three heuristic programs. We may thus conclude that Program-

3, the one developed from the Inoue-Chang Method, has the best overall

performance of all procedures investigated.
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CHAPTER VII

CONCLUSION

Summary of the Study

The study of dynamic lot sizing problems under the discount

situation is an area that has received relatively little attention from

the previous studies and neglected by researchers in the production

and inventory control fields. In modeling the problem at the single-

item level, this thesis extended Wagner-Whitin's Planning Horizon

Theorem to discount situations. The author further proved that this

theorem represents the optimum algorithm search for a solution using

the dynamic programming approach.

Along with other traditional heuristic approaches,a new approach,

named Inoue-Chang Method, was proposed. The performance tests, using

Kaimann's data and 100 additional sets of randomly generated data,

showed that the results from the Inoue- Chang Method are generally

superior to all other heuristic methods. The Inoue-Chang Method

brought optimum results in 100% of the cases when performing tests using

Kaimann's data, and an average of 97.4% of the cases when performing

tests using the 100 additional sets of randomly generated data. The

solutions were, on the average, 0.053% higher than the optimal solution

using the second set of data. When performing tests using the same

100 sets of data, the Silver-Meal Method, and the Least Unit Cost

Method brought optimum solutions in an average of 81.2% and 23.4% of
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the cases respectively, and cost .584% and 22.17% over the optimum

solutions on the average.

The Least Unit Cost Method, Silver-Meal Method, and Inoue-Chang

Method were separately modified in order to deal with the discount

situations. Performance tests were carried using these methods in

different discount situations. The results are summarized in Table 3-7

to Table 3-10 and Figure 3-8 to Figure 3-11. Again, it was found that,

on the average, the Inoue-Chang Method brought the results closest to

the optimum solutions, and was generally superior to both the Silver-

Meal and Least Unit Cost Methods.

Based on the Least Unit Cost Method, Silver-Meal Method, and

Inoue-Chang Method, three heuristic programs, Program-1, Program-2,

and Program-3 were developed to search for solutions in the multiple-item

discount situations. Both the multiple-item no discount situation and

the multiple-item with discount situation were studied. The Planning

Horizon Theorem was also extended to the multiple-item discount

situations. A mixed integer programming model was developed for the

situations when split orders were allowed. Two approaches, the

Gomory's All Integer Algorithm, and the Branch-and-Bound Method

attempted to search for an optimum solution from the model, and both

failed. The difficulties involved were discussed and pointed out.

Detailed information on the mixed integer programming model used in the

two-item dynamic lot sizing problem is listed in Table 5-1. The

required core memory sizes to search for an optimum solution from the

model are listed in Table 5-1 and Figure 5-2.
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Two-item problems with single discount levels were selected to illus-

trate the developed programs. The computer CPU time to search for an

optimum solution involving different number of periods were measured and

estimated. For a 12-period two-item single discount problem, it was

estimated that it would require more than 16,000 CPU seconds to search

for an optimum solution. To avoid such costly and time-consuming tests,

two special cases were selected. These cases allowed us to use a single-

item model to approximate a two-item model problem in searching for the

optimum solutions. In other general situations, the performance tests

were carried among the heuristic programs themselves. The heuristic

Program-3, the one developed from the Inoue-Chang Method, again showed

superior average results over the other two heuristic programs.

Summarized results were listed in Table 6-6 to Table 6-7. In order to

justify the comparisons, the required CPU time to solve a 12-period

two-item single discount problem was measured for each heuristic

program. The average CPU times were 0.052 second, 0.064 second, and

0.054 second for the three heuristic programs respectively.

Recommendations for Further Studies

The researches and studies on dynamic lot sizing problems started

very late compared to the studies in other areas in the production and

inventory control fields. There are a number of potential areas for

further studies. Several of them are suggested.
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Methodology to Search for an Optimum or a Near-Optimum Solution

Up to now, the dynamic programming approach is the only accepted

method to search for an optimum solution for a dynamic lot sizing

problem. But this method, as shown in this thesis, becomes time-

consuming and costly in searching for an optimum solution when the number

of periods in the planning horizon increases. The integer programming

method can work on a very limited size model when the assumption allows

split orders. Generally speaking, the integer programming method

rarely works for any problem where the problem size is large enough to

be practical. We need a simpler methodology to search for an optimum

solution, or even a near-optimum solution.

Methodologies for Comparison

In evaluating heuristic approaches in this area, most authors make

use of methodologies developed by Kaimann and Berry (Kaimann, 1969;

Berry, 1972). These tests use five sets of standard data as the testing

data (Table 3-1, Table 3-2), with the dynamic programming approach

used to create benchmarks. This thesis proposed an additional 100 sets

of randomly generated data for testing the performance. More standard

data are needed in addition to the five sets of Kaimann's data. At the

same time, more benchmark results should be made available. When the

situation becomes complicated like the multiple-item discount

situations, the results from the dynamic programming approach are

generally difficult to obtain. Some methods are needed to generate
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benchmarks to fit the framework of analysis.

Application Areas

Almost all previous works in the area of dynamic lot sizing problems

were centered around the single-item no discount problem. Very few

researchers studied other application areas. This thesis extends the

application areas to the multiple-item discount problems. The

constraint applied to the multiple-item problem is the joint order.

There are other kinds of constraints, such as limited capacities for

multiple items, that represent some other potential application areas

for further studies.

Stochastic Situation

One consistant assumption of this thesis is the deterministic

demand. This, in many cases, is not true. To ignore the uncertainties

of information may lead to inappropriate decisions. The uncertainties

may come from different sources. The true demand quantities may

differ from the forecasted values. The time of the demands may be

earlier or later than the forecasted time. Under such situations, many

questions may be raised. "What will be the best way to make the lot

sizing decisions?", "What kind of penalty factors should be considered?",

etc. When the multiple-item and discounts are involved, these

questions represent a complex and challenging area to be investigated.
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Conclusion

The dynamic lot size problem is frequently encountered by

industrial engineers in production and inventory control systems.

