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1. Introduction

A power grid is mainly comprised of generating stations, transmission systems, distribution
systems and substations. Each of these components of power system come into a picture at
various levels of voltages. Transmission systems are responsible for transmitting the power
generated at generation plants, at high voltages for multiple reasons including reducing the
copper losses directly proportional to the square of current. The voltage is then stepped down
using transformers at substations to various levels. The distribution system then helps in
delivering power to larger loads like industrial sites and to feeders which provide power to
remaining loads like residential and commercial loads. The power flow studies conducted to
obtain grid measurements and the importance of state estimation have been introduced in
following sections. The introduction of Phasor Measurement Units (PMUs) to further modify
traditional state estimation is discussed and the goal of this research is introduced in the last
section. Two algorithms using Singular Value Decomposition are developed through this

research for state estimation with only a few PMUs deployed across the system.

1.1 Power Flow Studies

Power flow studies, also known as load flow studies are an integral part of any grid analysis to
compute voltage magnitude and angle at each bus and in turn determine active and reactive
power flow in all parts of a power system. Power flow studies are necessary to calculate
transmission line losses and losses in equipments such as generators and transformers. Power
flow studies also help in conducting system fault analysis and economic dispatch and load
balancing for healthy grid. A one-line diagram of a power grid including information about
buses, transmission lines, generators and loads is used as a power system model to perform load

flow analysis. Figurel.l is a simple one-line diagram of two buses with a load and a generator



connected to the Bus 2. A single-line diagram is used to conduct power flow studies to determine
the four important parameters of voltage magnitude - ||, voltage angle - o, active power - P and

reactive power - Q.

Pgen T Pload
Qgen @) |/ Qload

Figure 1.1 Single-line diagram of 2 bus system
Buses in a system are classified into three categories as follows

1. Slack Bus - A primary bus with voltage magnitude 1.0 per unit and 0 voltage angle used
as a reference bus. P and Q are calculated for this bus using power flow.

2. PQ Bus - This is a load bus with active power P and reactive power Q known while
power flow program calculates voltage magnitude |V| and angle 6.

3. PV Bus- This is a voltage controlled bus with known inputs - active power P and voltage

magnitude |V| while the power flow program calculates voltage angle 6 and reactive

power Q [2].



To begin with power flow studies, power mismatches are calculated at every bus. For example,
the power mismatches for both active and reactive power at Bus 2 shown in Figure 1.1 are

calculated as
Ppysy = Pgen — Pioaa (1.1)
Qpus2 = Qgen — Qioaa (1.2)

Calculation of power flow requires series impedance Z and shunt admittance Y for every
transmission line along with the winding series impedance and exciting branch shunt admittance
for a transformer. Power flow studies are usually conducted on a balanced 3 phase steady state
system which means all three phases of system have a phase shift of 120 degrees and have same
amplitude and frequency [2]. Since it is a nonlinear problem, numerical methods are required for
computation [1]. The two numerical iterative methods that are used to conduct power flow
studies are Gauss Seidel and Newton Raphson. The Gauss Seidel method to obtain power flow

solutions is described in next section.
1.1.1. Gauss Seidel

To perform Gauss Seidel power flow, power mismatches at all buses are calculated for both
active and reactive power. The admittance matrix called the Yy, for a given network is
calculated based on the information from transmission line impedance and admittances. To begin
with the first iteration, an arbitrary set of values are selected for unknown quantities at a bus
which are updated with the result of every iteration of power flow equation (1.3) where n is total
number of buses = 1,2,...n [3]. It is common to begin power flow iterations with the voltage set
to 1 per unit and angle set to zero for a PQ bus. These iterations are repeated until the results

converge to a preset value of error.



1 Pi—jQi
Vig+1) = ( ) [(—]) — Y Vi = YioVo — - YiVi(y) — YinWal (1.3)

Yii 1410)
Measurements for active and reactive power are given by equation,
P+ jQ; =V [T Vil (1.4)
while I = (P + jO)/Vi (1.5)
1.2. Power System State Estimation:

The increasing load demand and addition of various sources of renewable generation to the
existing grid infrastructure is exerting stress on the power system. While the load and generation
capacity has increased many fold over past years, capacity of transmission and distribution
system has not followed. The interconnection of power system networks has become more
intricate and complex which makes task of monitoring and operating the system challenging. To
maintain continuity of services and meet the generation and load balance it is important to
continuously monitor the system to prevent any outages leading to loss of services. Thus power
system state estimation - an important aspect of the Energy Management System is critical in

acquiring the current state of any power system network [4].

A system called the Energy Management System (EMS) at each power system control center, - is
used for monitoring, controlling and optimizing the operation of the transmission system,
generating stations and load. The main tool of EMS - Supervisory Control and Data Acquisition
including a human computer interface, is responsible for recording and storing digital and analog
measurements at various points in grid network used for analysis purpose by grid operators. Raw
data in the form of measurements recorded at remote locations in field by Remote Terminal

Units (RTU) is transmitted to control center to be fed to a state estimation tool to obtain an



optimal state estimation. This is done to identify current state of a system. The measurements
acquired include voltages at buses, power flows on the transmission lines, frequency, current
along with circuit breaker positions and transformer tap status. A combination of SCADA and
state estimation enhances the capabilities of EMS to provide a better platform for the monitoring

and control of a system in real time [4].

Other functions of the state estimation based on the system network model and the measurements

include

i.  Identifying the gross errors in measurements caused due to the noise and fix them along
with identification and removal of corrupted measurements,
ii.  Create a one-line diagram of a system from the acquired data about circuits breaker and
protective switches status,
iii.  Perform an optimal state estimation to provide estimates of measurements at metered

and unmetered locations of a system [5].

A power system at a given instance of time could exist either in Normal State, Emergency State
or Restorative State depending upon the conditions of system equipments and health of the
system along with the amount of deviation from optimal operating condition [5]. A system isin a
Normal State when generation and load are balanced and there is very little or no deviation from
the optimal operating condition. A system is said to be operating in Normal - Secure State when
there are no operating constraints violated or when the system is maintained within its upper and
lower limits of operation. Whereas, a system is said to be in Normal - Insecure state when one or
more operating constraints might be violated but the continuity of service is maintained despite,
a contingency occurring due to an outage on a line or failure of an equipment. Although the

generation-load balance is not disturbed, system requires attention and some protective measures



to prevent it from entering an Emergency State. The system experiences constant variations and
when these changes are significant enough to cause contingencies leading to large power
outages, the system enters an Emergency state. This calls for immediate attention for respective
corrective measures to further avoid the cascading of outages leading to a partial or complete
blackout by opening a faulty line or disconnecting a failed equipment. The state where these
protective measures called restorative controls are taken to bring the system back to normal state
is called Restorative State. Thus state estimation is necessary to aid the task of continuously

monitoring and controlling a power system to maintain it in the normal state [5].

Normal State

(Secure or Insecure)

Restorative State Emergency State

A

(Partial or Complete (Serious Protective
Blackout) Measures required)

Figurel.2. States of a Power System [5].

1.3 Traditional Method of State Estimation - Weighted Least Squares (WLS)

The traditional method of state estimation involves measurements from SCADA system and is
essential to compute and estimate unmeasured grid variables of active power, reactive power,

current, voltage magnitude and angle, etc. while considering small discrepancies in the



measurements due to noise and measurements that are inaccurate and missing. It is difficult to
obtain measurements at various points of a grid at a same time due to the introduction of a
certain time delay called time skew. Weighted Least Squares, Least Absolute Value and
Weighted Least Absolute Value are a few methods that have been traditionally used for power

system state estimation [6].

The error between measured value obtained from the measuring devices and true expected value
of measurement can be expressed using equation (1.6) where e is the error, Zmeasured IS the

measurement from a device and Z is the expected value of the variable measurement [6].

