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Chapter 1: Introduction

Louis Bachelier’s 1900 Ph.D. thesis “The Theory of Speculation” marked the beginning

of the new scientific discipline - the mathematical theory of finance. In his thesis, Bache-

lier developed a theory of option pricing using Brownian motion. Despite its ultimate

importance, his work was not well received and was criticized for an unconventional

application of mathematics and for a luck of rigor. The rediscovery of his work began

only in the middle of the twenties century with the renewed interest in the theory of op-

tion pricing. In 1952 Harry Markowitz published his Ph.D. thesis “Portfolio Selection”

which became an important milestone in the development of mathematical finance. In

his work, he introduced a notion of mean return and covariance for common stocks and

demonstrated how to compute the mean return and the variance for a given portfolio.

Later, Paul Samuelson [47] and Robert Merton [37] used the methods of stochastic cal-

culus to investigate the pricing process in financial markets. Merton’s joint work with

Fischer Black and Myron Scholes won the 1997 Nobel Prize in Economics. The prize

drew attention to the theory of finance and resulted in the increased popularity of this

research area. Consequently, the theory of finance became more mathematical. Problems

in finance now require a knowledge of statistics, probability theory, stochastic calculus,

and optimization theory. On the other hand, the theory of finance did not loose its

application to practical aspects, since many of the theoretical developments in finance

are immediately applied in financial markets.

The 1997 Nobel Prize highlighted the importance of fair pricing of derivative secu-

rities. The derivative pricing problem can be viewed from two different perspectives:

from the buyer and from the seller. The fundamental question of option pricing is to

determine the initial price of the contract that is fair for both of parties. Under the

assumption of the absence of the arbitrage, Black and Scholes developed an option pric-

ing formula that allowed to find a fair price for a European call option [1]. Explicit

development of no-arbitrage pricing was provided by Merton [38, 39]. Later, Harrison

and Kreps [27] and Harison and Pliska [28] developed no-arbitrage pricing in continuous

time models, introduced martingales and risk-neutral pricing. Recent works of Gulisas-



2

hvilli and Stein [25, 26], Schweizer and Wissel [51], and Cont and Kokholm [4] indicate

continued mathematical interest in pricing of derivative securities.

The no-arbitrage pricing theory approach to the derivative security pricing problem is

to hedge when possible the derivative security by trading in the underlying security and

the money market. More precisely, assume that the agent sells the derivative security

and forms a portfolio consisting of an underlying asset and a money market account. The

absence of arbitrage guarantees that there is no advantage of a price difference between

two or more markets; and therefore, the return of the derivative security will be the

same as the return of the synthetic trading strategy. Hence, the no-arbitrage price of

the derivative security is the amount for which the derivative security must be sold at

time zero in order to construct the synthetic portfolio. When all contracts can be hedged

market is called complete. However, we will see this is not always the case.

In mathematical finance the no-arbitrage condition is equivalent to the existence of

the risk neutral measure. Moreover, the uniqueness of the equivalent martingale measure

is the mathematical condition for the completeness of the market model. In other words,

a market model is complete if the return for the trading strategy involving derivative

securities is equal to the return of the synthetic trading strategy. In a complete market

any derivative security can be hedged. The relationship between existence and unique-

ness of the risk neutral measure, the non-arbitrage condition, and market completeness

is described by the following theorems given in [54].

Theorem 1. The First fundamental theorem of asset pricing: A market (Sn, Bn),

on a probability space (Ω,F ,P), consisting of a collection of stocks prices Sn and a risk-

free money market process Bn is arbitrage-free if and only if there exists at least one risk

neutral, i.e., martingale, probability measure that is equivalent to the original probability

measure P.

Theorem 2. The Second fundamental theorem of asset pricing: An arbitrage-

free market (Sn, Bn), on a probability space (Ω,F ,P), consisting of a collection of stocks

prices Sn and a risk-free money market process Bn is complete if and only if there exists

a unique risk-neutral measure that is equivalent to P.

The next theorem provides the fundamental formula for pricing of the derivative

security using the risk neutral probability measure.
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Theorem 3. Risk neutral pricing: Let a probability space (Ω,F ,P) be given. Let Vn

be the payoff of a derivative security at time n and Bn be the money market process. If

there is a risk neutral measure Q, then the time zero price of the discounted derivative

security is a martingale and is given by V0 = EQ

[

Vn

Bn

]

.

Theorems 1, 2, and 3 provide a powerful tool for analyzing market models and for

pricing derivative securities. If the market model is complete it guarantees that every

derivative security has a unique and fair price. In order to incorporate real world features,

most of the proposed models have a high level of complexity, which makes them inherently

incomplete. Numerous complete pricing models have been proposed during the last forty

years. However, the most profound effect on the financial industry had a Black-Scholes

model. Even now, forty years later, a large amount of models that are currently used

in derivative security pricing are based on the Black-Scholes model. In spite of its

popularity, the Black-Scholes model makes a few unrealistic assumptions that do not

explain several important empirical characteristics of option prices. For example, one of

the assumptions is that the volatility of the underlying risky asset is constant and does

not depend on the maturity and the strike price of the option. However, this is not the

case and the volatility parameter has a specific behavior often called a volatility smile.

Moreover, the model ignores human activity and information availability. If an investor,

for example, has negative inside information about a company, he will try to sell the

stock, knowing that its price will go down when the bad news becomes public. This,

in turn, will create an arbitrage opportunity. Therefore, the assumption of the Black-

Scholes model that arbitrage does not exist in the real world is somewhat impractical.

In order to depict the stock market more realistically, many alternative models have

been proposed. Those models aim to capture important empirical phenomena and to

reflect random market environments. Among them are constant elasticity model (CEV)

[10], classical diffusion models [23], [30], jump-diffusion model [31], affine stochastic-

volatility and affine jump-diffusion models [14], models based on Levy processes [20],

and many more.

A different model was studied by Di Crescenzo and Pellerey [12], who used a geometric

telegraph process to characterize the dynamics of the price of a risky asset. Recall, that

the telegraph process describes the position of a particle that moves on the real line

with velocities that randomly reverse directions according to a homogeneous Poisson
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process. The model allows to capture the trends in a market evolution and therefore is

considered to be fairly realistic. Numerous authors studied the telegraph process based

models and their various generalizations. For example, Di Masi et al. [13] used the

telegraph process to model volatility of financial markets and Mazza and Rulliere [36]

connected the telegraph and ruin processes.

An interesting extension of the telegraph process based model was proposed by

Ratanov in [42–45]. In his model, the price of the asset is described by an inhomo-

geneous telegraph process with jumps at the times of velocity reversals. Ratanov [45]

proved that this continuous time model is complete and obtained closed form formulas

for the option prices.

In this work, we study a fusion of a discrete version of the jump telegraph model and

a classical binomial tree model. Our discrete time regime switching model with jumps

is based on the following intuition. We assume that the market follows a specific trend

based on the economical environment. When the economical environment switches, so

do the parameters of the market. These infrequent but significant switches result in

drastic changes of the stock prices, i.e. jumps.

The model that we consider is somewhat similar to the continuous time regime switch-

ing models studied in [3] and [57]. However, there are important differences. First, we

choose to restrict our attention to the discrete time model. We do it for the two fol-

lowing reasons. First, although they are much simpler to compute, N -period discrete

models illustrate the same phenomenon as more complicated continuous time models.

Moreover, the option valuation is discretized in practice. Modern technological progress

made it possible to compute option prices using much smaller time increments. However,

the derivative security pricing is still discrete in nature. The other difference is that we

assume that for a given regime our model is similar to the binomial tree model. We

focus on the binomial tree model because it is a simple enough instrument that provides

a clear understanding of the derivative security pricing by no-arbitrage methods.

In general, the regime switching makes the market models incomplete [57]. The main

objective of this work is to find under what conditions, if any, the regime switching model

with jumps is complete. We demonstrate that the size of stock price jump can serve as a

unique instrument to eliminate arbitrage. Moreover, we show that under certain condi-

tions on the jump size and the initial regime the regime switching model with jumps is

complete. Furthermore, we find the unique equivalent martingale measure and demon-
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strate how to price derivative securities in such instances. We also show that under some

conditions on the initial regime the regime switching model with jumps is incomplete

and there exist an infinite family of equivalent martingale measures. In this case we use

the Esscher, or size-biased, transform to select a particular martingale measure from the

family of measures. The Esscher transform was introduced into mathematical finance by

Gerber and Shiu [22] as one of the ways for dealing with incompleteness. We provide a

brief discussion of other methods proposed and give additional economical justifications

for choosing the Esscher transform for our model. Furthermore, we discus the continuity

of the new equivalent martingale measure (obtained using the Esscher transform) in its

parameters, namely, the historic probability measure, the jump size and the Esscher pa-

rameter. We demonstrate that when parameters of the model converge to some specific

values making the incomplete model a complete one, the measure obtained using the

Esscher transform converges to the unique equivalent martingale measure obtained for

a corresponding complete model.
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Chapter 2: Definitions

We begin with the statement of some definitions from probability theory, analysis, and

financial mathematics that will be used later in this work.

2.1 Probability theory

Definition 1. A probability space (Ω,F ,P) is an ordered triple comprised of a nonempty

set Ω (a sample space), a σ-field F of subsets of Ω (where the elements of F are called

measurable sets) and a probability measure P on (Ω,F). The function P : F → [0, 1]

satisfies the following properties:

• P(∅) = 0,

• P(Ω) = 1,

• P

(

∪∞
i=1 Ai

)

=
∑∞

i=1 P (Ai), Ai ∈ F , Ai ∩Aj = ∅ for i 6= j.

Definition 2. A real-valued random variable is a function X : Ω → R such that

{X ∈ B} ≡ X−1(B) ∈ F , ∀B ∈ BR where BR is the smallest σ-field of subsets of R

which contains all open sets (the Borel σ-field). We write X ∈ F for a random variable

X to mean that X is measurable with respect to F . More generally, if (S,S) is a mea-

surable space then X : Ω → S such that {X ∈ B} ∈ F , ∀B ∈ S is an S-valued random

variable.

Definition 3. Let X be S-valued random variable on (Ω,F ,P). Then the induced

probability measure PX on (S,S) defined by PX (B) = P (X ∈ B), for B ∈ S, is called

the distribution of X.

Definition 4. Let Ω be a nonempty set. A discrete time filtration is a sequence of σ-

fields F0,F1, ...Fn such that each σ-field in the sequence contains all the sets contained in

the previous σ-field. A continuous time filtration is a family of σ-fields {Ft | t ∈ [0, T ]}

such that Fs ⊂ Ft for any s < t < T .
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Definition 5. A stochastic process is a family of random variables {Xt : t ∈ I} defined

on a probability space (Ω,F ,P) and taking values in a set S with a σ-field S. I is called

the index set, and S is a state space. A stochastic process {Xt} is said to be adapted to

a filtration {Ft} if Xt is Ft-measurable for each t ∈ I.

Definition 6. Let {Ft} be a filtration under F and {Xt}, t ∈ I = [0, T ] be a stochastic

process on (Ω,F ,P). Then {Xt} is said to be a Markov process if

• {Xt} is adapted to the filtration {Ft},

• For s < t, the distribution of Xt conditioned on Fs is the same as the distribution

of Xt conditional on Xs.

A Markov process with a discrete state space is called a Markov chain .

Definition 7. Let (Ω,F ,P) be a probability space, let T be a fixed positive number,

and let {Ft : 0 6 t 6 T} be a filtration. A stochastic process {Mt} is a Martingale with

respect to the filtration Ft if and only if for 0 6 t 6 T ,

• E [| Mt |] < ∞,

• {Mt} is adapted to {Ft},

• E [Mt | Fs] = Ms, for all 0 6 s 6 t 6 T .

Definition 8. Let P and Q be two measures on the same measure space (Ω,F). Then the

probability measure P is said to be absolutely continuous with respect to the probability

measure Q, if P(A) = 0 for every set A for which Q(A) = 0. We write P ≪ Q.

Definition 9. Two probability measures P and Q are equivalent on measure space

(Ω,F) if the two measures are absolutely continuous with respect to each other, i.e.,

P ∼ Q ⇐⇒ P ≪ Q and Q ≪ P. In other words, equivalent probability measures agree

which events have probability zero: P(A) = 0 if and only if Q(A) = 0.

Definition 10. Let P and Q be two equivalent probability measures on measure space

(Ω,F), and let Z be an almost surely positive random variable such that ∀A ∈ F :

Q(A) =

∫

A

ZdP.
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The random variable Z is called the Radon-Nikodym derivative of the measure Q with

respect to the measure P, and is written as Z = dQ
dP . For 0 ≤ t ≤ T , the process

Zt = E[Z|Ft] is called the Radon-Nikodym derivative process.

2.2 Mathematical finance

A derivative security is a financial security, such as an option, whose characteristics and

value depend on the characteristics and value of an underlying security . The most com-

mon underlying assets include stocks, bonds, commodities, currencies, interest rates and

market indexes. The underlying security must be delivered once the derivative security

is exercised. Stock options, warrants, and stock rights have an underlying security in the

form of common stock. Derivatives are contracts and can also be used as an underlying

asset. Futures contracts, forward contracts, options and swaps are the most common

types of derivatives.

Stock is a type of security that signifies ownership in a corporation and represents a

claim on part of the corporation’s assets and earnings. Stocks sometimes are referred as

shares or equity. Stocks are the foundation of nearly every portfolio.

A risk -free asset is an asset that has a certain future return.

A bond is a debt investment in which an investor loans money to an entity (corporate

or governmental) that borrows the funds for a defined period of time at a fixed interest

rate. Bonds are used by companies, municipalities, states and U.S. and foreign govern-

ments to finance a variety of projects and activities. Bonds are commonly referred to as

fixed-income securities.

Let Bn be the bond price at time n ∈ N0. Here notation N0 is used for the set of

natural numbers with 0. The standard model for the discrete time evolution of bond

price is described by the deterministic growth at the risk-free interest rate r ≥ 0, i.e.

Bn+1 −Bn = rBn, ∀n ∈ N0. (2.1)

Let r + 1 = R ≥ 1 then we can rewrite (2.1) as follows: Bn+1 = RBn,∀n ∈ N0.

A call option is a contract which gives the holder the right not the obligation to pur-

chase an underlying asset at or before a specified date for a specified price. A put option

is a contract which gives the holder the right not the obligation to sell an underlying
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asset at or before a specified date for a specified price. The specified date is known as

the expiration date or expiry, and the specified price is often called the exercise price.

There are many types of option. Two most common are the American and the European

options. American option can be exercised at any time prior to and at expiry. European

option can be exercised only at the expiry time.

Hedging is a strategy aimed to reduce the investment risk of adverse price movements

in an asset by using derivatives, such as options contracts. In other words, hedging

strategy reduces the risk by taking advantage of correlations between the asset and

option price movements. To hedge a derivative security investors purchase opposite

positions in the market in order to ensure a certain amount of gain or loss on a trade.

