SPECIES COMPOSITION AND DISTRIBUTION OF MARINE NEKTON IN THE PACIFIC OCEAN OFF OREGON

by

William G. Pearcy

AEC Progress Report No. 1 Reference 62-8
September 1961 - May 1962 May 1962
SPECIES COMPOSITION AND DISTRIBUTION OF MARINE NEKTON IN THE
PACIFIC OCEAN OFF OREGON

Progress Report No. 1
1 September 1961 through 31 May 1962

by

W. G. Pearcy
Department of Oceanography
Oregon State University

Atomic Energy Commission
Contract AT(45-1)-1726

Approved:

Wayne V. Burt, Chairman
Department of Oceanography

Reproduction in whole or in part is permitted for any purpose of the United States Government.
Reference 62-8
May 1962
INTRODUCTION

Knowledge of the pelagic organisms in vast areas of the open ocean is very limited. This is particularly true of the small nekton or swimming forms such as fishes, squid, prawns and euphausiids, which are important as intermediate animals in the food chain and are preyed upon by species such as salmon and albacore. Although small nekton and macroplankton are often known to undertake daily vertical migrations, virtually nothing is known about their horizontal movements or their seasonal variations in time and space. There is a need, therefore, for basic research on the ecology and behavior of these common pelagic animals. A biological study in the Pacific Ocean off Oregon is desirable: first, because several species of small nekton found to accumulate the radionuclide Zinc-65 discharged by the Columbia River may be instrumental in the transport of this isotope at sea; secondly, because the area has never been adequately surveyed, so our knowledge of the composition of the pelagic community is meager.

During the summer of 1961, we initiated an investigation of the ocean off Oregon which entails systematic sampling throughout the year with a high-speed midwater trawl. Comparison of seasonal differences in species composition and relative abundance is obviously premature at this time and must await the completion of a year's sampling. This initial progress report, therefore, is confined to a preliminary listing of the animals collected, an assessment of sampling problems, and the variations associated with daily vertical migrations and depth distribution.

METHODS

Collections of nekton and macroplankton are made with a six-foot Isaacs-Kidd midwater trawl (Isaacs and Kidd, 1953; Aron, 1962) sampling along a line of stations extending over 100 miles from the Oregon coast (Fig. 1). Standard oblique tows are taken monthly at night in the upper 200 m at the stations off Newport, and bimonthly at the stations off the mouth of the Columbia River and Coos Bay (weather permitting), in conjunction with the regular hydrographic cruises. The procedure for the standard 200 m oblique is to lower the net until 730 m of cable is out, then to retrieve at a constant speed of about 30 m per minute, all while steaming at 6 knots. Geographic position is recorded at the start and end of tow. Wire-depth relationships are determined either with a bathythermograph or a depth gauge.

In addition to these samples along offshore lines of stations, repeated samples are taken during a 12-48 hour period at a station 50 miles off Newport over the continental slope. These include either (1) replicate tows to 200 m depth and (2) tows to different depths from the surface to over 1000 m.
In the laboratory, all fishes, squid and other large nektonic animals are sorted from the sample and the remaining macroplankton is subsampled with a plankton splitter for further examination.

RESULTS

A total of 171 collections made with the midwater trawl to date indicate the success of the sampling program. Stations were regularly sampled even during the winter, a period for which little data existed on the nektonic animals off the Oregon coast.

A partial list of the animals identified from the midwater samples is given in Table I-A (Fishes) and Table I-B (Squid, crustacea, and other invertebrates). Several animals of great interest were collected, including a whale fish or Cetomimidae, which may represent a new genus, and a new species of gonatid squid (Pearcy and Voss, ms).

The fishes (Table I-A) are dominated by bathypelagic species with incidental members of either (a) epipelagic species of the open ocean or coastal waters or (b) juveniles of benthic forms. Since sorting, identification, and tabulation of the data are completed only for the midwater fishes at present, the analyses herein will be confined to these animals, particularly those captured 50 miles off Newport (NH-50), where a detailed study is being made to determine variability and depth distribution.