€ = Zmeasured — Z (1-6)

These errors are assumed to have a probability density function of Gaussian distribution,

described in terms of its mean and standard deviation given by the equation (1.7) [5].

f(2) = (\/zlﬂ_a) o~ (1.7)
Where

f(z) - the probability density function for a variable z

o - standard deviation of the variable z from the mean

1 - mean of z (expected value).

Zmeasured Can then be described in terms of the number of standard deviations away from its mean
which means that closer the Zneasured 1S 10 its mean located at zero, smaller is the error between
measured and expected value. This can be shown in following figure where for a higher value of

standard deviation o, higher is the error implying an inaccurate measurement. Similarly it can be



seen that for a smaller value of o, the measurement is more accurate as it is approaching towards

the mean u [6].

PROBABILITY DENSITY &,

-6 -4 -2 0 2 4 6
DEVIATION x/c

Figure 1.3. Gaussian distribution for different standard deviation [7].
Weighted Least Squares (WLS) method of state estimation uses voltages as static state variable
to estimate current state of estimation which can be used to calculate any power flows or
generator and load output variables. The static state variables are defined by a vector of voltage
magnitudes and angle except for the voltage angle at swing or slack bus. The voltage angle at the
swing bus is set to zero for reference. Similar to computation of power flows, state estimation is
a nonlinear problem and follows a process of an iterative computation until the result converges
to desired pre-set delta value between iterations [5]. Based on the expression for n number of

measurements -

Z=h(x)+e (1.8)

where



Z - a vector of the various measurements =

h(x) - the nonlinear function on the state variable

€ - measurement error =

X - state variable =[X1 X2 X3 Xp].

WLS state estimator tool minimizes the least square objective function given by (1.9) to get

equation (1.10).
J(x) = Ziti(zi — hi(0))?R (1.9)
where, R - the variance of measurement error equals (67, 02, 62, 62).
G(x*)Axk*t = HT (x*)R™1[z — h(x®)] (1.10)
where
AXk+1 — Xk+1 _ Xk
x* - state variable solution at the end of k number of iterations.
H(x) - Jacobian matrix
G(x") - Gain matrix = H'R™H.

The gain matrix is a sparse positive definite matrix calculated from the Jacobian matrix H and
the variance matrix R which is further decomposed into its lower triangular matrix and its

transpose using Cholesky decomposition. The lower triangular matrix and its transpose are used
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to calculate AxX“** via the forward-backward substitution from which the grid variables, power

flows on lines and the voltages at buses can be easily computed [5].

This method of system state estimation involves complex computation of the Jacobian matrix H
and further decomposition of the gain matrix G into lower triangular matrix and its transpose
based on Cholesky decomposition [5]. The traditional methods of system state estimation also
have a disadvantage of being incapable of providing a real time estimate of the current state of a
system, considering the challenges in measuring the real time data synced in time at higher
frequency. These methods are difficult to apply for state estimation of a system with incomplete

observability, due to increased computational complexity.
1.4 Synchrophasor Technology

Although traditional methods of state estimation can provide best possible guess for current state
of the system, the dynamic state estimation of a system is challenging considering time skew -
(i.e., the time delay in the measurements at various locations at the same time). With the advent
of Synchrophasor technology, instantaneous phasor values of grid variables of voltage,
frequency, current, active and reactive power, etc. can be recorded at transmission level of a
power system. Grid monitoring devices called Phasor Measurement Units (PMUs) are an
essential part of synchrophasor technology. These units record grid variables and provide
dynamic data about state of a power system, at a higher frequency than that has been historically
available. The sampling frequency or the frequency at which these units record measurements is
over a 1000 times a second, while the time signals are synchronized by a common clock with the
aid of the GPS systems. The timely aligned measurements provide a detailed image of the

dynamic state of transmission systems to enhance maintenance of the system network [8].
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Figurel.4 and Figurel.5 show a comparison between PMU measurements and SCADA
measurements for system frequency and bus voltage. Thus it can be seen that PMU data is

recorded at much higher resolution while compared to SCADA measurements.

Frequency

s
60.05, T T T T T T

§9.95

8
T

59.85

Frequency (Hz)

@
®

59.75-

—FPMU
—"Low Res" SCADA

"High Res" SCADA
59.65! [ I L I i
0 20 40 60 80 100 120 140 160

Time (sec)

Figure 1.4. Comparison between PMU and SCADA measurements of system frequency [9].

Bus Voltage
m L} 1] 1] i L} 1] T

g

Voltage (kV)
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£
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—_SCADA I I I i [ I
5:".'Ll 20 40 &0 80 100 120 140 160
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Figure 1.5. Comparison between PMU and SCADA measurements of bus voltage [9]
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!

Figure 1.6. PMUs in a transmission level system [8].

Figurel.6 simplifies the demonstration of the use and placement of this technology in a power

system at transmission level.

The major advantages and applications of Synchrophasor technologies can be broadly
categorized in online applications or near real time applications and offline applications to
analyze events causing partial or complete blackouts [8]. Online applications or near real-time
applications are used to constantly monitor the system at steady and dynamic state to maintain
and operate system within the operating limits and ensure a balance between the generation and
load. With the help of high frequency data stream of PMU measurements, the oscillations
occurring in the system frequency caused by bringing a generator online or failure of a generator
can be detected. This is essential to determine the generation and load balance. Online

applications could also include to check for spikes and dips in system voltages and to maintain
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the system voltage within the operating limits to prevent power system from collapsing. With
constant monitoring of grid conditions at real-time or near real-time, faults in a system can be
cleared by operating a relay and causing the circuit breaker to isolate the fault either by opening
a line or disconnecting a faulty equipment. A great advantage of PMUs that can be explored for
monitoring and sustaining the system, is to boost the sampling frequency on observing a
variation in the grid behavior, which further assists the operators in taking protective measures to
avoid a system collapse or a blackout. Offline applications include post fault analysis to study the
causes of disturbance and restore the system back to normal state because PMUs provide historic
data making the investigation of occurrence of events convenient which otherwise would require

greater efforts and time.

As a part of Smart Grid Investment Grant (SGIG) and Smart Grid Demonstration Program, under
the American Recovery and Reinvestment Act of 2009, twelve different organizations are major
contributors towards the expansion of the synchrophasor technology network. This includes the
deployment of various devices like PMUs, PDCs and communication systems to improve the
operation and planning of the national grid [8]. The twelve grant recipients and the number of

PMUs and PDCs installed by each are listed in Table 1.1.



SGIG and SGDP Synchrophasor Project

PMUs Installed*

PDCs Installed*

Recovery Recovery
System System
Act Act
] Total ) Total
Project® Project”

American Transmission Company 45 92 0 2
Center for Commercialization of Electric

15 18 4 4
Technologies
Duke Energy Carolinas 98 98 2
Entergy Services Inc. 49 49 S 10
Florida Power & Light Company 45 45 13 13
Idaho Power Company 8 15
ISO-New England 77 77 8
Midwest Energy 7 7
Midwest Independent Transmission System

148 148 21 21
Operator
New York Independent System Operator, Inc. 40 40 8 8
PJM Interconnection 56 56 15 15
Western Electricity Coordinating Council 336 481 49 69
TOTAL 924 1126 130 154

* As of 03/31/2013

14

Table 1.1. Number of PMUs and PDCs installed [8].