A perfect hedge reduces investor’s risk to nothing.

Let a probability space (Ω,F ,P) be given. Let S = {St : t = 1, T } be a K + 1 di-

mensional stochastic process of underlying asset prices , such that St = (S0
t , S

1
t , · · · , S

K
t ),

with Si
t represents the price of the security i at time t. The number K+1 represents the

number of securities traded in the market. We specify a fixed time horizon T , at which

all trading terminates.

Definition 11. A trading strategy is a predictable vector process φ = {φt : t = 1, T }

where φt = (φ0
t , φ

1
t , · · · , φ

K
t ). Here φi

t denotes the number of units of the asset i held by

the investor between times t − 1 and t. The vector φt is called the investor’s portfolio

at time t. Vector φ is predictable, i.e., the investor selects the time t portfolio φt after

observing the asset prices St−1 at time t− 1, but before observing the asset prices St at

time t.

Definition 12. A trading strategy φ is self -financing if φtSt = φt+1St, t = 1, T − 1. Here

φtSt =
∑K

i=0 φ
i
tS

i
t . This definition requires that funds can neither be withdrawn from

or added to the value of the portfolio at any trading time t = 1, T − 1. A more general

trading strategy allows the addition or withdrawal of funds. If φ is self-financing, then

all changes in the portfolio are results of the net gains or losses realized on investments.

Definition 13. Value process V (φ) is the value process for trading strategy φ, defined

as

Vt(φ) =

{

φtSt, t = 1, T ;

φ1S0, t = 0.
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The value process V (φ) represents the market value of the portfolio prior to time t

transaction.

Definition 14. A trading strategy φ is called admissible if it is self-financing and V (φ)

is a non-negative process, i.e., V (φ) ≥ 0.

Arbitrage is a trading strategy that guarantees riskless plan for making non-zero profit

by exploiting price differences of identical or similar financial instruments on different

markets or in different forms. In other words, arbitrage is a admissible trading strategy

φ such that V0(φ) = 0 and E[VT (φ)] > 0. For example, simultaneous purchase and sale of

an asset in order to profit from a difference in the price is an arbitrage. Arbitrage exists

as a result of market inefficiencies. It provides a mechanism to ensure that prices do not

deviate substantially from the fair value for long periods of time. Given the advancement

in technology it has become extremely difficult to profit from mispricing in the market.

Many traders have computerized trading systems set to monitor fluctuations in similar

financial instruments. Any inefficient pricing setups are usually acted upon quickly and

the opportunity is often eliminated in a matter of seconds.

Definition 15. Contingent claim is a non-negative random variable X that represents

a contract or an agreement, and pays X(ω) dollars at time T if state ω occurs. In other

words, a contingent claim is a claim that can be made when certain specified outcomes

occur.

Definition 16. A contingent claim X is said to be attainable if there exist some self-

financing trading strategy φ such that VT (φ) = X. We say φ generates X.

Definition 17. Let Q be a probability measure on (Ω,F), equivalent to the probability

measure P (the market measure). Let Dt be a discount process , such that in the discrete

case, Dt = (1 + r)t, where r > 0 is a constant risk-free interest rate. Let St be a price

of the stock at time t. If the discounted stock price
{

St

Dt

}

is a martingale under Q, then

the measure Q is a risk neutral measure , or an equivalent martingale measure .

Definition 18. An arbitrage-free market model is said to be complete for a time horizon

T if every contingent claim X with expiry T is attainable by an admissible strategy.

To sell short is the selling of a security that the seller does not own, or any sale that

is completed by the delivery of a security borrowed by the seller. Short sellers assume
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that they will be able to buy the security at a lower amount than the price at which they

sold short. This is an advanced trading strategy with many unique risks and pitfalls.

A statistical measure of the dispersion of returns for a given security or market is

called volatility . In other words, volatility is a measure for variation of price of a financial

instrument over time. There are several ways to measure the volatility. Volatility can

either be measured by using the standard deviation or variance between returns from

that same security or market. The higher the volatility, the riskier the security.
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Chapter 3: Binomial tree model

In this chapter, we discuss one of the most notable models that was introduced by Cox,

Ross, and Rubinstein in 1979 [6]. They proposed binomial tree model (or binomial option

pricing model) that is a discrete time model for valuing options. The model is based on

the evolution of the price of the option’s underlying asset over a period of time. The

binomial tree is constructed so that each node in the tree corresponds to a possible price

of the underlying asset at a given point in time. In Fig. 3.1 we give an example of

such binomial tree. Note that the tree is recombining. Authors applied the concept of

replication portfolio in multiple-period binomial model, and showed that the model is

complete and every derivative security has a unique and fair price [7]. Moreover, they

showed that the Black-Scholes model is a special limiting case of the binomial tree model.

The framework is simple from a mathematical perspective but it provides a powerful

tool to understand the arbitrage pricing theory, and it allows clearly demonstrate the

relationship between no-arbitrage and risk-neutral pricing. Given the sufficient number

of periods the discrete model also provides computationally tractable approximation to

the continuous time model.

We start with the definition of the binomial tree model.

3.1 Binomial tree model description

Let (Ω,F ,P) be the underlying probability space, upon which all the stochastic processes

are defined. Consider the N -period model with the initial time n = 0 and the end time

n = N . Let initial price of an underlying security, e.g., stock, be S0 > 0. The binomial

tree model assumes that at each unit of time the price of the stock may increase by an

up factor u > 0 with probability pu or may decrease by a down factor d, 0 < d < u

with probability pd = 1 − pu. The stock price at times 1 ≤ n ≤ N can be described as

following:

Sn = S0

n
∏

i=1

Yi, (3.1)
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Figure 3.1: Example of the stock price dynamics for three-period binomial tree model.

where Yi, i = 1, N is an i.i.d. factor process such that P (Yi = u) = pu and P (Yi = d) =

pd. The probability measure P is called the historical probability measure .

Assume also that risk-free assets are available. Suppose there are US Treasure bonds

with initial price B0 and price at time n given by

Bn = (r + 1)nB0 = RnB0, (3.2)

where r > 0 is a risk-free interest rate and R = r + 1 ≥ 1. In this work we use terms

investments into the bonds and investments in the money market interchangeably.

Now we need to make some principal assumptions about the model. First, we assume

that the interest rate r is constant. Moreover, we assume that interest rates for borrowing

and investing are the same. To focus on the basic issues, we also postulate that there are

no taxes, transaction costs, and margin requirements. Besides, individuals are allowed

to sell short any security. We also assume that shares of stock can be subdivided for sale

or purchase. Furthermore, we assume that the purchase price of the stock is the same
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as the selling price.

In the next section, we demonstrate that the binomial tree model is free of arbitrage.

3.2 Binomial tree model is arbitrage-free

One of the necessary features of an efficient market is the absence of arbitrage. Next

proposition provides conditions for the binomial tree model to be arbitrage-free.

Proposition 1. Let the probability space (Ω,F ,P) be given. Let N -period binomial

tree market model (Sn, Bn) be given, where Sn is a collection of stock prices defined by

formula (3.1) and Bn is a risk-free money market process, defined by formula (3.2). Let

the up factor u and the down factor d be given such that u > 1 and 0 < d < 1. Let

R = r + 1 > 1, where r > 0 is the risk-free interest rate. If

0 < d < R < u (3.3)

then the binomial tree model is arbitrage-free.

Proof. Inequality d > 0 is necessary for the positivity of the stock price. We will prove

the other two inequalities by showing that if at least one of them is not satisfied then

there appears an arbitrage opportunity. First, assume that d ≥ R. In this case, at time

zero an agent might borrow money from the money market and buy stock. Even at the

worst case scenario, the stock price at time one will allow the agent not only to pay off his

money market debt (if d = R), but also to have a nonzero profit (if d > R). Therefore,

condition d ≥ R provides an arbitrage opportunity. Now, assume that u ≤ R. In this

case, the agent can sell the stock short and invest the money into the money market.

Even at the best case scenario, the stock price at time one will be smaller (if u < R) or

equal (if u = R) than the value of the investment into the money market. Therefore,

condition u ≤ R also provides an arbitrage opportunity. Thus, condition 0 < d < R < u

eliminates all arbitrage opportunities.

Note, that although simple, inequalities (3.3) provide a strict no-arbitrage condition:

if inequalities (3.3) did not hold, there would be profitable riskless arbitrage opportunities

involving only the stock and riskless borrowing and lending. Since under condition (3.3)

binomial tree model precludes arbitrage, by Theorem 1, there exist at least one risk
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neutral probability measure that is equivalent to the historic probability measure P.

Next proposition shows that this measure is unique and, therefore, the binomial tree

model is complete.

3.3 Binomial tree model is complete

Proposition 2. Let the probability space (Ω,F ,P) be given. Let N -period binomial tree

market model (Sn, Bn) be given, where Sn is a collection of stock prices defined by formula

(3.1) and Bn is a risk-free money market process, defined by formula (3.2). Let the up

factor u, the down factor d, and the risk-free interest rate r > 0 satisfy the no-arbitrage

condition 0 < d < R < u, where R = r + 1. Then there exist a probability measure Q,

defined as follows

Q(Yi = u) = q =
R− d

u− d
Q(Yi = d) = 1− q =

u−R

u− d
, (3.4)

such that the discounted stock price is a martingale under measure Q. Moreover, mea-

sure Q is a unique risk-neutral measure equivalent to the historic probability measure P.

Hence, the binomial tree model is complete.

Proof. The complete proof of the Proposition 2 can be found in [54]. Here we provide a

proof for one-period binomial tree model.

Note first that the discounted stock price is a martingale under the new measure Q:

S0 =
1

R
EQ [S1 (Y1) | Y1]

=
1

R
[qS1 (u) + (1− q)S1 (d)] (3.5)

=
1

R

(

uS0
R− d

u− d
+ dS0

u−R

u− d

)

= S0. (3.6)

Moreover, the equivalence of measure Q to the historical measure P follows from the

no-arbitrage conditions. The uniqueness of measure Q follows from the equation (3.5):

there exist only one measure given by q and 1− q that satisfies equation (3.5).

The N -period binomial tree model is complete, therefore, every derivative security

can be replicated by trading in the underlying stock and money market. Moreover,
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under this model, every derivative security has a unique price that precludes arbitrage.

Consider, for example, an European call option, which gives a holder the right but not

the obligation to buy one share of stock at the strike time N ∈ N for the strike price

K. In other words, this option has a payoff VN = (SN − K)+ at strike time N ∈ N.

One of the fundamental challenges is to determine the initial fair price of the option.

Next proposition provides a core formula for pricing the derivative securities under the

binomial tree model.

3.4 Pricing of the derivative security under the binomial tree model

The no-arbitrage approach to pricing derivative securities is based on the replication of

the payoff of the derivative security by a synthetic portfolio. This portfolio is constructed

using the money market and the underlying security such that the portfolio value matches

the derivative security payoff at each time step.

Definition 19. Let (Ω,F ,P) be the probability space. Define Vn(Y1, Y2, · · · , Yn) to be

the price of the derivative security at time n = 1, N . Denote the price of the derivative

security at time zero as V0.

Proposition 3. Let the probability space (Ω,F ,P) be given. Let N -period binomial

tree market model (Sn, Bn), n = 1, N be given, where Sn is a collection of stock prices

defined by formula (3.1) and Bn is a risk-free money market process, defined by formula

(3.2). Let the up factor u, the down factor d, and the risk-free interest rate r > 0

satisfy the no-arbitrage condition 0 < d < R < u, where R = r + 1. Let the risk-neutral

probability measure Q, defined by formulas (3.4), be given. Let the random variable

Vn(Y1, Y2, · · · , Yn) be a price of the derivative security at time n. Then the discounted

prices of the derivative security is a martingale under the measure Q:

Vn (Y1, Y2, · · · , Yn) = EQ

[

R−1Vn+1 (Y1, Y2, · · · , Yn, Yn+1) | Y1, Y2, · · · , Yn

]

, (3.7)

and the initial price of the derivative security can be computed as follows

V0 = EQ

[

R−nVn(Y1, Y2, · · · , Yn)
]

,∀n = 1, N. (3.8)

Moreover, if we set W0 = V0 and define recursively forward in time the portfolio values
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W1,W2, · · · ,WN by

Wn = φn−1Sn +R (Wn−1 − φn−1Sn−1) , (3.9)

where

φn−1 (Y1, Y2, · · · , Yn−1) =
Vn (Y1, Y2, · · · , Yn−1, u)− Vn (Y1, Y2, · · · , Yn−1, d)

Sn (Y1, Y2, · · · , Yn−1, u)− Sn (Y1, Y2, · · · , Yn−1, d)
(3.10)

is the number of shares of stock held by a portfolio at time n− 1, then

Wn (Y1, Y2, · · · , Yn) = Vn (Y1, Y2, · · · , Yn) ,∀n = 1, N. (3.11)

In other words, the derivative security is replicated ∀n = 1, N .

Proof. The complete proof of the Proposition can be found in [54]. Here we provide a

for one-period binomial tree model.

Note that V0 = W0 by the definition of W0. The objective is to show that V1 = W1.

We start by demonstrating that V1(u) = W1(u).

W1(u) = φ0S1(u) +R (W0 − φ0S0)

=
V1(u)− V1(d)

S0(u− d)
S0(u−R) +RV0

=
V1(u)− V1(d)

(u− d)
(u−R) +

V1(u)(R − d)

u− d
+

V1(d)(u −R)

u− d

= V1(u). (3.12)

Similarly one can show that V1(d) = W1(d). Note now that discounter W1 is a martingale

with respect to the equivalent measure Q:

EQ

[

1

R
W1

]

=
1

R
EQ [φ0S1(u) +R (W0 − φ0S0)]

= S0φ0 +W0 − S0φ0

= W0. (3.13)

Since W0 = V0 and V1 = W1, it follows that discounted V1 is also a martingale with

respect to the measure Q.
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Formulas (3.7)-(3.11) permit an agent to hedge a short position in the derivative

security. The derivative security that pays amount VN at time N should be priced at

time n = 0 by formula (3.8), that is called the risk -neutral pricing formula for the N -

period binomial model. The initial price of the derivative security given by formula (3.8)

does not introduce an arbitrage since the hedge works regardless of whether the price

of the stock goes up or down. Any other price at n = 0 would introduce an arbitrage.

Formula (3.10) is called the delta − hedging formula and gives the number of shares of

stock that should be held by a portfolio at time n. Note that number of shares of stock

φn changes during the life of an option: it must be adjusted from one time n to another.

Formula (3.9) defines a wealth equation : it gives the value of the portfolio at time n,

∀n = 1, N . Synthetic portfolio constructed using formula (3.9) matches the payoff of the

derivative security, as shown in equation (3.11).

Proposition 3 provides an algorithm for computing the initial price V0 of the derivative

security: the price can be computed recursively backward in time by the formula (3.7).