Variation of Tow Lengths and Fish Catch

A total of 28 replicate tows were taken at NH-50 to a depth of about 200 m. Figure 1 shows a circle at NH-50 encompassing the locations of these collections. The average time to retrieve 730 m of cable from 200 m depth was 29 minutes (variance, s² = 8.4), and the average total time of the hauls was 44 minutes, with a higher variance (s² = 33). Since there was appreciable variation in the time for descent of the net, due mainly to unavoidable delays at the surface (weather conditions or operational difficulties) the total time and catch of bathypelagic fishes for these tows was plotted to examine the relationship between the duration of the tow and the number of fish captured. Figure 2 shows a considerable variation in the catch for both short and long tows. The slope of the regression, by the method of least squares, between total fish catch (Y) and the time (X), is non-significant (F = 4.06); moreover, no relationship between these variables is apparent for the most extensive series of tows during a single night (solid circles). These data suggest that few fish are captured while the net is delayed at the surface streaming in the wake of the vessel or while it is descending.
FIGURE 1. Location of midwater trawl stations off Oregon. Numbers designate the distance in miles from the coast. The large circle at NH-50 circumscribes the replicate series.
FIGURE 2. The total number of bathypelagic fishes collected in replicate tows of various duration at NH-50.
TABLE I. Preliminary list of animals collected by midwater trawling.

A. Fishes, including their presence in tows to 200, 500, and 1000 meters depth at NH-50. (identifications by W. Pearcy and M. Laurs)

<table>
<thead>
<tr>
<th>Species</th>
<th>Depth in Meters (NH-50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-200</td>
</tr>
<tr>
<td>Agonidae</td>
<td></td>
</tr>
<tr>
<td>Argyropelecus olfersii</td>
<td>+</td>
</tr>
<tr>
<td>Aristostomias scintillans</td>
<td></td>
</tr>
<tr>
<td>Bathophilus flemingi</td>
<td>+</td>
</tr>
<tr>
<td>Bathylagus milleri</td>
<td></td>
</tr>
<tr>
<td>B. ochotensis</td>
<td>+</td>
</tr>
<tr>
<td>B. pacificus</td>
<td>+</td>
</tr>
<tr>
<td>Chauliodus macouni</td>
<td>+</td>
</tr>
<tr>
<td>Cololabis sairi</td>
<td>+</td>
</tr>
<tr>
<td>Cyclothone acclinidens</td>
<td>+</td>
</tr>
<tr>
<td>C. microdon</td>
<td>+</td>
</tr>
<tr>
<td>C. pallida</td>
<td></td>
</tr>
<tr>
<td>C. signata</td>
<td>+</td>
</tr>
<tr>
<td>C. sp. "A"</td>
<td></td>
</tr>
<tr>
<td>C. sp. "B"</td>
<td></td>
</tr>
<tr>
<td>Danaphos oculatus</td>
<td></td>
</tr>
<tr>
<td>Diaphus theta</td>
<td>+</td>
</tr>
<tr>
<td>Entosphenus tridentatus</td>
<td></td>
</tr>
<tr>
<td>Hierops crokeri</td>
<td></td>
</tr>
<tr>
<td>H. thompsoni</td>
<td></td>
</tr>
<tr>
<td>Holtbyrnia polycoeca</td>
<td></td>
</tr>
<tr>
<td>Idiacanthus antrostomus</td>
<td></td>
</tr>
<tr>
<td>I. sp.</td>
<td></td>
</tr>
<tr>
<td>Lampanyctus leucopsarus</td>
<td>+</td>
</tr>
<tr>
<td>L. nannochir</td>
<td></td>
</tr>
<tr>
<td>L. regalis</td>
<td>+</td>
</tr>
<tr>
<td>L. ritteri</td>
<td>+</td>
</tr>
<tr>
<td>L. n. sp.</td>
<td></td>
</tr>
<tr>
<td>Lestidium ringens</td>
<td></td>
</tr>
<tr>
<td>Liparidae</td>
<td></td>
</tr>
<tr>
<td>Lycocephalus mandibularis</td>
<td></td>
</tr>
<tr>
<td>Macropinna microstoma</td>
<td></td>
</tr>
<tr>
<td>Melamphaes rugosus</td>
<td></td>
</tr>
<tr>
<td>Microgadus proximus</td>
<td></td>
</tr>
<tr>
<td>Myctophum californiense</td>
<td></td>
</tr>
<tr>
<td>Nectoliparis pelagicus</td>
<td></td>
</tr>
<tr>
<td>Nemichthys avocetta</td>
<td></td>
</tr>
<tr>
<td>Neoscopelarchoides dentatus</td>
<td></td>
</tr>
<tr>
<td>Scorpaenichthys marmoratus</td>
<td></td>
</tr>
<tr>
<td>Searsidae</td>
<td></td>
</tr>
<tr>
<td>Sebastodes</td>
<td>+</td>
</tr>
<tr>
<td>Tactostoma cacropus</td>
<td>+</td>
</tr>
<tr>
<td>Tarletonbeania crenularis</td>
<td>+</td>
</tr>
<tr>
<td>Thaleichthys pacificus</td>
<td></td>
</tr>
</tbody>
</table>
TABLE I-A. Fishes (Continued)