With the current rate of growth in number of PMUs deployed and the number of regions
adopting synchrophasor technology, the present coverage of synchrophasor network over
transmission system is expected to increase 10 fold [8]. Figure. 1.7 shows PMUs installed and

networked by March 2012.
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Figure 1.7. Location of PMUs in US [11]
In response to the August 1996 blackout, the first PMU was installed at Bonneville Power
Administration (BPA). First PDC developed and installed at BPA was in May 1997 which makes
BPA one of the pioneers in the field of synchrophasor technology [9]. BPA has built the largest
and most sophisticated network of PMUs in the country which has improved grid operations at
generation and transmission levels in the Northwest [10]. This network consisting of 126 PMUs
at 50 locations, including substation and wind energy generation sites is the largest contributor to
the Western Interconnection Synchrophasor Program (WISP) to have a network of more than

600 PMUs across the western grid [10].
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WECC Synchrophasor Infrastructure

Phasor Measurement Units (PMUs) and
Phasor Data Concentrators (PDCs)
In the Western Interconnection

@ PMU locations
* POC locations

Figure 1.8. WECC Synchrophasor Infrastructure [9].

1.5 Traditional State Estimation with PMUs

As mentioned in Section 1.3, traditional method of WLS state estimation of a system is based on
the nonlinear state equation given by (1.6), where x is the static state variable vector consisting
of voltage magnitudes and angles with (2N-1) dimension, N being the total number of buses in
system. Vector Z consisting of active power, reactive power, voltage magnitude and angle is
further extended in order to accommodate PMU measurements [12]. To conduct state estimation
using measurements from SCADA and PMUs, the voltage magnitudes from PMUs can
conveniently replace SCADA measurements in WLS state estimator. But replacing SCADA
measured voltage angles with PMU measured voltage angles to estimate the state of a system is a

complicated problem [12].

One solution to this problem of using voltage angle measured by PMU, is to install a PMU at

reference bus of the system's WLS estimator algorithm. This is helpful because voltage angles
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are estimated with respect to this reference [12]. The reference voltage angle is subtracted from
voltage angles (obtained from SCADA). A large difference between the angles could lead to
inaccurate estimates. But a change in system reference to minimize this difference could solve
this accuracy problem [12]. This requires a PMU installed at the new reference which is
challenging in terms of high installation cost. Another solution to replace the conventional
measurements by PMU measured angles is to calculate the difference between the voltage angles
at the beginning and end of a transmission line [12]. This could imply that the system would
require more number of PMUs installed at the beginning and end of a line which involves the
constraint of high cost. This method of using the WLS state estimator along with PMUs is a
static state estimation technique and has no promising results for an application in real-time or

near real-time.

1.6 Research Goal

There has been significant amount of research for state estimation of a grid using PMUs at
transmission level. Planning and operation of systems at distribution level is equally critical to
maintain the continuity of services and prevent local outages. This research aims at utilizing
synchrophasor technology to estimate the state of a system at distribution level. Various
universities are adopting smart grid technologies to be self-sustained for an added capability of
operating in an islanded mode or as a micro grid. There has been significant progress towards
moving the Oregon State University (OSU) system to a smart grid and making the campus self-
sustained. This research funded by Bonneville Power Administration (BPA) includes installing
several PMUs at significant locations on OSU campus to improve system monitoring and
operations. This also includes determination of ideal locations for maximizing the benefits of

installing PMUs. The ultimate goal is to develop a state estimation technique to estimate the state
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of campus with limited observability due to sparse deployment of PMUs across the campus. The
anticipated application of this is to have an accurate load model of WECC [13]. The load flow
model of OSU with a total load of 25 MW is further represented in terms of residential,

commercial and industrial percentage at every bus.
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2. System State Estimation of Oregon State University

2.1 Phasor Measurement Units on the Oregon State University Campus

Various locations for installing PMUs on OSU campus are predetermined based on number of
loads served by a bus and the type of load because the loads are represented in terms of
percentage of residential, commercial and industrial. The OSU campus consists of 286 buses in
total and there are various buses which supply to either one or more kinds of loads in terms of
residential, commercial and industrial. Residential loads on campus are buildings with lodging
and student dormitories. Commercial loads are buildings with offices, classrooms, etc. and
industrial loads are laboratories consisting of several 3 phase high power machines. The location
of PMU placement is also determined based on sensitivity analysis by observing the electrical
distance between various buses [14]. The sensitivity analysis in simulation is performed by
increasing the active power at a load bus and observing the variation in voltage magnitude and
angle at other buses. If the observed variation in voltage magnitude and angle at other buses
exceeds a certain threshold value, the initial load bus responsible for this voltage variation is
considered to be an ideal PMU location [14]. The following Figure 2.1 of OSU campus model,
built for earlier research determines locations of installed PMUs and potential locations for

PMUs.
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The initial locations selected for installing a PMU on the OSU campus include buildings - Snell
Hall, Energy Center, Salmon Disease Lab and a metal fabrication plant in Albany, apart from
WESRF lab at bus 244, which already has a PMU installed. The Snell Hall building supplied by
bus 209, consists of various single phase loads like air conditioning systems which makes it an
interesting location to study the behavior and impact on the remaining system. The Energy
Center connected to bus 140, has the campus co-generation plant which is another interesting
location for a PMU as it will allow the continuous monitoring of generation. Another important
location selected for PMU installation is the Salmon Disease lab located at bus 6. The Salmon
Disease lab has several kinds of blowers and compressors representing commercial load as well
as pumps and variable frequency drives representing industrial loads. External to the campus, a
metal fabrication plant serving as an industrial load is also chosen to have a PMU in association
with Consumer Power in Albany which will provide a means for performance assessment of the
communications. The measurements recorded at these various locations at high sampling
frequency are transmitted to PDC to accumulate all the time stamped measurements in a

synchronized order for analysis purpose.
2.2 Incomplete Observability Problem

Considering the high cost of installing PMUs it is practically impossible to install these units at
every bus of the system. The cost constraint of PMUs limits total number of units that can be
deployed across the system. Thus selecting right locations to install PMUs is extremely critical to
provide necessary grid information. Although a few buses with PMUs are made observable,
remaining of the system with no PMUs remains unobserved. This leads to the problem of

incomplete observability.
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Complete observability is essential to obtain the state of system in contrast to the incomplete
observability provided by sparsely distributed PMUs. The traditional method of WLS to estimate
state of system with incomplete observability involves complicated computations. These
methods are also difficult to estimate the state of a system in real-time or near real-time.
Therefore a faster method to estimate the state of a system at near real-time, with a few

observable locations is studied through this research.
2.3 Dynamic State Estimation

Any electric grid is constantly evolving with variations in electric grid parameters which need to
be monitored. Maintaining a balance between generation and load, preventing outages and taking
right protective measures in case of a contingency are made significantly easier by a real time
state estimation method. This provides system operators a comprehensive picture of the static
and dynamic operations of a grid at real time. This research explores Singular Value
Decomposition as a method which can allow for real-time and near real-time state estimation of

OSU campus with the data obtained from PMU measurements at several locations.

Prior to having the planned PMUs installed and a real-time feed of the measurements, two
algorithms to estimate the state of the system with incomplete observability are developed. A set
of data using the OSU campus power system model is created offline which is used to test the
algorithm. To ensure the algorithm can be used to estimate the state of a system with 286 buses,
it is initially developed and tested on a small system of 3 buses and an IEEE 14 bus system
which is further developed to apply to OSU campus power system model. Using SVD, the
measurements for buses with no PMUs installed can be estimated based on a set of static data

and time stamped measurements obtained from the PMUs installed.
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2.4 Data for State Estimation

Power flows explained in Section 1.1 are conducted on above systems to create a set of offline
data prior to having a real time stream of measurements from PMU. PowerWorld tool is used to
run these power flows to build an offline set of data which essentially forms a library. The
procedure of creating this offline library follows the procedure of running power flows in
succession on a system by varying the load and generation at every bus. The generation and load
power at a bus of a system is varied and the power flows solutions for voltage magnitude and
angle, active and reactive power at all remaining buses are recorded. Thus the library consists of
several records for the four measurements i.e.,|V|, 6, P and Q at all the buses of the system. This

library forms the heart of state estimation using the concept of SVD.