This thesis studied this problem under the multiple-item and discount

situations, and developed some ordering procedures to deal with such

situations. For a user to adopt an appropriate technique for his

dynamic lot sizing problem, the most important thing is to understand

his system's operation and to recognize the logic involved in the

system. In order to make a choice of ordering procedures, ranging

from simple lot-by-lot techniques to more sophisticated optimizing

procedures, the decision will largely depend upon the inventory cost

performance and the computational efficiency.

To deal with a complex problem, such as a multiple-item dynamic

lot sizing problem involving the discount factors, this author is in

favor of heuristic approaches. They provide simpler and lower cost

methods to solve the problems, while the optimum methods usually

cost more than what most users wish to spend. In most real-life

problems, the situations are stochastic. The deterministic models,

such as the ones we have studied in this thesis, are often used to

obtain guidelines for decision-making under uncertainties. The precise

optimality of solutions in such situations is not required. The

difficulty of choosing an appropriate technique to solve a particular

industrial problem is often alleviated if similar situations have

already been analyzed by a fellow industrial engineer. Hopefully,
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this thesis will help the user to make his choice when he encounters

a situation similar to the ones that this thesis has studied.
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RANDOMLY GENERATED DATA
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DATA VAR

105 134 134 75 105 105 60 105 90 90 30 7? .324
112 170 85 El 102 102 51 51 119 119 85 51 .382
96 112 32 112 49 48 32 96 144 144 112 129 .453
49 163 98 114 130 114 16 130 98 49 81 63 .457
91 61 6i 15 91 151 106 121 151 106 121 31 .47?
69 14 138 124 131 55 97 41 83 69 133 139 .471
119 60 75 FO 134. 45 134 134 15 60 149 120 .481
161 60 141 60 161 40 80 100 60 80. 40 12? .482
123 105 105 153 35 140 12.3 18 53 53 123 69 .483
84 100 117 67 100 67 33 167 167 84 100 19 .439
33 17 117 134 134 167 67 117 51 84 117 68 .499
30 105 45 0 149 149 105 105 75 134 90 118 .510

158 126 63 111 95 47 16 126 153 63 111 31 .518
R5 34 68 1.19 34 102 85 153 102 153 17 153 .519

107 18'107 36 53 107 178 71 160 53 107 108 .521
1.29 100 0 86 72 129 144 115 66 115 0 129 .522
19 136 78 116 115 97 19 55 39 136 174 117 .541
76 131 94 75 187 56 112 94 0.112 150 3.8 ,95$1
111 14? 142 79 159 79 0 95 47 63 158 31 .563
34 119 68 El 35 119 119 17 170 136 17 153 .769
46 153 61 31 133 153 46 138 153 61 107 18 .977
100 121 30 201 121 141 20 60 121 80 20 40 .579
173 52 86 0 69 173 155 86 5? 121 69 69 .579

0 114 133 76 15? 133 95 114 152 0 95 41 .580
El 151 121 121 0 151 76 76 151 76 0 121 .583

109 91 109 145 91 36 109 127 181 107 0 0 .596
93 112 0 126 140 126 140 14 140 112 97 .596
33 148 92 99 66 49 165 132 16 16 148 151. .608
53 178 71 53 71 3-6 0 160 143 89 160 91 .611
18 54 109 36 127 91 91 163 181 163 54 18 .626
131 169 94 170 0 75 0 131 11? 56 37 150 .636
16 128 160 144 160 96 3? 96 160 48 64 1 .641

136 17 170 1.19 119 153 51 63 63 17 170 17 .647
138 1.58 0 197 9) 113 59 138 20 39 59 80 .648
9? 18 92 92 184 18 92.184 166 13 92 57 .656
96 0 144 160 144 0 96 144 144 16 112 49 .659
148 49 115 66 143 16 16 115 1E5 99 0 168 .664
133 95 57 114 171 133 191 0 19 76 0 116 .689
36 125 160 0 143 143 0 36 143 39 53 177 .699
60 141 20 20 181 20 201 141 121 100 40 60 .701
109 72 54 163 109 0 54 181 0 163 1E3 37 .709
44 0 177 44 199 111 66 88 44 155 155 22 .713
221 49 49 172 0 147 147 98 74 74 49 25 .720
158 20 0 197 99 118 '0 138 59 158 39 119 .728
197 0 138 178 0 158 59 118 79 0 99 79 .750
142 170 85 85 170 0 170 142 23 0 113 0 .756
61 1?3 1?3 205 0 41 143 143 102 0 0 164 .762
0 161 207 69 46 0 161 46 115.134 46 70 .776

140 18 175 175 0 53 158 123 13 175 1. 52 .773
135 180 0 23 0 45 113 90 90 180 45 204 .779
178 0 107 36 0 125 0 143 173 36 143 159 .786
121 40 40 100 121 201 201 181 40 40 0 20 .789
191 20 60 20 0 60 201 100 29 121 121 201 .799
1R1 0 201 30 131 60 0 0 80 40 161 121 .821
42 0 104 167 21 42 208 0 42 146 167 166 .821
0 161 92 207 0 161 161 0 23 161 46 97 .833

130 217 173 173 0 65 152 130 43 0 0 22 .859
243 31 135 162 103 0 0 108 162 0 106 0 .862
193 166 111 55 0 0 166 193 28 28 165 .879
106 128 191 0 21 0 213 0 128 2i 106 191 .834
92 230 207 184 46 0 161 46 46 69 23 1 .891
213 0 0 0 149 85 0 43 149 106 213 147 .899
45 180 113 180 203 0 113 23 203 45 0 0 .901
0 0 189 81 0 54 109 135 135 162 241 0 .903
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24 71 212 118 212 24 185 0 141 115 0 0 .909
22 173 130 195 0 22 108 217 0 0 195 43 .942
0 55 193 166 111 276 55 r"._)/ 166 28 0 4,C4724 235 0 ?35 0 141 94 71 0 141 164 0 .98?176 151 151 75 25 0 75 251 0 0 201 1 .984