LARVAL FISH

Cottidae
Eel leptocephalus
Engraulis sp.
Glyptocephalus zachirus
Microstomus pacificus
Myctophidae
Pleuronectiformes
Scorpaenidae
Sebastodes spp.
Stomiatoidea
Thaleichthys sp.
Unidentified

B. Invertebrates

CEPHALOPODA (identifications by W. Pearcy)

Japatella heathi
Rossia pacifica
Onychoteuthis banksii
Gonatidae
Gonatus fabricii
Gonatus n. sp.
Gonatopsis borealis
Chiroteuthis veranyi
Octopodoteuthinae
Abraliopsis sp.
Taonis sp.
Galiteuthis sp.
Toxeuma sp.

EUPHAUSIACEA (identifications by F. Hebard)

Euphausia pacifica
Nematobrachion flexipes
Nematoscelis sp.
Stylocheilon sp.
Tessarabrachion oculatus
Thysanoessa longipes
Thysanoessa spinifera
<table>
<thead>
<tr>
<th>COPEPODA (identifications by F. Hebard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acartia danae</td>
</tr>
<tr>
<td>Aetideus armatus</td>
</tr>
<tr>
<td>Calanus cristatus</td>
</tr>
<tr>
<td>Calanus finmarchicus</td>
</tr>
<tr>
<td>Calanus plumchrus</td>
</tr>
<tr>
<td>Candacia pachydaactyla</td>
</tr>
<tr>
<td>Eucalanus bungii</td>
</tr>
<tr>
<td>Euchaeta japonica</td>
</tr>
<tr>
<td>Gaetanus simples</td>
</tr>
<tr>
<td>Heterorhabdus papilliger</td>
</tr>
<tr>
<td>Metridia lucens</td>
</tr>
<tr>
<td>Metridia pacifica</td>
</tr>
<tr>
<td>Metridia sp.</td>
</tr>
<tr>
<td>Oithona spinirostris</td>
</tr>
<tr>
<td>Oithona similis</td>
</tr>
<tr>
<td>Oncaea borealis</td>
</tr>
<tr>
<td>Pleuromamma quadrungulata</td>
</tr>
<tr>
<td>Pleuromamma xiphias</td>
</tr>
<tr>
<td>Pseudocalanus minutus</td>
</tr>
<tr>
<td>Scaphocalanus magnus</td>
</tr>
<tr>
<td>Scottocalanus persecans</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUNICATA (identifications by L. Hubbard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oikopleura sp.</td>
</tr>
<tr>
<td>Salpa fusiformis</td>
</tr>
<tr>
<td>Salpa aspera</td>
</tr>
<tr>
<td>Iasis (Salpa) zonaria</td>
</tr>
<tr>
<td>Salpa sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MYSIDACEA (identifications by W. Renshaw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnathophausia ingens</td>
</tr>
<tr>
<td>Eucopia australis</td>
</tr>
<tr>
<td>Boreomysis rostrata</td>
</tr>
<tr>
<td>Boreomysis sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PTEROPODA (identifications by W. Renshaw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limacina helicoides</td>
</tr>
<tr>
<td>Clione limacina</td>
</tr>
</tbody>
</table>
TABLE I-B. Invertebrates (Continued)