Note also that risk-neutral measure Q has the property that at any time n, the price

of the stock is the discounted risk-neutral average of its two possible prices at the next

time:

Sn (Y1, Y2, · · · , Yn) =
1

R
[qSn+1 (Y1, Y2, · · · , Yn, u) + (1− q)Sn+1 (Y1, Y2, · · · , Yn, d)]

=
1

R
EQ [Sn+1 (Y1, Y2, · · · , Yn, Yn+1) | Y1, Y2, · · · , Yn] , (3.14)

i.e., under the risk-neutral probabilities, the mean rate of return for the stock is r, the

same as the rate of return for the money market. Under the historic probability measure

P, however, the average rate of growth of the stock is typically strictly greater that the

rate of growth of an investment of the money market:

Sn (Y1, Y2, · · · , Yn) <
1

R
[puSn+1 (Y1, Y2, · · · , Yn, u) + pdSn+1 (Y1, Y2, · · · , Yn, d)] . (3.15)

This is the main reason why agents want to incur the risk associated with the investing

in the stock. Measure Q, however, makes the mean rate of growth of the stock to be

equal to the rate of growth of the money market account, and hence makes the mean

rate of growth of any portfolio of stock and money market account to be equal to the

rate of growth of the money market account.
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The properties (3.7) and (3.14) are refereed to as the martingale property , since

the discounted prices R−nSn (Y1, Y2, · · · , Yn) and R−nVn (Y1, Y2, · · · , Yn) are martingales

under the measure Q. Such measure Q is also referred as an equivalent martingale

measure (EMM).

Note also that the historical probabilities pu, pd do not appear in the pricing formula.

The key reason is that the derivative security value is calculated in terms of the underly-

ing stock. The probabilities of future up and down movements are already incorporated

into the price of the stock. In other words, the prices of derivative securities depend on

the set of possible stock price paths but not on how probable these paths are, i.e., the

actual historic probabilities are irrelevant.

In the next section, we provide a numerical example of pricing a derivative security

using Proposition 3.

3.5 Example

Proposition 3 can be applied to the derivative securities whose yield depends only on the

final price of the stock as well as to the path-dependent options. In this section, we find

a fair price of a path-dependent option. Recall the following definition.

Definition 20. Path − dependent option is a contract that gives the holder the right,

but not the obligation, to buy or sell an underlying asset at a predetermined price during

a specified time period, where the price is based on the fluctuations in the underlying

asset’s value during all or part of the contract term. A path dependent option’s payoff

is determined by the path of the underlying asset’s price.

Example 1. Consider path-dependent lookback put option [54], [5]. The lookback put

option payoff function is given as

VT = max
0≤n≤T

Sn − ST ,

where max0≤n≤T Sn is the asset’s maximum price during the life of the option and ST

is the underlying asset’s price at maturity time T . Let T = 3 and S0 = 4, u = 2, d = 1
2 .

Let the interest rate be r = 1
4 . Our objective is to find the no-arbitrage price of the

option at tine n = 0.
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Figure 3.2: Stock price dynamics for three-period binomial tree model.

First, consider the stock price dynamics for three-period binomial tree model. Since

the initial price of the stock is S0 = 4, and the up-factor and the down-factor are given

as u = 2 and d = 1
2 , respectively, we can calculate the price of the stock for n = {1, 2, 3}.

In Fig. 3.2 we depict all possible stock prices for n = {0, 1, 2, 3}. Now, we can calculate

the lookback option payoffs at time T = 3 :

V3(u, u, u) = S3(u, u, u) − S3(u, u, u) = 32− 32 = 0,

V3(u, u, d) = S2(u, u)− S3(u, u, d) = 16− 8 = 8,

V3(u, d, u) = S1(u)− S3(u, d, u) = 8− 8 = 0,

V3(u, d, d) = S1(u)− S3(u, d, d) = 8− 2 = 6,

V3(d, u, u) = S3(d, u, u) − S3(d, u, u) = 8− 8 = 0,

V3(d, u, d) = S2(d, u) − S3(d, u, d) = 4− 2 = 2,

V3(d, d, u) = S0 − S3(d, d, u) = 4− 2 = 2,

V3(d, d, d) = S0 − S3(d, d, d) = 4− 0.5 = 3.5.

Note, that R = 1 + r = 5
4 , and 0 < d < R < u, i.e., the no-arbitrage condition

is satisfied. Therefore, by Proposition 2, there exist a unique equivalent martingale
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Figure 3.3: Price of the option for three-period binomial tree model.

measure Q, defined as

q =
u−R

u− d
=

2− 1.25

2− 0.5
=

1

2
,

1− q =
R− d

u− d
=

1.25 − 0.5

2− 0.5
=

1

2
.

Now, using formula (3.7) from the Proposition 3, we can calculate recursively backward

in time the price of the option at time n = 2 as follows

V2(u, u) =
4
5

[

1
2V3(u, u, u) +

1
2V3(u, u, d)

]

= 3.2,

V2(u, d) =
4
5

[

1
2V3(u, d, u) +

1
2V3(u, d, d)

]

= 2.4,

V2(d, u) =
4
5

[

1
2V3(d, u, u) +

1
2V3(d, u, d)

]

= 0.8,

V2(d, d) =
4
5

[

1
2V3(d, d, u) +

1
2V3(d, d, d)

]

= 2.2.

Similarly, using backward recursion, we calculate the price of an option at time n = 1

as follows

V1(u) =
4
5

[

1
2V2(u, u) +

1
2V2(u, d)

]

= 2.24,
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V1(d) =
4
5

[

1
2V2(d, u) +

1
2V2(d, d)

]

= 1.2.

Finally, we compute the price of the lookback option at time n = 0:

V0 =
4
5

[

1
2V1(u) +

1
2V1(d)

]

= 1.376.

In Fig. 3.3 we depict the price of the option for n = {0, 1, 2, 3}. Notice that the initial

price of the option V0 = 1.376 is fair and allows the seller of the options to hedge his

short position in the option. Consider an agent, who sells this option at time n = 0 for

1.376 dollars. The agent can buy

φ0 =
V1(u)− V1(d)

S1(u)− S1(d)
=

2.24 − 1.2

8− 2
= 0.1733

shares of stock for 0.1733×4 = 0.6932 dollars, and invest the remainder 1.376−0.6932 =

0.6828 in the money market account with r = 1
4 interest rate. This portfolio matches the

payoff of the option on every time step and for every possible stock price path. Consider,

for example, at time n = 1 the amount 0.6828 invested into the money market will yield

0.8533 dollars. If the stock price goes up, then the stock will cost 1.3876 dollars. So, the

agent’s total portfolio value will be 2.24 dollars, which matches V1(u). Similarly, if the

stock price goes down, then at time n = 1 the stock will cost 0.3467 dollars, and total

portfolio value will be 1.2 dollars, which matches V1(d). In other words, agents portfolio

replicates the option at every time independently of the stock price paths, i.e., if a path

is possible (has positive probability), then the hedge will work along this path.

This chapter has provided an introduction to the binomial tree model. Using only

no-arbitrage argument, model was shown to be complete. Moreover, we provided a

way to price any derivative security under the binomial tree model. It is interesting to

note that no assumptions were required about the historic probabilities of up and down

movements in the stock price. Example 1, provided in Section 3.5, demonstrated how to

calculate the fair price of an option. More information on pricing derivative securities

under the binomial tree model can be found in [6], [29], [46], [54].

In the next chapter, we examine the regime switching model with jumps that is

partially based on the binomial tree model.
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Chapter 4: Regime switching model with jumps

In the previous chapter, we discussed the binomial tree model, one of the main assump-

tions of which was that at any time the stock price could take only two possible values.

This model provides rather simple framework for derivative security price analysis. In

reality, pricing process is subject to many uncertain changes and abrupt economical dis-

turbances. In this chapter, we consider a regime switching pricing model with jumps that

takes into account those changes, by allowing larger moves in asset prices (jumps) caused

by sudden world events or by the market responses to those events (regime switch) [31].

Suppose, for example, The Federal Reserve System lowers interest rates. This will result

in an economical regime switch: it will be cheaper for people to borrow money. The

more money businesses and consumers spend, the better it is for the economy. Hence,

lowering interest rates will often result in the stock market going up, i.e., will result in

a price jump of the stocks.

In this chapter, we introduce the regime switching model with jumps and investigate

the completeness of this model. Our objective is to answer several questions: (1) under

what conditions the model is arbitrage-free; (2) under what conditions, if any, there exist

a unique equivalent martingale measure for a finite time horizon, i.e., completeness; (3)

is the price of an underlying asset (e.g. stock price) a martingale under this measure;

(4) how to price a derivative security under the regime switching model with jumps?

We start by mathematical definition of the model.

4.1 Model description

Let (Ω,F ,P) be the underlying probability space, upon which all the stochastic processes

are defined.

Definition 21. Let the regime process σn, n = 0, N be defined as a finite-state stochas-

tic process such that σ0, σ1, · · · , are independent and identically distributed random

variables with the state space {−1,+1}. The states {−1,+1} could be interpreted as

the regimes (or states) of the economy, e.g., growing economy or decreasing economy.
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The initial distribution of regime process σn is given as follows

P(σ0 = +1) = p0 , P(σ0 = −1) = 1− p0, (4.1)

and the distribution for time n is given as

P(σn = +1) = p+ , P(σn = −1) = 1− p+, (4.2)

where p0 ∈ [0, 1] and p+ ∈ (0, 1) ∀n = 1, N. When for some n = 1, N σn−1 = +1 and

σn = −1 or σn−1 = −1 and σn = +1 we say that regime switches from one state to

another. Note that, in general, we do not know a priory when, if ever, regime switching

will occur.

Definition 22. Define the jump process Jσn−σn−1
as

Jσn−σn−1
=











J0 = 0, σn = ±1, σn−1 = ±1;

J2 = h, σn = +1, σn−1 = −1;

J−2 = −h, σn = −1, σn−1 = +1,

(4.3)

where known quantity h > 0 represents the size of a jump.

Definition 23. Define the jump-factor process gn(σn−1, σn), n = 1, N as follows

gn(σn−1, σn) =
u

2
(σn−1 + 1)−

d

2
(σn−1 − 1) + Jσn−σn−1

, (4.4)

where up-factor u and down-factor d are given such that u > 0, d > 0, and u > d. More

precisely, the values of the jump-factor process can be written as follows

gn(σn−1, σn) =























u, if σn−1 = +1 and σn = +1, w/p p2+;

u− h, if σn−1 = +1 and σn = −1, w/p p+(1− p+);

d+ h, if σn−1 = −1 and σn = +1, w/p (1− p+)p+;

d, if σn−1 = −1 and σn = −1, w/p (1− p+)
2.

(4.5)

Assume now, that the initial price of the stock S0 is known and P−a.s. is a constant,

i.e., S0 does not depend on the initial regime σ0 and S0(σ0) = S0. The price of the stock



25

at time n ≥ 1 is defined as follows:

Sn(σ0, σ1, · · · , σn) = Sn−1(σ0, σ1, · · · , σn−1)gn(σn−1, σn) = S0

n
∏

i=1

gi(σi−1, σi). (4.6)

Formula (4.6) shows that the price of the stock at time n is a product of the price of

the stock at time n− 1 and jump-factor process gn(σn−1, σn). Notice that in the case of

the regime switch σn−1 = +1 and σn = −1, the value of the jump-factor process u− h

is simply an up-factor u adjusted by the jump h. Similarly, in the case of the regime

switch σn−1 = −1 and σn = +1, the value of the jump-factor process d + h is simply a

down-factor d adjusted by the jump h. The intuition behind this adjustment is based

on the fact that the moments of the regime switch are usually accompanied by a sudden

moves in the asset price. Thus, the up-factor u decreased by jump h and the down-factor

d increased by jump h will guarantee the moves in the asset price for the corresponding

change in the regimes.

Note also that formula (4.6) is similar to the stock price formula (3.1) in the binomial

tree model. However, in the binomial tree model, the factor process can take only two

possible values u and d, whereas in the regime switching model with jumps, the jump-

factor process can take four possible values, given by formula (4.5).

More precisely, we can rewrite formula (4.6) as follows

Sn(σ0, σ1, · · · , σn) = Sn−1(σ0, σ1, · · · , σn−1)gn(σn−1, σn) = (4.7)

=

{

Sn−1(σ0, σ1, · · · , σn−1)U(σn−1), σn = +1;

Sn−1(σ0, σ1, · · · , σn−1)D(σn−1), σn = −1,

where U is an up-factor parameter and D is a down-factor parameter defined as

U(ξ) =

{

u, ξ = +1;

d+ h, ξ = −1,
(4.8)

and

D(ξ) =

{

u− h, ξ = +1;

d, ξ = −1.
(4.9)

Note that the binomial tree model can be obtained from the regime switching model
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with jump factors by setting the up-factor process U(ξ) = u and the down-factor process

D(ξ) = d, ∀ξ = {+1,−1}.

We also assume that risk-free assets are available, e.g., US Treasure bonds with initial

price B0 and price at time n given by

Bn = (r + 1)nB0 = RnB0, (4.10)

where r > 0 is a risk-free interest rate and R = r + 1 ≥ 1. We assume that interest

rate r has a constant value that does not depend on time step n and regime process σn.

We also assume that a derivative security is available. We denote its payoff at time n as

Vn(σ0, σ1, · · · , σn). We also assume that

• interest rates for borrowing and investing are the same;

• there are no taxes, transaction costs, and margin requirements;

• the purchase price of the stock is the same as the selling price;

• shares of stock can be subdivided for sale or purchase;

• individuals are allowed to sell short any security.

In the next section, we consider the regime switching model with jumps under two

special scenarios. The first scenario correspond to the case when the value of the regime

process is known at time n = 0, i.e., when σ0 is predetermined and equal to either +1 or

−1. The second scenario corresponds to the case when σ0 is not known. For each of the

scenarios we investigate the completeness of the model, i.e., investigate the existence and

uniqueness of the equivalent martingale measure for the price process (S0, · · · , Sn). Notice

that Sk = S0
∏k

i=1 g(σn−1, σn) is a function of (σ0, · · · , σk). The equivalent martingale

measure for (S0, S1, S2, · · · , Sn) will be found in terms of the distribution of (σ0, · · · , σk).

This leads to a slight abuse of notation that should be clear from the context. The similar

convention is typically applied even to the binomial tree model.

4.2 Special case: initial regime σ0 is known

In this section we study the regime switching model with jumps under the assumption

that the initial regime σ0 is known. We start with a simple one-period regime switching
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model with jumps.