As shown in Table 2.1, power flow library consists of|V|, §, P and Q measurement channels for
every bus along the columns and various records along the rows. The records of the library can
be considered analogous to bus measurements at different instances of time. This format of
library is in accordance to the format of data recorded by the PMU and transmitted to PDC. This
library essentially is a lookup table used as reference to perform SVD for system state
estimation. Apart from this power flow library, power flows are run on each system in similar
fashion, to create six additional records to form sample test records which will be used for testing
and analysis purpose. To perform state estimation using SVD, measurements at buses with
PMUs are extracted for respective buses from a sample test record. This forms a new partial
record. Measurements at remaining unobserved buses are filled in for this new record with

placeholder values based on an approximation discussed in further sections.
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Table 2.1. Power flow library.

From above table, we see each bus has measurement channels for|V|, 6, P and Q for various
records. Number of records and measurement channels for the 3 bus system library, IEEE 14 bus

and OSU power system model will be elaborated in the following sections.
2.4.1 Simple 3 Bus System

Figure 2.2 shows a simple model created in PowerWorld for a 3 bus system with Bus 1 as
reference bus of the system consisting of 2 generating units at Bus 2 and 3 and a load at bus 3.
This 3 bus system is used to demonstrate the state estimation using SVD. Power flow library 'L’
for this system is created by obtaining valid power flow solutions which span over a wide range
to encapsulate different operating conditions of the system. This is done by running power flows
in succession while varying the load and generation to obtain|V|, , P and Q at every bus. The L
obtained for this system consists of 100 records and 12 channels with|V], 6, P and Q

measurements for each bus. To demonstrate state estimation for an incomplete observable
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system, Bus 3 is assumed to have a PMU. This makes Busl and Bus 2 unobservable and

measurements of|V|, 6, P and Q are to be estimated for these buses.

1.00 pu
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0.00 Deg A 5 MW -
-2 MW — ey 5.0 MW
s | "
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Figure 2.2. Simple 3 Bus system used to demonstrate grid estimation using SVD

2.4.2 IEEE 14 Bus System

SVD method is next applied to an IEEE 14 bus system to test its functionality and accuracy to
further use it to estimate grid state of the OSU campus system consisting of 286 buses. Figure
2.3 shows IEEE 14 bus system adopted to create library L for 14 bus system. The 14 bus system
comprises of 10 load buses with a total load of 260 MW and four generators with a total capacity
of 262 MW [18]. Similar to 3 bus system the power flow library L for this system is built by
solving for power flow solutions. It is desired that the library provides a broad coverage of valid
solutions as it effectively embodies the underlying power flow equations. The library is created
by varying the load and generation at buses in succession until a large number of records are
created. A total of 111 records are obtained from the power flow solutions which form the rows
of power flow library L. Each of the 14 buses of the system have channels for voltage magnitude

and angle, active and reactive power. Since there are a few buses which have both load and
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generator connected, the total number of channels in library is 60. Thus the power flow library
for 14 bus system has a dimension of 111 by 60. Similarly additional 6 records with 60 channels
are created apart from the library 111 records and maintained separately to test the SVD
algorithms. This system is assumed to have PMU s installed at three locations - buses 12, 13 and
14. Thus the measurements for these buses are extracted from a single test record out of the six
test records to form a partial new record. But the data for the remaining buses of this new partial
record is to be approximated which is explained in the next chapter. The state of grid is to be

estimated by estimating measurements at all the remaining buses from 1 to 11 which are

unobserved.
THREE WINDING
TRANSFORMER EQUIVALENT
3
(6) ceNeRATORS .
SYNCHRONOUS
CONDENSERS

Figure 2.3. IEEE 14 Bus System [15].
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2.4.3 OSU Power System (286 Bus System)

The ultimate goal of this research is to estimate the state of OSU power system with limited
observability due to sparse deployment of PMUs across the campus. Next figure shows the
power flow model of OSU system created for earlier research with a total of 286 buses [14]. Two
generators shown on the north and west of campus are used to represent the equivalence of two
main feeders/substations while the red/blue and green colored lines represent the 20.8 kV and
4.16 kV lines owned by different entities supplying to 185 load buses of total capacity of 25 MW

[14].
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Figure 2.4. OSU campus power flow model.
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As discussed in previous sections, the library comprising of valid power flows for 286 buses is
built to provide a broad coverage of power flow solutions. 125 records are obtained in the
library, as a result of successive power flows conducted. In addition to these 125 library records,
6 test records are obtained in the same manner. Thus the 286 buses power flow library L, consists
of 125 rows as records and 844 columns as channels. The number of channels is 844 due to
several buses in system with no load or generator connected which means each of these buses
would have only two channels |V| and ¢. The test library comprising of the 6 test records which
is not a part of the library L has 844 channels for every record. The power flow library L which is
essentially used for training (i.e. SVD) is kept separate from test library. The present PMUs
installed on the campus of OSU at buses 140, 209 and 244 will be used for testing the SVD
algorithm. Thus for testing purpose, measurements corresponding to these buses are extracted
from a single test record to form a new partial record. The remaining elements of this partial new

record are essentially filled with placeholder values as explained in the next chapter.
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3 Singular Value Decomposition (SVD)
3.1 Theory

Singular Value Decomposition is a matrix analysis technique most commonly used for data

reduction and similarity matching applications. SVD is defined by the equation-
A=UxSxV' (3.1)
where

A is a matrix of dimension m x n, decomposed into an orthogonal space that helps in

clustering the data to develop a relation between the rows and columns of A.

U is a unitary matrix of dimension m x m which forms an orthonormal basis for columns

of matrix A.

V is an n x n dimensional unitary matrix which forms orthonormal basis for the

representation of rows of matrix A.

S is an mx n dimensional diagonal matrix with singular values describing the strength of concepts
connecting the rows and columns of A. The matrix S consists of singular values along its

diagonal in a descending order where S; > S, > S3> S and so on as shown in the matrix below-

s 0 0 0 -
| 0 S, 0 0 |
0 0 S; 0

lo 0 0 S, J
SVD helps in clustering data with an underlying similarity to form ‘concepts.' SVD requires that

we keep the singular values or the concepts which are stronger to further reduce the U, S and V
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matrices. Data reduction for eliminating concepts which do not contribute in providing useful
information about the data, can be obtained by retaining larger singular values and setting the
smaller singular values to zero thus eliminating the corresponding columns and rows of U and V
matrices [16]. Eliminating concepts with lower values can be considered to be analogous to

filtering of data to minimize the noise.