CHAETOGNATA (identifications by W. Renshaw)

- *Sagitta bierii*
- *S. decipiens*
- *S. euneritica*
- *S. elegans*
- *S. macrocephala*
- *S. minima*
- *S. scrippseae*
- *S. zetesios*
- *Eukrohnia bathypelagica*
- *E. fowleri*
- *E. hamata*

MEDUSAE (identifications by W. Renshaw)

- *Sarsia princeps*
- *S. tubulosa*
- *Aglantha digitale*
- *Colobonema sericeum*
- *Crossota norvegica*
- *C. rufobrunnea*
- *Pantachogon haeceli*
- *Halistaura cellularia*
- *Aequorea sp. (fragments)*
- *Aegina citrea*
- *Solmissus marshalli*
- *Atolla vanhoefini*
- *A. wyvillei*
- *Periphylla periphylla*

SIPHONOPHORA (identifications by W. Renshaw)

- *Vogtia spinosa*
- *Nectodroma dubia*
- *N. reticulata*
- *Nectopyramis diomedae*
- *Lensia conoidea*
- *Abyla sp.*
- *Nanomia bijuga*
- *Stephanomia sp.*
- *Velella velella*

Identifications by the following ichthyologists are acknowledged:

- Stomatoidea - Robert H. Gibbs
- Bathylagidae - Daniel M. Cohen
- Myctophidae - Robert L. Wisner
- Gonostomiatiidae - B. N. Kobayaski
Therefore, based on the data available, a direct comparison of total catch of each standard tow appears justified to show major differences in catches.

Daily Variations in Catches

A basic problem of comparing the relative abundance of animals is the determination of the variability of successive samples. Such a measure of short term variation is essential as a basis for evaluating differences between samples separated in time or space.

To enable a more detailed comparison of variations within a short period, the catches of the four most abundant fishes are shown for various periods of night and day in Table II. These fishes are a stomatoid, Tactostoma macropus, and three myctophids or lantern fishes, Lampanyctus leucopsarus, Tarletonbeania crenularis, and Diaphus theta. The differences between day and night catches in the table are obvious, and the virtual evacuation of the upper 200 m during the day by these bathypelagic species is interpreted as a reflection of their daily vertical migrations to deep water during the day and into surface waters at night.

Although differences between day and night catches are obvious, with intermediate numbers occurring during twilight periods, there is no evident trend in the availability of fishes during the night which indicates any major variations associated with time. High or low catches may appear irregularly for these four species throughout the night. Catches close to sunset or sunrise are not consistently lower than those made around midnight, suggesting that fish ascend quickly to the upper 200 m one to two hours after sunset and generally stay within this zone until shortly before dawn. Neither is there evidence for a midnight sinking or dawn rise (cf. Cushing, 1951) from this depth interval. Hence, though fishes may be migrating through the 0-200 m column of water during the night, we may assume that all tows during this period are sampling the same migrating population. (Table II also shows that during the winter the fishes are present in the surface waters at an earlier local time and remain for a longer period; this is expected if submarine light intensity is the major stimulus for their migratory behavior.)

Assuming that tows during the night represent replicate samples, a basis is provided for the estimation of sampling variability—a useful statistic for evaluating the significance of subsequent comparisons of spatial and temporal variations. Coefficients of dispersion, \(\frac{X}{s^2} \) (Blackman, 1942), were calculated from the data given in Table II; they ranged from 0.3 to 12.3. If the variance of a random (Poisson) distribution is equal to the mean, the departure from randomness will be reflected by variance. Coefficients of dispersion greater than 1 suggest aggregation, and those less than 1 suggest uniform distribution. The significance of the deviation from unity is determined by the formula...
TABLE II. Catches of four common species of bathypelagic fish in upper 200 m at NH-50.