4.2.1 One-period regime switching model with jumps

Suppose P(σ0 = +1) = p0 = 1 and P(σ0 = −1) = 1 − p0 = 0, i.e., the initial regime is

known and σ0 = +1. Therefore, at time n = 1 the jump-factor process can take only two

possible values:

g1(σ0, σ1) =

{

u, if σ0 = +1 and σ1 = +1, w/p p0p1 = p1;

u− h, if σ0 = +1 and σ1 = −1, w/p p0(1− p1) = 1− p1.
(4.11)

And hence, the price of the stock can also take only two possible values:

S1 =

{

uS0, σ1 = +1;

(u− h)S0, σ1 = −1.
(4.12)

In other words, given the initial regime σ0 = +1, at time n = 1 the stock price becomes

S0u, if σ1 = +1 and the stock price becomes S0(u − h), if σ1 = −1. In Fig. 4.1(a)

we schematically depict the stock price dynamics for σ0 = +1 case. Since the stock

price can take only two possible values, the regime switching model with σ0 = +1 is

equivalent to the binomial tree model with up-factor uBTM = U(σ0) = u and down-

factor dBTM = D(σ0) = u− h.

Similarly, if we assume that σ0 = −1, the price of the stock will take only two possible

values:

S1 =

{

(d+ h)S0, σ1 = +1;

dS0, σ1 = −1.
(4.13)

In Fig. 4.1(b) we schematically depict the stock price dynamics for σ0 = −1 case. Hence,

the regime switching model with σ0 = −1 is also equivalent to the binomial tree model

with up-factor uBTM = U(σ0) = d+ h and down-factor dBTM = D(σ0) = d.

Therefore, next results hold.

Proposition 4. Let the probability space (Ω,F ,P) be given. Let the one-period regime

switching market model with jumps (Sn, Bn), n = 1, N , N = 1 be given, where Sn is a

collection of stock prices defined by formula (4.6) and Bn is a risk-free money market

process, defined by formula (4.10). Let the initial regime σ0 be known and be equal to
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Figure 4.1: Stock price dynamics for one-period regime switching model with jumps:
case (a) corresponds to σ0 = +1, case (b) corresponds to σ0 = −1.

+1, i.e., P(σ0 = +1) = 1. Let the underlying asset, e.g., stock be given with the initial

price S0. Let R = r+1. If u > R > 0 and the jump size h > u−R then the no-arbitrage

condition

0 < u− h < R < u, (4.14)

is satisfied and hence the one-period regime switching model with jumps is arbitrage-free.

Moreover, the model is compete and there exist a unique equivalent martingale measure

Q given as
{

Q(σ0 = +1) = 1,

Q(σ0 = −1) = 0,
(4.15)

and
{

Q(σ1 = +1 | σ0 = +1) = R−(u−h)
h ,

Q(σ1 = −1 | σ0 = +1) = u−R
h ,

(4.16)

such that the discounted stock price is a martingale with respect to the equivalent mar-
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tingale measure Q :

S0 = EQ

[

R−1S1 | S0

]

=
1

R

[

R− (u− h)

h
S1(σ0, σ1 = +1) +

u−R

h
S1(σ0, σ1 = −1)

]

. (4.17)

Furthermore, assume there is a derivative security that pays amount V1(σ0, σ1) at time

N = 1. Define V0(σ0) to be a price of the derivative security at time n = 0. Define also

φ0(σ0) =
V1(σ0, σ1 = +1)− V1(σ0, σ1 = −1)

S1(σ0, σ1 = +1)− S1(σ0, σ1 = −1)
(4.18)

to be the number of shares of stock required for the synthetic portfolio. If we set W0(σ0) =

V0(σ0) and define the value of the synthetic portfolio at time N = 1 as follows

W1(σ0, σ1) = φ0(σ0)S1(σ0, σ1) +R(W0(σ0)− φ0(σ0)S0), (4.19)

then W1(σ0, σ1) = V1(σ0, σ1). In other words, the synthetic portfolio replicates the value

of the derivative security. Moreover, the values of the discounted replicating portfolio

and the discounted price of the derivative security are martingales under the measure Q,

i.e.,

W0(σ0) = EQ

[

R−1W1 | W0

]

=
1

R

[

R− (u− h)

h
W1(σ0, σ1 = +1) +

u−R

h
W1(σ0, σ1 = −1)

]

, (4.20)

and

V0(σ0) = EQ

[

R−1V1 | V0

]

=
1

R

[

R− (u− h)

h
V1(σ0, σ1 = +1) +

u−R

h
V1(σ0, σ1 = −1)

]

. (4.21)

Equation (4.21) provides a formula for the price of the derivative security at time n = 0.

Similar result hold for the case when initial regime is σ0 = −1.

Proposition 5. Let the probability space (Ω,F ,P) be given. Let the one-period regime

switching market model with jumps (Sn, Bn), n = 1, N , N = 1 be given, where Sn is a
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collection of stock prices defined by formula (4.6) and Bn is a risk-free money market

process, defined by formula (4.10). Let the initial regime σ0 be known and be equal to

−1, i.e., P(σ0 = −1) = 1. Let the underlying asset, e.g., stock be given with the initial

price S0. Let R = r+1. If 0 < d < R and the jump size h > R− d then the no arbitrage

condition

0 < d < R < d+ h, (4.22)

is satisfied and hence the one-period regime switching model with jumps is arbitrage-free.

Moreover, the model is complete and there exist a unique equivalent martingale measure

Q given as
{

Q(σ0 = +1) = 0,

Q(σ0 = −1) = 1,
(4.23)

and
{

Q(σ1 = +1 | σ0 = −1) = R−d
h ,

Q(σ1 = −1 | σ0 = −1) = d+h−R
h .

(4.24)

such that the discounted stock price is a martingale with respect to the equivalent mar-

tingale measure Q :

S0 = EQ

[

R−1S1 | S0

]

=
1

R

[

R− d

h
S1(σ0, σ1 = +1) +

d+ h−R

h
S1(σ0, σ1 = −1)

]

. (4.25)

Furthermore, assume there is a derivative security that pays amount V1(σ0, σ1) at time

N = 1. Define V0(σ0) to be a price of the derivative security at time n = 0. Define also

φ0(σ0) =
V1(σ0, σ1 = +1)− V1(σ0, σ1 = −1)

S1(σ0, σ1 = +1)− S1(σ0, σ1 = −1)
(4.26)

to be the number of shares of stock required for the synthetic portfolio. If we set W0(σ0) =

V0(σ0) and define the value of the synthetic portfolio at time N = 1 as follows

W1(σ0, σ1) = φ0(σ0)S1(σ0, σ1) +R(W0(σ0)− φ0(σ0)S0), (4.27)

then W1(σ0, σ1) = V1(σ0, σ1). In other words, the synthetic portfolio replicates the value

of the derivative security. Moreover, the values of the discounted replicating portfolio
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and the discounted price of the derivative security are martingales under the measure Q,

i.e.,

W0(σ0) = EQ

[

R−1W1 | W0, σ0
]

=
1

R

[

R− d

h
W1(σ0, σ1 = +1) +

d+ h−R

h
W1(σ0, σ1 = −1)

]

, (4.28)

and

V0(σ0) = EQ

[

R−1V1 | V0, σ0
]

=
1

R

[

R− d

h
V1(σ0, σ1 = +1) +

d+ h−R

h
V1(σ0, σ1 = −1)

]

. (4.29)

Equation (4.29) provides a formula for the price of the derivative security at time n = 0.

We omit the proofs of Propositions 4 and 5 since they follow directly from the proof

of Proposition 6 that considers the more general N−period regime switching model with

jumps under the assumption of known initial regime. Proposition 6 and its proof are

given in the next section.

Propositions 4 and 5 show that under the assumption of known initial regime, the

one-period regime switching model with jumps is complete and therefore every derivative

security has a unique and fair price. Furthermore, the initial price of the derivative secu-

rity can be computed by formulas (4.21) and (4.29), depending on the value of the initial

regime σ0. Notice that, like in the binomial tree model, the historic probability measure

P does not appear in the pricing formulas (4.21) and (4.29). Observe also, that the no-

arbitrage condition (4.14) guarantee that probabilities (4.16) define the valid probability

measure. Similarly, the no-arbitrage condition (4.22) guarantee that probabilities (4.24)

define the valid probability measure.

Next, we consider N -period regime switching model with jumps under the assump-

tions that the initial regime is known. We show that under certain conditions on the

jump size the model is complete.
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4.2.2 N -period regime switching model with jumps

Let the initial regime be predetermined, i.e., σ0 is known and equals to either +1 or

−1. In Fig. 4.2 and 4.3 we depict the dynamics of the stock price for two-period regime

switching model with jumps for σ0 = +1 and σ0 = −1, respectively. Note, that the

values of the up-factor parameter U(σ0) and down-factor parameter D(σ0) depend on

the initial regime σ0 and therefore are different for σ0 = +1 and σ0 = −1. Hence,

under the assumption that the initial regime is known, the values U(σ0) and D(σ0) are

also predetermined. However, for n ≥ 1 the values of the up and down parameters are

not predetermined and depend on the previous and current regimes. Thus, under the

assumption that σ0 is known, the regime switching model with jumps has a resemblance

with the binomial tree model with stochastic volatility, a model where at each time n

the up and down parameters are allowed to depend on n, but the initial up factor and

down factors are not random. Unlike the Black-Sholes model that assumes that the

volatility of the underlying security is constant, the stochastic volatility models take the

volatility in the price of the underlying security into account and, hence, allow to model

derivatives more precisely and to improve the accuracy of calculations and forecasts.

Next result provides conditions on the up-factor u, the down-factor d, the interest

rate r, and the jump size h such that under the assumptions that the initial regime is

known the N -period regime switching model with jumps is complete.

Proposition 6. Let the probability space (Ω,F ,P) be given. Let the N -period regime

switching market model with jumps (Sn, Bn), n = 1, N be given, where Sn is a collection

of stock prices defined by formula (4.6) and Bn is a risk-free money market process,

defined by formula (4.10). Let the initial regime σ0 be known, i.e., either P(σ0 = +1) = 1

or P(σ0 = −1) = 1. Let the underlying asset (e.g., stock) be given, with the initial price

S0. Let the up-factor parameter U(ξ) and the down-factor parameter D(ξ) be defined as

follows

U(ξ) =

{

u, ξ = +1;

d+ h, ξ = −1,
(4.30)

and

D(ξ) =

{

u− h, ξ = +1;

d, ξ = −1.
(4.31)
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Figure 4.2: Stock price dynamics for two-period regime switching model with jumps,
given σ0 = +1. Quantities highlighted in red correspond to the values of the jump-factor
process gn(σn−1, σn) for n = {1, 2}.

If u > R > d > 0 and the jump size h > max{u − R,R − d} then ∀n = 0, N − 1 the

up-factor parameter U(σn), the down-factor parameter D(σn), and the interest rate r

satisfy the no-arbitrage conditions

0 < D(σn) < R < U(σn), (4.32)

and hence, the N -period regime switching model with jumps is arbitrage-free. Moreover,

the model is complete and there exist a unique equivalent martingale measure Q induced

by a Markov chain as follows

{

Q(σ0 = +1) = 1, Q(σ0 = −1) = 0 if σ0 = +1;

Q(σ0 = +1) = 0, Q(σ0 = −1) = 1, if σ0 = −1.
(4.33)
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Figure 4.3: Stock price dynamics for two-period regime switching model with jumps,
given σ0 = −1. Quantities highlighted in red correspond to the values of the jump-factor
process gn(σn−1, σn) for n = {1, 2}.

and for n ≥ 1

Q(σn = ξn|σ0 = ξ0, · · · , σn−1 = ξn−1, S0 = s0, · · · , Sn−1 = sn−1) =

= Q(σn = ξn|σn−1 = ξn−1)

=























R−D(ξn−1)
U(ξn−1)−D(ξn−1)

= R−(u−h)
h , ξn−1 = +1, ξn = +1;

U(ξn−1)−R
U(ξn−1)−D(ξn−1)

= u−R
h , ξn−1 = +1, ξn = −1;

R−D(ξn−1)
U(ξn−1)−D(ξn−1)

= R−d
h , ξn−1 = −1, ξn = +1;

U(ξn−1)−R
U(ξn−1)−D(ξn−1)

= (d+h)−R
h , ξn−1 = −1, ξn = −1,

(4.34)

such that the discounted stock price is a martingale under the measure Q:

Sn =
1

R
EQ [Sn+1 | S0, S1, · · · , Sn] . (4.35)
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Remark 1. Let Fn = F(σ0, σ1, · · · , σn, S0, · · · , Sn) be the σ−algebra, generated by the

regime process and the stock prices up to time n. Let also Gn = F(S0, · · · , Sn) be the

σ−algebra generated by the stock prices up to time n. Clearly, Gn ⊂ Fn. However, if the

parameters u, d, and h of the model are such that one can determine regimes σ0, · · · , σn

knowing the stock prices S0, · · · , Sn, then Gn = Fn. Consider, for example, a special

case when u − h 6= d + h. Then, given stock prices S0, · · · , Sn, one can determine the

regimes σ0, · · · , σn, and hence Gn = Fn. On the other hand, if u − h = d + h, one can

not determine the underlying regimes σ0, · · · , σn. Therefore, Gn ⊂ Fn, Gn 6= Fn.

Proof. (Proposition 6)

We start by showing that the no-arbitrage conditions (4.32) are satisfied ∀n = 1, N − 1.

If condition h > max{u − R,R − d} is satisfied then R > u − h and R < d + h.

Combining with the condition 0 < d < R < u, we conclude that u > R > u− h > 0 and

d+ h > R > d > 0. Thus, the model is arbitrage-free, which guarantees the existence of

at least one equivalent martingale measure.

Next we show that the discounted stock price is a martingale under the measure Q.

First note that if h > max{u − R,R − d} then h is greater then the average of two

numbers, i.e., h > u−d
2 , and hence d+h > u−h. Following the discussion in the Remark

1, condition d+ h > u− h implies Gn = Fn. Therefore, EQ [Sn+1 | Gn] = EQ [Sn+1 | Fn] .

For this reason, to show that the stock price is a martingale under the measure Q it is

enough to show that EQ [Sn+1 | Fn] = Sn. Now we can rewrite conditional expectation
1
REQ [Sn+1 | Fn] as follows

1

R
EQ [Sn+1 | Fn] =

1

R
EQ[Sngn(σn−1, σn) | Fn]

=
1

R
EQ[Snu1[σn=+1]1[σn+1=+1] + Sn(u− h)1[σn=+1]1[σn+1=−1] | Fn]

+
1

R
EQ[Sn(d+ h)1[σn=−1]1[σn+1=+1] + Snd1[σn=−1]1[σn+1=−1] | Fn]

=
1

R
Sn1[σn=+1]EQ[u1[σn+1=+1] + (u− h)1[σn+1=−1] | Fn]

+
1

R
Sn1[σn=−1]EQ[(d+ h)1[σn+1=+1] + d1[σn+1=−1] | Fn]. (4.36)

Equation (4.36) was obtained using the fact that Sn, 1[σn=+1],and 1[σn=−1] are all mea-
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surable with respect to Fn. Now, using the Markov property1[σn=ξn]EQ[1[σn+1=ξn+1] | Fn] = 1[σn=ξn]Q(σn+1 = ξn+1 | σn = ξn)

we continue equation (4.36) as follows

=
1

R
Sn1[σn=+1](Q(σn+1=+1|σn=+1)u+Q(σn+1=−1|σn=+1)(u− h)) (4.37)

+
1

R
Sn1[σn=−1](Q(σn+1=+1|σn=−1)(d+ h) +Q(σn+1=−1|σn=−1)d) . (4.38)

Now, applying formulas (4.34) we obtain the values of the conditional probabilities:

Q(σn+1 = +1|σn = +1) =
R− (u− h)

h
, (4.39)

Q(σn+1 = −1|σn = +1) =
u−R

h
,

Q(σn+1 = +1|σn = −1) =
R− d

h
,

Q(σn+1 = −1|σn = −1) =
d+ h−R

h
.

