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ABSTRACT

The mixing lengths for heat and momentum are computed from seven levels of eddy correlation data during
the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99). A number of formulations of the
mixing length are evaluated, including surface layer similarity theory, several hybrid similarity theories, a
formulation based on the Richardson number, and a formulation based on the local shear. A formulation of the
mixing length is examined, which approaches z-less similarity for large z and surface layer similarity close to
the ground surface. A generalized version includes a dependence on boundary layer depth, which approaches
the usual boundary layer height dependence for neutral conditions. However, for many of the observational
cases, a boundary layer did not exist in the usual sense, in that turbulence was generated primarily above the
surface inversion layer and occasionally extended downward toward the surface. For these cases, inclusion of

z-less turbulence is crucial.

1. Introduction

Existing models of the stable boundary layer perform
reasonably well in many situations but fail in some com-
mon situations. For example, the boundary layer depth
is often not definable in situations where the turbulence
is generated primarily by shear above the surface in-
version layer and then diffuses downward toward the
surface. Misrepresentation of such influences and un-
derprediction of mixing in models may be one of several
effects causing overprediction of surface cooling (De-
lage et al. 2002). Most numerical models of the stable
boundary layer require definition of the boundary layer
depth as a fundamental cornerstone of the parameteri-
zation, either in terms of eddy diffusivity profile func-
tions or as one of the length scales in the parameteri-
zation of the mixing length.

Boundary layers are difficult to define when the prin-
cipal source of turbulence is shear generation of tur-
bulence semidetached from the surface (Smedman et al.
1993; Mahrt and Vickers 2002), sometimes occurring
at the top of the surface inversion layer. Such shear
generation could be associated with enhancement of
shear by the nocturnal low-level jet (e.g., Blackadar
1957; Ostdiek and Blumen 1997), modulation of shear
by internal gravity waves (Chimonas 2002), acceleration
associated with decoupling (Derbyshire 1999) or gen-
eration of turbulence associated with unstable wavesand
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density currents (Sun et al. 2003). In these cases, shear-
generated turbulence may intermittently burst down-
ward toward the surface (Nappo 1991; Ohya 2001; Cux-
art et al. 2000). This situation has been referred to as
the upside-down boundary layer by Mahrt (1999) and
others, although this usage of the term boundary layer
does not satisfy traditional boundary layer concepts. We
postpone introduction of additional terminology until
the physics is better understood. The literature contains
a number of multilayer conceptual models of the noc-
turnal **boundary layer” (e.g., Beyrich 1997), although
different studies emphasize different variables and are
difficult to intercompare.

Theregion of generation of turbulence at higher levels
occurs in what is normally referred to as the *‘residual
layer.”” We find this term too passive in that the tur-
bulence is actively generated by shear associated with
nocturnal flow accelerations. Perhaps *‘ z-less’ layer is
amore suitable term. Here z-less turbulence (Wyngaard
1973) does not scale with height above the ground nor
the boundary layer depth. The present study indicates
that z-less conditions are more preval ent than previously
thought, even in arelatively windy environment.

An additional modeling difficulty isthat the nocturnal
boundary layer may be extremely thin, less than 10 m
deep (Smedman 1988). Models generally do not employ
sufficient vertical resolution to resolve very thin stable
boundary layers. In the worst scenario, the boundary
layer is so shallow that a surface layer does not exist;
that is, the roughness sublayer (Raupach 1994; addi-
tional referencesin Mahrt 1999) occupies more than the
lowest 10% or 20% of the boundary layer. In this case,
Monin-Obukhov theory does not apply at any level.
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Based on eddy correlation data at seven levels on a
60-m tower, this study constructs a general formulation
of the mixing length that includes cases where the
boundary layer is not definable.

2. Data

The dataset includes six levels of sonic anemometer
data from the 60-m tower in the Cooperative Atmo-
sphere-Surface Exchange Study-1999 (CASES-99;
Poulos et al. 2002). In addition, we include data from
the 1.5- and 5-m levels on a minitower, 10 m to the
side of the main tower. The data have been quality con-
trolled using an improved version of Vickers and Mahrt
(1997). The number of complete vertical profilesisre-
duced to 160 h, mainly due to missing data at the 10-
and 20-m levels and to elimination of caseswith airflow
through the tower prior to reaching the eddy correlation
sensors. The fluxes are computed from a height- and
stahility-dependent averaging length for computing per-
turbation quantities (Vickers and Mahrt 2003), which
decreases from a height-dependent val ue of greater than
500 s at neutral conditions to a minimum value of 30
s for very stable conditions. The decreasing window
width recognizes the decreasing scale of turbulent trans-
port with increasing stability and proximity to the
ground surface and attempts to minimize the influence
of mesoscale motions on the computed perturbation
guantities. Fluxes are then averaged over 1-h periods to
reduce random flux sampling errors.