One of the most common applications of SVD is its utilization for recommender systems [17]. In
recommender systems the basic idea is to make a huge set of data, with millions of rows and
columns informative of the relation between inputs and outputs. One example that can be used to
explain this application of SVD is a large table consisting of users and shows as in Netflix. The
table with users along the rows and TV shows along the columns comprises of ratings provided
for all the shows by every user. The high possibility of a single user favoring a particular genre
of shows implies that multiple shows belonging to a single genre like comedy or action are rated
similarly by the user. This can be utilized to cluster data belonging to similar group or the shows
rated in a similar fashion. Performing SVD on this table allows clustering of such data, which
identifies a fundamental pattern of the data and decomposes it to reveal similarity between users
and shows. Concepts are essentially the similarly rated groups or genres of shows here. The
matrix U obtained on performing SVD links the users belonging to original table to concepts.
Similarly matrix V links the shows to concepts and the singular values of S describe the strength
of concepts connecting users and shows. These matrices are further reduced to retain high energy
singular values. The reduced matrix U obtained after setting weaker singular values to zero
consists of users along rows and the concepts along columns. Similarly reduced matrix V
consists of TV shows along rows and the concept scores along columns. The importance of SVD

application is realized after performing matrix operations on these matrices to provide a rating
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for a new user. These matrix operations on U, S and V will be discussed in the following sections

as applied to estimate the state of a power system [19].
3.2 Methodology

Above technique of SVD is now applied to estimate state of a system which has incomplete
observability with limited number of locations of a grid made observable with PMU
measurements. Prior to estimating state of OSU campus power system, SVD is applied to smaller
systems consisting of three and 14 buses. The first step towards estimating state of system is to
build a library by running power flow equations several times to form a library and 6 test records
as explained in the previous chapter. The two approaches using SVD namely - Similarity
Matching and Filtering Method, - will be discussed for these three systems in the following

sections.
3.2.1 Data Scaling

Scaling the power flow library before applying SVD for state estimation is a critical step to have
all the measurements with different units on a single uniform scale. It is important to normalize
the data to flatten the scale of|V|, 6, P and Q measurements to maintain a single scale of
reference common to different units of these measurements. This makes comparison of various
units on a common scale highly convenient. For example, in case of power flow library, analysis
of measurement data belonging to voltage per unit , angle degrees, MW and MVAR units of |V]|,

o, P and Q becomes possible with the normalized data.

There are various methods of normalizing data including Z-scores Transformation, Feature
Scaling and Quantile Normalization. For this research, the power flow library is normalized

using the technique of Quantile Normalization. In this method, the original data library is
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transformed to the source cumulative distribution function data - using the Cumulative
Distribution Function (CDF) with minimum and maximum values set for every channel. Source
CDF is then transformed using inverse of cumulative distribution function to obtain the target
CDF with minimum and maximum values set at 0 and 100. This is a great normalization
technique to normalize all the channels of library to a scale of 0 to 100. The following figures
show a simple demonstration of normalizing a single measurement belonging to a channel of

power (of 2 MW), to the scale of 0 to 100.
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Figure 3.1. CDF calculated for single measurement channel of active power P =2 MW.

Minimum and maximum set for this CDF transformation are the channel minimum and
maximum, i.e., 0 MW and 5 MW respectively.
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Figure 3.2. Inverse CDF calculated to normalize source CDF data. Minimum and maximum set
to 0 and 100.

This normalization is achieved by using the 'cdf' and 'icdf' functions in Matlab given by the

equation,

Lynormatizea = thz}ﬂget(Fsource (L)) (3.2)

where Fsource IS the CDF of original measurements of library L and Farger is the desired CDF of
the processed data. The CDF for target data is set with minimum and maximum value of 0 and
100. An example of 2 records for 3 bus system library and the respective normalized values, are

shown in following tables.

Table 3.1 consists of excerpts from the 3 bus system library, for two records of raw

measurements for all 12 channels.
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Vi a1 P4 Qi Vo o P, Q> Vs 03 P3 Q3
Recordl 1 0 -0.78 -22 1 -0.02 -225 -022 1 0.01 -3.03 -242
Record2 1 0 -1.25 22 1 -0.02 -225 -0.22 1 0.01 -35 -242

Table 3.1. Excerpts from 3 bus system original data measurements for all channels of 2 records.

Table 3.2 shows the normalized values for respective channel measurements for the above two

records.

Vi 0 Pi Q. Vo o P, Q V3 03 P3 Qs
Recordl 50 50 419 O 0 16.66 O 409 99.99 7499 16.80 19.73
Record2 50 50 38.12 0 0 16.66 O 4088 99.99 7499 1142 19.73

Table 3.2. Normalized values for the above channel measurements

This library with data normalized to scale of 0 to 100 is then used for SVD. Another important
criteria of choosing this method of normalization is to have a uniform scale for error calculation
for all four units. Limiting the data to range between 0 to 100, represents the errors in terms of
percentage which is simple to comprehend. This also limits the results of SVD calculations to a
single scale, by ensuring all the measurements are maintained within specified bounds, especially

larger units of active and reactive power in MW and MV AR respectively.
3.2.2 SVD Method

SVD is performed on power flow library using the Matlab function 'svd' to decompose library

matrix and obtain U, S and V' with matrix dimensions as given in the following equation.

j— !
Aannm - UnTXnT * Ny XNy * V NmXNm (3-3)

where
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Ny is the number of records in library.

nm is the number of bus measurements in library - active power, reactive power, voltage

magnitude and angle for all buses.

These matrices are further reduced by retaining larger concepts while the smaller insignificant
concepts are set to zero. A common rule used to determine the total number of concepts that
must be retained is - to keep singular values that account for 90% of the energy in S. This implies
that the sum of squares of retained singular values must be 90% of the sum of squares of all the
singular values [16]. The following equation shows the matrices after dimension is recued to n,

concepts -

Ananr = Uanno * SnoXno * V,noXnm (3.4)

where

Un,xn, is the reduced matrix with records in rows and concept score in columns.

V’nOXnm is the reduced matrix with measurement channels in columns and concept score

in rows, as Vnano would have concepts along columns and channels along rows.

Sn,xn, 1S @ matrix with the concepts and their strengths.

A single row of matrix UnTXnO is the strength of concepts for the corresponding record of the
library. Every element of the first row in Uanno is essentially the strength of every element of
first record in A for all the concepts retained. Similarly for Vnano, every row is a measurement

channel which is connected to the concepts. Thus elements in the first row of this matrix describe

the strength of first measurement channel for every concept.
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3.2.3 Similarity Matching

Above form of the reduced library has its measurements and records projected in a concept
space. This reduced library is used for similarity matching to estimate measurements for the
unobserved buses of system. When PMU measurements at a single or multiple observed buses
are recorded, the measurements for all other unobserved buses, are approximated. The
measurement channels for unobserved buses are approximated with normalized placeholder data.
The normalized placeholder data is an average of normalized measurements for the

corresponding buses in library.

Thus a new record with PMU measurements from an observed bus and placeholder values for
unobserved buses is formed. The new record is then projected to concept space using the

equation

_ T c-1
Cano = T1ixny, ¥ Vapxn, * Sno)m0 (3.9)

where C; x,, is the concept score of the new record r; x,, .

The closest match or the most similar record obtained on comparing this new record with records
of library L in concept space, is then used to approximate unobserved measurements of the new
record. Similarity matching is done by finding the smallest 2-norm value between new record

concept score C;xp,, and the concept scores of library records. The 2-norm is calculated between
Cixn,and every row inUanno. The closest library record is used to estimate the state of system at

unobserved buses. Mean Absolute Error between estimated new record and original test record
(out of the six test records created for reference purpose) is calculated to demonstrate the

accuracy of similarity matching technique.
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3.2.4 Similarity Matching Algorithm

This section attempts to simplify the description of estimating state of a power grid using SVD

technique - similarity matching. This algorithm, used for estimating the state of all three systems

including 3 buses, IEEE system consisting14 buses and OSU campus model consisting of 286

buses is explained as following -

Vi.

Vii.

viii.

Perform power flow equations on power system for various values of load and generation
to create a library L of multiple records and 6 additional records for voltage magnitude
and angle, active and reactive power measurements at all buses.

Normalize the power flow library using Quantile Normalization as explained in section
3.2 -Data Scaling.

Run SVD on normalized power flow library using equation 3.1 to obtain U, S and V
matrices.

Top two concepts are chosen to retain high energy concepts as explained in Section 3.1 to
obtain reduced matrices U, V and S.

A single record Ry, IS selected from the set of six test records and normalized as
explained in Section 3.2.

New PMU measurements from a single bus or multiple buses for|V], §, P and Q are
recorded. These are measurements for the respective observed buses extracted from Ry
to form a vector 'm'.