Therefore,

1

R
EQ [Sn+1 | Fn] =

1

R
Sn1[σn=+1]

(

u
R− (u− h)

h
+ (u− h)

u−R

h

)

+
1

R
Sn1[σn=−1]

(

(d+ h)
R − d

h
+ d

d+ h−R

h

)

=
1

R

(1[σn=+1]RSn + 1[σn=−1]RSn

)

= Sn. (4.40)

To show that the equivalent martingale measure is unique consider the equation in lines

(4.37) and (4.38)

R = 1[σn=+1] (Q(σn+1 = +1|σn = +1)u+Q(σn+1 = −1|σn = +1)(u− h))

+ 1[σn=−1] (Q(σn+1 = +1|σn = −1)(d + h) +Q(σn+1 = −1|σn = −1)d) . (4.41)

If there exist another equivalent martingale measure it must satisfy equation (4.41).

However, since h > 0 then u 6= u − h and d 6= d + h. Therefore, equation (4.41) has a
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unique solution. Thus, measure Q is unique.

Furthermore, measure Q is equivalent to the historic measure P. Note that P(σ0 =

+1) = 0 if and only if Q(σ0 = +1) = 0. Similarly, P(σ0 = −1) = 0 if and only

if Q(σ0 = −1) = 0. Moreover, P(σn = +1) = p+ > 0 ∀n = 1, N if and only if

Q(σn = +1) > 0. It follows from the fact that probability Q(σn = +1) can be written

as follows

Q(σn = +1) =
∑

ξ0,··· ,ξn−1

Q(σn = +1 | σn−1 = ξn−1)

n−1
∏

i=1

Q(σi = ξi | σi−1 = ξi−1)Q(σ0 = ξ0),

(4.42)

where all conditional probabilities are strictly positive. This impliesQ(σn = +1) > 0.

Proposition 6 demonstrates that the equivalent measure Q is time-homogeneous

Markov chain with transition probability matrix

Q =

(

R−(u−h)
h

u−R)
h

R−d
h

d+h−R
h

)

.

This is an interesting fact given that historic measure P is not necessarily a Markov

chain. It is also important to note that under the historic probability measure P the

value of the regime process at time n is independent of the value of the regime process

at time n − 1, i.e., P(σn | σn−1) = P(σn). However, under the new martingale measure

the value of the regime process σn are not independent, i.e., Q(σn | σn−1) 6= Q(σn).

Proposition 7. Let the assumptions of the Proposition 6 be satisfied. Then σn is not

independent of σ0, σ1, · · · , σn−1 under the equivalent martingale measure Q.

Proof. We prove the claim of the proposition by contradiction. Suppose the opposite,

i.e., σn is independent of σ0, σ1, · · · , σn−1 under measure Q. By Proposition 6 the price

of the stock is a martingale under measure Q, i.e.,

Sn−1 =
1

R
EQ [Sn | S0, S1, · · · , Sn−1] . (4.43)

Using Remark 1 and the fact that Sn = Sn−1gn(σn−1, σn), we rewrite equation (4.43) as
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follows

Sn−1 =
1

R
EQ [Sn | Fn−1] (4.44)

=
1

R
EQ [Sn−1gn(σn−1, σn) | Fn−1] (4.45)

=

{

Sn−1uQ(σn = +1) + Sn−1(u− h)Q(σn = −1), if σn−1 = +1;

Sn−1(d+ h)Q(σn = +1) + Sn−1dQ(σn = −1), if σn−1 = −1,
(4.46)

where system of equations (4.46) follows from the assumption that σn is independent of

σ0, σ1, · · · , σn−1. Probabilities Q(σn = +1) and Q(σn = −1) = 1 − Q(σn = +1) should

satisfy both equations in formula (4.46). However, the system of equations

{

1 = 1
R [uQ(σn = +1) + (u− h)(1 −Q(σn = +1))] ,

1 = 1
R [(d+ h)Q(σn = +1) + d(1−Q(σn = +1))] ,

is overdetermined, and hence has no solution. This contradicts the results of the Proposi-

tion 6, that guarantee the existence of such equivalent martingale measure Q. Therefore,

σn is not independent of σ0, σ1, · · · , σn−1 under the equivalent martingale measureQ.

As we discussed in Remark 1, condition on a jump size u − h 6= d + h guarantees

that the σ−algebra generated by the regime process and the stock prices up to time n

is the same as the σ−algebra generated by the stock prices up to time n, i.e., Gn = Fn.

However, condition u− h 6= d+ h is also crucial for the no-arbitrage argument.

Proposition 8. Let the probability space (Ω,F ,P) be given. Let the N -period regime

switching market model with jumps (Sn, Bn), n = 1, N be given, where Sn is a collection

of stock prices defined by formula (4.6) and Bn is a risk-free money market process,

defined by formula (4.10). Let the initial regime σ0 be known, i.e., either P(σ0 = +1) = 1

or P(σ0 = −1) = 1. If u > R > d > 0 and jump size h satisfies equation u−h = d+h, then

the regime switching model with jumps admits arbitrage and, therefore, is not complete.

Proof. If u − h = d + h, then the no-arbitrage conditions u > R > u − h > 0 and

d + h > R > d > 0 are not satisfied. Therefore, the model admits arbitrage and hence,

by Theorems 1 and 2, there is no unique equivalent measure. Thus, the model is not

complete.
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Condition on the jump size h > max{u−R,R−d} ensures the existence and unique-

ness of equivalent martingale measure. Next proposition provides a method of pricing

derivative security by constructing the replicating portfolio.

Proposition 9. Let the probability space (Ω,F ,P) be given. Let the N -period regime

switching market model with jumps (Sn, Bn), n = 1, N be given, where Sn is a collection

of stock prices defined by formula (4.6) and Bn is a risk-free money market process,

defined by formula (4.10). Let the initial regime σ0 be known, i.e., either P(σ0 = +1) = 1

or P(σ0 = −1) = 1. Let the underlying asset (e.g., stock) be given, with the initial

price S0. Let conditions u > R > d > 0 and h > max{u − R,R − d} be satisfied,

and let the equivalent martingale measure be given by formulas (4.33) and (4.34). Let

VN (σ0, σ1, · · · , σN ) be a payoff of the derivative security at time N . Define recursively

backward in time the sequence of random variables VN−1, · · · , V0 by

Vn(σ0, σ1, · · · , σn) =

=
1

R

[1[σn=+1]Q(σn+1 = +1 | σn = +1)Vn+1(σ0, σ1, · · · , σn+1 = +1)
]

=
1

R

[1[σn=−1]Q(σn+1 = +1 | σn = −1)Vn+1(σ0, σ1, · · · , σn+1 = +1)
]

=
1

R

[1[σn=+1]Q(σn+1 = −1 | σn = +1)Vn+1(σ0, σ1, · · · , σn+1 = −1)
]

=
1

R

[1[σn=−1]Q(σn+1 = −1 | σn = −1)Vn+1(σ0, σ1, · · · , σn+1 = −1)
]

. (4.47)

Let V0(σ0) to be the price of the derivative security at time n = 0. Define also φn,

n = 0, N − 1 to be the portfolio process

φn(σ0, · · · , σn) =
Vn+1(σ0 · · · , σn, σn+1 = +1)− Vn+1(σ0 · · · , σn, σn+1 = −1)

Sn+1(σ0 · · · , σn, σn+1 = +1)− Sn+1(σ0 · · · , σn, σn+1 = −1)
. (4.48)

Define the portfolio value process Wn(σ0, · · · , σn) recursively forward in time as follows

Wn(σ0, · · · , σn) = φn−1Sn +R(Wn−1 − φn−1Sn−1), (4.49)

where Sn is a price of the underlying asset at time n. If we set V0(σ0) = W0(σ0) then

WN (σ0 · · · , σn, σN ) = VN (σ0 · · · , σn, σN ), i.e., at the expiration time the payoff of the
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derivative security is matched by the value of the replicating portfolio. Furthermore, the

discounted portfolio value process and the discounted prices of the derivative security are

martingales under the equivalent martingale measure Q

Wn (σ0, · · · , σn) =
1

R
EQ [Wn+1 (σ0, · · · , σn, σn+1) | Fn] , (4.50)

Vn (σ0, · · · , σn) =
1

R
EQ [Vn+1 (σ0, · · · , σn, σn+1) | Fn] . (4.51)

Moreover, the initial price of the derivative security can be computed as follows

V0(σ0) =
1

Rn
EQ [Vn(σ0, · · · , σn)] ,∀n = 1, N. (4.52)

Proof. We start by showing that the value of the derivative security is replicated by the

synthetic portfolio constructed by using the stock and the money market. We use proof

by induction to show that WN (σ0, · · · , σn, σN ) = VN (σ0, · · · , σn, σN ). By construction

W0(σ0) = V0(σ0). Suppose that Wn(σ0, · · · , σn) = Vn(σ0, · · · , σn, ) is true. In order to

show that

Wn+1(σ0, · · · , σn, σn+1) = Vn+1(σ0, · · · , σn, σn+1)

it is enough to show that

Wn+1(σ0, · · · , σn, σn+1 = +1) = Vn+1(σ0, · · · , σn, σn+1 = +1)

and

Wn+1(σ0, · · · , σn, σn+1 = −1) = Vn+1(σ0, · · · , σn, σn+1 = −1).

We start by proving the first equation. By using formula (4.49) we write the value of

the portfolio as follows

Wn+1(σ0, · · · , σn+1=+1)=φn(σ0, · · · , σn)Sn+1(σ0, · · · , σn+1 = +1)

+R(Wn(σ0, · · · , σn)−φn(σ0, · · · , σn)Sn(σ0, · · · , σn)).(4.53)

Note that Sn+1(σ0, · · · , σn, σn+1 = +1)−Sn+1(σ0, · · · , σn, σn+1 = −1) = hSn(σ0, · · · , σn)
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no matter what the value of σn is and hence φn(σ0, · · · , σn) can be written as

φn(σ0, · · · , σn) =
Vn+1(σ0, · · · , σn, σn+1 = +1)− Vn+1(σ0, · · · , σn, σn+1 = −1)

hSn
. (4.54)

Using formulas (4.49) and (4.54) we obtain Wn+1(σ0, · · · , σn+1 = +1) =

=
Vn+1(σ0, · · · , σn, σn+1 = +1)

hSn(σ0, · · · , σn)
Sn+1(σ0, · · · , σn+1 = +1)

−
Vn+1(σ0, · · · , σn, σn+1 = −1)

hSn(σ0, · · · , σn)
Sn+1(σ0, · · · , σn+1 = +1)

−
Vn+1(σ0, · · · , σn, σn+1 = +1)

hSn(σ0, · · · , σn)
RSn(σ0, · · · , σn)

+
Vn+1(σ0, · · · , σn, σn+1 = −1)

hSn(σ0, · · · , σn)
RSn(σ0, · · · , σn)

+ RVn(σ0, · · · , σn) (4.55)

Note that Sn+1(σ0, · · · , σn+1 = +1) = Sn(σ0, · · · , σn)gn+1(σn, σn+1 = +1). Hence, we

continue equation (4.55) as follows

= Vn+1(σ0, · · · , σn, σn+1 = +1)
gn+1(σn, σn+1 = +1)−R

h
+ Vn+1(σ0, · · · , σn, σn+1 = +1)

[

Q(σn+1 = +1 | σn = +1)1[σn=+1]

]

+ Vn+1(σ0, · · · , σn, σn+1 = +1)
[

Q(σn+1 = +1 | σn = −1)1[σn=−1]

]

+ Vn+1(σ0, · · · , σn, σn+1 = −1)
R − gn+1(σn, σn+1 = +1)

h
+ Vn+1(σ0, · · · , σn, σn+1 = −1)

[

Q(σn+1 = −1 | σn = +1)1[σn=+1]

]

+ Vn+1(σ0, · · · , σn, σn+1 = −1)
[

Q(σn+1 = −1 | σn = −1)1[σn=−1]

]

(4.56)

= Vn+1(σ0, · · · , σn, σn+1 = +1)1[σn=+1]

(

u−R

h
+

R− (u− h)

h

)

+ Vn+1(σ0, · · · , σn, σn+1 = +1)1[σn=−1]

(

d+ h−R

h
+

R− d

h

)

+ Vn+1(σ0, · · · , σn, σn+1 = −1)1[σn=+1]

(

u−R

h
−

u−R)

h

)

+ Vn+1(σ0, · · · , σn, σn+1 = −1)1[σn=−1]

(

d+ h−R

h
−

d+ h−R)

h

)

(4.57)

= Vn+1(σ0, · · · , σn, σn+1 = +1). (4.58)
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Similarly, one can show that Wn+1(σ0, · · · , σn, σn+1 = −1) = Vn+1(σ0, · · · , σn, σn+1 =

−1). Therefore, regardless of the values of σn+1

Wn+1(σ0, · · · , σn, σn+1) = Vn+1(σ0, · · · , σn, σn+1).

Next, we show that the discounted portfolio value process Wn is a martingale under

the measure Q. Consider conditional expectation 1
REQ [Wn+1 (σ0, · · · , σn, σn+1) | Fn] .

Using formula (4.49) we can rewrite it as follows 1
REQ [Wn+1 (σ0, · · · , σn, σn+1) | Fn]

=
1

R
EQ [φnSn+1 +R(Wn − φnSn) | Fn] (4.59)

=
1

R
EQ [φnSn+1 | Fn] +

1

R
EQ [R(Wn − φnSn) | Fn] (4.60)

By Proposition 6, Sn is a martingale with respect to the equivalent measure Q. Moreover,

quantities Wn, φn and Sn are measurable with respect to filtration Fn, therefore we can

continue equation (4.60) as follows

1

R
EQ [Wn+1 (σ0, · · · , σn, σn+1) | Fn] =

1

R
φnSn +Wn −

1

R
φnSn

= Wn. (4.61)

Hence, the discounted portfolio value process Wn is a martingale with respect to the

measure Q. Furthermore, the discounted prices of the derivative security is also a mar-

tingale with respect to the measure Q. It follows from the fact that Wn is a martingale

and Wn(σ0, · · · , σn) = Vn(σ0, · · · , σn), ∀n = 0, N .