63 0 63 0 189 0 95 253 32 253 63 94 .998233 0 0 174 0 87 116 0 0 204 97 204 1.008
0 0 44 111 221 0 155 177 0 199 198 0 1.013

173 173 35 69 173 0 207 35 0 0 0 240 1.014
58 29 116 58 0 204 11.6 233 0 262 29 0 1.0 27
45 180 158 226 90 160 0 226 0 0 0 0 1.4039
0 0 60 0 10 209 201 30 0 90 269 148 1.039

249 0 28 55 249 0 0 83 166 23 55 192 1.042
231 206 0 0 77 77 0 51 26 206 231. 0 1.06?
138 193 111 0 276 111 0 0 55 221 0 0 1.071
91 123 0 0 0 123 153 184 153 0 0 308 1.076
255 57 170 57 0 23 283 113 0 142 0 0 1.099
239 0 0 0 0 119 149 209 239 0 0 150 1.112

0 1E9 72 0 0 144 240 24 0 0 216 2 1.113
257 128 0 0 123 128 0 257 0 0 0 24107 1.146
30 10 299 90 239 239 30 0 60 33 0 9 1.154
61
0

0

113
1.35
170

0
23

35
243

139
0

311
0

0
0

0

0
0

85
242

0
172
171

1.169
1.211

0 0 107 2.5 214 235 1 143 a 0 0 71 1.241
0 0 0 0 134 0 234 335 0 67 134 201 1.252

189 0 158 0 0 0 284 0 253 0 221 0 1.290
234 0 268 268 67 0 1 234 0 33 0 1 1.299

0 260 0 260 65 0 65 0 0 325 0 130 1.329
207
71

0
0

0

36
69

321
35
0

311
0

0

250
0

107
0

320
0
0

138
0

345
0

1.393
1.406

0 170 170 340 35 0 0 340 0 0 0 1 1.445
201 151 0 452 100 0 0 50 0 151 0 0 1.470

0 0 258 368 0 37 332 0 74 36 0 0 1.93?
0 0 0 41 0 82 0 41 205 368 0 368 1.541
0 0 92 0 276 0 0 322 0 368 46 1 1.551
0 0 0 263 3 0 158 263 0 0 421 0 1.601
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r'-OGRAH MULLOT
DIMI:rFION 1.0(2120),IHrOST(2),I0CCT(2),ISAV(2),VAR(2)
WRITE (E1,1)

1 FORMAT(1H1,,- NUARE4: OF DATA, NP=t)
INDATt=TTYIN(4HN0= )

WRITE 01,21
2 FONAT(t NUABER OF PEIOD, NP- =t)
N=TTYIN(4HNP= )

11 WRITF(61,3)
3 FOPMAT(t OROFRING COST, DC=t)

IOCOST=TTYIN( 4H0f= )

DO 1C IJ=1,2
WRITi (61,4) IJ

4 FnPmr-rtt FOF ITEN-t, illt HOLDING COST* HC=t
IHCOS'(IJ)=TTYIN(4HK= )

OR.ITE(61,fl
5 FO;MAT(t QUANTITY FOR DISCI., OD=t)
NOCT(IJ)=TTYIN(4HOD= )

W7ITE(61,f)
5 F0c3IMAT(t 0I0CT. SAVING ',"ATL, 0S=? )

ISAV(IJ)=TTYIN(4HCS= )

in CONTINNi:-.
7 P.WIND

WPITI(1,160)
160 F04.4AT(1H1,//,22X,t0-HANOSt,24X,

1tALG-2t,4X,tAG-3t1
JTCS=LICS=LUCT3=ITCS=Li
00 26 IW =1,1.NDATA
00 3C IY=1,2
;FAD(20) (ID(IY,I),I=1,N),4APAIY)
FDPv41(2Y,12(13,1(),5X,Fb.3)

30 CONTINUE
CALL ,1(1.00,I000ST,IHCOST,ITC,100CTIISAV,I1)

CALL c'"(IJ,N,I000F,TIIHCOST,LTC,T00CT,ISAV)
CALL i.UC(i,h,IOCCCI,INCOST,LUCT,IQOCT,ISAV)
CALL IC(ID,N,IODOST,IHCOST,JTC,I0OCT,ISAV)
JTCS=JTCS4-JTC
LUDTS=LUCTS+LUO-
LnS=LIOS+LIC
WPITE(1,2CC)) (I0(1,I),I=1,N),VAR(1)
FONAT(2)4,12(I3,1Y),1Y,F5,3)
WRITE (1,250) (I0(2,I),I=1,N),VAR12),LUCTILTC,JTC,ITC

2FG FORMAT(2X,12(I3,1X)11X,F5.3,4(4X,15))
20 CONTINUE

WRITF(1,30.0) LULTS,LTCS,JTCS,ITCS
300 FOIAT(/,4(71A,t--SLW--t,4(2X,I7))

F-00 FOAT(t ,11( OHAtGE BO SING CO TA C-C=0 FORt
lt ENCINGt)
IOCOLT=TTYIN(4HOC= )