The mean shear is computed using the propeller an-
emometer and wind vane data for 15 m and above, and
also uses the sonic anemometersat 5 and 1.5 m. Profiles
of potential temperature on the main tower are computed
from aspirated shielded thermistors at 5, 15, 25, 35, 45,
and 55 m. The gradients are computed from simplefinite
differencing, which sometimes led to rapid variation
with height and contributed to the scatter in various
relationships examined in this study. The Richardson
number was computed from the gradients of potential
temperature and wind as computed above. The calcu-
lation of the nondimensional gradient of potential tem-
perature for near-neutral conditionsis problematic, part-
ly because the number of near-neutral casesissmall and
estimation of the weak heat flux and weak vertical gra-
dient of potential temperature in near-neutral conditions
is vulnerable to error. This is especialy true near the
surface where the resolution of the vertical gradient is
poor, and we are forced to use the surface radiation
temperature for the lower boundary condition. The sur-
face radiation is computed from an average of the five
values measured in a network about the tower (Burns
et a. 2003).

For this analysis, very stable cases are excluded (z/
L > 2) where relative flux sampling errors are often
large. The fit for the nondimensional gradients (section
3) is confined to the range 0—20. To compute the bin-
averaged ratios, the numerator and the denominator are
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averaged first to avoid the ratio averaging problem
where very large ratios occur for a few records due to
very small fluxes in the denominator.

Close to the surface, where part of the flux can be
carried by eddies not resolved by the sonic anemome-
ters, the flux may be underestimated. Unfortunately, in
thin stable boundary layers, the flux must be measured
very closeto the surfacein order to remain in the surface
layer where Monin—Obukhov similarity theory isvalid.
Both flux loss due to pathlength averaging by the sonic
anemometer and vertical flux divergence between the
surface and observational level may cause the surface
flux to be incorrectly estimated.

The boundary layer depth is estimated from profiles
of the buoyancy flux with consideration of the profiles
of the momentum flux and vertical velocity variance.
Theboundary layer depth ismore easily defined interms
of the buoyancy flux because the small stratification
above the surface inversion layer often forces the buoy-
ancy flux to small values even when the turbulence en-
ergy and momentum flux do not decrease with height.
In this sense, the height dependence of the buoyancy
flux is more regular than that for the turbulence energy
and momentum flux. Even so, the buoyancy flux still
increases with height for part or al of the tower layer
in many cases due to near-collapsed turbulence close to
the surface and significant turbulence at higher levels
with some stratification. The boundary layer depth based
on the 160 buoyancy flux profiles, where data are avail-
able at all levels, is subjectively estimated as top of the
layer where the buoyancy flux decreases monotonically
with height and approximately vanishes. The buoyancy
flux profiles are categorized as

1) 44 cases where the buoyancy flux decreases with
height to small values and then remains relatively
small at higher levels in the tower layer, alowing
relatively clear definition of the boundary layer depth
in terms of the buoyancy flux;

2) 40 cases where a boundary layer depth is definable
but the buoyancy flux does not remain small above
the boundary layer;

3) 86 cases where the turbulence generally increases
with height across the tower layer, although some of
these cases may include a very shallow layer near
the surface where the buoyancy flux decreases with
height, belonging to class 2 as well;

4) 6 cases where the buoyancy flux was relatively in-
dependent of height, implying adeep boundary layer,
and 7 cases where the buoyancy flux varied errati-
cally with height, sometimes corresponding to lay-
ering.

Thus, a traditional boundary layer could be defined
only about 25% of the time, and even less often when
posed in terms of the momentum flux or turbulence
energy. The buoyancy flux increased with height for a
significant fraction of the tower layer for approximately
53% of the cases.
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Several of the relationships examined in this study
are subjected to self-correlation (e.g., Hicks 1978). For
example, the mixing length is proportional to the square
root of the stress (local friction velocity) while several
of the models of the mixing length contain the friction
velocity, guaranteeing some correlation even for purely
random data. As one measure of the self-correlation, we
randomly redistribute the observed val ues of thefriction
velocity, heat flux, wind speed, wind shear, and potential
temperature gradient. This process is carried out by as-
signing a record number to each of the N records. The
friction velocity for the first new random record is ex-
tracted from an original record chosen at random. This
process is carried out for each variable until a new ran-
dom record is determined. Then the mixing length is
computed from the friction velocity and wind shear for
this random record. This process is repeated until a set
of N new random records are constructed. For the new
random records, we compute the mixing length from
the randomized data for each of the N records and then
compute the variance explained by the various mixing-
length formulations for the N records. This entire pro-
cess is repeated for 1000 realizations and then the var-
iance explained is averaged over all of the realizations.