Moreover, recall that the expected value of a martingale does not change with time.

Therefore, taking the expectation of Vn we obtain the derivative security pricing formula

(4.52).

Proposition 9 demonstrates that as in the case of the binomial tree model, the histor-

ical probability measure P do not appear in the pricing formula. This is due to the fact

that prices of derivative securities depend on the set of possible stock price paths but not

on the historic probabilities of those paths. Formulas (4.48) and (4.49) allow the agent

to replicate the derivative security using the stock and the money market account. In

the next section, we provide an example that illustrates the way to price the derivative
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security using Proposition 9 and formulas (4.48) and (4.49). The derivative security that

we consider in the next example is the Russian option.

4.2.3 Example

Example 2. The Russian options were proposed by Shiryaev and Shepp in 1993 [53].

Also known as ”reduced regret option”, the Russian option gives the holder the right,

but not the obligation, to buy a call or sell a put at the historical maximum value

of the underlying asset. Unlike other options, Russian Options have no predetermined

expiration date, so the life of the option is determined by the holder of an option. Russian

option is a rare type of option since it is generally more expensive and recommended

for more experienced investors. The no-arbitrage pricing of Russian options was studied

in [33], [52], [15], and [32].

Let the Russian put option with the reward function

Vn = max
0≤i≤n

Si (4.62)

be given, where Si is the price of the underlying asset at time i. In this example we

let the stock to be the underlying asset. Consider a simple two-period regime switching

model with jump factors. Let the parameters of the model be defined as follows:

• number of periods N = 2,

• value of the up-factor u = 2,

• value of the down-factor d = 1
5 ,

• interest rate r = 1
5 , and hence R = r + 1 = 6

5 ,

• value of the jump parameter h = 7
5 .

The up-factor adjusted by the jump is given as u− h = 3
5 and the down-factor adjusted

by the jump is given as d + h = 8
5 . Assume also that the initial regime is known and

σ0 = +1. Let the initial price of the stock be S0 = 4. Our goal is to find the no-arbitrage

price of the Russian option at time n = 0.

We start with the stock price dynamics for the two-period regime switching model

with jumps. In Fig. 4.4 we depict all possible prices of the stock for n = {0, 1, 2}.
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Figure 4.4: Stock price dynamics for two-period regime switching model with jumps,
given σ0 = +1. Quantities highlighted in red correspond to the values of the jump-factor
process gn(σn−1, σn) for n = {1, 2}. Numerical values of the stock price for n = {0, 1, 2}
are highlighted in green.

Since we know all possible values for stock price, we can calculate the Russian option

payoff at time N = 2 using formula (4.62) as follows

V2(σ0 = +1, σ1 = +1, σ2 = +1) = 16,

V2(σ0 = +1, σ1 = +1, σ2 = −1) = 8,

V2(σ0 = +1, σ1 = −1, σ2 = +1) = 4,

V2(σ0 = +1, σ1 = −1, σ2 = −1) = 4.

It is easy to check that the no-arbitrage conditions (4.32) from Proposition 6 are

satisfied ∀n = 0, 1. Note, if σn = +1 then un(σn) = u and dn(σn) = u − h. Hence,

condition u > R > u − h > 0 is satisfied since 10
5 > 6

5 > 3
5 > 0. Similarly, if σn = −1

then dn(σn) = d and un(σn) = d + h. Therefore, the condition d + h > R > d > 0 is

also satisfied since 8
5 > 6

5 > 1
5 > 0. Consequently, there exist an equivalent martingale
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measure given as follows:

Q(σ0 = +1) = 1,

Q(σ0 = −1) = 0,

Q(σ1 = +1|σ0 = +1) = q1(σ0 = +1, σ1 = +1) = R−d0(σ0)
h = R−(u−h)

h = 6/5−3/5
7/5 = 3

7 ,

Q(σ1 = −1|σ0 = +1) = q1(σ0 = +1, σ1 = −1) = u0(σ0)−R
h = u−R

h = 10/5−6/5
7/5 = 4

7 ,

Q(σ2 = +1|σ1 = +1) = q2(σ1 = +1, σ2 = +1) = R−d0(σ0)
h = R−(u−h)

h = 6/5−3/5
7/5 = 3

7 ,

Q(σ2 = −1|σ1 = +1) = q2(σ1 = +1, σ2 = −1) = u0(σ0)−R
h = u−R

h = 10/5−6/5
7/5 = 4

7 ,

Q(σ2 = +1|σ1 = −1) = q2(σ1 = −1, σ2 = +1) = R−d1(σ1)
h = R−d

h = 6/5−1/5
7/5 = 5

7 ,

Q(σ2 = −1|σ1 = −1) = q2(σ1 = −1, σ2 = −1) = u1(σ1)−R
h = d+h−R

h = 8/5−6/5
7/5 = 2

7 .

Using formula (4.51) from Proposition 6 we calculate backward in time the price of the

option at time n = 1 as follows

V1(σ0 = +1, σ1 = +1) =
1

R
[q2(σ1 = +1, σ2 = +1)V2(σ0 = +1, σ1 = +1, σ2 = +1)]

+
1

R
[q2(σ1 = +1, σ2 = −1)V2(σ0 = +1, σ1 = +1, σ2 = −1)]

=
5

6

[

3

7
16 +

4

7
8

]

=
200

21
≈ 9.52, (4.63)

and

V1(σ0 = +1, σ1 = −1) =
1

R
[q2(σ1 = −1, σ2 = +1)V2(σ0 = +1, σ1 = −1, σ2 = +1)]

+
1

R
[q2(σ1 = −1, σ2 = −1)V2(σ0 = +1, σ1 = −1, σ2 = −1)]

=
5

6

[

5

7
4 +

2

7
4

]

=
10

3
≈ 3.33. (4.64)

Finally we compute the value of the Russian option at time n = 0 as follows

V0(σ0 = +1) =
1

R
[q1(σ0 = +1, σ1 = +1)V1(σ0 = +1, σ1 = +1)]

+
1

R
[q1(σ0 = +1, σ1 = −1)V1(σ0 = +1, σ1 = −1)]

=
5

6

[

3

7
9.52 +

4

7
3.33

]

≈ 4.9. (4.65)
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Figure 4.5: Price of the option for two-period regime switching model with jumps, given
σ0 = +1. Quantities, highlighted in green, correspond to the numerical values of the
Russian option price for n = {0, 1, 2}. Corresponding numerical values of the martingale
measure are highlighted in red.

In Fig. 4.5 we depict the price of the option for n = {0, 1, 2}. The initial price of

the Russian option V0 = 4.9 allows the seller of the option to hedge his short position.

Suppose an agent sells this option at time n = 0 for 4.9 dollars. Formula (4.48) gives

the number of shares of stock the agent should buy at time zero:

φ0(σ0) =
V1(σ0 = +1, σ1 = +1)− V1(σ0 = +1, σ1 = −1)

S1(σ0 = +1, σ1 = +1)− S1(σ0 = +1, σ1 = −1)
=

9.52 − 3.33

8− 2.4
≈ 1.1375.

Hence, at time n = 0 the agent will spend 1.1375 × 4 = 4.55 dollars, for buying 1.1375

shares of stock, and invest the remainder 4.9− 4.55 = 0.35 dollars in the money market.

The money market has r = 1
5 interest rate, therefore, at time n = 1 the money market

investment will yield 0.35× 6
5 = 0.42 dollars. If the stock price goes up then the agent’s

total portfolio value will be 0.42 + 1.1375 × 8 = 9.52 dollars, which matches V1(σ0 =
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+1, σ1 = +1). Similarly, if the stock price goes down, then the total portfolio value

will be 0.42 + 1.1375 × 2.4 = 3.33, which matches V1(σ0 = +1, σ1 = −1). In similar

fashion, one can check that the hedge will fork for n = 2. Therefore, the agent’s portfolio

replicates the option independently of the stock price path.

4.3 Special case: initial regime σ0 is not known

In this section, we study the regime switching model with jumps under the assumption

that the initial regime σ0 is not known. Although it is not intuitive, this assumption

describes a real world phenomenon. As it was mentioned in [35], there is no certain way

to determine current economic regime based on the observation of markets and their

parameters. Moreover, there is a type of economic risk, called regime uncertainty, that

is associated with uncertain future course of government policy, monetary or fiscal policy,

or uncertainty over electoral outcomes. This leads to a significant decline in economic

activity until this uncertainty has been resolved.

We start by considering one-period regime switching model with jumps.

4.3.1 One-period regime switching model with jumps

Suppose 0 < P(σ0 = +1) = p0 < 1, i.e., the initial regime is not known and can be either

+1 or −1. Then at time n = 1 the jump-factor process can take four possible values:

g1(σ0, σ1) =























d+ h, if σ0 = −1 and σ1 = +1;

d, if σ0 = −1 and σ1 = −1;

u, if σ0 = +1 and σ1 = +1;

u− h, if σ0 = +1 and σ1 = −1.

(4.66)

And therefore, the price of the stock can also take four possible values:

S1 =























(d+ h)S0, if σ0 = −1 and σ1 = +1;

dS0, if σ0 = −1 and σ1 = −1;

uS0, if σ0 = +1 and σ1 = +1;

(u− h)S0, if σ0 = +1 and σ1 = −1.

(4.67)
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Figure 4.6: Stock price dynamics for one-period regime switching model with jumps
when σ0 is not known.

In Fig. 4.6 we schematically depict the stock price dynamics for the case when σ0

is unknown. Since stock price can take four possible values, this one-period regime

switching model with jumps has no resemblance with the binomial tree model.

Next proposition demonstrates that one-period regime switching model with jumps

is not complete when the initial regime σ0 in unknown.

Proposition 10. Let the probability space (Ω,F ,P) be given. Let the one-period regime

switching market model with jumps (Sn, Bn), n = 1, N , N = 1 be given, where Sn

is a collection of stock prices defined by formula (4.6) and Bn is a risk-free money

market process, defined by formula (4.10). Let the initial regime σ0 be unknown, i.e.,

0 < P(σ0 = +1) < 1. If u > R > d > 0, then there are infinitely many equivalent
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martingale measures Q described by the following equation

R = Q(σ0 = +1) (uQ(σ1 = +1 | σ0 = +1) + (u− h)Q(σ1 = −1 | σ0 = +1))

+ Q(σ0 = −1) ((d+ h)Q(σ1 = +1 | σ0 = −1) + dQ(σ1 = −1 | σ0 = −1)) ,(4.68)

where 0 < Q(σ1 = ξ1 | σ0 = ξ0) < 1, ξ0, ξ1 ∈ {+1,−1} and 0 < Q(σ0 = +1) < 1. Thus,

the model is not complete.

Proof. Condition u > R > d > 0 ensures that the model does not admit an arbitrage.

Therefore, by Theorem 1, there exist at least one equivalent martingale measure. Con-

sider a stock with initial price S0. Then under the equivalent martingale measure, the

discounted stock price should be a martingale, i.e.,

S0 = EQ

[

R−1S1|S0

]

. (4.69)

Following the discussion in the Remark 1, G0 ⊂ F0, but G0 6= F0. Therefore, we can

rewrite equation (4.69) as follows

S0 = EQ

[

R−1S1|S0

]

=
1

R
EQ[S1|S0]

=
1

R
EQ[EQ[S1|S0, σ0]|S0]

=
1

R
EQ[EQ[1[σ0=+1](uS01[σ1=+1] + (u− h)S01[σ1=−1])|S0, σ0]|S0]

+
1

R
EQ[EQ[1[σ0=−1]((d+ h)S01[σ1=+1] + dS01[σ1=−1])|S0, σ0]|S0]

=
1

R
Q(σ0 = +1)S0 (uQ(σ1 = +1|σ0 = +1) + (u− h)Q(σ1 = −1|σ0 = +1))

+
1

R
Q(σ0 = −1)S0 ((d+ h)Q(σ1 = +1|σ0 = −1) + dQ(σ1 = −1|σ0 = −1))(4.70)

Equation (4.70) has three unknown probabilities, namely Q(σ0 = +1), Q(σ1 = +1|σ0 =

+1), and Q(σ1 = +1|σ0 = −1). Thus, there are infinitely many way to define probabili-

ties Q(σ0 = +1) ∈ (0, 1), Q(σ1 = +1|σ0 = +1) ∈ (0, 1), and Q(σ1 = +1|σ0 = −1) ∈ (0, 1)

such that they satisfy equation (4.70). Thus, there are infinitely many ways to de-

fine measure Q. Note, that those measures Q are equivalent to the historical measure

P. This follows from the fact that whenever 0 < P(σi = ξi) < 1, the corresponding
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0 < Q(σi = ξi) < 1, for ξi ∈ {+1,−1} and i = {0, 1}.

In the next section, we consider N -period regime switching model with jumps as-

suming that initial regime σ0 is unknown. We show that the model is not complete.

4.3.2 N -period regime switching model with jumps

Proposition 11. Let the probability space (Ω,F ,P) be given. Let the N−period regime

switching market model with jumps (Sn, Bn), n = 1, N be given, where Sn is a collection

of stock prices defined by formula (4.6) and Bn is a risk-free money market process,

defined by formula (4.10). Let u > R > d > 0. Let the initial regime σ0 be unknown,

i.e., 0 < P(σ0 = +1) < 1. Then, the model is not complete.

Proof. First note that condition u > R > d > 0 guarantees that the model is arbitrage-

free. Therefore, the exist at least one equivalent martingale measure. We will demon-

strate that this measure is not unique, by considering two cases: when h ≥ max{u −

R,R − d} and when u − h = d + h. Let the jump size h satisfy condition h ≥

max{u − R,R − d}. Then, following the discussion in the Remark 1, we conclude that

Gn = Fn for n ≥ 1. Let a stock with the initial price S0 be given. Under the assumption

that the discounted stock price should be a martingale under the equivalent martingale

measure, we obtain the following

1

R
EQ [Sn+1 | Fn] =

1

R
EQ[Sngn(σn−1, σn) | Fn]

=
1

R
EQ[Snu1[σn=+1]1[σn+1=+1] + Sn(u− h)1[σn=+1]1[σn+1=−1] | Fn]

+
1

R
EQ[Sn(d+ h)1[σn=−1]1[σn+1=+1] + Snd1[σn=−1]1[σn+1=−1] | Fn]

=
1

R
Sn1[σn=+1]EQ[u1[σn+1=+1] + (u− h)1[σn+1=−1] | Fn]

+
1

R
Sn1[σn=−1]EQ[(d+ h)1[σn+1=+1] + d1[σn+1=−1] | Fn]. (4.71)

Equation (4.71) leads to unique transition probabilities given as

Q(σn = ξn|σ0 = ξ0, · · · , σn−1 = ξn−1, S0 = s0, · · · , Sn = sn) =
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= Q(σn = ξn|σn−1 = ξn−1)

=























R−D(ξn−1)
U(ξn−1)−D(ξn−1)

= R−(u−h)
h , ξn−1 = +1, ξn = +1;

U(ξn−1)−R
U(ξn−1)−D(ξn−1)

= u−R
h , ξn−1 = +1, ξn = −1;

R−D(ξn−1)
U(ξn−1)−D(ξn−1)

= R−d
h , ξn−1 = −1, ξn = +1;

U(ξn−1)−R
U(ξn−1)−D(ξn−1)

= (d+h)−R
h , ξn−1 = −1, ξn = −1,

(4.72)

∀n ≥ 2. However, by Proposition 10, probabilities Q(σ0 = +1), Q(σ1 = +1|σ0 = +1),

and Q(σ1 = +1|σ0 = −1) are not defined uniquely, and are described by the following

equation

R = Q(σ0 = +1) (uQ(σ1 = +1 | σ0 = +1) + (u− h)Q(σ1 = −1 | σ0 = +1))

+ Q(σ0 = −1) ((d+ h)Q(σ1 = +1 | σ0 = −1) + dQ(σ1 = −1 | σ0 = −1)) .(4.73)

Therefore, under the assumption that h ≥ max{u−R,R− d}, there are infinitely many

measures that satisfy equation (4.73), and therefore, the model is not complete.