IF(I00OST.E0.0) GC 70 9
GO TO 7

9 WR.ITE(61,6001
E00 FOPMAT(t ANY CHANGE ON O1W7R 0ARrMETERSA CP=0 FOR t

ltF:NOINGI)
ICP=TTYIN(4HCP= )
IF(ICF,NE.0) GO TO 11
STOP
END
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SU1ROUTIN!-: WW(ID,Nt IJCOLT,IHCOST ITC. TrI;JOT,
DImEt.SION INV (20 '20 ),IQTY( 20,20) '1 TCOST (20 ,".?C)
DIvErION IHCOST (2) ,I000T(2), ISAV(2) '10(2,20)
It."IN=0
I5TAF-,7=1

(1,ISTAPT) (2,ISTART).NT.',0) GC TC 3
IST4f- T=IS141;:r+1
GO TO 4

3 K=ISTA'RT
JO 1. J----,ISTART,N
INV (JIJ) =I000ST+IMIN
IF(10 +TO (2,J) Er,',.0) INV(.1,J)=IMIN
IlIN=99999
DO 1 .I=IF)TART,J
JS1=J-1
IG=IL!(1.,J)*IHCOST (1.) +ID (2,J)*IHOOST(2)
IP (J.GT .1) INklf ',A =INV (I,JS1) fiG4 (J-I)
IT'DST(IIJ)=INV(I,J
IF(I1COST CI, 1) GE. PIIN) GO TO 1

IY'IN=ITCOST(I,J1
IF( IGTY (I, J).GE..IV)GT (I .J)) I';;TART=I
r.;fl 11j1.1;":

E!,
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SUR k0 tj t'4(7' IC ( 0,01N 91.CCOST tHCO t .)TC, I!.7.44)
DItlifiST ON D) (2,20 ),IHGOST ( 'MOOT (?) ,ISAV ("21
OPit:NSION IC)0(2,20) ,ITTO(2) ,ITOHY(2),I0 (2,20)
OI"4SION IN4 (20)
DO 1 I=1
10(1,1)=1:D0(1,1)
ID 1'2,47)=1130(2,i)
INV(I)=0
IO (1,I).=C

1 I Ot2,I)=0
NP1_=1
I0(1,NP1) =0
'9( 2,NP1)=0
L=0

2 L=L+1
IF(LeGT,N) GO TO 200
IF(IL(1,L) +IO (21 ),EO.0) GO 10 2
KK=1

5 LK=L +KK
IF'(LKGT,N) (0 TO 7
INV (LK )=10 (1,LK)4KK4IHCOST (1) +In (2,LK) 4KK*IHCOS1 (2)
IF( INV(LK ).GE.ICOOST) GO TO 10
KK=KK*1
GO TO q

10 INV(LK)=0
LKK=LK

7 IF(KK,LE.2) GO TO 13
LKK=LK1
ITT0(1)=I0(1,LKK)
ITTO(2)=I0(2,LKK)

ICK=IALK+1
1Kv=KKIP.WK

NK ; r-,r) rr 7

LKK=L4rKK
ITTO(1)=ITTO(1)4IO(1,LKK)
ITTO(2)=ITTO(2)+I0(2,LKK)
IMGINV=tITTO(1)*IHCM(1)+ITTO(2)*IHCOST(2))4'NKK
IF(IMOINV.LT,10OOST) GO TO 6
IVV(LKK)=0
LK=LV.

13 IEND=LK-1
SO 3C IJ=1,2
IH=IT=0
DO 2C I=LvIc7NO

20 IT=IT+ID(IJ,I1
ITOMY(IJ)=IT
IF(IT,GE,I0OCT) GO TO 30
IOMY=IF:NO+1

27 IFAIOMY.GT,M) GO TO 30
IH=IH+IHCOST(IJ)*I9(IJ,I01Y)*(LK--L)
IT=I14-ID(IJ,I0MY)
IF(IT.GE.IODOT(IJ)) GO TO 25
IOMY=IDMY41
GO TC 27

25 ISAVING=IT*ISAV(IJ)
IF(IT7ITOMY(iJ)oGE.IOOCT(IJ)) ISAVING=ITOMY(D)

l*ISAV(IJ)
IF(ISAVING.LT.IH) GO TO 30
ITD4Y(IJ1=IT
00 45 I.,,,LK,Inmy

45 IDTIJ 1.1=0
30 CONTINUE

I0(11L)=ITOMY(1)
10(2,L)=ITOMY(2)
L =LK -1
GO TO 2

201 GALL RAOKTR(IO,I000ST,IHCOST,N)
CALL COST(IO,,I000ST,IHCOST,N,I00,I0O0T,ISAV,JC,ITS)
JTC=JCITS
RETURN
END
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SI.J3KOUTINT 3M(I710,N,ILCOSTIIHCOST,LTC,100CT,ISAVIDIMENSION ID (2,20 DO (2,20) ,.10 (2,20) ,IHOOST (2)
IOMY1 (2) ,1OMY2 (2 ),IG1 (2) ,IG2( 2), TOO (2)

DIm.it'SI ON IDDCT 12 , ISAV12)
DO 1 I=1, N
ID(1,

1 ID(2, I) =TOD (2,I)
NP1=N+1
ITC=0
ID(1,t/Pi )=13
ID( 2,NP1)=0
DO 2 IK=1,NP1
ji4(1,IK)=0

2 ,10( 2, IK) =0
IT=1

-30 IF (IT ,GT.N) GO TO 1000
IF (Ir. (1, IT )4-I0 ( 2,IT ),GT .13) GO TQ
IT=IT +1
GO TO 30

S I00(1).0
TOO ( )=0
ICT=IT
.1=1

14. JP1=J+1.
I7)',(1)=.in(1,H)4-1;/)(1,1
I7'n(7)=.1n(2,IT)41C)(Z)
IF(IT.Erl4NP1) GO
IT=IT 41
IA=..14` Jc (ID (1 ,IT)*IHOOST( 1) #I3.(2,IT ) IHOOSI (2))I3=IOCOST
33 260 1,1=1,2
1.0mY1 (IJ)=3

200 IDmY2 (IJ)=0
3.00

JK=ICT-14I
0 1-se0 IJ=1,2

In1Y1 (Li) =ID9Y1 (IJ) ( IJ, JK)
403 IB:--IE,4-IS1410 (IJ,.)K14IHOOST (IJ)
3G0 CONTINUE.