3. Flux formulation

Turbulent transport within the stable boundary layer
is often parameterized in terms of a stability-dependent
mixing length or eddy diffusivity. This approach as-
sumes that the flux is related to the local vertical gra-
dient. Such parameterizations have not been rigorously
compared with eddy covariance measurements above
the surface layer in the stable boundary layer. They have
been evaluated moreindirectly in terms of overall model
performance.

The turbulent momentum flux for the u component
can be written as

Z\ou
W= K2 1
wu m<h)az (1)

A similar expression is written for the v component.
Using Brost and Wyngaard (1978) and matching with
surface layer scaling, Troen and Mahrt (1986) derived
a formulation for the eddy diffusivity as

_Us(z) z( zY
Kn = ¢m(L>hKh(l h) , 2
where p = 2.0 and u, and L are computed from surface
fluxes and the nondimensional shear ¢, is defined as

2\ _ wziu
d)m(E) - Uy 02° 3

where L is the Obukhov length (Monin and Obukhov
1954) and « is von Karman’s constant. For stable con-
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ditions, the nondimensional shear is often approximated
as (Dyer 1974)

¢n(ZL) = 1 + BZIL. (4)

The Monin—Obukhov similarity theory assumes that the
stress, mean wind, and mean wind shear vectors are all
aligned.

With the traditional derivation of the mixing length
formulation (normally accredited to Prandtl; see Arya
1998), one assumes that velocity perturbations are in-
duced by vertical movement of fluid elementsin ashear
flow such that the magnitude of the velocity fluctuation
is approximated as

L

Vv I ot (5)
where | isthe vertical displacement of the fluid element,
V' is a velocity scale for the horizontal velocity fluc-
tuations and the u direction is locally aligned to the
wind shear for this derivation. This derivation assumes
that the momentum of the fluid element is conserved
during the displacement in an environment with no mean
directional shear, which, in turn, assumes that the fluid
element is not influenced by mixing with the flow
around it, nor influenced by pressure perturbations. Both
processes would normally reduce V'. This formulation
also assumes that the shear is constant with height. With
height-dependent shear, one would need to more care-
fully evaluate the gradient on the scale of the mixing
length itself.

Neglecting the difference between the horizontal and
vertical scale of the eddies, the incompressible mass
continuity equation scales as

T ©)

From Egs. (1), (5), and (6), one traditionally derivesthe
eddy diffusivity for momentum as

Kn = I2<8—U>, (7)

0z

which formally defines the mixing length. Gradientsare
assumed to be positive or replaced with the absolute
value. Slightly different derivations can be found in
Stull (1990) and Arya (1998). Alternatively, one can
obtain the same relationship by defining the mixing
length in terms of dimensional considerations to be

U*
ouloz’

| ()
Allowing for the difference between mixing of mo-
mentum and scalars, the perturbation of the scalar, such
as potential temperature, is written as
a0
0 =l,—, 9
s ©
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where |, is the scalar mixing length. Combining Egs.
(5), (6), and (9), the heat flux is estimated as

a@(au)
==,
az\ 9z

in which case the eddy diffusivity for heat becomes

wo = — (10)

ou
K, = I“IE' 11
The observed mixing length for heat behaves signifi-
cantly differently than that for momentum (section 7).

a. Mixing-length formulations

Generally, mixing-length formulations do not distin-
guish between momentum and scalar transport. A com-
mon early formulation for the mixing length (Blackadar
1962) is written as

| = KZ
1+ kz/Ag

where A is an adjustable length scale. Ballard et al.
(1991) specifies A to be one-third of the boundary layer
depth. They use this value above the boundary layer as
well.

A variety of mixing-length schemes have been de-
rived that allow more flexibility than the original Black-
adar scheme and in particular include the influence of
stahility and approach Monin—-Obukhov similarity the-
ory at the surface. These schemes (e.g., Therry and
Lacarrere 1983; Ballard et al. 1991) still include the
Blackadar formulation as one of the functional depen-
dencies but are generally too complex to directly eval-
uate from existing data. Alternatively, Eq. (12) can be
generalized to include a dependency on Richardson
number (Savijarvi and Kauhanen 2002).

When the boundary layer is well defined, the mixing
length can alternatively be expressed in the format

KZ z\°
|—a<1—ﬁ>,

where p is a nondimensional coefficient. This relation-
ship approaches surface layer similarity value for small
z/h, reaches a maximum in the interior, and vanishes at
the boundary layer top. Although similar, this approach
isnot equivalent to the mixing length that can be derived
from the boundary layer formulation of the eddy dif-
fusivity [EqQ. (2)]. With these two relationships, both the
eddy diffusivity and the mixing length are predicted to
increase with increasing boundary layer depth. The mix-
ing-length formulations considered in this study are
summarized in Table 1.