Now, let jump size h satisfy equation u− h = d+ h. In this case, Gn ⊂ Fn for n ≥ 1,

Gn 6= Fn. Thus, equation Sn = EQ

[

R−1Sn+1|S0, S1, · · · , Sn

]

can be rewritten as follows

Sn = EQ

[

R−1Sn+1 | S0, · · · , Sn

]

=
1

R
EQ[Sn+1 | S0, · · · , Sn]

=
1

R
EQ[EQ[Sn+1 | S0, · · · , Sn, σ0, · · · , σn] | S0, · · · , Sn]

=
1

R
EQ[EQ[1[σn=+1](uSn1[σn+1=+1]) | S0, · · · , Sn, σ0, · · · , σn] | S0, · · · , Sn]

+
1

R
EQ[EQ[1[σn=+1]((u− h)Sn1[σn+1=−1]) | S0, · · · , Sn, σ0, · · · , σn] | S0, · · · , Sn]

+
1

R
EQ[EQ[1[σn=−1]((d+ h)Sn1[σn+1=+1]) | S0, · · · , Sn, σ0, · · · , σn] | S0, · · · , Sn]

+
1

R
EQ[EQ[1[σn=−1](dSn1[σn+1=−1]) | S0, · · · , Sn, σ0, · · · , σn] | S0, · · · , Sn]

=
1

R
Q(σn = +1)SnuQ(σn+1 = +1 | σ0, · · · , σn = +1)

+
1

R
Q(σn = +1)Sn(u− h)Q(σn+1 = −1 | σ0, · · · , σn = +1)

+
1

R
Q(σn = −1)Sn(d+ h)Q(σn+1 = +1 | σ0, · · · , σn = −1)

+
1

R
Q(σn = −1)SndQ(σn+1 = −1 | σ0, · · · , σn = −1). (4.74)
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Equation (4.74) has three unknown probabilities Q(σn = −1) ∈ (0, 1), Q(σn+1 = +1 |

σ0, · · · , σn = +1) ∈ (0, 1), and Q(σn+1 = +1 | σ0, · · · , σn = −1) ∈ (0, 1). Hence, there

are infinitely many measures that satisfy equation (4.74), and therefore, the model is

not complete. Notice that, in both cases, measures Q are equivalent to the historical

measure P. This follows from the fact that 0 < P(σi = ξi) < 1 and 0 < Q(σi = ξi) < 1,

for ξi ∈ {+1,−1} and i = {0, 1}.

Propositions 10 and 11 imply that the regime switching model with jumps is not

complete if the initial regime is not known. In other words, there are some derivative

securities that can not be priced under the model and some that can be priced. Next

examples will illustrate both scenarios.

4.3.3 Examples

Example 3. Consider a one-period regime switching model with jumps. Assume that

the initial regime is not known. Consider a contract with a payoff function at time N = 1

V1 = S1 −K, (4.75)

where S1 is the price of the underlying asset at time N = 1 and K is a strike price. Let

the parameters of the model be given as follows:

• the number of periods N = 1,

• the strike price K = 2/5,

• the value of the up-factor u = 2,

• the value of the down-factor d = 1
5 ,

• the interest rate r = 1
5 , and hence R = r + 1 = 6

5 ,

• the value of the jump parameter h = 7
5 ,

• the value of the up-factor adjusted by the jump u− h = 3
5 ,

• the value of the down-factor adjusted by the jump d+ h = 8
5 ,
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Figure 4.7: Stock price dynamics for the case when initial regime σ0 is not known. Values
of the contract at time N = 1 are depicted on the right. Numerical values of the stock
and contract are highlighted in green.

Let the initial price of the stock be S0 = 4. Our goal is to find the price of this contract

at time n = 0. We accomplish that by constructing the replication portfolio that matches

the payoff of the contract.

We start with the stock price dynamics for the one-period model. In Fig. 4.7 we

depict all possible prices of the stock for n = {0, 1}. Given the payoff function defined in

(4.75), we calculate the value of the contract at time N = 1 as follows

V1(u) = 7.6,

V1(u− h) = 2,

V1(d+ h) = 6,

V1(d) = 0.4.

Let W1 = φ0S1+R(W0−φ0S0) be the value of the portfolio at time N = 1. In order

for this portfolio to replicate the contract’s payoff for every possible value of the regime

process sequence σ0, σ1, we need to equate the value of the portfolio and the payoff of
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the contract for every possible value of the regime process sequence σ0, σ1. Therefore,

we obtain the following system of equations























W1(u) = φ0uS0 +R(W0 − φ0S0) = V1(u) = (S0u−K),

W1(u− h) = φ0(u− h)S0 +R(W0 − φ0S0) = V1(u− h) = (S0(u− h)−K),

W1(d+ h) = φ0(d+ h)S0 +R(W0 − φ0S0) = V1(d+ h) = (S0(d+ h)−K),

W1(d) = φ0dS0 +R(W0 − φ0S0) = V1(d) = (S0d−K).

(4.76)

Note, that if the system of equations (4.76) with two unknowns φ0 and W0 has a

unique solution, then the initial price of the contract V0 is unique and is equal to the

initial value of the replicating portfolio W0. Solving the system of equations (4.76) we

obtain a unique solution φ0 = 1 and W0 = 11/3. Hence, the contract of interest has a

unique initial price V0 = 11/3.

Next example illustrates that there are derivative securities that can not be priced

under the assumption that the initial regime is unknown.

Example 4. Consider a one-period regime switching model with jumps with initial

regime being unknown. Consider an European call option with a payoff function at time

N = 1

V1 = (S1 −K)+, (4.77)

where S1 is the price of the underlying asset at time N = 1 and K is a strike price. Let

the parameters of the model be the same as in the example 3 with only one exception.

Let the strike price of the option be K = 2.4. The objective is to find the price of the

option at time n = 0.

Given the payoff function given by formula (4.77), we calculate the value of the option

at time N = 1 as follows

V1(u) = 5.6,

V1(u− h) = 0,

V1(d+ h) = 4,

V1(d) = 0.

In Fig. 4.8 we depict all possible prices of the stock for n = {0, 1} and the values of the

payoff function of the European call option at time N = 1.

We construct a replicating portfolio that matches the payoff of the option, and obtain
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Figure 4.8: Stock price dynamics for the case when initial regime σ0 is not known. Values
of the European call option at time N = 1 are depicted on the right. Numerical values
of the stock and European call option are highlighted in green

the following system of equations with two unknowns W0 and φ0























W1(u) = φ0uS0 +R(W0 − φ0S0) = V1(u) = (S0u−K)+,

W1(u− h) = φ0(u− h)S0 +R(W0 − φ0S0) = V1(u− h) = (S0(u− h)−K)+,

W1(d+ h) = φ0(d+ h)S0 +R(W0 − φ0S0) = V1(d+ h) = (S0(d+ h)−K)+,

W1(d) = φ0dS0 +R(W0 − φ0S0) = V1(d) = (S0d−K)+.

(4.78)

However, the system of equations (4.78) is overdetermined and does not have a solution.

This implies that under the described setting the initial price of the European call option

V0 can not be computed.
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4.3.4 Selection of one specific equivalent martingale measure

In the previous sections we showed that under the assumption of unknown initial regime

the regime switching model with jumps is incomplete and there exist infinitely many

martingale measures equivalent to the historical measure P. In this chapter we restrict

our attention to one-period regime switching model with jumps and denote M to be the

family of equivalent martingale measures described by the following equation

R = q1u+ q2(u− h) + q3(d+ h) + q4d, (4.79)

where 0 < qi < 1, ∀i = [1, 2, 3, 4].

Recall that in Example 3 we showed that even thought the market is incomplete,

there exist an attainable contingent claim. Example 4, however, described a contingent

claim that is not attainable. Therefore, there appears a reasonable question on how to

value a non-attainable contingent claim. Note that any measure from the family M

can be used to evaluate contingent claim. But how to choose the ”right” equivalent

martingale measure? How to select one specific martingale measure that is the ”closest”

(in some sense) to the historical measure P? The no-arbitrage pricing principle alone is

not sufficient to answer those questions. In this section, we are interested in choosing one

specific martingale measure from the family M that can be used to value a derivative

security in our incomplete model. The price of the derivative security will be calculated

as the expectation with respect to the equivalent martingale measure of the discounted

payoff.

There have been several approaches proposed to select one particular measure form

the family M , for example, a variance minimizing hedging [49,50], minimal martingale

measure approach [17] and Merton’s method [39]. However, in some cases minimal

martingale measure may not be equivalent to the historical measure P [19].

Utility based models provide another way of choosing the right equivalent martingale

measure. These models are based on the assumption that the investor’s preferences can

be expressed by choosing a suitable utility function. By maximizing expected utility one

can obtain the optimal (in the particular utility function sense) equivalent martingale

measure. There are several types of utility function used, for example, exponential utility,

logarithmic utility and power utility functions.

Another approach is based on the minimal entropy criterion. Application of this cri-
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terion can be found in various disciplines such as statistical physics, information theory

and theory of large deviation. In financial mathematics, it was applied, for example, by

Csiszar in [8], who studied the problem of existence of probability measure that minimizes

the relative entropy on a set of probability measures under some linear constraints. Frit-

telli [19] demonstrated that measure in the class M that minimizes the relative entropy

with respect to the historical measure P can be a good selection for the pricing measure.

It was noticed in several papers [11,19,24,48] that the problem of finding the minimal en-

tropy martingale measure is dual to the problem of the exponential utility maximization.

Moreover, the minimal entropy measure coincides with the martingale measure obtained

by utility maximization principle for exponential utility function [16,19]. It has also been

shown [18] that under the no-arbitrage assumption minimal entropy martingale measure

always exists and is equivalent to the historic measure P. Moreover, Miyahara [40] con-

nected the minimal entropy martingale measure with the large deviation theory though

the Sanov’s theorem, in particular, concluded that the minimal entropy martingale mea-

sure “is the most possible empirical probability measure of paths of price process in

the class of the equivalent martingale measures.” Furthermore, Stutzer [55] showed that

minimal entropy measure is Esscher transform of original measure P. This leads us to

one of the most popular methods for selecting equivalent martingale measure.

Esscher transform was introduces by F. Esscher in 1932 and had been extensively used

in actuarial pricing. Gerber and Shiu [22] used it to define a possible pricing measure in

incomplete markets. In complete markets Esscher measure is equal to unique equivalent

measure in each market [22]. It was shown [21] that the Esscher parameter is unique

such that the discounted stock price is a martingale under the new probability measure.

The measure obtained by applying Esscher transform to the historical measure is of-

ten justified through its connection to the minimal entropy measure, i.e., the ”closest”

equivalent martingale measure to the historic measure P in the sense of Kullback-Leibler

distance. Buhlmann et al. [2] provided an additional economical rationale behind the Es-

scher transform. Authors considered a problem of Pareto optimal allocation of resources

(i.e., the discounted increase in total aggregate market values of all assets) among in-

vestors. Under the assumption that each investor had an exponential utility function,

Esscher transform provided optimal allocation of resources. Moreover, Esscher measure

was connected to the exponential utility maximization measure in [9, 41].

In the next section we demonstrate how to chose an equivalent martingale measure
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from a family M using the Esscher transform.

4.3.4.1 Esscher transform approach

Consider one-period regime switching model with jumps under the assumption of un-

known initial regime. Recall that the price of the stock at time n = 1 is defined as

S1 = S0g1,

where the g1 is the jump-factor process with probability mass function pg1(x) given as

follows

pg1(x) =























p1, when x = u;

p2, when x = u− h;

p3, when x = d+ h;

p4, when x = d,

(4.80)

such that pi > 0 ∀i = [1, 2, 3, 4]. Denote corresponding moment generating function

M(z) = E [gz1 ] .

Definition 24. Let f(x) be a probability density function. Let θ be a real number such

that

T (θ) =

∫ +∞

−∞

exp(θx)f(x)dx

exists. A probability density function

f(x; θ) =
exp(θx)f(x)

∫ +∞

−∞
exp(θx)f(x)dx

is called the Esscher transform (with parameter θ) of the original distribution.

Applying the Esscher transform to the historic probability measure P we obtain a
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new probability mass function specified by the parameter θ

pg1(x; θ) =



























p1uθ

M(θ) , when x = u;
p2(u−h)θ

M(θ) , when x = u− h;
p3(d+h)θ

M(θ) , when x = d+ h;
p4dθ

M(θ) , when x = d.

(4.81)

Note that no-arbitrage conditions 0 < d < R < u and h > max{u−R,R− d} guarantee

that the new probability measure is equivalent to measure P. Denote the corresponding

moment generating function as M(z; θ). We need to make sure that the discounted

stock price process is a martingale with respect to the equivalent probability measure

parameterized by θ. In particular, we require that

S0 = EQ(θ)

[

R−1S1

]

= R−1S0EQ(θ) [g1] . (4.82)

Let θ⋆ be the value of the parameter θ for which equation (4.82) holds. Note that

M(z; θ) = M(z+θ)
M(z) [21], and hence equation (4.82) can be equivalently rewritten as

R =
M(1 + θ)

M(θ)

=
p1u

θ+1 + p2(u− h)θ+1 + p3(d+ h)θ+1 + p4d
θ+1

p1uθ + p2(u− h)θ + p3(d+ h)θ + p4dθ
. (4.83)

Multiplying both sides of equation (4.83) by the denominator of the right-hand side and

regrouping similar terms we obtain equation

p1(u−R)uθ + p2(u− h−R)(u− h)θ + p3(d+ h−R)(d+ h)θ + p4(d−R)dθ = 0. (4.84)

Next proposition demonstrates that there exist unique θ⋆ that satisfies equation (4.84).