Jp1 =J +1
DO 5C0
IDMY2 (IJ)=I9MY1 (IJ) +ID (Ij,jP1)
IG1 (iJ) =t
IG2 (IJ)=0
IF(I(PlY1 (I .1).GE,IODCT (Li)) IG1(IJ)=ISAV (IJ)
IF(IC.MY2 (IJ).GE..ICOOT(IJ) ) IG2(IJ)=IFAV(IJ)
IA=IA-VilDllY2(1.J)*IG2(IJ)

5G0 1.3=IB-JP1*If.)MY1 (I J) *IG1 (IJ
IF(IAGT.I3) GO TO 10
J=D1
GO TO 4

10 IJ=1
IF( IT .GT,N) GO TO 1&
IF( 'Gn(i) .GL.iao.,7,T » GQ TO 14
CALL !.7,1CO*1(J,I0T,IC.)COST IHCOST ID. TT, IOOCT , ISA V,I0O,1NP1, Li)

14 JO(19I0T)=I00(1)
I.J=2
IF(IT .GT.N) GO TO 15
IF(I0O(2).GF..IODCT (2) I GO TO 15
CALL SMOOM (J, 10T IOOOST,IHCOST

11 ID, IT, IODOT ISAV +100,
1 P 1 ,Ii)

15 JO (2, IOT I = TOO (2)
GO TO 30

1000 CALL COST (JO,I000ST,IHCOST,N,IOD,IODCT,ISAV JC,ITSLTG=JC-ITS
?E T UF:ri
ENO
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SU3ROUTIN! LUCtIDO,N,;OGOST?1HCOST,LUCTIIODCTiISA4)
oimErsicN J0(2,20),IH',OST(2),IODCT(2),ISAV(2),(2)
714Et,ZIOM ',II!)(?),IG1(2),IG2(?),I07(2,2G),I0(2,2G)
71 5 J=1,2
On 1 .1=1,-N
JO(J,I)=0
In(JII)=200(J,I)

N. CONTIUE
5 CONTINUE

1=1
IF(IO(1,I)+IO(2,I)0) GO TO 30
I=I+1
IF(I.GT.N) GO TO 93
GO TO 2

70 K=I
4(1)=1011,p
'4(2)=ID(2,I)
IG1(1)=0
IG1(2)=Q
IG2.11)=0
IG?(2)=0
J=1
IF(m(1),GE.I00OT(1)) iG1(11=ISAV(11
IE(M(2).GE.IOCOT(2)) IG1(2)=ISAV(?)
IET=I(OOST-IG1(1).*1(1)-IG1(2)*.1(2)

10 MTO(1)=M(1)
MT0(P)=4(2)
I=I+1
IF(I,GT.N) G0 T7
4(1)=(1)+:1(1,i)
N(2)=^1(2)+I0(2,I)
IEt+1(1).GF,I07GT(1)) IG211)=ISAV(1)
IF(4(2).G7:.I0OGT(2)) IG2(2)=ISAV(2)
IFTP1=IFI+IO(1,I)4IKOST(1)*J+IO(2,I)*IHOOST(2)4J
IFTP1=IFTP17.IG2iltmt1)-IG2(2)*4A214-IG1(1)c,",Ntll

1+IG1(2)*mTO(?)
!..1TON=MT0(1)+mTO(2)
'AN=m(1)+M(?)
IF(IFTP1*NTON.GT.IFT*MN) GO TO 50
IG1(1)=IG2(1)
101 (2)= 102(2)
J=J+1
IFT=IFT01
GO TO 10

F0 IK=1
11=99999
IF(M(IK).1.T.IOOCT(IK)) GO TO 60
GO IC 100

FO IST=1
IH=C
L=J
MG=m(IK)

f4 IST=IST+1
L=0-1
IF(I.ST,LE.N) GO TO 6?
IF(IK.E0.1) GO TO 100
GO TC 9,;3

E? ,IG=mG+IO(IK,IST)
IH=IH+IOtIK,IST)4IACOST(IK) *L
IF(MG.LT.i0OCT(iK)1 GO TO 54
ITOTAL=4(1)*m(2)
IFTP?=IFT,P1+IH-ISA4(IK)4M(IK)
IF(IFTP2*MTON,LE,IrT4mTOTAL) GO TO 120
IF(1K.E0.1) GC TO 100
GC TO 95

120 00 130 JK=IIIST
130 10(1K,JK)=G

NTO(IK) =MG
4fIK)=MS
IF(IK#E0.2) GO TO 95
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V73 IK=7
F-(0(IK).LT.I0IJCT(IK)) GO TO FJ7

)8 J0(1K)=4T0(1)
j0(2K)=MTO(?)
GO TO 2

9") CALL COST1JO.I0C0 T,IHCOST,N,173,IONT,ISAV,JC,ITS)
LUCT=JC.-ITS
..ETUFN
END
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SUlkOUTIN lACKTP(IO,IMST,IHCOST,N)
01."1F.NION IO(2,20),IHCOST(2)
J=N

200 IF(IC(1,J)+I(1(2,fl.E0.01 GO TO 10C
IF(10(1,J).GT.O.AN),I0(2.J).GTO, GO TO IOU
K=G
JT=J
JO=I0(1,J) IHCOST(1)-fic)(2,J) IHDOST(2)

1E0 K=K+1
IFAJO*K.GT.I000ST) GO TO 10G
J= J -1
IF(J.E0.M GO TO 10CCJ
IF(10(1,J)*I0(2,J).E(J.0) GO TO 15C
I0(1,J)=I0(1,J)+IC(1,JT)
TO(2,A=I0(2,J)+IO(24JT)
IC1(1,JT)=C
I9(2,-JT)=.0