(12)

(13)

b. zless vertical mixing based on hybrid similarity

For very stable conditions, the height above ground
and the boundary layer depth may no longer be relevant
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TaBLE 1. Mixing-length formulations not requiring boundary

layer depth.
Formulation Equation Evaluation

Blackadar (1692) (12)

Hybrid. (17) Sections 4, 5; Figs. 2, 3
Garratt (1992) (21)

Kim and Mahrt (1992) (22)

Shear length (23) Sections 2, 6; Fig. 2
B.V.-w (24) Sections 2, 6; Fig. 2
B.V.-u. (30) Sections 2, 6; Fig. 2

scaling variables. Zilitinkevich and Mironov (1996) de-
rive a limiting Richardson number as a form of z-less
turbulence [limiting case of their Eqg. (10)]. With this
approach, the mean shear becomes proportional to the
Brunt-Vaisala frequency with strong stratification, cor-
responding to height-independent Richardson number.
The log-linear law for the nondimensional shear [Eq.
(4)] becomes independent of z in the limit of large z/L
(e.g., Sorbjan 1989, section 4.2.3; Monin and Yaglom
1971). For very stable conditions (/L > 1), the second
term on the right-hand side of the expression for the
nondimensional shear [EqQ. (4)] dominates. Then, Egs.
(3)—(4) lead to the z-less asymptotic limit
Ly

B oz
where the Obukhov length and friction velocity are now
computed from local values of fluxes at level z, inwhich
case the Obukhov length is usually symbolized as A.
Then the mixing length becomes

ux(2) = (14)

(15

where /3 is order of 10, Thisis one of the termsin
the mixing-length formulation of Delage (1974). As z
approaches the surface A approaches L. In actuality,
most observational investigations of similarity in the
stable boundary layer are, sometimes unknowingly,
posed in terms of A because the surface layer is often
below standard observational levels for strong stability,
such as2 or 10 m, at least for the present dataset (section
5). That is, the fluxes at the standard observational levels
are different from the surface fluxes. In fact, a surface
layer may not even exist for some stable boundary lay-
ers, as noted in the introduction.

Since the fluxes at level z may not be equal to the
surface fluxes, we must replace the surface layer non-
dimensional shear with a ‘““hybrid” nondimensional

shear:
o, (2) = =8
A u.(2 az
Then, the similarity prediction of the mixing length can
be expressed as

(16)
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Nondimensional Gradients

0.0 0.5 1.0 1.5 2.0 25

z/A

Fic. 1. Bin-averaged ®,, and &, as a function of ZA based on local
fluxes at level z for al levels combined. The solid lineis 1 + 3.7 Z/A.

(17)

where

® (7)) = 1 + B2\ (18)

We will refer to Eqg. (18) as hybrid similarity theory
since it approaches Monin—Obukhov similarity theory
as z approaches the surface and approaches z-less sim-
ilarity theory as z becomes sufficiently large. Hybrid
similarity theory is not as rigorous as matching bound-
ary layer similarity theory with surface similarity the-
ory, but itissimpler and more practical, does not require
definition of aboundary layer depth, and performs quite
well (section 4). Equation (18) is not equivalent to *‘1o-
cal similarity” theory, as will be discussed below.

Based on the CASES-99 data, the best fit of the data
to Eq. (18) is obtained with 8 = 3.7 as shown in Fig.
1. Here, the observed mixing length is bin averaged
according to intervals of z/A. Note that @, asymptotes
to near unity as z/A approaches zero. The value of B =
3.7 issmaller than those reported in the literature (Hogs-
trom 1996) for Monin—-Obukhov similarity theory (A —
L). A fit to the present data for small zZA below 10 m
yields higher values of B; the exact value depends on
the stability range included in the analysis. The values
of @, for ZA > 1.5 are overestimated by the linear
model (Fig. 1). That is, ®,, increasesalittle more slowly
than linear for large stability, as found in previous stud-
ies (Beljaars and Holtslag 1991; Garratt 1992, p. 52;
Vickers and Mahrt 1999). Here, we still employ the
linear version in order to include the z-less asymptote.
For zZ/A > 2 (not shown), the scatter continues to in-
crease with increasing z/A, suggesting observational dif-
ficulties and/or inapplicability of similarity theory. The
values of the nondimensional gradient of potential tem-
perature for the present data are often not trustworthy
for near-neutral conditions (section 2) and are omitted
in Fig. 1 for ZA < 0.5.
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c. Local similarity

In local similarity theory, A replaces height above
ground in the definition of the nondimensional shear
such that (Nieuwstadt 1984)