Proposition 12. Let u, d, R, and h be given such that the no-arbitrage conditions

u > R > d > 0 and u > h > max{u − R,R − d} are satisfied. Let 1 ≥ pi ≥ 0

∀i = {1, 2, 3, 4} such that
∑4

i=1 pi = 1. Then there exist unique θ⋆ that satisfies equation

p1(u−R)uθ + p2(u− h−R)(u− h)θ + p3(d+ h−R)(d+ h)θ + p4(d−R)dθ = 0. (4.85)
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Proof. We start by considering function

f(θ) = p1(u−R)uθ+p2(u−h−R)(u−h)θ+p3(d+h−R)(d+h)θ+p4(d−R)dθ. (4.86)

We need to show that there exist a unique θ⋆ such that f(θ⋆) = 0. Let ρ > max{u−h, d}.

Define auxiliary function

f̃(θ) =
f(θ)

ρθ

= p1(u−R)

(

u

ρ

)θ

+p2(u−h−R)

(

u− h

ρ

)θ

+p3(d+h−R)

(

d+ h

ρ

)θ

+p4(d−R)

(

d

ρ

)θ

.

(4.87)

Note that

f(θ⋆) = 0 ⇔
f(θ⋆)

ρθ⋆
= 0.

Now consider the derivative of f̃(θ)

f̃ ′(θ) = p1(u−R)

(

u

ρ

)θ

ln

(

u

ρ

)

+ p2(u− h−R)

(

u− h

ρ

)θ

ln

(

u− h

ρ

)

+ p3(d+ h−R)

(

d+ h

ρ

)θ

ln

(

d+ h

ρ

)

+ p4(d−R)

(

d

ρ

)θ

ln

(

d

ρ

)

. (4.88)

From the no-arbitrage conditions and from the fact that ρ > max{u − h, d} it follows

that f̃ ′(θ) > 0. Therefore, f̃(θ) is a strictly increasing function. Now consider the limit

of f̃(θ) when θ → −∞:

lim
θ→−∞

f̃(θ) = lim
θ→−∞

p1(u−R)

(

u

ρ

)θ

+ lim
θ→−∞

p2(u− h−R)

(

u− h

ρ

)θ

+ lim
θ→−∞

p3(d+ h−R)

(

d+ h

ρ

)θ

+ lim
θ→−∞

p4(d−R)

(

d

ρ

)θ

= −∞. (4.89)

Formula (4.89) follows from the fact that u
ρ > 1, u−h

ρ < 1, d+h
ρ > 1, d

ρ < 1, and d−R < 0,
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u− h−R < 0. Similarly, we consider the limit of f̃(θ) when θ → ∞:

lim
θ→∞

f̃(θ) = lim
θ→∞

p1(u−R)

(

u

ρ

)θ

+ lim
θ→∞

p2(u− h−R)

(

u− h

ρ

)θ

+ lim
θ→∞

p3(d+ h−R)

(

d+ h

ρ

)θ

+ lim
θ→∞

p4(d−R)

(

d

ρ

)θ

= ∞. (4.90)

Formula (4.90) follows from the fact that u
ρ > 1, u−h

ρ < 1, d+h
ρ > 1, d

ρ < 1, and u−R > 0,

d + h − R > 0. Therefore, by Bolzano’s Intermediate Value Theorem [34, p. 120] there

exist a unique θ⋆ such that f̃(θ⋆) = 0, and hence f(θ⋆) = 0.

Although θ⋆ exist and is unique, there is no closed-form solution for θ⋆ for one-

period regime switching model with jump. However, it can always be found numerically

(iteratively) as a solution of equation (4.84).

Parameter θ⋆ uniquely determines the equivalent martingale measure. Denote this

measure as Q. Consider now the properties of measure Q given by probabilities



























q1 =
p1uθ

⋆

M(θ⋆) , when x = u;

q2 =
p2(u−h)θ

⋆

M(θ⋆) , when x = u− h;

q3 =
p3(d+h)θ

⋆

M(θ⋆) , when x = d+ h;

q4 =
p4dθ

⋆

M(θ⋆) , when x = d,

(4.91)

where θ⋆ is a solution to equation

p1(u−R)uθ + p2(u− h−R)(u− h)θ + p3(d+ h−R)(d+ h)θ + p4(d−R)dθ = 0. (4.92)

As we stated earlier, because of the no-arbitrage conditions this measure Q is equivalent

to the historic measure P. Moreover, measure Q is in the class M described by the

equation (4.79). In order to check it, one can divide equation (4.92) by M(θ⋆) and

regroup similar terms to obtain equation (4.79). Note also that measure Q is a function

of historical probability distribution P, a jump size h and the Esscher parameter θ⋆.

Next proposition demonstrates that the four probabilities q1, q2, q3, and q4 defining new

equivalent martingale measure Q are continuously differentiable functions of parameters
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p1, p2, p3, p4, and h.

Proposition 13. Let u, d, R, and h be given such that the no-arbitrage conditions

u > R > d > 0 and u > h > max{u − R,R − d} are satisfied. Let 1 ≥ pi ≥ 0

∀i = {1, 2, 3, 4} such that
∑4

i=1 pi = 1. Let θ⋆ be the solution to the equation

p1(u−R)uθ + p2(u− h−R)(u− h)θ + p3(d+ h−R)(d+ h)θ + p4(d−R)dθ = 0. (4.93)

Define measure Q by probabilities



























q1 =
p1uθ

⋆

M(θ⋆) , when x = u;

q2 =
p2(u−h)θ

⋆

M(θ⋆) , when x = u− h;

q3 =
p3(d+h)θ

⋆

M(θ⋆) , when x = d+ h;

q4 =
p4dθ

⋆

M(θ⋆) , when x = d.

(4.94)

Then probabilities q1, q2, q3 and q4 are continuously differentiable functions of parameters

p1, p2, p3, p4, and h.

To prove Proposition 13 we use The Implicit Function Theorem 9.7.2 from [56, p. 269].

Proof. (of Proposition 13) In Proposition 12 we have demonstrated that for fixed values

of parameters u, d,R and h that satisfy the no-arbitrage conditions and probabilities

p1, p2, p3, p4 there exist a unique θ⋆ such that f̃(θ⋆) = 0. Observe also that function f̃

depends on p1, p2, p3, p4 and h and hence we can write function f̃ as f̃(θ; p1, p2, p3, p4, h).

We have also showed that ∂f̃
∂θ (θ

⋆; p1, p2, p3, p4, h) > 0. Moreover, function f̃ is contin-

uously differentiable with respect to θ. Therefore, by the Implicit Function Theorem

there exist a continuously differentiable function f̂ such that θ = f̂(p1, p2, p3, p4, h) and

f̃(f̂(p1, p2, p3, p4, h); p1, p2, p3, p4, h) = 0. Hence, probabilities q1, q2, q3 and q4 are con-

tinuously differentiable functions of parameters p1, p2, p3, p4, and h.

Next we consider two special cases: when h = 0 and when p3 = p4 = 0.

Consider the case when h = 0. Equation (4.84) can be rewritten as

(p1 + p2)(u−R)uθ + (p3 + p4)(d−R)dθ = 0. (4.95)
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Solving this equation for θ we obtain

θ⋆ =
log
(

(p3+p4)(R−d)
(p1+p2)(u−R)

)

log
(

u
d

) . (4.96)

For h = 0 factor process g1 can take two possible values u and d. Historic probability

mass function is given as follows

pg1(x) =

{

p1 + p2, when x = u;

p3 + p4, when x = d,
(4.97)

and new probability mass function is given by

pg1(x; θ
⋆) =







(p1+p2)uθ
⋆

M(θ⋆) , when x = u;

(p3+p4)dθ
⋆

M(θ⋆) , when x = d,
(4.98)

where M(θ⋆) = (p1 + p2)u
θ⋆ + (p3 + p4)d

θ⋆ . We plug in θ⋆ into the formula (4.98) and

obtain

pg1(x; θ
⋆) =

{

R−d
u−d , when x = u;
u−R
u−d , when x = d,

(4.99)

Note that when h = 0 model completely coincides with the classical binomial tree model.

And the newly obtained equivalent martingale measure is the unique martingale measure

provided in Chapter 3.

Consider now the case when p3 = p4 = 0. This corresponds to the scenario when

initial regime is σ0 = +1. Equation (4.84) can be rewritten as

p1(u−R)uθ = p2(R− (u− h))(u− h)θ. (4.100)

Solving this equation for θ we obtain

θ⋆ =
log
(

p2(R−(u−h))
p1(u−R)

)

log
(

u
u−h

) . (4.101)
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Therefore, new probability measure is found as

pg1(x; θ
⋆) =























R−(u−h)
h , when x = u;

u−R
h , when x = u− h;

0, when x = d+ h;

0, when x = d.

(4.102)

Note that in the case when p3 = p4 = 0, new probability measure obtained using the

Esscher transform coincides with a unique equivalent martingale measure provided for the

regime switching model with σ0 = +1 in Section 4.2.1. This example is a good illustration

of continuity of probabilities q1, q2, q3, and q4 in parameters: when p3 → 0 and p4 → 0

probabilities q1, q2, q3, and q4 converges to corresponding probabilities given by (4.102).

Similarly, one can show that for p1 = p2 = 0, new probability measure obtained using

the Esscher transform will result in a unique equivalent martingale measure obtained for

the regime switching model with σ0 = −1 in section 4.2.1.

In the next example we will show how to price a non-attainable contingent claim

from example 4.

Example 5. Consider now the non-attainable contingent claim from example 4. We

have demonstrated that the European call option with a payoff V1 = (S1 −K)+ can not

be replicated by the stock and money market accounts. In order to price this contract

we need to choose one equivalent martingale measure form a family of measures M . We

obtain this measure by applying the Esscher transform to the historic measure P given,

for example, by p1 = p2 = p3 = p4 =
1
4 . As we stated earlier, equation

p1(u−R)uθ + p2(u− h−R)(u− h)θ + p3(d+ h−R)(d+ h)θ + p4(d−R)dθ = 0 (4.103)

has no closed-form solution. However, using numerical methods (e.g., Newton method)

we obtain θ⋆ = 0.16. Therefore, measure Q is given by probabilities



























q1 =
p1uθ

⋆

M(θ⋆) = 0.2872, when x = u;

q2 =
p2(u−h)θ

⋆

M(θ⋆) = 0.2369, when x = u− h;

q3 =
p3(d+h)θ

⋆

M(θ⋆) = 0.2771, when x = d+ h;

q4 =
p4dθ

⋆

M(θ⋆) = 0.1988, when x = d.

(4.104)
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The initial price of the contract is the discounted expectation with respect to measure

Q of contract’s payoff, i.e.,

V0 = EQ

[

R−1V1

]

=
5

6
(0.2872 × V1(u) + 0.2369 × V1(u− h) + 0.2771 × V1(d+ h) + 0.1988 × V1(d))

= 2.2639. (4.105)

Thus, the Esscher transform allowed us to price a non-attainable contingent claim.

In this section, we have considered the regime switching model with jumps. We

investigated the properties of this model under different scenarios. First, we considered

the case of known initial regime σ0. We have concluded that the model is arbitrage-free

and complete under the condition that the jump size h satisfies inequality h > max{u−

R,R − d}. We provided formulas for pricing any derivative security and demonstrated

the pricing process with the example. Next, we considered the case of unknown initial

regime. In this case, both one-period model and N -period model are incomplete since

there are infinitely many equivalent martingale measures. We have demonstrated that

some derivative securities can be replicated under such assumptions and some derivative

securities can not. In order to price derivative securities that can not be replicated

by the stock and money market accounts, we used the Esscher transform to obtain an

equivalent martingale pricing measure. Example 5 demonstrated how to price a non-

attainable contingent claim using the Esscher transform.
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Chapter 5: Conclusion

In this work, we considered discrete time regime switching model with jumps. This model

is a combination of a discrete telegraph model with jumps and a classical binomial tree

model. This model is more realistic than the standard binomial tree model. First, our

model of interest incorporates regime switches. This leads to more truthful modeling of

changing economic environment. Second, usage of jumps enables large movements of the

model parameters. Thus, regime switching model with jumps is rich enough to capture

the effect of economical, political, and other significant events.

The purpose of this work was to provide a comprehensive completeness analysis of

the discrete time regime switching model with jumps. First, we briefly described useful

definitions from probability theory and financial mathematics that are used throughout

the text. We started with the description of the classical binomial tree model. We showed

that under some conditions the model is arbitrage-free and complete. The numerical ex-

ample 1 demonstrates how to construct replicating portfolio and price derivative security

in the binomial tree model. Next, we described the discrete time regime switching model

with jumps. We considered two scenarios: when initial regime is known and when initial

regime is unknown. In the first case, we proved that if jump size h satisfies condition

h > max{R − d, u − R} then the model is complete and hedging is perfect. This result

emphasizes the importance of the jump size; jumps serve as an instrument to avoid arbi-

trage and complete the model. Moreover, we found a closed form formula for the unique

equivalent martingale measure. In numerical example 2 we provided a way to price a

derivative security under regime switching model with jumps and known initial regime.

Next, we considered the case of unknown initial regime. We demonstrated that both one-

period and N -period models are not complete even when jump size h satisfies condition

h > max{R− d, u−R}. Incompleteness followed from the fact that when initial regime

is unknown there are infinitely many equivalent martingale measures. This implies that

initial regime is also crucial for the model completeness. Numerical examples 3 and 4

demonstrated that there are derivative securities that can be priced under the regime

switching model with jumps and unknown initial regime and there are derivative securi-



67

ties that can not be priced. Furthermore, we have discussed the Esscher transform as a

tool to select a particular martingale measure for pricing derivative securities that can

not be replicated with the stock and money market accounts. The numerical example 5

illustrated the way of applying the Esscher transform to price a European call option in

the incomplete one-period regime switching model with jumps.
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decomposition. Stochastic analysis and applications, 13(5):573–599, 1995.

[51] Martin Schweizer and Johannes Wissel. Arbitrage-free market models for option
prices: The multi-strike case. Finance and Stochastics, 12(4):469–505, 2008.

[52] LA Shepp and Albert N Shiryaev. A new look at pricing of the russian option .
Theory of Probability & Its Applications, 39(1):103–119, 1995.

[53] Larry Shepp and Albert N Shiryaev. The russian option: reduced regret. The
Annals of Applied Probability, pages 631–640, 1993.

[54] Steven Shreve. Stochastic calculus for finance I: the binomial asset pricing model.
Springer Science & Business, 2012.

[55] Michael Stutzer. A simple nonparametric approach to derivative security valuation.
The Journal of Finance, 51(5):1633–1652, 1996.



72

[56] Joseph Taylor. Foundation of analysis. American Mathematical Soceity, 2012.

[57] Fei Lung Yuen and Hailiang Yang. Option pricing in a jump-diffusion model with
regime switching. Astin Bulletin, 39(02):515–539, 2009.