<table>
<thead>
<tr>
<th>HOUR</th>
<th>1600</th>
<th>2000</th>
<th>0000</th>
<th>0400</th>
<th>0800</th>
<th>1200</th>
<th>1600</th>
<th>2000</th>
<th>0000</th>
<th>0400</th>
<th>0800</th>
</tr>
</thead>
</table>

DAY

<table>
<thead>
<tr>
<th>Date</th>
<th>Trawl No.</th>
<th>13 July 1961</th>
<th>14 July 1961</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. macropus</td>
<td>3* 4 6**</td>
<td>8*</td>
<td>10 11 12 14</td>
</tr>
<tr>
<td>L. leucopsar</td>
<td>0 0 0</td>
<td>26</td>
<td>5 14 5 1</td>
</tr>
<tr>
<td>T. crenularis</td>
<td>0 0 3</td>
<td>0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>D. theta</td>
<td>0 0 5</td>
<td>0 1 0 10</td>
<td></td>
</tr>
</tbody>
</table>

NIGHT

<table>
<thead>
<tr>
<th>Date</th>
<th>Trawl No.</th>
<th>17 July 1961</th>
<th>18 July 1961</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. macropus</td>
<td>3 2 1</td>
<td>3 1 1 0</td>
<td>0</td>
</tr>
<tr>
<td>L. leucopsar</td>
<td>8 5 6</td>
<td>15 25 9 1</td>
<td>0</td>
</tr>
<tr>
<td>T. crenularis</td>
<td>4 30 1</td>
<td>7 11 3 0</td>
<td>0</td>
</tr>
<tr>
<td>D. theta</td>
<td>13 9 3</td>
<td>8 11 2 0</td>
<td>0</td>
</tr>
</tbody>
</table>

DAY

<table>
<thead>
<tr>
<th>Date</th>
<th>Trawl No.</th>
<th>9 August 1961</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. macropus</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>L. leucopsar</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>T. crenularis</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>D. theta</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

NIGHT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T. macropus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L. leucopsar</td>
<td>2</td>
<td>4</td>
<td>3 5</td>
<td>0</td>
</tr>
<tr>
<td>T. crenularis</td>
<td>0</td>
<td>1</td>
<td>1 0</td>
<td>0</td>
</tr>
<tr>
<td>D. theta</td>
<td>3</td>
<td>2</td>
<td>5 3</td>
<td>0</td>
</tr>
</tbody>
</table>

* Depth - 130 m.
**Depth - 241 m.
\[1 + \sqrt{\frac{2n}{(n-1)^2}} \]

where \(n \) is the number of samples. Of the 16 coefficients calculated for the four common fishes, 6 were significantly less than expected for a random distribution, indicating uniformity, and three were higher, indicating aggregation. If the average catch of a species is plotted against its variance for each series, (Fig. 3), it can be seen that when the catches are low the points are distributed close to the line where \(s^2 = \bar{x} \), whereas at high catches there is a marked departure from this relationship, depicting clumping at high densities. A similar relationship has been found for marine plankton (e.g., Barnes and Marshall, 1951). Since aggregation was demonstrated only in samples taken in July, there may be seasonal differences in distribution related to schooling or breeding activity. More samples are necessary to examine this possibility, as little is known about the social behavior of these fishes, such as schooling, etc.