, _ KA JU
"™ U2 0z’

(19)

Sorbjan (1986) concisely summarizes local similarity
theory as consisting of three hypotheses: 1) scaling ar-
guments can be constructed in terms of local fluxes at
level z, 2) the nondimensional shear @/, can be ex-
pressed as a function of z/A and that those functions can
be approximated by the same mathematical form as
those in Monin—Obukhov similarity theory, and 3) the
height dependence of the fluxes can be modeled in terms
of z/h. Hypotheses 2 and 3 introduce the height above
ground and the boundary layer depth as scaling vari-
ables so that the ““local” similarity theory is not purely
local. This set of conditions is quite different from z
less similarity where height above the ground and the
boundary layer depth are not relevant length scales.

The nondimensional shear for local similarity theory
[Eg. (19)] does not analytically lead to a z-less asymp-
totic limit as z/ A approaches large values, in contrast to
the asymptotic limit for Monin—Obukhov similarity the-
ory [Eq. (14)]. However, Sorbjan (1988) has noted that
the nondimensional gradients for local similarity theory
computed from eddy correlation data do indeed ap-
proach constants for z/A greater than about 5, although
the asymptotic value of @/, varies between studies, ap-
parently due to other complications such as sloped ter-
rain (Sorbjan 1988).

The relationship between &/ and Z/\ is difficult to
evaluate from data because both functions contain A and
the statistical relationship between them can be domi-
nated by self-correlation (section 2) for the datain this
study. For thisreason, local similarity theory isnot eval-
uated further.

d. Other z-less formulations

A general z-less formulation of the mixing length can
be developed in terms of the local gradient Richardson
number

| = f(Ri). (20)

Garratt (1992, p. 246) presents a typical format of the
mixing length in meters to be

1

= =

where c is considered to be different for momentum
transfer and scalar transfer, although specific values of
C are not given.

Kim and Mahrt (1992) recommend the formulation
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CZ
Ri + c,|

exp(—c,Ri) + (22)

=1,

With the coefficients (c,, c,, c;) specified in Kim and
Mahrt (1992), the mixing length decreases from slightly
greater than the asymptotic mixing length (l,) at neutral
stability (Ri = 0) to vanishingly small values at large
Ri. Although the above formulation was fit to eddy cor-
relation data, Ha and Mahrt (2001) found that |, in Eq.
(22) had to be reduced from 50 to 15 m in order to
improve the overall performance of their boundary layer
scheme. It is not known if this reduction of the asymp-
totic mixing length is due to compensation for other
inadequacies in their model or if the empirical formu-
lation was biased.

The bulk potential temperature and velocity gradients
can be directly converted to a shear length scale with
the formulation

(AU)?
(9/0)AG’

where C(z, AZ) is a hondimensional coefficient, which,
for a fixed z and Az is inversely proportional to the
Richardson number. This formulation avoids specifi-
cation of the neutral asymptotic length scale but istruly
z-less only if C(z, AZ) becomes independent of height.

Another simple formulation of the mixing length for
z-less conditions can be derived from scale analysis or
parcel theory as

| = S=C(z A2 (23)

Oy
| = Cov—s

. 4

where N is the Brunt—Vaisala frequency and C,, is a
nondimensional coefficient. Equation (24) is not useful
in models unless o, is available. A second version of
this length corresponds to replacing o, with the local
value of u,(2) so that

_~ U@
I = C, N (25)
where C, is a nondimensional coefficient. The utility of

the above z-less formulations is examined in section 6.

4. Observed mixing length

Given observations of the mean shear and momentum
flux, the mixing length has been computed from Eq. (8).
The various mixing-length formulations are first ex-
amined in terms of the fluxes measured at the 40-m
level. This level is often above the boundary layer but
not too close to the tower top where estimates of vertical
gradients of potential temperature and momentum are
less reliable. Discrimination between relationships is
easier in the upper part of the tower layer where the
various formulations do not perform as well compared
to those closer to the surface. The poorer performance
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at higher levels may be partly due to larger eddies and
longer adjustment timescale.

The mixing length systematically decreases with in-
creasing nondimensional stability parameters (Figs. 2a—
b). The relationship of the mixing length to Z/A (Fig. 2b)
shows less scatter compared to the relationship to the
Richardson number, partly because of inverse self-cor-
relation due to the fact that the mixing length is propor-
tional to u, and z/\ is inversely related to ui. Of the
various predictors of the mixing length (Figs. 2c—), the
mixing length shows the strongest relationships with xz/
®,, and u,/N, due partly to self-correlation in that both
predictors contain u,. Again, @, is based on local mo-
mentum fluxes at level z Linearly relating the mixing
length to «kz/®,, at the 40-m level explains 42% of the
variance of the mixing length, of which 7% is due to
self-correlation. That is, using random data, the variation
of kzI®,, explains only 7% of the variance of the mixing
length, even though the mixing length and «z/®, are both
proportional to the momentum flux. The spurious self-
correlation does not dominate because of the ** relatively”
small variation of surface friction velocity compared to
the wind shear. Linear models based on ¢, /N and u,/N
explain 73% and 87% of the variance, respectively, with
0% and 17% of the variance explained caused by self-
correlation. The model based on the shear length scale
explains only 15% of the variance at this level.