LOU J=J-1
IF(J.E0.0) GO TO 1000
GO TO 200

1000 -,ITURN
ND

SU3OUTIW'
1I00,NF1,0)

C1 FPSION I0(2,20),I0O(2),I000T(2),IHCOST(2),ISAV(2)
JTEI1F=J
IP=C
IO=I00(I.J1
IT1=-.TT

20 IF(IT1.E.O.NP1) GO TO 10
JT.=_MF=JT.,=1.0,P+1
I0=10+IO(IJ,IT1)
IH=IH+IC(IJIIT1)41,HCOST(IJ)*J
IT1=1T1+1
IF(IO.LT.ION:TirJ)) GO TO 20
JO=IC
iF(IOI0O(IJ).0.I090T(IJ)) JO=I00(IJ)
IDCT=JDIS!V(IJ)
IF(ICOT.I.T.IH) GO TO 10
I00(1J) =I0
17IT1-1
DO 30 I=IT,I7

30 IC(1J,I)=0
10 RETURN

ENO

SUCtiTINE cOST(J0,10,1H,NIID,I OCT,;SAV,JC,ITS)
DIMEhSICN JU( 2,20),IH(2),IU(2,Z0)LIOUCT(2),ISAV(2)
JO=JH=ITS=L1=L2=0
00 100 T=1,N
IFAJO(1,I)+J0(2,I).GT.0) JO=J04-10
FAJO(1,i).-G:.IOOCT(1)) ITS=ITS+JO(1,I)*ISA4(1)
IF(J0(2,I).GE.I0OCT(2)) ITS=ITS+JO(2,I)*ISAV(2)
L1=L1+10(1I)I9(1,I)
L2=1.2+JO(2,I)I0(2,I)
JH=JH+1_1*Iti(1)+L2*IH(2)

100 CONTINUE
JC=JH+JO

ENn
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APPENDIX C

THREE HEURISTIC PROGRAMS



135

POGRAM MULL OT
DIMENSION IJ(2,20),IHCOST(2),I0OCT(2),ISAV(2)
OIMEr5:ION VAR (2)
WPITE(61,1)

1 F0q-MATC1H1,t NWICER OF OATA, NO=t,
INDATA=TTYIN(4HNO= )

WPITE(51,2)
2 FOF.MAT(t NUMBER CF PERIOD, NF=t)

N=TTYIN(AHNP= )

11 WRITE(61,3)
3 73"AT" OR[)-RING COST, OC=t)

IOCOST=TTYTN(LHOC= )

00 10 IJ=1,2
1,4ITE(51,14) IJ

4 F04,MAT(t FOE ITEMt,I1,t HOLOTNG COST, HO=t)
INC^ST(IJ)=TTYIN(AHHC= )

UWRIT(51,5)
5 FORMAT(t RED OUA%ITITY FOR OISCT.1 00=t)
IOICT(IJ)=ITYIN(4HOO= )

WPITE(61,6)
5 FORiAT(t DISCI'. SAVING RATE, OS=t)
IGAVtIJ)=TTYIN(4H03= )

10 CONTINUE.
7 RFWINC 2
WITE(1,100)

103 FOMAT(1H1,//,22A,t0:7:1ANDS±,24X,tVARt,4X,
1t,I.LG-lt,!),k,tALG-2t,t,A,tALG3t)
JTOS=LTOS=LUCTS=0
DO 20 IN=1,INOATA
00 30 IY=1,2
REA0(20) (I0(IY,I),T=1,N),VAR(IY)
FORUT(2X,12(I3,1X),5X,F6,3)

30 CONTINUE
CALL SM( IO,N,I000ST,IHCOSTiLTO,1000T,ISAV)
CALL LUC(IO,N,IOCOST,IHCO:3T,LUCT,IODCT,ISAV)
CALL IC( ID,N,I000ST,THCOST,JTC,I000T,ISAV)
JTOS=JTCS4JTC
LUCTS=LUCTS+LUOT
LTO=LTCSfLIC
WRITE: (1,200) (ID (1. I), L=1, N), VAR(' )

20.1 FORWiT(2X,12(13,1A),1A,F5.3)
wP.ITP-(1,250) (I0(2,I),I=I,N),VAR(2),LUCT,LT ,JTC

250 FO.:"MAT(2X,12(I3,1)t1,1X,5.313(4X,15))
20 CO\iTINUE

WRITF (1,300) LUCTS,LTOS,JTOS
300 F0;MAT( /049X,t*-.5Ult,3(2X,i7))

WRITf(51,500)
500 FORMAT(t ANY CHANGE ON O'RDE'RING COSTA 00=0 t

itFR FNCINGt)
IOCOST=TTYIN(4HOC=
IF(ICOOST.E0.0) GO TO 9
GO TO 7

9 WcITE(51,60))
E00 FO:;',MAT(t ANY CHANGE ON OTHER 9ARAMFTERSA 9=0 t

ltFOR EN9INGt)
IC°=TTYIN(4HO9= )

IF(IOF.NE.0) GO TO 11
STOP
END
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Sl.13CUTINE IC (IOO,'1, ICCOST IHCOSTIJTC,IODUT,ISAV)
DIMENSION IO (2,201, PICO ST( 2)1 iOICT (2) ,Isav ( 2)
DIMENSION IDC(2,20 ,ITTO (2) ,ITOmv 1,I0 (2,20) ,INV (20)
DC 1 I=1,N
IC: (1, I) =ICO (1,I)
ID( 29 I)=IDOC