DEPTH DISTRIBUTION

Although a detailed analysis of depth distribution is possible only with opening-closing nets, some general observations can be made from available data from successive tows to different depths. The occurrence of the fishes in tows to 200 m, 500 m, and 1000 m at NH-50 is summarized on the right side of Table I-A. Certain species were absent from surface collections and were present only in collections made to 500 m or below, regardless of the time of day. Such deep-water forms include:

- Bathylagus milleri
- B. pacificus
- Cyclothone acclinidens
- C. pallida
- Danaphos oculatus
- Holtbyrnia polycoeca
- Lampanyctus nannochir
- Melamphaes rugosus
- Neoscopelarchoides dentatus

These data give no information on the maximum depth of any species or differences in relative abundance with depth if numbers are low, since contamination of collections occurs when the net is descending or ascending, and it is not possible to determine the exact depth of capture. Nevertheless, the catches of three lantern fishes in the surface waters at night were high enough to permit some comments on their vertical distribution.

Figure 4 shows the differences in the catches of these Myctophidae collected in 12 oblique tows of approximately the same duration made to
FIGURE 3. Catch variability of four bathypelagic fishes as indicated by replicate tows.
FIGURE 4. Vertical variations in the catches of three lantern fish during the night at NH-50 shown as a percent of the total catch of each species (number in parentheses).
various depths during the night at NH-50. (The number of fish is given as a percent of the species total.) These species clearly demonstrate differences in relative abundance at different depths. Well over one-half of Tarletonbeania crenularis were collected right at the surface, whereas relatively few were taken in tows below 10 meters. (This is the only species which has been netted under night-lights.) Neither Diaphus theta and Lampanyctus leucopsarus were collected at the surface but were found in highest numbers at intermediate depths, 10-25 m and 25-30 m respectively.

REFERENCES

DISTRIBUTION LIST FOR PROGRESS REPORT NO. 1

Jane 1952

Dr. Arthur E. Maxwell, Head
Geophysics Branch (Code 416)
Office of Naval Research
Washington 25, D. C. (6)

Dr. John Lyman
Associate Program Director for
Earth Sciences (Oceanography)
National Science Foundation
Washington 25, D. C.

Office of Naval Research
Washington 25, D. C.
Attn: Biology Branch (Code 446)

Office of Technical Services
Department of Commerce
Washington 25, D. C.

Director
U. S. Coast and Geodetic Survey
Department of Commerce
Washington 25, D. C.
Attn: Division of Tides and
Currents

Director, Bureau of Commercial
Fisheries
U. S. Fish and Wildlife Service
Department of Interior
Washington 25, D. C.

U. S. Fish and Wildlife Service
Woods Hole, Massachusetts

Bureau of Commercial Fisheries
U. S. Fish and Wildlife Service
Post Office Box 3830
Honolulu 12, Hawaii
Attn: T. S. Austin

U. S. Bureau of Commercial Fisheries
Fish and Wildlife Service
P. O. Box 271
La Jolla, California

Director
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts

Project Officer
Laboratory of Oceanography
Woods Hole, Massachusetts

Director Narragansett Marine Laboratory
University of Rhode Island
Kingston, Rhode Island

Bingham Oceanographic Laboratories
Yale University
New Haven, Connecticut

Chairman
Department of Meteorology and Oceanography
New York University
New York 53, New York

Gulf Coast Research Laboratory
Post Office Box
Ocean Springs, Mississippi
Attn: Librarian

Director
Lamont Geological Observatory
Torrey Cliff
Palisades, New York

Dr. Harold Haskins
Rutgers University
New Brunswick, New Jersey

Director
Chesapeake Bay Institute
Johns Hopkins University
121 Maryland Hall
Baltimore 18, Maryland

Oceanographic Institute
Florida State University
Tallahassee, Florida

Director, Marine Laboratory
University of Miami
#1 Rickenbacker Causeway
Virginia Key
Miami 49, Florida

Head, Department of Oceanography and
Meteorology
Texas A and M College
College Station, Texas

Director
Scripps Institution of Oceanography
La Jolla, California
The Honorable Warren G. Magnuson
Chairman
Committee on Interstate and Foreign Commerce
United States Senate
Washington, D.C.