The remaining unobserved channels for |V|, J, P and Q measurements are approximated
by placeholder values determined by calculating mean of the normalized measurements
for every channel in L to form vector 'p'.

A new record 'r' is then obtained from m and p by r = [p m].
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ix.  Concept scores C for this new record 'r' are computed using Equation 3.5 which translates
'r' to concept space.
X.  C is compared with the concept scores of library records by computing 2-norm between C
and every row of U.
xi.  Record with smallest 2-norm value is the most similar library record to 'r'.
xii.  This most similar record from L is used to estimate measurements to form record- Res:.

xiii.  Steps v. to xi. are repeated for all the six test records.

To determine the accuracy of SVD Similarity Matching algorithm the Mean Absolute Error
is calculated by determining error between estimated new record Res and original test record

Reest given by -
MAE = mean(IRtest - RestD (3.6)

It is important to note that the estimated new record Res is a result of similarity matching
algorithm. Whereas, r is the approximated new record which forms an input to the similarity

matching algorithm.
3.2.5 Filtering Method

Another approach to estimate the state of a power system - called filtering method using SVD is
explored as a part of this research to compare its accuracy with similarity matching method. As
explained in previous section, concept scores are calculated for new record r. This new record r
is approximated using PMU measurements at observed locations and the normalized placeholder
values for unobserved bus measurements. The placeholder values are calculated by computing

average of every channel in the normalized library L for unobserved buses, as explained earlier.
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In this method, concept scores are run backwards through SVD operations. This is given by

equation
Rest X, Cano * gnoXno * I7',nano (3.7)

where the subscripts denote the dimension of each matrix and R is the estimated new

est 1Xn;,
record. By substituting the expression for concept score C; x,,, given by (3.5), the above equation

is further simplified into -
— b c-1 N i7
Rest 1Xny, — T1Xnp * Vimxn, * SnOXnO * SnoXno * V,nano (3.8)

which is reduced to derive the following equation used for filtering method.

— 77!
Rest 1Xny, 7"1Xnm * Vnano *V NmXny (3-9)

The Mean Absolute Error between estimated new record Res and original test record Riest iS
calculated using equation (3.6). MAEs for Filtering Method and Similarity Matching are further

compared and discussed in the next chapter.
3.2.6 Filtering Method Algorithm
Algorithm of the filtering method using SVD for grid estimation is explained in this section.

i.  Perform power flow on power system for various values of load and generation to create
a library L of multiple records and 6 additional records for voltage magnitude and angle,
active and reactive power, measurements at all buses.

ii.  Normalize power flow library L as explained in section 3.2 -Data Scaling.

iii.  Run SVD on normalized power flow library using equation (3.1) to obtain U, S and V

matrices.
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iv.  Top two concepts are chosen to retain high energy concepts as explained in Section 3.1 to
obtain reduced matrices U, V and S.
V. A single record Ry, is selected from the set of six test records and normalized as
explained in Section 3.2.
vi.  New PMU measurements from a single bus or multiple buses for|V|, 6, P and Q are
recorded. These are measurements for the respective observed buses extracted from Ry
to form a vector 'm'.
vii.  Remaining unobserved channels for|V|, §, P and Q measurements are approximated by
placeholder values determined by calculating mean of the normalized measurements for
every channel in L to form a vector 'p'.
viii. A new record 'r' is then obtained from m and p by r = [p m].
iX.  New record ris run backwards using equation (3.9) to obtain Res:.

X.  Stepsv. to ix. are repeated for all six test records.

MAE is calculated by determining error between Res and Ry to check the accuracy of
system state estimation with limited number of PMU measurements. MAE for filtering

method are then compared with Similarity Matching technique in the next chapter.
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4 Results

4.1 Similarity Matching Results for 3 Bus System

The 3 bus system power flow library consists of 100 records along rows and 12 channels for the
measurements of|V|, J, P and Q at every bus. With a single PMU located at bus 3, state of the
system at remaining buses of 1 and 2, is to be estimated. Measurements at buses 1 and 2 are
approximated by using the placeholder data. A new record consisting of these placeholder
measurements and PMU measurements is obtained. Similarity matching algorithm finds a record
most similar to this new record from library L in concept space. Records of the library translated
to the concept space are shown in Figure 4.1. The concept scores of library records are plotted

for the top two concepts retained as discussed previously.
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Figure 4.1. Concept scores for 100 records - 3 bus system.
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Figure 4.2. Enlarged image to show the new record 'r' and its most similar library record.

Figure 4.2 shows how the new record is matched to its closest record of library in concept space

by determining 2-norm. This figure is an enlarged version of Figure 4.1 to show library record -

42 which is the closest match to test record 5.

Table 4.1 shows results tabulated for all the six test records. It shows most similar record
obtained from library L for each test record along with the corresponding 2-norm distance
between them. This table lists the MAE values calculated by finding error between every test
record and its estimated record. As we know that test records are normalized to a scale with
minimum and maximum bound set to 0 and 100 respectively, the MAE values calculated are
indicative of percentage error. While we can see that the first test record is estimated with an

error percentage of 0.35, the second test record is estimated with an error percentage of 25.67.
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Thus for three bus system power flow library consisting of 100 records, the percent error for all

six test records lies between a range of 0 to 26.

Test Record # Most Similar 2-Norm Distance MAE in %
Record
1 47 0.0203 0.35
2 98 0.0071 25.67
3 69 0.0223 11.69
4 46 0.0077 8.96
5 42 0.0107 13.65
6 22 0.0087 13.66

Table 4.1. Results for 3 bus system with 1 observable bus.

4.2 Case 1 (3 Observable Buses)

4.2.1 Similarity Matching Results for IEEE 14 Bus System

Similarity matching algorithm is next demonstrated for the IEEE 14 bus system. For the first
case of 3 observable buses, PMUs are assumed to be located at buses 12, 13 and 14. The state of
remaining unobserved buses - from 1 to 11 is to be estimated. The 111 records of power flow
library are translated to a concept space as shown in Figure 4.3. This figure shows concept scores

of all library records for the top two concepts.
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Figure 4.3. Concept scores for 111 records - 14 bus system.
Figure 4.4 shows the closest library record to fifth test record obtained by determining the 2-
norm distance. It is a zoomed version of Figure 4.3 with the approximated new record and its

most similar record from library in concept space. Approximated new record is then replaced by

this similar record to estimate the state of system for buses from 1 through 11.
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Figure 4.4. Enlarged image to show the new record 'r' and the most similar library record: Case 1
- 14 bus system.

The least 2-Norm distance between new record and library record are tabulated in Table 4.2 for

all six test records. The table also shows MAE calculated for every test record. It can be seen

from this table that the errors for all six test records lie in a range of 4 to 13 percent. This means

that the accuracy of estimating the state of system for unobserved buses of 1 through 11 is in

range of 87 to 96 percent.



Test Record # Most Similar
Record
1 65
2 35
3 7
4 34
5 18
6 49

2-Norm Distance

0.002

0.0007

0.0028

0.0007

0.0006

0.0015

Table 4.2 Results for 14 bus system: Case 1.

4.2.2 Similarity Matching Results for OSU Power System

MAE in %

4.62

4.97

5.96

8.93

4.52

13.43
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The OSU system power flow library consists of 125 records with a total number of 844 channels.

Similar to case 1 of 14 bus system, 3 PMUs are considered located at buses 140, 209 and 244 on

OSU campus. The state of system at remaining buses is to be estimated. Figure 4.5 shows the

125 records of power flow library translated to concept space for top two concepts. The most

similar record obtained on running similarity matching algorithm for the fifth test record is

shown in Figure 4.6. The plot is an enlarged version of Figure 4.5 to show approximated new

record and its most similar record from library L in concept space. The approximated new record

is then replaced by the most similar record, to obtain estimates for all 283 unobserved buses of

the system.
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Figure 4.5. Concept scores for 125 records - 286 bus system.