1 INV (I )=I0 (1,I)=I0 (2,I)=0
NP1=NtiIr( NP1)=0
ID ( 2 ,NP1 )=0
L=0

2 L=L+1
147(L.GT.N) GO TO 200
Ir (IP (1,L) +10 (2,L )saCe 0 1 GO TO 2
KK=1

S LK=L#KK
IF(LK.GT.N) CO TO 7
INV (LK)=I0 ,LK)*KK*IHCOST 1) 4-TO (2,LK) 4KK*IHCGST (2)
IF(It GE.I0CO3 T) GO TO 10
KK=KK
GO TC

10 INV (LK) =0
LKK=LK7 Ir(KK.LE.2) GO TO 13
LKK=L K-1
1 1 1 0 ( 1 ) =10 (1 ,LKK)
ITTO(2)=ID(2,LKK)
IBACK=1

6 iPacK--..i 3ACK4-1
NKK=KKI00K

(NKK.E0 .01 GO TO 13
LKK=L-FNKK
ITTO ( 1)=1 TTO ( 1) fir (1,LKK)
ITT( 2)=T1 TO (2) +IC (2,LKK)
INGINV= (ITT() (1)*IHCOST ( +ITT0( 2)*IHCOST ) )*NKK
IF(IMGI NV.LT.IOCOST ) GO TO 6
INV (LKK -=0
LK=LK

13 IE...-ND=LK-1
3L, IJ=1,2

IH=IT.=0
OD 21 1=1., TEND

20 IT=IT4-I0
ITOMv
IF(IT,GE.IODOT) GO TO 30
IDIY=IENC+1

27 IF(I0mY.GT,N) GO TO 30IH=IHtIHCOF,TfIJ)*I0iIiiiTlY)*(LKL )
IT=IT +ID (I.J,IOMY)
IF(IT .GE I0OCT (D) ) GO TO 25
IDMy=m4y41
GO TO 27

25 ISAVING=II*ISAVCIA
IF(ITITOMY(IAIGE.I0OCT(IJ))

11SAVING=ITOMY(IJ)*ISAV(IJ)
IF(ISAIING.LTIH) GO TO 30
ITJMY(IJ)=IT
DO 45 I=L-K,10MY45 ID(IJ,I)=0

30 .:00\ITINOE
IQ(1,L) =ITOMY(1)
10(2,L)=ITOMY(2)
L=LK-1
GO TO 2

200 CALL ACK7R(IO,I0C1CT,IHCOST,N)
CALL OOST( IO,I0OOST,IHOOSTOiJ,I0D,IODOT,ISAV,JC,ITS)
JTC=JOITS
RETUFN
E\10
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SUCATIt\ft D"(IDO .`1.ii;COST,IHDOST.LTD, TODOT, IS AV)
DIMNSTori io(2,20 ),Fir.,(2,20),J0(2, 2C) ,IONT (2)
DisvErsiGN ro4 y1(2),ID,1y2(2),IG1(2),IG2(2),I00(2)
DIMFNSION IHCOST (2) ,ISAV (2 )
)0 1 T=1.0
I0(1,1 =IDD(1,I)
ID (2 D=I00(2,I)

1 CONTfNUF
NP1=N+1
ITC=0
TD(1,NP1)=0
ID(2,NP1)=0
DO 2 IK=1,NP1
J0(1,1K)=0

2 J0(2,IK) =f
IT=1

30 IF(IT.GT.N) GO TO 1GjO
IF(I0(1,IT)#-I0(2,IT).GT.0) GO TO E

IT=IT+1
GO IC 30

5 T03(1)=0
101)(2)=0
IOT=IT
J=1

4 JP1=J+1
I01(1)=I0(1,IT)+I0,)(1)
I00(21=IN2,IT)+100(2)
IF(IT.:ZOT.NP1) GO TO 10
IT=IT+1
IA=J*J*1I0(1.IT)*IAOOST( ) +I0(2,IT)*IfICOST(2))
I1=IOCOST
DO 200 IJ=1,2
ir,.1Y1(IJ)=0

200 IDMf2(IJ)=3
DO 3-60 I=1,J
IS1=1-1

00 400 IJ =1,2
IDMY1(IJ)=IONY1(IJI4I0(Ij,jK)

4C0 I-=IP+IS14-10(IJ,JK)*IHCOST(IJ)
300 COMTINUE

Jp1=J+1
DO 500 IJ=1.2
TDMY2(IJ)=I0MY1(IJ)4ID(IJ,JP1)
IG1(IJ)=0
IG ?(IJ)=0
IFtICMY1(IJ).GE.I01OT(IJ)) IG1(IJ)=ISAV(IJ)
IF(ID"Y2(IJ).GE.I0JOI(IJ)) IG2(TJ). =ISAV(IJ)
IA=IA-..J*I04Y2(IJ)*IG21Ij)

5f0 fl=I9i,..-J21*IT1Y1(IJ)*IG1(IJ)
if(IA.GT.I.9) GO TO 10
J=J+1
GO TO 4

10 IJ=1
TFAIT.GT.t'l GO TO 14
IF(IC0(1).ck:.1.00CT(1)) GO TO 14
CALL S4COM(J,I0T1I000ST,IHCOST.I0.IT,I00CT,ISAV,
1101,NP1i1J)

14 J0(1,I0T)=I0O(1)
IJ=2
IF(IT.GT.N) GO TO 15
IFfIC0(2).Gc..I0OCT(2)) GO TO 1F
CALL SACOM(J,I0T.I000ST,INCOST.ID,IT.I0OCT,ISAV,

1I00.M°1,IJI
15 J0(21I0T)=I0O(2)

GO TC 30
1000 CALL COST(JQ,1000STIII-COST.N.IOO,I0OCT,ISAV,JC,ITS)