At levels below 40 m, the variance explained increases
substantially, ranging from 75%-90% for the similarity
prediction kzZ/®,,,, 76%-94% for u,/N, 77%-92% for o,/
N, and 36%-56% for the shear length scale. However,
near the surface, more than half of the variance explained
by u,/N is due to self-correlation. The reason for the
generaly better performance of the models closer to the
surface is not understood, although the relationship of
the nondimensional shear to ZA (Fig. 1) in general tends
to degrade somewhat for large values of Z/A, which are
more often found at higher levels. The relationships of
the mixing length to the Richardson number and the shear
length scale exhibit more scatter compared to the other
predictorsin Fig. 2. Both the Richardson number and the
shear length scale involve ratios of gradients, which may
be more vulnerable to observationa errors.

The present dataindicate two advantagesfor the hybrid
similarity theory: the observed mixing length tends to be
linearly proportional to kz/®,, and, more importantly, xz/
®,, captures most of the height dependence of the mixing
length. The other formulations require a coefficient,
which depends strongly on height above ground near the
surface or requires matching to a surface-based similarity
theory near the surface. We first analyze the hybrid sim-
ilarity prediction kZ/®,, in more detail.

5. Hybrid similarity theory

The hybrid similarity prediction xz/® ,, captures most
of the vertical variation of the mixing length so that no
adjustment is required for height; that is, the observed
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Fic. 2. The relationship between the observed mixing length and (a) a bulk Richardson number, (b) Z/A, (c) the hybrid similarity
prediction kz/®,, (d) the shear length scale [Eq. (23)], (€) /N, and (f) u,/N for the 40-m level.

mixing length from different heights tends to collapse limiting behavior of surface layer similarity theory near
along the sameline (Fig. 3) with relatively small scatter.  the surface and its z-less behavior for large Z/A. At Z/A
This collapse does not occur with the other z-less re- = 2, the difference between Eq. (18) and the z-less
lationships. Part of the success of kZ/®,, is due to its prediction [Eqg. (15)] has decreased to about 10%.
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10

14 16 18 20

Kz/®,

Fic. 3. Relationship between the observed mixing length for (@)
momentum and (b) heat, and the hybrid similarity prediction (x axis)
for all of the levels combined. The dashed line denotes the 1:1 re-
lationship.

a. Small z limit

In thelimit of small z, where the local fluxes are close
to surface values, hybrid similarity theory approaches
the Monin—Obukhov similarity theory. For most of the
present data, expressing Eqg. (4) in terms of surface flux-
es instead of local fluxes reduces the performance of
the prediction of the mixing length, especialy at higher
levels. Boundary layer depths are often less than 20 m,
in which case surface layer similarity theory is tech-
nically valid only in the lowest few meters. With poorly
defined boundary layers, fluxes at higher levels are also
not well correlated with surface fluxes. The failure of
similarity theory at levels aslow as 5 m isindicated by
the composited diurnal variation of the aerodynamic
roughness length (Fig. 4). The roughness length was
computed using the Monin—-Obukhov similarity theory
and the observed heat and momentum fluxes. At 1.5 m,
the roughness length for momentum is approximately
independent of the time of day. However, for the 5- and
10-m levels, the aerodynamic roughness length is more
variable and unredlistically large at night. Since the
physical roughness of the surface does not change, this
variation must be due to inapplicability of surface layer
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FiG. 4. The dependence of the composited momentum roughness
length on time of day for the 1.5-, 5-, and 10-m levels.

similarity theory. As a consequence, the study of the
surface layer similarity theory requires eddy correlation
measurements within the lowest few meters. As an
aside, the thermal roughness length varies erratically
even at 1.5 m over this simple surface, as found by Sun
(1999) over a similar simple grassland.

b. Influence of boundary layer depth

The formulation kz/®,, exhibits a tendency to over-
estimate the mixing length at higher levels for cases of
large kZ/ D ,,, possibly due to constraints by the boundary
layer depth in some cases. This formulation does not
apply to the near-neutral boundary layer (® =~ 1), where
the observed mixing length is expected to reach a max-
imum in the interior of the boundary layer and then
decrease with height, becoming small near the boundary
layer top. The mixing length is constrained by the
boundary layer depth and presumably a function of z/
h. To include the influence of boundary layer depth for
neutral conditions but to reduce its influence for stable
conditions, the similarity prediction [Eg. (18)] can be
combined with the mixing-length formulation based on
the boundary layer depth [Eq. (13)] with the format