The results obtained for all six test records for case 1 are tabulated in Table 4.3. MAE calculated

for all six test records lie between 2 and 20 percent. This implies that accuracy of estimating the

state of system is between 80 and 98 percent for six test records.
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Figure 4.6. Enlarged image to show the new record 'r' and the most similar library record: Case 1

- 286 bus system.

Test Record # Most Similar 2-Norm Distance MAE in %
Record
1 31 0.0007 2.74
2 77 0.0009 11.05
3 9 0.0015 19.54
4 31 0.0007 2.68
5 97 0.0004 5.53
6 30 0.0006 4.43

Table 4.3. Results for 286 bus OSU System: Case 1.
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4.3 Case 2 (6 Observable Buses)

4.3.1 Similarity Matching Results for IEEE 14 Bus System

It is interesting to further see an impact of a higher number of observed buses for a substantial
power network on the similarity matching algorithm. To test similarity matching algorithm with
more number of observed buses, a second case of six observed buses is considered. For this case,
buses 9 through 14 are considered to have PMUs installed. The state of system for buses 1
through 8 is to be estimated. Similar to Case 1, the approximated new record is plotted with its
most similar library record obtained from similarity matching. Figure 4.7 shows concept scores
of approximated new record and the most similar library record plotted for fifth test record. We

can see from Table 4.4, record 34 is closest library record for the new approximated record.

Similarly, results of most similar record obtained for all six test records are tabulated in Table 4.4
for the 14 bus system with 6 observed buses. The corresponding 2-Norm distance and MAE are
shown in this table. It is clearly observed by comparing Table 4.2 and Table 4.4 that the percent
MAE reduces significantly with more number of observed buses in a system. This means the
percent accuracy of estimating measurements at unobserved buses increases. Practically, this is
an ideal situation in real time where more number of PMUs makes the state estimation more

accurate. Thus the algorithm developed here follows this ideal real time scenario.
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Figure 4.7. Enlarged image to show the new record 'r' and the most similar library record: Case 2

- 14 bus system.
Test Record # Most Similar 2-Norm Distance MAE in %
Record
1 12 0.0030 6.12
2 58 0.0008 3.67
3 49 0.0012 1.90
4 64 0.0017 5.92
5 34 0.0004 1.75
6 5 0.0035 9.10

Table 4.4. Results for 14 bus system: Case 2.
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4.3.2 Similarity Matching Results for OSU Power System

Similar to case 2 of 14 bus system, the impact of larger number of buses with PMUs is
demonstrated on 286 buses system. Along with PMUs located at buses 140, 209 and 244, buses
245, 246 and 247 are assumed to be observable with PMUs. The optimal placement of PMUs for
these additional 3 buses location has not been considered but is a potential topic of future
research. With PMUs located at above 6 buses, the state of OSU system is to be estimated at
remaining 280 buses. The closest library record to an approximated new record for test record 6
is shown in Figure 4.8. This closest record is then used to replace the approximated new record

to estimate the state at 280 buses. Results for all 6 test records are tabulated in Table 4.5.
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Figure 4.8. Enlarged image to show the new record 'r' and the most similar library record: Case 2
- 286 bus system.
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For 6 observable buses in a 286 bus system, the percent error between estimated record and test
record is in the range of 2 to 17. This implies that the accuracy of estimating the state of system
is in a range of 83 to 98 percent. On comparing results for 286 bus system with 3 and 6
observable buses we see an improved accuracy in estimating the state of system. It is interesting
to note this behavior of the similarity matching algorithm developed, which follows an ideal

scenario of better accuracy of state estimation with more number of PMUs in a system.

Test Record # Most Similar 2-Norm Distance MAE in %
Record
1 31 0.0008 2.73
2 9 0.0017 10.42
3 49 0.0004 16.99
4 31 0.0008 2.67
5 97 0.0003 5.47
6 30 0.0004 4.43

Table 4.5 Results for 286 bus system: Case 2.

To observe an impact of increasing the number of PMUs on similarity matching state estimation
algorithm, the average MAEs for all six test records are plotted for IEEE 14 bus system and OSU
286 buses system. This figure also shows the minimum and maximum MAE of the six test
records. For the 14 bus system, average MAE for six test records is plotted for 7 observed buses.
It is observed that with an increase in number of observed buses the average MAE decreases.
This implies that with more number of observed buses, the accuracy of grid estimation increases.

The values for minimum and maximum MAE for the six test records also reduced towards the
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right side of the plot. Similarly for 286 bus OSU system, average MAE for six test records is
plotted against 140 observed buses. It is clearly observed that although there is a very slow

decrease, the slope shows a reducing trend of MAE when a large number of PMUs are placed in

system.
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Figure 4.9. Average MAE for increasing number of observed buses.

4.4 Filtering Method Results

4.4.1 3 Bus System

The same 3 bus system with 12 measurement channels and 100 records is used to demonstrate
the second algorithm - Filtering Method using SVD. In this method, simple matrix operation is
performed on the approximated new record (with PMU measurements and placeholder values) to

estimate the state of system at all unobserved buses as explained in section 3.2.6. The results



54

obtained for the error between estimated record and test record are tabulated in Table 4.6. As we
know, MAE can be interpreted in terms of percentage because the library data is Quantile
Normalized with a minimum set to 0 and maximum set to 100. From Table 4.6 we can see that,
the percent error lies in a range of 6 to 22 percent. With an accuracy of 78 to 94 percent, filtering
method of SVD is proved to be an equally useful technique to estimate the state of an incomplete

observable system.

Test Record # MAE in %

1 6.07

2 16.05
3 21.85
4 15.65
3) 14.46
6 14.47

Table 4.6. Filtering Method MAE for 3 bus system.

4.4.2 |EEE 14 Bus System

The IEEE 14 bus system used for Similarity Matching is now used to demonstrate the second
algorithm - Filtering method based on SVD technique. The same power flow library consisting
of 111 records and 60 channels along with 6 additional test records are used for filtering method.
The state of system for all unobserved buses is estimated by performing simple matrix operations
on a new partial record using the algorithm explained in Section 3.2.6. This algorithm is

demonstrated for both the cases described for similarity matching method. Case 1 shows results
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obtained from state estimation for 3 observable buses and case 2 shows results obtained for 6
observable buses. It is interesting to note from Table 4.8, that MAE values for case 2 are smaller
than MAE values for case 1 which proves an improved accuracy for 6 PMUs in a 14 bus system.
In an ideal situation with more number of observed buses in a system, state estimation is more
accurate. This comparative study for both cases is conducted to check the performance of

algorithm and compare its behavior to the ideal real time scenario.

Test Record # Case 1- MAE in % Case 2- MAE in % (6
(3 Observable Buses) Observable Buses)
1 4.05 3.80
2 9.13 8.32
3 4.89 4.04
4 10.53 9.13
5 4.30 3.71
6 15.16 12.74

Table 4.7. Filtering Method MAE for 14 bus system.

4.4.3 OSU 286 Bus System

Results for MAE values obtained from filtering method of SVD for the OSU system are
tabulated in Table 4.6. Results are obtained for case 1 and case 2 with 3 and 6 observable buses
respectively. It is observed that the highest error for case 1 and case 2 is 17 percent. This shows
filtering method is an equally good technique for estimating the state of system. It is

comparatively a simpler technique as it involves simple matrix operations after decomposing the
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power flow library using SVD. Comparative study for case 1 and case 2 can be used to show the
increase in state estimation accuracy with increase in the number of PMUs from 3 to 6. Case 1
for 286 bus OSU system with 3 observable buses shows that MAE lies in a range of 2 to 20
percent. Whereas in case 2, it can be seen that MAE for all six test records lies in a range of 2 to
17 percent. Although there is an extremely small decrease in the error percent with an increase in
the number of PMUs from 3 to 6 for a large 286 bus system, the reduced MAE is evident for first

four test records.