State of Calif. Water Pollution Control Board
Fisheries Project Leader
Humboldt State College
Arcata, California

American Geological Institute
2101 Constitution Ave., N.W.
Washington 25, D.C.
Att: Martin Russell

U.S. Dept. of Commerce
Coast and Geodetic Survey
Washington 25, D.C.
Att: Geodetic Branch
Mr. Hyman Orlin

U.S. Fish and Wildlife
2027 Montlake Boulevard
Seattle, Washington

Virginia Fisheries Laboratory
Gloucester Point
Virginia

Fisheries Research Board of Canada
Nanaimo Station
Nanaimo, B.C.

Institute for Marine Biology
University of Oslo
Oslo-Blindern, Norway

Dove Marine Laboratory
Cullercoats, Northumberland
England

Marine Biological Association
Plymouth, England

Scottish Marine Biological Association
Edinburgh, Scotland

Marine Laboratory
Scottish Home Dept.
P.O. Box 101, Torry
Aberdeen, Scotland

Institute of Oceanography
University of British Columbia
Vancouver 8, B.C.

Inter American Tropical Tuna Commission, SIO
La Jolla, California

Dr. Robert Fernald
Friday Harbor Laboratories
Friday Harbor, Washington

Hopkins Marine Station
Pacific Grove
California

Dr. Joel Hedgepeth, Director
Pacific Marine Laboratories
Dillon Beach, California

Director
Marine Biological Laboratory
Woods Hole, Massachusetts

Chief of Naval Research
Office of Naval Research
Department of the Navy
Washington 25, D.C.

Fisheries-Oceanography Library
203 Fisheries Center
c/o Mrs. Helen D. Strickland, Librarian
University of Washington
Seattle 5, Washington

Prof. G. Thorson
Marine Biological Laboratory
Elsinore, Denmark

Dr. Pierre Brunel
Station de Biologie Marine
Grande-Riviere, Caspe Sud
P.Q., Canada

Dr. W. Aron
Marine Sciences Section
General Motors Corp.
Santa Barbara, Calif.

Mr. Paul T. Macy
2725 Montlake Blvd.
Seattle 2, Washington
Dr. K. Banse
Dept. of Oceanography
Univ. of Washington
Seattle, Washington

Dr. Gilbert Voss
1 Rickenbacker Causeway
Miami 49, Florida

Dr. D. M. Cohen
U. S. National Museum
Washington 25, D. C.

Dr. N. Wilimovsky
Institute of Fisheries
Univ. of British Columbia
Vancouver, B. C.
Canada

Dr. K. D. Carlander
Dept. of Zoology
Iowa State University
Ames, Iowa

Mr. R. L. Wisner
Scripps Institution of Oceanography
La Jolla, California

Dr. Wm. E. Ricker
Biol. Station
Nanaimo, B. C., Canada

Dr. N. B. Marshall
British Museum of Natural History
Cromwell Rd.
So. Kensington
London, England

Dr. A. L. Hasler
Dept. of Zoology
University of Wisconsin
Madison, Wisconsin

Dr. A. Welander
School of Fisheries
University of Washington
Seattle, Washington

Department of Zoology
University of Washington
Seattle, Washington

Dr. O. E. Sette
450-B Jordan Hall
Stanford, California

Dr. T. Abe
Zoological Institute
University of Tokyo
Tokyo, Japan

Dr. T. S. Rasch
Instit. Oceanology
Acad. Sci. USSR
8 Bakhrushin Str.
Moscow, J-127, U.S.S.R.

Dr. T. Yusa
Tohoku Regional Fisheries Lab.
Aomori Pref., Japan

Fisheries Laboratory
Lowestoft, England

Dept. of Biology
University of Oregon
Eugene, Oregon

Oregon State University

Sam Bailey
Head, News Bureau

V. H. Cheldelin, Prof.
Director, Science Research Institute

R. E. Dimick
Fish and Game Management

P. R. Elliker
Microbiology

F. A. Gilfillan
Dean, School of Science

H. P. Hansen
Dean of Graduate School

M. Popovich
Dean of Administration

F. E. Price
Dean of Agriculture

James H. Jensen
President, O. S. U.

Library, O. S. U.