LTC =JC -ITS
RETURN
END
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SUR:ROUT INE LUC (TOP, IOCOST IHOOST LUC; T 1IOD'OT, ISA I)
DI'lE)aSION JO(2,20 )tIHCOST( 2) ,IODCT (2) ,ISAV (2) 0112)
DT 4ENSION MTO(2) tI.;1(2).0 IG2 (2), IDD (2,20) II° (2,26)
DO / J=192
DO 1 I=19N
JO ( J. I)=0

1 Ir3(J,I)=I0D(J,I)
I=1

2 IECID n +IO LNE.0 ) GO TO 3C
I=Ifl
IEt I. GT. N) GO TO 93
GO TO 2

30 K=I
Mt1 )=ID (1,I)
m(2)=.10 2, I/

)=IG1 (2)=IG? (t)=IG2 (2)=0
J=1
IE('1(1).GE.IODOT (111 IG1(1)=ISAk/(1)
IE ("I( 2) ( ) IG1(2) =ISAV(2)
IET=IOCOST-IG1 ) 7"1 ( 2) 4-M (

10 MTD(1)=4 (1)
ITO (2 )=M (2)
I=Ifl
IF(r.Gri,h) GO TO 91

)= ) +ID (19 I)
)=. fID (2,1 )

TEr"(1).GE.IODOT(1)1 IG2(11=ISAV(1)
IE(M( 2).G.E.IODCT( 2)1 IG2 (2) =IS8V (21
IETP1=IET+ID (19I14IHOCST (1 )*J+I D(2.17)*IHCOST (2)4.J
IETP1=IFTP1IG2 (1)4.M (1) (2)41 ) +161 ( 1) 4"1TO(1)

1fIG1 (1)4MT 0(1)
MTON=MT 0( 1) 4TO (2)

IF ( IF TP1*P'TON,GT. IFT*MN ) GO TO 50
IG1 (1)=IG2 (1)
IG1 (2 )=IG2(2)
J=J*1
IFT =IFTP1
GO TO 10rO IK=1
I1=99999
'ECM( IK) LT. IODCT (IK )) GO TO 60
GO TO 100

60 IST=I
IH=0
L=J
MG=4(IK)

E4 IST=IST41
L=Lt1
IE(IST.LE.N) GO TO 62
IF(IK,E0.1) GO TO 100
GO TO 98

E2 MG=MG+10(IK9IST)
IH=1H4I0(IK,IST)*IHCOST(IK)*L.
IE(MG.LT.IODCT(IK)) GO TO 6'+
mTOTAL=4(1)4M(2)
IETP2=IFTP1+IHISAV(IK)*M(IK)
1E(IFTP2*YTON.L.IET*MTOTAL) GO TO 12.0
IE(IK.E0.1) GO TO 101)
GO TO 98

120 DO 130 JK=I,IST
130 ID(IK,JK)=j

4TO(IK)=MG
M(IK)=MG
IE(IK.E0.2) GO TO 98

100 IK=2
IF(M(IK).LT.IQOCT(IK)) GO TO 60

93 J0(1,K)=MTO(1)
JO(29K)=MTO(2)
GO TO 2

99 CALL OOST(JO,I000ST,INCOST,N,IO,I0OCT,ISAViiC,ITS)
LUOT=JOITS
RETURN
END
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StPKCUTINE SMCOM(J,I0T,I000ST,INCOST,I0,IT,IOOCT,
1ISAV,I0OtNP14IJ)
DIMENSION TO(2,20) I00(2),IOOOT(2),INOOST(2),ISAV(2)
JTEMP=J
IM=0
IO=IOO(IJ)
IT1=IT

20 IP(IT1EQ.NP1) GO TO 10
JTEMV=JTEMP+1
i0=I0+ID(IJ,IT1)
IH=IH+I9(IJ,IT1) +IACOST(IJI*J
IT1=IT1+1
IF(I0eLT.I000T(IJ)) GO TO 20
JO=IO
IP(IO.-ICO(IJ).GE.IODOT(IJ)) JO=I0O(IJ)
IOCT=JO*ISAV(IJ)
IP(IOCT.LT.I) GO TO 10
I00(IJ)=I0

DO 3E I=IT,IZ
30 ID(IJ,I)=0
10 RETURN

END

SU3ROUTINE 43AOKTR(IC,I0OOFT,THOST,N)
DImENSION I)(2,20),IHOOST(2)
J=N

200 IF(I0(1,J)*I0(2,J).L0.0) GO TO 100
IF(I0(1,J).GT,O.ANO.I0(2pJ)eGT.0) GC TO 100
<=9
JI=J
JO=I0(11J)*INCOST(1)+I0(2,J)*IHOOST(2)

100 K=<+1
IPSJO4K.GT.I000ST) GO TO 100
J=J71
IP(J.E0.0) GO ID 1000
IPCIO(1,J)fI0(2,J).E0.0) GO TO 150
IO(1,J)=I011,J)+I0(1,JT)
I0(24.1)=I0(2,J)+IC(2,JT)
I0(1,JT)=G
I0(2,JT)=C

100 J=J-1
IF(J.EO.0) GO TO 1000
GO TO 200

1000 q.ETUFN
END

SU3FOUTIN OOST(JO,TO,IN,NI.I0IIODET,ISAV,JCtITS)
DIMENSION JO(220),IH(2),ID(212.0),I0OOT(2),iSA4(2)
JO=JK=ITS=L1=E2=0
DO 100 I=1,N
IF(jO(1,I)+10(2,I).CT.0) JO=JO+IO
IF(J011,I).GE.I0OCT(1)) ITS=ITS+JO(1,I)*ISAV.(1)
IP(J0(2,floGE.IODOT(2)) ITS=ITS+J0(21I)*IS41(2)
L1=L1+J0(1,I)..qD(1,I)
L2=t2+JO(2,I)IO42,IY
TH=J+441-1*IN(1)+L24IH(2)

100 CONTINUE
JC=JH+JO
RETURN
END