KZ 1 z\’
e

where again @, isthe local nondimensional shear based
on the local momentum flux at level z. For the present
data, p = 1.5 provides a reasonable fit to the data al-
though the lack of sensitivity of the overall model per-
formance to the value of p does not allow awell-defined
determination. When @, becomes large (stable condi-
tions), this relationship approaches the similarity pre-
diction kz/®,,, which performed well for al levels in
the above analysis. When conditions approach neutral
stahility (®,, = 1), the above relationship approaches
the mixing length based on boundary layer depth [Eq.
(13)]. The tower does not allow evaluation of the mixing

(26)
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length across the near-neutral or heated boundary layers,
which are normally much deeper than the tower.

For stable conditions, boundary layer similarity the-
ory [EQ. (13)] can be applied only to those cases where
a definable boundary layer is established. However, the
boundary layer depth isalways available in most models
or can be added with additional parameterization. Any
improvement of Eq. (26) over the simpler formulation
kz/®,, appears to be insignificant for the present data
for stable conditions. The inclusion of boundary layer
depth in Eq. (26) does allow what isthought to be proper
behavior in the neutral case while having little effect
on the significantly stable conditions.

For unstable conditions, where @ becomes | ess than
unity, the modulation of z/h by 1/®,, in Eq. (26) leads
to overestimation of the mixing length and

KZ z\’
=212
w7

becomes a better approximation.

(27)

6. Pure zless predictions
a. Richardson number

The observed mixing length isreasonably well related
to the gradient Richardson number at all of the tower
levels. Several features transcend the behavior of the
mixing length at all levels, whether it is within the
boundary layer or aboveit. The mixing length decreases
sharply from near-neutral conditions (Ri = 0) to mod-
estly stable conditions (Ri = 0.20). This decrease is
rather systematic considering the large random flux er-
rors and difficulties of estimating mean vertical gradi-
ents (section 2). For stronger stability (Ri > 0.20), the
value of the mixing length tends to become independent
of the Richardson number with large scatter.

To model the z-less mixing length based in terms of
the Richardson number, we pursue a simple dependence
on the form

1) = 1,(2) exp(—aRi) + b, (28)

which becomes z-less if |, becomes independent of
height. The length scale b alows for some residual tur-
bulence at large Richardson numbers, which may be
particularly useful for application to grid-averaged flux-
es where some turbulence may occur in the grid area,
regardless of the magnitude of the Richardson number
computed from grid-averaged variables. Based on the
present data, we nominally recommend b = 0.5 m, al-
though this residual mixing length appears to increase
with height. Savijarvi and Kauhanen (2002) found sim-
ulation of the very stable boundary layer to beimproved
by specifying a minimum background turbulence al-
though the results were sensitive to the numerical value
of this specification.

The parameter a for the present datais approximately
0.18 and is not particularly sensitive to height. This
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approach is simpler than that of Kim and Mahrt (1992)
and seems to adequately approximate the present data.
The principal closure problem is specification of the
mixing length at neutral stability |,. As an adequate
approximation for the present data, the neutral mixing
length increases linearly with height to a value of 8 m
at the 20-m level, and then is approximately independent
of height above 20 m. The increase of the near-neutral
mixing length with height is approximately xz, although
this agreement with «z might be fortuitous. The gen-
erality of the 8-m asymptotic value is not known and
the specification of a dimensional quantity is unap-
pealing.

b. The shear length scale and buoyancy-based length
scales

A nonlinear function of the shear length scale [Eq.
(23)] isrequired for an optimum fit to the data. A linear
relationship is useful if one neglects the near-neutral
cases. For the linear relationship, the coefficient C(2) is
typically about 1.5 X 10-2 but varies somewhat errat-
ically with height. The disadvantage of this approach is
that the prediction asymptotes to infinity at neutral con-
ditionswhere A® vanishes, at |east for afixed Az. How-
ever, with increasing mixing length, the relevant poten-
tial temperature difference needs to be computed over
a larger vertical scale. For modeling applications, con-
tinuous adjustment of the depth over which the gradient
is computed may not be practical.

The z-less predictions, ¢,/N and u,/N, also require
determination of nondimensional coefficients. For much
of the data,

| = 0.250,/N (29)

is a good approximation. The main exception is near
the surface where the increase of the mixing length with
increasing o, /N becomes nonlinear, increasing at a
slower rate for large values of o, /N.