Test Record # Case1-MAE iIn% (3 Case1l- MAE in % (6
Observable Buses) Observable Buses)
1 4.14 4.13
2 8.79 8.37
3 17.07 17.03
4 4.17 4.15
5 2.95 2.95
6 4.97 4.97

Table 4.8. Filtering method MAE for OSU power system.

To further check the impact of increasing number of PMUs in the system on the accuracy of state
estimation using Filtering method, average MAEs for all six test records are plotted against the
number of observed buses. Figure 4.9 shows the plot for average MAEs and number of buses
with PMUs. This plot also shows the minimum and maximum MAE for the six test records.

Optimal placement of PMUs based on the electrical distance is not considered for this plot and is
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a potential topic for future research. It can be seen in the first plot of Figure 4.10, that average
MAE for six test records has reduced with an increase in number of buses with PMUs. This
clearly confirms the ideal situation of an increased state estimation accuracy with a higher
number of observed locations in a power grid. Also, the minimum and maximum MAE for one
observed bus is seen to be close to 5 and 15 respectively. As the number of observed buses
increases along the right side of plot, the minimum and maximum MAE is also seen to reduce.
For the second plot in Figure 4.8, although the decrease is in extremely small steps, it can be
seen as the number of observed buses increased to 140 for the larger system of 286 buses, the
MAE clearly follows a decreasing trend. With these two plots it can be shown that filtering
method algorithm confirms the idea of achieving a better accuracy of grid estimation with higher

number of PMUs in a system.
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Figure 4.10. Average MAE for 7 and 140 observed buses for each system.
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4.5 Summary

The results of similarity matching and filtering method for substantial sized grid consisting 14
bus as discussed above, are summarized in the plot shown in Figure 4.11. A comparison between
both the methods — similarity matching and filtering, - applied to an IEEE 14 bus system can be

obtained from this plot. It is clearly seen, that filtering method is equally accurate while

compared to similarity matching.

IEEE 14 Bus System

Similarity Matching
Filtering
.

Average MAE
[}

1 2 3 4 5 6 7
NMumber of Observed Buses (Buses with PMUs) #

Figure 4.11. Average MAE for 7 observed buses - 14 bus system. This figure shows the plots for
both similarity matching and filtering method.

Similarly the results of similarity matching and filtering methods for OSU system with 286 buses
are shown in Figure 4.12. It shows the decreasing trend in the MAE for 140 observed buses

considered. The dip seen in similarity matching curve could be due to the optimal placement of



59

PMU at bus 60. On comparing similarity matching and filtering for 286 bus OSU system, it is

seen that although similarity matching has marginally better accuracy, filtering is an equally

accurate technique suitable for state estimation.

OSU 286 Bus System

I - Similarity Matching
L Filtering

Average MAE
@

2.5

1 2 3 4 5 6 7
(x20) Number of Observed Buses (Buses with PMUs)
Figure 4.12. Average MAE for 140 observed buses - 286 bus system. This figure shows the plots

for both similarity matching and filtering method.
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5. Conclusion

Grid estimation for a system with incomplete observability at real time is not a simple task
considering the limited number of PMU measurements available. This research explores SVD
methods to estimate the state of a grid at real-time or near real-time with a few PMUs deployed
across the system. Two approaches of state estimation of grid investigated in this research are

Similarity Matching and Filtering employing the technique of SVD.

An important conclusion that can be drawn from this study is, that normalization of the power
flow library prior to using it for state estimation is not a trivial concept. It is shown that
normalizing the data of|V|, 6, P and Q belonging to different measurement units to a uniform and
more comprehensible scale is critical. Scaling the data using Quantile Normalization with the
minimum bound set to zero and the maximum set to 100 allows the interpretation of mean

absolute errors calculated in terms of percentage.

The 3 bus system used to demonstrate the grid estimation method for a partially observable
record shows that when a single bus of the system is made observable, the errors lie within a
range of 0 to 26 percent for the six test records. The first test record had a mean absolute error of
almost zero percentage which means the accuracy of estimating state of the system was almost
100%. At the same time, the MAE of the second record is 25.6 percent which means the
accuracy with which the state of unobserved buses is estimated is 74.4 percent. For the filtering
method, MAE lies in a range of 6 to 22 percent. This implies a 78 percent to 94 percent accuracy
in estimating the state of a 3 bus system with a single observable bus. Thus both the methods -
similarity matching and filtering method using SVD are equally accurate in estimating the state

of system.
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The IEEE 14 bus system is next used to demonstrate state estimation using SVD for a
comparatively larger substantial grid before applying it to the OSU system. For the first case of 3
observable buses for 14 bus system, accuracy of estimating the state of system is in the range of
86 percent to 95 percent. Similarly for filtering method, the least MAE is 4.05 percent for the
first test record and the highest MAE is 15.16 percent for the test record 6. With an error percent
lying in a range of 4 to 16 percent for the 14 bus system with 3 buses observable, the best
accuracy of estimating the state of 11 unobserved buses is 96 percent. Thus similarity matching

method and filtering method can both be valuable methods to estimate the state of a system.

Further the algorithms are applied to estimate the state of OSU campus with sparse distribution
of PMUs across the campus. For 286 bus system we can see that percentage of mean absolute
error between estimated record Res and test record Rees: lies between 3 and 20 percent. This
indicates 97 percent accuracy can be obtained using similarity matching method. While the
results of filtering method for the same case with 3 observable buses show a maximum MAE of
17 percent. This means the accuracy of estimating state for unobserved 283 buses of system is at
least 83 percent. Thus both the SVD methods prove to be a great tool to estimate the state of a

grid at real time or near real-time with partial observability.

The next conclusion that can be drawn from this research is that with an increase in the number
of observed buses with PMUs in a system, the MAE error accuracy reduces, thus the state
estimation for|V|, 6, P and Q measurements is more accurate. This is an ideal real-time scenario
which is confirmed by the algorithms developed through this research. For both systems of 14
buses and 286 buses, a second case with 6 observable buses each was studied. The results clearly
show a reduced MAE for this case as compared to first case with 3 buses with PMUs. Figure 4.8

and 4.9 confirm that both the algorithms for SVD developed through this research successfully
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follow the concept of better state estimation of a grid with more number of observed
measurements. Although a slow decrease in average MAE for the larger 286 bus system is
observed, the clear decreasing trend with a larger number of PMU observed buses is evident.
From Figure 4.11 and Figure 4.12, it can be concluded that similarity matching method although

marginally, has better accuracy compared to filtering method.

Finally it can be concluded that both state estimation methods based on SVD technique are
relatively faster compared to other machine learning techniques. The time taken to decompose
power flow library by performing SVD is 0.485 seconds. Similarity matching method requires
comparatively more number of computations after decomposing the power flow library to
calculate concept scores and then find a closest matching library record. This algorithm used for
estimating state of system requires a computation time of about 0.57 seconds. On the other hand
filtering method involves simple matrix operations after the library has been decomposed which
makes it comparatively faster. Thus the time taken to obtain an estimate using filtering method is
estimated to be 0.52 seconds. The computation speed of both the methods can be compared
based on time taken to estimate the state of system. It can be observed that the decomposing of
large power flow data using SVD is computationally expensive and comparatively more time
consuming. Once the library is decomposed, following matrix operations are comparatively
simple and fast. Based on the time taken by each algorithm, it can be clearly concluded that
filtering method is relatively faster compared to similarity matching method. Therefore it is
demonstrated that the SVD techniques have a valuable application to power system estimation

particularly for applications in which speed and sparseness are key.
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