The relationship

| = 0.5u,/N (30)

is also a reasonable approximation, except near the sur-
face where the rate of increase of the mixing length with
increasing u,/N decreases with larger values of u,/N.
Forming nonlinear relationships near the surface is not
very appealing because the dimensionality is no longer
strictly correct.

Constructing a general formulation of the mixing
length from the above pure z-less relationships either
requires height-dependent coefficients near the surface
or some sort of matching with surface layer similarity
theory. Simple pseudomatching will take the form

1 1
11, 4,

I 1, «kz

(31)

where |, is one of the z-less predictions in this section
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Fic. 5. The Prandtl number based on bin-averaged values of the
mixing lengths for intervals of the Richardson number, as a function
of the Richardson number for all levels combined. For the largest
Richardson numbers, the averaged Prandtl number increases dra-
matically, athough flux sampling errors are probably large. Also
shown are the relationship from Kim and Mahrt (solid straight line)
and Pr = 1.0 + 3.7 Ri (dashed line).

and ¢,, is based on the surface fluxes. An alternative
algebraic form can be written as

L 1
W) + (dlk2)

With these formulations, the mixing length is con-
strained by either stratification or the ground surface,
depending on which is more dominant. A dependence
on boundary layer depth can beincorporated in the same
manner as in section 5 so that

o122
e o, h)°

Equations (31)—(33) are more cumbersome than Eqg. (26)
and no more successful. Data over the entire boundary
layer for near-neutral conditions is required for defini-
tive evaluation.

(32)

(33

7. Heat transfer

The mixing length for heat shows similar behavior
to that for momentum with two exceptions. It generally
exhibits more scatter (Fig. 3) and it decreases more rap-
idly with increasing stability. In strongly stratified flow,
the eddy diffusivity for momentum may be larger than
that for heat due to momentum transfer by nonlinear
gravity waves (e.g., Monti et al. 2002). Based on several
datasets, Kim and Mahrt (1992) have formulated this
dependence as

—=2"=pPr =15+ 3.08Ri. (34
The present data also show a similar rapid increase of
the Prandtl number with increasing Richardson number
to values around 3 for a Richardson number of about
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0.5 (Fig. 5). The scatter islarge, partly because of errors
in the computation of the gradients, which strongly con-
taminate the computed Richardson number. In Kim and
Mahrt, the neutral value of 1.5 was determined to pro-
vide the best overall fit for the stable region rather than
correctly modeling the neutral limit. In fact, the present
data suggest that the neutral limit is less than unity,
approximately 0.6, although we do not trust the estimate
of the vertical gradient of potential temperature in near
neutral conditions (section 2). We suggest a new for-
mulation by conservatively choosing the neutral Prandtl
number to be unity (Fig. 5) so that

Pr = 1.0 + 3.7Ri. (35)

The dependence of the Prandtl number on the Richard-
son number is not compatible with existing Monin—-Obu-
khov similarity and, if real, could explain some of the
scatter in the analyses in preceding sections. However,
definite conclusions are not possible because of the dif-
ficulty of estimating vertical gradients and diffusivities.

8. Conclusions

The mixing lengths for heat and momentum are com-
puted from seven levels of eddy correlation data during
CASES-99. Of the various formulations of the mixing
length, the hybrid similarity theory relationship kzZ/®,
performed best in that additional height dependent co-
efficients were not required and the rel ationship between
the observed mixing length and the hybrid similarity
length scale was linear at all levels. Here, @, is based
on local fluxes and not surface values. This formulation
approaches Monin—-Obukhov similarity theory near the
surface and approaches a z-less prediction at higher lev-
els. A generalized version of this hybrid mixing length
[Eg. (26)] includes a dependence on boundary layer
depth, which approaches the usual boundary layer
height dependence for neutral conditions. However, for
many of the observed stable cases, aboundary layer did
not exist in the usual sense, in that turbulence was gen-
erated primarily above the surface inversion layer and
intermittently diffused down to the surface. In the gen-
eralized formulation of the mixing length, the role of
the boundary layer depth vanishes with strong stability.
The formulation for heat flux incorporates the observed
rapid increase of the Prandtl number with increasing
stability.

The above study also examined the performance of
other z-less predictions of the mixing length based on
the Richardson number, the shear length scale and two
length scales based on the buoyancy frequency. The
mixing length was roughly linearly related to these pre-
dictors above the lowest 20 m, but near the surface, the
relationships become more nonlinear, causing dimen-
sional problems. Testing the formulations developed in
this study within a numerical model is beyond the scope
of the study. However, the performance of such for-
mulations is expected to depend on the details of the
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host model, such as inclusion of radiative flux diver-
gence and preexisting specification of criteriato control
runaway surface cooling (Delage et al. 2002).
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